Sample records for center operable unit

  1. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  2. Superfund record of decision (EPA Region 3): US Defense General Supply Center, Operable Unit 9, Chesterfield County, VA, September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The decision document presents the selected interim remedial action for Operable Unit 9 (OU9) at the Defense General Supply Center (DGSC) in Chesterfield County, Virginia near Richmond. OU9 pertains to groundwater beneath Area 50, the Open Storage Area (OSA), and the Naitonal Guard Area (NGA). This operable unit is the third of nine operable units that are currently being addressed at the DGSC. OU9 addresses interim treatment and containment of groundwater in the upper and lower aquifers beneath Area 50, the OSA, and the NGA.

  3. The National Geospatial Technical Operations Center

    USGS Publications Warehouse

    Craun, Kari J.; Constance, Eric W.; Donnelly, Jay; Newell, Mark R.

    2009-01-01

    The United States Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) provides geospatial technical expertise in support of the National Geospatial Program in its development of The National Map, National Atlas of the United States, and implementation of key components of the National Spatial Data Infrastructure (NSDI).

  4. Habitat Demonstration Unit Project Leadership and Management Strategies

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.

  5. Homeland Security Interagency Support. (Joint Center for Lessons Learned Quarterly Bulletin. Volume 4, Issue 2, March 2002)

    DTIC Science & Technology

    2002-03-01

    sections consists of four units, the Domestic Terrorism Operations Unit, the WMD Operations Unit, the WMD Countermeasures Unit, and Special Events Management Unit...Countermeasures Unit Chief Special Events Management Unit Chief Domestic Terrorism/ Counterterrorism Section Chief International Terrorism Section Asstistant

  6. Superfund record of decision (EPA Region 3): US Defense General Supply Center (DLA), operable unit 3, Chesterfield County, Richmond, VA, September 29, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document presents the selected remedial action for the National Guard Source Area (NGA), Operable Unit (OU3) at the Defense General Supply Center (DGSC) in Richmond, Virginia. Operable Unit 3 addresses the contaminated soils at the National Guard . The selected alternative requires that institutional controls, including access restriction, property transfer restriction, and preconstruction assessment, be implemented or continued at the site. Also, contaminated soils posing human health risks will be excavated and disposed of.

  7. Superfund record of decision (EPA Region 3): Langley AFB/NASA Langley Center, Tabbs Creek Operable Unit, Hampton, VA, September 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    This Record of Decision (ROD) presents remedial action for the Tabbs Creek Operable Unit (OU) at the NASA Langley Research Center (LaRC) in Hampton, Virginia (the Site). This action addresses the principle threat at the OU by dredging and disposing contaminated sediment.

  8. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.

  9. CNC Turning Center Operations and Prove Out. Computer Numerical Control Operator/Programmer. 444-334.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.

    This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…

  10. 20 CFR 638.300 - Eligibility for funds and eligible deliverers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., and Facilities Management § 638.300 Eligibility for funds and eligible deliverers. (a) Funds shall be... provision of Job Corps operational support services. (b) Eligible deliverers for the operation of centers and for the operational support services necessary to center operation shall be units of Federal...

  11. 4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVOMOTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVO-MOTOR HEADS (BACKGROUND AT CENTER) WITH PISTON RODS BOLTED TO TURBINE GATE OPERATION RING (CENTER AT LEFT AND CENTER AT RIGHT). VIEW TO THE NORTH-NORTHWEST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT

  12. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  13. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  14. Superfund record of decision (EPA Region 3): Langley AFB/NASA Langley Center, Area E Warehouse Operable Unit, Hampton, VA, September 28, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    This Record of Decision (ROD) presents the selected remedial action for the Area E Warehouse Operable Unit (OU) at the NASA Langley Research Center (LaRC) in Hampton, Virginia (the Site). This actions addresses the principle threat at the OU by imposing land use restrictions that will prevent any non-industrial activities to take place on the OU.

  15. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2011-01-01

    Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.

  16. Additive Manufacturing (AM) in Expeditionary Operations: Current Needs, Technical Challenges, and Opportunities

    DTIC Science & Technology

    2016-06-01

    site customization of existing models. The author performed an empirical study centered around a survey of United States Marine Corps (USMC) and United...recommends that more studies be performed to determine the best way forward for AM within the USMC and USN. 14. SUBJECT TERMS 3D printing, additive...customization of existing models. The author performed an em- pirical study centered around a survey of United States Marine Corps (USMC) and United

  17. 30 CFR 33.6 - Application procedures and requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Department of Labor, Mine Safety and Health Administration, Approval and Certification Center, 765 Technology... the electrical parts of units designed to operate as face equipment (see § 33.38) in accordance with... combination unit that includes electrical parts, and is designed to operate as electric face equipment, as...

  18. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  19. Distributed Processing Tools Definition. Volume 1. Hardware and Software Technologies for Tightly-Coupled Distributed Systems.

    DTIC Science & Technology

    1983-06-01

    LOSARDO Project Engineer APPROVED: .MARMCINIhI, Colonel. USAF Chief, Coaud and Control Division FOR THE CCOaIDKR: Acting Chief, Plea Off ice * **711...WORK UNIT NUMBERS General Dynamics Corporation 62702F Data Systems Division P 0 Box 748, Fort Worth TX 76101 55811829 I1. CONTROLLING OFFICE NAME AND...Processing System for 29 the Operation/Direction Center(s) 4-3 Distribution of Processing Control 30 for the Operation/Direction Center(s) 4-4 Generalized

  20. Syracuse University's Center for Instructional Development; Its Role, Organization, and Procedures.

    ERIC Educational Resources Information Center

    Diamond, Robert M.

    A brief report on the Syracuse University Center for Instructional Development is presented which describes the Center's organizational structure and operational procedures. The center combines support services for video, audio, graphics and photographic preparation of materials for instructional use; a research and evaluation unit to assess…

  1. Screening for resistance to fusiform rust in southern United States forest trees

    Treesearch

    Josh Bronson

    2012-01-01

    The Resistance Screening Center (RSC) is operated by the Forest Health Protection unit of the U.S. Department of Agriculture, Forest Service, Southern Region, State and Private Forestry. The RSC is located at the Bent Creek Experimental Forest near Asheville, North Carolina. The center evaluates seedlings for resistance to disease, primarily fusiform rust (caused by...

  2. Transportation Management Center Concepts Of Operation, Implementation Guide

    DOT National Transportation Integrated Search

    1999-12-01

    THE FOLLOWING DOCUMENT WILL ASSIST AGENCIES IN DEVELOPING A CONCEPT OF OPERATIONS BY PROVIDING INSIGHT INTO EACH OF THE TOPICS A CONCEPT OF OPERATIONS IS LIKELY TO CONTAIN. EXAMPLES OF OPERATIONAL CONSIDERATIONS FROM TMCS IN THE UNITED STATES AND CAN...

  3. Mosquito and Fly Surveillance and Control Research at the USDA-ARS Center for Medical, Agricultural and Veterinary Entomology: Solving Operational Challenges

    USDA-ARS?s Scientific Manuscript database

    The Mosquito and Fly Research Unit of the USDA-ARS Center for Medical, Agricultural and Veterinary Entomology located in Gainesville Florida is the largest Federal laboratory devoted to specifically solving operational mosquito and fly surveillance and control challenges in the U.S. and internationa...

  4. Overview of the Life Science Glovebox (LSG) Facility and the Research Performed in the LSG

    NASA Technical Reports Server (NTRS)

    Cole, J. Michael; Young, Yancy

    2016-01-01

    The Life Science Glovebox (LSG) is a rack facility currently under development with a projected availability for International Space Station (ISS) utilization in the FY2018 timeframe. Development of the LSG is being managed by the Marshal Space Flight Center (MSFC) with support from Ames Research Center (ARC) and Johnson Space Center (JSC). The MSFC will continue management of LSG operations, payload integration, and sustaining following delivery to the ISS. The LSG will accommodate life science and technology investigations in a "workbench" type environment. The facility has a.Ii enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for handling Biohazard Level II and lower biological materials. This containment approach protects the crew from possible hazardous operations that take place inside the LSG work volume. Research investigations operating inside the LSG are provided approximately 15 cubic feet of enclosed work space, 350 watts of28Vdc and l IOVac power (combined), video and data recording, and real time downlink. These capabilities will make the LSG a highly utilized facility on ISS. The LSG will be used for biological studies including rodent research and cell biology. The LSG facility is operated by the Payloads Operations Integration Center at MSFC. Payloads may also operate remotely from different telescience centers located in the United States and different countries. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the LSG facility. NASA provides an LSG qualification unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the LSG facility and a synopsis of the research that will be accomplished in the LSG. The authors would like to acknowledge Ames Research Center, Johnson Space Center, Teledyne Brown Engineering, MOOG-Bradford Engineering and the entire LSG Team for their inputs into this abstract.

  5. Getting Down to Business: Garden Center, Module 4. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    McBain, Susan L.

    This module on owning and operating a garden center is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…

  6. Joint Forces Command - Operation United Assistance Case Study: Lessons and Best Practices

    DTIC Science & Technology

    2016-07-01

    additional and prioritized computers and access in the operations center for these mission requirements are essential. 127 JFC-OUA CASE STUDY Issue...this publication is welcomed and highly encouraged. Joint Forces Command – Operation United Assistance Case Study JFC-OUA CASE STUDY iii Foreword...Based on information drawn from various sources including after action reports, lessons learned, case studies , umbrella-week visits, and key-leader

  7. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  8. Cultural Competency Training in the United States Marine Corps: A Prescription for Success in the Long War

    DTIC Science & Technology

    2008-06-13

    CULTURAL COMPETENCY TRAINING IN THE UNITED STATES MARINE CORPS: A PRESCRIPTION FOR SUCCESS IN THE LONG WAR A thesis presented to the...of military units that demonstrated cultural awareness while conducting operations in a foreign land. After presenting a review of the current...Marine Corps Center for Advanced Operational Cultural Learning (CAOCL), advocates teaching Marines enough of a language to do the things they need to

  9. The Heroic Beginnings of Child Care: Looking Back Two Centuries

    ERIC Educational Resources Information Center

    Neugebauer, Roger; Hartzell, Debra

    2010-01-01

    The field of early care and education has a long, proud history. In conducting research on the oldest child care centers in the United States, the authors discovered 75 organizations that have been in operation research more than 90 years; the oldest of which, Newark Day Care Center, has been in operation for 207 years! Rather than summarizing…

  10. Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor

    NASA Technical Reports Server (NTRS)

    Landry, Steven J.; Farley, Todd; Hoang, Ty

    2005-01-01

    Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.

  11. New plant releases from the USDA-NRCS Aberdeen, Idaho, Plant Materials Center

    Treesearch

    L. St. John; P. Blaker

    2001-01-01

    The Plant Materials Center at Aberdeen, Idaho, is operated by the United States Department of Agriculture, Natural Resources Conservation Service. The purpose of the Plant Materials Center is to evaluate and release plant materials for conservation use and to develop and transfer new technology for the establishment and management of plants. The Center serves portions...

  12. Getting Down to Business: Day Care Center, Module 23. [Student Manual]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    Kingi, Marcella

    This module on owning and operating a day care center is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…

  13. 78 FR 49357 - National Health Center Week, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... America A Proclamation Community health centers play a critical role in providing affordable, high-quality... people living in the United States depends on their services. They are an important source of jobs in... extend our thanks to the women and men who operate America's health centers. NOW, THEREFORE, I, BARACK...

  14. KENNEDY SPACE CENTER, FLA. - Before the start of the kickoff presentation for Spaceport Super Safety and Health Day, Center Director Jim Kennedy (left) chats with guest speaker Capt. Charles Plumb (USNR retired) and United Space Alliance Vice President and Deputy Program Manager, Florida Operations, Bill Pickavance. Spaceport Super Safety and Health Day is an annual event at KSC and Cape Canaveral Air Force Station dedicated to reinforcing safe and healthful behaviors in the workforce. Safety Awards were also given to individuals and groups.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - Before the start of the kickoff presentation for Spaceport Super Safety and Health Day, Center Director Jim Kennedy (left) chats with guest speaker Capt. Charles Plumb (USNR retired) and United Space Alliance Vice President and Deputy Program Manager, Florida Operations, Bill Pickavance. Spaceport Super Safety and Health Day is an annual event at KSC and Cape Canaveral Air Force Station dedicated to reinforcing safe and healthful behaviors in the workforce. Safety Awards were also given to individuals and groups.

  15. Studies and Training in Continuing Education; A Directory of Residential Continuing Education Centers in the United States, Canada, and Abroad, 1967-68.

    ERIC Educational Resources Information Center

    Chicago Univ., IL.

    This directory is a descriptive list of residential continuing education centers in the United States, Canada, and abroad which were known to be operating in 1968. They are distributed as follows: 117 in 37 states and the District of Columbia; 33 in Alberta, British Columbia, Manitoba, Nova Scotia, Ontario, Quebic, and Saskatchewan; one each in…

  16. Building an Engagement Center through Love of Place: The Story of the Barbara Weitz Community Engagement Center

    ERIC Educational Resources Information Center

    Woods, Sarah; Reed, B. J.; Smith-Howell, Deborah

    2016-01-01

    Universities throughout the United States operate engagement centers to extend campus faculty, staff and student resources to their communities. In 2014, the University of Nebraska Omaha (UNO) opened the Barbara Weitz Community Engagement Center (Weitz CEC): a privately funded $24 million, 70,000 square foot facility located in the middle of its…

  17. U.S. NIC

    Science.gov Websites

    U. S. National Ice Center HOME ORGANIZATION SERVICES PRODUCTS OUTSIDE LINKS CONTACT US MISSION STATEMENT Our mission is to provide global to tactical scale ice and snow products, ice forecasting, and . National Ice Center (NIC) is a multi-agency center operated by the United States Navy, the National Oceanic

  18. Effect of blood transfusion on outcome after major burn injury: a multicenter study.

    PubMed

    Palmieri, Tina L; Caruso, Daniel M; Foster, Kevin N; Cairns, Bruce A; Peck, Michael D; Gamelli, Richard L; Mozingo, David W; Kagan, Richard J; Wahl, Wendy; Kemalyan, Nathan A; Fish, Joel S; Gomez, Manuel; Sheridan, Robert L; Faucher, Lee D; Latenser, Barbara A; Gibran, Nicole S; Klein, Robert L; Solem, Lynn D; Saffle, Jeffrey R; Morris, Stephen E; Jeng, James C; Voigt, David; Howard, Pamela A; Molitor, Fred; Greenhalgh, David G

    2006-06-01

    To delineate blood transfusion practices and outcomes in patients with major burn injury. Patients with major burn injury frequently require multiple blood transfusions; however, the effect of blood transfusion after major burn injury has had limited study. Multicenter retrospective cohort analysis. Regional burn centers throughout the United States and Canada. Patients admitted to a participating burn center from January 1 through December 31, 2002, with acute burn injuries of >or=20% total body surface area. Outcome measurements included mortality, number of infections, length of stay, units of blood transfused in and out of the operating room, number of operations, and anticoagulant use. A total of 21 burn centers contributed data on 666 patients; 79% of patients survived and received a mean of 14 units of packed red blood cells during their hospitalization. Mortality was related to patient age, total body surface area burn, inhalation injury, number of units of blood transfused outside the operating room, and total number of transfusions. The number of infections per patient increased with each unit of blood transfused (odds ratio, 1.13; p<.001). Patients on anticoagulation during hospitalization received more blood than patients not on anticoagulation (16.3+/-1.5 vs. 12.3+/-1.5, p<.001). The number of transfusions received was associated with mortality and infectious episodes in patients with major burns even after factoring for indices of burn severity. The utilization of blood products in the treatment of major burn injury should be reserved for patients with a demonstrated physiologic need.

  19. Draft final feasibility study report and proposed plan for Operable Unit 4, response to comments: Fernald Environmental Management Project, Fernald, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    This report contains questions and comments regarding a risk evaluation and possible remedial action of Operable Unit 4 at the Feed Materials Production Center at Fernald, Ohio. Attention is focused on the US EPA Region V feasibility study and on the CRARE. The CRARE is a post-remediation time frame document.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  2. Driver behavior analysis at highway-rail grade crossings using field operational test data - heavy trucks

    DOT National Transportation Integrated Search

    2012-12-31

    The United States Department of Transportations (U.S. DOT) Research and Innovative Technology Administrations (RITA) John A. Volpe National Transportation Systems Center (Volpe Center), under the direction of the U.S. DOT Federal Railroad Admin...

  3. Friendly Combat Casualties and Operational Narratives

    DTIC Science & Technology

    2015-06-21

    turn for the worse on March 31, 2004. On that date, insurgents ambushed a convoy operated by the private security firm Blackwater in the center of the...2011), IV-6. 95 Ibid., III-17 34 Despite its name, the term operational risk management (ORM) as used by the United States Navy reflects

  4. Implications of Using Computer-Based Training with the AN/SQQ-89(v) Sonar System: Operating and Support Costs

    DTIC Science & Technology

    2012-06-01

    Visibility and Management of Operating and Support Costs (VAMOSC...VAMOSC Visibility and Management of Operating and Support Costs VMA Variant Manning Average WAP Weapons Alternate Processor WCS Work Center...Visibility and Management of Operating and Support Costs (VAMOSC), under Unit Level Consumption and Manhours—Organizational Corrective Maintenance. C

  5. Joint Intelligence Operations Center (JIOC) Baseline Business Process Model & Capabilities Evaluation Methodology

    DTIC Science & Technology

    2012-03-01

    Targeting Review Board OPLAN Operations Plan OPORD Operations Order OPSIT Operational Situation OSINT Open Source Intelligence OV...Analysis Evaluate FLTREPs MISREPs Unit Assign Assets Feedback Asset Shortfalls Multi-Int Collection Political & Embasy Law Enforcement HUMINT OSINT ...Embassy Information OSINT Manage Theater HUMINT Law Enforcement Collection Sort Requests Platform Information Agency Information M-I Collect

  6. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Engineers complete a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  7. Coercive Air Strategy in Post-Cold War Peace Operations

    DTIC Science & Technology

    1999-06-01

    Fariborz L. Mokhtari , ed., Peacemaking, Peacekeeping and Coalition Warfare: The Future Role of the United Nations (Washington, D.C: National Defense...Technical Information Center, 1993. Mokhtari , Fariborz L. ed. “Peacemaking, Peacekeeping and Coalition Warfare: The Future Role of the United Nations

  8. 14 CFR 91.145 - Management of aircraft operations in the vicinity of aerial demonstrations and major sporting...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and events may include: (1) United States Naval Flight Demonstration Team (Blue Angels); (2) United... nautical mile radius from the center of the demonstration and an altitude 17000 mean sea level (for high...

  9. 14 CFR 91.145 - Management of aircraft operations in the vicinity of aerial demonstrations and major sporting...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and events may include: (1) United States Naval Flight Demonstration Team (Blue Angels); (2) United... nautical mile radius from the center of the demonstration and an altitude 17000 mean sea level (for high...

  10. 14 CFR 91.145 - Management of aircraft operations in the vicinity of aerial demonstrations and major sporting...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and events may include: (1) United States Naval Flight Demonstration Team (Blue Angels); (2) United... nautical mile radius from the center of the demonstration and an altitude 17000 mean sea level (for high...

  11. An Evaluation of the Organizational Structure of Air Force Emergency Operations Centers Using Social Network Analysis and Design Structure Matrices

    DTIC Science & Technology

    2013-03-01

    areas that are most frequently needed 4 in a national response” (FEMA, 2008). Finally, during emergencies, individual Unit Control Centers ( UCCs ...stand up, as a means to supporting the response. Typically, the UCCs provide information or resources as required through communication from the...EOC. Currently there is no defined staffing or organizational structure for the UCC , each unit is responsible for adequately staffing the UCCs as

  12. Developing Navy Capability to Recover Forces in Chemical, Biological, and Radiological Hazard Environments

    DTIC Science & Technology

    2013-01-01

    damage control; LHD flight deck and well deck operations; fleet surgical team; Afloat Training Group; Assault Craft Unit; Naval Surface Warfare Center ...Biological, Radiological and Nuclear School, and U.S. Army Edgewood Chemical Biological Center , Guidelines for Mass Casualty Decontamination During a HAZMAT...Policy Center of the RAND National Defense Research Institute, a federally funded research and development center sponsored by OSD, the Joint Staff

  13. Performance and Operational Characteristics for a Dual Brayton Space Power System With Common Gas Inventory

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Mason, Lee S.

    2006-01-01

    This paper provides an analytical evaluation on the operation and performance of a dual Brayton common gas system. The NASA Glenn Research Center in-house computer program Closed Cycle System Simulation (CCSS) was used to construct a model of two identical 50 kWe-class recuperated closed-Brayton-cycle (CBC) power conversion units that share a common gas inventory and single heat source. As operating conditions for each CBC change, the total gas inventory is redistributed between the two units and overall system performance is affected. Several steady-state off-design operating points were analyzed by varying turbine inlet temperature and turbo-alternator shaft rotational speed to investigate the interaction of the two units.

  14. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...

  15. Horizontal/Vertical Stock Fund Cost Comparison

    DTIC Science & Technology

    1974-08-01

    units. Installation Supply Division account and other instal- lation operated activities: Self -Service Supply Store, Clothing Initial...installation supply operations are the Self -Service Supply Center, Clothing Sales Store, Central Issue Facility, and Clothing Initial Issue Point. Stock- age...stocks, stocks for installation operated supply activities such as the Self Service Supply Store, Clothing Sales Store and

  16. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  17. GigaUnit Transplant System: A New Mechanical Tool for Transplanting Submerged Aquatic Vegetation

    DTIC Science & Technology

    2008-09-01

    seagrasses Halodule wrightii and Thalassia testudinum in Sarasota Bay, Florida (Uhrin et al. 2008). Information on operational capabilities and limitations...within the operational limits of the GUTS, and b) a minimum of 50-percent cover by the seagrass Halodule wrightii or Thalassia testudinum was present... Thalassia testudinum prior to transplant. (Photo courtesy of FWC.) Figure 3. A survey post marks the center of a H. wrightii planting unit (Photo

  18. The Kepler Science Operations Center Pipeline Framework Extensions

    NASA Technical Reports Server (NTRS)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  19. Organizational structure and operation of defense/aerospace information centers in the United States of America

    NASA Technical Reports Server (NTRS)

    Sauter, H. E.; Lushina, L. N.

    1983-01-01

    U.S. Government aerospace and defense information centers are addressed. DTIC and NASA are described in terms of their history, operational authority, information services provided, user community, sources of information collected, efforts under way to improve services, and external agreements regarding the exchange of documents and/or data bases. Contents show how DTIC and NASA provide aerospace/defense information services in support of U.S. research and development efforts. In a general introduction, the importance of scientific and technical information and the need for information centers to acquire, handle, and disseminate it are stressed.

  20. Report to the Commission to Assess United States National Security Space Management and Organization

    DTIC Science & Technology

    2001-01-11

    including the Vice Chairman, Joint Chiefs of Staff, the Chief of Staff of the Air Force and, in a three-day session in Colorado Springs, Colorado , the...Naval Space Command serves as the Alternate Space Command Center to U.S. Space Command’s primary center located at Cheyenne Mountain, Colorado . It is...Fogleman, United States Air Force (Retired) General Fogleman is president and chief operating officer of the B Bar J Cattle and Consulting Company, Durango

  1. Dementia Special Care Units in Residential Care Communities: United States, 2010

    MedlinePlus

    ... of selection) of 81%. More details about sampling design and data collection are available elsewhere ( 4 ). Differences between communities with ... AJ, Harris-Kojetin LD, Sengupta M, et al. Design and operation of the 2010 National Survey of Residential Care Facilities. National Center for Health ...

  2. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  3. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  4. Review of laparoscopic training in pediatric surgery in the United Kingdom.

    PubMed

    Stormer, Emma J; Sabharwal, Atul J

    2009-04-01

    To review the exposure pediatric surgery trainees have to laparoscopic surgery in the United Kingdom (UK). A confidential postal questionnaire was sent to all trainees working at registrar level in centers responsible for pediatric surgical training in the UK. Questions assessed the number of consultants with an interest in laparoscopic surgery, types of cases performed laparoscopically, and trainees' role in laparoscopic appendicectomy (LA). Questionnaires were sent to 112 trainees with a 55% response rate (62 replies). At least one response was received from each unit. Based on responses, 49 to 67 consultants in 21 training centers have an interest in laparoscopic surgery (0%-100% of consultants per unit). LA was offered in 20 out of 21 training centers. There was no significant difference in the proportion of appendicectomies performed laparoscopically by junior (years 1-3) and senior (years 4-6) trainees. A significantly higher proportion of junior trainees had not performed any LAs (P = 0.02). Seventy-three percent of trainees were the principal operator. For trainees who were principal operators, the cameraperson was a consultant in 52% and a junior trainee in 17%. The time of day affected the likelihood of a procedure being carried out laparoscopically in 43 (81%) responses. The majority of trainees' exposure to laparoscopic surgery could be viewed as suboptimal; however, the exposure gained varies significantly between different units throughout the UK. In an age moving in favor of minimal access surgery, all units must be in a position to offer pediatric laparoscopic surgical training.

  5. 2009 Defense Supply Center Columbus Land and Maritime Supply Chains: Business Conference and Exhibition

    DTIC Science & Technology

    2009-08-19

    DSN: 388-7453 CSCASSIG@CSD.DISA.MIL  DFAS eCommerce web site http://www.dfas.mil/contractorpay/electroniccommerce.html  DFAS Customer Service...M-ATV is a separate category within the MRAP family of vehicles. ►Mission: Small-unit combat operations in highly restricted rural , mountainous...vehicles. ►Mission: Small-unit combat operations in highly restricted rural , mountainous and urban environments. ► Troop Transport: Carry up to five

  6. 2009 Defense Supply Center Columbus Land and Maritime Supply Chains Business Conference and Exhibition

    DTIC Science & Technology

    2009-08-19

    DSN: 388-7453 CSCASSIG@CSD.DISA.MIL  DFAS eCommerce web site http://www.dfas.mil/contractorpay/electroniccommerce.html  DFAS Customer Service...M-ATV is a separate category within the MRAP family of vehicles. ►Mission: Small-unit combat operations in highly restricted rural , mountainous...vehicles. ►Mission: Small-unit combat operations in highly restricted rural , mountainous and urban environments. ► Troop Transport: Carry up to five

  7. 6. View of turbine pit at unit 3 showing servomotor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of turbine pit at unit 3 showing servo-motor head (left of center) with piston rods bolted to turbine gate operation ring (right foreground). View to southeast. - Holter Hydroelectric Facility, Dam & Power House, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT

  8. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  9. Operation Enduring Freedom. Joint Center for Operational Analysis Journal, Volume 11, Issue 3, Fall 2009

    DTIC Science & Technology

    2009-01-01

    began a period known as the Great Game , which was a century and a half long competition for Afghanistan by Britain and Russia. Each of the countries...It is yet to be determined whether or not the United States is capable of sustaining initial success, or if the Great Game will continue...showed Malik Noorafzal video footage of the World Trade Center towers collapsing. He had never seen this and it made a deep impression. He had heard

  10. Superfund record of decision (EPA Region 5): Feed Materials Production Center, (USDOE), Operable Unit 4, Fernald, Hamilton County, OH, December 7, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document presents the selected remedial action for Operable Unit 4 of the Fernald Site in Fernald, Ohio. The materials within Operable Unit 4 exhibit a wide range of properties. Most notable would be the elevated direct radiation associated with the K-65 residues versus the much lower direct radiation associated with cold metal oxides in Silo 3. Even more significant would be the much lower levels of contamination associated with the soils and building materials, like concrete, within the Operable Unit 4 Study Area. On the basis of the evaluation of final alternatives, the selected remedy addressing Operable Unitmore » 4 at the FEMP is a combination of Alternatives 3A.1/Vit - Removal, Vitrification, and Off-site Disposal - Nevada Test Site (NTS); 3B.1/Vit - Removal, Vitrification, and Off-site Disposal - NTS; and 2C - Demolition, Removal and On-Property Disposal.« less

  11. Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)

    NASA Technical Reports Server (NTRS)

    McLaughlin, Russell

    2013-01-01

    NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations manuals) necessary for KSC hydrogen system experts to approve use of the HFCML unit, including initiating the environmental checklist (i.e. exterior lighting waiver due to sea turtles), and development of operations and maintenance instructions. TEERM worked with SNL to establish a bailment agreement for KSC to utilize a Beta unit as part of normal Center Operations for a period of twelve months.

  12. Addiction research centres and the nurturing of creativity. RAND's Drug Policy Research Center.

    PubMed

    Reuter, Peter; Pacula, Rosalie Liccardo; Caulkins, Jonathan P

    2011-02-01

    In September 1989, amid an emotional and ideological debate regarding problematic drug use in the United States and the 'war on drugs', RAND's Drug Policy Research Center (DPRC) was created through private foundation funds. The purpose of this new research center was to provide objective empirical analysis on which to base sound drug policy. Twenty years later, RAND's DPRC continues its work, drawing on a broad range of analytical expertise to evaluate, compare and assess the effectiveness of a similarly broad range of drug policies. More than 60 affiliated researchers in the United States and Europe make up the Center, which attempts to provide objective empirical analyses to better inform drug policies within the United States and abroad. This paper provides a look back at the creation, evolution and growth of the Center. It then describes how the Center operates today and how it has maintained its clear identity and focus by drawing on the analytical capabilities of a talented group of researchers from a broad range of academic disciplines. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.

  13. A PILOT CENTER FOR EDUCATIONAL POLICY RESEARCH. FINAL REPORT--PART I.

    ERIC Educational Resources Information Center

    ADELSON, MARVIN; AND OTHERS

    THE PILOT CENTER FOR EDUCATIONAL POLICY RESEARCH, OPERATED BY THE SYSTEM DEVELOPMENT CORPORATION FROM JUNE 1, 1967, THROUGH FEBRUARY 29, 1968, HAD THREE OBJECTIVES--(1) TO INVESTIGATE, ANALYZE, AND EXPERIMENT WITH METHODS, PROCEDURES, AND TOOLS FOR STUDYING THE FUTURE AS IT COULD AFFECT EDUCATION IN THE UNITED STATES, (2) TO FORECAST POSSIBLE…

  14. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  15. English for Petrochemical Plant Operators.

    ERIC Educational Resources Information Center

    Bynum, Henri Sue

    The development of a program and curriculum for instruction in technical English for Saudi Arabian petrochemical plant operator trainees studying in the United States for two years was undertaken by the University of South Alabama's English Language Center. The program was designed to accommodate (1) the degree of skills and prior learning of the…

  16. The British Teacher Center: A Report on its Development, Current Operations, Effects and Applicability to Teacher Education in the U.S.

    ERIC Educational Resources Information Center

    Rosner, Benjamin

    This report offers a description of the development and current status of the British teacher center as a vehicle for in-service teacher education and curriculum reform in the primary and secondary schools of the United Kingdom. In addition, the report examines the applicability of the British teacher center model to American teacher education and…

  17. Directory of Unesco Information Services: Library, Archives, and Documentation Centres = Repertoire des Services d'information de l'Unesco: bibliotheque, archives et centres de documentation.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). Div. of Unesco Information Services.

    Although primarily a directory of Unesco documentation centers and information units, this guide also provides information on the Main Library and the Unesco Archives. The listing for each of the nine centers includes information on any subdivisions of the center: (1) Bureau for Co-ordination of Operational Activities (BAO); (2) Culture and…

  18. 2005 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Shanklin

    2006-07-19

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report describes inspection and monitoring activities fro the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13,more » Record of Decision for the Group 1, Tank Farm Interim Action, (DOE/ID-10660) and as amended by the agreement to resolve dispute, which was effective in February 2003.« less

  19. 2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. E. Shanklin

    2007-02-14

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action ismore » functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772).« less

  20. Do burn centers provide juvenile firesetter intervention?

    PubMed

    Ahrns-Klas, Karla S; Wahl, Wendy L; Hemmila, Mark R; Wang, Stewart C

    2012-01-01

    Juvenile firesetting activity accounts for a significant number of annual injuries and property damage, yet there is sparse information on intervention in the burn literature. To quantify juvenile firesetting intervention (JFSI) in burn centers, a 23-question survey was sent to all directors listed in the American Burn Association Burn Care Facilities Directory.Sixty-four out of 112 (57%) surveys were returned. This represents responses from 79% of currently verified burn centers. When queried on interventions provided to a juvenile firesetter admitted to their unit, 38% report having their own JFSI program and 38% refer the child to fire services. Two thirds of units without a JFSI program treat pediatric patients. Units that previously had a JFSI program report lack of staffing and funding as most common reasons for program discontinuation. Almost all (95%) stated that a visual tool demonstrating legal, financial, social, future, and career ramifications associated with juvenile firesetting would be beneficial to their unit. Many burn units that treat pediatric patients do not have JFSI and rely on external programs operated by fire services. Existing JFSI programs vary greatly in structure and method of delivery. Burn centers should be involved in JFSI, and most units would benefit from a new video toolkit to assist in providing appropriate JFSI. Study results highlight a need for burn centers to collaborate on evaluating effectiveness of JFSI programs and providing consistent intervention materials based on outcomes research.

  1. KSC-2009-3841

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – A prelaunch news conference on the Geostationary Operational Environmental Satellite-O mission is held in NASA's Kennedy Space Center press site auditorium. From left, the participants are George H. Diller, moderator, Media Services, Kennedy Space Center; Gary Davis, director, Office of Systems Development, NOAA Satellite and Information Service, Suitland, Md.; Kris Walsh, Commercial Programs manager, United Launch Alliance, Houston; Kevin Reyes, director, Business Development, Boeing Launch Services; Andre Dress, GOES-O deputy project manager, Goddard Space Flight Center; Charlie Maloney, GOES-O program manager, Boeing Space and Intelligence Systems, Seal Beach, Calif.; Bart Hagemeyer, meteorologist in charge, NOAA National Weather Service forecast office, Melbourne, Fla.; and Joel Tumbiolo, Delta IV launch weather officer, 45th Weather Squadron, Cape Canaveral Air Force Station. The GOES-O satellite is targeted to launch June 26. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Each of the GOES satellites continuously provides observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. Photo credit: NASA/Jim Grossmann

  2. Interprofessional rhetoric and operational realities: an ethnographic study of rounds in four intensive care units.

    PubMed

    Paradis, Elise; Leslie, Myles; Gropper, Michael A

    2016-10-01

    Morning interprofessional rounds (MIRs) are used in critical care medicine to improve team-based care and patient outcomes. Given existing evidence of conflict between and dissatisfaction among rounds participants, this study sought to better understand how the operational realities of care delivery in the intensive care unit (ICU) impact the success of MIRs. We conducted a year-long comparative ethnographic study of interprofessional collaboration and patient and family involvement in four ICUs in tertiary academic hospitals in two American cities. The study included 576 h of observation of team interactions, 47 shadowing sessions and 40 clinician interviews. In line with best practices in ethnographic research, data collection and analysis were done iteratively using the constant comparative method. Member check was conducted regularly throughout the project. MIRs were implemented on all units with the explicit goals of improving team-based and patient-centered care. Operational conditions on the units, despite interprofessional commitment and engagement, appeared to thwart ICU teams from achieving these goals. Specifically, time constraints, struggles over space, and conflicts between MIRs' educational and care-plan-development functions all prevented teams from achieving collaboration and patient-involvement. Moreover, physicians' de facto control of rounds often meant that they resembled medical rounds (their historical predecessors), and sidelined other providers' contributions. This study suggests that the MIRs model, as presently practiced, might not be well suited to the provision of team-based, patient-centered care. In the interest of interprofessional collaboration, of the optimization of clinicians' time, of high-quality medical education and of patient-centered care, further research on interprofessional rounds models is needed.

  3. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Technicians with Praxair pressurize the hydrogen trailer before offloading liquid hydrogen during a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  4. Large Unmanned Aircraft System Operations in the National Airspace System - the NASA 2007 Western States Fire Missions

    NASA Technical Reports Server (NTRS)

    Buoni, Gregory P.; Howell, Kathleen M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) Ikhana (ee-kah-nah) project executed the 2007 Western States Fire Missions over several of the western United States using an MQ-9 unmanned aircraft system (UAS) in partnership with the NASA Ames Research Center, the United States Forest Service, and the National Interagency Fire Center. The missions were intended to supply infrared imagery of wildfires to firefighters on the ground within 10 minutes of data acquisition. For each of the eight missions, the NASA DFRC notified the Federal Aviation Administration (FAA) of specific flight plans within three or fewer days of the flight. The FAA Certificate of Waiver or Authorization (commonly referred to as a COA ) process was used to obtain access to the United States National Airspace System. Significant time and resources were necessary to develop the COA application, perform mission planning, and define and approve emergency landing sites. Unique aspects of flying unmanned aircraft created challenges to mission operations. Close coordination with FAA headquarters and air traffic control resulted in safe and successful missions that assisted firefighters by providing near-real-time imagery of selected wildfires.

  5. The United States Special Operations Command Civil Military Engagement Program - A Model for Military-Interagency Low Cost / Small Footprint Activities

    DTIC Science & Technology

    2014-05-02

    Interagency Coordination Centers (JIACs), Interagency Task Forces ( IATFs ) are found within GCCs and subordinate military units in an attempt to bridge...Interagency Tasks Forces ( IATFs ) that exist at each Geographic Combatant Command (GCC). Rather, this chapter serves to highlight the Civil Military

  6. 77 FR 21587 - Pratt and Whitney; A Subsidiary of United Technologies Corporation Cheshire Engine Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Whitney A Subsidiary of United Technologies Corporation Far Group and Experimental Test Group East... Technologies Corporation, FAR Group and Experimental Test Group, supplies/supports and operates as an extension... Test Group. The amended notice applicable to TA-W-75,152 is hereby issued as follows: ``All workers of...

  7. 75 FR 7470 - Pine Prairie Energy Center, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... electric motor drive compressor units instead of the four 4,700 hp natural gas-fueled units previously authorized; (2) construct and operate a new electrical substation at the Pine Prairie Gas Handling Facility and approximately 1,200 feet of aerial electric power lines between the new substation and the...

  8. Ecological effects of nitrogen deposition in the western United States

    Treesearch

    Mark E. Fenn; Jill S. Baron; Edith B. Allen; Heather M. Rueth; Koren R. Nydick; Linda Geiser; William D. Bowman; James O. Sickman; Thomas Meixner; Dale W. Johnson; Peter Neitlich

    2003-01-01

    In the western United States vast acreages of land are exposed to low levels of atmospheric nitrogen (N) deposition, with interspersed hotspots of elevated N deposition downwind of large, expanding metropolitan centers or large agricultural operations. Biological response studies in western North America demonstrate that some aquatic and terrestrial plant and microbial...

  9. KSC-04pd1725

    NASA Image and Video Library

    2004-09-08

    KENNEDY SPACE CENTER, FLA. - Members of the United Space Alliance (USA) safety team brief KSC Director Jim Kennedy (center), USA Chief Operating Officer Brewster Shaw (second from right), and USA Vice President Joe Hammond (right) following Hurricane Frances on damage sustained by KSC facilities. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.

  10. A Stirling Idea

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  11. Clinical Perspectives on Colorectal Cancer Screening at Latino-Serving Federally Qualified Health Centers

    ERIC Educational Resources Information Center

    Coronado, Gloria D.; Petrik, Amanda F.; Spofford, Mark; Talbot, Jocelyn; Do, Huyen Hoai; Taylor, Victoria M.

    2015-01-01

    Purpose: Colorectal cancer is the second most common cause of cancer death in the United States, and rates of screening for colorectal cancer are low. We sought to gather the perceptions of clinic personnel at Latino-serving Federally Qualified Health Centers (operating 17 clinics) about barriers to utilization of screening services for colorectal…

  12. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    NASA Technical Reports Server (NTRS)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  13. Centers of Stability Analysis - The Missing Framework in Joint Intelligence Preparation of the Operational Environment Doctrine

    DTIC Science & Technology

    2011-05-04

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER...13 The general considerations for shaping operations are to organize and train forces, rehearse for future actions, maintaining operational area...threat. In reality, however, a prudent intelligence organization will begin to develop these products as indications develop that the shaping

  14. Special Operations Doctrine: Is it Needed

    DTIC Science & Technology

    2016-12-07

    and School . Ronald Dempsey is Chief Warrant Officer Three for C Co, 1st BN, 3rd Special Forces Group (Airborne). CLEVELAND, LINDER, AND DEMPSEY 6...Operations doctrine. Sixty years after the Army’s first special operations units were formed, the time had arrived for writing how Army special operations...at the urging of the then Commanding General of the Army’s John F. Kennedy Special Warfare Center and School , Major General Bennet SPECIAL

  15. The Automated Aircraft Rework System (AARS): A system integration approach

    NASA Technical Reports Server (NTRS)

    Benoit, Michael J.

    1994-01-01

    The Mercer Engineering Research Center (MERC), under contract to the United States Air Force (USAF) since 1989, has been actively involved in providing the Warner Robins Air Logistics Center (WR-ALC) with a robotic workcell designed to perform rework automated defastening and hole location/transfer operations on F-15 wings. This paper describes the activities required to develop and implement this workcell, known as the Automated Aircraft Rework System (AARS). AARS is scheduled to be completely installed and in operation at WR-ALC by September 1994.

  16. The management of enterocutaneous fistula in a regional unit in the United kingdom: a prospective study.

    PubMed

    Datta, Vivek; Engledow, Alec; Chan, Shirley; Forbes, Alastair; Cohen, C Richard; Windsor, Alastair

    2010-02-01

    Enterocutaneous fistula associated with type 2 intestinal failure is a challenging condition that involves a multidisciplinary approach to management. It is suggested that complex cases should only be managed in select national centers in the United Kingdom. Over an 18-month period, we prospectively studied all patients referred to us with established enterocutaneous fistulas. Patients followed standardized protocols. Eradication of sepsis, appropriate wound management, establishment of nutritional support, and restoration of normal physiology were attempted. Definitive surgical management was deferred for at least 6 months after the last abdominal surgical intervention. Follow-up was for a minimum of 6 months. Of 55 patients, 10 were internal referrals and 45 were from institutions elsewhere. The mean age was 50 years. Nine patients had colonic fistulas. Forty-six had small bowel fistulas; 19 of these (35%) were associated with inflammatory bowel disease. Patients had undergone a median of 3 previous operations. Four fistulas (7%) healed spontaneously. Thirty-five patients (63%) underwent definitive surgery. Recurrent fistula occurred in 4 patients (13%); 1 required further surgery, and 3 healed spontaneously. The overall mortality rate was 7% (4/55 patients), with 3 patients dying before definitive surgery and 1 patient dying postoperatively. Our results compare favorably with data from designated national centers (overall mortality, 9.5%-10.8%; operative mortality, 3%-3.5%), suggesting that these patients can be effectively managed in regional units that have sufficient expertise, interest, and volume of patients. Rationalization of funding and referral of patients with type 2 intestinal failure to regional centers may allow national centers to conserve their scarce resources.

  17. PROPULSE 980: A Hydrogen Peroxide Enrichment System

    NASA Technical Reports Server (NTRS)

    Boxwell, Robert; Bromley, G.; Wanger, Robert; Pauls, Dan; Maynard, Bryon; McNeal, Curtis; Dumbacher, D. L. (Technical Monitor)

    2000-01-01

    The PROPULSE 980 unit is a transportable processing plant that enriches aerospace grade hydrogen peroxide from 90% to 98% final concentration. The unit was developed by Degussa-H Is, in cooperation with Orbital, NASA Marshall Space Center, and NASA Stennis Space Center. The system is a self-contained unit that houses all of the process equipment, instrumentation and controls to perform the concentration operation nearly autonomously. It is designed to produce non-bulk quantities of 98% hydrogen peroxide. The enrichment unit design also maintains system, personnel and environmental safety during all aspects of the enrichment process and final product storage. As part of the Propulse 980 checkout and final buyoff, it will be disassembled at the Degussa-H Is Corporation plant in Theodore, AL, transported to the Stennis Space Center, reassembled and subjected to a series of checkout tests to verify design objectives have been met. This paper will summarize the basic project elements and provide an update on the present status of the project.

  18. 7. View of turbine pit at an exciter unit showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of turbine pit at an exciter unit showing servo-motor heads (foreground and background at left) with piston rods bolted to the operating ring of the turbine gate (foreground and background at center). View to northeast. - Holter Hydroelectric Facility, Dam & Power House, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.C.

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  20. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  1. Thermo-physical performance prediction of the KSC Ground Operation Demonstration Unit for liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Baik, J. H.; Notardonato, W. U.; Karng, S. W.; Oh, I.

    2015-12-01

    NASA Kennedy Space Center (KSC) researchers have been working on enhanced and modernized cryogenic liquid propellant handling techniques to reduce life cycle costs of propellant management system for the unique KSC application. The KSC Ground Operation Demonstration Unit (GODU) for liquid hydrogen (LH2) plans to demonstrate integrated refrigeration, zero-loss flexible term storage of LH2, and densified hydrogen handling techniques. The Florida Solar Energy Center (FSEC) has partnered with the KSC researchers to develop thermal performance prediction model of the GODU for LH2. The model includes integrated refrigeration cooling performance, thermal losses in the tank and distribution lines, transient system characteristics during chilling and loading, and long term steady-state propellant storage. This paper will discuss recent experimental data of the GODU for LH2 system and modeling results.

  2. Wireless Headset Communication System

    NASA Technical Reports Server (NTRS)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  3. Examination of Chesapeake Bay Observing System for Local Environmental Data for Coast Guard Operations

    DTIC Science & Technology

    2004-12-01

    U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6048 Report No. CG-D-04-05 Examination of Chesapeake Bay...Director "United States Coast Guard Research & Development Center 1082 Shennecossett Road r Groton, CT 06340-6048 ii Technical Report Documentation Page...and Mary Research & Development Center 11. Contract or Grant No. Route 1208, Greate Road 1082 Shennecossett Road DTCG32-03-C-R0006 Gloucester Point, VA

  4. Design and operation of a pilot-plant for the processing of sugarcane juice into sugar at the Southern Regional Research Center in Louisiana

    USDA-ARS?s Scientific Manuscript database

    A pilot-plant facility to process sugarcane juice into sugar and molasses has been developed under a limited budget at the Southern Regional Research Center of the United States Department of Agriculture in New Orleans, Louisiana. The batch plant (27.9 m2) includes juice heating, clarification, eva...

  5. Regional Alignment: Phase Zero Logistics Implications

    DTIC Science & Technology

    2014-05-01

    Brigade TDC Theater Distribution Center TPFDL Time Phased Force Deployment List TSC Theater Sustainment Command v INTRODUCTION Not only are...Center ( TDC ) capability in response to the backlog of supplies and equipment required during major combat operation. The TDC was a contracted...organization, constructed to support units based on amount personnel and equipment. This TDC concept was a part of the logistics concept that supported

  6. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Saul Ngy (center) and Jerry Belt (right) lift a Reinforced Carbon Carbon (RCC) panel to attach onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Saul Ngy (center) and Jerry Belt (right) lift a Reinforced Carbon Carbon (RCC) panel to attach onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  7. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left), Saul Ngy (center) and Jerry Belt (right) prepare to install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left), Saul Ngy (center) and Jerry Belt (right) prepare to install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  8. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Jerry Belt (center), and Saul Ngy (right), lift a Reinforced Carbon Carbon (RCC) panel they will attach to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Jerry Belt (center), and Saul Ngy (right), lift a Reinforced Carbon Carbon (RCC) panel they will attach to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  9. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers, from center, left to right, Saul Ngy, Jerry Belt and Mike Hyatt, prepare to attach a Reinforced Carbon Carbon (RCC) panel (on the table) to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers, from center, left to right, Saul Ngy, Jerry Belt and Mike Hyatt, prepare to attach a Reinforced Carbon Carbon (RCC) panel (on the table) to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  10. KENNEDY SPACE CENTER, FLA. - Suzy Cunningham sings the national anthem to kick off Center Director Jim Kennedy’s first all-hands meeting conducted for employees. She is senior spaceport manager, NASA/Air Force Spaceport Planning and Customer Service Office. Making presentations were Dr. Woodrow Whitlow Jr., KSC deputy director; Tim Wilson, assistant chief engineer for Shuttle; and Bill Pickavance, vice president and deputy program manager, Florida operations, United Space Alliance. Representatives from the Shuttle program and contractor team were on hand to discuss the Columbia Accident Investigation Board report and where KSC stands in its progress toward return to flight.

    NASA Image and Video Library

    2003-09-17

    KENNEDY SPACE CENTER, FLA. - Suzy Cunningham sings the national anthem to kick off Center Director Jim Kennedy’s first all-hands meeting conducted for employees. She is senior spaceport manager, NASA/Air Force Spaceport Planning and Customer Service Office. Making presentations were Dr. Woodrow Whitlow Jr., KSC deputy director; Tim Wilson, assistant chief engineer for Shuttle; and Bill Pickavance, vice president and deputy program manager, Florida operations, United Space Alliance. Representatives from the Shuttle program and contractor team were on hand to discuss the Columbia Accident Investigation Board report and where KSC stands in its progress toward return to flight.

  11. Emergency Operations Center at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Caylor, Gary C.

    1997-01-01

    In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.

  12. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is being transported from the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station to the Delta Operations Center for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  13. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    Scott Messer, program manager, NASA Missions, United Launch Alliance, speak to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida.

  14. KSC-06pd0547

    NASA Image and Video Library

    2006-03-24

    KENNEDY SPACE CENTER, FLA. -- With the ribbon-cutting ceremony, the new Operations Support Building II is officially in business. Participating in the event are (left to right) Aris Garcia, vice president of the architecture firm Wolfgang Alvarez; Mark Nappi, associate program manager of Ground Operations for United Space Alliance; Donald Minderman, NASA project manager; Scott Kerr, director of Engineering Development at Kennedy; Bill Parsons, deputy director of Kennedy Space Center; Miguel Morales, with NASA Engineering Development; Mike Wetmore, director of Shuttle Processing; and Tim Clancy, president of the construction firm Clancy & Theys. The Operations Support Building II is an Agency safety and health initiative project to replace 198,466 square feet of substandard modular housing and trailers in the Launch Complex 39 area at Kennedy Space Center. The five-story building, which sits south of the Vehicle Assembly Building and faces the launch pads, includes 960 office spaces, 16 training rooms, computer and multimedia conference rooms, a Mission Conference Center with an observation deck, technical libraries, an Exchange store, storage, break areas, and parking. Photo credit: NASA/George Shelton

  15. Isolated transient loss of consciousness is an indicator of significant injury.

    PubMed

    Owings, J T; Wisner, D H; Battistella, F D; Perlstein, J; Walby, W F; Tharratt, R S

    1998-09-01

    To determine if isolated transient loss of consciousness is an indicator of significant injury. University-based level I trauma center. Phase 1 retrospective case series of all patients with trauma admitted directly from the emergency department to the operating room or an intensive care unit who had transient loss of consciousness as their only trauma triage criterion. Phase 2 prospective case series of all trauma patients transported by emergency medical system personnel with transient loss of consciousness as their only trauma triage criterion. Emergency operation and intensive care unit admission. Phase 1: From January 1, 1992, to March 31, 1995, we admitted 10255 patients with trauma. Three hundred seven (3%) met the enrollment criteria and were admitted to the operating room (n = 168) or intensive care unit (n = 139). Of these, 58 (18.9%) were taken to the operating room emergently to manage life-threatening injuries: 11 (4%) had craniotomies and 47 (15%) had non-neurosurgical operations. Phase 2: From July 1 to December 31, 1996, 2770 trauma patients were transported to our facility; 135 (4.9%) met the enrollment criteria. Forty-one (30.4%) of these required admission, and 6 (4.4%) were taken emergently to the operating room from the emergency department (1 [1%] for a craniotomy, 3 [2.2%] for intra-abdominal bleeding, and 2 [1.5%] for other procedures). Two (1.5%) of the 135 patients died. Patients with isolated transient loss of consciousness are at significant risk of critical surgical and neurosurgical injuries. These patients should be triaged to trauma centers or hospitals with adequate imaging, surgical, and neurosurgical resources.

  16. Recent Stirling Conversion Technology Developments and Operational Measurements

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Schifer, Nicholas

    2009-01-01

    Under contract to the Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC) has been developing the Advanced Stirling Radioisotope Generator (ASRG). The use of Stirling technology introduces a four-fold increase in conversion efficiency over Radioisotope Thermoelectric Generators (RTGs), and thus the ASRG in an attractive power system option for future science missions. In August of 2008, the ASRG engineering unit (EU) was delivered to NASA Glenn Research Center (GRC). The engineering unit design resembles that of a flight unit, with the exception of electrical heating in place of a radioisotope source. Prior to delivery, GRC personnel prepared a test station continuous, unattended operation of the engineering unit. This test station is capable of autonomously monitoring the unit's safe operation and recording. , .. , .... performance data. Generator parameters recorded include temperatures, electrical power output, and thelmal power input. Convertor specific parameters are also recorded such as alternator voltage, current, piston amplitude, and frequency. Since November 2008, the ASRG EU has accumulated over 4,000 hours of operation. Initial operation was conducted using the AC bus control method in lieu of the LMSSC active power factor connecting controller. Operation on the LMSSC controller began in February 2009. This paper discusses the entirety of ASRG EU operation thus far, as well as baseline performance data at GRC and LMSSC, and comparison of performance using each control method.

  17. President Barack Obama Visit to Kennedy Space Center

    NASA Image and Video Library

    2011-04-29

    Terry White, United Space Alliance project lead for thermal protection systems, left, shows President Barack Obama and his family, from left, First Lady Michelle Obama, Malia, Marian Robinson and Sasha, how tiles work on the space shuttle during their visit to the Orbital Processing Facility at the NASA Kennedy Space Center in Cape Canaveral, Fla., Friday, April 29, 2011. Looking on is Director of Flight Crew Operations for the Johnson Space Center and Astronaut, Janet Kavandi. Photo Credit: (NASA/Bill Ingalls)

  18. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine

    NASA Technical Reports Server (NTRS)

    Rodenberg, H.; Myers, K. J.

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  19. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine.

    PubMed

    Rodenberg, H; Myers, K J

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  20. Cost and time study for constructing raised wood floor systems in the Gulf Coast Region of the United States

    Treesearch

    Marie Del Bianco; David B. McKeever; Lance Barta

    2012-01-01

    This report is the result of a co-operative effort between the USDA Forest Service, Forest Products Laboratory (FPL) Advanced Housing Research Center, the National Assocation of Home Builders (NAHB) Research Center, and builder members of the Metropolitan Mobile and Baldwin County Home Builders Associations. The study was undertaken to further knowledge that will...

  1. Intermediate photovoltaic system application experiment operational performance. Executive summary for Oklahoma Center for Science and Arts, Oklahoma city, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Presented are the data accumulated during April 1982 at the photovoltaic project site at the Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated power and environmental (weather) data are presented graphically. Explanations of irregularities are attributable to weather are provided. The system was inoperative all month due to a failed power conditioning unit.

  2. Intermediate photovoltaic system application experiment operational performance report, for Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The data accumulated during April 1982 at the photovoltaic project site at the Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma, are presented. Environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided. Due to a failure of the power conditioning unit, the system was down for the month.

  3. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  4. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  5. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Associate Program Manager of Florida Operations Bill Pickavance (left front) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right front) tour a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Associate Program Manager of Florida Operations Bill Pickavance (left front) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right front) tour a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  6. Spacelab

    NASA Image and Video Library

    1996-05-05

    Launched on June 20, 1996, the STS-78 mission’s primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  7. 1300935

    NASA Image and Video Library

    2013-08-15

    VINCENT VIDAURRI, CENTER, A TECHNICAL SPECIALIST WITH TELEDYNE BROWN ENGINEERING SUPPORTING MISSION OPERATIONS AT THE MARSHALL SPACE FLIGHT CENTER, PROVIDES DETAILS ABOUT A MOCK-UP OF THE INTERNATIONAL SPACE STATION SCIENCE LAB TO A GROUP OF AREA TEACHERS AS PART OF "BACK-2-SCHOOL DAY." TEAM REDSTONE -- WHICH INCLUDES THE MARSHALL SPACE FLIGHT CENTER AND U.S. ARMY ORGANIZATIONS ON REDSTONE ARSENAL -- INVITED 50 TEACHERS TO TOUR REDSTONE ARSENAL AUG. 15, GIVING THEM AN OPPORTUNITY TO LEARN OF AND SEE RESOURCES AVAILABLE TO THEM AND THEIR STUDENTS. THE TOUR FOCUSED ON SITES AVAILABLE FOR FIELD TRIPS FOR STUDENTS STUDYING MATH, SCIENCE, TECHNOLOGY AND ENGINEERING. STOPS INCLUDED MARSHALL'S PAYLOAD OPERATIONS INTEGRATION CENTER AND THE HIGH SCHOOLS UNITED WITH NASA TO CREATE HARDWARE LAB, OR HUNCH, BOTH LOCATED IN BUILDING 4663. THE PROGRAM GIVES HIGH SCHOOL STUDENTS THE CHANCE TO WORK WITH NASA ENGINEERS TO DESIGN AND BUILD HARDWARE FOR USE ON THE INTERNATIONAL SPACE STATION. THE TEACHERS ALSO VISITED THE ARMY AVIATION & MISSILE RESEARCH DEVELOPMENT & ENGINEERING CENTER AND THE REDSTONE TEST CENTER

  8. Evolution of the Behavioral Sciences Branch of the Space Medicine and Health Care Systems Office at the Johnson Space Center.

    PubMed

    Fiedler, Edna R; Carpenter, Frank E

    2005-06-01

    This paper presents a brief history of psychology and psychiatry roles in psychological selection and how these roles have evolved into the Behavioral Sciences Branch at the Johnson Space Center USC), Houston, TX. Since the initial selection of the Mercury Seven, the first United States astronauts, psychologists and psychiatrists have been involved in astronaut selection activities. Initially very involved in psychological selection of astronauts, the role of behavioral health specialists waned during the Gemini and Apollo years. With the onset of the NASA/Mir/International Space Station Program, the introduction of payload and mission specialists, and international collaboration, the evolving need for behavioral health expertise became apparent. Medical and psychological selection processes were revisited and the Johnson Space Center developed a separate operational unit focused on behavioral health and performance. This work unit eventually became the Behavioral Sciences branch of the Space Medicine and Health Care Systems Office. Research was allocated across groups at JSC, other NASA space centers, and the National Space Biomedical Research Institute, and was funded by NASA Headquarters. The current NASA focus on human space exploration to the Moon and beyond re-emphasizes the importance of the human-centered approach.

  9. Installation of new Generation General Purpose Computer (GPC) compact unit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.

  10. CSG delivery and installation

    NASA Image and Video Library

    2010-10-27

    John C. Stennis Space Center employees complete installation of a chemical steam generator (CSG) unit at the site's E-2 Test Stand. On Oct. 24, 2010. The unit will undergo verification and validation testing on the E-2 stand before it is moved to the A-3 Test Stand under construction at Stennis. Each CSG unit includes three modules. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.

  11. KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. RealityFlythrough: Enhancing Situational Awareness for Medical Response to Disasters Using Ubiquitous Video

    PubMed Central

    McCurdy, Neil J.; Griswold, William G; Lenert, Leslie A.

    2005-01-01

    The first moments at a disater scene are chaotic. The command center initially operates with little knowledge of hazards, geography and casualties, building up knowledge of the event slowly as information trickles in by voice radio channels. RealityFlythrough is a tele-presence system that stitches together live video feeds in real-time, using the principle of visual closure, to give command center personnel the illusion of being able to explore the scene interactively by moving smoothly between the video feeds. Using RealityFlythrough, medical, fire, law enforcement, hazardous materials, and engineering experts may be able to achieve situational awareness earlier, and better manage scarce resources. The RealityFlythrough system is composed of camera units with off-the-shelf GPS and orientation systems and a server/viewing station that offers access to images collected by the camera units in real time by position/orientation. In initial field testing using an experimental mesh 802.11 wireless network, two camera unit operators were able to create an interactive image of a simulated disaster scene in about five minutes. PMID:16779092

  13. The Intensive Care Unit Perspective of Becoming a Level I Trauma Center: Challenges of Strategy, Leadership, and Operations Management.

    PubMed

    Savel, Richard H; Cohen, Wess; Borgia, Dena; Simon, Ronald J

    2018-01-01

    The primary purpose of this narrative is to elucidate the numerous significant changes that occur at the intensive care unit (ICU) level as a medical center pursues becoming a Level I trauma center. Specifically, we will focus on the following important areas: (1) leadership and strategy issues behind the decision to move forward with becoming a trauma center; (2) preparation needed to take a highly functioning surgical ICU and align it for the inevitable changes that happen as trauma go-live occurs; (3) intensivist staffing changes; (4) roles for and training of advanced practice practitioners; (5) graduate medical education issues; (6) optimizing interactions with closely related services; (7) nursing, staffing, and training issues; (8) bed allocation issues; and (9) reconciling the advantages of a "unified adult critical care service" with the realities of the central relationship between trauma and surgical critical care.

  14. The Intensive Care Unit Perspective of Becoming a Level I Trauma Center: Challenges of Strategy, Leadership, and Operations Management

    PubMed Central

    Savel, Richard H.; Cohen, Wess; Borgia, Dena; Simon, Ronald J.

    2018-01-01

    The primary purpose of this narrative is to elucidate the numerous significant changes that occur at the intensive care unit (ICU) level as a medical center pursues becoming a Level I trauma center. Specifically, we will focus on the following important areas: (1) leadership and strategy issues behind the decision to move forward with becoming a trauma center; (2) preparation needed to take a highly functioning surgical ICU and align it for the inevitable changes that happen as trauma go-live occurs; (3) intensivist staffing changes; (4) roles for and training of advanced practice practitioners; (5) graduate medical education issues; (6) optimizing interactions with closely related services; (7) nursing, staffing, and training issues; (8) bed allocation issues; and (9) reconciling the advantages of a “unified adult critical care service” with the realities of the central relationship between trauma and surgical critical care. PMID:29628674

  15. Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  16. Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  17. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  18. Operational Experience with Long Duration Wildfire Mapping: UAS Missions Over the Western United States

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Cobleigh, Brent; Buoni, Greg; Howell, Kathleen

    2008-01-01

    The National Aeronautics and Space Administration, United States Forest Service, and National Interagency Fire Center have developed a partnership to develop and demonstrate technology to improve airborne wildfire imaging and data dissemination. In the summer of 2007, a multi-spectral infrared scanner was integrated into NASA's Ikhana Unmanned Aircraft System (UAS) (a General Atomics Predator-B) and launched on four long duration wildfire mapping demonstration missions covering eight western states. Extensive safety analysis, contingency planning, and mission coordination were key to securing an FAA certificate of authorization (COA) to operate in the national airspace. Infrared images were autonomously geo-rectified, transmitted to the ground station by satellite communications, and networked to fire incident commanders within 15 minutes of acquisition. Close coordination with air traffic control ensured a safe operation, and allowed real-time redirection around inclement weather and other minor changes to the flight plan. All objectives of the mission demonstrations were achieved. In late October, wind-driven wildfires erupted in five southern California counties. State and national emergency operations agencies requested Ikhana to help assess and manage the wildfires. Four additional missions were launched over a 5-day period, with near realtime images delivered to multiple emergency operations centers and fire incident commands managing 10 fires.

  19. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less

  20. Function of "nontrauma" surgeons in level I trauma centers in the United States.

    PubMed

    Pate, J W

    1997-06-01

    Although the general "trauma" surgeon is usually the team leader in level I trauma centers, the use of surgical subspecialists and nonsurgeons is frequently ill-defined. This study was done to gain data in regard to actual use of subspecialists in busy centers. First, a survey of the patterns of staffing in 140 trauma centers was elicited by mail questionnaire, supplemented by telephone cells. Second, records of 400 consecutive patients at the Elvis Presley Trauma Center were reviewed to determine the use of subspecialists during the first 24 hours of care of individual patients. There were differences in the use of surgical subspecialists and nonsurgeons at different centers: in receiving, admitting, operating, and critical care areas and in privileges for admission and attending of inpatients. Consultation "guidelines" are used for many specific injuries. At our center, a mean of 1.92 subspecialists, in addition to general surgeons, were involved in the early care of each patient. Problems exist in many centers regarding the use of subspecialists, especially for management of facial and chest injuries. In some centers nonsurgeons function in the intensive care unit, and as admitting and attending physicians of trauma patients.

  1. Rotor instability due to a gear coupling connected to a bearingless sun wheel of a planetary gear

    NASA Technical Reports Server (NTRS)

    Buehlmann, E. T.; Luzi, A.

    1989-01-01

    A 21 MW electric power generating unit comprises a gas turbine, a planetary gear, and a generator connected together by gear couplings. For simplicity of the design and high performance the pinion of the gear has no bearing. It is centered by the planet wheels only. The original design showed a strong instability and a natural frequency increasing with the load between 2 and 6.5 MW. In this operating range the natural frequency was below the operating speed of the gas turbine, n sub PT = 7729 RPM. By shortening the pinion shaft and reduction of its moment of inertia the unstable natural frequency was shifted well above the operating speed. With that measure the unit now operates with stability in the entire load range.

  2. KSC-97PC1761

    NASA Image and Video Library

    1997-12-10

    United States Senator Bob Graham of Florida visits the Space Station Processing Facility at Kennedy Space Center (KSC) and is briefed on hardware processing for the International Space Station by Jon Cowart, Flight 2A Manager, NASA Space Station Hardware Integration Office. In the foreground, from left to right, are Howard DeCastro, Program Manager for the Space Flight Operations Contract, United Space Alliance; Senator Bob Graham; and Jon Cowart

  3. Overcoming KC-10 Formal Training Unit Pilot Production Challenges

    DTIC Science & Technology

    2013-06-14

    their crewmembers both through initial qualification and upgrade courses. Historically, this had been the standard operating practice since...Captain Wendy Emminger from McGuire. Additionally, Ms. Pamela Bennett Bardot, the USAF Expeditionary Center librarian , was always ready to assist in any...were originally programmed (Palacios, 2013). He also stressed that units and their aircrew could swiftly go down to basic qualifications and not be

  4. Unit Ministry Team Essential Materiel Requirements for the Battlefield

    DTIC Science & Technology

    1990-03-21

    School UMT Unit Ministry Team FLC Family Life Center CPE Clinical Pastoral Education BOS Battlefield Operating System NBC Nuclear, Biological...includes rites, ceremonies, sacraments, ordinances, services, pastoral care, and religious education. 5. On the battlefield, the UMT will not have the...visitations, pastoral counseling, and individual and group wor- ship experiences. During engagement or combat, the UMT’s priori- ty function shifts to

  5. Forecasting Wet Microburst on the Central Florida Atlantic Coast in Support of the United States Space Program

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.; Roeder, William P.

    1996-01-01

    This paper describes the new wet microburst forecasting and detection efforts developed to support ground and launch operations at Kennedy Space Center (KSC) and the Cape Canaveral Air Station (CCAS).

  6. HDU Deep Space Habitat (DSH) Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project Deep Space Habitat (DSH) analog that will be field-tested during the 2011 Desert Research and Technologies Studies (D-RATS) field tests. The HDU project is a technology pull project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU Pressurized Excursion Module (PEM) that was field tested in the 2010 D-RATS, adding habitation functionality to the prototype unit. The 2010 configuration of the HDU-PEM consisted of a lunar surface laboratory module that was used to bring over 20 habitation-related technologies together in a single platform that could be tested as an advanced habitation analog in the context of mission architectures and surface operations. The 2011 HDU-DSH configuration will build upon the PEM work, and emphasize validity of crew operations (habitation and living, etc), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The HDU project consists of a multi-center team brought together in a skunkworks approach to quickly build and validate hardware in analog environments. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 analog field test will include Multi Mission Space Exploration Vehicles (MMSEV) and the DSH among other demonstration elements to be brought together in a mission architecture context. This paper will describe overall objectives, various habitat configurations, strategic plan, and technology integration as it pertains to the 2011 field tests.

  7. [Structural development of ambulatory surgical care in the United States of America. What can we learn or apply?].

    PubMed

    Kraus, T; Wolkener, F; Mieth, M; Möller, J; Büchler, M W

    2002-10-01

    Expansion of ambulatory surgical care is a major focus in United States health politics. In 1996 a total of 31.5 million ambulatory operations were performed, currently accounting for 45% of yearly procedures. Operations in ophthalmology and gastroenterology are predominant. Ambulatory surgery is organized in different forms: "office-based surgery," "hospital outpatient departments," and "ambulatory surgery centers" (ASC). The numbers of ASCs are rapidly increasing. The current proportion of ASCs is 16% of all operations. The type of ambulatory surgery is primarily defined by payors. Medicare standards are the benchmark for private organizations. Recovery care centers now offer postoperative care beyond the former 23-h threshold. This may lead to a further expanded ASC access. Revenues for ambulatory surgery were so far mostly based on fees for service. The implementation of an outpatient prospective payment system ("OPPS") is planned by Medicare, using fixed package prices within a newly defined ambulatory payment classification ("APC"). The dimension of structural changes could be enormous and possibly be compared with the implementation of DRGs in 1983.

  8. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.

    PubMed

    Fornell, Anna; Nilsson, Johan; Jonsson, Linus; Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Tenje, Maria

    2015-10-20

    In this paper, we utilize bulk acoustic waves to control the position of microparticles inside droplets in two-phase microfluidic systems and demonstrate a method to enrich the microparticles. In droplet microfluidics, different unit operations are combined and integrated on-chip to miniaturize complex biochemical assays. We present a droplet unit operation capable of controlling the position of microparticles during a trident shaped droplet split. An acoustic standing wave field is generated in the microchannel, and the acoustic forces direct the encapsulated microparticles to the center of the droplets. The method is generic, requires no labeling of the microparticles, and is operated in a noncontact fashion. It was possible to achieve 2+-fold enrichment of polystyrene beads (5 μm in diameter) in the center daughter droplet with an average recovery of 89% of the beads. Red blood cells were also successfully manipulated inside droplets. These results show the possibility to use acoustophoresis in two-phase systems to enrich microparticles and open up the possibility for new droplet-based assays that are not performed today.

  9. ASC Addresses Unit Commanders’ Concerns through LBE and Reset Programs

    DTIC Science & Technology

    2008-09-01

    Distribution Management Center (DMC). The DMC, based at ASC Headquarters on Rock Island Arsenal, Ilinois, has become the single ASC integrator for LBE and field-level reset in support of ARFORGEN. The reset of units returning from OEF/OIF consists of a series of actions to restore the units to a desired level of combat capability commensurate with future mission requirements. These actions include the repair of equipment, replacement of equipment lost during operations, and recapitalization of equipment where feasible and

  10. A Standardized Domestic Common Operating Picture (COP) is Needed by the National Guard of the United States

    DTIC Science & Technology

    2013-12-13

    Coordination Center NMSZ New Madrid Seismic Zone PKEMRA Post Katrina Emergency Management Relief Act POTUS President of the United States SecDef Secretary...House bed. At about the same time, church bells were ringing across the eastern United States, the Mississippi River was reported to have flowed...nearly 900 miles from Washington, DC near the town of New Madrid , Missouri. The earthquakes that spurred these significant events happened in and near

  11. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Due to interest in the application of simplified techniques used to conduct airborne science missions at NASA's Ames Research Center, a joint NASA/ESA endeavor was established to conduct an extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Communication links between the 'Spacelab' and a ground based mission operations center were limited consistent with Spacelab plans. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for Spacelab experiment operators; and schedule requirements to prepare for such a Spacelab mission.

  12. Reducing intraoperative red blood cell unit wastage in a large academic medical center.

    PubMed

    Whitney, Gina M; Woods, Marcella C; France, Daniel J; Austin, Thomas M; Deegan, Robert J; Paroskie, Allison; Booth, Garrett S; Young, Pampee P; Dmochowski, Roger R; Sandberg, Warren S; Pilla, Michael A

    2015-11-01

    The wastage of red blood cell (RBC) units within the operative setting results in significant direct costs to health care organizations. Previous education-based efforts to reduce wastage were unsuccessful at our institution. We hypothesized that a quality and process improvement approach would result in sustained reductions in intraoperative RBC wastage in a large academic medical center. Utilizing a failure mode and effects analysis supplemented with time and temperature data, key drivers of perioperative RBC wastage were identified and targeted for process improvement. Multiple contributing factors, including improper storage and transport and lack of accurate, locally relevant RBC wastage event data were identified as significant contributors to ongoing intraoperative RBC unit wastage. Testing and implementation of improvements to the process of transport and storage of RBC units occurred in liver transplant and adult cardiac surgical areas due to their history of disproportionately high RBC wastage rates. Process interventions targeting local drivers of RBC wastage resulted in a significant reduction in RBC wastage (p < 0.0001; adjusted odds ratio, 0.24; 95% confidence interval, 0.15-0.39), despite an increase in operative case volume over the period of the study. Studied process interventions were then introduced incrementally in the remainder of the perioperative areas. These results show that a multidisciplinary team focused on the process of blood product ordering, transport, and storage was able to significantly reduce operative RBC wastage and its associated costs using quality and process improvement methods. © 2015 AABB.

  13. Reducing intraoperative red blood cell unit wastage in a large academic medical center

    PubMed Central

    Whitney, Gina M.; Woods, Marcella C.; France, Daniel J.; Austin, Thomas M.; Deegan, Robert J.; Paroskie, Allison; Booth, Garrett S.; Young, Pampee P.; Dmochowski, Roger R.; Sandberg, Warren S.; Pilla, Michael A.

    2015-01-01

    BACKGROUND The wastage of red blood cell (RBC) units within the operative setting results in significant direct costs to health care organizations. Previous education-based efforts to reduce wastage were unsuccessful at our institution. We hypothesized that a quality and process improvement approach would result in sustained reductions in intraoperative RBC wastage in a large academic medical center. STUDY DESIGN AND METHODS Utilizing a failure mode and effects analysis supplemented with time and temperature data, key drivers of perioperative RBC wastage were identified and targeted for process improvement. RESULTS Multiple contributing factors, including improper storage and transport and lack of accurate, locally relevant RBC wastage event data were identified as significant contributors to ongoing intraoperative RBC unit wastage. Testing and implementation of improvements to the process of transport and storage of RBC units occurred in liver transplant and adult cardiac surgical areas due to their history of disproportionately high RBC wastage rates. Process interventions targeting local drivers of RBC wastage resulted in a significant reduction in RBC wastage (p <0.0001; adjusted odds ratio, 0.24; 95% confidence interval, 0.15–0.39), despite an increase in operative case volume over the period of the study. Studied process interventions were then introduced incrementally in the remainder of the perioperative areas. CONCLUSIONS These results show that a multidisciplinary team focused on the process of blood product ordering, transport, and storage was able to significantly reduce operative RBC wastage and its associated costs using quality and process improvement methods. PMID:26202213

  14. Mobile Strike force 2010

    DTIC Science & Technology

    1994-09-23

    States Army Inrtntry Center, Fort Beanning Georgia, served as the MSF 0-3. MAY Kevin Lee, Course Manager, United States Army ntelligence Center, Fort...possess mobility and protei levels sufficent for it to operate in conjunction with the FMBT. Firepower will include a lnran-mge minkge (TOW follow...Experience has shown that composite artillery battalions don’t work very well due to logistics resupply and ammo problem. £ To achieve effectivenus vith deep

  15. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  16. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  17. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this video clip is an animated illustration of the Solar-B Spacecraft in earth orbit.

  18. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Astrophysics Data System (ADS)

    Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.

  19. Design, operation, and safety of single-room interventional MRI suites: practical experience from two centers.

    PubMed

    White, Mark J; Thornton, John S; Hawkes, David J; Hill, Derek L G; Kitchen, Neil; Mancini, Laura; McEvoy, Andrew W; Razavi, Reza; Wilson, Sally; Yousry, Tarek; Keevil, Stephen F

    2015-01-01

    The design and operation of a facility in which a magnetic resonance imaging (MRI) scanner is incorporated into a room used for surgical or endovascular cardiac interventions presents several challenges. MR safety must be maintained in the presence of a much wider variety of equipment than is found in a diagnostic unit, and of staff unfamiliar with the MRI environment, without compromising the safety and practicality of the interventional procedure. Both the MR-guided cardiac interventional unit at Kings College London and the intraoperative imaging suite at the National Hospital for Neurology and Neurosurgery are single-room interventional facilities incorporating 1.5 T cylindrical-bore MRI scanners. The two units employ similar strategies to maintain MR safety, both in original design and day-to-day operational workflows, and between them over a decade of incident-free practice has been accumulated. This article outlines these strategies, highlighting both similarities and differences between the units, as well as some lessons learned and resulting procedural changes made in both units since installation. © 2014 Wiley Periodicals, Inc.

  20. Analysis of the potential application of the Davenport/Short information technology model to a research and development organization

    NASA Technical Reports Server (NTRS)

    Decker, Deron R.

    1991-01-01

    Part of the role of the Mission Operations Lab is the development of budget inputs for Huntsville Operations/Payload Crew Training Center/Payload Operations Control Center (HOSC/PCTC/POCC) activity. These budget inputs are part of the formal Program Operating Plan (POP) process, which occurs twice yearly, and of the formal creation of the yearly operating plan. Both POPs and the operation plan serve the purpose of mapping out planned expenditures for the next fiscal year and for a number of outlying years. Based on these plans, the various Project Offices at the Center fund the HOSC/PCTC/POCC activity. Because of Mission Operations Lab's role in budget development, some of the Project Offices have begun looking to Mission Operations, and specifically the EO02 branch, to track expenditures and explain/justify any deviations from plans. EO02 has encountered difficulties acquiring the necessary information to perform this function. It appears that the necessary linkages with other units had not been fully developed and integrated with the flow of information in budget implementation. The purpose of this study is to document the budget process from the point of view of EO02 and to identify the steps necessary for it to effectively perform this role on a continuous basis.

  1. Telemedicine to Improve Access to Specialist Care in Fetal Heart Rate Monitoring: Analysis of 17 Years of TOCOMAT Network Clinical Activity.

    PubMed

    Tagliaferri, Salvatore; Esposito, Francesca Giovanna; Ippolito, Adelaide; Mereghini, Flavia; Magenes, Giovanni; Martinelli, Pasquale; Campanile, Marta; Signorini, Maria Gabriella

    2017-03-01

    The objective of this article is to provide an overview of the clinical experience of our telemedicine network (TOCOMAT) for fetal well-being assessment through computerized Cardiotocography (cCTG), analyzing cultural, socioeconomic, and environmental conditions of pregnant women and its economic sustainability over time. We used the central data store, including all cCTG records collected in Campania region (Italy) during 17 years of activity. The Operations Center acquires the traces recorded in the Remote Units and simultaneously performs a complex fetal heart rate analysis. An Internet or phone conference calling is available to discuss the information transmitted. Finally, the report is send back to the Remote Units. The number of cCTG traces performed was constantly increasing, despite the progressive reduction in the number of peripheral units involved. Pregnant women in Remote Unit group were younger and overweight and showed a higher incidence of diabetes and fetal defects than Operations Center ones. Moreover, a high rate of African migrant women and low socioeconomic and cultural standards were found in Remote Unit group. The cost analysis showed an economic advantage both in the reduction of inappropriate admissions and in the improvement of admission indicators (hospital stay days) for pregnant women. The global economic recession has had a significant impact on the Italian regional healthcare system and socioeconomic deprivation. Telemedicine could avoid unnecessary referral to Level III centers (Hospital) in Campania region, where the average population density is very high, allowing equal access to ultra-specialist assessment irrespective of the geographical location of the pregnant woman with medium to high risk, as well as rationalizing the costs for maternal and fetal care.

  2. What is Microsoft EMET and Why Should I Care?

    DTIC Science & Technology

    2014-10-22

    Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should...William 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Software Engineering Institute...with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by

  3. Level I academic trauma center integration as a model for sustaining combat surgical skills: The right surgeon in the right place for the right time.

    PubMed

    Hight, Rachel A; Salcedo, Edgardo S; Martin, Sean P; Cocanour, Christine S; Utter, Garth; Galante, Joseph M

    2015-06-01

    As North Atlantic Treaty Organization (NATO) countries begin troop withdrawal from Afghanistan, military medicine needs programs for combat surgeons to retain the required knowledge and surgical skills. Each military branch runs programs at various Level I academic trauma centers to deliver predeployment training and provide a robust trauma experience for deploying surgeons. Outside of these successful programs, there is no system-wide mechanism for nondeploying military surgeons to care for a high volume of critically ill trauma patients on a regular basis in an educational environment that promotes continued professional development. We hypothesize that fully integrated military-civilian relationship regional Level I trauma centers provide a surgical experience more closely mirroring that seen in a Role III hospital than local Level II and Level III trauma center or medical treatment facilities. We characterized the Level I trauma center practice using the number of trauma resuscitations, operative trauma/acute care surgery procedures, number of work shifts, operative density (defined as the ratio of operative procedures/days worked), and frequency of educational conferences. The same parameters were collected from two NATO Role III hospitals in Afghanistan during the peak of Operation Enduring Freedom. Data for two civilian Level II trauma centers, two civilian Level III trauma centers, and a Continental United States Military Treatment Facility without trauma designation were collected. The number of trauma resuscitations, number of 24-hour shifts, operative density, and educational conferences are shown in the table for the Level I trauma center compared with the different institutions. Civilian center trauma resuscitations and operative density were highest at the Level I trauma center and were only slightly lower than what was seen in Afghanistan. Level II and III trauma centers had lower numbers for both. The Level I trauma center provided the most frequent educational opportunities. In a Level I academic trauma center integrated program, military and civilian surgeons have the same clinical and educational responsibilities: rounding and operating, managing critical care patients, covering trauma/acute care surgery call, and mentoring surgery residents in an integrated residency program. The Level I trauma center experience most closely mimics the combat surgeon experience seen at NATO Role III hospitals in Afghanistan compared with other civilian trauma centers. At high-volume Level I trauma centers, military surgeons will have a comprehensive trauma practice, including dedicated educational opportunities. We recommend integrated programs with Level I academic trauma centers as the primary mechanism for sustaining military combat surgical skills in the future.

  4. Solar Extreme Ultraviolet Rocket Telesope Spectrograph ** SERTS ** Detector and Electronics subsystems

    NASA Astrophysics Data System (ADS)

    Payne, L.; Haas, J. P.; Linard, D.; White, L.

    1997-12-01

    The Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center uses a variety imaging sensors for its instrumentation programs. This paper describes the detector system for SERTS. The SERTS rocket telescope uses an open faceplate, single plate MCP tube as the primary detector for EUV spectra from the Sun. The optical output of this detector is fiber-optically coupled to a cooled, large format CCD. This CCD is operated using a software controlled Camera controller based upon a design used for the SOHO/CDS mission. This camera is a general purpose design, with a topology that supports multiple types of imaging devices. Multiport devices (up to 4 ports) and multiphase clocks are supportable as well as variable speed operation. Clock speeds from 100KHz to 1MHz have been used, and the topology is currently being extended to support 10MHz operation. The form factor for the camera system is based on the popular VME buss. Because the tube is an open faceplate design, the detector system has an assortment of vacuum doors and plumbing to allow operation in vacuum but provide for safe storage at normal atmosphere. Vac-ion pumps (3) are used to maintain working vacuum at all times. Marshall Space Flight Center provided the SERTS programs with HVPS units for both the vac-ion pumps and the MCP tube. The MCP tube HVPS is a direct derivative of the design used for the SXI mission for NOAA. Auxiliary equipment includes a frame buffer that works either as a multi-frame storage unit or as a photon counting accumulation unit. This unit also performs interface buffering so that the camera may appear as a piece of GPIB instrumentation.

  5. Influence of uneven distribution of coupling mass on locomotive wheel pairs, its tractive power, straight and curved sections of industrial rail tracks.

    NASA Astrophysics Data System (ADS)

    Keropyan, A. M.; Kantovich, L. I.; Voronin, B. V.; Kuziev, D. A.; Zotov, V. V.

    2017-10-01

    This article deals with the problems of unloading the axes of wheel sets of locomotives of industrial railway transport by the example of exploitation in conditions of open chasing works. Studies have established that the displacement of the center of mass of an open-pit locomotive depends primarily on the height of the center of gravity, the height of the location of the hook of the locomotive coupling over the rails and the slope of the track. Therefore, to increase the coefficient of utilization of the adhesive weight and to ensure rational operating conditions, it is necessary to provide an adjustable displacement of the locomotive’s center of mass taking into account the actual operating conditions, including when driving on rectilinear and curvilinear sections of the track. Analysis of calculation results showed that for the traction unit OPE1 when driving in traction mode in close to the extreme operating conditions, it is necessary to provide a constructive solution for displacement of the center of mass of the locomotive up to 0.5 m in the course of movement of the locomotive’s center of mass.

  6. KSC-04pd1220

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen works on the recently acquired Contraves-Goerz Kineto Tracking Mount (KTM). Trailer-mounted with a center console/seat and electric drive tracking mount, the KTM includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff. There are 10 KTMs certified for use on the Eastern Range.

  7. KSC-04pd1219

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen works on the recently acquired Contraves-Goerz Kineto Tracking Mount (KTM). Trailer-mounted with a center console/seat and electric drive tracking mount, the KTM includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff. There are 10 KTMs certified for use on the Eastern Range.

  8. KSC-06pd0509

    NASA Image and Video Library

    2006-03-15

    KENNEDY SPACE CENTER, FLA. - Inside the orbiter mockup at NASA Kennedy Space Center's Shuttle Landing Facility, volunteer "astronaut" Charlie Plain, with InDyne Inc., gets settled in a seat with the help of United Space Alliance Insertion Tech Mike Thompson before a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton

  9. KSC-06pd0508

    NASA Image and Video Library

    2006-03-15

    KENNEDY SPACE CENTER, FLA. - Inside the orbiter mockup at NASA Kennedy Space Center's Shuttle Landing Facility, volunteer "astronaut" Jeremy Garcia, with United Space Alliance (USA), is helped with his launch and entry suit by USA Insertion Tech George Brittingham before a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton

  10. KSC-2013-3517

    NASA Image and Video Library

    2013-09-09

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, officials pose at the site where a Shuttle Program time capsule has been secured vault within the walls of the Space Shuttle Atlantis home at the Kennedy Space Center Visitor Complex. From the left are: Pete Nickolenko, deputy director of NASA Ground Processing at Kennedy, Patty Stratton of Abacus Technology, currently program manager for the Information Management Communications Support Contract. During the Shuttle Program she was deputy director of Ground Operations for NASA's Space Program Operations Contractor, United Space Alliance, Rita Wilcoxon, NASA's now retired director of Shuttle Processing, Bob Cabana, director of the Kennedy Space Center and George Jacobs, deputy director of Center Operations, who was manager of the agency's Shuttle Transition and Retirement Project Office. The time capsule, containing artifacts and other memorabilia associated with the history of the program is designated to be opened on the 50th anniversary of the shuttle's final landing, STS-135. The new $100 million "Space Shuttle Atlantis" facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Photo credit: NASA/Jim Grossmann

  11. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  12. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  13. Field studies of safety security rescue technologies through training and response activities

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.; Stover, Sam

    2006-05-01

    This paper describes the field-oriented philosophy of the Institute for Safety Security Rescue Technology (iSSRT) and summarizes the activities and lessons learned during calendar year 2005 of its two centers: the Center for Robot-Assisted Search and Rescue and the NSF Safety Security Rescue industry/university cooperative research center. In 2005, iSSRT participated in four responses (La Conchita, CA, Mudslides, Hurricane Dennis, Hurricane Katrina, Hurricane Wilma) and conducted three field experiments (NJTF-1, Camp Hurricane, Richmond, MO). The lessons learned covered mobility, operator control units, wireless communications, and general reliability. The work has collectively identified six emerging issues for future work. Based on these studies, a 10-hour, 1 continuing education unit credit course on rescue robotics has been created and is available. Rescue robots and sensors are available for loan upon request.

  14. IOMEDEX Sound Velocity Analysis and Environmental Data Summary

    DTIC Science & Technology

    1974-08-01

    WORK UNIT NUMBERS INaval OceaIoogra-~hic Office Coup 61,S0 - Lashi..qton, DC 20373 _____________________ I - CNTOLIN OFIE AM AD DDES...exact nature of the exercise can be found in the IOMEDEX LRAPP Operation Order (Maury Center for Ocean Science , 1971). Much of the analysis contained...in this report has appeared previously in the IOM[DEX Synopsis Report (Maury Center for Ocean Science , 1972a) and in the IGMEDEX Summary Report (Maury

  15. A Public Relations Plan for the Orange County Department on Aging

    DTIC Science & Technology

    1989-01-01

    and older ) of the United States is growing more rapidly than any other age group. In 1980 senior citizens accounted for only 11.2 percent of the...need over time. 3. TRANSPORTATION - Helping older adults get to the essential community services they need. 4. SENIOR CENTERS - Establishing and...operating community focal points, senior citizen centers, where older adults can receive many of the individual and group activities they need from

  16. Child Care in Federal Buildings: Twenty-First Report by the Committee on Government Operations. House of Representatives, 100th Congress, 1st Session.

    ERIC Educational Resources Information Center

    Congress of the U. S., Washington, DC. House Committee on Government Operations.

    The employment of over half the women in the United States with children under age 6 creates a need for quality day care that the General Services Administration (GSA) has tried to meet by encouraging the establishment of child care centers in federal buildings. Although free or reduced rent has been available, only ten such centers currently…

  17. Estimating the unit costs of public hospitals and primary healthcare centers.

    PubMed

    Younis, Mustafa Z; Jaber, Samer; Mawson, Anthony R; Hartmann, Michael

    2013-01-01

    Many factors have affected the rise of health expenditures, such as high-cost medical technologies, changes in disease patterns and increasing demand for health services. All countries allocate a significant portion of resources to the health sector. In 2008, the gross domestic product of Palestine was estimated to be at $6.108bn (current price) or about $1697 per capita. Health expenditures are estimated at 15.6% of the gross domestic product, almost as much as those of Germany, Japan and other developed countries. The numbers of hospitals, hospital beds and primary healthcare centers in the country have all increased. The Ministry of Health (MOH) currently operates 27 of 76 hospitals, with a total of 3074 beds, which represent 61% of total beds of all hospitals in the Palestinian Authorities area. Also, the MOH is operating 453 of 706 Primary Health Care facilities. By 2007, about 40 000 people were employed in different sectors of the health system, with 33% employed by the MOH. This purpose of this study was to develop a financing strategy to help cover some or all of the costs involved in operating such institutions and to estimate the unit cost of primary and secondary programs and departments. A retrospective study was carried out on data from government hospitals and primary healthcare centers to identify and analyze the costs and output (patient-related services) and to estimate the unit cost of health services provided by hospitals and PHCs during the year 2008. All operating costs are assigned and allocated to the departments at MOH hospitals and primary health care centers (PPHCs) and are identified as overhead departments, intermediate-service and final-service departments. Intermediate-service departments provide procedures and services to patients in the final-service departments. The costs of the overhead departments are distributed to the intermediate-service and final-service departments through a step-down method, according to allocation criteria devised to resemble as closely as possible the actual use of resources by each of the departments. The data were analyzed using spss. Data cleaning was carried out by cross-validating the results through conducting cross-tabulations between the hospital/center and section/program to identify errors from the data collection or entry process. Depreciation of assets and the consumption of capital costs are ignored in this study, as it is difficult to evaluate the MOH facilities owing to a lack of recording of depreciation of assets or other costs of servicing capital assets. Inpatient costs contributed about 75% of all costs, whereas outpatient services contributed the remaining 25% of total costs. The average cost per visit was $13.00 for outpatient departments, whereas the average cost per patient day for inpatient departments was $90.00. As for the unit cost for each department, intensive care unit and intermediate care unit services were the highest among all categories of daily hospital services ($208.00). This is in contrast to surgical operations ($124.00), specialized surgeries ($106.00), delivery department ($99.00), orthopedics ($98.50) and general surgery ($85.00). The lowest unit cost was found in the neonatology department ($72.00). In PHCs, the unit cost per visit was highest for psychiatry programs ($26.00), followed by other programs ($21.50), chronic diseases ($21.00), maternal and child health ($11.50), preventive programs ($9.00) and general medicine ($6.50). The exchange rate listed by The Wall Street Journal as of Wednesday August 25, 2010 is 1 US dollar = 3.82 new Israeli shekel (NIS). The findings have implications for policy and decision making in the health sector in Palestine concerning the cost of services provided by hospitals and PHCs. The availability of a standardized data set for cost assessment would greatly enhance and improve the quality of financial information as well as efficiency in the use of scarce resources. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Treatment Seeking and Ebola Community Care Centers in Sierra Leone: A Qualitative Study.

    PubMed

    Carter, Simone E; O'Reilly, Marion; Frith-Powell, Jack; Umar Kargbo, Alpha; Byrne, Daniel; Niederberger, Eva

    2017-01-01

    Ebola Treatment Units were able to provide only 60% of necessary treatment beds in Sierra Leone. As a result, the Government of Sierra Leone decided to construct Community Care Centers. These were intended to increase treatment-seeking behavior and reduce the community-level spread of Ebola by facilitating access to care closer to communities. Through qualitative data collection in 3 districts, this study seeks to understand the perceived impact that proximity to such Centers had on treatment-seeking behavior. Feedback from community members and Community Health Volunteers indicates that proximity to treatment reduced fears, especially those arising from the use of ambulances, lack of familiarity with medical Centers, and loss of contact with family members taken for treatment. Participants report that having a Center close to their home enables them to walk to treatment and witness survivors being discharged. Living close to Centers also enables communities to be involved in their design and daily operation, helping to build trust in them as acceptable treatment facilities. Further research is required to understand the appropriate design, operation, and epidemiological impact of Centers. Further investigation should incorporate the effect of an outbreak's severity and the stage (duration) of the outbreak on potential acceptance of Centers.

  19. Solar B/Hinode Image of Sunspot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). This image of a sunspot, taken by Hinode, is a prime example of what the spacecraft can offer.

  20. n/a

    NASA Image and Video Library

    2006-08-09

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun’s magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth’s magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft’s operation center at the Japanese Aerospace Exploration Agency’s (JAXA’s) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  1. n/a

    NASA Image and Video Library

    2006-08-09

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun’s magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth’s magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft’s operation center at the Japanese Aerospace Exploration Agency’s (JAXA’s) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  2. Space Science

    NASA Image and Video Library

    2005-08-09

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun’s magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth’s magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft’s operation center at the Japanese Aerospace Exploration Agency’s (JAXA’s) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). This image of a sunspot, taken by Hinode, is a prime example of what the spacecraft can offer.

  3. KSC-02pd1085

    NASA Image and Video Library

    2002-06-27

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance Chief Operating Officer Mike McCulley welcomes guests to the Landing Operations Facility and commissioning ceremony for the new Convoy Command Vehicle behind him. The new 40-foot vehicle is replacing a 15-year old model, and will be used following Shuttle landings as the prime vehicle to control critical communications between the orbiter, the crew and the Launch Control Center, to monitor the health of the Shuttle Orbiter systems and to direct convoy operations at the Shuttle Landing Facility. Upgrades and high-tech features incorporated into the design and development of this vehicle make it more reliable and efficient for the convoy crew. Seating capacity was increased from 4 to 12, and video recorders and television monitors were added to provide the convoy team with the maximum amount of visual information

  4. The evaluation of ASOS for the Kennedy Space Center's Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Yersavich, Ann; Wheeler, Mark; Taylor, Gregory; Schumann, Robin; Manobianco, John

    1994-01-01

    This report documents the Applied Meteorology Unit's (AMU) evaluation of the effectiveness and utility of the Automated Surface Observing System (ASOS) in terms of spaceflight operations and user requirements. In particular, the evaluation determines which of the Shuttle Landing Facility (SLF) observation requirements can be satisfied by ASOS. This report also includes a summary of ASOS' background, current configuration and specifications, system performance, and the possible concepts of operations for use of ASOS at the SLF. This evaluation stems from a desire by the Air Force to determine if ASOS units could be used to reduce the cost of SLF meteorological observations.

  5. Experimental Data for Two Different Alternator Configurations in a Solar Brayton Power System

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Shaltens, Richard K.; Espinosa, William D.

    1997-01-01

    A solar dynamic (SD) space power system has been under test at the NASA Lewis Research Center since 1994. The SD Ground Test Demonstration (GTD) system includes a solar concentrator, heat receiver with thermal energy storage, Brayton power conversion unit, and radiator installed in a thermal-vacuum chamber with a solar simulator. The Brayton unit has been operated with two different turboalternator compressor (TAC) assemblies, one which included a Rice Lundell alternator and another which incorporated a permanent magnet (PM) alternator. The Rice alternator was part of the mini-Brayton rotating unit, designed and built during the 1970's and refurbished for the GTD. The PM TAC was a development unit from the Joint US/Russian SD Flight Project. This paper highlights the operational differences (and similarities) between the Rice and PM TAC configurations including a comparative evaluation of startup characteristics and operating performance. The two alternator configurations were tested under similar thermal conditions, as an interchangeable component within the SD system. The electrical characteristics of the two units, however, dictated the use of significantly different power conditioning and control strategies. The electrical control architectures are described and compared. Test data are presented on TAC startup and system operating performance for both configurations.

  6. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and condenser and outlet chilled water temperatures of the evaporator.

  7. KSC-03pd1102

    NASA Image and Video Library

    2003-04-10

    KENNEDY SPACE CENTER, FLA. -- (From left) Dean Schaaf, Barksdale site manager and NASA KSC Shuttle Process Integration Ground Operations manager, and Elliot Clement, an United Space Alliance engineer at Kennedy Space Center, inspect bagged pieces of Columbia at the Barksdale Hangar site. KSC workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  8. Air and Space Power Journal. Volume 25, Number 1, Spring 2011

    DTIC Science & Technology

    2011-01-01

    their careers at US military R&D centers supervised the development of licensed vaccines for yellow fever, mumps, measles, varicella , and oral...Special Operations Medical Group, Cannon AFB, New Mexico . Colonel Hall has supported numerous combat operations, including Iraqi Freedom, Endur- ing...C2F Expanded Missions Unit Newport, Rhode Island The Adaptive Optics Revolution: A History by Robert W. Duffner. University of New Mexico Press

  9. Supporting Marine Corps Enhanced Company Operations: A Quantitative Analysis

    DTIC Science & Technology

    2010-06-01

    by decomposition into simple independent parts. o Agents interact with each other in non-linear ways, and “ adapt ” to their local environment . (p...Center Co Company CoLT Company Landing Team CAS Complex Adaptive Systems CSV Comma-separated Value DO Distributed Operations DODIC Department...SUMMARY The modern irregular warfare environment has dramatically impacted the battle space assignments and mission scope of tactical units that now

  10. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  11. Design and fabrication of the Brayton rotating unit

    NASA Technical Reports Server (NTRS)

    Davis, J. E.

    1972-01-01

    The Brayton rotating unit (BRU), operating on a gas bearing system, has been designed, fabricated, and demonstrated for use in a closed Brayton cycle space power conversion system. The BRU uses a binary mixture of xenon and helium (molecular weight, 83.8) as the cycle working fluid and bearing lubricating medium and was designed to produce from 2.25 to 10.5 kw sub e of 1200 Hz three-phase electrical power. The single-shaft rotating assembly operates at a design speed of 36,000 rpm and comprises a radial single-stage compressor, a four-pole Rice alternator rotor, and a radial inflow turbine. Four units, a dynamic simulator and three component research packages, were supplied to the NASA Lewis Research Center for performance testing and further development.

  12. The unit field sanitation team: a square peg in a round hole.

    PubMed

    Bosetti, Timothy; Bridges, Davin

    2009-01-01

    Basic field sanitation and hygiene is a lost art in today's modern Army. Today, more than ever, there is a need for the unit field sanitation team (FST) to serve as advisors to unit commanders in the area of basic field sanitation and hygiene. Soldiers should know how to construct field latrines, construct waste disposal devices, conduct pest management and control activities, disinfect field water supplies, and practice personal hygiene under field conditions. The current unit FST concept is centered on company-sized formations operating in open terrain. This concept does not support current operations, transformed formations, rapidly changing doctrine, and the expeditionary nature of the Army. This article does not present a new concept, but rather a new look at an existing concept and practice based upon the lessons-learned and after-action reports from the Global War on Terrorism to support the Army in transformation during an era of persistent conflict.

  13. International Space Station Alpha user payload operations concept

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.

    1994-01-01

    International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.

  14. CSG delivery and installation

    NASA Image and Video Library

    2010-10-27

    The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is prepared for installation Oct. 24, 2010, at John C. Stennis Space Center. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.

  15. CSG delivery and installation

    NASA Image and Video Library

    2010-10-22

    The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand arrived at John. C. Stennis Space Center on Oct. 22, 2010. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.

  16. Hardware interface unit for control of shuttle RMS vibrations

    NASA Technical Reports Server (NTRS)

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  17. 4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket Gate Linkages, view to the north. The jacking pump, located along the wall on the left side of photograph, is used for pumping oil to lift the thrust bearing prior to starting the unit. Note the wicket gate linkages attached to the operating ring and visible in the lower center of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  18. The United States National Inventory of Library Needs, 1975.

    ERIC Educational Resources Information Center

    Trezza, Alphonse F.

    The "National Inventory of Library Needs" being conducted by the National Commission on Libraries and Information Science covers public libraries, school library/media centers, and academic libraries. The resource categories being used for the Inventory are staffing, collections, acquisitions, space, and operating expenditures. For…

  19. Beware Higher Ed's Newest Budget Twist.

    ERIC Educational Resources Information Center

    Dubeck, Leroy W.

    1997-01-01

    A new budgeting concept currently popular in colleges and universities, Responsibility Centered Management (RCM) holds that unit heads, who understand their operations best, should be given greater budgetary authority and responsibility. Experience with the system at Indiana University and several hypothetical cases suggest that RCM would place…

  20. AED in Asia

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2004

    2004-01-01

    Founded in 1961, the Academy for Educational Development (AED) is an independent, nonprofit, charitable organization that operates development programs in the United States and throughout the world. This directory presents an overview of AED endeavors in Asia. AED's work in Asia has centered on institution-building, taking advantage of its…

  1. High-Security Fencing for Rail Right-of-way Applications : Current Use and Best Practices.

    DOT National Transportation Integrated Search

    2015-10-01

    The Volpe Center investigated how high-security fencing is used to prevent right-of-way (ROW) trespassing at several urban transit and commuter rail agencies in the United States. Interviews, operations documentation, and site visits were used to gat...

  2. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons checks the electroweld he performed on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons checks the electroweld he performed on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  3. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons continues electrowelding on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons continues electrowelding on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  4. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  5. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons electrowelds a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons electrowelds a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  6. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  7. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack found on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack found on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  8. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (right) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (right) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  9. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  10. KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

  11. Clinical track faculty: merits and issues.

    PubMed

    Lee, Won-Hee; Kim, Cho Ja; Roh, Young Sook; Shin, Hyunsook; Kim, Mi Ja

    2007-01-01

    Clinical track faculty (CTF) has been in operation for more than two decades in the United States, and 12 of the top 20 schools of nursing with the highest National Institutes of Health funding in the United States have CTF in place. Yet, only limited articles have been published regarding the merits and issues related to its operation. This article examines the advantages/merits of establishing CTF in schools of nursing, discusses the qualification criteria and types of appointment for CTF, and analyzes issues related to operating CTF in Korea. A questionnaire survey and two workshops were conducted involving faculty from a college of nursing and clinical nurse managers from university-affiliated medical centers and community agencies. Most of the respondents indicated that establishing CTF was advantageous. Merits included the following: increasing reality-based clinical education and training; decreasing the reality shock of students; increasing student satisfaction; and linking education, practice, and research more effectively. Major issues were as follows: getting the approval of medical centers/universities; developing an agreement on CTF operation between the college of nursing and clinical agencies; clarifying types and criteria of appointment and promotion; and developing a statement on role and compensation policies. Most issues are similar to what U.S. schools of nursing have faced, except for the first one. In conclusion, establishing CTF in Korea appears to be highly desirable. Merits outweigh issues/concerns, and Korean nursing schools may look for an opportune time for obtaining the approval of medical centers/universities. Nursing schools in other countries that face a similar challenge of providing clinical teaching with high research performance may consider instituting CTF.

  12. Processing and Applications of Depleted Uranium Alloy Products

    DTIC Science & Technology

    1976-09-01

    temperal,,r at the wheel-metal interface, thus tending to produce surface cracks and in some cases to burn the metal. Data on speeds and feeds inr...comprehensive current resource of technical information on the development and utilization of advcnlod metal- or ceramic-base materials. The Center is operated...under the sponsorship of the Department of Defense. Neither the United Staxes Government nor any person acting on be ilf of the United States Government

  13. What the QDR Ought to Say about Landpower

    DTIC Science & Technology

    2013-01-01

    debates center on the missions, costs, or effectiveness, one should be wary of those critics pro- moting a new “Vietnam syndrome ,” arguing the United...States should never again go down the path it did over the last decade.6 Playing to this syndrome led directly to the problems encountered before...an even greater burden for the United States in allied and partner operations. 22 Frank G. Hoffman and Mike Noonan , “Defense Reorganization

  14. Army Officer Duty Module Manual.

    DTIC Science & Technology

    1975-10-01

    14l 3( RELATIVE CRITICALITY OF THIS Not Least (2) (3) The most PART (MOOULE) TO ENTIRE JOB aplicable critical Average Critical critical a. In actual...3 Directs and controls operations of mobile communications O- support unit -36- I. - O-G-5 Establishes and controls mobile area signal center 0-6-6...ENGINEERING O-EE-1 Directs .and controls combat engineer unit O-EE-2 Directs and controls portable bridging O-EE-3 Directs and controls mobile water

  15. Approaches for Scaling Back the Defense Department’s Budget Plans

    DTIC Science & Technology

    2013-03-01

    of an overall strat- egy for curtailing defense costs, or some variation of that approach could be adopted instead. (Ways in which the general... tempo (activities such as steaming days for Navy ships and flying hours for the ser- vices’ aviation components) of the units that remained in the...Mosher and Matthew S. Goldberg . Adam Talaber analyzed the costs to operate individual military units. David Berteau of the Center for Strategic and

  16. The air transportation industry birthplace of reliability-centered maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteson, T.D.

    1996-08-01

    The 1980s and 1970s provided a timely opportunity for examining and radically changing the process called {open_quotes}preventive maintenance{close_quotes} as it is applied to the aircraft used for scheduled air transportation. The Federal Aviation Administration and four major airlines, United, American, Pan American and Trans World, were the {open_quotes}principals{close_quotes} in that process. While United`s work with the FAA on the Boeing 737 had opened the door a crack, the Boeing 747 presented a major opportunity to radically improve the process for maintenance program design. That program was guided by the results of United`s analyses of failure data from operations of severalmore » fleets, each larger than 100 aircraft, and the concurrent experience of American, Pan American and Trans World. That knowledge provided the insights necessary to support an entirely different approach to maintenance program design. As a result, while United`s existing maintenance program required scheduled overhaul of 339 items on each DC-8, it required overhaul of only 8 items on the B-7471 Although the initial thrust of that work focused on components of active systems, there was concurrent work focused on items whose principal function was to carry the loads associated with operations. That program focused on the classification of structurally-significant items and their classification as {open_quotes}safe life{close_quotes} or {open_quotes}damage tolerant{close_quote} to determine what periodic replacements or repeated inspections were required. That work came to the attention of the Department of Defense which supported preparation of the book-length report by F. Stanley Nowlan and Howard F. Heap at United Airlines entitled {open_quote}Reliability-Centered maintenance{close_quotes}.« less

  17. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades.

  18. KSC-2009-3074

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In the Firing Room at NASA's Kennedy Space Center in Florida, Steven Hoyle, left, and Russ Brucker, center, receive a VIP award for their efforts associated with the STS-125 mission and NASA's Hubble Space Telescope. Hoyle is the payload test operations manager with NASA's Goddard Space Flight Center; Brucker is the Atlantis payload project manager with United Space Alliance. A crew of seven launched today on space shuttle Atlantis to service Hubble. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Kim Shiflett

  19. KSC-02pd1086

    NASA Image and Video Library

    2002-06-27

    KENNEDY SPACE CENTER, FLA. -- At the podium, Center Director Roy Bridges Jr. offers remarks at the commissioning ceremony for the new Convoy Command Vehicle behind him. At left is Mike McCulley, chief operating officer, United Space Alliance. The new 40-foot vehicle is replacing a 15-year old model, and will be used following Shuttle landings as the prime vehicle to control critical communications between the orbiter, the crew and the Launch Control Center, to monitor the health of the Shuttle Orbiter systems and to direct convoy operations at the Shuttle Landing Facility. Upgrades and high-tech features incorporated into the design and development of this vehicle make it more reliable and efficient for the convoy crew. Seating capacity was increased from 4 to 12, and video recorders and television monitors were added to provide the convoy team with the maximum amount of visual information

  20. KSC-02pd1087

    NASA Image and Video Library

    2002-06-27

    KENNEDY SPACE CENTER, FLA. -- At the podium, Center Director Roy Bridges Jr. offers remarks at the commissioning ceremony for the new Convoy Command Vehicle behind him. At left is Mike McCulley, chief operating officer, United Space Alliance. The new 40-foot vehicle is replacing a 15-year old model, and will be used following Shuttle landings as the prime vehicle to control critical communications between the orbiter, the crew and the Launch Control Center, to monitor the health of the Shuttle Orbiter systems and to direct convoy operations at the Shuttle Landing Facility. Upgrades and high-tech features incorporated into the design and development of this vehicle make it more reliable and efficient for the convoy crew. Seating capacity was increased from 4 to 12, and video recorders and television monitors were added to provide the convoy team with the maximum amount of visual information

  1. Robotic surgery in Italy national survey (2011).

    PubMed

    Santoro, Eugenio; Pansadoro, Vito

    2013-03-01

    Robotic surgery in Italy has become a clinical reality that is gaining increasing acceptance. As of 2011 after the United States, Italy together with Germany is the country with the largest number of active Robotic centers, 46, and da Vinci Robots installed, with at least 116 operators already trained. The number of interventions performed in Italy in 2011 exceeded 6,000 and in 2010 were 4,784, with prevalence for urology, general surgery and gynecology, however these interventions have also begun to be applied in other fields such as cervicofacial, cardiothoracic and pediatric surgery. In Italy Robotic centers are mostly located in Northern Italy, while in the South there are only a few centers, and four regions are lacking altogether. Of the 46 centers which were started in 1999, the vast majority is still operational and almost half handle over 200 cases a year. The quality of the work is also especially high with large diffusion of radical prostatectomy in urology and liver resection and colic in general surgery. The method is very well accepted among operators, over 80 %, and among patients, over 95 %. From the analysis of world literature and a survey carried out in Italy, Robotic surgery, which at the moment could be better defined as telesurgery, represents a significant advantage for operators and a consistent gain for the patient. However, it still has important limits such as high cost and non-structured training of operators.

  2. Robotic mitral valve surgery: overview, methodology, results, and perspective

    PubMed Central

    2016-01-01

    Robotic mitral valve repair began in 1998 and has advanced remarkably. It arose from an interest in reducing patient trauma by operating through smaller incisions with videoscopic assistance. In the United States, following two clinical trials, the FDA approved the daVinci Surgical System in 2002 for intra-cardiac surgery. This device has undergone three iterations, eventuating in the current daVinci XI. At present it is the only robotic device approved for mitral valve surgery. Many larger centers have adopted its use as part of their routine mitral valve repair armamentarium. Although these operations have longer perfusion and arrest times, complications have been either similar or less than other traditional methods. Preoperative screening is paramount and leads to optimal patient selection and outcomes. There are clear contraindications, both relative and absolute, that must be considered. Three-dimensional (3D) echocardiographic studies optimally guide surgeons in operative planning. Herein, we describe the selection criteria as well as our operative management during a robotic mitral valve repair. Major complications are detailed with tips to avoid their occurrence. Operative outcomes from the author’s series as well as those from the largest experiences in the United States are described. They show that robotic mitral valve repair is safe and effective, as well as economically reasonable due to lower costs of hospitalization. Thus, the future of this operative technique is bright for centers adopting the “heart team” approach, adequate clinical volume and a dedicated and experienced mitral repair surgeon. PMID:27942486

  3. KSC-03PD-2817

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Before the start of the kickoff presentation for Spaceport Super Safety and Health Day, Center Director Jim Kennedy (left) chats with guest speaker Capt. Charles Plumb (USNR retired) and United Space Alliance Vice President and Deputy Program Manager, Florida Operations, Bill Pickavance. Spaceport Super Safety and Health Day is an annual event at KSC and Cape Canaveral Air Force Station dedicated to reinforcing safe and healthful behaviors in the workforce. Safety Awards were also given to individuals and groups.

  4. Training Initiatives within the AFHSC-Global Emerging Infections Surveillance and Response System: Support for IHR (2005)

    DTIC Science & Technology

    2011-03-04

    Medical Research Unit-Kenya (USAMRU- K) Malaria Diagnostics Center of Excellence The continued operation of the Malaria Diagnostics Center of Excellence...MDCoE) in Kisumu, Kenya, pro- vided important contributions in professional malaria diagnostic training. The MDCoE was established in 2004 with AFHSC...202009.pdf]. 11. Ohrt C, Obare P, Nanakorn A, et al: Establishing a malaria diagnostics centre of excellence in Kisumu, Kenya. Malar J 2007, 6(79). 12

  5. KSC-2013-1384

    NASA Image and Video Library

    2013-02-08

    VANDENBERG AIR FORCE BASE, Calif. -- Media attend a prelaunch press conference at Vandenberg Air Force Base in California to discuss NASA's readiness to launch the Landsat Data Continuity Mission LDCM. From left are George Diller of NASA Public Affairs, LDCM program executive David Jarrett from NASA Headquarters, NASA Launch Director Omar Baez from Kennedy Space Center, United Launch Alliance Program Manager for NASA Missions Vernon Thorp, LDCM Project Manager Ken Schwer from Goddard Space Flight Center, and 1st Lt. Jennifer Kelley, launch weather officer for the 30th Operations Support Squadron at Vandenberg. Launch of LDCM aboard a United Launch Alliance Atlas V rocket from Vandenberg's Space Launch Complex-3E is planned for Feb. 11 during a 48-minute launch window that opens at 10:02 a.m. PST, or 1:02 p.m. EST. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions and will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment, such as food, water and forests. NASA's Goddard Space Flight Center in Greenbelt, Md., is responsible for LDCM project management. Orbital Sciences Corp. built the LDCM satellite. NASA's Launch Services Program at the Kennedy Space Center in Florida provides launch management. After launch and the initial checkout phase, the U. S. Geological Survey will take operational control of LDCM, and it will be renamed Landsat 8. Photo credit: NASA/Kim Shiflett

  6. KSC-04pd1223

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen makes adjustments on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  7. KSC-04pd1221

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Worthington (left) and Kenny Allen work on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  8. KSC-04pd1225

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen stands in the center console area of one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric-drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  9. KSC-04pd1224

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Rick Wetherington sits in the center console seat of one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  10. KSC-04pd1222

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Wetherington (left) and Kenny Allen work on two of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  11. Philipp Beiter | NREL

    Science.gov Websites

    the Strategic Energy Analysis Center. Areas of Expertise Cost modeling and economic analysis of , 2011 Prior Work Experience Junior Policy Analyst, Organization for Economic Co-operation and . Smith. 2017. An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to

  12. GLCF: Landsat GeoCover

    Science.gov Websites

    Congress of the United States provided NASA with funding to operate a Science Data Purchase, through the auspices of the NASA Stennis Space Centers Commercial Remote Sensing Program, now part of their Earth Science Applications Directorate. NASA Stennis solicited commercial remote sensing companies for potential

  13. Annual Report on Research, 1979 (U.S. Army Research Institute for the Behavioral and Social Sciences)

    DTIC Science & Technology

    1979-01-01

    Research ........................................... 17 Command, Control and Communication (C3) with Automated Battlefield Systems ...19 Life Cycle Systems Management ............................. 22 Cost and Training Effectiveness Analysis ....................... 24 Operational Test...Training Center ................................... 66 Unit Training Programs and Management Systems ............... 68 Personnel and Manpower

  14. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    vehicles with unidentified fuel types. Data consists of registered vehicles in operation in the United fuel types with small populations, such as methanol and hydrogen vehicles. See relative vehicle completed a conversion. "undefined" values are vehicles with unidentified fuel types. Data

  15. Numbers of Brain Deaths and Deceased Donors in Hospitals in Istanbul Region That Have Transplantation Units: A Retrospective Analysis Between the Years 2005 and 2015.

    PubMed

    Harmanci Seren, A K; Yavuz, H

    2017-04-01

    Turkey is one of the countries facing a serious organ shortage problem, with thousands of patients with end-stage organ failure. The Social Security Institution started to increase the reimbursement for transplantation operations in 2007 to solve this problem, and this policy has continued since then. Although the number of transplantation centers and operations in Turkey increased in this term, according to organ donation and transplantation statistics from the Ministry of Health, the rate of organ retrieval from deceased organ donors has decreased. This study was performed with the purpose of retrospectively analyzing (between the years 2005 and 2015) the number of brain deaths and donors after brain death in hospitals that are affiliated with the Istanbul Regional Coordination Office and have transplantation units. Data were collected via the website of the Ministry of Health. Hospitals were categorized as those directly affiliated with the Ministry of Health, university hospitals, and private hospitals. This study found that the number of transplantation centers has increased >3 times since 2005, and the number of private transplantation centers has increased 9 times for the same period. We also found that the number of brain deaths, donors after brain death in hospitals, and number of brain deaths and donors after brain death per hospital had varied throughout the study years. Although the number of transplantation centers has increased since 2005, the number of brain deaths and donors after brain death has not increased to the same extent for this period in these hospitals that have transplantation units. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Quality Assurance in Breast Health Care and Requirement for Accreditation in Specialized Units

    PubMed Central

    Güler, Sertaç Ata; Güllüoğlu, Bahadır M.

    2014-01-01

    Breast health is a subject of increasing importance. The statistical increase in the frequency of breast cancer and the consequent increase in death rate increase the importance of quality of services to be provided for breast health. For these reasons, the minimum standards and optimum quality metrics of breast care provided to the community are determined. The quality parameters for breast care service include the results, the structure and the operation of services. Within this group, the results of breast health services are determined according to clinical results, patient satisfaction and financial condition. The structure of quality services should include interdisciplinary meetings, written standards for specific procedures and the existence of standardized reporting systems. Establishing breast centers that adopt integrated multidisciplinary working principles and their cost-effective maintenance are important in terms of operation of breast health services. The importance of using a “reviewing/auditing” procedure that checks if all of these functions existing in the health system are carried out at the desired level and an “accreditation” system indicating that the working breast units/centers provide minimum quality adequacy in all aspects, is undeniable. Currently, the accreditation system for breast centers is being used in the European Union and the United States for the last 5–10 years. This system is thought to provide standardization in breast care services, and is accepted as one of the important factors that resulted in reduction in mortality associated with breast cancer. PMID:28331658

  17. Quality Assurance in Breast Health Care and Requirement for Accreditation in Specialized Units.

    PubMed

    Güler, Sertaç Ata; Güllüoğlu, Bahadır M

    2014-07-01

    Breast health is a subject of increasing importance. The statistical increase in the frequency of breast cancer and the consequent increase in death rate increase the importance of quality of services to be provided for breast health. For these reasons, the minimum standards and optimum quality metrics of breast care provided to the community are determined. The quality parameters for breast care service include the results, the structure and the operation of services. Within this group, the results of breast health services are determined according to clinical results, patient satisfaction and financial condition. The structure of quality services should include interdisciplinary meetings, written standards for specific procedures and the existence of standardized reporting systems. Establishing breast centers that adopt integrated multidisciplinary working principles and their cost-effective maintenance are important in terms of operation of breast health services. The importance of using a "reviewing/auditing" procedure that checks if all of these functions existing in the health system are carried out at the desired level and an "accreditation" system indicating that the working breast units/centers provide minimum quality adequacy in all aspects, is undeniable. Currently, the accreditation system for breast centers is being used in the European Union and the United States for the last 5-10 years. This system is thought to provide standardization in breast care services, and is accepted as one of the important factors that resulted in reduction in mortality associated with breast cancer.

  18. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  19. National Commission on the Structure of the Air Force: Report to the President and Congress of the United States

    DTIC Science & Technology

    2014-01-30

    August 20, 2013, with public hearing in Oklahoma City Alpena CRTC, Mich., September 13, 2013 Selfridge ANGB, Mich., September 14, 2013, with public...Colonel Bryan Teff (ANG), Commander, Alpena Combat Readiness Training Center, Michigan Colonel Sean Southworth (ANG), Commander, 217th Air Operations...Group, W.K. Kellogg ANGB, Michigan Lieutenant Colonel Matt Trumble (ANG), Director of Operations, Grayling Air Gunnery Range, Alpena Combat Readiness

  20. Real-time simulation clock

    NASA Technical Reports Server (NTRS)

    Bennington, Donald R. (Inventor); Crawford, Daniel J. (Inventor)

    1990-01-01

    The invention is a clock for synchronizing operations within a high-speed, distributed data processing network. The clock is actually a distributed system comprising a central clock and multiple site clock interface units (SCIUs) which are connected by means of a fiber optic star network and which operate under control of separate clock software. The presently preferred embodiment is a part of the flight simulation system now in current use at the NASA Langley Research Center.

  1. Training the Neglected Core of Army Leadership- Troop-Leading Procedures

    DTIC Science & Technology

    2007-06-01

    tactical operations center ( TOC ) to reconnoiter, using the MDMP to complete their plans, etc. TLP are considered procedures, and the Army’s previous...and establishing an effective and responsive Prevention of Sexual Haras- sment (POSH)/Equal Opportunity (EO) program. Since dedicated citizen...8. One unit posted signs all over its TOC that read, “Who else needs to know!” 03A - COE/Full-Spectrum Operations/Why We Fight 03C - Perform Cultural

  2. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  3. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  4. U.S. Army Delayed Entry Program Optimization Model

    DTIC Science & Technology

    2004-08-01

    United States Military Academy West Point, New York 10996 OPERATIONS RESEARCH CENTER OF EXCELLENCE TECHNICAL REPORT No. DSE-TR- 0428 DTIC #: ADAXXXXX...following entries: Author(s) Department of Systems Engineering 2 Mahan Hall West Point, NY 10996 Client USAAC CAR 4 1307 Third Ave., Fort Knox, KY 40121...Wolter, LTC Michael J. Kwinn, Jr., LTC John Halstead DSE-R- 0428 5S. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8

  5. United States Air Force Response to Problems of Child Abuse within the Military Community.

    DTIC Science & Technology

    1985-01-01

    The Child Abuse Prevention and Treatment Act became national law in the United States. This act authorized a National Center on Child Abuse and...Neglect to compile information, operate a clearinghouse on programs showing promise of success in prevention, identification and treatment of child abuse , publish...Force base to investigate and evaluate suspected child abuse cases. This study focuses on child abuse in the Air Force community rather than in the

  6. Army Support to the United States Border Patrol in the 21st Century

    DTIC Science & Technology

    2011-05-19

    and Lieutenant Colonel (Promotable) Clifford J. Weinstein (United States Marine Corps). Thank you for letting me travel this important journey and...Operating Bases in Deming and Playas , New Mexico. The 4-14 CAV was preparing for its deployment to the Joint Readiness Training Center (JRTC) at Fort Polk...write strategic policy. Once a suitable bench of key planners comes back to USBP, they can travel throughout the UCs and train other agents across the

  7. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  8. Closed-Cycle, Frequency-Stable CO2 Laser Technology

    NASA Technical Reports Server (NTRS)

    Batten, Carmen E. (Editor); Miller, Irvin M. (Editor); Wood, George M., Jr. (Editor); Willetts, David V. (Editor)

    1987-01-01

    These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted.

  9. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  10. Proposal Information | ast.noao.edu

    Science.gov Websites

    Logo NOAO is the national center for ground-based nighttime astronomy in the United States and is operated by the Association of Universities for Research in Astronomy (AURA). under cooperative agreement with the National Science Foundation. If you would like information about solar astronomy, visit the

  11. Operationally Defining Work, Individualized Teacher Preparation.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Dept. of Science Education.

    This publication is one of 14 modules prepared for training pre- and in-service teachers to teach Intermediate Science Curriculum Study (ISCS) materials. The organization of this publication is centered around the first unit at level I discussing the broad physics concept of "work." Various activities are suggested for teachers. This…

  12. 10 CFR 110.50 - Terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; or (ii) The licensee has given at least 40 days advance notice of the intended shipment in writing to... cooperation with the United States; and (B) Communicated this in writing to the licensee. (c) Advanced... or call (301) 816-5100. Difficulties notifying the NRC Operations Center must be promptly reported to...

  13. 10 CFR 110.50 - Terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; or (ii) The licensee has given at least 40 days advance notice of the intended shipment in writing to... cooperation with the United States; and (B) Communicated this in writing to the licensee. (c) Advanced... or call (301) 816-5100. Difficulties notifying the NRC Operations Center must be promptly reported to...

  14. 10 CFR 110.50 - Terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; or (ii) The licensee has given at least 40 days advance notice of the intended shipment in writing to... cooperation with the United States; and (B) Communicated this in writing to the licensee. (c) Advanced... or call (301) 816-5100. Difficulties notifying the NRC Operations Center must be promptly reported to...

  15. 40 CFR 62.14104 - Requirements for municipal waste combustor operating practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), proceed in accordance with ASME PTC 4.1-1964 (Reaffirmed 1991), Power Test Codes: Test Code for Steam Generating Units (with 1968 and 1969 Addenda). For design, construction, installation, calibration, and use... Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You may...

  16. 40 CFR 62.14104 - Requirements for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), proceed in accordance with ASME PTC 4.1-1964 (Reaffirmed 1991), Power Test Codes: Test Code for Steam Generating Units (with 1968 and 1969 Addenda). For design, construction, installation, calibration, and use... Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You may...

  17. 40 CFR 62.14104 - Requirements for municipal waste combustor operating practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), proceed in accordance with ASME PTC 4.1-1964 (Reaffirmed 1991), Power Test Codes: Test Code for Steam Generating Units (with 1968 and 1969 Addenda). For design, construction, installation, calibration, and use... Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You may...

  18. 40 CFR 62.14104 - Requirements for municipal waste combustor operating practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), proceed in accordance with ASME PTC 4.1-1964 (Reaffirmed 1991), Power Test Codes: Test Code for Steam Generating Units (with 1968 and 1969 Addenda). For design, construction, installation, calibration, and use... Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You may...

  19. 40 CFR 62.14104 - Requirements for municipal waste combustor operating practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...), proceed in accordance with ASME PTC 4.1-1964 (Reaffirmed 1991), Power Test Codes: Test Code for Steam Generating Units (with 1968 and 1969 Addenda). For design, construction, installation, calibration, and use... Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You may...

  20. Applying the Theory of Constraints to a Base Civil Engineering Operations Branch

    DTIC Science & Technology

    1991-09-01

    Figure Page 1. Typical Work Order Processing . .......... 7 2. Typical Job Order Processing . .......... 8 3. Typical Simplified In-Service Work Plan for...Customers’ Customer Request Service Planning Unit Production] Control Center Material Control Scheduling CE Shops Figure 1.. Typical Work Order Processing 7

  1. Solar Energy Installers Curriculum Guides. Book II.

    ERIC Educational Resources Information Center

    Walker, Gene C.

    This second volume of a comprehensive curriculum guide for the heating-ventilation-air conditioning-refrigeration-solar student is designed to assist high school area vocational centers or community college instructors in the implementation and operation of comfort training programs. The guide is comprised of ten units of instruction within three…

  2. Emergency Preparedness: Are You Ready?

    ERIC Educational Resources Information Center

    Harley, Lorraine

    2012-01-01

    Most Americans who consider emergency preparedness think of someone or another country attacking the United States. Most newspaper and televised accounts involve community leaders and policymakers preparing for a terrorist attack. However, anyone who operates a child care center, family child care home, or has children of her own, knows that…

  3. Outcomes After Cardiac Arrest in an Adult Burn Center

    DTIC Science & Technology

    2013-12-07

    defibrillation at our institution, either in the burn operating room (BOR) or burn intensive care unit (BICU). We included patients who experi- enced CA in...of this study design. In other studies, the time between CA and defibrillation and, in children, the time between burn and fluid resuscitation have

  4. International Comparisons of Educational Attainment. Indicator of the Month.

    ERIC Educational Resources Information Center

    National Center for Education Statistics (ED), Washington, DC.

    Information from the International Indicators Project of the Organization for Economic Co-operation and Development, Center for Educational Research and Innovation is used to compare completion rates of secondary and higher education in the United States with those of other highly industrialized countries, namely, Canada, France, Germany, Italy,…

  5. KSC-03pd3259

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs USA Associate Program Manager of Ground Operations Andy Allen (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) on the properties of the components used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  6. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  7. KSC-02pd1129

    NASA Image and Video Library

    2002-07-10

    KENNEDY SPACE CENTER, FLA. -- With the engines removed from Endeavour, the inside of Endeavour is exposed. At left center, Scott Minnick, with United Space Alliance, operates a fiber-optic camera inside the flow line. Other USA team members, right, watching the progress on a screen in front, are Gerry Kathka (with controls), Mike Fore and Peggy Ritchie. The inspection is the result of small cracks being discovered on the LH2 Main Propulsion System (MPS) flow liners in other orbiters. Endeavour is next scheduled to fly on mission STS-113.

  8. Review of optical wireless communications for data centers

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2017-10-01

    A data center (DC) is a facility either physical or virtual, for running applications, searching, storage, management and dissemination of information known as cloud computing, which consume a huge amount of energy. A DC includes thousands of servers, communication and storage equipment and a support system including an air conditioning system, security, monitoring equipment and electricity regulator units. Data center operators face the challenges of meeting exponentially increasing demands for network bandwidth without unreasonable increases in operation and infrastructure cost. In order to meet the requirements of moderate increase in operation and infrastructure cost technology, a revolution is required. One way to overcome the shortcomings of traditional static (wired) data center architectures is use of a hybrid network based on fiber and optical wireless communication (OWC) or free space optics (FSO). The OWC link could be deployed on top of the existing cable/fiber network layer, so that live migration could be done easily and dynamically. In that case the network topology is flexible and adapts quickly to changes in traffic, heat distribution, power consumption and characteristics of the applications. In addition, OWC could provide an easy way to maintain and scale up data centers. As a result total cost of ownership could be reduced and the return on investment could be increased. In this talk we will review the main OWC technologies applicable for data centers, indicate how energy could be saved using OWC multichannel communication and discuss the issue of OWC pointing accuracy for data center scenario.

  9. Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Hill, Dennis

    2011-01-01

    After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.

  10. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  11. KSC-02pd1089

    NASA Image and Video Library

    2002-06-27

    KENNEDY SPACE CENTER, FLA. - After opening remarks at a commissioning ceremony for the new Convoy Command Vehicle, Center Director Roy Bridges Jr. (right) gets ready to open the door for a tour of the vehicle. At left is United Space Alliance Chief Operating Officer Mike McCulley. The new 40-foot vehicle is replacing a 15-year old model, and will be used following Shuttle landings as the prime vehicle to control critical communications between the orbiter, the crew and the Launch Control Center, to monitor the health of the Shuttle Orbiter systems and to direct convoy operations at the Shuttle Landing Facility. Upgrades and high-tech features incorporated into the design and development of this vehicle make it more reliable and efficient for the convoy crew. Seating capacity was increased from 4 to 12, and video recorders and television monitors were added to provide the convoy team with the maximum amount of visual information

  12. KSC-02pd1088

    NASA Image and Video Library

    2002-06-27

    KENNEDY SPACE CENTER, FLA. -- During a commissioning ceremony for the new Convoy Command Vehicle (background), Tony Shibly, project manager, United Space Alliance, offers a few remarks to guests. At left are USA Chief Operating Officer Mike McCulley and Center Director Roy Bridges Jr. The new 40-foot vehicle is replacing a 15-year old model, and will be used following Shuttle landings as the prime vehicle to control critical communications between the orbiter, the crew and the Launch Control Center, to monitor the health of the Shuttle Orbiter systems and to direct convoy operations at the Shuttle Landing Facility. Upgrades and high-tech features incorporated into the design and development of this vehicle make it more reliable and efficient for the convoy crew. Seating capacity was increased from 4 to 12, and video recorders and television monitors were added to provide the convoy team with the maximum amount of visual information

  13. Results of a protocol of transfusion threshold and surgical technique on transfusion requirements in burn patients.

    PubMed

    O'Mara, Michael S; Hayetian, Fernando; Slater, Harvey; Goldfarb, I William; Tolchin, Eric; Caushaj, Philip F

    2005-08-01

    Blood loss and high rates of transfusion in burn centers remains an area of ongoing concern. Blood use brings the risk of infection, adverse reaction, and immunosuppression. A protocol to reduce blood loss and blood use was implemented. Analysis included 3-year periods before and after institution of the protocol. All patients were transfused for a hemoglobin below 8.0 gm/dL. Operations per admission did not change during the two time periods (0.78 in each). Overall units transfused per operation decreased from 1.56+/-0.06 to 1.25+/-0.14 units after instituting the protocol (p<0.05). Also, units transfused per admission decreased from 1.21+/-0.15 to 0.96+/-0.06 units of blood (p<0.05). This was noticed particularly in burns of less than 20% surface area, declining from 386 to 46 units after protocol institution, from 0.37 to 0.04 units per admission, and from 0.79 to 0.08 units per operation in this group of smallest burns. There was no change noted in the larger burns. This study suggests that a defined protocol of hemostasis, technique, and transfusion trigger should be implemented in the process of burn excision and grafting. This will help especially those patients with the smallest burns, essentially eliminating transfusion need in that group.

  14. Emetogenicity-risk procedures in same day surgery center of an academic university hospital in United States: a retrospective cost-audit of postoperative nausea vomiting management.

    PubMed

    Gupta, Deepak; Haber, Halim

    2014-06-01

    Despite the variable results of published studies, it is imperative for ambulatory surgery centers to self-audit local cost-implications for post-operative nausea and vomiting (PONV) management. Our retrospective cost-audit assessed if there were comparative peri-anesthesia care cost-trends among patients who had undergone Low-Emetogenicity-Risk Procedures (LERP), Moderate-Emetogenicity-Risk Procedures (MERP) and Severe-Emetogenicity-Risk Procedures (SERP). This study was a review of Same Day Surgery Center practices in an academic university hospital setting during a three-year period (2010-2012). The patient lists were accessed from CIS and CITRIX App Bar for time audit and OR (operating room) schedule reports. Subsequently, OR pharmacy department ran a search for peri-operative anti-emetics and opioids that were billed for the patients at Same Day Surgery Center for the review period. The primary outcomes were the comparative costs/charges of these medications and comparative durations/ charges for these patients' stay in the post-anesthesia care unit (PACU). Secondary outcomes analyzed in the study included peri-anesthesia durations. A total of 8,657 patient records were analyzed. Almost all analyzed variables revealed statistically significant inter-variable positive correlations. The patients' age was significantly (P < 0.001) different among LERP/MERP/SERP patients (LERP: 48.8 +/- 14.7 years; MERP: 61.8 +/- 14.6 years; SERP: 51.3 +/- 14.5 years). In regards to primary and secondary outcomes, the statistical significant differences among LERP/MERP/SERP patients (after correcting for both patients' age as well as patients' sex) were only achieved for preoperative times (P = 0.002; Power = 0.9), operating room recovery times (P = 0.003; Power = 0.9), PACU stay times (P < 0.001; Power = 1.0), and PACU charges (P < 0.001; Power = 1.0). PACU stay times and PACU charges were significantly higher in patients who had undergone SERP as compared to patients who had undergone LERP or MERP at our Same Day Surgery Center.

  15. 77 FR 123 - Proposed CERCLA Administrative Cost Recovery Settlement; North Hollywood Operable Unit of the San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ...In accordance with Section 122(i) of the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (``CERCLA''), 42 U.S.C. 9622(i), notice is hereby given of a proposed administrative settlement for recovery of response costs concerning the North Hollywood Operable Unit of the San Fernando Valley Area 1 Superfund Site, located in the vicinity of Los Angeles, California, with the following settling party: Waste Management Recycling & Disposal Services of California, Inc., dba Bradley Landfill & Recycling Center. The settlement requires the settling party to pay a total of $185,734 to the North Hollywood Operable Unit Special Account within the Hazardous Substance Superfund. The settlement also includes a covenant not to sue the settling party pursuant to Section 107(a) of CERCLA, 42 U.S.C. 9607(a). For thirty (30) days following the date of publication of this notice, the Agency will receive written comments relating to the settlement. The Agency will consider all comments received and may modify or withdraw its consent to the settlement if comments received disclose facts or considerations which indicate that the settlement is inappropriate, improper, or inadequate. The Agency's response to any comments received will be available for public inspection at the City of Los Angeles Central Library, Science and Technology Department, 630 West 5th Street, Los Angeles CA 90071 and at the EPA Region 9 Superfund Records Center, Mail Stop SFD-7C, 95 Hawthorne Street, Room 403, San Francisco, CA 94105.

  16. CSG delivery and installation

    NASA Image and Video Library

    2010-10-27

    The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is hoisted into place at the E-2 Test Stand at John C. Stennis Space Center on Oct. 24, 2010. The unit was installed at the E-2 stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.

  17. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  18. Clinical review: the Israeli experience: conventional terrorism and critical care.

    PubMed

    Aschkenasy-Steuer, Gabriella; Shamir, Micha; Rivkind, Avraham; Mosheiff, Rami; Shushan, Yigal; Rosenthal, Guy; Mintz, Yoav; Weissman, Charles; Sprung, Charles L; Weiss, Yoram G

    2005-10-05

    Over the past four years there have been 93 multiple-casualty terrorist attacks in Israel, 33 of them in Jerusalem. The Hadassah-Hebrew University Medical Center is the only Level I trauma center in Jerusalem and has therefore gained important experience in caring for critically injured patients. To do so we have developed a highly flexible operational system for managing the general intensive care unit (GICU). The focus of this review will be on the organizational steps needed to provide operational flexibility, emphasizing the importance of forward deployment of intensive care unit personnel to the trauma bay and emergency room and the existence of a chain of command to limit chaos. A retrospective review of the hospital's response to multiple-casualty terror incidents occurring between 1 October 2000 and 1 September 2004 was performed. Information was assembled from the medical center's trauma registry and from GICU patient admission and discharge records. Patients are described with regard to the severity and type of injury. The organizational work within intensive care is described. Finally, specific issues related to the diagnosis and management of lung, brain, orthopedic and abdominal injuries, caused by bomb blast events associated with shrapnel, are described. This review emphasizes the importance of a multidisciplinary team approach in caring for these patients.

  19. Financial implications of choice of dialysis type of the revised Medicare payment system: an economic analysis.

    PubMed

    Hornberger, John; Hirth, Richard A

    2012-08-01

    In 2011, the Medicare Improvements for Patients and Providers Act replaced the case-mix-adjusted composite payment system for Medicare outpatient dialysis facilities with a bundled end-stage renal disease prospective payment system (PPS). We assessed the economic implications for modality choice of the revised Medicare payment system. Microeconomic analyses. Patients eligible for dialysis in the United States. The perspective of this analysis is that of a financial administrator of a representative dialysis center in the United States. Data were obtained from the Medicare Payment Advisory Commission, the US Renal Data System, the DOPPS (Dialysis Outcomes and Practice Patterns Study) Practice Monitor, the US Bureau of Labor Statistics, and Medicare fee schedules. Recently implemented end-stage renal disease PPS versus the prior case-mix composite payment system. Medicare payment per month, center fixed and variable costs per month, net difference in revenue and variable costs (direct contribution), and net difference in revenue and total costs (operating margin). The direct contribution and operating margin for in-center hemodialysis and peritoneal dialysis are expected to be positive under the new bundled PPS. For Medicare fiscal intermediaries/administrators, paid treatments for home hemodialysis vary from 3.2 to more than 4.8 per week. The direct contribution and operating margin are expected to be negative for home hemodialysis if the number of paid treatments is similar between in-center and home hemodialysis; they are almost identical when the number of paid treatments increases for home hemodialysis by approximately 1 per week. Experience across centers and intermediaries/administrators may vary. Sensitivity analyses were conducted to assess the robustness of findings and determine which variables most influenced results. The new bundled PPS created a financial incentive for increased use of peritoneal dialysis. Use of home hemodialysis may be influenced by number of paid treatments per week. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. United States Army Reserve in Operation Desert Storm. Individual Manpower Mobilization: The Army Reserve Personnel Center

    DTIC Science & Technology

    1992-11-30

    9" Autmat sams ARPERCEN had spent a lot of money creating large data bases and automated systems for mobilization of preftained individual manpower...utilized none at all during Operation DESERT STORM. These data indicate that prior to August 1990 there were widespread differences of opinion among the...viewpoint of the supervisors; the second question is from the viewpoint of the IMAs themselves. Fortunately, there are some data to provide general

  1. White Thrombus Formation in Blood Tubing Lines in a Chronic Hemodialysis Unit

    PubMed Central

    Watnick, Suzanne; Stooksbury, Michael; Winter, Rolf; Riscoe, Michael; Cohen, David M.

    2008-01-01

    Background and objectives: Previous reports have described white particulate matter in banked blood components, but no prior public reports describe such matter in blood tubing during the course of routine in-center hemodialysis. This report describes the events, investigations, and preliminary conclusions associated with the spontaneous formation of adherent white thrombus in the venous and arterial blood lines during routine in-center hemodialysis treatments. Design setting, participants, & measurements: This investigation occurred at the Portland Veterans Administration Medical Center (PVAMC) Hemodialysis Unit from October 2006 through April 2007. Sixty-eight variables regarding demographics, medical history and dialysis treatments were collected on our 34 chronic hemodialysis outpatients. Results: Over a 5-wk interval, 62% (21 of 34) of the chronic hemodialysis patients unexpectedly developed a white precipitate adhering to the lumenal surface of their dialysis blood tubing, with 73 of 580 chronic dialysis treatments exhibiting the phenomenon. Microscopic and biochemical analyses were consistent with white thrombus, formed by an aggregation of platelets and fibrin. An alert was issued and other in-center hemodialysis units noted similar findings. This was remedied by the removal of specific tubing. Conclusions: Both patient-specific and tubing-specific factors may have been operative. Although patient safety was not adversely affected, assessment of clinical and manufacturing variables potentially affecting platelet activation is warranted. PMID:18184880

  2. White thrombus formation in blood tubing lines in a chronic hemodialysis unit.

    PubMed

    Watnick, Suzanne; Stooksbury, Michael; Winter, Rolf; Riscoe, Michael; Cohen, David M

    2008-03-01

    Previous reports have described white particulate matter in banked blood components, but no prior public reports describe such matter in blood tubing during the course of routine in-center hemodialysis. This report describes the events, investigations, and preliminary conclusions associated with the spontaneous formation of adherent white thrombus in the venous and arterial blood lines during routine in-center hemodialysis treatments. Design setting, participants, & measurements: This investigation occurred at the Portland Veterans Administration Medical Center (PVAMC) Hemodialysis Unit from October 2006 through April 2007. Sixty-eight variables regarding demographics, medical history and dialysis treatments were collected on our 34 chronic hemodialysis outpatients. Over a 5-wk interval, 62% (21 of 34) of the chronic hemodialysis patients unexpectedly developed a white precipitate adhering to the lumenal surface of their dialysis blood tubing, with 73 of 580 chronic dialysis treatments exhibiting the phenomenon. Microscopic and biochemical analyses were consistent with white thrombus, formed by an aggregation of platelets and fibrin. An alert was issued and other in-center hemodialysis units noted similar findings. This was remedied by the removal of specific tubing. Both patient-specific and tubing-specific factors may have been operative. Although patient safety was not adversely affected, assessment of clinical and manufacturing variables potentially affecting platelet activation is warranted.

  3. Superfund record of decision (EPA Region 1): Otis Air National Guard (USAF), Operable Unit 3, Falmouth, MA, September 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The Massachusetts Military Reservation (MMR) on Cape Cod, Massachusetts, lies within the boundaries of the towns of Falmouth, Mashpee, Sandwich, and Bourne. The Area of Contamination (AOC) known as Chemical Spill 3 United States Coast Guard (CS-3 (USCG)) is located on Lee Road, in the south central portion of the MMR. The Air Force Center for Environmental Excellence (AFCEE) Installation Restoration Program Office at Otis Air National Guard (ANG) Base, Massachusetts.

  4. Independent Auditors Report on the Air Force Working Capital Fund FY 2015 and FY 2014 Basic Financial Statements for United States Air Force Agency Financial Report 2015

    DTIC Science & Technology

    2015-11-09

    missile warning, weather and intelligence warfighting support. AFSPC operates sensors that provide direct attack warning and assessment to U.S...toughness combinations. AFRL conducted low-speed wind tunnel tests of 9%-scale model completed at NASA Langley Research Center (LaRC); data validated... wireless mobile monitoring capability designed for dismounted Pararescue Jumpers (PJ) called United States Air Force 89 Battlefield Airmen Trauma

  5. High Power Alternator Test Unit (ATU) Electrical System Test

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.

  6. NWS Operational Requirements for Ensemble-Based Hydrologic Forecasts

    NASA Astrophysics Data System (ADS)

    Hartman, R. K.

    2008-12-01

    Ensemble-based hydrologic forecasts have been developed and issued by National Weather Service (NWS) staff at River Forecast Centers (RFCs) for many years. Used principally for long-range water supply forecasts, only the uncertainty associated with weather and climate have been traditionally considered. As technology and societal expectations of resource managers increase, the use and desire for risk-based decision support tools has also increased. These tools require forecast information that includes reliable uncertainty estimates across all time and space domains. The development of reliable uncertainty estimates associated with hydrologic forecasts is being actively pursued within the United States and internationally. This presentation will describe the challenges, components, and requirements for operational hydrologic ensemble-based forecasts from the perspective of a NOAA/NWS River Forecast Center.

  7. Around Marshall

    NASA Image and Video Library

    1970-01-01

    Dr. Eberhard Rees served as director of the Marshall Space Flight Center from March 1, 1970 until January 19, 1973 when he retired from NASA. Prior to his appointment as Director, Rees served as the Center's deputy director under Dr. Wernher von Braun, 1960-1970. Rees came to the United States as part of the Dr. Wernher von Braun's German Rocket team following World War II. He transferred to Huntsville, Alabama from Fort Bliss, Texas in 1950 to work for the Army's rocket program at Redstone Arsenal. From 1956 to 1960 he served as deputy director of development operations at the Army Ballistic Missile Agency under von Braun. In 1960 Rees was transferred to NASA's Marshall Center.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlies, C. H. van der, E-mail: c.h.vandervlies@amc.uva.nl; Hoekstra, J.; Ponsen, K. J.

    Introduction: Nonoperative management (NOM) has become the treatment of choice for hemodynamically stable patients with blunt splenic injury. Results of outcome after NOM are predominantly based on large-volume studies from level 1 trauma centers in the United States. This study was designed to assess the results of NOM in a relatively low-volume Dutch level 1 trauma center. Methods: An analysis of a prospective trauma registry was performed for a 6-year period before (period 1) and after the introduction and implementation of splenic artery embolization (SAE) (period 2). Primary outcome was the failure rate of initial treatment. Results: A total ofmore » 151 patients were reviewed. An increased use of SAE and a reduction of splenic operations during the second period was observed. Compared with period 1, the failure rate after observation in period 2 decreased from 25% to 10%. The failure rate after SAE in period 2 was 18%. The splenic salvage rate (SSR) after observation increased from 79% in the first period to 100% in the second period. During the second period, all patients with failure after observation were successfully treated with SAE. The SSR after SAE in periods 1 and 2 was respectively 100% and 86%. Conclusions: SAE of patients with blunt splenic injuries is associated with a reduction in splenic operations. The failure and splenic salvage rates in this current study were comparable with the results from large-volume studies of level 1 trauma centers. Nonoperative management also is feasible in a relatively low-volume level 1 trauma center outside the United States.« less

  9. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-27

    The primary payload for Space Shuttle Mission STS-35, launched December 2, 1990, was the ASTRO-1 Observatory. Designed for round the clock observation of the celestial sphere in ultraviolet and X-ray astronomy, ASTRO-1 featured a collection of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo- Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-ray Telescope (BBXRT). Ultraviolet telescopes mounted on Spacelab elements in cargo bay were to be operated in shifts by flight crew. Loss of both data display units (used for pointing telescopes and operating experiments) during mission impacted crew-aiming procedures and forced ground teams at Marshall Space Flight Center to aim ultraviolet telescopes with fine-tuning by flight crew. BBXRT, also mounted in cargo bay, was directed from outset by ground-based operators at Goddard Space Flight Center. This is the logo or emblem that was designed to represent the ASTRO-1 payload.

  11. Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim

    Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identifiedmore » an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.« less

  12. Results of Computer Based Training.

    ERIC Educational Resources Information Center

    1978

    This report compares the projected savings of using computer based training to conduct training for newly hired pilots to the results of that application. New Hire training, one of a number of programs conducted continuously at the United Airline Flight Operations Training Center, is designed to assure that any newly hired pilot will be able to…

  13. Community Science and Data Center (CSDC) | ast.noao.edu

    Science.gov Websites

    ground-based nighttime astronomy in the United States and is operated by the Association of Universities for Research in Astronomy (AURA). under cooperative agreement with the National Science Foundation. If you would like information about solar astronomy, visit the National Solar Observatory. If you would

  14. Visibility Variability at Seattle, WA and Portland, OR : Insights into the Impacts of Runway Visual Range (RVR) Measurements on Aviation Operations.

    DOT National Transportation Integrated Search

    2001-01-14

    The FAA's new generation Runway Visual Range (RVR) : system was first placed into service in 1994 at several : key airports in the United States. During the last three : years, the Volpe National Transportation Systems Center : has monitored RVR data...

  15. Finding of No Significant Impact: Construction and Operation of an Emergency Services Center United States Air Force Academy, Colorado

    DTIC Science & Technology

    2012-02-08

    alternatives and resource issues. Agencies and Persons Consulted Jay Burgoon, Environmental Manager, USAFA Jeanie Duncan , Air Quality and Solid Waste Manager...Academy and their conservation. Colorado Natural Heritage Program, Colorado State University, Fort Collins, CO. Fitzgerald , J.P. and R.R

  16. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  17. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  18. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  19. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  20. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  1. IED Campaign in the U.S. Homeland: Are U.S. Military EOD Units Prepared to Respond

    DTIC Science & Technology

    2017-06-09

    Bombing Incident Doctrine .........................................82 Terrorism Incident Law Enforcement Investigation Annex...to the Boston Marathon Bombing ..........................................93 Phase 1 Training and Operations Practice Analysis Raw Data Summary...Bureau of Alcohol Tobacco Firearms and Explosives BMC Bomb Management Center C2 Command and Control CBRNE Chemical, Biological, Radiological

  2. GOES-R Arrival and Offload

    NASA Image and Video Library

    2016-08-22

    An Air Force C-5 Galaxy transport plane approaches the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  3. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft is secured on its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  4. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft stands vertically inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  5. Machine Shop. Module 5: Lathes. Instructor's Guide.

    ERIC Educational Resources Information Center

    Nobles, Jack

    This document consists of materials for a 10-unit course on the following topics: (1) types and parts of lathes; (2) lathe accessories, maintenance, and safety; (3) lathe operations and tooling; (4) lathe calculations; (5) lathe taper and thread applications; (6) planning considerations; (7) cutting fluids, lathe center alignment, and lathe gaps;…

  6. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    From left, Sandra Smalley, director, Joint Agency Satellite Division, NASA Headquarters; Omar Baez, launch director, NASA Kennedy; and Scott Messer, program manager, NASA Missions, United Launch Alliance, speak to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida.

  7. Television Cameras in Congress. Freedom of Information Center Report No. 483.

    ERIC Educational Resources Information Center

    Watt, Phyllis

    While the United States Senate debates the merits of televising its proceedings, it might consider as a model the House of Representatives, which has televised floor activities since 1979 with no dramatic changes in those activities or in members' behavior. The House system consists of inconspicuously placed cameras and microphones operated by…

  8. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Dan Kenna and Jim Landy prepare to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Dan Kenna and Jim Landy prepare to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  9. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) finishes installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) finishes installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  10. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above), Saul Ngy (right) and Jerry Belt (below) install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above), Saul Ngy (right) and Jerry Belt (below) install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) completes installation of a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) completes installation of a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt looks over a Reinforced Carbon Carbon (RCC) panel that will be attached to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt looks over a Reinforced Carbon Carbon (RCC) panel that will be attached to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above) and Saul Ngy (below right) finish installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above) and Saul Ngy (below right) finish installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  14. Development of a rapidly deployed Department of Energy emergency response element.

    PubMed

    Tighe, R J; Riland, C A; Hopkins, R C

    2000-02-01

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or United States territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental United States (OCONUS). While the OCONUS mission is not governed by the FRERP, this response is operationally similar to that assigned to the DOE by the FRERP The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally "stood up" as an operational element in April 1999. The FRMAC/RMAC Phase II proposed "stand-up" date is midyear 2000.

  15. Trauma center staffing, infrastructure, and patient characteristics that influence trauma center need.

    PubMed

    Faul, Mark; Sasser, Scott M; Lairet, Julio; Mould-Millman, Nee-Kofi; Sugerman, David

    2015-01-01

    The most effective use of trauma center resources helps reduce morbidity and mortality, while saving costs. Identifying critical infrastructure characteristics, patient characteristics and staffing components of a trauma center associated with the proportion of patients needing major trauma care will help planners create better systems for patient care. We used the 2009 National Trauma Data Bank-Research Dataset to determine the proportion of critically injured patients requiring the resources of a trauma center within each Level I-IV trauma center (n=443). The outcome variable was defined as the portion of treated patients who were critically injured. We defined the need for critical trauma resources and interventions ("trauma center need") as death prior to hospital discharge, admission to the intensive care unit, or admission to the operating room from the emergency department as a result of acute traumatic injury. Generalized Linear Modeling (GLM) was used to determine how hospital infrastructure, staffing Levels, and patient characteristics contributed to trauma center need. Nonprofit Level I and II trauma centers were significantly associated with higher levels of trauma center need. Trauma centers that had a higher percentage of transferred patients or a lower percentage of insured patients were associated with a higher proportion of trauma center need. Hospital infrastructure characteristics, such as bed capacity and intensive care unit capacity, were not associated with trauma center need. A GLM for Level III and IV trauma centers showed that the number of trauma surgeons on staff was associated with trauma center need. Because the proportion of trauma center need is predominantly influenced by hospital type, transfer frequency, and insurance status, it is important for administrators to consider patient population characteristics of the catchment area when planning the construction of new trauma centers or when coordinating care within state or regional trauma systems.

  16. Evaluation of infrastructure, equipment and training of 28 burn units/burn centers in Germany, Austria and Switzerland.

    PubMed

    Vogt, Peter M; Busche, Marc N

    2011-03-01

    Treatment of burn patients requires special training and skills, and an adequate infrastructure. In the United States, burn center referral criteria and requirements of burn centers are defined by the American Burn Association (ABA) in the Guidelines for the Operation of Burn Centers, and in Germany, by the German Society for Burn Treatment (DGV). The European Burn centers in Austria and the German-speaking part of Switzerland share the standards in the setting of the German-speaking Association for Burn Therapy (DAV) with some modifications. The aim of this study was to evaluate the current infrastructure of burn centers in the three German-speaking countries with respect to the existing guidelines. Therefore, guidelines for burn center referral criteria and burn center requirements were compared between the USA (ABA) and Germany (DGV). In addition, a questionnaire was sent to all burn centers in Germany, Austria and the German-speaking part of Switzerland, in order to collect current information regarding the architectural and medical infrastructure, available equipment and care-providing personnel. The comparison of guidelines for the USA and Germany revealed similar burn center referral criteria for both countries. With respect to burn center requirements, both the USA and Germany have similar requirements, albeit with different focus points. In Germany, the main focus lies on the infrastructural requirements for burn centers, while in the US, the main focus lies on the requirements for medical and nursing personnel. Critical review of the responses from the burn centers of German-speaking countries revealed that the biggest infrastructural differences among centers were observed in burn units providing pediatric care, as compared to adult burn centers. In summary, the DGV guidelines for German-speaking countries reflect an overall adoption of the ABA guidelines, and the burn centers included in this study met those requirements. As a result of the positive experience and effective treatment of burn patients in German-speaking countries, we recommend an adoption of the ABA guidelines to those countries and societies that are in need of appropriate standards of burn care. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  17. Guidelines for Datacenter Energy Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Reshma; Mahdavi, Rod; Mathew, Paul

    2013-12-01

    The purpose of this document is to provide structured guidance to data center owners, operators, and designers, to empower them with information on how to specify and procure data center energy information systems (EIS) for managing the energy utilization of their data centers. Data centers are typically energy-intensive facilities that can consume up to 100 times more energy per unit area than a standard office building (FEMP 2013). This guidance facilitates “data-driven decision making,” which will be enabled by following the approach outlined in the guide. This will bring speed, clarity, and objectivity to any energy or asset management decisionsmore » because of the ability to monitor and track an energy management project’s performance.« less

  18. Launch Vehicle Production and Operations Cost Metrics

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Neeley, James R.; Blackburn, Ruby F.

    2014-01-01

    Traditionally, launch vehicle cost has been evaluated based on $/Kg to orbit. This metric is calculated based on assumptions not typically met by a specific mission. These assumptions include the specified orbit whether Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), or both. The metric also assumes the payload utilizes the full lift mass of the launch vehicle, which is rarely true even with secondary payloads.1,2,3 Other approaches for cost metrics have been evaluated including unit cost of the launch vehicle and an approach to consider the full program production and operations costs.4 Unit cost considers the variable cost of the vehicle and the definition of variable costs are discussed. The full program production and operation costs include both the variable costs and the manufacturing base. This metric also distinguishes operations costs from production costs, including pre-flight operational testing. Operations costs also consider the costs of flight operations, including control center operation and maintenance. Each of these 3 cost metrics show different sensitivities to various aspects of launch vehicle cost drivers. The comparison of these metrics provides the strengths and weaknesses of each yielding an assessment useful for cost metric selection for launch vehicle programs.

  19. Novel bisthienylethenes containing naphthalimide as the center ethene bridge: photochromism and solvatochromism for combined NOR and INHIBIT logic gates.

    PubMed

    Meng, Xianle; Zhu, Weihong; Zhang, Qiong; Feng, Yanli; Tan, Wenjuan; Tian, He

    2008-12-11

    Two novel photochromic bisthienylethene derivatives BTE-NA1 and BTE-NA2 with a six-membered aryl ring of naphthalimide fluorescent moiety as the center ethene bridging unit were synthesized and fully characterized by 1H NMR, 13C NMR, and HRMS. They exhibit considerably high cyclization quantum yield and good fatigue resistance. Interestingly, the fluorescence of BTE-NA1 arising from the naphthalimide unit could be well modulated by photochromism and solvatochromism. Quantum chemical calculations were carried out to study their geometrical, electronic, and optical properties, which were in good accordance with the experimental data. Furthermore, a combined NOR and INHIBIT logic operation based on BTE-NA1 has been successfully mimicked with fluorescence changes as outputs.

  20. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaltash, Abdolreza

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, andmore » Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.« less

  1. Radiation decontamination unit for the community hospital.

    PubMed

    Waldron, R L; Danielson, R A; Shultz, H E; Eckert, D E; Hendricks, K O

    1981-05-01

    "Freestanding" radiation decontamination units including surgical capability can be developed and made operational in small/medium sized community hospitals at relatively small cost and with minimal plant reconstruction. Because of the development of nuclear power plants in relatively remote areas and widespread transportation of radioactive materials it is important for hospitals and physicians to be prepared to handle radiation accident victims. The Radiological Assistance Program of the United States Department of Energy and the Radiation Emergency Assistance Center Training Site of Oak Ridge Associated Universities are ready to support individual hospitals and physicians in this endeavor. Adequate planning rather than luck, should be used in dealing with potential radiation accident victims. The radiation emergency team is headed by a physician on duty in the hospital. It is important that the team leader be knowledgeable in radiation accident management and have personnel trained in radiation accident management as members of this team. The senior administrative person on duty is responsible for intramural and extramural communications. Rapid mobilization of the radiation decontamination unit is important. Periodic drills are necessary for this mobilization and the smooth operation of the unit.

  2. Space Station Cathode Design, Performance, and Operating Specifications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James

    1998-01-01

    A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.

  3. Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG

    NASA Technical Reports Server (NTRS)

    Jordan, Lee

    2016-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of direct current power via a versatile supply interface (120, 28, plus or minus 12, and 5 volts direct current), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 27,000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, biological studies and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space Flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades. The author would like to acknowledge Teledyne Brown Engineering and the entire MSG Team for their inputs into this poster.

  4. A National Coordinating Center for Prehospital Trauma Research Funding Transfusion Using Stored Fresh Whole Blood

    DTIC Science & Technology

    2016-09-01

    bank data base 28-30 5% Analyze blood bank data base 28-33 0% Other Major Tasks: Identification of communities in the UCLA catchment area 1-3 N/A...coagulopathy in real-time is underway. The Blood Bank is working to identify a pool of whole blood donors and incorporating the new product (FWB) in...Blood Bank , emergency Room, Trauma, Operating Room, Intensive Care Unit, etc) to coordinate and streamline standard operating procedures for the

  5. Air Traffic Control and Combat Control Team Operations, AFS 272X0/D.

    DTIC Science & Technology

    1980-12-01

    LN4LASSIFXED DE 8.NuAD.___ UNITED STATES AIR FORCE A-’IR TRAFFIC CONTROL AND COMBAT/ . _ ) ~E: ;ONTROLIEAM OPERATIONS E’.. . --.ET E AFS 272xG/D,) O...Occupational Measurement Center, Randolph AFB, Texas 78148. Computer programs for analyzing the occupational data were designed by Dr. Raymond E...remained relatively the same in terms of numerical designation and tasks performed. Formal training for both 272X0 and 272XOD entry-level personnel consists

  6. Independent Auditors Report on the Air Force General Fund FY 2015 and FY 2014 Basic Financial Statements for United States Air Force Agency Financial Report 2015

    DTIC Science & Technology

    2015-11-09

    and intelligence warfighting support. AFSPC operates sensors that provide direct attack warning and assessment to U.S. Strategic Command and North...combinations. AFRL conducted low-speed wind tunnel tests of 9%-scale model completed at NASA Langley Research Center (LaRC); data validated analytical...by $2M across JTAC platforms and expanding mobile device operation usage by 95 hours. The BATMAN-II team also delivered a new wireless mobile

  7. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) was offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. The booster will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  8. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. The booster will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  9. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster and Centaur stage for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) are offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. They will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  10. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    After being offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida, the United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is being transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  11. Realigning Shared Governance With Magnet® and the Organization's Operating System to Achieve Clinical Excellence.

    PubMed

    Moreno, Janette V; Girard, Anita S; Foad, Wendy

    2018-03-01

    In 2012, an academic medical center successfully overhauled a 15-year-old shared governance to align 6 house-wide and 30 unit-based councils with the new Magnet Recognition Program® and the organization's operating system, using the processes of LEAN methodology. The redesign improved cross-council communication structures, facilitated effective shared decision-making processes, increased staff engagement, and improved clinical outcomes. The innovative structural and process elements of the new model are replicable in other health institutions.

  12. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    NASA Technical Reports Server (NTRS)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  13. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  14. Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott; hide

    2010-01-01

    This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.

  15. Collaborative Aviation Weather Statement - An Impact-based Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Blondin, Debra

    2016-04-01

    Historically, convection causes the highest number of air traffic constraints on the United States National Air Space (NAS). Increased NAS predictability allows traffic flow managers to more effectively initiate, amend or terminate planned or active traffic management initiatives, resulting in more efficient use of available airspace. A Collaborative Aviation Weather Statement (CAWS) is an impact-based decision support tool used for the timely delivery of high-confidence, high-relevance aviation convective weather forecasts to air traffic managers. The CAWS is a graphical and textual forecast produced by a collaborative team of meteorologists from the Aviation Weather Center (AWC), Center Weather Service Units, and airlines to bring attention to high impact areas of thunderstorms. The CAWS addresses thunderstorm initiation or movement into the airports having the highest volume of traffic or into traffic sensitive jet routes. These statements are assessed by planners at the Federal Aviation Administration's (FAA) Air Route Traffic Control Centers and are used for planning traffic management initiatives to balance air traffic flow across the United States. The FAA and the airline industry use the CAWS to plan, manage, and execute operations in the NAS, thereby improving the system efficiency and safety and also saving dollars for industry and the traveling public.

  16. 800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1999-01-01

    From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.

  17. Cryogenics Testbed Laboratory Flange Baseline Configuration

    NASA Technical Reports Server (NTRS)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  18. KSC-04pd1850

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - Martin Wilson (left, in foreground), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA), gives a tour of the hurricane-ravaged Thermal Protection System Facility to (from center) NASA Associate Administrator of Space Operations Mission Directorate William Readdy, NASA Administrator Sean O’Keefe, Center Director James Kennedy and Director of Shuttle Processing Michael E. Wetmore. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. O’Keefe and Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.

  19. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  20. United States Air Force Summer Research Program -- 1993 Summer Research Program Final Reports. Volume 11. Arnold Engineering Development Center, Frank J. Seiler Research Laboratory, Wilford Hall Medical Center

    DTIC Science & Technology

    1993-01-01

    external parameters such as airflow, temperature, pressure, etc, are measured. Turbine Engine testing generates massive volumes of data at very high...a form that describes the signal flow graph topology as well as specific parameters of the processing blocks in the diagram. On multiprocessor...provides an interface to the symbolic builder and control functions such that parameters may be set during the build operation that will affect the

  1. KSC-06pd0506

    NASA Image and Video Library

    2006-03-15

    KENNEDY SPACE CENTER, FLA. - Preparing for a simulated emergency landing of a shuttle crew, United Space Alliance (USA) Suit Tech Toni Costa-Davis helps volunteer "astronaut" Brian Bateman, also with USA, with his launch and entry suit. Many volunteers posed as astronauts during the simulation. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton

  2. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1940-01-01

    The German Rocket Team, also known as the Von Braun Rocket Team, poses for a group photograph at Fort Bliss, Texas. After World War II ended in 1945, Dr. Wernher von Braun led some 120 of his Peenemuende Colleagues, who developed the V-2 rocket for the German military during the War, to the United Sttes under a contract to the U.S. Army Corps as part of Operation Paperclip. During the following five years the team worked on high altitude firings of the captured V-2 rockets at the White Sands Missile Range in New Mexico, and a guided missile development unit at Fort Bliss, Texas. In April 1950, the group was transferred to the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal in Huntsville, Alabama, and continued to work on the development of the guided missiles for the U.S. Army until transferring to a newly established field center of the National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC).

  3. Design Through Simulation of a Molecular Sieve Column for Treatment of MON-3

    NASA Technical Reports Server (NTRS)

    Swartz, A. Ben; Wilson, D. B.

    1999-01-01

    The presence of water in propellant-grade MON-3 is a concern in the Aerospace Industry. NASA Johnson Space Center (JSC), White Sands Test Facility (WSTF) Propulsion Department has evaluated many types of molecular sieves for control of iron, the corrosion product of water in Mixed Oxides of Nitrogen (MON-3). In 1995, WSTF initiated laboratory and pilot-scale testing of molecular sieve type 3A for removal of water and iron. These tests showed sufficient promise that a series of continuous recycle tests were conducted at WSTF. Periodic samples of the circulating MON-3 solution were analyzed for water (wt %) and iron (ppm, wt). This test column was modeled as a series of transfer units; i. e., each unit represented the height equivalent of a theoretical plate. Such a model assumes there is equilibrium between the adsorbent material and the effluent stream from the unit. Operational and design parameters were derived based on the simulation results. These parameters were used to predict the design characteristics of a proposed molecular sieve column for removal of water and iron from MON-3 at the NASA Kennedy Space Center (KSC). In addition, these parameters were used to simulate a small, single-pass operation column at KSC currently used for treating MON-3. The results of this work indicated that molecular sieve type 3A in 1/16 in. diameter pellets, in a column 2.5 ft. in diameter, 18 ft. in height, and operated at 25 gpm is adequate for the required removal of water and iron from MON-3.

  4. Reliability Centered Maintenance - Methodologies

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.

    2009-01-01

    Journal article about Reliability Centered Maintenance (RCM) methodologies used by United Space Alliance, LLC (USA) in support of the Space Shuttle Program at Kennedy Space Center. The USA Reliability Centered Maintenance program differs from traditional RCM programs because various methodologies are utilized to take advantage of their respective strengths for each application. Based on operational experience, USA has customized the traditional RCM methodology into a streamlined lean logic path and has implemented the use of statistical tools to drive the process. USA RCM has integrated many of the L6S tools into both RCM methodologies. The tools utilized in the Measure, Analyze, and Improve phases of a Lean Six Sigma project lend themselves to application in the RCM process. All USA RCM methodologies meet the requirements defined in SAE JA 1011, Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. The proposed article explores these methodologies.

  5. Operation Joint Endeavor in Bosnia: telemedicine systems and case reports.

    PubMed

    Calcagni, D E; Clyburn, C A; Tomkins, G; Gilbert, G R; Cramer, T J; Lea, R K; Ehnes, S G; Zajtchuk, R

    1996-01-01

    For the last several years the U.S. Department of Defense (DoD) has operated a telemedicine test bed at the U.S. Army Medical Research and Material Command's Medical Advanced Technology Management Office. The goal of this test bed is to reengineer the military health service system from the most forward deployed forces to tertiary care teaching medical centers within the United States by exploiting emerging telemedicine technologies. The test bed has conducted numerous proof-of-concept telemedicine demonstrations as part of military exercises and in support of real-world troop deployments. The most ambitious of those demonstrations is Primetime III, an ongoing effort to provide telemedicine and other advanced technology support to medical units supporting Operation Joint Endeavor in Bosnia. Several of the first instances of the clinical use of the Primetime III systems are presented as case reports in this paper. These reports demonstrate capabilities and limitations of telemedicine. The Primetime III system demonstrates the technical ability to provide current telecommunications capabilities to medical units stationed in the remote, austere, difficult-to-serve environment of Bosnia. Telemedicine capabilities cannot be used without adequate training, operations, and sustainment support. Video consultations have eliminated the need for some evacuations. The system has successfully augmented the clinical capability of physicians assigned to these medical units. Fullest clinical utilization of telemedicine technologies requires adjustment of conventional clinical practice patterns.

  6. Lessons Learned and Lessons To Be Learned: An Overview of Innovative Network Learning Environments.

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Jacobson, Phoebe Chen

    This paper provides an overview of five innovative projects involving network learning technologies in the United States: (1) the MicroObservatory Internet Telescope is a collection of small, high-quality, and low-maintenance telescopes operated by the Harvard-Smithsonian Center for Astrophysics (Massachusetts), which may be used remotely via the…

  7. Vision Test in Seconds

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Acuity Systems, Inc. developed an electro-optical instrument under a grant from NASA to measure the visual performance of pilots. Transferred from Ames Research Center, this instrument now allows you to have your eyes tested in seconds by relatively unskilled operators. The device automatically measures refractive error of eye and prints out proper prescription for glasses. The unit also detects cataracts and glaucoma.

  8. Every Breath You Take

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As a result of SBIR (Small Business Innovative Research) work for Johnson Space Center, KSE, Inc., developed a photocatalytic Adsorption-Integrated-Reaction (AIR) air purification process originally used for air revitalization in life support systems during extended space operations. A unit has been purchased by a commercial customer for control of emissions of airborne chlorinated hydrocarbons at a Superfund site.

  9. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Eric Boe observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  10. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Doug Hurley, right, observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  11. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Bob Behnken observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  12. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Suni Williams observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  13. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Doug Hurley observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  14. Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New

    Science.gov Websites

    as a great example of a viable clean transportation option for similar fleets. " Rebecca Otte commitment to a more sustainable community and serves as a great example of a viable clean transportation , individual bottling companies now operate these vehicles. For example, Coca-Cola Bottling Company United

  15. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    Team members remove a protective plastic covering from the GOES-R spacecraft inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  16. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The shipping container is lifted off the GOES-R spacecraft inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  17. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    An overhead crane moves the GOES-R spacecraft toward its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  18. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft is revealed following its uncrating inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  19. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    The two halves of the payload fairing are fully closed around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  20. Back to Basics: A Study of the Second Lebanon War and Operation CAST LEAD

    DTIC Science & Technology

    2009-01-01

    Center in Negev , Israel. As an example, Armored Brigade 401 that had lost eight tank crewmen during the battle of Saluki in 2006, conducted a 12-week...innovative spirit seemed to radiate from many IDF ground units. A battalion commander in the Givati Brigade stated during the height of the ground

  1. Organizational Analysis of the United States Army Evaluation Center

    DTIC Science & Technology

    2014-12-01

    analysis of qualitative or quantitative data obtained from design reviews, hardware inspections, M&S, hardware and software testing , metrics review... Research Development Test & Evaluation (RDT&E) appropriation account. The Defense Acquisition Portal ACQuipedia website describes RDT&E as “ one of the... research , design , development, test and evaluation, production, installation, operation, and maintenance; data collection; processing and analysis

  2. Machine Shop. Module 3: Bench Work and Material Science. Instructor's Guide.

    ERIC Educational Resources Information Center

    Walden, Charles H.; Nobles, Jack

    This document consists of materials for an 11-unit course on the following topics: (1) hacksawing; (2) filing and deburring; (3) locating centers for drilling; (4) cutting threads with tap and die; (5) using a hand reamer; (6) pedestal/bench grinder operation; (7) whetting, polishing, and lapping; (8) screw, drill, and tap extraction; (9) arbor…

  3. Alternative Architectures for Distributed Cooperative Problem-Solving in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.; Billings, Charles; McCoy, C. Elaine; Orasanu, Judith

    1999-01-01

    The air traffic management system in the United States is an example of a distributed problem solving system. It has elements of both cooperative and competitive problem-solving. This system includes complex organizations such as Airline Operations Centers (AOCs), the FAA Air Traffic Control Systems Command Center (ATCSCC), and traffic management units (TMUs) at enroute centers and TRACONs, all of which have a major focus on strategic decision-making. It also includes individuals concerned more with tactical decisions (such as air traffic controllers and pilots). The architecture for this system has evolved over time to rely heavily on the distribution of tasks and control authority in order to keep cognitive complexity manageable for any one individual operator, and to provide redundancy (both human and technological) to serve as a safety net to catch the slips or mistakes that any one person or entity might make. Currently, major changes are being considered for this architecture, especially with respect to the locus of control, in an effort to improve efficiency and safety. This paper uses a series of case studies to help evaluate some of these changes from the perspective of system complexity, and to point out possible alternative approaches that might be taken to improve system performance. The paper illustrates the need to maintain a clear understanding of what is required to assure a high level of performance when alternative system architectures and decompositions are developed.

  4. Landsat 7 Science Data Processing: An Overview

    NASA Technical Reports Server (NTRS)

    Schweiss, Robert J.; Daniel, Nathaniel E.; Derrick, Deborah K.

    2000-01-01

    The Landsat 7 Science Data Processing System, developed by NASA for the Landsat 7 Project, provides the science data handling infrastructure used at the Earth Resources Observation Systems (EROS) Data Center (EDC) Landsat Data Handling Facility (DHF) of the United States Department of Interior, United States Geological Survey (USGS) located in Sioux Falls, South Dakota. This paper presents an overview of the Landsat 7 Science Data Processing System and details of the design, architecture, concept of operation, and management aspects of systems used in the processing of the Landsat 7 Science Data.

  5. Benefits Analysis of Multi-Center Dynamic Weather Routes

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  6. Ground-Truthing a Next Generation Snow Radar

    NASA Astrophysics Data System (ADS)

    Yan, S.; Brozena, J. M.; Gogineni, P. S.; Abelev, A.; Gardner, J. M.; Ball, D.; Liang, R.; Newman, T.

    2016-12-01

    During the early spring of 2016 the Naval Research Laboratory (NRL) performed a test of a next generation airborne snow radar over ground truth data collected on several areas of fast ice near Barrow, AK. The radar was developed by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas, and includes several improvements compared to their previous snow radar. The new unit combines the earlier Ku-band and snow radars into a single unit with an operating frequency spanning the entire 2-18 GHz, an enormous bandwidth which provides the possibility of snow depth measurements with 1.5 cm range resolution. Additionally, the radar transmits on dual polarizations (H and V), and receives the signal through two orthogonally polarized Vivaldi arrays, each with 128 phase centers. The 8 sets of along-track phase centers are combined in hardware to improve SNR and narrow the beamwidth in the along-track, resulting in 8 cross-track effective phase centers which are separately digitized to allow for beam sharpening and forming in post-processing. Tilting the receive arrays 30 degrees from the horizontal also allows the formation of SAR images and the potential for estimating snow-water equivalent (SWE). Ground truth data (snow depth, density, salinity and SWE) were collected over several 60 m wide swaths that were subsequently overflown with the snow radar mounted on a Twin Otter. The radar could be operated in nadir (by beam steering the receive antennas to point beneath the aircraft) or side-looking modes. Results from the comparisons will be shown.

  7. Lesbian, gay, bisexual, and transgender (LGBT) health services in the United States: Origins, evolution, and contemporary landscape.

    PubMed

    Martos, Alexander J; Wilson, Patrick A; Meyer, Ilan H

    2017-01-01

    LGBT community organizations in the United States have been providing health services since at least the 1970s. However, available explanations for the origins of LGBT health services do not sufficiently explain why health in particular has been so closely and consistently linked to LGBT activism. Little is also known regarding how LGBT health services may have evolved over time with the growing scientific understanding of LGBT health needs. This study begins with a review of the early intersections of sexuality and health that led to an LGBT health movement in the United States, as well as the evolution of LGBT health services over time. Informed by this, an asset map displaying the location and types of services provided by "LGBT community health centers" today in relation to the population density of LGBT people was explored. An online search of LGBT community health centers was conducted between September-December, 2015. Organizational details, including physical addresses and the services provided, were confirmed via an online database of federally-registered non-profit organizations and organizational websites. The locations and types of services provided were analyzed and presented alongside county-level census data of same-sex households using geographic information system (GIS) software ArcGIS for Desktop. LGBT community health centers are concentrated within urban hubs and coastal states, and are more likely to be present in areas with a high density of same-sex couples. LGBT community health centers do not operate in 13 states. The most common health services provided are wellness programs, HIV/STI services, and counseling services. LGBT community health centers have adapted over time to meet the needs of LGBT people. However, significant gaps in service remain in the United States, and LGBT community health centers may require significant transformations going forward in order to continue serving LGBT people.

  8. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  9. High-fidelity, simulation-based, interdisciplinary operating room team training at the point of care.

    PubMed

    Paige, John T; Kozmenko, Valeriy; Yang, Tong; Paragi Gururaja, Ramnarayan; Hilton, Charles W; Cohn, Isidore; Chauvin, Sheila W

    2009-02-01

    The operating room (OR) is a dynamic, high risk setting requiring effective teamwork for the safe delivery of care. Teamwork in the modern OR, however, is less than ideal. High fidelity simulation is an attractive approach to training key teamwork competencies. We have developed a portable simulation platform, the mobile mock OR (MMOR) that permits bringing team training over long distances to the point of care. We examined the effectiveness of this innovative, simulation-based interdisciplinary operating room (OR) team training model on its participants. All general surgical OR team members at an academic affiliated medical center underwent scenario-based training using a mobile mock OR. Pre- and post-session mean scores were calculated and analyzed for 15 Likert-type items measuring self-efficacy in teamwork competencies using t test. The mean gain in pre-post item scores for 38 participants averaged 0.4 units on a 6-point Likert scale. The significance was demonstrated in 4 of the items: role clarity (Delta = 0.6 units, P = .02), anticipatory response (Delta = 0.6 units, P = .01), cross monitoring (Delta = 0.6 units, P < .01), and team cohesion and interaction (Delta = 0.7 units, P < .01). High-fidelity, simulation-based OR team training at the point of care positively impacts self-efficacy for effective teamwork performance in everyday practice.

  10. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the complexity of developing a model that can be used for successfully implementing a standardized management planning tool. The objective of this study was to implement an Integrated Wind Tunnel Planning System to improve the operations within the aeronautics testing and research group, in particular Wind Tunnel Enterprise. The study included following steps: Conducted literature search and expert discussions (NASA and Old Dominion University faculty), Performed environmental scan of NASA Langley wind tunnel operations as foundation for problem definition. Established operation requirements and evaluation methodologies. Examined windtunnel operations to map out the common characteristics, critical components, and system structure. Reviewed and evaluated various project scheduling and management systems for implementation, Evaluated and implemented "Theory of Constraints (TOC)" project scheduling methodology at NASA Langley wind tunnel operations together with NASA staff.

  11. The Habitat Demonstration Unit Project Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Grill, Tracy R.; Tri, Terry O.; Howe, Alan S.

    2010-01-01

    This paper will describe an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) Project. The HDU project is a "technology-pull" project that integrates technologies and innovations from numerous NASA centers. This project will be used to investigate and validate surface architectures, operations concepts, and requirements definition of various habitation concepts. The first habitation configuration this project will build and test is the Pressurized Excursion Module (PEM). This habitat configuration - the PEM - is based on the Constellation Architecture Scenario 12.1 concept of a vertically oriented habitat module. The HDU project will be tested as part of the 2010 Desert Research and Technologies Simulations (D-RATS) test objectives. The purpose of this project is to develop, integrate, test, and evaluate a habitat configuration in the context of the mission architectures and surface operation concepts. A multi-center approach will be leveraged to build, integrate, and test the PEM through a shared collaborative effort of multiple NASA centers. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Lunar Surface Systems Project Office (LSSPO) to test surface elements in a surface analog environment. The 2010 analog field test will include two Lunar Electric Rovers (LER) and the PEM among other surface demonstration elements. This paper will describe the overall objectives, its various habitat configurations, strategic plan, and technology integration as it pertains to the 2010 and 2011 field analog tests. To accomplish the development of the PEM from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using a set of design standards to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Lab, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into PEM are planned to facilitate the integration process.

  12. Splitting blood and blood product packaging reduces donor exposure for patients undergoing cardiopulmonary bypass.

    PubMed

    Nuszkowski, M M; Jonas, R A; Zurakowski, D; Deutsch, N

    2015-11-01

    Cardiopulmonary bypass for congenital heart surgery requires packed red cells (PRBC) and fresh frozen plasma (FFP) to be available, both for priming of the circuit as well as to replace blood loss. This study examines the hypothesis that splitting one unit of packed red blood cells and one unit of fresh frozen plasma into two half units reduces blood product exposure and wastage in the Operating Room. Beginning August 2013, the blood bank at Children's National Medical Center began splitting one unit of packed red blood cells (PRBC) and one unit of fresh frozen plasma (FFP) for patients undergoing cardiopulmonary bypass (CPB). The 283 patients who utilized CPB during calendar year 2013 were divided into 2 study groups: before the split and after the split. The principal endpoints were blood product usage and donor exposure intra-operatively and within 72 hours post-operatively. There was a significant decrease in median total donor exposures for FFP and cryoprecipitate from 5 to 4 per case (p = 0.007, Mann-Whitney U-test). However, there was no difference in the volume of blood and blood products used; in fact, there was a significant increase in the amount of FFP that was wasted with the switch to splitting the unit of FFP. We found that modification of blood product packaging can decrease donor exposure. Future investigation is needed as to how to modify packaging to minimize wastage. © The Author(s) 2015.

  13. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  14. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives inside Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  15. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives at Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  16. GOAL - A test engineer oriented language. [Ground Operations Aerospace Language for coding automatic test

    NASA Technical Reports Server (NTRS)

    Mitchell, T. R.

    1974-01-01

    The development of a test engineer oriented language has been under way at the Kennedy Space Center for several years. The result of this effort is the Ground Operations Aerospace Language, GOAL, a self-documenting, high-order language suitable for coding automatic test, checkout and launch procedures. GOAL is a highly readable, writable, retainable language that is easily learned by nonprogramming oriented engineers. It is sufficiently powerful for use at all levels of Space Shuttle ground processing, from line replaceable unit checkout to integrated launch day operations. This paper will relate the language development, and describe GOAL and its applications.

  17. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  18. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    Preparations are underway to offload the United Launch Alliance Atlas V booster and Centaur stage for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. They will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  19. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  20. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration

    NASA Technical Reports Server (NTRS)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.

    2016-01-01

    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  1. Educational Training in a Pre-Release Correctional Center/A Collaborative Model.

    ERIC Educational Resources Information Center

    Langan, A. Bud

    A prerelease program was developed to provide job training to persons who were within 90 to 120 days of their scheduled release date from a Washington State prison. The Geiger program was sponsored and operated jointly by Spokane County and State agencies. Because it was determined that the 84-bed unit would handle approximately 30 arrivals and 30…

  2. Equine-Facilitated Prison-Based Programs within the Context of Prison-Based Animal Programs: State of the Science Review

    ERIC Educational Resources Information Center

    Bachi, Keren

    2013-01-01

    Equine-facilitated prison programs have become more prevalent and operate in correctional facilities in 13 states throughout the United States. However, there is a deficit of empirical knowledge to guide them. This article reviews 19 studies of prison-based animal programs and centers on patterns in the literature. It reveals how previous studies…

  3. GOES-R ITAR Photos for Media Day

    NASA Image and Video Library

    2016-09-26

    The Geostationary Operational Environmental Satellite (GOES-R) is undergoing final launch preparations prior to fueling inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  4. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft is inspected after being uncrated and raised to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  5. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    The Geostationary Operational Environmental Satellite (GOES-R) is lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  6. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    Team members with United Launch Alliance (ULA) prepare the Geostationary Operational Environmental Satellite (GOES-R) for encapsulation in the payload fairing inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  7. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as the GOES-R spacecraft is lifted from horizontal to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  8. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as the GOES-R spacecraft is raised to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  9. GOES-R Fairing Inspection

    NASA Image and Video Library

    2016-09-26

    Team members with United Launch Alliance (ULA) inspect the first half of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  10. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    The Geostationary Operational Environmental Satellite (GOES-R) is raised to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  11. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as an overhead crane lowers the GOES-R spacecraft into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  12. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as an overhead crane lowers the GOES-R spacecraft toward its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  13. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    An overhead crane lifts the GOES-R spacecraft to move it into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  14. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    An overhead crane is positioned to move the GOES-R spacecraft into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  15. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    The Geostationary Operational Environmental Satellite (GOES-R) has been secured in the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  16. GOES-R Arrival and Offload

    NASA Image and Video Library

    2016-08-22

    A truck with a specialized transporter drives away from an Air Force C-5 Galaxy transport plane at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  17. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members are securing the Geostationary Operational Environmental Satellite (GOES-R) in the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  18. The Ring of Gyges: Anonymity and Technological Advance’s Effect on the Deterrence of Nonstate Actors in 2035

    DTIC Science & Technology

    2012-10-01

    Technical Information Center, 1972), 723–24. A case in point is the Manhattan Project undertaken by the United States to produce the first atomic weapon. A...capital and operations costs from 1942 through 1945. Costs adjusted using a base year of 1944 (the year of highest Manhattan Project expenditures). 39

  19. Balancing Life and the Mission: Compressed Scheduling in Law Enforcement

    DTIC Science & Technology

    2010-03-01

    the operational tempo of any organized unit. Officer Roy Woody, a Los 4 Angeles Police Department ( LAPD ) recruiter said...Several universities, police departments and private organizations have commissioned both scientific and non-scientific studies collecting the wide...Bryan Vila, Ph.D. of the Washington State University Criminal Justice Program, Sleep and Performance Research Center, police departments across the

  20. KENNEDY SPACE CENTER, FLA. - Billy Witt, a midbody shop mechanic with United Space Alliance, checks a part used for installation of a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of an orbiter. Above him is an RCC panel just installed on Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Billy Witt, a midbody shop mechanic with United Space Alliance, checks a part used for installation of a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of an orbiter. Above him is an RCC panel just installed on Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  1. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers share the task of examining a Reinforced Carbon Carbon panel using flash thermography. From left are Paul Ogletree, Jim Landy (kneeling), Dan Phillips and Dan Kenna. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers share the task of examining a Reinforced Carbon Carbon panel using flash thermography. From left are Paul Ogletree, Jim Landy (kneeling), Dan Phillips and Dan Kenna. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  2. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jim Landy, NDE specialist with United Space Alliance (USA), watches a monitor off-screen to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jim Landy, NDE specialist with United Space Alliance (USA), watches a monitor off-screen to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  3. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers share the task of examining a Reinforced Carbon Carbon panel using flash thermography. From left are Dan Kenna, Jim Landy, Paul Ogletree and Dan Phillips. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers share the task of examining a Reinforced Carbon Carbon panel using flash thermography. From left are Dan Kenna, Jim Landy, Paul Ogletree and Dan Phillips. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  4. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Dan Kenna (right) positions a Reinforced Carbon Carbon panel on the table to perform flash thermography. In the background, Paul Ogletree observes the monitor. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Dan Kenna (right) positions a Reinforced Carbon Carbon panel on the table to perform flash thermography. In the background, Paul Ogletree observes the monitor. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  5. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jerry Belt, with United Space Alliance, checks a spar attachment on the wing of the orbiter Atlantis before installing Reinforced Carbon Carbon (RCC) panels on the wing. The spars - floating joints - reduce loading on the panels caused by wing deflections. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jerry Belt, with United Space Alliance, checks a spar attachment on the wing of the orbiter Atlantis before installing Reinforced Carbon Carbon (RCC) panels on the wing. The spars - floating joints - reduce loading on the panels caused by wing deflections. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  6. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Jim Landy (front), Dan Phillips and Dan Kenna watch a monitor showing results of flash thermography on the Reinforced Carbon Carbon panel on the table (foreground). Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Jim Landy (front), Dan Phillips and Dan Kenna watch a monitor showing results of flash thermography on the Reinforced Carbon Carbon panel on the table (foreground). Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  7. Advanced Stirling Convertor Dynamic Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Hill, Dennis; Ursic, Joseph

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Converters (ASC) at NASA John H. Glenn Research Center undergo a vibration test sequence intended to simulate the vibration history of an ASC used in an ASRG for a space mission. This sequence includes testing at Workmanship and Flight Acceptance levels interspersed with periods of extended operation to simulate pre and post fueling. The final step in the test sequence utilizes additional testing at Flight Acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit ( ASRG-EU) at Lockheed Martin. This paper presents the vibration test plan for current and future ASC units, including the modified input spectra, and the results of recent tests using these spectra. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.

  8. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research into Operations for America's Space Program

    NASA Technical Reports Server (NTRS)

    Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2010-01-01

    The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards from NASA, the National Weather Association, and two citations from the Navy's Center of Excellence for Best Manufacturing Practices. This paper will present the AMU's proven methods and explain how they may be applied by other organizations to effectively transition research into operations.

  9. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    PubMed

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.

  10. President Park Geun-hye of South Korea Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Caption: President Park Geun-hye of South Korea operates a robotic arm as Brian Roberts, Robotic Operations Manager at NASA Goddard describes the operations that take place in the Satellite Servicing Capabilities Office’s robotic lab. GODDARD VISIT BY SOUTH KOREAN PRESIDENT – 14-OCT-2015 As part of her visit to the United States, President Park Geun-hye of South Korea visited NASA’s Goddard Space Flight Center in Greenbelt, Md. On Oct. 14, 2015. The visit offered an opportunity to celebrate past collaborative efforts between the American and South Korean space programs along with presentations on current projects and programs underway at Goddard. Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Advanced Data Acquisition Systems with Self-Healing Circuitry

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)

    2001-01-01

    Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.

  12. Around Marshall

    NASA Image and Video Library

    1972-01-01

    This is a cutaway illustration of the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC ). The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing. Here, engineers, designers, and astronauts performed various tests to develop basic concepts, preliminary designs, final designs, and crew procedures. The NBS was constructed of welded steel with polyester-resin coating. The water tank was 75-feet (22.9- meters) in diameter, 40-feet (12.2-meters) deep, and held 1.32 million gallons of water. Since it opened for operation in 1968, the NBS had supported a number of successful space missions, such as the Skylab, Solar Maximum Mission Satellite, Marned Maneuvering Unit, Experimental Assembly of Structures in Extravehicular Activity/Assembly Concept for Construction of Erectable Space Structures (EASE/ACCESS), the Hubble Space Telescope, and the Space Station. The function of the MSFC NBS was moved to the larger simulator at the Johnson Space Center and is no longer operational.

  13. The Orlando TDWR testbed and airborne wind shear date comparison results

    NASA Technical Reports Server (NTRS)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  14. KSC-2012-4212

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. -- This is an artist's conception of The Boeing Company's CST-100 spacecraft atop a United Launch Alliance ULA Atlas V rocket under development for NASA's Commercial Crew Program, or CCP. The integrated system was selected for CCP's Commercial Crew Integrated Capability, or CCiCap, initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreement, or SAA, Boeing will spend the next 21 months completing its design, conducting critical risk reduction testing on its spacecraft and launch vehicle, and showcasing how it would operate and manage missions from launch through orbit and landing, setting the stage for a future demonstration mission. To learn more about CCP, which is based at NASA's Kennedy Space Center in Florida and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Image credit: Boeing

  15. GOES-S Arrival at Kennedy Space Center

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) is being offloaded from a C-5 transport aircraft onto the flatbed of a heavy-lift truck at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The satellite will be transported to the Astrotech Space Operations facility in Titusville, Florida to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  16. KSC-04PD-1048

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- David Sutherland (left), manager, Pad A Operations (with United Space Alliance), accompanies STS- 114 crew members on a tour of the pad. In the center is Mission Specialist Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency; at right is Mission Commander Eileen Collins. Beyond the pad is the aqua blue Atlantic Ocean, glimpsed between the railing on an upper level of the Fixed Service Structure on Launch Pad 39A. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  17. KSC-04pd0388

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - At the SRB Assembly and Refurbishment Facility, STS-114 Mission Specialists Andrew Thomas (center) and Charles Camarda (right) look at a test panel of insulation material (left) cut in a liquid nitrogen process and a round aft heat seal (right) also treated in a liquid nitrogen process. At left is Mike Leppert, Manufacturing Operations project lead with United Space Alliance. The crew is at KSC for familiarization with Shuttle and mission equipment. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment, plus the external stowage platform, to the International Space Station.

  18. Isothermal Dendritic Growth Experiment (IDGE) Is the First United States Microgravity Experiment Controlled From the Principal Investigator's University

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.; Glicksman, Martin E.

    1997-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. IDGE is a microgravity materials science experiment using apparatus that was designed, built, tested, and operated by people from the NASA Lewis Research Center. The IDGE experiment was conceived by the principal investigator, Professor Martin E. Glicksman from Rensselaer Polytechnic Institute in Troy, New York. This experiment was a team effort of civil servants from the NASA Lewis Research Center, contractors from Aerospace Design & Fabrication, Inc. (ADF), and personnel at Rensselaer.

  19. STS-104 Crew Training of Jim Reilly in EMU fit check

    NASA Image and Video Library

    2001-04-09

    JSC2001-E-11704 (9 April 2001) --- Astronaut James F. Reilly, STS-104 mission specialist, participates in an Extravehicular Mobility Unit (EMU) fit check in one of the chambers in the Crew Systems Laboratory at the Johnson Space Center (JSC). Standing near the doorway are Peggy Berg and Dave Simon, Crew Personnel Representatives (CPR), from the Mission Operations Directorate (MOD) at the Johnson Space Center. The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.

  20. Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low-Sulfur Diesel Fuel

    DTIC Science & Technology

    2011-06-30

    load fuel and operated with a dummy injector to make sure the system was clean. The rig was de -fueled and a fresh charge of 2000-gram fuel was added...the rocker arm on the injector. The rocker arm contact was repositioned when it was noted it was hitting the injector off-center, and it was felt...going up. Figure B6. DD 149 Unit Injector with Diesel Fuel and Centered Rocker Arm Figure B7. Wear Rate Deviation Attributed to Head

  1. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  2. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2013-01-01

    Conducting Research on the International Space Station using the EXPRESS Rack Facilities. Sean W. Thompson and Robert E. Lake. NASA Marshall Space Flight Center, Huntsville, AL, USA. Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  3. Adherence to balance tolerance limits at the Upper Mississippi Science Center, La Crosse, Wisconsin.

    USGS Publications Warehouse

    Myers, C.T.; Kennedy, D.M.

    1998-01-01

    Verification of balance accuracy entails applying a series of standard masses to a balance prior to use and recording the measured values. The recorded values for each standard should have lower and upper weight limits or tolerances that are accepted as verification of balance accuracy under normal operating conditions. Balance logbooks for seven analytical balances at the Upper Mississippi Science Center were checked over a 3.5-year period to determine if the recorded weights were within the established tolerance limits. A total of 9435 measurements were checked. There were 14 instances in which the balance malfunctioned and operators recorded a rationale in the balance logbook. Sixty-three recording errors were found. Twenty-eight operators were responsible for two types of recording errors: Measurements of weights were recorded outside of the tolerance limit but not acknowledged as an error by the operator (n = 40); and measurements were recorded with the wrong number of decimal places (n = 23). The adherence rate for following tolerance limits was 99.3%. To ensure the continued adherence to tolerance limits, the quality-assurance unit revised standard operating procedures to require more frequent review of balance logbooks.

  4. Analysis of cash flow in academic medical centers in the United States.

    PubMed

    McCue, Michael J; Thompson, Jon M

    2011-09-01

    To examine cash flow margins in academic medical centers (AMCs; i.e., teaching hospitals) in an effort both to determine any significant differences in a set of operational and financial factors known to influence cash flow for high- and low-cash-flow AMCs and to discuss how these findings affect AMC operations. The authors sampled the Medicare cost report data of 103 AMCs for fiscal years 2005, 2006, and 2007, and then they applied the t test to test for significant mean differences between the two cash flow groups across operational and financial variables (e.g., case mix, operating margin). Compared with low-cash-flow AMCs, high-cash-flow AMCs were larger-bed-size facilities, treated cases of greater complexity, generated higher net patient revenue per adjusted discharge, served a significantly lower percentage of Medicaid patients, had significantly higher average operating profit margins and cash flow margin ratios, possessed a higher number of days of cash on hand, and collected their receivables more quickly. Study findings imply that high-cash-flow AMCs were earning higher cash flow returns than low-cash-flow AMCs, which may be because high-cash-flow AMCs generate higher patient revenues while serving fewer lower-paying Medicaid patients.

  5. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

  6. Experimental Results From a 2kW Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  7. Patient satisfaction after pulmonary resection for lung cancer: a multicenter comparative analysis.

    PubMed

    Pompili, Cecilia; Brunelli, Alessandro; Rocco, Gaetano; Salvi, Rosario; Xiumé, Francesco; La Rocca, Antonello; Sabbatini, Armando; Martucci, Nicola

    2013-01-01

    Patient satisfaction reflects the perception of the customer about the level of quality of care received during the episode of hospitalization. To compare the levels of satisfaction of patients submitted to lung resection in two different thoracic surgical units. Prospective analysis of 280 consecutive patients submitted to pulmonary resection for neoplastic disease in two centers (center A: 139 patients; center B: 141 patients; 2009-2010). Patients' satisfaction was assessed at discharge through the EORTC-InPatSat32 module, a 32-item, multi-scale self-administered anonymous questionnaire. Each scale (ranging from 0 to 100 in score) was compared between the two units. Multivariable regression and bootstrap were used to verify factors associated with the patients' general satisfaction (dependent variable). Patients from unit B reported a higher general satisfaction (91.5 vs. 88.3, p = 0.04), mainly due to a significantly higher satisfaction in the doctor-related scales (doctors' technical skill: p = 0.001; doctors' interpersonal skill: p = 0.008; doctors' availability: p = 0.005, and doctors information provision: p = 0.0006). Multivariable regression analysis and bootstrap confirmed that level of care in unit B (p = 0.006, bootstrap frequency 60%) along with lower level of education of the patient population (p = 0.02, bootstrap frequency 62%) were independent factors associated with a higher general patient satisfaction. We were able to show a different level of patient satisfaction in patients operated on in two different thoracic surgery units. A reduced level of patient satisfaction may trigger changes in the management policy of individual units in order to meet patients' expectations and improve organizational efficiency. Copyright © 2012 S. Karger AG, Basel.

  8. IRAS 08572+3915: constraining the aromatic versus aliphatic content of interstellar HACs

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Geballe, T. R.; Pino, T.; Cao, A.-T.; Jones, A.; Deboffle, D.; Guerrini, V.; Bréchignac, Ph.; D'Hendecourt, L.

    2007-02-01

    We analyze dust features present in the mid-infrared (Spitzer) and recently published L-band (UKIRT) spectra of the infrared galaxy IRAS 08572+3915. The line of sight toward the AGN nucleus crosses a high column density of carbonaceous dust whose characteristic absorption features appear clearly. They provide a real insight into the chemical environment of the diffuse interstellar medium. Thanks to the moderate redshift of IRAS 08572+3915, the wavelength of the aromatic CH stretching mode is free of major telluric lines, and a strong observational constraint of Hsp2 /Hsp3 ≤ 0.08 has been determined. This limit clearly shows that the bonding of hydrogen atoms in interstellar hydrogenated amorphous carbon is highly aliphatic. The presence of a broad absorption feature centered at 6.2 μm, probably arising from olefinic/aromatic structures, corresponds to the backbone of this carbonaceous material, which is the major carbon-containing component of the interstellar medium along this line of sight. Based on observations made with the Spitzer Space Telescope (GO-3336 program), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Based on data obtained at the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Center on behalf of the UK Particle Physics and Astronomy Research Council. Part of this work has been financed by the french CNRS program "Physique et Chimie du Milieu Interstellaire" (PCMI-CNRS). TRG's esearch is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America.

  9. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  10. Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit

    NASA Technical Reports Server (NTRS)

    Bauman, WIlliam, H., III; Crawford, Winifred

    2009-01-01

    The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products delivered over the last 18 years that are currently in operational use. Each example will describe the problem to be solved, the solution provided, and the operational benefits of implementing that solution.

  11. Mapping Applications Center, National Mapping Division, U.S. Geological Survey

    USGS Publications Warehouse

    ,

    1996-01-01

    The Mapping Applications Center (MAC), National Mapping Division (NMD), is the eastern regional center for coordinating the production, distribution, and sale of maps and digital products of the U.S. Geological Survey (USGS). It is located in the John Wesley Powell Federal Building in Reston, Va. The MAC's major functions are to (1) establish and manage cooperative mapping programs with State and Federal agencies; (2) perform new research in preparing and applying geospatial information; (3) prepare digital cartographic data, special purpose maps, and standard maps from traditional and classified source materials; (4) maintain the domestic names program of the United States; (5) manage the National Aerial Photography Program (NAPP); (6) coordinate the NMD's publications and outreach programs; and (7) direct the USGS mapprinting operations.

  12. 2017 ASCAN Tour of KSC

    NASA Image and Video Library

    2018-05-01

    The 2017 class of astronaut candidates tour Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.

  13. 2017 ASCAN Tour of KSC

    NASA Image and Video Library

    2018-05-01

    The 2017 class of astronaut candidates arrive at Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.

  14. Administrative Challenges to the Integration of Oral Health With Primary Care: A SWOT Analysis of Health Care Executives at Federally Qualified Health Centers.

    PubMed

    Norwood, Connor W; Maxey, Hannah L; Randolph, Courtney; Gano, Laura; Kochhar, Komal

    Inadequate access to preventive oral health services contributes to oral health disparities and is a major public health concern in the United States. Federally Qualified Health Centers play a critical role in improving access to care for populations affected by oral health disparities but face a number of administrative challenges associated with implementation of oral health integration models. We conducted a SWOT (strengths, weaknesses, opportunities, and threats) analysis with health care executives to identify strengths, weaknesses, opportunities, and threats of successful oral health integration in Federally Qualified Health Centers. Four themes were identified: (1) culture of health care organizations; (2) operations and administration; (3) finance; and (4) workforce.

  15. Bulk locality and boundary creating operators

    DOE PAGES

    Nakayama, Yu; Ooguri, Hirosi

    2015-10-19

    Here, we formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary di-latation obey free field equations in AdS and that incorporating bulk interactions require their superpositions.more » We also comment on the recent proposals by Kabat et al., and by H. Verlinde.« less

  16. Drug-induced liver injury secondary to testosterone prohormone dietary supplement use.

    PubMed

    Hoedebecke, Kyle; Rerucha, Caitlyn; Maxwell, Kimberly; Butler, Jason

    2013-01-01

    Dietary supplementation has become progressively more prevalent, with over half of the American population reporting use of various products. An increased incidence of supplement use has been reported in the military especially within Special Operations Forces (SOF) where training regimens rival those of elite athletes. Federal regulations regarding dietary supplements are minimal, allowing for general advertisement to the public without emphasis on the potentially harmful side effects. Subsequent medical care for these negative effects causes financial burden on the military in addition to the unit?s loss of an Operator and potential mission compromise. This report reviews a case of an Operator diagnosed with drug-induced liver injury secondary to a testosterone prohormone supplement called Post Cycle II. Clinical situations like this emphasize the necessity that SOF Operators and clinicians be aware of the risks and benefits of these minimally studied substances. Providers should also be aware of the Human Performance Resource Center for Health Information and Natural Medicines Comprehensive Database supplement safety ratings as well as the Food and Drug Administration?s MedWatch and Natural Medicines WATCH, to which adverse reactions should be reported. 2013.

  17. Opportunities for Breakthroughs in Large-Scale Computational Simulation and Design

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Alter, Stephen J.; Atkins, Harold L.; Bey, Kim S.; Bibb, Karen L.; Biedron, Robert T.; Carpenter, Mark H.; Cheatwood, F. McNeil; Drummond, Philip J.; Gnoffo, Peter A.

    2002-01-01

    Opportunities for breakthroughs in the large-scale computational simulation and design of aerospace vehicles are presented. Computational fluid dynamics tools to be used within multidisciplinary analysis and design methods are emphasized. The opportunities stem from speedups and robustness improvements in the underlying unit operations associated with simulation (geometry modeling, grid generation, physical modeling, analysis, etc.). Further, an improved programming environment can synergistically integrate these unit operations to leverage the gains. The speedups result from reducing the problem setup time through geometry modeling and grid generation operations, and reducing the solution time through the operation counts associated with solving the discretized equations to a sufficient accuracy. The opportunities are addressed only at a general level here, but an extensive list of references containing further details is included. The opportunities discussed are being addressed through the Fast Adaptive Aerospace Tools (FAAST) element of the Advanced Systems Concept to Test (ASCoT) and the third Generation Reusable Launch Vehicles (RLV) projects at NASA Langley Research Center. The overall goal is to enable greater inroads into the design process with large-scale simulations.

  18. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation ofmore » hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.« less

  19. KSC-2009-2981

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis' payload bay is filled with hardware for the STS-125 mission to service NASA's Hubble Space Telescope. At the bottom are the Flight Support System with the Soft Capture mechanism and Multi-Use Lightweight Equipment Carrier with the Science Instrument Command and Data Handling Unit, or SIC&DH. At center is the Orbital Replacement Unit Carrier with the Cosmic Origins Spectrograph, or COS, and an IMAX 3D camera. At top is the Super Lightweight Interchangeable Carrier with the Wide Field Camera 3. Atlantis' crew will service NASA's Hubble Space Telescope for the fifth and final time. The flight will include five spacewalks during which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014. Photo credit: NASA/Kim Shiflett

  20. KSC-2009-2980

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis' payload bay is filled with hardware for the STS-125 mission to service NASA's Hubble Space Telescope. From the bottom are the Flight Support System with the Soft Capture mechanism and Multi-Use Lightweight Equipment Carrier with the Science Instrument Command and Data Handling Unit, or SIC&DH. At center is the Orbital Replacement Unit Carrier with the Cosmic Origins Spectrograph, or COS, and an IMAX 3D camera. At top is the Super Lightweight Interchangeable Carrier with the Wide Field Camera 3. Atlantis' crew will service NASA's Hubble Space Telescope for the fifth and final time. The flight will include five spacewalks during which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014. Photo credit: NASA/Kim Shiflett

  1. Philippine refiner completes diesel desulfurization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candido, S.S.; Crisostomo, E.V.

    1997-01-27

    In anticipation of tightening sulfur specifications on diesel fuel, Petron Corp. built a new 18,000 b/sd gas oil desulfurization unit (GODU) at its refinery in Bataan, Philippines. The GODU gives Petron sufficient diesel oil desulfurization capacity to meet demand for lower-sulfur diesel in the country. The project places the refinery in a pacesetter position to comply with the Philippine government`s moves to reduce air pollution, especially in urban centers, by reducing the sulfur specification for diesel to 0.5 wt% in 1996 from 0.7 wt% at the start of the project. Performance tests and initial operations of the unit have revealedmore » a desulfurization efficiency of 91% vs. a guaranteed efficiency of 90%. A feed sulfur content of 1.33 wt% is reduced to 0.12 wt% at normal operating conditions. Operating difficulties during start-up were minimized through use of a detailed prestartup check conducted during the early stages of construction work.« less

  2. ÖGRO survey on radiotherapy capacity in Austria : Status quo and estimation of future demands.

    PubMed

    Zurl, Brigitte; Bayerl, Anja; De Vries, Alexander; Geinitz, Hans; Hawliczek, Robert; Knocke-Abulesz, Tomas-Henrik; Lukas, Peter; Pötter, Richard; Raunik, Wolfgang; Scholz, Brigitte; Schratter-Sehn, Annemarie; Sedlmayer, Felix; Seewald, Dietmar; Selzer, Edgar; Kapp, Karin S

    2018-04-01

    A comprehensive evaluation of the current national and regional radiotherapy capacity in Austria with an estimation of demands for 2020 and 2030 was performed by the Austrian Society for Radiation Oncology, Radiobiology and Medical Radiophysics (ÖGRO). All Austrian centers provided data on the number of megavoltage (MV) units, treatment series, fractions, percentage of retreatments and complex treatment techniques as well as the daily operating hours for the year 2014. In addition, waiting times until the beginning of radiotherapy were prospectively recorded over the first quarter of 2015. National and international epidemiological prediction data were used to estimate future demands. For a population of 8.51 million, 43 MV units were at disposal. In 14 radiooncological centers, a total of 19,940 series with a mean number of 464 patients per MV unit/year and a mean fraction number of 20 (range 16-24) per case were recorded. The average re-irradiation ratio was 14%. The survey on waiting times until start of treatment showed provision shortages in 40% of centers with a mean waiting time of 13.6 days (range 0.5-29.3 days) and a mean maximum waiting time of 98.2 days. Of all centers, 21% had no or only a limited ability to deliver complex treatment techniques. Predictions for 2020 and 2030 indicate an increased need in the overall number of MV units to a total of 63 and 71, respectively. This ÖGRO survey revealed major regional differences in radiooncological capacity. Considering epidemiological developments, an aggravation of the situation can be expected shortly. This analysis serves as a basis for improved public regional health care planning.

  3. Intense generation of respirable metal nanoparticles from a low-power soldering unit.

    PubMed

    Gómez, Virginia; Irusta, Silvia; Balas, Francisco; Santamaria, Jesus

    2013-07-15

    Evidence of intense nanoparticle generation from a low power (45W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10(6) particles/cm(3)) within the breathing range of the operator, with initial size distributions centered at 35-60nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Space Shuttle Placement Announcement

    NASA Image and Video Library

    2011-04-12

    From left, Pilot of the first space shuttle mission, STS-1, Bob Crippen, NASA Administrator Charles Bolden, NASA Johnson Space Center Director of Flight Crew Operations, and Astronaut, Janet Kavandi, NASA Kennedy Space Center Director and former astronaut Bob Cabana, and Endeavour Vehicle Manager for United Space Alliance Mike Parrish pose for a photograph outside of the an Orbiter Processing Facility with the space shuttle Atlantis shortly after Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, in background, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)

  5. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  6. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  7. Joint Forward Operating Base Elements of Command and Control

    NASA Astrophysics Data System (ADS)

    Summers, William C.

    2002-01-01

    Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.

  8. Farming the Desert: agriculture in the World War II-era Japanese-American relocation centers.

    PubMed

    Lillquist, Karl

    2010-01-01

    In 1942 over 110,000 Japanese Americans were evacuated from the West Coast to ten inland, barbed wire-enclosed relocation centers in the name of national security. Agriculture was a key component of the eight arid to semi-arid centers located in the western United States. Each center's agricultural program included produce for human consumption, feed crops, and livestock. Some centers also grew seed, ornamental, and war crops. Evacuees raised and consumed five types of livestock and sixty-one produce varieties, including many traditional foods. Seasonal surpluses were preserved, shipped to other centers, or sold on the open market. Short growing seasons, poor soils, initially undeveloped lands, pests, equipment shortages, and labor issues hampered operations. However, imprisoned evacuee farmers proved that diverse agricultural programs could succeed in the harsh settings primarily because of labor-intensive farming methods, ingenuity, and the large markets provided by the centers. These agricultural programs played major roles in feeding, providing meaningful employment, and preparing evacuees for life outside the centers, and readied lands for post-war "homesteaders."

  9. Gunshot wounds to the face: level I urban trauma center: a 10-year level I urban trauma center experience.

    PubMed

    Pereira, Clifford; Boyd, J Brian; Dickenson, Brian; Putnam, Brant

    2012-04-01

    Gunshot wounds (GSWs) to the face are an infrequent occurrence outside of a war zone. However, when they occur, they constitute a significant reconstructive challenge. We present our 10-year experience at an urban level I trauma center to define the patterns of injury, assess the morbidity and mortality, and estimate the cost to the health care system. A retrospective review was performed on all patients admitted to Harbor-UCLA Medical Center with GSWs to the head and neck region between January 1997 and January 2007. Those who had sustained GSWs to the face requiring operative intervention were closely reviewed. Between 1997 and 2007, a total of 702 patients were admitted to the Harbor UCLA Emergency Department having sustained GSWs to the head and neck region, of which 501 patients survived. Of the survivors, 28 patients (26 male, 2 female) sustained GSWs to their face requiring operative intervention. The mean age of these patients was 28 (±8.3) years. They generally presented within a few hours of the injury, but 1 individual arrived over 24 hours later. Low-velocity single gunshots (from handguns) were predominantly involved, with facial fractures occurring in all cases. Fractures were of a localized shattering type without the major displacement of bony complexes seen in motor vehicle accidents. Most required wound debridement and fracture fixation. A few patients (14.2%) underwent free tissue transfer for reconstruction (3 fibular flaps, 1 TRAM). Tracheostomy was performed in 35.7% of patients. Mean length of hospital stay was 8.3 (±7.1) days, with 50% of cases requiring admission to the intensive care unit. Mean length of intensive care unit stay was 5.2 (±5.7) days. The average cost per patient exceeded $100,000.

  10. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  11. A review of operations research models in invasive species management: state of the art, challenges, and future directions

    Treesearch

    İ. Esra Büyüktahtakın; Robert G. Haight

    2017-01-01

    Invasive species are a major threat to the economy, the environment, health, and thus human well-being. The international community, including the United Nations' Global Invasive Species Program (GISP), National Invasive Species Council (NISC), and Center for Invasive Species Management (CISM), has called for a rapid control of invaders in order to minimize their...

  12. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  13. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    Team members with United Launch Alliance (ULA) monitor the progress as the two halves of the payload fairing close around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  14. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members prepare the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  15. GOES-R Fairing Inspection

    NASA Image and Video Library

    2016-09-26

    Team members with United Launch Alliance (ULA) inspect an clean the first half of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  16. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members monitor the progress as the Geostationary Operational Environmental Satellite (GOES-R) is lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  17. GOES-R Arrival and Offload

    NASA Image and Video Library

    2016-08-22

    A truck with a specialized transporter drives out of the cargo hold of an Air Force C-5 Galaxy transport plane at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  18. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members install the Advanced Base Line Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  19. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    The Advanced Base Line Imager, the primary optical instrument, has been installed on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  20. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members check the Geostationary Operational Environmental Satellite (GOES-R) after it was lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  1. GOES-R Fairing Inspection

    NASA Image and Video Library

    2016-09-26

    Both halves of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) are being inspected and cleaned by United Launch Alliance (ULA) team members inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  2. Standing on the Shoulders of Giants: An American Agenda for Education Reform

    ERIC Educational Resources Information Center

    Tucker, Marc S.

    2011-01-01

    In this paper, the author asks what education policy might look like in the United States if it was based on the experience of its most successful competitors. He relies on research conducted by a team assembled by the National Center on Education and the Economy, at the request of the Organisation for Economic Co-operation and Development (OECD),…

  3. Astronaut Neil Armstrong during thermovacuum training

    NASA Image and Video Library

    1969-05-07

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  4. Coast Guard SOF

    DTIC Science & Technology

    2006-02-01

    Forces units into known Viet Cong (VC) strongholds, participating in direct action raids on VC junk bases, conducting psychological operations, and...and General McClure established the Army’s Psychological Warfare Cen- ter and 10th Special Forces Group in 1952.62 President Kennedy’s interest in...counterinsurgency warfare paved the way for the “Green Beret,” for which Army Special Forces renamed the Psychological Warfare Center the JFK Special

  5. Charter Schools in Greater Los Angeles: An Evaluative Comparison of Charter Schools vis-a-vis Traditional Public Schools

    ERIC Educational Resources Information Center

    Gutierrez, Matthew H.

    2012-01-01

    In 1992, California became just the second state in the United States to enact significant charter school legislation. Today, over 940 charter schools are operating in California servicing nearly 350,000 students. California leads the nation both in the number as well as the fastest rate of growth of charter schools (Center for Education Reform…

  6. Child Care: How Do Military and Civilian Center Costs Compare? United States General Accounting Office Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    Fagnoni, Cynthia M.

    The Department of Defense's (DOD) child development program has been identified as a model for the rest of the nation. To provide a benchmark cost estimate for Congress as it addresses child care issues, this report identifies the objectives of the military child development program, describes its operation, determines the full costs of DOD…

  7. Expanding Public/Private Partnerships For Improving Basic Education through School Sponsorship in the Dominican Republic. Final Report. Basic Education and Policy Support Activity.

    ERIC Educational Resources Information Center

    Craig, Patricia; Kane, Michael

    The Basic Education and Policy Support Activity (BEPS), a new five-year initiative sponsored by United States Agency for International Development's (USAID) Center for Human Capacity Development, is designed to improve the quality, effectiveness, and access to formal and nonformal basic education. BEPS operates through both core funds and buy-ins…

  8. KSC-99pp1292

    NASA Image and Video Library

    1999-11-09

    KENNEDY SPACE CENTER, FLA. -- Rodney Wilson, with United Space Alliance, inspects the range safety cable between the external tank and solid rocket boosters (SRB) on Space Shuttle Discovery. The cable, which relays a redundant emergency destruction signal between the SRBs in the unlikely event of a contingency, was damaged during close-out operations and is being replaced. Discovery's processing schedule leads to a target launch date of Dec. 6

  9. Quality of laparoscopic radical hysterectomy in developing countries: a comparison of surgical and oncologic outcomes between a comprehensive cancer center in the United States and a cancer center in Colombia.

    PubMed

    Pareja, Rene; Nick, Alpa M; Schmeler, Kathleen M; Frumovitz, Michael; Soliman, Pamela T; Buitrago, Carlos A; Borrero, Mauricio; Angel, Gonzalo; Reis, Ricardo Dos; Ramirez, Pedro T

    2012-05-01

    To help determine whether global collaborations for prospective gynecologic surgery trials should include hospitals in developing countries, we compared surgical and oncologic outcomes of patients undergoing laparoscopic radical hysterectomy at a large comprehensive cancer center in the United States and a cancer center in Colombia. Records of the first 50 consecutive patients who underwent laparoscopic radical hysterectomy at The University of Texas MD Anderson Cancer Center in Houston (between April 2004 and July 2007) and the first 50 consecutive patients who underwent the same procedure at the Instituto de Cancerología-Clínica las Américas in Medellín (between December 2008 and October 2010) were retrospectively reviewed. Surgical and oncologic outcomes were compared between the 2 groups. There was no significant difference in median patient age (US 41.9 years [range 23-73] vs. Colombia 44.5 years [range 24-75], P=0.09). Patients in Colombia had a lower median body mass index than patients in the US (24.4 kg/m(2) vs. 28.7 kg/m(2), P=0.002). Compared to patients treated in Colombia, patients who underwent surgery in the US had a greater median estimated blood loss (200 mL vs. 79 mL, P<0.001), longer median operative time (328.5 min vs. 235 min, P<0.001), and longer postoperative hospital stay (2 days vs. 1 day, P<0.001). Surgical and oncologic outcomes of laparoscopic radical hysterectomy were not worse at a cancer center in a developing country than at a large comprehensive cancer center in the United States. These results support consideration of developing countries for inclusion in collaborations for prospective surgical studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Lesbian, gay, bisexual, and transgender (LGBT) health services in the United States: Origins, evolution, and contemporary landscape

    PubMed Central

    Wilson, Patrick A.; Meyer, Ilan H.

    2017-01-01

    Background LGBT community organizations in the United States have been providing health services since at least the 1970s. However, available explanations for the origins of LGBT health services do not sufficiently explain why health in particular has been so closely and consistently linked to LGBT activism. Little is also known regarding how LGBT health services may have evolved over time with the growing scientific understanding of LGBT health needs. Methods This study begins with a review of the early intersections of sexuality and health that led to an LGBT health movement in the United States, as well as the evolution of LGBT health services over time. Informed by this, an asset map displaying the location and types of services provided by “LGBT community health centers” today in relation to the population density of LGBT people was explored. An online search of LGBT community health centers was conducted between September–December, 2015. Organizational details, including physical addresses and the services provided, were confirmed via an online database of federally-registered non-profit organizations and organizational websites. The locations and types of services provided were analyzed and presented alongside county-level census data of same-sex households using geographic information system (GIS) software ArcGIS for Desktop. Findings LGBT community health centers are concentrated within urban hubs and coastal states, and are more likely to be present in areas with a high density of same-sex couples. LGBT community health centers do not operate in 13 states. The most common health services provided are wellness programs, HIV/STI services, and counseling services. Conclusions LGBT community health centers have adapted over time to meet the needs of LGBT people. However, significant gaps in service remain in the United States, and LGBT community health centers may require significant transformations going forward in order to continue serving LGBT people. PMID:28692659

  11. Status of the Development of Flight Power Processing Units for the NASAs Evolutionary Xenon Thruster - Commercial (NEXT-C) Project

    NASA Technical Reports Server (NTRS)

    Aulisio, Michael V.; Pinero, Luis R.; White, Brandon L.; Hickman, Tyler A.; Bontempo, James J.; Hertel, Thomas A.; Birchenough, Arthur G.

    2016-01-01

    A pathfinder prototype unit and two flight power processing units (PPUs) are being developed by the Aerojet Rocketdyne Corporation in Redmond, Washington and ZIN Technologies in Cleveland, Ohio, in support of the NEXT-C Project. This project is being led by the NASA Glenn Research Center in Cleveland, Ohio, and will also yield two flight thrusters. This hardware is being considered to be provided as Government Furnished Equipment for the New Frontiers Program, and is applicable to a variety of planetary science missions and astrophysics science missions. The design of the NEXT-C PPU evolves from the hardware fabricated under the NEXT technology development project. The power processing unit operates from two sources: a wide input 80 to 160 V high-power bus and a nominal 28 V low-power bus. The unit includes six power supplies. Four power supplies (beam, accelerator, discharge, and neutralizer keeper) are needed for steady state operation, while two cathode heater power supplies (neutralizer and discharge) are utilized during thruster startup. The unit in total delivers up to 7 kW of regulated power to a single gridded-ion thruster. Significant modifications to the initial design include: high-power adaptive-delay control, upgrade of design to EEE-INST-002 compliance, telemetry accuracy improvements, incorporation of telemetry to detect plume-mode operation, and simplification of the design in select areas to improve manufacturability and commercialization potential. The project is presently in the prototype phase and preparing for qualification level environmental testing.

  12. 15th Anniversary of the Molecular Techniques Unit at the Department of Forensic Medicine at Wroclaw Medical University.

    PubMed

    Pluta, Dominika; Tokarski, Miron; Karpiewska, Anna; Dobosz, Tadeusz

    2017-01-01

    Molecular Techniques Unit at the Department of Forensic Medicine, Wroclaw Medical University has been operating since December 2003. Soon it will be 15 years since its establishment. This anniversary become an inspiration to write down the story of this institution whose origins illustrate the immense changes that have taken place in forensic genetics. The aim of our work was also to consolidate the professional achievements of Professor Tadeusz Dobosz, chief of the Unit, one of the pioneers of introducing DNA testing technology into Polish forensic medicine. The most important achievements of the Unit include participation in two EU research projects, the development of a non-destructive method of extraction of genetic material, research in field of gene therapy and certification of the Laboratory of the Molecular Techniques Unit by the Polish Accreditation Center (PCA) confirming compliance with the requirements of the PN-EN ISO/IEC 17025:2005 standard.

  13. Blood transfusions in severe burn patients: Epidemiology and predictive factors.

    PubMed

    Wu, Guosheng; Zhuang, Mingzhu; Fan, Xiaoming; Hong, Xudong; Wang, Kangan; Wang, He; Chen, Zhengli; Sun, Yu; Xia, Zhaofan

    2016-12-01

    Blood is a vital resource commonly used in burn patients; however, description of blood transfusions in severe burns is limited. The purpose of this study was to describe the epidemiology of blood transfusions and determine factors associated with increased transfusion quantity. This is a retrospective study of total 133 patients with >40% total body surface area (TBSA) burns admitted to the burn center of Changhai hospital from January 2008 to December 2013. The study characterized blood transfusions in severe burn patients. Univariate and Multivariate regression analyses were used to evaluate the association of clinical variables with blood transfusions. The overall transfusion rate was 97.7% (130 of 133). The median amount of total blood (RBC and plasma), RBC and plasma transfusions was 54 units (Interquartile range (IQR), 20-84), 19 units (IQR, 4-37.8) and 28.5 units (IQR, 14.8-51.8), respectively. The number of RBC transfusion in and outside operation room was 7 (0, 14) and 11 (2, 20) units, and the number of plasma was 6 (0.5, 12) and 21 (11.5, 39.3) units. A median of one unit of blood was transfused per TBSA and an average of 4 units per operation was given in the series. The consumption of plasma is higher than that of RBC. On multivariate regression analysis, age, full-thickness TBSA and number of operations were significant independent predictors associated with the number of RBC transfusion, and coagulopathy and ICU length showed a trend toward RBC consumption. Predictors for increased plasma transfusion were female, high full-thickness TBSA burn and more operations. Severe burn patients received an ample volume of blood transfusions. Fully understanding of predictors of blood transfusions will allow physicians to better optimize burn patients during hospitalization in an effort to use blood appropriately. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  14. A compact optical fiber positioner

    NASA Astrophysics Data System (ADS)

    Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru

    2016-07-01

    In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.

  15. Modifications to the Objective Lightning Probability Forecast Tool at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2010-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air Force Station (CCAFS) includes the probability of lightning occurrence in their 24-Hour and Weekly Planning Forecasts, briefed at 0700 EDT for daily operations planning on Kennedy Space Center (KSC) and CCAFS. This forecast is based on subjective analyses of model and observational data and output from an objective tool developed by the Applied Meteorology Unit (AMU). This tool was developed over two phases (Lambert and Wheeler 2005, Lambert 2007). It consists of five equations, one for each warm season month (May-Sep), that calculate the probability of lightning occurrence for the day and a graphical user interface (GUI) to display the output. The Phase I and II equations outperformed previous operational tools by a total of 56%. Based on this success, the 45 WS tasked the AMU with Phase III to improve the tool further.

  16. KSC-2012-4213

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. -- This is an artist's conception of Sierra Nevada Corp. SNC Space System's Dream Chaser spacecraft atop a United Launch Alliance ULA Atlas V rocket under development for NASA's Commercial Crew Program, or CCP. The integrated system was selected for CCP's Commercial Crew Integrated Capability, or CCiCap, initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreement, or SAA, SNC will spend the next 21 months completing its design, conducting critical risk reduction testing on its spacecraft and launch vehicle, and showcasing how it would operate and manage missions from launch through orbit and landing, setting the stage for a future demonstration mission. To learn more about CCP, which is based at NASA's Kennedy Space Center in Florida and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Image credit: SNC

  17. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  18. TDRS-M Atlas V Booster and Centaur Stages Arrival, Offload, and Transport (Booster) to ASOC

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster and centaur upper stage bounded for Cape Canaveral Air Force Station. The centaur upper stage is transported from the company's Mariner ship to the Delta Operations Center. The booster stage is transported to the Atlas Spaceflight Operations Center. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  19. GOES-S Transport to Kennedy Space Center

    NASA Image and Video Library

    2017-12-04

    At Buckley Air Force Base in Aurora, Colorado, NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is being loaded into the cargo hold of a U.S. Air Force C-5M super Galaxy cargo aircraft. GOES-S will be flown to NASA's Kennedy Space Center in Florida. After it arrives at Kennedy's Shuttle Landing Facility, it will be offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida, to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  20. KSC-04pd1845

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - - United Space Alliance technician Shelly Kipp (right) shows some of the material salvaged from the storm-ravaged Thermal Protection System Facility (TPSF) to NASA Administrator Sean O’Keefe (left). Martin Wilson (center), manager of TPS operations for USA, looks on. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. Undamaged equipment was removed from the TPSF and stored in the RLV hangar. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.

  1. Use of Dynamic Models and Operational Architecture to Solve Complex Navy Challenges

    NASA Technical Reports Server (NTRS)

    Grande, Darby; Black, J. Todd; Freeman, Jared; Sorber, TIm; Serfaty, Daniel

    2010-01-01

    The United States Navy established 8 Maritime Operations Centers (MOC) to enhance the command and control of forces at the operational level of warfare. Each MOC is a headquarters manned by qualified joint operational-level staffs, and enabled by globally interoperable C41 systems. To assess and refine MOC staffing, equipment, and schedules, a dynamic software model was developed. The model leverages pre-existing operational process architecture, joint military task lists that define activities and their precedence relations, as well as Navy documents that specify manning and roles per activity. The software model serves as a "computational wind-tunnel" in which to test a MOC on a mission, and to refine its structure, staffing, processes, and schedules. More generally, the model supports resource allocation decisions concerning Doctrine, Organization, Training, Material, Leadership, Personnel and Facilities (DOTMLPF) at MOCs around the world. A rapid prototype effort efficiently produced this software in less than five months, using an integrated process team consisting of MOC military and civilian staff, modeling experts, and software developers. The work reported here was conducted for Commander, United States Fleet Forces Command in Norfolk, Virginia, code N5-0LW (Operational Level of War) that facilitates the identification, consolidation, and prioritization of MOC capabilities requirements, and implementation and delivery of MOC solutions.

  2. The United States Army Aviation Center and Fort Rucker during Operations DESERT SHIELD and DESERT STORM. Addendum to the 1991 Annual Command History

    DTIC Science & Technology

    1991-01-01

    local communities. One night we [arranged for] Pizza Hut to deliver about 30 pizzas for ...the kids that were loading the trains."" Running that many... Pizza Hut 230 Planchon, John T., LTC 148, 150-155, 186, 216 Pans and Operations Division 106 251 [ ,"_,_ PM Trade 85 Pope Air Force Base 39 Presidio of...relaxed social morals of the West. They also wanted to return to a political and governmental system modeled on the Koran. The Moslem Brotherhood was but

  3. Military-to-civilian translation of battlefield innovations in operative trauma care.

    PubMed

    Haider, Adil H; Piper, Lydia C; Zogg, Cheryl K; Schneider, Eric B; Orman, Jean A; Butler, Frank K; Gerhardt, Robert T; Haut, Elliott R; Mather, Jacques P; MacKenzie, Ellen J; Schwartz, Diane A; Geyer, David W; DuBose, Joseph J; Rasmussen, Todd E; Blackbourne, Lorne H

    2015-12-01

    Historic improvements in operative trauma care have been driven by war. It is unknown whether recent battlefield innovations stemming from conflicts in Iraq/Afghanistan will follow a similar trend. The objective of this study was to survey trauma medical directors (TMDs) at level 1-3 trauma centers across the United States and gauge the extent to which battlefield innovations have shaped civilian practice in 4 key domains of trauma care. Domains were determined by the use of a modified Delphi method based on multiple consultations with an expert physician/surgeon panel: (1) damage control resuscitation (DCR), (2) tourniquet use, (3) use of hemostatic agents, and (4) prehospital interventions, including intraosseous catheter access and needle thoracostomy. A corresponding 47-item electronic anonymous survey was developed/pilot tested before dissemination to all identifiable TMD at level 1-3 trauma centers across the US. A total of 245 TMDs, representing nearly 40% of trauma centers in the United States, completed and returned the survey. More than half (n = 127; 51.8%) were verified by the American College of Surgeons. TMDs reported high civilian use of DCR: 95.1% of trauma centers had implemented massive transfusion protocols and the majority (67.7%) tended toward 1:1:1 packed red blood cell/fresh-frozen plasma/platelets ratios. For the other 3, mixed adoption corresponded to expressed concerns regarding the extent of concomitant civilian research to support military research and experience. In centers in which policies reflecting battlefield innovations were in use, previous military experience frequently was acknowledged. This national survey of TMDs suggests that military data supporting DCR has altered civilian practice. Perceived relevance in other domains was less clear. Civilian academic efforts are needed to further research and enhance understandings that foster improved trauma surgeon awareness of military-to-civilian translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. SOA approach to battle command: simulation interoperability

    NASA Astrophysics Data System (ADS)

    Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.

    2010-04-01

    NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.

  5. 2017 ASCAN Tour of KSC

    NASA Image and Video Library

    2018-05-02

    The 2017 class of astronaut candidates are at United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida for a familiarization tour. They also toured facilities at Kennedy Space Center, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, the Vehicle Assembly Building, Boeing's Commercial Crew and Cargo Facility, and SpaceX's Launch Complex 39A. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.

  6. [Information on student counseling center websites in Japan, the United States, the United Kingdom, and Taiwan].

    PubMed

    Ito, Naoki

    2017-04-01

    This study aimed to compare information provided on student counseling center websites of universities and colleges in Japan, the United States, the United Kingdom, and Taiwan. A survey was conducted on websites of 315 centers in Japan, 282 centers in the United States, 70 centers in the United Kingdom and 61 centers in Taiwan. Trends in the provision of information on websites in each country were analyzed and compared for the rate and quantity of information published. Results of multiple correspondence analyses indicated two basic dimensions of information that could effectively distinguish information provided in the four countries. These were provision of necessary information and provision of information for use of individual counseling or support of community. Finally, issues related to websites in student counseling centers of Japanese universities and colleges are discussed.

  7. NASA Conjunction Assessment Organizational Approach and the Associated Determination of Screening Volume Sizes

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    NASA is committed to safety of flight for all of its operational assets Performed by CARA at NASA GSFC for robotic satellites Focus of this briefing Performed by TOPO at NASA JSC for human spaceflight he Conjunction Assessment Risk Analysis (CARA) was stood up to offer this service to all NASA robotic satellites Currently provides service to 70 operational satellites NASA unmanned operational assets Other USG assets (USGS, USAF, NOAA) International partner assets Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening The Joint Space Operations Center (JSpOC) a USAF unit at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD tasking, and generates close approach data.

  8. Applying Web-Based Tools for Research, Engineering, and Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2011-01-01

    Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.

  9. KSC-03pd0578

    NASA Image and Video Library

    2003-03-04

    KENNEDY SPACE CENTER, FLA. -- -- Lifting their shovels for the groundbreaking of the Operations Support Building II are (left to right) Bill Pickavance, Vice President & Deputy Program Manager Florida Operations, United Space Alliance; Mike Wetmore, director of Shuttle Processing; Miguel Morales, chief, Facilities Division, Spaceport Services; Mike Sumner, chief of operations, Spaceport Services; David Wolfberg, designer of the facility, with Architect and Engineers Wolfberg, Alvarez and Partners of Coral Gables; Roy Bridges, KSC director; and Don Minderman, OSB II project manager, Spaceport Services. Not shown: David Boland, David Boland Inc.(construction company). The new building will replace modular housing constructed more than 20 years ago and house NASA and contractor support staff for shuttle operations. The demolition of the modular buildings has begun and construction will immediately follow. The new structure is projected to be ready in April 2005.

  10. KSC-03PD-0578

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- -- Lifting their shovels for the groundbreaking of the Operations Support Building II are (left to right) Bill Pickavance, Vice President & Deputy Program Manager Florida Operations, United Space Alliance; Mike Wetmore, director of Shuttle Processing; Miguel Morales, chief, Facilities Division, Spaceport Services; Mike Sumner, chief of operations, Spaceport Services; David Wolfberg, designer of the facility, with Architect and Engineers Wolfberg, Alvarez and Partners of Coral Gables; Roy Bridges, KSC director; and Don Minderman, OSB II project manager, Spaceport Services. Not shown: David Boland, David Boland Inc.(construction company). The new building will replace modular housing constructed more than 20 years ago and house NASA and contractor support staff for shuttle operations. The demolition of the modular buildings has begun and construction will immediately follow. The new structure is projected to be ready in April 2005.

  11. [Modern operations management in workflow operation. Spectrum of responsibilities and challenges for the future].

    PubMed

    Riedl, S

    2002-02-01

    The operating unit is one of the cost-intensive facilities in a surgical clinic with a pacemaking function for most of the internal procedures. The power of performance of the operating unit is based on the co-operation of all disciplines and professions involved. The key to management of the operating unit is not only to co-ordinate the daily procedures, but also to interact with support personnel. To ensure successful OR management, the internal structure of the OR must fit the clinical tasks and the available quantity of personnel in each profession must be co-ordinated. Sufficient utilization of resources and equipment must be guaranteed without cost-intensive over-capacities and patient flow must be orientated to OR capacities. The development of such a business structure requires the management to clearly define the goal, to know the actual on-site data in detail with regard to the idiosyncratic workings of each speciality and to clearly assign the competence of each member of the team working in the OR. Co-ordination of the operating unit is the main task of OR management, which must ensure the following: transparent and co-ordinated schedule management in the various operative specialities, goal-directed changes of the schedule with incorporation of emergencies, as well as effective organization of staff. In order to realize these tasks, it is reasonable to implement interdisciplinary rules of procedures. In addition, the assignment of a neutral decision-making body within the OR and the creation of an information center for all OR personnel. The challenge of OR organization in the future is to implement more effective documentation systems and active controlling within the OR. One can ensure adequate utilization of resources in the OR with prospectively oriented planning. Better transparence of operations in the OR contributes to increased efficiency. Implementation of quality management is the foundation for a successfully operating surgical hospital. Not only the productivity of individual members of the staff, but also the precise documentation of the quality of results will become important parameters in a successful surgical hospital, whose nucleus is the OR.

  12. ASCANS Class of 2013 Tour the O&C with Cabana

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. -- In the Operations and Checkout Building of NASA's Kennedy Space Center in Florida, associate center director Kelvin Manning, left, briefs astronaut candidates Nicole Mann, center, and Tyler Nick Hague on preparations for the launch the Orion spacecraft on Exploration Flight Test EFT-1. Plans call for the Lockheed Martin-built Orion to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station. The astronaut class of 2013 was selected by NASA after an extensive year-and-a-half search. The new group will help the agency push the boundaries of exploration and travel to new destinations in the solar system. To learn more about the astronaut class of 2013, visit: http://www.nasa.gov/astronauts/2013astroclass.html Photo credit: NASA/Kim Shiflett

  13. Unmanned ground vehicles for integrated force protection

    NASA Astrophysics Data System (ADS)

    Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas

    2004-09-01

    The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.

  14. Steam ejector-condenser: stage I of a differential vacuum pumping station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, C.L.; Alger, T.W.

    1981-04-01

    A steam ejector-condenser unit was built and tested to produce a 10 Torr (13.3 x 10/sup 2/Pa) vacuum with a 2 cm aperture to the atmosphere. This unit is the first stage of a differential vacuum pumping station that will be used with the Experimental Test Accelerator. The accelerator's electron beam will pass through a series of openings from a high vacuum (5 x 10/sup -6/ Torr) to the atmosphere. The differential system consists of four vacuum pumping units separated by 2 cm-diam apertures. Superheated steam is injected near the final beamline orifice to reduce the quantity of atmospheric airmore » flowing into the steam ejector--condenser unit. The steam ejector in the condenser vessel is open at its center to permit passage of the accelerator beam. Five nozzles mounted in a conical array produce the ejector vacuum of 10 Torr. The ejector exhausts into the condenser and forms a barrier to air flow into the lower pressure region. This feature permits high volume cold trapping and cryopumping of water vapor in the remaining lower-pressure stages. Tests have proven that the steam ejector--condenser is a reliable operating unit and suitable for long-term, steady-state accelerator operation.« less

  15. Consolidating AMC’s Contingency Response Capabilities: A Delphi Study

    DTIC Science & Technology

    2015-06-19

    Africa in support of Operation UNITED ASSISTANCE, the international response to contain the Ebola epidemic (US Transportation Command, 2014). Though JTF...DO, 2015). The deployment of the 817 CRG to Liberia also underutilized its full capacity as only 79 Airmen and 10 Soldiers of the 140-member JTF-PO...pdf 89 Gonzalez, G. S. (2014, November 13). JTF-PO Leaves Liberia . Retrieved from US Air Force Expeditionary Center: http

  16. United States Air Force Graduate Student Research Program. 1989 Program Management Report

    DTIC Science & Technology

    1989-12-01

    research at Air Force laboratories /centers. Each assignment is in a subject area and at an Air Force facility mutually agreed upon by the...housing difficult to find, c) 10 weeks too short for research period. June 20, 1989 Astronautics Laboratory Edwards Air Force Base, California June 21...1989 HRL: Operations Training Division Williams Air Force Base, Arizona June 22, 1989 Weapons Laboratory Kirtland Air

  17. Job Corps: Its Costs, Employment Outcomes, and Service to the Public. Briefing Report to the Chairman, Committee on Labor and Human Resources, United States Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    This report evaluates the cost effectiveness of the Civilian Conservation Centers (CCCs) which are part of the Job Corps program but operated under inter-agency agreement by the Departments of Agriculture and the Interior. Data are from the program year beginning July 1, 1984. Information is presented on: (1) the costs, job placements, and…

  18. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    Team members with United Launch Alliance (ULA) monitor the progress as the two halves of the payload fairing begin to close around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  19. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members assist as a crane lifts the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  20. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is raised and prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November

Top