Effects of Different Heave Motion Components on Pilot Pitch Control Behavior
NASA Technical Reports Server (NTRS)
Zaal, Petrus M. T.; Zavala, Melinda A.
2016-01-01
The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited effects on pilot manual control behavior and performance.
Postural time-to-contact as a precursor of visually induced motion sickness.
Li, Ruixuan; Walter, Hannah; Curry, Christopher; Rath, Ruth; Peterson, Nicolette; Stoffregen, Thomas A
2018-06-01
The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body's center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.
Fetsch, Christopher R; Wang, Sentao; Gu, Yong; Deangelis, Gregory C; Angelaki, Dora E
2007-01-17
Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior temporal area (MSTd), a region thought to contribute to heading perception, but the reference frames of these signals remain unknown. We measured the heading tuning of MSTd neurons by presenting optic flow (visual condition), inertial motion (vestibular condition), or a congruent combination of both cues (combined condition). Static eye position was varied from trial to trial to determine the reference frame of tuning (eye-centered, head-centered, or intermediate). We found that tuning for optic flow was predominantly eye-centered, whereas tuning for inertial motion was intermediate but closer to head-centered. Reference frames in the two unimodal conditions were rarely matched in single neurons and uncorrelated across the population. Notably, reference frames in the combined condition varied as a function of the relative strength and spatial congruency of visual and vestibular tuning. This represents the first investigation of spatial reference frames in a naturalistic, multimodal condition in which cues may be integrated to improve perceptual performance. Our results compare favorably with the predictions of a recent neural network model that uses a recurrent architecture to perform optimal cue integration, suggesting that the brain could use a similar computational strategy to integrate sensory signals expressed in distinct frames of reference.
NASA Technical Reports Server (NTRS)
Carr, Peter C.; Mckissick, Burnell T.
1988-01-01
A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.
A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.
Ratzlaff, Michael; Nawrot, Mark
2016-09-01
The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions. © The Author(s) 2016.
Keshner, E A; Dhaher, Y
2008-07-01
Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field could modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.
NASA Technical Reports Server (NTRS)
Looper, M.
1976-01-01
This study investigates the influence of attention loading on the established intersensory effects of passive bodily rotation on choice reaction time (RT) to visual motion. Subjects sat at the center of rotation in an enclosed rotating chamber and observed an oscilloscope on which were, in the center, a tracking display and, 10 deg left of center, a RT line. Three tracking tasks and a no-tracking control condition were presented to all subjects in combination with the RT task, which occurred with and without concurrent cab rotations. Choice RT to line motions was inhibited (probability less than .001) both when there was simultaneous vestibular stimulation and when there was a tracking task; response latencies lengthened progressively with increased similarity between the RT and tracking tasks. However, the attention conditions did not affect the intersensory effect; the significance of this for the nature of the sensory interaction is discussed.
Keshner, E.A.; Dhaher, Y.
2008-01-01
Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29–31 years) and 3 visually sensitive (27–57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a 3-dimensional model of joint motion11 was developed to examine gross head motion in 3 planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field can modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms. PMID:18162402
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
Effects of simulator motion and visual characteristics on rotorcraft handling qualities evaluations
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Hart, Daniel C.
1993-01-01
The pilot's perceptions of aircraft handling qualities are influenced by a combination of the aircraft dynamics, the task, and the environment under which the evaluation is performed. When the evaluation is performed in a groundbased simulator, the characteristics of the simulation facility also come into play. Two studies were conducted on NASA Ames Research Center's Vertical Motion Simulator to determine the effects of simulator characteristics on perceived handling qualities. Most evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual time delays and motion command washout filters. Differences in pilot opinion were found as the visual and motion parameters were changed, reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. The results indicate a need for tailoring the motion washout dynamics to suit the task. Visual-delay data are inconclusive but suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.
Demonstrating the Potential for Dynamic Auditory Stimulation to Contribute to Motion Sickness
Keshavarz, Behrang; Hettinger, Lawrence J.; Kennedy, Robert S.; Campos, Jennifer L.
2014-01-01
Auditory cues can create the illusion of self-motion (vection) in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant's vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity), vection (latency, strength, duration), and postural steadiness (center of pressure) were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as “auditorily induced motion sickness”. PMID:24983752
Receptive fields for smooth pursuit eye movements and motion perception.
Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R
2010-12-01
Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.
Streepey, Jefferson W; Kenyon, Robert V; Keshner, Emily A
2007-01-01
We previously reported responses to induced postural instability in young healthy individuals viewing visual motion with a narrow (25 degrees in both directions) and wide (90 degrees and 55 degrees in the horizontal and vertical directions) field of view (FOV) as they stood on different sized blocks. Visual motion was achieved using an immersive virtual environment that moved realistically with head motion (natural motion) and translated sinusoidally at 0.1 Hz in the fore-aft direction (augmented motion). We observed that a subset of the subjects (steppers) could not maintain continuous stance on the smallest block when the virtual environment was in motion. We completed a posteriori analyses on the postural responses of the steppers and non-steppers that may inform us about the mechanisms underlying these differences in stability. We found that when viewing augmented motion with a wide FOV, there was a greater effect on the head and whole body center of mass and ankle angle root mean square (RMS) values of the steppers than of the non-steppers. FFT analyses revealed greater power at the frequency of the visual stimulus in the steppers compared to the non-steppers. Whole body COM time lags relative to the augmented visual scene revealed that the time-delay between the scene and the COM was significantly increased in the steppers. The increased responsiveness to visual information suggests a greater visual field-dependency of the steppers and suggests that the thresholds for shifting from a reliance on visual information to somatosensory information can differ even within a healthy population.
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
A neural model of motion processing and visual navigation by cortical area MST.
Grossberg, S; Mingolla, E; Pack, C
1999-12-01
Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.
Overview of research in progress at the Center of Excellence
NASA Technical Reports Server (NTRS)
Wandell, Brian A.
1993-01-01
The Center of Excellence (COE) was created nine years ago to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. Significant interchange of ideas and personnel continues between Stanford and participating groups at NASA-Ames; the COE serves its function well. This progress report is organized into sections divided by project. Each section contains a list of investigators, a background statement, progress report, and a proposal for work during the coming year. The projects are: Algorithms for development and calibration of visual systems, Visually optimized image compression, Evaluation of advanced piloting displays, Spectral representations of color, Perception of motion in man and machine, Automation and decision making, and Motion information used for navigation and control.
Visual processing of rotary motion.
Werkhoven, P; Koenderink, J J
1991-01-01
Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.
Effects of visual motion consistent or inconsistent with gravity on postural sway.
Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo
2017-07-01
Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.
Influence of moving visual environment on sit-to-stand kinematics in children and adults.
Slaboda, Jill C; Barton, Joseph E; Keshner, Emily A
2009-08-01
The effect of visual field motion on the sit-to-stand kinematics of adults and children was investigated. Children (8 to12 years of age) and adults (21 to 49 years of age) were seated in a virtual environment that rotated in the pitch and roll directions. Participants stood up either (1) concurrent with onset of visual motion or (2) after an immersion period in the moving visual environment, and (3) without visual input. Angular velocities of the head with respect to the trunk, and trunk with respect to the environment, w ere calculated as was head andtrunk center of mass. Both adults and children reduced head and trunk angular velocity after immersion in the moving visual environment. Unlike adults, children demonstrated significant differences in displacement of the head center of mass during the immersion and concurrent trials when compared to trials without visual input. Results suggest a time-dependent effect of vision on sit-to-stand kinematics in adults, whereas children are influenced by the immediate presence or absence of vision.
Multisensory Self-Motion Compensation During Object Trajectory Judgments
Dokka, Kalpana; MacNeilage, Paul R.; DeAngelis, Gregory C.; Angelaki, Dora E.
2015-01-01
Judging object trajectory during self-motion is a fundamental ability for mobile organisms interacting with their environment. This fundamental ability requires the nervous system to compensate for the visual consequences of self-motion in order to make accurate judgments, but the mechanisms of this compensation are poorly understood. We comprehensively examined both the accuracy and precision of observers' ability to judge object trajectory in the world when self-motion was defined by vestibular, visual, or combined visual–vestibular cues. Without decision feedback, subjects demonstrated no compensation for self-motion that was defined solely by vestibular cues, partial compensation (47%) for visually defined self-motion, and significantly greater compensation (58%) during combined visual–vestibular self-motion. With decision feedback, subjects learned to accurately judge object trajectory in the world, and this generalized to novel self-motion speeds. Across conditions, greater compensation for self-motion was associated with decreased precision of object trajectory judgments, indicating that self-motion compensation comes at the cost of reduced discriminability. Our findings suggest that the brain can flexibly represent object trajectory relative to either the observer or the world, but a world-centered representation comes at the cost of decreased precision due to the inclusion of noisy self-motion signals. PMID:24062317
Heading Tuning in Macaque Area V6.
Fan, Reuben H; Liu, Sheng; DeAngelis, Gregory C; Angelaki, Dora E
2015-12-16
Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual-vestibular integration for self-motion perception. To understand how we successfully navigate our world, it is important to understand which parts of the brain process cues used to perceive our direction of self-motion (i.e., heading). Cortical area V6 has been implicated in heading computations based on human neuroimaging data, but direct measurements of heading selectivity in individual V6 neurons have been lacking. We provide the first demonstration that V6 neurons carry 3D visual heading signals, which are represented in an eye-centered reference frame. In contrast, we found almost no evidence for vestibular heading signals in V6, indicating that V6 is unlikely to contribute to multisensory integration of heading signals, unlike other cortical areas. These findings provide important constraints on the roles of V6 in self-motion perception. Copyright © 2015 the authors 0270-6474/15/3516303-12$15.00/0.
Selen, L. P. J.; Medendorp, W. P.
2014-01-01
Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108
Lin, Zhicheng; He, Sheng
2012-10-25
Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.
Visual and motion cueing in helicopter simulation
NASA Technical Reports Server (NTRS)
Bray, R. S.
1985-01-01
Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.
Medendorp, W. P.
2015-01-01
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289
Effect of eye position during human visual-vestibular integration of heading perception.
Crane, Benjamin T
2017-09-01
Visual and inertial stimuli provide heading discrimination cues. Integration of these multisensory stimuli has been demonstrated to depend on their relative reliability. However, the reference frame of visual stimuli is eye centered while inertia is head centered, and it remains unclear how these are reconciled with combined stimuli. Seven human subjects completed a heading discrimination task consisting of a 2-s translation with a peak velocity of 16 cm/s. Eye position was varied between 0° and ±25° left/right. Experiments were done with inertial motion, visual motion, or a combined visual-inertial motion. Visual motion coherence varied between 35% and 100%. Subjects reported whether their perceived heading was left or right of the midline in a forced-choice task. With the inertial stimulus the eye position had an effect such that the point of subjective equality (PSE) shifted 4.6 ± 2.4° in the gaze direction. With the visual stimulus the PSE shift was 10.2 ± 2.2° opposite the gaze direction, consistent with retinotopic coordinates. Thus with eccentric eye positions the perceived inertial and visual headings were offset ~15°. During the visual-inertial conditions the PSE varied consistently with the relative reliability of these stimuli such that at low visual coherence the PSE was similar to that of the inertial stimulus and at high coherence it was closer to the visual stimulus. On average, the inertial stimulus was weighted near Bayesian ideal predictions, but there was significant deviation from ideal in individual subjects. These findings support visual and inertial cue integration occurring in independent coordinate systems. NEW & NOTEWORTHY In multiple cortical areas visual heading is represented in retinotopic coordinates while inertial heading is in body coordinates. It remains unclear whether multisensory integration occurs in a common coordinate system. The experiments address this using a multisensory integration task with eccentric gaze positions making the effect of coordinate systems clear. The results indicate that the coordinate systems remain separate to the perceptual level and that during the multisensory task the perception depends on relative stimulus reliability. Copyright © 2017 the American Physiological Society.
Lin, Zhicheng; He, Sheng
2012-01-01
Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817
Relationship Between Optimal Gain and Coherence Zone in Flight Simulation
NASA Technical Reports Server (NTRS)
Gracio, Bruno Jorge Correia; Pais, Ana Rita Valente; vanPaassen, M. M.; Mulder, Max; Kely, Lon C.; Houck, Jacob A.
2011-01-01
In motion simulation the inertial information generated by the motion platform is most of the times different from the visual information in the simulator displays. This occurs due to the physical limits of the motion platform. However, for small motions that are within the physical limits of the motion platform, one-to-one motion, i.e. visual information equal to inertial information, is possible. It has been shown in previous studies that one-to-one motion is often judged as too strong, causing researchers to lower the inertial amplitude. When trying to measure the optimal inertial gain for a visual amplitude, we found a zone of optimal gains instead of a single value. Such result seems related with the coherence zones that have been measured in flight simulation studies. However, the optimal gain results were never directly related with the coherence zones. In this study we investigated whether the optimal gain measurements are the same as the coherence zone measurements. We also try to infer if the results obtained from the two measurements can be used to differentiate between simulators with different configurations. An experiment was conducted at the NASA Langley Research Center which used both the Cockpit Motion Facility and the Visual Motion Simulator. The results show that the inertial gains obtained with the optimal gain are different than the ones obtained with the coherence zone measurements. The optimal gain is within the coherence zone.The point of mean optimal gain was lower and further away from the one-to-one line than the point of mean coherence. The zone width obtained for the coherence zone measurements was dependent on the visual amplitude and frequency. For the optimal gain, the zone width remained constant when the visual amplitude and frequency were varied. We found no effect of the simulator configuration in both the coherence zone and optimal gain measurements.
NASA Technical Reports Server (NTRS)
Patterson, J. C., Jr.; Jordan, F. L., Jr.
1975-01-01
A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.
Human discrimination of visual direction of motion with and without smooth pursuit eye movements
NASA Technical Reports Server (NTRS)
Krukowski, Anton E.; Pirog, Kathleen A.; Beutter, Brent R.; Brooks, Kevin R.; Stone, Leland S.
2003-01-01
It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. 800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).
2008-07-28
NASA AA - Associate Administrator for Aeronautics Jai Shin visits Ames Research Center and tours the Vertical Motion Simulator (VMS, T-cab) Jaiwon Shin, Moffett Field Hangar 1 shows in the VMS visual scene.
Visual processing in the central bee brain.
Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila
2009-08-12
Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.
Motion Cueing Algorithm Development: New Motion Cueing Program Implementation and Tuning
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.
2005-01-01
A computer program has been developed for the purpose of driving the NASA Langley Research Center Visual Motion Simulator (VMS). This program includes two new motion cueing algorithms, the optimal algorithm and the nonlinear algorithm. A general description of the program is given along with a description and flowcharts for each cueing algorithm, and also descriptions and flowcharts for subroutines used with the algorithms. Common block variable listings and a program listing are also provided. The new cueing algorithms have a nonlinear gain algorithm implemented that scales each aircraft degree-of-freedom input with a third-order polynomial. A description of the nonlinear gain algorithm is given along with past tuning experience and procedures for tuning the gain coefficient sets for each degree-of-freedom to produce the desired piloted performance. This algorithm tuning will be needed when the nonlinear motion cueing algorithm is implemented on a new motion system in the Cockpit Motion Facility (CMF) at the NASA Langley Research Center.
2017-12-08
Release Date: March 10, 2010 - Distant galaxy clusters mysteriously stream at a million miles per hour along a path roughly centered on the southern constellations Centaurus and Hydra. A new study led by Alexander Kashlinsky at NASA's Goddard Space Flight Center in Greenbelt, Md., tracks this collective motion -- dubbed the "dark flow" -- to twice the distance originally reported, out to more than 2.5 billion light-years. Abell 1689, redshift 0.181. Credit: NASA/Goddard Space Flight Center/Scientific Visualization Studio/ESA/L. Bradley/JHU To learn more go to: www.nasa.gov/centers/goddard/news/releases/2010/10-023.html To see other visualizations related to this story go to: svs.gsfc.nasa.gov/goto?10580
1986-09-01
TECHNICAL EVALUATION REPORT OF THE SYMPOSIUM ON "FLIGHT SIMULATION" A. M. Cook. NASA -Ames Research Center 1. INTRODUCILN This report evaluates the 67th...John C. Ousterberry* NASA Ames Research Center Moffett Field, California 94035, U.S.A. SUMMARY Early AGARD papers on manned flight simulation...and developffent simulators. VISUAL AND MOTION CUEING IN HELICOPTER SIMULATION Nichard S. Bray NASA Ames Research Center Moffett Field, California
An Architectural Model of Visual Motion Understanding
1989-08-01
of the Center for Visual Sciences of the University of Rochester. Their courage in the face of the overwhelming com- plexity of the human visual...analysis should perform better than either approach by itself. Notice that the problems of the two approaches are non-overlapping. Continuous methods face no...success. This is not terribly surprising, as the problem is inherently very difficult. Consider the problems faced by a unit that is trying to compute the
Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice
2017-04-07
Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Separate visual representations for perception and for visually guided behavior
NASA Technical Reports Server (NTRS)
Bridgeman, Bruce
1989-01-01
Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill B.; Cardullo, Frank M.
2012-01-01
Telban and Cardullo have developed and successfully implemented the non-linear optimal motion cueing algorithm at the Visual Motion Simulator (VMS) at the NASA Langley Research Center in 2005. The latest version of the non-linear algorithm performed filtering of motion cues in all degrees-of-freedom except for pitch and roll. This manuscript describes the development and implementation of the non-linear optimal motion cueing algorithm for the pitch and roll degrees of freedom. Presented results indicate improved cues in the specified channels as compared to the original design. To further advance motion cueing in general, this manuscript describes modifications to the existing algorithm, which allow for filtering at the location of the pilot's head as opposed to the centroid of the motion platform. The rational for such modification to the cueing algorithms is that the location of the pilot's vestibular system must be taken into account as opposed to the off-set of the centroid of the cockpit relative to the center of rotation alone. Results provided in this report suggest improved performance of the motion cueing algorithm.
Modelling Effects on Grid Cells of Sensory Input During Self-motion
2016-04-20
input during self-motion Florian Raudies, James R. Hinman and Michael E. Hasselmo Center for Systems Neuroscience , Centre for Memory and Brain...Department of Psychological and Brain Sciences and Graduate Program for Neuroscience , Boston University, 2 Cummington Mall, Boston, MA 02215, USA Visual...Psychological and Brain Sciences and the Centre for Computational Neuroscience and Neural Technology before taking his current position as a Research
Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.
2014-01-01
The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267
NASA Astrophysics Data System (ADS)
Telban, Robert J.
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Frequency of gamma oscillations in humans is modulated by velocity of visual motion
Butorina, Anna V.; Sysoeva, Olga V.; Prokofyev, Andrey O.; Nikolaeva, Anastasia Yu.; Stroganova, Tatiana A.
2015-01-01
Gamma oscillations are generated in networks of inhibitory fast-spiking (FS) parvalbumin-positive (PV) interneurons and pyramidal cells. In animals, gamma frequency is modulated by the velocity of visual motion; the effect of velocity has not been evaluated in humans. In this work, we have studied velocity-related modulations of gamma frequency in children using MEG/EEG. We also investigated whether such modulations predict the prominence of the “spatial suppression” effect (Tadin D, Lappin JS, Gilroy LA, Blake R. Nature 424: 312-315, 2003) that is thought to depend on cortical center-surround inhibitory mechanisms. MEG/EEG was recorded in 27 normal boys aged 8–15 yr while they watched high-contrast black-and-white annular gratings drifting with velocities of 1.2, 3.6, and 6.0°/s and performed a simple detection task. The spatial suppression effect was assessed in a separate psychophysical experiment. MEG gamma oscillation frequency increased while power decreased with increasing velocity of visual motion. In EEG, the effects were less reliable. The frequencies of the velocity-specific gamma peaks were 64.9, 74.8, and 87.1 Hz for the slow, medium, and fast motions, respectively. The frequency of the gamma response elicited during slow and medium velocity of visual motion decreased with subject age, whereas the range of gamma frequency modulation by velocity increased with age. The frequency modulation range predicted spatial suppression even after controlling for the effect of age. We suggest that the modulation of the MEG gamma frequency by velocity of visual motion reflects excitability of cortical inhibitory circuits and can be used to investigate their normal and pathological development in the human brain. PMID:25925324
Basic quantitative assessment of visual performance in patients with very low vision.
Bach, Michael; Wilke, Michaela; Wilhelm, Barbara; Zrenner, Eberhart; Wilke, Robert
2010-02-01
A variety of approaches to developing visual prostheses are being pursued: subretinal, epiretinal, via the optic nerve, or via the visual cortex. This report presents a method of comparing their efficacy at genuinely improving visual function, starting at no light perception (NLP). A test battery (a computer program, Basic Assessment of Light and Motion [BaLM]) was developed in four basic visual dimensions: (1) light perception (light/no light), with an unstructured large-field stimulus; (2) temporal resolution, with single versus double flash discrimination; (3) localization of light, where a wedge extends from the center into four possible directions; and (4) motion, with a coarse pattern moving in one of four directions. Two- or four-alternative, forced-choice paradigms were used. The participants' responses were self-paced and delivered with a keypad. The feasibility of the BaLM was tested in 73 eyes of 51 patients with low vision. The light and time test modules discriminated between NLP and light perception (LP). The localization and motion modules showed no significant response for NLP but discriminated between LP and hand movement (HM). All four modules reached their ceilings in the acuity categories higher than HM. BaLM results systematically differed between the very-low-acuity categories NLP, LP, and HM. Light and time yielded similar results, as did localization and motion; still, for assessing the visual prostheses with differing temporal characteristics, they are not redundant. The results suggest that this simple test battery provides a quantitative assessment of visual function in the very-low-vision range from NLP to HM.
Implicit Learning of Viewpoint-Independent Spatial Layouts
Tsuchiai, Taiga; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi
2012-01-01
We usually perceive things in our surroundings as unchanged despite viewpoint changes caused by self-motion. The visual system therefore must have a function to process objects independently of viewpoint. In this study, we examined whether viewpoint-independent spatial layout can be obtained implicitly. For this purpose, we used a contextual cueing effect, a learning effect of spatial layout in visual search displays known to be an implicit effect. We investigated the transfer of the contextual cueing effect to images from a different viewpoint by using visual search displays of 3D objects. For images from a different viewpoint, the contextual cueing effect was maintained with self-motion but disappeared when the display changed without self-motion. This indicates that there is an implicit learning effect in environment-centered coordinates and suggests that the spatial representation of object layouts can be obtained and updated implicitly. We also showed that binocular disparity plays an important role in the layout representations. PMID:22740837
Analysis, simulation and visualization of 1D tapping via reduced dynamical models
NASA Astrophysics Data System (ADS)
Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo
2014-04-01
A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.
A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver
NASA Technical Reports Server (NTRS)
Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.
2002-01-01
This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is discussed. The results of this evaluation will be used to assess motion cueing performance.
Machine Visual Targeting Modeled on Biological Reflexes
1993-02-01
Released by Under authority of P. J. Heckman, Jr., Head N. B . Estabrook Undersea Al and Robotics Branch Ocean Engineering Division ACKNOWLEDGMENTS...elements are modeled after the small B type described by Sterling (1983) that have no gap junctions, and synapse only wvith rods and rod bipolars. Both on...of Y retina for motion detection showing receptors (R), horizonU~L% (H). on-center bilwobrs ( B ] . off-center bipolars (00), arnacrine (A). on-center
On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.
Kang, Jiyeon; Vashista, Vineet; Agrawal, Sunil K
2017-09-01
Pelvic movement is important to human locomotion as the center of mass is located near the center of pelvis. Lateral pelvic motion plays a crucial role to shift the center of mass on the stance leg, while swinging the other leg and keeping the body balanced. In addition, vertical pelvic movement helps to reduce metabolic energy expenditure by exchanging potential and kinetic energy during the gait cycle. However, patient groups with cerebral palsy or stroke have excessive pelvic motion that leads to high energy expenditure. In addition, they have higher chances of falls as the center ofmass could deviate outside the base of support. In this paper, a novel control method is suggested using tethered pelvic assist device (TPAD) to teach subjects to walk with a specified target pelvic trajectory while walking on a treadmill. In this method, a force field is applied to the pelvis to guide it to move on a target trajectory and correctional forces are applied, if the pelvis motion has excessive deviations from the target trajectory. Three different experimentswith healthy subjects were conducted to teach them to walk on a new target pelvic trajectory with the presented control method. For all three experiments, the baseline trajectory of the pelvis was experimentally determined for each participating subject. To design a target pelvic trajectory which is different from the baseline, Experiment I scaled up the lateral component of the baseline pelvic trajectory, while Experiment II scaled down the lateral component of the baseline trajectory. For both Experiments I and II, the controller generated a 2-D force field in the transverse plane to provide the guidance force. In this paper, seven subjects were recruited for each experiment who walked on the treadmill with suggested control methods and visual feedback of their pelvic trajectory. The results show that the subjects were able to learn the target pelvic trajectory in each experiment and also retained the training effects after the completion of the experiment. In Experiment III, both lateral and vertical components of the pelvic trajectory were scaled down from the baseline trajectory. The force field was extended to three dimensions in order to correct the vertical pelvic movement as well. Three subgroups (force feedback alone, visual feedback alone, and both force and visual feedback) were recruited to understand the effects of force feedback and visual feedback alone to distinguish the results from Experiments I and II. The results showthat a trainingmethod that combines visual and force feedback is superior to the training methods with visual or force feedback alone. We believe that the present control strategy holds potential in training and correcting abnormal pelvic movements in different patient populations.
Future directions in flight simulation: A user perspective
NASA Technical Reports Server (NTRS)
Jackson, Bruce
1993-01-01
Langley Research Center was an early leader in simulation technology, including a special emphasis in space vehicle simulations such as the rendezvous and docking simulator for the Gemini program and the lunar landing simulator used before Apollo. In more recent times, Langley operated the first synergistic six degree of freedom motion platform (the Visual Motion Simulator, or VMS) and developed the first dual-dome air combat simulator, the Differential Maneuvering Simulator (DMS). Each Langley simulator was developed more or less independently from one another with different programming support. At present time, the various simulation cockpits, while supported by the same host computer system, run dissimilar software. The majority of recent investments in Langley's simulation facilities have been hardware procurements: host processors, visual systems, and most recently, an improved motion system. Investments in software improvements, however, have not been of the same order.
Eye movement instructions modulate motion illusion and body sway with Op Art.
Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul
2015-01-01
Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth-Bridget Riley's Movements in Squares and Akiyoshi Kitaoka's Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka's image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway.
Burnat, Kalina; Hu, Tjing-Tjing; Kossut, Małgorzata; Eysel, Ulf T; Arckens, Lutgarde
2017-09-13
Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7. SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli. Copyright © 2017 the authors 0270-6474/17/378989-11$15.00/0.
Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion
Fajen, Brett R.; Matthis, Jonathan S.
2013-01-01
Many locomotor tasks involve interactions with moving objects. When observer (i.e., self-)motion is accompanied by object motion, the optic flow field includes a component due to self-motion and a component due to object motion. For moving observers to perceive the movement of other objects relative to the stationary environment, the visual system could recover the object-motion component – that is, it could factor out the influence of self-motion. In principle, this could be achieved using visual self-motion information, non-visual self-motion information, or a combination of both. In this study, we report evidence that visual information about the speed (Experiment 1) and direction (Experiment 2) of self-motion plays a role in recovering the object-motion component even when non-visual self-motion information is also available. However, the magnitude of the effect was less than one would expect if subjects relied entirely on visual self-motion information. Taken together with previous studies, we conclude that when self-motion is real and actively generated, both visual and non-visual self-motion information contribute to the perception of object motion. We also consider the possible role of this process in visually guided interception and avoidance of moving objects. PMID:23408983
Modeling Visual, Vestibular and Oculomotor Interactions in Self-Motion Estimation
NASA Technical Reports Server (NTRS)
Perrone, John
1997-01-01
A computational model of human self-motion perception has been developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center. The research included in the grant proposal sought to extend the utility of this model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. This extension has been achieved along with physiological validation of the basic operation of the model.
Differential effect of visual motion adaption upon visual cortical excitability.
Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer
2017-03-01
The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.
An investigation of motion base cueing and G-seat cueing on pilot performance in a simulator
NASA Technical Reports Server (NTRS)
Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.
1983-01-01
The effect of G-seat cueing (GSC) and motion-base cueing (MBC) on performance of a pursuit-tracking task is studied using the visual motion simulator (VMS) at Langley Research Center. The G-seat, the six-degree-of-freedom synergistic platform motion system, the visual display, the cockpit hardware, and the F-16 aircraft mathematical model are characterized. Each of 8 active F-15 pilots performed the 2-min-43-sec task 10 times for each experimental mode: no cue, GSC, MBC, and GSC + MBC; the results were analyzed statistically in terms of the RMS values of vertical and lateral tracking error. It is shown that lateral error is significantly reduced by either GSC or MBC, and that the combination of cues produces a further, significant decrease. Vertical error is significantly decreased by GSC with or without MBC, whereas MBC effects vary for different pilots. The pattern of these findings is roughly duplicated in measurements of stick force applied for roll and pitch correction.
Rosenblatt, Steven David; Crane, Benjamin Thomas
2015-01-01
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.
Neural dynamics for landmark orientation and angular path integration
Seelig, Johannes D.; Jayaraman, Vivek
2015-01-01
Summary Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed flies walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body — a toroidal structure in the center of the fly brain. The population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity — a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors — network structures proposed to support the function of navigational brain circuits. PMID:25971509
Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration
NASA Technical Reports Server (NTRS)
Hamerman, J. A.
1979-01-01
This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.
Eye movement instructions modulate motion illusion and body sway with Op Art
Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul
2015-01-01
Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth—Bridget Riley’s Movements in Squares and Akiyoshi Kitaoka’s Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka’s image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway. PMID:25859197
The role of human ventral visual cortex in motion perception
Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene
2013-01-01
Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030
Maffei, Vincenzo; Mazzarella, Elisabetta; Piras, Fabrizio; Spalletta, Gianfranco; Caltagirone, Carlo; Lacquaniti, Francesco; Daprati, Elena
2016-05-01
Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. Twenty-seven of them also aligned a luminous bar to the vertical direction (subjective visual vertical, SVV). Using voxel-based lesion-symptom mapping as well as lesion subtraction analysis, we found that lesions mainly centered on the posterior insula are associated with greater deviations of SVV, consistent with several previous studies. Instead, lesions mainly centered on the parietal operculum decrease the ability to discriminate natural from unnatural gravitational acceleration with a timed motor response in the interception task. Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.
1980-01-01
NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.
Suppressive mechanisms in visual motion processing: from perception to intelligence
Tadin, Duje
2015-01-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and those with schizophrenia—a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386
Audiovisual associations alter the perception of low-level visual motion
Kafaligonul, Hulusi; Oluk, Can
2015-01-01
Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role. PMID:25873869
Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.
Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi
2017-07-01
Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.
Smelling directions: Olfaction modulates ambiguous visual motion perception
Kuang, Shenbing; Zhang, Tao
2014-01-01
Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162
1990-04-01
ingtoa~, DC 3. SPON9ORING; MONITORING AGENCY NAME(S) AND ADORESS4ES) 10. SPUZOVA / MONITORING US Army Ballistic Researh Laboratory AGENCY SEP06... Biology I Kenyon B. De Greene Washington Square Center for NS Institute of Safety & Systems Management New York, NY 10003 University of Southern...Chicago, IL 60637 -- I Donald A. Glaser University of California - Berkeley I Philip B. Hollander ---Deptartment of Molecular Biology Ohio State College
Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan
2013-01-01
Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P < .05). In addition, significant improvement was observed in postural coordination between the ankle and hip joints (mean, 10.4%; P = .04). The present research implemented a novel balance rehabilitation strategy based on virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.
Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.
1997-01-01
The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Pilot Alan Poindexter seems satisfied with the landing practice session he has just completed aboard a shuttle training aircraft, or STA, at Kennedy Space Center's Shuttle Landing Facility. Poindexter and Commander Steve Frick are preparing for the Dec. 6 launch on space shuttle Atlantis. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Commander Steve Frick seems satisfied with the landing practice session he has just completed aboard a shuttle training aircraft, or STA, at Kennedy Space Center's Shuttle Landing Facility. Frick and Pilot Alan Poindexter are preparing for the Dec. 6 launch on space shuttle Atlantis. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. Photo credit: NASA/Kim Shiflett
A neural basis for the spatial suppression of visual motion perception
Liu, Liu D; Haefner, Ralf M; Pack, Christopher C
2016-01-01
In theory, sensory perception should be more accurate when more neurons contribute to the representation of a stimulus. However, psychophysical experiments that use larger stimuli to activate larger pools of neurons sometimes report impoverished perceptual performance. To determine the neural mechanisms underlying these paradoxical findings, we trained monkeys to discriminate the direction of motion of visual stimuli that varied in size across trials, while simultaneously recording from populations of motion-sensitive neurons in cortical area MT. We used the resulting data to constrain a computational model that explained the behavioral data as an interaction of three main mechanisms: noise correlations, which prevented stimulus information from growing with stimulus size; neural surround suppression, which decreased sensitivity for large stimuli; and a read-out strategy that emphasized neurons with receptive fields near the stimulus center. These results suggest that paradoxical percepts reflect tradeoffs between sensitivity and noise in neuronal populations. DOI: http://dx.doi.org/10.7554/eLife.16167.001 PMID:27228283
People can understand descriptions of motion without activating visual motion brain regions
Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina
2013-01-01
What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592
Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu
2015-01-01
Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828
Enciso, R; Memon, A; Mah, J
2003-01-01
The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.
Lauer, Richard T.; Keshner, Emily A.
2011-01-01
The effect of continuous visual flow on the ability to regain and maintain postural orientation was examined. Fourteen young (20–39 years old) and 14 older women (60–79 years old) stood quietly during 3° (30°/s) dorsiflexion tilt of the support surface combined with 30° and 45°/s upward or downward pitch rotations of the visual field. The support surface was held tilted for 30 s and then returned to neutral over a 30-s period while the visual field continued to rotate. Segmental displacement and bilateral tibialis anterior and gastrocnemius muscle EMG responses were recorded. Continuous wavelet transforms were calculated for each muscle EMG response. An instantaneous mean frequency curve (IMNF) of muscle activity, center of mass (COM), center of pressure (COP), and angular excursion at the hip and ankle were used in a functional principal component analysis (fPCA). Functional component weights were calculated and compared with mixed model repeated measures ANOVAs. The fPCA revealed greatest mathematical differences in COM and COP responses between groups or conditions during the period that the platform transitioned from the sustained tilt to a return to neutral position. Muscle EMG responses differed most in the period following support surface tilt indicating that muscle activity increased to support stabilization against the visual flow. Older women exhibited significantly larger COM and COP responses in the direction of visual field motion and less muscle modulation when the platform returned to neutral than younger women. Results on a Rod and Frame test indicated that older women were significantly more visually dependent than the younger women. We concluded that a stiffer body combined with heightened visual sensitivity in older women critically interferes with their ability to counteract posturally destabilizing environments. PMID:21479659
Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys
Liu, Bing
2017-01-01
Despite the enduring interest in motion integration, a direct measure of the space–time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus–response correlations across space and time, computing the linear space–time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms. SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space–time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use all available motion signals uniformly, but rather weights motion preferentially in a narrow band at approximately one-third the radius of the stimulus. Although not universal, the filter predicts responses to other types of stimuli, demonstrating a remarkable degree of generalization that may lead to a deeper understanding of visual motion processing. PMID:28003348
Suppressive mechanisms in visual motion processing: From perception to intelligence.
Tadin, Duje
2015-10-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Emergence of postural patterns as a function of vision and translation frequency
NASA Technical Reports Server (NTRS)
Buchanan, J. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1999-01-01
Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.
Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.
Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M
2010-01-01
Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.
Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion
Niehorster, Diederick C.
2017-01-01
How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272
Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne
2015-01-01
Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus.
2008-07-09
movement and to ensure head-centered movement during rotation. The subject’s gaze was directed to a black visual field inside the device to provide a...vertical nystagmus . (NAMI-1079 NASA Order No. R-93). Pensacola, FL: Naval Aerospace Medical Institute. Homick, J. L., Kohl, R. L., Reschke, M. F
A Story of a Healing Relationship: The Person-Centered Approach in Expressive Arts Therapy
ERIC Educational Resources Information Center
Kim, Sunhee
2010-01-01
In expressive arts therapy, visual art, movement, music, poetry, and creative writing offer clients opportunities to explore their hidden feelings expressed in the art forms. The colors, lines, motions, or sounds expressed during the therapy session promote better understanding of the self with support of the therapist. It is crucial to have a…
Evidence for auditory-visual processing specific to biological motion.
Wuerger, Sophie M; Crocker-Buque, Alexander; Meyer, Georg F
2012-01-01
Biological motion is usually associated with highly correlated sensory signals from more than one modality: an approaching human walker will not only have a visual representation, namely an increase in the retinal size of the walker's image, but also a synchronous auditory signal since the walker's footsteps will grow louder. We investigated whether the multisensorial processing of biological motion is subject to different constraints than ecologically invalid motion. Observers were presented with a visual point-light walker and/or synchronised auditory footsteps; the walker was either approaching the observer (looming motion) or walking away (receding motion). A scrambled point-light walker served as a control. Observers were asked to detect the walker's motion as quickly and as accurately as possible. In Experiment 1 we tested whether the reaction time advantage due to redundant information in the auditory and visual modality is specific for biological motion. We found no evidence for such an effect: the reaction time reduction was accounted for by statistical facilitation for both biological and scrambled motion. In Experiment 2, we dissociated the auditory and visual information and tested whether inconsistent motion directions across the auditory and visual modality yield longer reaction times in comparison to consistent motion directions. Here we find an effect specific to biological motion: motion incongruency leads to longer reaction times only when the visual walker is intact and recognisable as a human figure. If the figure of the walker is abolished by scrambling, motion incongruency has no effect on the speed of the observers' judgments. In conjunction with Experiment 1 this suggests that conflicting auditory-visual motion information of an intact human walker leads to interference and thereby delaying the response.
Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation
ERIC Educational Resources Information Center
Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.
2012-01-01
Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…
Crawling and walking infants see the world differently
Kretch, Kari S.; Franchak, John M.; Adolph, Karen E.
2013-01-01
How does visual experience change over development? To investigate changes in visual input over the developmental transition from crawling to walking, thirty 13-month-olds crawled or walked down a straight path wearing a head-mounted eye-tracker that recorded gaze direction and head-centered field of view. Thirteen additional infants wore a motion-tracker that recorded head orientation. Compared with walkers, crawlers’ field of view contained less walls and more floor. Walkers directed gaze straight ahead at caregivers, whereas crawlers looked down at the floor. Crawlers obtained visual information about targets at higher elevations—caregivers and toys—by craning their heads upward and sitting up to bring the room into view. Findings indicate that visual experiences are intimately tied to infants’ posture. PMID:24341362
Visual motion integration for perception and pursuit
NASA Technical Reports Server (NTRS)
Stone, L. S.; Beutter, B. R.; Lorenceau, J.
2000-01-01
To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.
Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search
Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.
2012-01-01
Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766
Peripheral vision of youths with low vision: motion perception, crowding, and visual search.
Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S
2012-08-24
Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.
Modeling human pilot cue utilization with applications to simulator fidelity assessment.
Zeyada, Y; Hess, R A
2000-01-01
An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator was undertaken. Data from a NASA Ames Research Center vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were employed in the investigation. The study was part of a larger research effort that has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity that occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots who participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to identify changes in simulator fidelity for the task examined.
Takeuchi, Tatsuto; Yoshimoto, Sanae; Shimada, Yasuhiro; Kochiyama, Takanori; Kondo, Hirohito M
2017-02-19
Recent studies have shown that interindividual variability can be a rich source of information regarding the mechanism of human visual perception. In this study, we examined the mechanisms underlying interindividual variability in the perception of visual motion, one of the fundamental components of visual scene analysis, by measuring neurotransmitter concentrations using magnetic resonance spectroscopy. First, by psychophysically examining two types of motion phenomena-motion assimilation and contrast-we found that, following the presentation of the same stimulus, some participants perceived motion assimilation, while others perceived motion contrast. Furthermore, we found that the concentration of the excitatory neurotransmitter glutamate-glutamine (Glx) in the dorsolateral prefrontal cortex (Brodmann area 46) was positively correlated with the participant's tendency to motion assimilation over motion contrast; however, this effect was not observed in the visual areas. The concentration of the inhibitory neurotransmitter γ-aminobutyric acid had only a weak effect compared with that of Glx. We conclude that excitatory process in the suprasensory area is important for an individual's tendency to determine antagonistically perceived visual motion phenomena.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).
Causal evidence for retina dependent and independent visual motion computations in mouse cortex
Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond
2017-01-01
How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661
NASA Technical Reports Server (NTRS)
Berthoz, A.; Pavard, B.; Young, L. R.
1975-01-01
The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.
Nonlinear circuits for naturalistic visual motion estimation
Fitzgerald, James E; Clark, Damon A
2015-01-01
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494
A novel role for visual perspective cues in the neural computation of depth.
Kim, HyungGoo R; Angelaki, Dora E; DeAngelis, Gregory C
2015-01-01
As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extraretinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We found that incorporating these 'dynamic perspective' cues allowed the visual system to generate selectivity for depth sign from motion parallax in macaque cortical area MT, a computation that was previously thought to require extraretinal signals regarding eye velocity. Our findings suggest neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Bowles, R. L.
1983-01-01
This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.
Analysis of motion in speed skating
NASA Astrophysics Data System (ADS)
Koga, Yuzo; Nishimura, Tetsu; Watanabe, Naoki; Okamoto, Kousuke; Wada, Yuhei
1997-03-01
A motion on sports has been studied by many researchers from the view of the medical, psychological and mechanical fields. Here, we try to analyze a speed skating motion dynamically for an aim of performing the best record. As an official competition of speed skating is performed on the round rink, the skating motion must be studied on the three phases, that is, starting phase, straight and curved course skating phase. It is indispensable to have a visual data of a skating motion in order to analyze kinematically. So we took a several subject's skating motion by 8 mm video cameras in order to obtain three dimensional data. As the first step, the movement of the center of gravity of skater (abbreviate to C. G.) is discussed in this paper, because a skating motion is very complicated. The movement of C. G. will give an information of the reaction force to a skate blade from the surface of ice. We discuss the discrepancy of several skating motion by studied subjects. Our final goal is to suggest the best skating form for getting the finest record.
Visualizing protein interactions and dynamics: evolving a visual language for molecular animation.
Jenkinson, Jodie; McGill, Gaël
2012-01-01
Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional visualization techniques for learning about protein conformation and molecular motion in association with a ligand-receptor binding event. Increasingly complex versions of the same binding event were depicted in each of four animated treatments. Students (n = 131) were recruited from the undergraduate biology program at University of Toronto, Mississauga. Visualization media were developed in the Center for Molecular and Cellular Dynamics at Harvard Medical School. Stem cell factor ligand and cKit receptor tyrosine kinase were used as a classical example of a ligand-induced receptor dimerization and activation event. Each group completed a pretest, viewed one of four variants of the animation, and completed a posttest and, at 2 wk following the assessment, a delayed posttest. Overall, the most complex animation was the most effective at fostering students' understanding of the events depicted. These results suggest that, in select learning contexts, increasingly complex representations may be more desirable for conveying the dynamic nature of cell binding events.
An intelligent surveillance platform for large metropolitan areas with dense sensor deployment.
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A; Smilansky, Zeev
2013-06-07
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.
Can walking motions improve visually induced rotational self-motion illusions in virtual reality?
Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y
2015-02-04
Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.
Perception of Visual Speed While Moving
ERIC Educational Resources Information Center
Durgin, Frank H.; Gigone, Krista; Scott, Rebecca
2005-01-01
During self-motion, the world normally appears stationary. In part, this may be due to reductions in visual motion signals during self-motion. In 8 experiments, the authors used magnitude estimation to characterize changes in visual speed perception as a result of biomechanical self-motion alone (treadmill walking), physical translation alone…
Visualization of a vortex flow in a rotating tank
NASA Astrophysics Data System (ADS)
Kawano, Yosuke
Flow structures of a vortex in a rotating tank were studied employing tracer method. The velocity measurements were made by photographing the motions of small polystyrene particles and analyzing strobo flash light pictures. The vortex flow is confined to a cylindrical region which is composed of a spiral upward flow in the center surrounded by an annular downward flow.
Pilot Comments for High Speed Research Cycle 3 Simulations Study (LaRC.1)
NASA Technical Reports Server (NTRS)
Bailey, Melvin L. (Editor); Jackson, E. Bruce (Technical Monitor)
2000-01-01
This is a compilation of pilot comments from the Boeing High Speed Research Aircraft, Cycle 3 Simulation Study (LaRC.1) conducted from January to March 1997 at NASA Langley Research Center. This simulation study was conducted using the Visual Motion Simulator. The comments are direct tape transcriptions and have been edited for spelling only.
Workshop on Molecular Animation
Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.
2011-01-01
Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014
Premotor cortex is sensitive to auditory-visual congruence for biological motion.
Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F
2012-03-01
The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.
Neural Representation of Motion-In-Depth in Area MT
Sanada, Takahisa M.
2014-01-01
Neural processing of 2D visual motion has been studied extensively, but relatively little is known about how visual cortical neurons represent visual motion trajectories that include a component toward or away from the observer (motion in depth). Psychophysical studies have demonstrated that humans perceive motion in depth based on both changes in binocular disparity over time (CD cue) and interocular velocity differences (IOVD cue). However, evidence for neurons that represent motion in depth has been limited, especially in primates, and it is unknown whether such neurons make use of CD or IOVD cues. We show that approximately one-half of neurons in macaque area MT are selective for the direction of motion in depth, and that this selectivity is driven primarily by IOVD cues, with a small contribution from the CD cue. Our results establish that area MT, a central hub of the primate visual motion processing system, contains a 3D representation of visual motion. PMID:25411481
Filling-in visual motion with sounds.
Väljamäe, A; Soto-Faraco, S
2008-10-01
Information about the motion of objects can be extracted by multiple sensory modalities, and, as a consequence, object motion perception typically involves the integration of multi-sensory information. Often, in naturalistic settings, the flow of such information can be rather discontinuous (e.g. a cat racing through the furniture in a cluttered room is partly seen and partly heard). This study addressed audio-visual interactions in the perception of time-sampled object motion by measuring adaptation after-effects. We found significant auditory after-effects following adaptation to unisensory auditory and visual motion in depth, sampled at 12.5 Hz. The visually induced (cross-modal) auditory motion after-effect was eliminated if visual adaptors flashed at half of the rate (6.25 Hz). Remarkably, the addition of the high-rate acoustic flutter (12.5 Hz) to this ineffective, sparsely time-sampled, visual adaptor restored the auditory after-effect to a level comparable to what was seen with high-rate bimodal adaptors (flashes and beeps). Our results suggest that this auditory-induced reinstatement of the motion after-effect from the poor visual signals resulted from the occurrence of sound-induced illusory flashes. This effect was found to be dependent both on the directional congruency between modalities and on the rate of auditory flutter. The auditory filling-in of time-sampled visual motion supports the feasibility of using reduced frame rate visual content in multisensory broadcasting and virtual reality applications.
Visual-vestibular processing deficits in mild traumatic brain injury.
Wright, W G; Tierney, R T; McDevitt, J
2017-01-01
The search for reliable and valid signs and symptoms of mild traumatic brain injury (mTBI), commonly synonymous with concussion, has lead to a growing body of evidence that individuals with long-lasting, unremitting impairments often experience visual and vestibular symptoms, such as dizziness, postural and gait disturbances. Investigate the role of visual-vestibular processing deficits following concussion. A number of clinically accepted vestibular, oculomotor, and balance assessments as well as a novel virtual reality (VR)-based balance assessment device were used to assess adults with post-acute concussion (n = 14) in comparison to a healthy age-matched cohort (n = 58). Significant between-group differences were found with the VR-based balance device (p = 0.001), with dynamic visual motion emerging as the most discriminating balance condition. The symptom reports collected after performing the oculomotor and vestibular tests: rapid alternating horizontal eye saccades, optokinetic stimulation, and gaze stabilization, were all sensitive to health status (p < 0.05), despite the absence of oculomotor abnormalities being observed, except for near-point convergence. The BESS, King-Devick, and Dynamic Visual Acuity tests did not detect between-group differences. Postural and visual-vestibular tasks most closely linked to spatial and self-motion perception had the greatest discriminatory outcomes. The current findings suggest that mesencephalic and parieto-occipital centers and pathways may be involved in concussion.
Contextual effects on motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2008-08-15
Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.
NASA Technical Reports Server (NTRS)
1993-01-01
MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.
2D/3D Visual Tracker for Rover Mast
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria
2006-01-01
A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.
NASA Technical Reports Server (NTRS)
Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.
2003-01-01
A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.
Harvey, Ben M; Dumoulin, Serge O
2016-02-15
Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Inferring the direction of implied motion depends on visual awareness
Faivre, Nathan; Koch, Christof
2014-01-01
Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction. PMID:24706951
Inferring the direction of implied motion depends on visual awareness.
Faivre, Nathan; Koch, Christof
2014-04-04
Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction.
Priming with real motion biases visual cortical response to bistable apparent motion
Zhang, Qing-fang; Wen, Yunqing; Zhang, Deng; She, Liang; Wu, Jian-young; Dan, Yang; Poo, Mu-ming
2012-01-01
Apparent motion quartet is an ambiguous stimulus that elicits bistable perception, with the perceived motion alternating between two orthogonal paths. In human psychophysical experiments, the probability of perceiving motion in each path is greatly enhanced by a brief exposure to real motion along that path. To examine the neural mechanism underlying this priming effect, we used voltage-sensitive dye (VSD) imaging to measure the spatiotemporal activity in the primary visual cortex (V1) of awake mice. We found that a brief real motion stimulus transiently biased the cortical response to subsequent apparent motion toward the spatiotemporal pattern representing the real motion. Furthermore, intracellular recording from V1 neurons in anesthetized mice showed a similar increase in subthreshold depolarization in the neurons representing the path of real motion. Such short-term plasticity in early visual circuits may contribute to the priming effect in bistable visual perception. PMID:23188797
Shibai, Atsushi; Arimoto, Tsunehiro; Yoshinaga, Tsukasa; Tsuchizawa, Yuta; Khureltulga, Dashdavaa; Brown, Zuben P; Kakizuka, Taishi; Hosoda, Kazufumi
2018-06-05
Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.
Visual/motion cue mismatch in a coordinated roll maneuver
NASA Technical Reports Server (NTRS)
Shirachi, D. K.; Shirley, R. S.
1981-01-01
The effects of bandwidth differences between visual and motion cueing systems on pilot performance for a coordinated roll task were investigated. Visual and motion cue configurations which were acceptable and the effects of reduced motion cue scaling on pilot performance were studied to determine the scale reduction threshold for which pilot performance was significantly different from full scale pilot performance. It is concluded that: (1) the presence or absence of high frequency error information in the visual and/or motion display systems significantly affects pilot performance; and (2) the attenuation of motion scaling while maintaining other display dynamic characteristics constant, affects pilot performance.
A novel role for visual perspective cues in the neural computation of depth
Kim, HyungGoo R.; Angelaki, Dora E.; DeAngelis, Gregory C.
2014-01-01
As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extra-retinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We demonstrate that incorporating these “dynamic perspective” cues allows the visual system to generate selectivity for depth sign from motion parallax in macaque area MT, a computation that was previously thought to require extra-retinal signals regarding eye velocity. Our findings suggest novel neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations. PMID:25436667
Aging effect in pattern, motion and cognitive visual evoked potentials.
Kuba, Miroslav; Kremláček, Jan; Langrová, Jana; Kubová, Zuzana; Szanyi, Jana; Vít, František
2012-06-01
An electrophysiological study on the effect of aging on the visual pathway and various levels of visual information processing (primary cortex, associate visual motion processing cortex and cognitive cortical areas) was performed. We examined visual evoked potentials (VEPs) to pattern-reversal, motion-onset (translation and radial motion) and visual stimuli with a cognitive task (cognitive VEPs - P300 wave) at luminance of 17 cd/m(2). The most significant age-related change in a group of 150 healthy volunteers (15-85 years of age) was the increase in the P300 wave latency (2 ms per 1 year of age). Delays of the motion-onset VEPs (0.47 ms/year in translation and 0.46 ms/year in radial motion) and the pattern-reversal VEPs (0.26 ms/year) and the reductions of their amplitudes with increasing subject age (primarily in P300) were also found to be significant. The amplitude of the motion-onset VEPs to radial motion remained the most constant parameter with increasing age. Age-related changes were stronger in males. Our results indicate that cognitive VEPs, despite larger variability of their parameters, could be a useful criterion for an objective evaluation of the aging processes within the CNS. Possible differences in aging between the motion-processing system and the form-processing system within the visual pathway might be indicated by the more pronounced delay in the motion-onset VEPs and by their preserved size for radial motion (a biologically significant variant of motion) compared to the changes in pattern-reversal VEPs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Visual motion detection and habitat preference in Anolis lizards.
Steinberg, David S; Leal, Manuel
2016-11-01
The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.
Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki
2008-01-01
The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
On the Visual Input Driving Human Smooth-Pursuit Eye Movements
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean
1996-01-01
Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.
Analysis of free breathing motion using artifact reduced 4D CT image data
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Lu, Wei; Low, Daniel; Handels, Heinz
2007-03-01
The mobility of lung tumors during the respiratory cycle is a source of error in radiotherapy treatment planning. Spatiotemporal CT data sets can be used for studying the motion of lung tumors and inner organs during the breathing cycle. We present methods for the analysis of respiratory motion using 4D CT data in high temporal resolution. An optical flow based reconstruction method was used to generate artifact-reduced 4D CT data sets of lung cancer patients. The reconstructed 4D CT data sets were segmented and the respiratory motion of tumors and inner organs was analyzed. A non-linear registration algorithm is used to calculate the velocity field between consecutive time frames of the 4D data. The resulting velocity field is used to analyze trajectories of landmarks and surface points. By this technique, the maximum displacement of any surface point is calculated, and regions with large respiratory motion are marked. To describe the tumor mobility the motion of the lung tumor center in three orthogonal directions is displayed. Estimated 3D appearance probabilities visualize the movement of the tumor during the respiratory cycle in one static image. Furthermore, correlations between trajectories of the skin surface and the trajectory of the tumor center are determined and skin regions are identified which are suitable for prediction of the internal tumor motion. The results of the motion analysis indicate that the described methods are suitable to gain insight into the spatiotemporal behavior of anatomical and pathological structures during the respiratory cycle.
Rotorcraft Research at the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Aponso, Bimal Lalith; Tran, Duc T.; Schroeder, Jeffrey A.
2009-01-01
In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.
Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.
Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel
2015-08-15
When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.
Choice-reaction time to visual motion with varied levels of simultaneous rotary motion
NASA Technical Reports Server (NTRS)
Clark, B.; Stewart, J. D.
1974-01-01
Twelve airline pilots were studied to determine the effects of whole-body rotation on choice-reaction time to the horizontal motion of a line on a cathode-ray tube. On each trial, one of five levels of visual acceleration and five corresponding proportions of rotary acceleration were presented simultaneously. Reaction time to the visual motion decreased with increasing levels of visual motion and increased with increasing proportions of rotary acceleration. The results conflict with general theories of facilitation during double stimulation but are consistent with neural-clock model of sensory interaction in choice-reaction time.
Motion perception: behavior and neural substrate.
Mather, George
2011-05-01
Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html. Copyright © 2010 John Wiley & Sons, Ltd.
Adaptation to visual or auditory time intervals modulates the perception of visual apparent motion
Zhang, Huihui; Chen, Lihan; Zhou, Xiaolin
2012-01-01
It is debated whether sub-second timing is subserved by a centralized mechanism or by the intrinsic properties of task-related neural activity in specific modalities (Ivry and Schlerf, 2008). By using a temporal adaptation task, we investigated whether adapting to different time intervals conveyed through stimuli in different modalities (i.e., frames of a visual Ternus display, visual blinking discs, or auditory beeps) would affect the subsequent implicit perception of visual timing, i.e., inter-stimulus interval (ISI) between two frames in a Ternus display. The Ternus display can induce two percepts of apparent motion (AM), depending on the ISI between the two frames: “element motion” for short ISIs, in which the endmost disc is seen as moving back and forth while the middle disc at the overlapping or central position remains stationary; “group motion” for longer ISIs, in which both discs appear to move in a manner of lateral displacement as a whole. In Experiment 1, participants adapted to either the typical “element motion” (ISI = 50 ms) or the typical “group motion” (ISI = 200 ms). In Experiments 2 and 3, participants adapted to a time interval of 50 or 200 ms through observing a series of two paired blinking discs at the center of the screen (Experiment 2) or hearing a sequence of two paired beeps (with pitch 1000 Hz). In Experiment 4, participants adapted to sequences of paired beeps with either low pitches (500 Hz) or high pitches (5000 Hz). After adaptation in each trial, participants were presented with a Ternus probe in which the ISI between the two frames was equal to the transitional threshold of the two types of motions, as determined by a pretest. Results showed that adapting to the short time interval in all the situations led to more reports of “group motion” in the subsequent Ternus probes; adapting to the long time interval, however, caused no aftereffect for visual adaptation but significantly more reports of group motion for auditory adaptation. These findings, suggesting amodal representation for sub-second timing across modalities, are interpreted in the framework of temporal pacemaker model. PMID:23133408
2008-07-02
CAPE CANAVERAL, Fla. –David Voci, NYIT MOCAP (Motion Capture) team co-director (seated at the workstation in the background) prepares to direct a motion capture session assisted by Kennedy Advanced Visualizations Environment staff led by Brad Lawrence (not pictured) and by Lora Ridgwell from United Space Alliance Human Factors (foreground, left). Ridgwell will help assemble the Orion Crew Module mockup. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.
Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.
Kline, Keith; Holcombe, Alex O; Eagleman, David M
2004-10-01
In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.
Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko
2010-03-10
The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.
Usage of stereoscopic visualization in the learning contents of rotational motion.
Matsuura, Shu
2013-01-01
Rotational motion plays an essential role in physics even at an introductory level. In addition, the stereoscopic display of three-dimensional graphics includes is advantageous for the presentation of rotational motions, particularly for depth recognition. However, the immersive visualization of rotational motion has been known to lead to dizziness and even nausea for some viewers. Therefore, the purpose of this study is to examine the onset of nausea and visual fatigue when learning rotational motion through the use of a stereoscopic display. The findings show that an instruction method with intermittent exposure of the stereoscopic display and a simplification of its visual components reduced the onset of nausea and visual fatigue for the viewers, which maintained the overall effect of instantaneous spatial recognition.
Cope, Alex J; Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A R
2016-05-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer.
Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A. R.
2016-01-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee’s behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968
Dokka, Kalpana; DeAngelis, Gregory C.
2015-01-01
Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214
Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F
2014-12-01
In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.
Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2017-06-01
Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.
Schindler, Andreas; Bartels, Andreas
2018-05-15
Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.
Filling gaps in visual motion for target capture
Bosco, Gianfranco; Delle Monache, Sergio; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco
2015-01-01
A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation. PMID:25755637
Filling gaps in visual motion for target capture.
Bosco, Gianfranco; Monache, Sergio Delle; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco
2015-01-01
A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.
Smart unattended sensor networks with scene understanding capabilities
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2006-05-01
Unattended sensor systems are new technologies that are supposed to provide enhanced situation awareness to military and law enforcement agencies. A network of such sensors cannot be very effective in field conditions only if it can transmit visual information to human operators or alert them on motion. In the real field conditions, events may happen in many nodes of a network simultaneously. But the real number of control personnel is always limited, and attention of human operators can be simply attracted to particular network nodes, while more dangerous threat may be unnoticed at the same time in the other nodes. Sensor networks would be more effective if equipped with a system that is similar to human vision in its abilities to understand visual information. Human vision uses for that a rough but wide peripheral system that tracks motions and regions of interests, narrow but precise foveal vision that analyzes and recognizes objects in the center of selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an 'understandable' Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level knowledge system.
NASA Technical Reports Server (NTRS)
Daunton, N. G.; Fox, R. A.; Crampton, G. H.
1984-01-01
Experiments in which the susceptibility of both cats and squirrel monkeys to motion sickness induced by visual stimulation are documented. In addition, it is shown that in both species those individual subjects most highly susceptible to sickness induced by passive motion are also those most likely to become motion sick from visual (optokinetic) stimulation alone.
A novel visual-inertial monocular SLAM
NASA Astrophysics Data System (ADS)
Yue, Xiaofeng; Zhang, Wenjuan; Xu, Li; Liu, JiangGuo
2018-02-01
With the development of sensors and computer vision research community, cameras, which are accurate, compact, wellunderstood and most importantly cheap and ubiquitous today, have gradually been at the center of robot location. Simultaneous localization and mapping (SLAM) using visual features, which is a system getting motion information from image acquisition equipment and rebuild the structure in unknown environment. We provide an analysis of bioinspired flights in insects, employing a novel technique based on SLAM. Then combining visual and inertial measurements to get high accuracy and robustness. we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system which get a new attempt to address two challenges which are the initialization problem and the calibration problem. experimental results and analysis show the proposed approach has a more accurate quantitative simulation of insect navigation, which can reach the positioning accuracy of centimeter level.
Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K
2015-01-22
The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Rocinante, a virtual collaborative visualizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.J.; Ice, L.G.
1996-12-31
With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less
An Intelligent Surveillance Platform for Large Metropolitan Areas with Dense Sensor Deployment
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A.; Smilansky, Zeev
2013-01-01
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage. PMID:23748169
Visualizing Protein Interactions and Dynamics: Evolving a Visual Language for Molecular Animation
Jenkinson, Jodie; McGill, Gaël
2012-01-01
Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional visualization techniques for learning about protein conformation and molecular motion in association with a ligand–receptor binding event. Increasingly complex versions of the same binding event were depicted in each of four animated treatments. Students (n = 131) were recruited from the undergraduate biology program at University of Toronto, Mississauga. Visualization media were developed in the Center for Molecular and Cellular Dynamics at Harvard Medical School. Stem cell factor ligand and cKit receptor tyrosine kinase were used as a classical example of a ligand-induced receptor dimerization and activation event. Each group completed a pretest, viewed one of four variants of the animation, and completed a posttest and, at 2 wk following the assessment, a delayed posttest. Overall, the most complex animation was the most effective at fostering students' understanding of the events depicted. These results suggest that, in select learning contexts, increasingly complex representations may be more desirable for conveying the dynamic nature of cell binding events. PMID:22383622
Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease
Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.
2013-01-01
We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256
NASA Technical Reports Server (NTRS)
Parris, B. L.; Cook, A. M.
1978-01-01
Data are presented that show the effects of visual and motion during cueing on pilot performance during takeoffs with engine failures. Four groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The most basic of these systems was of the instrument-only type. Visual scene simulation and/or motion simulation was added to produce the other systems. Learning curves, mean performance, and subjective data are examined. The results show that the addition of visual cueing results in significant improvement in pilot performance, but the combined use of visual and motion cueing results in far better performance.
Verspui, Remko; Gray, John R
2009-10-01
Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion, resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.
Motion Direction Biases and Decoding in Human Visual Cortex
Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy
2014-01-01
Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297
Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Carrelli, David J.
2006-01-01
The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.
Effects of attention and laterality on motion and orientation discrimination in deaf signers.
Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R
2013-06-01
Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left hemisphere advantage for motion processing, while hearing nonsigners do not. To examine whether this finding extends to other aspects of visual processing, we compared deaf signers and hearing nonsigners on motion, form, and brightness discrimination tasks. Secondly, to examine whether hemispheric lateralities are affected by attention, we employed a dual-task paradigm to measure form and motion thresholds under "full" vs. "poor" attention conditions. Deaf signers, but not hearing nonsigners, exhibited a right visual field advantage for motion processing. This effect was also seen for form processing and not for the brightness task. Moreover, no group differences were observed in attentional effects, and the motion and form visual field asymmetries were not modulated by attention, suggesting they occur at early levels of sensory processing. In sum, the results show that processing of motion and form, believed to be mediated by dorsal and ventral visual pathways, respectively, are left-hemisphere dominant in deaf signers. Published by Elsevier Inc.
Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.
2011-01-01
Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole
2015-01-01
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342
Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly
2017-01-01
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.
The relationship of global form and motion detection to reading fluency.
Englund, Julia A; Palomares, Melanie
2012-08-15
Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M.; Nuckley, David; Carlis, John; Keefe, Daniel F
2017-01-01
In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection’s trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool’s effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics. PMID:26356978
On the Integration of Medium Wave Infrared Cameras for Vision-Based Navigation
2015-03-01
SWIR Short Wave Infrared VisualSFM Visual Structure from Motion WPAFB Wright Patterson Air Force Base xi ON THE INTEGRATION OF MEDIUM WAVE INFRARED...Structure from Motion Visual Structure from Motion ( VisualSFM ) is an application that performs incremental SfM using images fed into it of a scene [20...too drastically in between frames. When this happens, VisualSFM will begin creating a new model with images that do not fit to the old one. These new
A Role for Mouse Primary Visual Cortex in Motion Perception.
Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo
2018-06-04
Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of translational and rotational motions and display polarity on visual performance.
Feng, Wen-Yang; Tseng, Feng-Yi; Chao, Chin-Jung; Lin, Chiuhsiang Joe
2008-10-01
This study investigated effects of both translational and rotational motion and display polarity on a visual identification task. Three different motion types--heave, roll, and pitch--were compared with the static (no motion) condition. The visual task was presented on two display polarities, black-on-white and white-on-black. The experiment was a 4 (motion conditions) x 2 (display polarities) within-subjects design with eight subjects (six men and two women; M age = 25.6 yr., SD = 3.2). The dependent variables used to assess the performance on the visual task were accuracy and reaction time. Motion environments, especially the roll condition, had statistically significant effects on the decrement of accuracy and reaction time. The display polarity was significant only in the static condition.
Pavan, Andrea; Boyce, Matthew; Ghin, Filippo
2016-10-01
Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
Integrated evaluation of visually induced motion sickness in terms of autonomic nervous regulation.
Kiryu, Tohru; Tada, Gen; Toyama, Hiroshi; Iijima, Atsuhiko
2008-01-01
To evaluate visually-induced motion sickness, we integrated subjective and objective responses in terms of autonomic nervous regulation. Twenty-seven subjects viewed a 2-min-long first-person-view video section five times (total 10 min) continuously. Measured biosignals, the RR interval, respiration, and blood pressure, were used to estimate the indices related to autonomic nervous activity (ANA). Then we determined the trigger points and some sensation sections based on the time-varying behavior of ANA-related indices. We found that there was a suitable combination of biosignals to present the symptoms of visually-induced motion sickness. Based on the suitable combination, integrating trigger points and subjective scores allowed us to represent the time-distribution of subjective responses during visual exposure, and helps us to understand what types of camera motions will cause visually-induced motion sickness.
Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D
2012-07-01
We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.
Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji
2015-08-01
To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.
Visual Acuity Using Head-fixed Displays During Passive Self and Surround Motion
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Black, F. Owen; Stallings, Valerie; Peters, Brian
2007-01-01
The ability to read head-fixed displays on various motion platforms requires the suppression of vestibulo-ocular reflexes. This study examined dynamic visual acuity while viewing a head-fixed display during different self and surround rotation conditions. Twelve healthy subjects were asked to report the orientation of Landolt C optotypes presented on a micro-display fixed to a rotating chair at 50 cm distance. Acuity thresholds were determined by the lowest size at which the subjects correctly identified 3 of 5 optotype orientations at peak velocity. Visual acuity was compared across four different conditions, each tested at 0.05 and 0.4 Hz (peak amplitude of 57 deg/s). The four conditions included: subject rotated in semi-darkness (i.e., limited to background illumination of the display), subject stationary while visual scene rotated, subject rotated around a stationary visual background, and both subject and visual scene rotated together. Visual acuity performance was greatest when the subject rotated around a stationary visual background; i.e., when both vestibular and visual inputs provided concordant information about the motion. Visual acuity performance was most reduced when the subject and visual scene rotated together; i.e., when the visual scene provided discordant information about the motion. Ranges of 4-5 logMAR step sizes across the conditions indicated the acuity task was sufficient to discriminate visual performance levels. The background visual scene can influence the ability to read head-fixed displays during passive motion disturbances. Dynamic visual acuity using head-fixed displays can provide an operationally relevant screening tool for visual performance during exposure to novel acceleration environments.
Estimation of bio-signal based on human motion for integrated visualization of daily-life.
Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko
2007-01-01
This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.
Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.
Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong
2016-08-01
The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.
Visualizing the ground motions of the 1906 San Francisco earthquake
Chourasia, A.; Cutchin, S.; Aagaard, Brad T.
2008-01-01
With advances in computational capabilities and refinement of seismic wave-propagation models in the past decade large three-dimensional simulations of earthquake ground motion have become possible. The resulting datasets from these simulations are multivariate, temporal and multi-terabyte in size. Past visual representations of results from seismic studies have been largely confined to static two-dimensional maps. New visual representations provide scientists with alternate ways of viewing and interacting with these results potentially leading to new and significant insight into the physical phenomena. Visualizations can also be used for pedagogic and general dissemination purposes. We present a workflow for visual representation of the data from a ground motion simulation of the great 1906 San Francisco earthquake. We have employed state of the art animation tools for visualization of the ground motions with a high degree of accuracy and visual realism. ?? 2008 Elsevier Ltd.
Recovery of biological motion perception and network plasticity after cerebellar tumor removal.
Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A
2014-10-01
Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Houck, J. A.; Martin, D. J., Jr.
1977-01-01
Combined visual, motion, and aural cues for a helicopter engaged in visually conducted slalom runs at low altitude were studied. The evaluation of the visual and aural cues was subjective, whereas the motion cues were evaluated both subjectively and objectively. Subjective and objective results coincided in the area of control activity. Generally, less control activity is present under motion conditions than under fixed-base conditions, a fact attributed subjectively to the feeling of realistic limitations of a machine (helicopter) given by the addition of motion cues. The objective data also revealed that the slalom runs were conducted at significantly higher altitudes under motion conditions than under fixed-base conditions.
Implied motion language can influence visual spatial memory.
Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick
2017-07-01
How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.
Perceived state of self during motion can differentially modulate numerical magnitude allocation.
Arshad, Q; Nigmatullina, Y; Roberts, R E; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, A-S; Pettorossi, V E; Cohen-Kadosh, R; Malhotra, P A; Bronstein, A M
2016-09-01
Although a direct relationship between numerical allocation and spatial attention has been proposed, recent research suggests that these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion paradigms also (i) elicit compensatory eye movements which themselves can influence numerical processing and (ii) alter the perceptual state of 'self', inducing changes in bodily self-consciousness impacting upon cognitive mechanisms. Thus, the precise mechanism by which motion modulates numerical allocation remains unknown. We sought to investigate the influence that different perceptual experiences of motion have upon numerical magnitude allocation while controlling for both eye movements and task-related effects. We first used optokinetic visual motion stimulation (OKS) to elicit the perceptual experience of either 'visual world' or 'self'-motion during which eye movements were identical. In a second experiment, we used a vestibular protocol examining the effects of perceived and subliminal angular rotations in darkness, which also provoked identical eye movements. We observed that during the perceptual experience of 'visual world' motion, rightward OKS-biased judgments towards smaller numbers, whereas leftward OKS-biased judgments towards larger numbers. During the perceptual experience of 'self-motion', judgments were biased towards larger numbers irrespective of the OKS direction. Contrastingly, vestibular motion perception was found not to modulate numerical magnitude allocation, nor was there any differential modulation when comparing 'perceived' vs. 'subliminal' rotations. We provide a novel demonstration that numerical magnitude allocation can be differentially modulated by the perceptual state of self during visual but not vestibular mediated motion. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Visual Features Involving Motion Seen from Airport Control Towers
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Liston, Dorion
2010-01-01
Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.
Slow and fast visual motion channels have independent binocular-rivalry stages.
van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.
2001-01-01
We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442
Visualization of Heart Sounds and Motion Using Multichannel Sensor
NASA Astrophysics Data System (ADS)
Nogata, Fumio; Yokota, Yasunari; Kawamura, Yoko
2010-06-01
As there are various difficulties associated with auscultation techniques, we have devised a technique for visualizing heart motion in order to assist in the understanding of heartbeat for both doctors and patients. Auscultatory sounds were first visualized using FFT and Wavelet analysis to visualize heart sounds. Next, to show global and simultaneous heart motions, a new technique for visualization was established. The visualization system consists of a 64-channel unit (63 acceleration sensors and one ECG sensor) and a signal/image analysis unit. The acceleration sensors were arranged in a square array (8×8) with a 20-mm pitch interval, which was adhered to the chest surface. The heart motion of one cycle was visualized at a sampling frequency of 3 kHz and quantization of 12 bits. The visualized results showed a typical waveform motion of the strong pressure shock due to closing tricuspid valve and mitral valve of the cardiac apex (first sound), and the closing aortic and pulmonic valve (second sound) in sequence. To overcome difficulties in auscultation, the system can be applied to the detection of heart disease and to the digital database management of the auscultation examination in medical areas.
Virgil Gus Grissom's Visit to LaRC
1963-02-22
Astronaut Virgil "Gus" Grissom at the controls of the Visual Docking Simulator. From A.W. Vogeley, "Piloted Space-Flight Simulation at Langley Research Center," Paper presented at the American Society of Mechanical Engineers 1966 Winter Meeting, New York, NY, November 27-December 1, 1966. "This facility was [later known as the Visual-Optical Simulator.] It presents to the pilot an out-the-window view of his target in correct 6 degrees of freedom motion. The scene is obtained by a television camera pick-up viewing a small-scale gimbaled model of the target." "For docking studies, the docking target picture was projected onto the surface of a 20-foot-diameter sphere and the pilot could, effectively, maneuver into contract. this facility was used in a comparison study with the Rendezvous Docking Simulator - one of the few comparison experiments in which conditions were carefully controlled and a reasonable sample of pilots used. All pilots preferred the more realistic RDS visual scene. The pilots generally liked the RDS angular motion cues although some objected to the false gravity cues that these motions introduced. Training time was shorter on the RDS, but final performance on both simulators was essentially equal. " "For station-keeping studies, since close approach is not required, the target was presented to the pilot through a virtual-image system which projects his view to infinity, providing a more realistic effect. In addition to the target, the system also projects a star and horizon background. "
Visual gravitational motion and the vestibular system in humans
Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka
2013-01-01
The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity. PMID:24421761
Visual gravitational motion and the vestibular system in humans.
Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka
2013-12-26
The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.
Normal form from biological motion despite impaired ventral stream function.
Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P
2011-04-01
We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Pfeiffer, Mark G.; Scott, Paul G.
A fly-only group (N=16) of Navy replacement pilots undergoing fleet readiness training in the SH-3 helicopter was compared with groups pre-trained on Device 2F64C with: (1) visual only (N=13); (2) no visual/no motion (N=14); and (3) one visual plus motion group (N=19). Groups were compared for their SH-3 helicopter performance in the transition…
Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada
2013-01-01
Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.
Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn
2013-12-01
We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.
Localized direction selective responses in the dendrites of visual interneurons of the fly
2010-01-01
Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983
Effect of altered sensory conditions on multivariate descriptors of human postural sway
NASA Technical Reports Server (NTRS)
Kuo, A. D.; Speers, R. A.; Peterka, R. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1998-01-01
Multivariate descriptors of sway were used to test whether altered sensory conditions result not only in changes in amount of sway but also in postural coordination. Eigenvalues and directions of eigenvectors of the covariance of shnk and hip angles were used as a set of multivariate descriptors. These quantities were measured in 14 healthy adult subjects performing the Sensory Organization test, which disrupts visual and somatosensory information used for spatial orientation. Multivariate analysis of variance and discriminant analysis showed that resulting sway changes were at least bivariate in character, with visual and somatosensory conditions producing distinct changes in postural coordination. The most significant changes were found when somatosensory information was disrupted by sway-referencing of the support surface (P = 3.2 x 10(-10)). The resulting covariance measurements showed that subjects not only swayed more but also used increased hip motion analogous to the hip strategy. Disruption of vision, by either closing the eyes or sway-referencing the visual surround, also resulted in altered sway (P = 1.7 x 10(-10)), with proportionately more motion of the center of mass than with platform sway-referencing. As shown by discriminant analysis, an optimal univariate measure could explain at most 90% of the behavior due to altered sensory conditions. The remaining 10%, while smaller, are highly significant changes in posture control that depend on sensory conditions. The results imply that normal postural coordination of the trunk and legs requires both somatosensory and visual information and that each sensory modality makes a unique contribution to posture control. Descending postural commands are multivariate in nature, and the motion at each joint is affected uniquely by input from multiple sensors.
Visual motion perception predicts driving hazard perception ability.
Lacherez, Philippe; Au, Sandra; Wood, Joanne M
2014-02-01
To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Escobar, W A
2013-01-01
The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion, and depth. These quanta of awareness (qualia) are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom.
Body sway at sea for two visual tasks and three stance widths.
Stoffregen, Thomas A; Villard, Sebastien; Yu, Yawen
2009-12-01
On land, body sway is influenced by stance width (the distance between the feet) and by visual tasks engaged in during stance. While wider stance can be used to stabilize the body against ship motion and crewmembers are obliged to carry out many visual tasks while standing, the influence of these factors on the kinematics of body sway has not been studied at sea. Crewmembers of the RN Atlantis stood on a force plate from which we obtained data on the positional variability of the center of pressure (COP). The sea state was 2 on the Beaufort scale. We varied stance width (5 cm, 17 cm, and 30 cm) and the nature of the visual tasks. In the Inspection task, participants viewed a plain piece of white paper, while in the Search task they counted the number of target letters that appeared in a block of text. Search task performance was similar to reports from terrestrial studies. Variability of the COP position was reduced during the Search task relative to the Inspection task. Variability was also reduced during wide stance relative to narrow stance. The influence of stance width was greater than has been observed in terrestrial studies. These results suggest that two factors that influence postural sway on land (variations in stance width and in the nature of visual tasks) also influence sway at sea. We conclude that--in mild sea states--the influence of these factors is not suppressed by ship motion.
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Top-down influences on visual attention during listening are modulated by observer sex.
Shen, John; Itti, Laurent
2012-07-15
In conversation, women have a small advantage in decoding non-verbal communication compared to men. In light of these findings, we sought to determine whether sex differences also existed in visual attention during a related listening task, and if so, if the differences existed among attention to high-level aspects of the scene or to conspicuous visual features. Using eye-tracking and computational techniques, we present direct evidence that men and women orient attention differently during conversational listening. We tracked the eyes of 15 men and 19 women who watched and listened to 84 clips featuring 12 different speakers in various outdoor settings. At the fixation following each saccadic eye movement, we analyzed the type of object that was fixated. Men gazed more often at the mouth and women at the eyes of the speaker. Women more often exhibited "distracted" saccades directed away from the speaker and towards a background scene element. Examining the multi-scale center-surround variation in low-level visual features (static: color, intensity, orientation, and dynamic: motion energy), we found that men consistently selected regions which expressed more variation in dynamic features, which can be attributed to a male preference for motion and a female preference for areas that may contain nonverbal information about the speaker. In sum, significant differences were observed, which we speculate arise from different integration strategies of visual cues in selecting the final target of attention. Our findings have implications for studies of sex in nonverbal communication, as well as for more predictive models of visual attention. Published by Elsevier Ltd.
Coordinates of Human Visual and Inertial Heading Perception.
Crane, Benjamin Thomas
2015-01-01
Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results.
Coordinates of Human Visual and Inertial Heading Perception
Crane, Benjamin Thomas
2015-01-01
Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results. PMID:26267865
Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco
2013-05-01
Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.
Orientation-Selective Retinal Circuits in Vertebrates
Antinucci, Paride; Hindges, Robert
2018-01-01
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates. PMID:29467629
Orientation-Selective Retinal Circuits in Vertebrates.
Antinucci, Paride; Hindges, Robert
2018-01-01
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.
Audio–visual interactions for motion perception in depth modulate activity in visual area V3A
Ogawa, Akitoshi; Macaluso, Emiliano
2013-01-01
Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414
Tracking without perceiving: a dissociation between eye movements and motion perception.
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-02-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.
Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-01-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept. PMID:21189353
fMRI response during visual motion stimulation in patients with late whiplash syndrome.
Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W
2001-01-01
After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.
Seeing Circles and Drawing Ellipses: When Sound Biases Reproduction of Visual Motion
Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-01
The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context. PMID:27119411
Dynamic visual attention: motion direction versus motion magnitude
NASA Astrophysics Data System (ADS)
Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.
2008-02-01
Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.
Visualization of Kepler's Laws of Planetary Motion
ERIC Educational Resources Information Center
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-01-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…
Visual fatigue modeling for stereoscopic video shot based on camera motion
NASA Astrophysics Data System (ADS)
Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing
2014-11-01
As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.
Using flight simulators aboard ships: human side effects of an optimal scenario with smooth seas.
Muth, Eric R; Lawson, Ben
2003-05-01
The U.S. Navy is considering placing flight simulators aboard ships. It is known that certain types of flight simulators can elicit motion adaptation syndrome (MAS), and also that certain types of ship motion can cause MAS. The goal of this study was to determine if using a flight simulator during ship motion would cause MAS, even when the simulator stimulus and the ship motion were both very mild. All participants in this study completed three conditions. Condition 1 (Sim) entailed "flying" a personal computer-based flight simulator situated on land. Condition 2 (Ship) involved riding aboard a U.S. Navy Yard Patrol boat. Condition 3 (ShipSim) entailed "flying" a personal computer-based flight simulator while riding aboard a Yard Patrol boat. Before and after each condition, participants' balance and dynamic visual acuity were assessed. After each condition, participants filled out the Nausea Profile and the Simulator Sickness Questionnaire. Following exposure to a flight simulator aboard a ship, participants reported negligible symptoms of nausea and simulator sickness. However, participants exhibited a decrease in dynamic visual acuity after exposure to the flight simulator aboard ship (T[25] = 3.61, p < 0.05). Balance results were confounded by significant learning and, therefore, not interpretable. This study suggests that flight simulators can be used aboard ship. As a minimal safety precaution, these simulators should be used according to current safety practices for land-based simulators. Optimally, these simulators should be designed to minimize MAS, located near the ship's center of rotation and used when ship motion is not provocative.
Auditory compensation for head rotation is incomplete.
Freeman, Tom C A; Culling, John F; Akeroyd, Michael A; Brimijoin, W Owen
2017-02-01
Hearing is confronted by a similar problem to vision when the observer moves. The image motion that is created remains ambiguous until the observer knows the velocity of eye and/or head. One way the visual system solves this problem is to use motor commands, proprioception, and vestibular information. These "extraretinal signals" compensate for self-movement, converting image motion into head-centered coordinates, although not always perfectly. We investigated whether the auditory system also transforms coordinates by examining the degree of compensation for head rotation when judging a moving sound. Real-time recordings of head motion were used to change the "movement gain" relating head movement to source movement across a loudspeaker array. We then determined psychophysically the gain that corresponded to a perceptually stationary source. Experiment 1 showed that the gain was small and positive for a wide range of trained head speeds. Hence, listeners perceived a stationary source as moving slightly opposite to the head rotation, in much the same way that observers see stationary visual objects move against a smooth pursuit eye movement. Experiment 2 showed the degree of compensation remained the same for sounds presented at different azimuths, although the precision of performance declined when the sound was eccentric. We discuss two possible explanations for incomplete compensation, one based on differences in the accuracy of signals encoding image motion and self-movement and one concerning statistical optimization that sacrifices accuracy for precision. We then consider the degree to which such explanations can be applied to auditory motion perception in moving listeners. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Visuomotor adaptation to a visual rotation is gravity dependent.
Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry
2015-03-15
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.
Apollo Docking with the LEM Target
2012-09-07
Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. This picture shows a later configuration of the Apollo docking with the LEM target. A.W. Vogeley described the simulator as follows: The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. -- Published in A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966.
Influence of Running on Pistol Shot Hit Patterns.
Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T
2016-01-01
In shooting scene reconstructions, risk assessment of the situation can be important for the legal system. Shooting accuracy and precision, and thus risk assessment, might be correlated with the shooter's physical movement and experience. The hit patterns of inexperienced and experienced shooters, while shooting stationary (10 shots) and in running motion (10 shots) with a semi-automatic pistol, were compared visually (with confidence ellipses) and statistically. The results show a significant difference in precision (circumference of the hit patterns) between stationary shots and shots fired in motion for both inexperienced and experienced shooters. The decrease in precision for all shooters was significantly larger in the y-direction than in the x-direction. The precision of the experienced shooters is overall better than that of the inexperienced shooters. No significant change in accuracy (shift in the hit pattern center) between stationary shots and shots fired in motion can be seen for all shooters. © 2015 American Academy of Forensic Sciences.
Visualizing Cochlear Mechanics Using Confocal Microscopy
NASA Astrophysics Data System (ADS)
Ulfendahl, M.; Boutet de Monvel, J.; Fridberger, A.
2003-02-01
The sound-evoked vibration pattern of the hearing organ is based on complex mechanical interactions between different cellular structures. To explore the structural changes occurring within the organ of Corti during basilar-membrane motion, stepwise alterations of the scala tympani pressure were applied in an in vitro preparation of the guinea-pig temporal bone. Confocal images were acquired at each pressure level. In this way, the motion of several structures could be simultaneously observed with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical-flow estimation algorithm. Under the present experimental conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. The outer hair cells appeared non-rigid and the basal, synaptic regions of these cells displayed significant radial motion indicative of cellular bending and internal shearing.
Dual processing of visual rotation for bipedal stance control.
Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene
2016-10-01
When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation
NASA Technical Reports Server (NTRS)
O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.
2006-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Rohini; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA; Chung, Theodore D.
2006-07-01
Purpose: Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing residual motion and therefore increasing the accuracy of gated radiotherapy. Methods and Materials: A total of 331 respiratory traces were collected from 24 lung cancer patients. The protocol consisted of five breathing training sessions spaced about a week apart. Within each session the patients initially breathedmore » without any instruction (free breathing), with audio instructions and with audio-visual biofeedback. Residual motion was quantified by the standard deviation of the respiratory signal within the gating window. Results: Audio-visual biofeedback significantly reduced residual motion compared with free breathing and audio instruction. Displacement-based gating has lower residual motion than phase-based gating. Little reduction in residual motion was found for duty cycles less than 30%; for duty cycles above 50% there was a sharp increase in residual motion. Conclusions: The efficiency and reproducibility of gating can be improved by: incorporating audio-visual biofeedback, using a 30-50% duty cycle, gating during exhalation, and using displacement-based gating.« less
Vection and visually induced motion sickness: how are they related?
Keshavarz, Behrang; Riecke, Bernhard E.; Hettinger, Lawrence J.; Campos, Jennifer L.
2015-01-01
The occurrence of visually induced motion sickness has been frequently linked to the sensation of illusory self-motion (vection), however, the precise nature of this relationship is still not fully understood. To date, it is still a matter of debate as to whether vection is a necessary prerequisite for visually induced motion sickness (VIMS). That is, can there be VIMS without any sensation of self-motion? In this paper, we will describe the possible nature of this relationship, review the literature that addresses this relationship (including theoretical accounts of vection and VIMS), and offer suggestions with respect to operationally defining and reporting these phenomena in future. PMID:25941509
NASA Astrophysics Data System (ADS)
Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.
2015-05-01
During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-09-01
The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.
Representation of visual gravitational motion in the human vestibular cortex.
Indovina, Iole; Maffei, Vincenzo; Bosco, Gianfranco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2005-04-15
How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.
Multiplexing in the primate motion pathway.
Huk, Alexander C
2012-06-01
This article begins by reviewing recent work on 3D motion processing in the primate visual system. Some of these results suggest that 3D motion signals may be processed in the same circuitry already known to compute 2D motion signals. Such "multiplexing" has implications for the study of visual cortical circuits and neural signals. A more explicit appreciation of multiplexing--and the computations required for demultiplexing--may enrich the study of the visual system by emphasizing the importance of a structured and balanced "encoding/decoding" framework. In addition to providing a fresh perspective on how successive stages of visual processing might be approached, multiplexing also raises caveats about the value of "neural correlates" for understanding neural computation.
A model for the pilot's use of motion cues in roll-axis tracking tasks
NASA Technical Reports Server (NTRS)
Levison, W. H.; Junker, A. M.
1977-01-01
Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.
Updated Panel-Method Computer Program
NASA Technical Reports Server (NTRS)
Ashby, Dale L.
1995-01-01
Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.
Mental Rotation Meets the Motion Aftereffect: The Role of hV5/MT+ in Visual Mental Imagery
ERIC Educational Resources Information Center
Seurinck, Ruth; de Lange, Floris P.; Achten, Erik; Vingerhoets, Guy
2011-01-01
A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects…
NASA Astrophysics Data System (ADS)
Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.
Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A
2004-11-09
Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.
Seymour, Kiley J; Clifford, Colin W G
2012-05-01
Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.
Modeling a space-variant cortical representation for apparent motion.
Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash
2013-08-06
Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque
Kaneko, Takaaki; Saleem, Kadharbatcha S.; Berman, Rebecca A.; Leopold, David A.
2016-01-01
Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This “reafferent” motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. PMID:27629710
Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque.
Russ, Brian E; Kaneko, Takaaki; Saleem, Kadharbatcha S; Berman, Rebecca A; Leopold, David A
2016-09-14
Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This "reafferent" motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. Copyright © 2016 the authors 0270-6474/16/369580-10$15.00/0.
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739
Amano, Kaoru; Kimura, Toshitaka; Nishida, Shin'ya; Takeda, Tsunehiro; Gomi, Hiroaki
2009-02-01
Human brain uses visual motion inputs not only for generating subjective sensation of motion but also for directly guiding involuntary actions. For instance, during arm reaching, a large-field visual motion is quickly and involuntarily transformed into a manual response in the direction of visual motion (manual following response, MFR). Previous attempts to correlate motion-evoked cortical activities, revealed by brain imaging techniques, with conscious motion perception have resulted only in partial success. In contrast, here we show a surprising degree of similarity between the MFR and the population neural activity measured by magnetoencephalography (MEG). We measured the MFR and MEG induced by the same motion onset of a large-field sinusoidal drifting grating with changing the spatiotemporal frequency of the grating. The initial transient phase of these two responses had very similar spatiotemporal tunings. Specifically, both the MEG and MFR amplitudes increased as the spatial frequency was decreased to, at most, 0.05 c/deg, or as the temporal frequency was increased to, at least, 10 Hz. We also found in peak latency a quantitative agreement (approximately 100-150 ms) and correlated changes against spatiotemporal frequency changes between MEG and MFR. In comparison with these two responses, conscious visual motion detection is known to be most sensitive (i.e., have the lowest detection threshold) at higher spatial frequencies and have longer and more variable response latencies. Our results suggest a close relationship between the properties of involuntary motor responses and motion-evoked cortical activity as reflected by the MEG.
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.
García-Domene, M C; Luque, M J; Díez-Ajenjo, M A; Desco-Esteban, M C; Artigas, J M
2018-02-01
To analyse the relationship between the choroidal thickness and the visual perception of patients with high myopia but without retinal damage. All patients underwent ophthalmic evaluation including a slit lamp examination and dilated ophthalmoscopy, subjective refraction, best corrected visual acuity, axial length, optical coherence tomography, contrast sensitivity function and sensitivity of the visual pathways. We included eleven eyes of subjects with high myopia. There are statistical correlations between choroidal thickness and almost all the contrast sensitivity values. The sensitivity of magnocellular and koniocellular pathways is the most affected, and the homogeneity of the sensibility of the magnocellular pathway depends on the choroidal thickness; when the thickness decreases, the sensitivity impairment extends from the center to the periphery of the visual field. Patients with high myopia without any fundus changes have visual impairments. We have found that choroidal thickness correlates with perceptual parameters such as contrast sensitivity or mean defect and pattern standard deviation of the visual fields of some visual pathways. Our study shows that the magnocellular and koniocellular pathways are the most affected, so that these patients have impairment in motion perception and blue-yellow contrast perception. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Coherent modulation of stimulus colour can affect visually induced self-motion perception.
Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji
2010-01-01
The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.
Lin, Zhicheng
2013-11-01
Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, behavioralperformance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. Copyright © 2013 Elsevier B.V. All rights reserved.
Lin, Zhicheng
2013-01-01
Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, human performance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. PMID:23942348
Impaired Velocity Processing Reveals an Agnosia for Motion in Depth.
Barendregt, Martijn; Dumoulin, Serge O; Rokers, Bas
2016-11-01
Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion. © The Author(s) 2016.
Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin
2017-06-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Vibrotactile Feedback on Human Learning of Arm Motions
Bark, Karlin; Hyman, Emily; Tan, Frank; Cha, Elizabeth; Jax, Steven A.; Buxbaum, Laurel J.; Kuchenbecker, Katherine J.
2015-01-01
Tactile cues generated from lightweight, wearable actuators can help users learn new motions by providing immediate feedback on when and how to correct their movements. We present a vibrotactile motion guidance system that measures arm motions and provides vibration feedback when the user deviates from a desired trajectory. A study was conducted to test the effects of vibrotactile guidance on a subject’s ability to learn arm motions. Twenty-six subjects learned motions of varying difficulty with both visual (V), and visual and vibrotactile (VVT) feedback over the course of four days of training. After four days of rest, subjects returned to perform the motions from memory with no feedback. We found that augmenting visual feedback with vibrotactile feedback helped subjects reduce the root mean square (rms) angle error of their limb significantly while they were learning the motions, particularly for 1DOF motions. Analysis of the retention data showed no significant difference in rms angle errors between feedback conditions. PMID:25486644
Visual event-related potentials to biological motion stimuli in autism spectrum disorders
Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan
2014-01-01
Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808
NASA Technical Reports Server (NTRS)
Beaulieu, K. R.; Blumenfeld, E. H.; Liddle, D. A.; Oshel, E. R.; Evans, C. A.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.
2017-01-01
Our team is developing a modern, cross-disciplinary approach to documentation and preservation of astromaterials, specifically lunar and meteorite samples stored at the Johnson Space Center (JSC) Lunar Sample Laboratory Facility. Apollo Lunar Sample 60639, collected as part of rake sample 60610 during the 3rd Extra-Vehicular Activity of the Apollo 16 mission in 1972, served as the first NASA-preserved lunar sample to be examined by our team in the development of a novel approach to internal and external sample visualization. Apollo Sample 60639 is classified as a breccia with a glass-coated side and pristine mare basalt and anorthosite clasts. The aim was to accurately register a 3-dimensional Micro X-Ray Computed Tomography (XCT)-derived internal composition data set and a Structure-From-Motion (SFM) Photogrammetry-derived high-fidelity, textured external polygonal model of Apollo Sample 60639. The developed process provided the means for accurate, comprehensive, non-destructive visualization of NASA's heritage lunar samples. The data products, to be ultimately served via an end-user web interface, will allow researchers and the public to interact with the unique heritage samples, providing a platform to "slice through" a photo-realistic rendering of a sample to analyze both its external visual and internal composition simultaneously.
ERIC Educational Resources Information Center
Samar, Vincent J.; Parasnis, Ila
2007-01-01
Studies have reported a right visual field (RVF) advantage for coherent motion detection by deaf and hearing signers but not non-signers. Yet two studies [Bosworth R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. "Brain and Cognition," 49, 170-181; Samar, V. J., & Parasnis, I. (2005).…
Orientation of selective effects of body tilt on visually induced perception of self-motion.
Nakamura, S; Shimojo, S
1998-10-01
We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.
Re-examining overlap between tactile and visual motion responses within hMT+ and STS
Jiang, Fang; Beauchamp, Michael S.; Fine, Ione
2015-01-01
Here we examine overlap between tactile and visual motion BOLD responses within the human MT+ complex. Although several studies have reported tactile responses overlapping with hMT+, many used group average analyses, leaving it unclear whether these responses were restricted to sub-regions of hMT+. Moreover, previous studies either employed a tactile task or passive stimulation, leaving it unclear whether or not tactile responses in hMT+ are simply the consequence of visual imagery. Here we carried out a replication of one of the classic papers finding tactile responses in hMT+ (Hagen et al. 2002). We mapped MT and MST in individual subjects using visual field localizers. We then examined responses to tactile motion on the arm, either presented passively or in the presence of a visual task performed at fixation designed to minimize visualization of the concurrent tactile stimulation. To our surprise, without a visual task, we found only weak tactile motion responses in MT (6% of voxels showing tactile responses) and MST (2% of voxels). With an unrelated visual task designed to withdraw attention from the tactile modality, responses in MST reduced to almost nothing (<1% regions). Consistent with previous results, we did observe tactile responses in STS regions superior and anterior to hMT+. Despite the lack of individual overlap, group averaged responses produced strong spurious overlap between tactile and visual motion responses within hMT+ that resembled those observed in previous studies. The weak nature of tactile responses in hMT+ (and their abolition by withdrawal of attention) suggests that hMT+ may not serve as a supramodal motion processing module. PMID:26123373
Larcombe, Stephanie J.; Kennard, Chris
2017-01-01
Abstract Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145–156, 2018. © 2017 Wiley Periodicals, Inc. PMID:28963815
Slushy weightings for the optimal pilot model. [considering visual tracking task
NASA Technical Reports Server (NTRS)
Dillow, J. D.; Picha, D. G.; Anderson, R. O.
1975-01-01
A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.
Curvilinear approach to an intersection and visual detection of a collision.
Berthelon, C; Mestre, D
1993-09-01
Visual motion perception plays a fundamental role in vehicle control. Recent studies have shown that the pattern of optical flow resulting from the observer's self-motion through a stable environment is used by the observer to accurately control his or her movements. However, little is known about the perception of another vehicle during self-motion--for instance, when a car driver approaches an intersection with traffic. In a series of experiments using visual simulations of car driving, we show that observers are able to detect the presence of a moving object during self-motion. However, the perception of the other car's trajectory appears to be strongly dependent on environmental factors, such as the presence of a road sign near the intersection or the shape of the road. These results suggest that local and global visual factors determine the perception of a car's trajectory during self-motion.
Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia
ERIC Educational Resources Information Center
Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue
2011-01-01
Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta
Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). Conclusions: The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.« less
Visualization of 3D elbow kinematics using reconstructed bony surfaces
NASA Astrophysics Data System (ADS)
Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.
2010-02-01
An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.
Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.
Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L
2017-05-01
Previous psychophysical research has examined how younger adults and non-human primates integrate visual and vestibular cues to perceive self-motion. However, there is much to be learned about how multisensory self-motion perception changes with age, and how these changes affect performance on everyday tasks involving self-motion. Evidence suggests that older adults display heightened multisensory integration compared with younger adults; however, few previous studies have examined this for visual-vestibular integration. To explore age differences in the way that visual and vestibular cues contribute to self-motion perception, we had younger and older participants complete a basic driving task containing visual and vestibular cues. We compared their performance against a previously established control group that experienced visual cues alone. Performance measures included speed, speed variability, and lateral position. Vestibular inputs resulted in more precise speed control among older adults, but not younger adults, when traversing curves. Older adults demonstrated more variability in lateral position when vestibular inputs were available versus when they were absent. These observations align with previous evidence of age-related differences in multisensory integration and demonstrate that they may extend to visual-vestibular integration. These findings may have implications for vehicle and simulator design when considering older users.
Lobjois, Régis; Dagonneau, Virginie; Isableu, Brice
2016-11-01
Compared with driving or flight simulation, little is known about self-motion perception in riding simulation. The goal of this study was to examine whether or not continuous roll motion supports the sensation of leaning into bends in dynamic motorcycle simulation. To this end, riders were able to freely tune the visual scene and/or motorcycle simulator roll angle to find a pattern that matched their prior knowledge. Our results revealed idiosyncrasy in the combination of visual and proprioceptive information. Some subjects relied more on the visual dimension, but reported increased sickness symptoms with the visual roll angle. Others relied more on proprioceptive information, tuning the direction of the visual scenery to match three possible patterns. Our findings also showed that these two subgroups tuned the motorcycle simulator roll angle in a similar way. This suggests that sustained inertially specified roll motion have contributed to the sensation of leaning in spite of the occurrence of unexpected gravito-inertial stimulation during the tilt. Several hypotheses are discussed. Practitioner Summary: Self-motion perception in motorcycle simulation is a relatively new research area. We examined how participants combined visual and proprioceptive information. Findings revealed individual differences in the visual dimension. However, participants tuned the simulator roll angle similarly, supporting the hypothesis that sustained inertially specified roll motion contributes to a leaning sensation.
Fan, Zhao; Harris, John
2010-10-12
In a recent study (Fan, Z., & Harris, J. (2008). Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Research, 48(28), 2793-2804), we demonstrated that virtual contours defined by two regions of dots moving in opposite directions were displaced perceptually in the direction of motion of the dots in the more eccentric region when the contours were viewed in the right visual field. Here, we show that the magnitude and/or direction of these displacements varies in different quadrants of the visual field. When contours were presented in the lower visual field, the direction of perceived contour displacement was consistent with that when both contours were presented in the right visual field. However, this illusory motion-induced spatial displacement disappeared when both contours were presented in the upper visual field. Also, perceived contour displacement in the direction of the more eccentric dots was larger in the right than in the left visual field, perhaps because of a hemispheric asymmetry in attentional allocation. Quadrant-based analyses suggest that the pattern of results arises from opposite directions of perceived contour displacement in the upper-left and lower-right visual quadrants, which depend on the relative strengths of two effects: a greater sensitivity to centripetal motion, and an asymmetry in the allocation of spatial attention. Copyright © 2010 Elsevier Ltd. All rights reserved.
Motion-based nearest vector metric for reference frame selection in the perception of motion.
Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk
2016-05-01
We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.
Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi
2016-01-01
Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588
NASA Technical Reports Server (NTRS)
Hosman, R. J. A. W.; Vandervaart, J. C.
1984-01-01
An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.
High-level, but not low-level, motion perception is impaired in patients with schizophrenia.
Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia
2013-01-01
Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.
2005-01-01
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.
Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Suorsa, Raymond; Sridhar, Banavar
1991-01-01
A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.
ERIC Educational Resources Information Center
Monaghan, James M.; Clement, John
1999-01-01
Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…
Sunglasses with thick temples and frame constrict temporal visual field.
Denion, Eric; Dugué, Audrey Emmanuelle; Augy, Sylvain; Coffin-Pichonnet, Sophie; Mouriaux, Frédéric
2013-12-01
Our aim was to compare the impact of two types of sunglasses on visual field and glare: one ("thick sunglasses") with a thick plastic frame and wide temples and one ("thin sunglasses") with a thin metal frame and thin temples. Using the Goldmann perimeter, visual field surface areas (cm²) were calculated as projections on a 30-cm virtual cupola. A V4 test object was used, from seen to unseen, in 15 healthy volunteers in the primary position of gaze ("base visual field"), then allowing eye motion ("eye motion visual field") without glasses, then with "thin sunglasses," followed by "thick sunglasses." Visual field surface area differences greater than the 14% reproducibility error of the method and having a p < 0.05 were considered significant. A glare test was done using a surgical lighting system pointed at the eye(s) at different incidence angles. No significant "base visual field" or "eye motion visual field" surface area variations were noted when comparing tests done without glasses and with the "thin sunglasses." In contrast, a 22% "eye motion visual field" surface area decrease (p < 0.001) was noted when comparing tests done without glasses and with "thick sunglasses." This decrease was most severe in the temporal quadrant (-33%; p < 0.001). All subjects reported less lateral glare with the "thick sunglasses" than with the "thin sunglasses" (p < 0.001). The better protection from lateral glare offered by "thick sunglasses" is offset by the much poorer ability to use lateral space exploration; this results in a loss of most, if not all, of the additional visual field gained through eye motion.
The search for instantaneous vection: An oscillating visual prime reduces vection onset latency.
Palmisano, Stephen; Riecke, Bernhard E
2018-01-01
Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion ("vection"). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost.
The search for instantaneous vection: An oscillating visual prime reduces vection onset latency
Riecke, Bernhard E.
2018-01-01
Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion (“vection”). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost. PMID:29791445
Applications of Phase-Based Motion Processing
NASA Technical Reports Server (NTRS)
Branch, Nicholas A.; Stewart, Eric C.
2018-01-01
Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.
Postural and Spatial Orientation Driven by Virtual Reality
Keshner, Emily A.; Kenyon, Robert V.
2009-01-01
Orientation in space is a perceptual variable intimately related to postural orientation that relies on visual and vestibular signals to correctly identify our position relative to vertical. We have combined a virtual environment with motion of a posture platform to produce visual-vestibular conditions that allow us to explore how motion of the visual environment may affect perception of vertical and, consequently, affect postural stabilizing responses. In order to involve a higher level perceptual process, we needed to create a visual environment that was immersive. We did this by developing visual scenes that possess contextual information using color, texture, and 3-dimensional structures. Update latency of the visual scene was close to physiological latencies of the vestibulo-ocular reflex. Using this system we found that even when healthy young adults stand and walk on a stable support surface, they are unable to ignore wide field of view visual motion and they adapt their postural orientation to the parameters of the visual motion. Balance training within our environment elicited measurable rehabilitation outcomes. Thus we believe that virtual environments can serve as a clinical tool for evaluation and training of movement in situations that closely reflect conditions found in the physical world. PMID:19592796
Ageing vision and falls: a review.
Saftari, Liana Nafisa; Kwon, Oh-Sang
2018-04-23
Falls are the leading cause of accidental injury and death among older adults. One of three adults over the age of 65 years falls annually. As the size of elderly population increases, falls become a major concern for public health and there is a pressing need to understand the causes of falls thoroughly. While it is well documented that visual functions such as visual acuity, contrast sensitivity, and stereo acuity are correlated with fall risks, little attention has been paid to the relationship between falls and the ability of the visual system to perceive motion in the environment. The omission of visual motion perception in the literature is a critical gap because it is an essential function in maintaining balance. In the present article, we first review existing studies regarding visual risk factors for falls and the effect of ageing vision on falls. We then present a group of phenomena such as vection and sensory reweighting that provide information on how visual motion signals are used to maintain balance. We suggest that the current list of visual risk factors for falls should be elaborated by taking into account the relationship between visual motion perception and balance control.
Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems
NASA Technical Reports Server (NTRS)
Cholewiak, Roger W.; Reschke, Millard F.
1997-01-01
When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi-axis rotatory systems, monitored by physiological recording techniques developed at JSC.
Evaluation of respiration-correlated digital tomosynthesis in lung.
Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S
2010-03-01
Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.
New insights into the role of motion and form vision in neurodevelopmental disorders.
Johnston, Richard; Pitchford, Nicola J; Roach, Neil W; Ledgeway, Timothy
2017-12-01
A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Helicopter flight simulation motion platform requirements
NASA Astrophysics Data System (ADS)
Schroeder, Jeffery Allyn
Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.
The notion of the motion: the neurocognition of motion lines in visual narratives.
Cohn, Neil; Maher, Stephen
2015-03-19
Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the "streaks" appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the "vocabulary" of the visual language of comics. Copyright © 2015 Elsevier B.V. All rights reserved.
The notion of the motion: The neurocognition of motion lines in visual narratives
Cohn, Neil; Maher, Stephen
2015-01-01
Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the “streaks” appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the “vocabulary” of the visual language of comics. PMID:25601006
Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers
2013-09-01
right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event detected by the filter. (d) A mild curse word...experimental conditions were chosen to simulate testing cognitively impaired observers. Reflex Stimulus Functions Visual Nystagmus luminance grating low-level...developed a new stimulus for visual nystagmus to 8 test visual motion processing in the presence of incoherent motion noise. The drifting equiluminant
Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.
2016-01-01
During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908
Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.
2014-01-01
Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed
Retinal Origin of Direction Selectivity in the Superior Colliculus
Shi, Xuefeng; Barchini, Jad; Ledesma, Hector Acaron; Koren, David; Jin, Yanjiao; Liu, Xiaorong; Wei, Wei; Cang, Jianhua
2017-01-01
Detecting visual features in the environment such as motion direction is crucial for survival. The circuit mechanisms that give rise to direction selectivity in a major visual center, the superior colliculus (SC), are entirely unknown. Here, we optogenetically isolate the retinal inputs that individual direction-selective SC neurons receive and find that they are already selective as a result of precisely converging inputs from similarly-tuned retinal ganglion cells. The direction selective retinal input is linearly amplified by the intracollicular circuits without changing its preferred direction or level of selectivity. Finally, using 2-photon calcium imaging, we show that SC direction selectivity is dramatically reduced in transgenic mice that have decreased retinal selectivity. Together, our studies demonstrate a retinal origin of direction selectivity in the SC, and reveal a central visual deficit as a consequence of altered feature selectivity in the retina. PMID:28192394
The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices
An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei
2014-01-01
All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033
Video quality assessment method motivated by human visual perception
NASA Astrophysics Data System (ADS)
He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng
2016-11-01
Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sousa, Teresa; Amaral, Carlos; Andrade, João; Pires, Gabriel; Nunes, Urbano J.; Castelo-Branco, Miguel
2017-08-01
Objective. The achievement of multiple instances of control with the same type of mental strategy represents a way to improve flexibility of brain-computer interface (BCI) systems. Here we test the hypothesis that pure visual motion imagery of an external actuator can be used as a tool to achieve three classes of electroencephalographic (EEG) based control, which might be useful in attention disorders. Approach. We hypothesize that different numbers of imagined motion alternations lead to distinctive signals, as predicted by distinct motion patterns. Accordingly, a distinct number of alternating sensory/perceptual signals would lead to distinct neural responses as previously demonstrated using functional magnetic resonance imaging (fMRI). We anticipate that differential modulations should also be observed in the EEG domain. EEG recordings were obtained from twelve participants using three imagery tasks: imagery of a static dot, imagery of a dot with two opposing motions in the vertical axis (two motion directions) and imagery of a dot with four opposing motions in vertical or horizontal axes (four directions). The data were analysed offline. Main results. An increase of alpha-band power was found in frontal and central channels as a result of visual motion imagery tasks when compared with static dot imagery, in contrast with the expected posterior alpha decreases found during simple visual stimulation. The successful classification and discrimination between the three imagery tasks confirmed that three different classes of control based on visual motion imagery can be achieved. The classification approach was based on a support vector machine (SVM) and on the alpha-band relative spectral power of a small group of six frontal and central channels. Patterns of alpha activity, as captured by single-trial SVM closely reflected imagery properties, in particular the number of imagined motion alternations. Significance. We found a new mental task based on visual motion imagery with potential for the implementation of multiclass (3) BCIs. Our results are consistent with the notion that frontal alpha synchronization is related with high internal processing demands, changing with the number of alternation levels during imagery. Together, these findings suggest the feasibility of pure visual motion imagery tasks as a strategy to achieve multiclass control systems with potential for BCI and in particular, neurofeedback applications in non-motor (attentional) disorders.
Visualization of Kepler’s laws of planetary motion
NASA Astrophysics Data System (ADS)
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-03-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler’s laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler’s laws of planetary motion to be visualized and will contribute to improving the manipulative ability of middle school students and the accessibility of classroom education.
Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-01-01
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time. PMID:28475145
Use of cues in virtual reality depends on visual feedback.
Fulvio, Jacqueline M; Rokers, Bas
2017-11-22
3D motion perception is of central importance to daily life. However, when tested in laboratory settings, sensitivity to 3D motion signals is found to be poor, leading to the view that heuristics and prior assumptions are critical for 3D motion perception. Here we explore an alternative: sensitivity to 3D motion signals is context-dependent and must be learned based on explicit visual feedback in novel environments. The need for action-contingent visual feedback is well-established in the developmental literature. For example, young kittens that are passively moved through an environment, but unable to move through it themselves, fail to develop accurate depth perception. We find that these principles also obtain in adult human perception. Observers that do not experience visual consequences of their actions fail to develop accurate 3D motion perception in a virtual reality environment, even after prolonged exposure. By contrast, observers that experience the consequences of their actions improve performance based on available sensory cues to 3D motion. Specifically, we find that observers learn to exploit the small motion parallax cues provided by head jitter. Our findings advance understanding of human 3D motion processing and form a foundation for future study of perception in virtual and natural 3D environments.
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-05-05
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time.
Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly
2018-01-01
Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
1971-07-01
Many safety problems encountered in aviation have been attributed to visual illusions. One of the various types of visual illusions, that of apparent motion, includes as an aftereffect the apparent reversed motion of an object after it ceases real mo...
Is it just motion that silences awareness of other visual changes?
Peirce, Jonathan W
2013-06-28
When an array of visual elements is changing color, size, or shape incoherently, the changes are typically quite visible even when the overall color, size, or shape statistics of the field may not have changed. When the dots also move, however, the changes become much less apparent; awareness of them is "silenced" (Suchow & Alvarez, 2011). This finding might indicate that the perception of motion is of particular importance to the visual system, such that it is given priority in processing over other forms of visual change. Here we test whether that is the case by examining the converse: whether awareness of motion signals can be silenced by potent coherent changes in color or size. We find that they can, and with very similar effects, indicating that motion is not critical for silencing. Suchow and Alvarez's dots always moved in the same direction with the same speed, causing them to be grouped as a single entity. We also tested whether this coherence was a necessary component of the silencing effect. It is not; when the dot speeds are randomly selected, such that no coherent motion is present, the silencing effect remains. It is clear that neither motion nor grouping is directly responsible for the silencing effect. Silencing can be generated from any potent visual change.
Motion processing with two eyes in three dimensions.
Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C
2011-02-11
The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.
Virtual Reality: You Are There
NASA Technical Reports Server (NTRS)
1993-01-01
Telepresence or "virtual reality," allows a person, with assistance from advanced technology devices, to figuratively project himself into another environment. This technology is marketed by several companies, among them Fakespace, Inc., a former Ames Research Center contractor. Fakespace developed a teleoperational motion platform for transmitting sounds and images from remote locations. The "Molly" matches the user's head motion and, when coupled with a stereo viewing device and appropriate software, creates the telepresence experience. Its companion piece is the BOOM-the user's viewing device that provides the sense of involvement in the virtual environment. Either system may be used alone. Because suits, gloves, headphones, etc. are not needed, a whole range of commercial applications is possible, including computer-aided design techniques and virtual reality visualizations. Customers include Sandia National Laboratories, Stanford Research Institute and Mattel Toys.
Zhang, Yi; Chen, Lihan
2016-01-01
Recent studies of brain plasticity that pertain to time perception have shown that fast training of temporal discrimination in one modality, for example, the auditory modality, can improve performance of temporal discrimination in another modality, such as the visual modality. We here examined whether the perception of visual Ternus motion could be recalibrated through fast crossmodal statistical binding of temporal information and stimuli properties binding. We conducted two experiments, composed of three sessions each: pre-test, learning, and post-test. In both the pre-test and the post-test, participants classified the Ternus display as either “element motion” or “group motion.” For the training session in Experiment 1, we constructed two types of temporal structures, in which two consecutively presented sound beeps were dominantly (80%) flanked by one leading visual Ternus frame and by one lagging visual Ternus frame (VAAV) or dominantly inserted by two Ternus visual frames (AVVA). Participants were required to respond which interval (auditory vs. visual) was longer. In Experiment 2, we presented only a single auditory–visual pair but with similar temporal configurations as in Experiment 1, and asked participants to perform an audio–visual temporal order judgment. The results of these two experiments support that statistical binding of temporal information and stimuli properties can quickly and selectively recalibrate the sensitivity of perceiving visual motion, according to the protocols of the specific bindings. PMID:27065910
NASA Technical Reports Server (NTRS)
Bigler, W. B., II
1977-01-01
The NASA passenger ride quality apparatus (PRQA), a ground based motion simulator, was compared to the total in flight simulator (TIFS). Tests were made on PRQA with varying stimuli: motions only; motions and noise; motions, noise, and visual; and motions and visual. Regression equations for the tests were obtained and subsequent t-testing of the slopes indicated that ground based simulator tests produced comfort change rates similar to actual flight data. It was recommended that PRQA be used in the ride quality program for aircraft and that it be validated for other transportation modes.
Parallax visualization of full motion video using the Pursuer GUI
NASA Astrophysics Data System (ADS)
Mayhew, Christopher A.; Forgues, Mark B.
2014-06-01
In 2013, the Authors reported to the SPIE on the Phase 1 development of a Parallax Visualization (PV) plug-in toolset for Wide Area Motion Imaging (WAMI) data using the Pursuer Graphical User Interface (GUI).1 In addition to the ability to PV WAMI data, the Phase 1 plug-in toolset also featured a limited ability to visualize Full Motion video (FMV) data. The ability to visualize both WAMI and FMV data is highly advantageous capability for an Electric Light Table (ELT) toolset. This paper reports on the Phase 2 development and addition of a full featured FMV capability to the Pursuer WAMI PV Plug-in.
Kinesthetic information disambiguates visual motion signals.
Hu, Bo; Knill, David C
2010-05-25
Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.
Flies and humans share a motion estimation strategy that exploits natural scene statistics
Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.
2014-01-01
Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225
Impaired visual recognition of biological motion in schizophrenia.
Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee
2005-09-15
Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.
Application of virtual reality graphics in assessment of concussion.
Slobounov, Semyon; Slobounov, Elena; Newell, Karl
2006-04-01
Abnormal balance in individuals suffering from traumatic brain injury (TBI) has been documented in numerous recent studies. However, specific mechanisms causing balance deficits have not been systematically examined. This paper demonstrated the destabilizing effect of visual field motion, induced by virtual reality graphics in concussed individuals but not in normal controls. Fifty five student-athletes at risk for concussion participated in this study prior to injury and 10 of these subjects who suffered MTBI were tested again on day 3, day 10, and day 30 after the incident. Postural responses to visual field motion were recorded using a virtual reality (VR) environment in conjunction with balance (AMTI force plate) and motion tracking (Flock of Birds) technologies. Two experimental conditions were introduced where subjects passively viewed VR scenes or actively manipulated the visual field motion. Long-lasting destabilizing effects of visual field motion were revealed, although subjects were asymptomatic when standard balance tests were introduced. The findings demonstrate that advanced VR technology may detect residual symptoms of concussion at least 30 days post-injury.
Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.
Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp
2012-07-30
Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.
Decreased susceptibility to motion sickness during exposure to visual inversion in microgravity
NASA Technical Reports Server (NTRS)
Lackner, James R.; Dizio, Paul
1991-01-01
Head and body movements made in microgravity tend to bring on symptoms of motion sickness. Such head movements, relative to comparable ones made on earth, are accompanied by unusual combinations of semicircular canal and otolith activity owing to the unloading of the otoliths in 0G. Head movements also bring on symptoms of motion sickness during exposure to visual inversion (or reversal) on earth because the vestibulo-ocular reflex is rendered anti-compensatory. Here, evidence is presented that susceptibility to motion sickness during exposure to visual inversion is decreased in a 0G relative to 1G force background. This difference in susceptibility appears related to the alteration in otolith function in 0G. Some implications of this finding for the etiology of space motion sickness are described.
Comparisons of Kinematics and Dynamics Simulation Software Tools
NASA Technical Reports Server (NTRS)
Shiue, Yeu-Sheng Paul
2002-01-01
Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.
DOT National Transportation Integrated Search
1969-08-01
Visual illusions have been a persistent problem in aviation research. The spiral aftereffect (SAE) is an example of one type of visual illusion--that which occurs following the cessation of real motion. Duration and intensity of the SAE was evaluated...
Sugita, Norihiro; Yoshizawa, Makoto; Abe, Makoto; Tanaka, Akira; Watanabe, Takashi; Chiba, Shigeru; Yambe, Tomoyuki; Nitta, Shin-ichi
2007-09-28
Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index rho(max), which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in rho(max) with time. The physiological index, rho(max), will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.
Visual-Vestibular Conflict Detection Depends on Fixation.
Garzorz, Isabelle T; MacNeilage, Paul R
2017-09-25
Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visual Occlusion Decreases Motion Sickness in a Flight Simulator.
Ishak, Shaziela; Bubka, Andrea; Bonato, Frederick
2018-05-01
Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore "blackout" goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit's interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.
Visual Target Tracking in the Presence of Unknown Observer Motion
NASA Technical Reports Server (NTRS)
Williams, Stephen; Lu, Thomas
2009-01-01
Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.
Rhesus Monkeys Behave As If They Perceive the Duncker Illusion
Zivotofsky, A. Z.; Goldberg, M. E.; Powell, K. D.
2008-01-01
The visual system uses the pattern of motion on the retina to analyze the motion of objects in the world, and the motion of the observer him/herself. Distinguishing between retinal motion evoked by movement of the retina in space and retinal motion evoked by movement of objects in the environment is computationally difficult, and the human visual system frequently misinterprets the meaning of retinal motion. In this study, we demonstrate that the visual system of the Rhesus monkey also misinterprets retinal motion. We show that monkeys erroneously report the trajectories of pursuit targets or their own pursuit eye movements during an epoch of smooth pursuit across an orthogonally moving background. Furthermore, when they make saccades to the spatial location of stimuli that flashed early in an epoch of smooth pursuit or fixation, they make large errors that appear to take into account the erroneous smooth eye movement that they report in the first experiment, and not the eye movement that they actually make. PMID:16102233
Event Processing in the Visual World: Projected Motion Paths during Spoken Sentence Comprehension
ERIC Educational Resources Information Center
Kamide, Yuki; Lindsay, Shane; Scheepers, Christoph; Kukona, Anuenue
2016-01-01
Motion events in language describe the movement of an entity to another location along a path. In 2 eye-tracking experiments, we found that comprehension of motion events involves the online construction of a spatial mental model that integrates language with the visual world. In Experiment 1, participants listened to sentences describing the…
The psychophysics of Visual Motion and Global form Processing in Autism
ERIC Educational Resources Information Center
Koldewyn, Kami; Whitney, David; Rivera, Susan M.
2010-01-01
Several groups have recently reported that people with autism may suffer from a deficit in visual motion processing and proposed that these deficits may be related to a general dorsal stream dysfunction. In order to test the dorsal stream deficit hypothesis, we investigated coherent and biological motion perception as well as coherent form…
ERIC Educational Resources Information Center
Koh, Hwan Cui; Milne, Elizabeth; Dobkins, Karen
2010-01-01
The magnocellular (M) pathway hypothesis proposes that impaired visual motion perception observed in individuals with Autism Spectrum Disorders (ASD) might be mediated by atypical functioning of the subcortical M pathway, as this pathway provides the bulk of visual input to cortical motion detectors. To test this hypothesis, we measured luminance…
Integration of visual and motion cues for simulator requirements and ride quality investigation
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Practical tools which can extend the state of the art of moving base flight simulation for research and training are developed. Main approaches to this research effort include: (1) application of the vestibular model for perception of orientation based on motion cues: optimum simulator motion controls; and (2) visual cues in landing.
Differential responses in dorsal visual cortex to motion and disparity depth cues
Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.
2013-01-01
We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808
Raudies, Florian; Neumann, Heiko
2012-01-01
The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930
Visual Motion Perception and Visual Attentive Processes.
1988-04-01
88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical
1964-10-29
Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. "The LEM pilot's compartment, with overhead window and the docking ring (idealized since the pilot cannot see it during the maneuvers), is shown docked with the full-scale Apollo Command Module." A.W. Vogeley described the simulator as follows: "The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect." -- Published in A.W. Vogeley, "Piloted Space-Flight Simulation at Langley Research Center," Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966;
Encodings of implied motion for animate and inanimate object categories in the two visual pathways.
Lu, Zhengang; Li, Xueting; Meng, Ming
2016-01-15
Previous research has proposed two separate pathways for visual processing: the dorsal pathway for "where" information vs. the ventral pathway for "what" information. Interestingly, the middle temporal cortex (MT) in the dorsal pathway is involved in representing implied motion from still pictures, suggesting an interaction between motion and object related processing. However, the relationship between how the brain encodes implied motion and how the brain encodes object/scene categories is unclear. To address this question, fMRI was used to measure activity along the two pathways corresponding to different animate and inanimate categories of still pictures with different levels of implied motion speed. In the visual areas of both pathways, activity induced by pictures of humans and animals was hardly modulated by the implied motion speed. By contrast, activity in these areas correlated with the implied motion speed for pictures of inanimate objects and scenes. The interaction between implied motion speed and stimuli category was significant, suggesting different encoding mechanisms of implied motion for animate-inanimate distinction. Further multivariate pattern analysis of activity in the dorsal pathway revealed significant effects of stimulus category that are comparable to the ventral pathway. Moreover, still pictures of inanimate objects/scenes with higher implied motion speed evoked activation patterns that were difficult to differentiate from those evoked by pictures of humans and animals, indicating a functional role of implied motion in the representation of object categories. These results provide novel evidence to support integrated encoding of motion and object categories, suggesting a rethink of the relationship between the two visual pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Anson, Eric; Ma, Lei; Meetam, Tippawan; Thompson, Elizabeth; Rathore, Roshita; Dean, Victoria; Jeka, John
2018-05-01
Virtual reality and augmented feedback have become more prevalent as training methods to improve balance. Few reports exist on the benefits of providing trunk motion visual feedback (VFB) during treadmill walking, and most of those reports only describe within session changes. To determine whether trunk motion VFB treadmill walking would improve over-ground balance for older adults with self-reported balance problems. 40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of falling were randomized to a control or experimental group. Everyone walked on a treadmill at a comfortable speed 3×/week for 4 weeks in 2 min bouts separated by a seated rest. The control group was instructed to look at a stationary bulls-eye target while the experimental group also saw a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six Minute Walk. There were no significant differences between groups before the intervention. The experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 0.019). The control group did not improve significantly on any measure. Individuals with more profound sensory impairments had a larger improvement on dynamic balance subtests of the BESTest. Older adults with self-reported balance problems improve their dynamic balance after training using trunk motion VFB treadmill walking. Individuals with worse sensory function may benefit more from trunk motion VFB during walking than individuals with intact sensory function. Copyright © 2018 Elsevier B.V. All rights reserved.
Perception of biological motion from size-invariant body representations.
Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E
2015-01-01
The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.
Shift in speed selectivity of visual cortical neurons: A neural basis of perceived motion contrast
Li, Chao-Yi; Lei, Jing-Jiang; Yao, Hai-Shan
1999-01-01
The perceived speed of motion in one part of the visual field is influenced by the speed of motion in its surrounding fields. Little is known about the cellular mechanisms causing this phenomenon. Recordings from mammalian visual cortex revealed that speed preference of the cortical cells could be changed by displaying a contrast speed in the field surrounding the cell’s classical receptive field. The neuron’s selectivity shifted to prefer faster speed if the contextual surround motion was set at a relatively lower speed, and vice versa. These specific center–surround interactions may underlie the perceptual enhancement of speed contrast between adjacent fields. PMID:10097161
Dynamic Visual Acuity and Landing Sickness in Crewmembers Returning from Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Rosenberg, M.J.F; Peters, B.T.; Reschke, M. F.
2016-01-01
Long-term exposure to microgravity causes sensorimotor adaptations that result in functional deficits upon returning to a gravitational environment. At landing the vestibular system and the central nervous system, responsible for coordinating head and eye movements, are adapted to microgravity and must re-adapt to the gravitational environment. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with astronauts reporting oscillopsia and blurred vision. Dynamic visual acuity (DVA) is assessed using an oscillating chair developed in the Neuroscience Laboratory at JSC. This chair is lightweight and easily portable for quick deployment in the field. The base of the chair is spring-loaded and allows for manual oscillation of the subject. Using a metronome, the chair is vertically oscillated plus or minus 2 cm at 2 Hz by an operator, to simulate walking. While the subject is being oscillated, they are asked to discern the direction of Landolt-C optotypes of varying sizes and record their direction using a gamepad. The visual acuity thresholds are determined using an algorithm that alters the size of the optotype based on the previous response of the subject using a forced-choice best parameter estimation that is able to rapidly converge on the threshold value. Visual acuity thresholds were determined both for static (seated) and dynamic (oscillating) conditions. Dynamic visual acuity is defined as the difference between the dynamic and static conditions. Dynamic visual acuity measures will be taken prior to flight (typically L-180, L-90, and L-60) and up to eight times after landing, including up to 3 times on R plus 0. Follow up measurements will be taken at R plus 1 (approximately 36 hours after landing). Long-duration International Space Station crewmembers will be tested once at the refueling stop in Europe and once again upon return to Johnson Space Center. In addition to DVA, subjective ratings of motion sickness will be recorded throughout the testing. Using the chair as a portable and reliable way to test DVA, we aim to test returning astronauts to assess the amount of retinal slip that they experience. By comparing these measurements to their motion sickness scores (using a scale of 1 to 20 where 20 is vomiting), we will correlate the amount of retinal slip to the level of motion sickness experienced. In addition to testing this in returning astronauts, we will perform ground-based studies to determine the effectiveness of stroboscopic goggles in reducing retinal slip and improving DVA. Finally, we will employ stroboscopic goggles in the field to astronauts experiencing high levels of motion sickness to minimize retinal slip and reduce their symptoms.
Guedry, F E; Benson, A J; Moore, H J
1982-06-01
Visual search within a head-fixed display consisting of a 12 X 12 digit matrix is degraded by whole-body angular oscillation at 0.02 Hz (+/- 155 degrees/s peak velocity), and signs and symptoms of motion sickness are prominent in a number of individuals within a 5-min exposure. Exposure to 2.5 Hz (+/- 20 degrees/s peak velocity) produces equivalent degradation of the visual search task, but does not produce signs and symptoms of motion sickness within a 5-min exposure.
NASA Technical Reports Server (NTRS)
Kirkpatrick, M.; Brye, R. G.
1974-01-01
A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.
Hu, Bin; Yue, Shigang; Zhang, Zhuhong
All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.
Event processing in the visual world: Projected motion paths during spoken sentence comprehension.
Kamide, Yuki; Lindsay, Shane; Scheepers, Christoph; Kukona, Anuenue
2016-05-01
Motion events in language describe the movement of an entity to another location along a path. In 2 eye-tracking experiments, we found that comprehension of motion events involves the online construction of a spatial mental model that integrates language with the visual world. In Experiment 1, participants listened to sentences describing the movement of an agent to a goal while viewing visual scenes depicting the agent, goal, and empty space in between. Crucially, verbs suggested either upward (e.g., jump) or downward (e.g., crawl) paths. We found that in the rare event of fixating the empty space between the agent and goal, visual attention was biased upward or downward in line with the verb. In Experiment 2, visual scenes depicted a central obstruction, which imposed further constraints on the paths and increased the likelihood of fixating the empty space between the agent and goal. The results from this experiment corroborated and refined the previous findings. Specifically, eye-movement effects started immediately after hearing the verb and were in line with data from an additional mouse-tracking task that encouraged a more explicit spatial reenactment of the motion event. In revealing how event comprehension operates in the visual world, these findings suggest a mental simulation process whereby spatial details of motion events are mapped onto the world through visual attention. The strength and detectability of such effects in overt eye-movements is constrained by the visual world and the fact that perceivers rarely fixate regions of empty space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.
Window of visibility - A psychophysical theory of fidelity in time-sampled visual motion displays
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.; Farrell, J. E.
1986-01-01
A film of an object in motion presents on the screen a sequence of static views, while the human observer sees the object moving smoothly across the screen. Questions related to the perceptual identity of continuous and stroboscopic displays are examined. Time-sampled moving images are considered along with the contrast distribution of continuous motion, the contrast distribution of stroboscopic motion, the frequency spectrum of continuous motion, the frequency spectrum of stroboscopic motion, the approximation of the limits of human visual sensitivity to spatial and temporal frequencies by a window of visibility, the critical sampling frequency, the contrast distribution of staircase motion and the frequency spectrum of this motion, and the spatial dependence of the critical sampling frequency. Attention is given to apparent motion, models of motion, image recording, and computer-generated imagery.
Alterations to global but not local motion processing in long-term ecstasy (MDMA) users.
White, Claire; Brown, John; Edwards, Mark
2014-07-01
Growing evidence indicates that the main psychoactive ingredient in the illegal drug "ecstasy" (methylendioxymethamphetamine) causes reduced activity in the serotonin and gamma-aminobutyric acid (GABA) systems in humans. On the basis of substantial serotonin input to the occipital lobe, recent research investigated visual processing in long-term users and found a larger magnitude of the tilt aftereffect, interpreted to reflect broadened orientation tuning bandwidths. Further research found higher orientation discrimination thresholds and reduced long-range interactions in the primary visual area of ecstasy users. The aim of the present research was to investigate whether serotonin-mediated V1 visual processing deficits in ecstasy users extend to motion processing mechanisms. Forty-five participants (21 controls, 24 drug users) completed two psychophysical studies: A direction discrimination study directly measured local motion processing in V1, while a motion coherence task tested global motion processing in area V5/MT. "Primary" ecstasy users (n = 18), those without substantial polydrug use, had significantly lower global motion thresholds than controls [p = 0.027, Cohen's d = 0.78 (large)], indicating increased sensitivity to global motion stimuli, but no difference in local motion processing (p = 0.365). These results extend on previous research investigating the long-term effects of illicit drugs on visual processing. Two possible explanations are explored: defuse attentional processes may be facilitating spatial pooling of motion signals in users. Alternatively, it may be that a GABA-mediated disruption to V5/MT processing is reducing spatial suppression and therefore improving global motion perception in ecstasy users.
Visual Depth from Motion Parallax and Eye Pursuit
Stroyan, Keith; Nawrot, Mark
2012-01-01
A translating observer viewing a rigid environment experiences “motion parallax,” the relative movement upon the observer’s retina of variously positioned objects in the scene. This retinal movement of images provides a cue to the relative depth of objects in the environment, however retinal motion alone cannot mathematically determine relative depth of the objects. Visual perception of depth from lateral observer translation uses both retinal image motion and eye movement. In (Nawrot & Stroyan, 2009, Vision Res. 49, p.1969) we showed mathematically that the ratio of the rate of retinal motion over the rate of smooth eye pursuit mathematically determines depth relative to the fixation point in central vision. We also reported on psychophysical experiments indicating that this ratio is the important quantity for perception. Here we analyze the motion/pursuit cue for the more general, and more complicated, case when objects are distributed across the horizontal viewing plane beyond central vision. We show how the mathematical motion/pursuit cue varies with different points across the plane and with time as an observer translates. If the time varying retinal motion and smooth eye pursuit are the only signals used for this visual process, it is important to know what is mathematically possible to derive about depth and structure. Our analysis shows that the motion/pursuit ratio determines an excellent description of depth and structure in these broader stimulus conditions, provides a detailed quantitative hypothesis of these visual processes for the perception of depth and structure from motion parallax, and provides a computational foundation to analyze the dynamic geometry of future experiments. PMID:21695531
Accounting for direction and speed of eye motion in planning visually guided manual tracking.
Leclercq, Guillaume; Blohm, Gunnar; Lefèvre, Philippe
2013-10-01
Accurate motor planning in a dynamic environment is a critical skill for humans because we are often required to react quickly and adequately to the visual motion of objects. Moreover, we are often in motion ourselves, and this complicates motor planning. Indeed, the retinal and spatial motions of an object are different because of the retinal motion component induced by self-motion. Many studies have investigated motion perception during smooth pursuit and concluded that eye velocity is partially taken into account by the brain. Here we investigate whether the eye velocity during ongoing smooth pursuit is taken into account for the planning of visually guided manual tracking. We had 10 human participants manually track a target while in steady-state smooth pursuit toward another target such that the difference between the retinal and spatial target motion directions could be large, depending on both the direction and the speed of the eye. We used a measure of initial arm movement direction to quantify whether motor planning occurred in retinal coordinates (not accounting for eye motion) or was spatially correct (incorporating eye velocity). Results showed that the eye velocity was nearly fully taken into account by the neuronal areas involved in the visuomotor velocity transformation (between 75% and 102%). In particular, these neuronal pathways accounted for the nonlinear effects due to the relative velocity between the target and the eye. In conclusion, the brain network transforming visual motion into a motor plan for manual tracking adequately uses extraretinal signals about eye velocity.
Posture-based processing in visual short-term memory for actions.
Vicary, Staci A; Stevens, Catherine J
2014-01-01
Visual perception of human action involves both form and motion processing, which may rely on partially dissociable neural networks. If form and motion are dissociable during visual perception, then they may also be dissociable during their retention in visual short-term memory (VSTM). To elicit form-plus-motion and form-only processing of dance-like actions, individual action frames can be presented in the correct or incorrect order. The former appears coherent and should elicit action perception, engaging both form and motion pathways, whereas the latter appears incoherent and should elicit posture perception, engaging form pathways alone. It was hypothesized that, if form and motion are dissociable in VSTM, then recognition of static body posture should be better after viewing incoherent than after viewing coherent actions. However, as VSTM is capacity limited, posture-based encoding of actions may be ineffective with increased number of items or frames. Using a behavioural change detection task, recognition of a single test posture was significantly more likely after studying incoherent than after studying coherent stimuli. However, this effect only occurred for spans of two (but not three) items and for stimuli with five (but not nine) frames. As in perception, posture and motion are dissociable in VSTM.
Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.
Kalb, Julia; Egelhaaf, Martin; Kurtz, Rafael
2008-09-10
Although many adaptation-induced effects on neuronal response properties have been described, it is often unknown at what processing stages in the nervous system they are generated. We focused on fly visual motion-sensitive neurons to identify changes in response characteristics during prolonged visual motion stimulation. By simultaneous recordings of synaptically coupled neurons, we were able to directly compare adaptation-induced effects at two consecutive processing stages in the fly visual motion pathway. This allowed us to narrow the potential sites of adaptation effects within the visual system and to relate them to the properties of signal transfer between neurons. Motion adaptation was accompanied by a response reduction, which was somewhat stronger in postsynaptic than in presynaptic cells. We found that the linear representation of motion velocity degrades during adaptation to a white-noise velocity-modulated stimulus. This effect is caused by an increasingly nonlinear velocity representation rather than by an increase of noise and is similarly strong in presynaptic and postsynaptic neurons. In accordance with this similarity, the dynamics and the reliability of interneuronal signal transfer remained nearly constant. Thus, adaptation is mainly based on processes located in the presynaptic neuron or in more peripheral processing stages. In contrast, changes of transfer properties at the analyzed synapse or in postsynaptic spike generation contribute little to changes in velocity coding during motion adaptation.
Decoding the direction of imagined visual motion using 7 T ultra-high field fMRI
Emmerling, Thomas C.; Zimmermann, Jan; Sorger, Bettina; Frost, Martin A.; Goebel, Rainer
2016-01-01
There is a long-standing debate about the neurocognitive implementation of mental imagery. One form of mental imagery is the imagery of visual motion, which is of interest due to its naturalistic and dynamic character. However, so far only the mere occurrence rather than the specific content of motion imagery was shown to be detectable. In the current study, the application of multi-voxel pattern analysis to high-resolution functional data of 12 subjects acquired with ultra-high field 7 T functional magnetic resonance imaging allowed us to show that imagery of visual motion can indeed activate the earliest levels of the visual hierarchy, but the extent thereof varies highly between subjects. Our approach enabled classification not only of complex imagery, but also of its actual contents, in that the direction of imagined motion out of four options was successfully identified in two thirds of the subjects and with accuracies of up to 91.3% in individual subjects. A searchlight analysis confirmed the local origin of decodable information in striate and extra-striate cortex. These high-accuracy findings not only shed new light on a central question in vision science on the constituents of mental imagery, but also show for the first time that the specific sub-categorical content of visual motion imagery is reliably decodable from brain imaging data on a single-subject level. PMID:26481673
Dynamic and predictive links between touch and vision.
Gray, Rob; Tan, Hong Z
2002-07-01
We investigated crossmodal links between vision and touch for moving objects. In experiment 1, observers discriminated visual targets presented randomly at one of five locations on their forearm. Tactile pulses simulating motion along the forearm preceded visual targets. At short tactile-visual ISIs, discriminations were more rapid when the final tactile pulse and visual target were at the same location. At longer ISIs, discriminations were more rapid when the visual target was offset in the motion direction and were slower for offsets opposite to the motion direction. In experiment 2, speeded tactile discriminations at one of three random locations on the forearm were preceded by a visually simulated approaching object. Discriminations were more rapid when the object approached the location of the tactile stimulation and discrimination performance was dependent on the approaching object's time to contact. These results demonstrate dynamic links in the spatial mapping between vision and touch.
Global motion perception is associated with motor function in 2-year-old children.
Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E
2017-09-29
The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
Harrison, Neil R; Witheridge, Sian; Makin, Alexis; Wuerger, Sophie M; Pegna, Alan J; Meyer, Georg F
2015-11-01
Motion is represented by low-level signals, such as size-expansion in vision or loudness changes in the auditory modality. The visual and auditory signals from the same object or event may be integrated and facilitate detection. We explored behavioural and electrophysiological correlates of congruent and incongruent audio-visual depth motion in conditions where auditory level changes, visual expansion, and visual disparity cues were manipulated. In Experiment 1 participants discriminated auditory motion direction whilst viewing looming or receding, 2D or 3D, visual stimuli. Responses were faster and more accurate for congruent than for incongruent audio-visual cues, and the congruency effect (i.e., difference between incongruent and congruent conditions) was larger for visual 3D cues compared to 2D cues. In Experiment 2, event-related potentials (ERPs) were collected during presentation of the 2D and 3D, looming and receding, audio-visual stimuli, while participants detected an infrequent deviant sound. Our main finding was that audio-visual congruity was affected by retinal disparity at an early processing stage (135-160ms) over occipito-parietal scalp. Topographic analyses suggested that similar brain networks were activated for the 2D and 3D congruity effects, but that cortical responses were stronger in the 3D condition. Differences between congruent and incongruent conditions were observed between 140-200ms, 220-280ms, and 350-500ms after stimulus onset. Copyright © 2015 Elsevier Ltd. All rights reserved.
Embodied learning of a generative neural model for biological motion perception and inference
Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V.
2015-01-01
Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons. PMID:26217215
Embodied learning of a generative neural model for biological motion perception and inference.
Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V
2015-01-01
Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.
Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.
2011-01-01
The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108
Modality-dependent effect of motion information in sensory-motor synchronised tapping.
Ono, Kentaro
2018-05-14
Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.
When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.
Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-26
Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Breaking cover: neural responses to slow and fast camouflage-breaking motion.
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei
2015-08-22
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.
Breaking cover: neural responses to slow and fast camouflage-breaking motion
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M.; McLoughlin, Niall; Wang, Wei
2015-01-01
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500
Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne
2017-04-01
We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Krauzlis, Rich; Stone, Leland; Null, Cynthia H. (Technical Monitor)
1998-01-01
When viewing objects, primates use a combination of saccadic and pursuit eye movements to stabilize the retinal image of the object of regard within the high-acuity region near the fovea. Although these movements involve widespread regions of the nervous system, they mix seamlessly in normal behavior. Saccades are discrete movements that quickly direct the eyes toward a visual target, thereby translating the image of the target from an eccentric retinal location to the fovea. In contrast, pursuit is a continuous movement that slowly rotates the eyes to compensate for the motion of the visual target, minimizing the blur that can compromise visual acuity. While other mammalian species can generate smooth optokinetic eye movements - which track the motion of the entire visual surround - only primates can smoothly pursue a single small element within a complex visual scene, regardless of the motion elsewhere on the retina. This ability likely reflects the greater ability of primates to segment the visual scene, to identify individual visual objects, and to select a target of interest.
The effect of visual-motion time delays on pilot performance in a pursuit tracking task
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Riley, D. R.
1976-01-01
A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.
Near-field visual acuity of pigeons: effects of head location and stimulus luminance.
Hodos, W; Leibowitz, R W; Bonbright, J C
1976-03-01
Two pigeons were trained to discriminate a grating stimulus from a blank stimulus of equivalent luminance in a three-key chamber. The stimuli and blanks were presented behind a transparent center key. The procedure was a conditional discrimination in which pecks on the left key were reinforced if the blank had been present behind the center key and pecks on the right key were reinforced if the grating had been present behind the center key. The spatial frequency of the stimuli was varied in each session from four to 29.5 lines per millimeter in accordance with a variation of the method of constant stimuli. The number of lines per millimeter that the subjects could discriminate at threshold was determined from psychometric functions. Data were collected at five values of stimulus luminance ranging from--0.07 to 3.29 log cd/m2. The distance from the stimulus to the anterior nodal point of the eye, which was determined from measurements taken from high-speed motion-picture photographs of three additional pigeons and published intraocular measurements, was 62.0 mm. This distance and the grating detection thresholds were used to calculate the visual acuity of the birds at each level of luminance. Acuity improved with increasing luminance to a peak value of 0.52, which corresponds to a visual angle of 1.92 min, at a luminance of 2.33 log cd/m2. Further increase in luminance produced a small decline in acuity.
Wang, Hao; Crewther, Sheila G.; Liang, Minglong; Laycock, Robin; Yu, Tao; Alexander, Bonnie; Crewther, David P.; Wang, Jian; Yin, Zhengqin
2017-01-01
Strabismic amblyopia is now acknowledged to be more than a simple loss of acuity and to involve alterations in visually driven attention, though whether this applies to both stimulus-driven and goal-directed attention has not been explored. Hence we investigated monocular threshold performance during a motion salience-driven attention task involving detection of a coherent dot motion target in one of four quadrants in adult controls and those with strabismic amblyopia. Psychophysical motion thresholds were impaired for the strabismic amblyopic eye, requiring longer inspection time and consequently slower target speed for detection compared to the fellow eye or control eyes. We compared fMRI activation and functional connectivity between four ROIs of the occipital-parieto-frontal visual attention network [primary visual cortex (V1), motion sensitive area V5, intraparietal sulcus (IPS) and frontal eye fields (FEF)], during a suprathreshold version of the motion-driven attention task, and also a simple goal-directed task, requiring voluntary saccades to targets randomly appearing along a horizontal line. Activation was compared when viewed monocularly by controls and the amblyopic and its fellow eye in strabismics. BOLD activation was weaker in IPS, FEF and V5 for both tasks when viewing through the amblyopic eye compared to viewing through the fellow eye or control participants' non-dominant eye. No difference in V1 activation was seen between the amblyopic and fellow eye, nor between the two eyes of control participants during the motion salience task, though V1 activation was significantly less through the amblyopic eye than through the fellow eye and control group non-dominant eye viewing during the voluntary saccade task. Functional correlations of ROIs within the attention network were impaired through the amblyopic eye during the motion salience task, whereas this was not the case during the voluntary saccade task. Specifically, FEF showed reduced functional connectivity with visual cortical nodes during the motion salience task through the amblyopic eye, despite suprathreshold detection performance. This suggests that the reduced ability of the amblyopic eye to activate the frontal components of the attention networks may help explain the aberrant control of visual attention and eye movements in amblyopes. PMID:28484381
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek
2010-08-24
Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.
Nakamura, S; Shimojo, S
1998-10-01
The effects of the size and eccentricity of the visual stimulus upon visually induced perception of self-motion (vection) were examined with various sizes of central and peripheral visual stimulation. Analysis indicated the strength of vection increased linearly with the size of the area in which the moving pattern was presented, but there was no difference in vection strength between central and peripheral stimuli when stimulus sizes were the same. Thus, the effect of stimulus size is homogeneous across eccentricities in the visual field.
Vestibular nuclei and cerebellum put visual gravitational motion in context.
Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2008-04-01
Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.
Neural Circuit to Integrate Opposing Motions in the Visual Field.
Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander
2015-07-16
When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.
Bidet-Ildei, Christel; Kitromilides, Elenitsa; Orliaguet, Jean-Pierre; Pavlova, Marina; Gentaz, Edouard
2014-01-01
In human newborns, spontaneous visual preference for biological motion is reported to occur at birth, but the factors underpinning this preference are still in debate. Using a standard visual preferential looking paradigm, 4 experiments were carried out in 3-day-old human newborns to assess the influence of translational displacement on perception of human locomotion. Experiment 1 shows that human newborns prefer a point-light walker display representing human locomotion as if on a treadmill over random motion. However, no preference for biological movement is observed in Experiment 2 when both biological and random motion displays are presented with translational displacement. Experiments 3 and 4 show that newborns exhibit preference for translated biological motion (Experiment 3) and random motion (Experiment 4) displays over the same configurations moving without translation. These findings reveal that human newborns have a preference for the translational component of movement independently of the presence of biological kinematics. The outcome suggests that translation constitutes the first step in development of visual preference for biological motion. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel
2010-01-01
The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.
Optic flow detection is not influenced by visual-vestibular congruency.
Holten, Vivian; MacNeilage, Paul R
2018-01-01
Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.
Selectivity to Translational Egomotion in Human Brain Motion Areas
Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare
2013-01-01
The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096
Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps
Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco
2012-01-01
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222
Orientation selectivity sharpens motion detection in Drosophila
Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.
2015-01-01
SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048
Bosworth, Rain G.; Petrich, Jennifer A.; Dobkins, Karen R.
2012-01-01
In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the Dorsal and Ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the Dorsal stream. PMID:22051893
An experimental study of the nonlinear dynamic phenomenon known as wing rock
NASA Technical Reports Server (NTRS)
Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.
1990-01-01
An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.
NASA Astrophysics Data System (ADS)
Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi
2007-07-01
Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.
Motion transparency: making models of motion perception transparent.
Snowden; Verstraten
1999-10-01
In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.
Spering, Miriam; Montagnini, Anna
2011-04-22
Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.
Development of adaptive sensorimotor control in infant sitting posture.
Chen, Li-Chiou; Jeka, John; Clark, Jane E
2016-03-01
A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24 Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64 cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76 Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities. Copyright © 2016 Elsevier B.V. All rights reserved.
Motion perception tasks as potential correlates to driving difficulty in the elderly
NASA Astrophysics Data System (ADS)
Raghuram, A.; Lakshminarayanan, V.
2006-09-01
Changes in the demographics indicates that the population older than 65 is on the rise because of the aging of the ‘baby boom’ generation. This aging trend and driving related accident statistics reveal the need for procedures and tests that would assess the driving ability of older adults and predict whether they would be safe or unsafe drivers. Literature shows that an attention based test called the useful field of view (UFOV) was a significant predictor of accident rates compared to any other visual function tests. The present study evaluates a qualitative trend on using motion perception tasks as a potential visual perceptual correlates in screening elderly drivers who might have difficulty in driving. Data was collected from 15 older subjects with a mean age of 71. Motion perception tasks included—speed discrimination with radial and lamellar motion, time to collision using prediction motion and estimating direction of heading. A motion index score was calculated which was indicative of performance on all of the above-mentioned motion tasks. Scores on visual attention was assessed using UFOV. A driving habit questionnaire was also administered for a self report on the driving difficulties and accident rates. A qualitative trend based on frequency distributions show that thresholds on the motion perception tasks are successful in identifying subjects who reported to have had difficulty in certain aspects of driving and had accidents. Correlation between UFOV and motion index scores was not significant indicating that probably different aspects of visual information processing that are crucial to driving behaviour are being tapped by these two paradigms. UFOV and motion perception tasks together can be a better predictor for identifying at risk or safe drivers than just using either one of them.
Automated reference-free detection of motion artifacts in magnetic resonance images.
Küstner, Thomas; Liebgott, Annika; Mauch, Lukas; Martirosian, Petros; Bamberg, Fabian; Nikolaou, Konstantin; Yang, Bin; Schick, Fritz; Gatidis, Sergios
2018-04-01
Our objectives were to provide an automated method for spatially resolved detection and quantification of motion artifacts in MR images of the head and abdomen as well as a quality control of the trained architecture. T1-weighted MR images of the head and the upper abdomen were acquired in 16 healthy volunteers under rest and under motion. Images were divided into overlapping patches of different sizes achieving spatial separation. Using these patches as input data, a convolutional neural network (CNN) was trained to derive probability maps for the presence of motion artifacts. A deep visualization offers a human-interpretable quality control of the trained CNN. Results were visually assessed on probability maps and as classification accuracy on a per-patch, per-slice and per-volunteer basis. On visual assessment, a clear difference of probability maps was observed between data sets with and without motion. The overall accuracy of motion detection on a per-patch/per-volunteer basis reached 97%/100% in the head and 75%/100% in the abdomen, respectively. Automated detection of motion artifacts in MRI is feasible with good accuracy in the head and abdomen. The proposed method provides quantification and localization of artifacts as well as a visualization of the learned content. It may be extended to other anatomic areas and used for quality assurance of MR images.
Summation of visual motion across eye movements reflects a nonspatial decision mechanism.
Morris, Adam P; Liu, Charles C; Cropper, Simon J; Forte, Jason D; Krekelberg, Bart; Mattingley, Jason B
2010-07-21
Human vision remains perceptually stable even though retinal inputs change rapidly with each eye movement. Although the neural basis of visual stability remains unknown, a recent psychophysical study pointed to the existence of visual feature-representations anchored in environmental rather than retinal coordinates (e.g., "spatiotopic" receptive fields; Melcher and Morrone, 2003). In that study, sensitivity to a moving stimulus presented after a saccadic eye movement was enhanced when preceded by another moving stimulus at the same spatial location before the saccade. The finding is consistent with spatiotopic sensory integration, but it could also have arisen from a probabilistic improvement in performance due to the presence of more than one motion signal for the perceptual decision. Here we show that this statistical advantage accounts completely for summation effects in this task. We first demonstrate that measurements of summation are confounded by noise related to an observer's uncertainty about motion onset times. When this uncertainty is minimized, comparable summation is observed regardless of whether two motion signals occupy the same or different locations in space, and whether they contain the same or opposite directions of motion. These results are incompatible with the tuning properties of motion-sensitive sensory neurons and provide no evidence for a spatiotopic representation of visual motion. Instead, summation in this context reflects a decision mechanism that uses abstract representations of sensory events to optimize choice behavior.
Can biological motion research provide insight on how to reduce friendly fire incidents?
Steel, Kylie A; Baxter, David; Dogramaci, Sera; Cobley, Stephen; Ellem, Eathan
2016-10-01
The ability to accurately detect, perceive, and recognize biological motion can be associated with a fundamental drive for survival, and it is a significant interest for perception researchers. This field examines various perceptual features of motion and has been assessed and applied in several real-world contexts (e.g., biometric, sport). Unexplored applications still exist however, including the military issue of friendly fire. There are many causes and processes leading to friendly fire and specific challenges that are associated with visual information extraction during engagement, such as brief glimpses, low acuity, camouflage, and uniform deception. Furthermore, visual information must often be processed under highly stressful (potentially threatening), time-constrained conditions that present a significant problem for soldiers. Biological motion research and anecdotal evidence from experienced combatants suggests that intentions, emotions, identities of human motion can be identified and discriminated, even when visual display is degraded or limited. Furthermore, research suggests that perceptual discriminatory capability of movement under visually constrained conditions is trainable. Therefore, given the limited military research linked to biological motion and friendly fire, an opportunity for cross-disciplinary investigations exists. The focus of this paper is twofold: first, to provide evidence for the possible link between biological motion factors and friendly fire, and second, to propose conceptual and methodological considerations and recommendations for perceptual-cognitive training within current military programs.
Pavan, Andrea; Ghin, Filippo; Donato, Rita; Campana, Gianluca; Mather, George
2017-08-15
A long-held view of the visual system is that form and motion are independently analysed. However, there is physiological and psychophysical evidence of early interaction in the processing of form and motion. In this study, we used a combination of Glass patterns (GPs) and repetitive Transcranial Magnetic Stimulation (rTMS) to investigate in human observers the neural mechanisms underlying form-motion integration. GPs consist of randomly distributed dot pairs (dipoles) that induce the percept of an oriented stimulus. GPs can be either static or dynamic. Dynamic GPs have both a form component (i.e., orientation) and a non-directional motion component along the orientation axis. GPs were presented in two temporal intervals and observers were asked to discriminate the temporal interval containing the most coherent GP. rTMS was delivered over early visual area (V1/V2) and over area V5/MT shortly after the presentation of the GP in each interval. The results showed that rTMS applied over early visual areas affected the perception of static GPs, but the stimulation of area V5/MT did not affect observers' performance. On the other hand, rTMS was delivered over either V1/V2 or V5/MT strongly impaired the perception of dynamic GPs. These results suggest that early visual areas seem to be involved in the processing of the spatial structure of GPs, and interfering with the extraction of the global spatial structure also affects the extraction of the motion component, possibly interfering with early form-motion integration. However, visual area V5/MT is likely to be involved only in the processing of the motion component of dynamic GPs. These results suggest that motion and form cues may interact as early as V1/V2. Copyright © 2017 Elsevier Inc. All rights reserved.
Creating stimuli for the study of biological-motion perception.
Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan
2002-08-01
In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).
Educational Aspects of the CONCAM Sky Monitoring Project
NASA Astrophysics Data System (ADS)
Nemiroff, R. J.; Rafert, J. B.; Ftaclas, C.; Pereira, W. E.; Perez-Ramirez, D.
2000-12-01
We have built a prototype CONtinuous CAMera (CONCAM) that mates a fisheye lens to a CCD camera run by a laptop computer. Presently, one CONCAM is deployed at Kitt Peak National Observatory and another is being set up on Mauna Kea in Hawaii. CONCAMs can detect stars of visual magnitude 6 near the image center in a two-minute exposure. CONCAMs are weather-proof, take continuous data from 2 π steradians on the sky, are programmable over the internet, create data files downloadable over the internet, are small enough to fit inside a briefcase, and cost under \\$10 K. . Images archived at http://concam.net can be used to teach many introductory concepts. These include: the rotation of the Earth, the relative location and phase of the Moon, the location and relative motion of planets, the location of the Galactic plane, the motion of Earth satellites, the location and motion of comets, the motion of meteors, the radiant of a meteor shower, the relative locations of interesting stars, and the relative brightness changes of highly variable stars. Concam.net is not meant to replace first hand student observations of the sky, but rather to complement them with classroom-accessible actual-sky-image examples.
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
Mureli, Shwetha; Fox, Jessica L
2015-08-01
In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.
Intercepting a sound without vision
Vercillo, Tiziana; Tonelli, Alessia; Gori, Monica
2017-01-01
Visual information is extremely important to generate internal spatial representations. In the auditory modality, the absence of visual cues during early infancy does not preclude the development of some spatial strategies. However, specific spatial abilities might result impaired. In the current study, we investigated the effect of early visual deprivation on the ability to localize static and moving auditory stimuli by comparing sighted and early blind individuals’ performance in different spatial tasks. We also examined perceptual stability in the two groups of participants by matching localization accuracy in a static and a dynamic head condition that involved rotational head movements. Sighted participants accurately localized static and moving sounds. Their localization ability remained unchanged after rotational movements of the head. Conversely, blind participants showed a leftward bias during the localization of static sounds and a little bias for moving sounds. Moreover, head movements induced a significant bias in the direction of head motion during the localization of moving sounds. These results suggest that internal spatial representations might be body-centered in blind individuals and that in sighted people the availability of visual cues during early infancy may affect sensory-motor interactions. PMID:28481939
Sensory convergence in the parieto-insular vestibular cortex
Shinder, Michael E.
2014-01-01
Vestibular signals are pervasive throughout the central nervous system, including the cortex, where they likely play different roles than they do in the better studied brainstem. Little is known about the parieto-insular vestibular cortex (PIVC), an area of the cortex with prominent vestibular inputs. Neural activity was recorded in the PIVC of rhesus macaques during combinations of head, body, and visual target rotations. Activity of many PIVC neurons was correlated with the motion of the head in space (vestibular), the twist of the neck (proprioceptive), and the motion of a visual target, but was not associated with eye movement. PIVC neurons responded most commonly to more than one stimulus, and responses to combined movements could often be approximated by a combination of the individual sensitivities to head, neck, and target motion. The pattern of visual, vestibular, and somatic sensitivities on PIVC neurons displayed a continuous range, with some cells strongly responding to one or two of the stimulus modalities while other cells responded to any type of motion equivalently. The PIVC contains multisensory convergence of self-motion cues with external visual object motion information, such that neurons do not represent a specific transformation of any one sensory input. Instead, the PIVC neuron population may define the movement of head, body, and external visual objects in space and relative to one another. This comparison of self and external movement is consistent with insular cortex functions related to monitoring and explains many disparate findings of previous studies. PMID:24671533
Attributing intentions to random motion engages the posterior superior temporal sulcus.
Lee, Su Mei; Gao, Tao; McCarthy, Gregory
2014-01-01
The right posterior superior temporal sulcus (pSTS) is a neural region involved in assessing the goals and intentions underlying the motion of social agents. Recent research has identified visual cues, such as chasing, that trigger animacy detection and intention attribution. When readily available in a visual display, these cues reliably activate the pSTS. Here, using functional magnetic resonance imaging, we examined if attributing intentions to random motion would likewise engage the pSTS. Participants viewed displays of four moving circles and were instructed to search for chasing or mirror-correlated motion. On chasing trials, one circle chased another circle, invoking the percept of an intentional agent; while on correlated motion trials, one circle's motion was mirror reflected by another. On the remaining trials, all circles moved randomly. As expected, pSTS activation was greater when participants searched for chasing vs correlated motion when these cues were present in the displays. Of critical importance, pSTS activation was also greater when participants searched for chasing compared to mirror-correlated motion when the displays in both search conditions were statistically identical random motion. We conclude that pSTS activity associated with intention attribution can be invoked by top-down processes in the absence of reliable visual cues for intentionality.
Shimojo, S; Nakayama, K
1990-01-01
A series of demonstrations were created where the perceived depth of targets was controlled by stereoscopic disparity. A closer object (a cloud) was made to jump back and forth horizontally, partially occluding a farther object (a full moon). The more distant moon appeared stationary even though the unoccluded portion of it, a crescent, changed position. Reversal of the relative depth of the moon and cloud gave a totally different percept: the crescent appeared to flip back and forth in the front depth plane. Thus, the otherwise-robust apparent motion of the moon crescents was completely abolished in the cloud-closer case alone. This motion-blocking effect is attributed to the 'amodal presence' of the occluded surface continuing behind the occluding surface. To measure the effect of this occluded 'invisible' surface quantitatively, a bistable apparent motion display was used (Ramachandran and Anstis 1983a): two small rectangular-shaped targets changed their positions back and forth between two frames, and the disparity of a large centrally positioned rectangle was varied. When the perceived depths supported the possibility of amodal completion behind the large rectangle, increased vertical motion of the targets was found, suggesting that the amodal presence of the targets behind the occluder had effectively changed the center position of the moving targets for purposes of motion correspondence. Amodal contours are literally 'invisible', yet it is hypothesized that they have a neural representation at sufficiently early stages of visual processing to alter the correspondence solving process for apparent motion.
Directional asymmetries in human smooth pursuit eye movements.
Ke, Sally R; Lam, Jessica; Pai, Dinesh K; Spering, Miriam
2013-06-27
Humans make smooth pursuit eye movements to bring the image of a moving object onto the fovea. Although pursuit accuracy is critical to prevent motion blur, the eye often falls behind the target. Previous studies suggest that pursuit accuracy differs between motion directions. Here, we systematically assess asymmetries in smooth pursuit. In experiment 1, binocular eye movements were recorded while observers (n = 20) tracked a small spot of light moving along one of four cardinal or diagonal axes across a featureless background. We analyzed pursuit latency, acceleration, peak velocity, gain, and catch-up saccade latency, number, and amplitude. In experiment 2 (n = 22), we examined the effects of spatial location and constrained stimulus motion within the upper or lower visual field. Pursuit was significantly faster (higher acceleration, peak velocity, and gain) and smoother (fewer and later catch-up saccades) in response to downward versus upward motion in both the upper and the lower visual fields. Pursuit was also more accurate and smoother in response to horizontal versus vertical motion. CONCLUSIONS. Our study is the first to report a consistent up-down asymmetry in human adults, regardless of visual field. Our findings suggest that pursuit asymmetries are adaptive responses to the requirements of the visual context: preferred motion directions (horizontal and downward) are more critical to our survival than nonpreferred ones.
Takamuku, Shinya; Gomi, Hiroaki
2015-01-01
How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the ‘inverse’ computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. PMID:26156766
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1980-01-01
A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.
Functional specialization and generalization for grouping of stimuli based on colour and motion
Zeki, Semir; Stutters, Jonathan
2013-01-01
This study was undertaken to learn whether the principle of functional specialization that is evident at the level of the prestriate visual cortex extends to areas that are involved in grouping visual stimuli according to attribute, and specifically according to colour and motion. Subjects viewed, in an fMRI scanner, visual stimuli composed of moving dots, which could be either coloured or achromatic; in some stimuli the moving coloured dots were randomly distributed or moved in random directions; in others, some of the moving dots were grouped together according to colour or to direction of motion, with the number of groupings varying from 1 to 3. Increased activation was observed in area V4 in response to colour grouping and in V5 in response to motion grouping while both groupings led to activity in separate though contiguous compartments within the intraparietal cortex. The activity in all the above areas was parametrically related to the number of groupings, as was the prominent activity in Crus I of the cerebellum where the activity resulting from the two types of grouping overlapped. This suggests (a) that, the specialized visual areas of the prestriate cortex have functions beyond the processing of visual signals according to attribute, namely that of grouping signals according to colour (V4) or motion (V5); (b) that the functional separation evident in visual cortical areas devoted to motion and colour, respectively, is maintained at the level of parietal cortex, at least as far as grouping according to attribute is concerned; and (c) that, by contrast, this grouping-related functional segregation is not maintained at the level of the cerebellum. PMID:23415950
The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Riley, D. R.
1977-01-01
An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.
Wong, Yvonne J; Aldcroft, Adrian J; Large, Mary-Ellen; Culham, Jody C; Vilis, Tutis
2009-12-01
We examined the role of temporal synchrony-the simultaneous appearance of visual features-in the perceptual and neural processes underlying object persistence. When a binding cue (such as color or motion) momentarily exposes an object from a background of similar elements, viewers remain aware of the object for several seconds before it perceptually fades into the background, a phenomenon known as object persistence. We showed that persistence from temporal stimulus synchrony, like that arising from motion and color, is associated with activation in the lateral occipital (LO) area, as measured by functional magnetic resonance imaging. We also compared the distribution of occipital cortex activity related to persistence to that of iconic visual memory. Although activation related to iconic memory was largely confined to LO, activation related to object persistence was present across V1 to LO, peaking in V3 and V4, regardless of the binding cue (temporal synchrony, motion, or color). Although persistence from motion cues was not associated with higher activation in the MT+ motion complex, persistence from color cues was associated with increased activation in V4. Taken together, these results demonstrate that although persistence is a form of visual memory, it relies on neural mechanisms different from those of iconic memory. That is, persistence not only activates LO in a cue-independent manner, it also recruits visual areas that may be necessary to maintain binding between object elements.
Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.
Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong
2016-08-01
The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.
NASA Technical Reports Server (NTRS)
Clark, B.; Stewart, J. D.
1974-01-01
This experiment was concerned with the effects of rotary acceleration on choice reaction time (RTc) to the motion of a luminous line on a cathode-ray tube. Specifically, it compared the (RTc) to rotary acceleration alone, visual acceleration alone, and simultaneous, double stimulation by both rotary and visual acceleration. Thirteen airline pilots were rotated about an earth-vertical axis in a precision rotation device while they observed a vertical line. The stimuli were 7 rotary and visual accelerations which were matched for rise time. The pilot responded as quickly as possible by displacing a vertical controller to the right or left. The results showed a decreasing (RTc) with increasing acceleration for all conditions, while the (RTc) to rotary motion alone was substantially longer than for all other conditions. The (RTc) to the double stimulation was significantly longer than that for visual acceleration alone.
The economics of motion perception and invariants of visual sensitivity.
Gepshtein, Sergei; Tyukin, Ivan; Kubovy, Michael
2007-06-21
Neural systems face the challenge of optimizing their performance with limited resources, just as economic systems do. Here, we use tools of neoclassical economic theory to explore how a frugal visual system should use a limited number of neurons to optimize perception of motion. The theory prescribes that vision should allocate its resources to different conditions of stimulation according to the degree of balance between measurement uncertainties and stimulus uncertainties. We find that human vision approximately follows the optimal prescription. The equilibrium theory explains why human visual sensitivity is distributed the way it is and why qualitatively different regimes of apparent motion are observed at different speeds. The theory offers a new normative framework for understanding the mechanisms of visual sensitivity at the threshold of visibility and above the threshold and predicts large-scale changes in visual sensitivity in response to changes in the statistics of stimulation and system goals.
How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization
Kress, Daniel; van Bokhorst, Evelien; Lentink, David
2015-01-01
Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones. PMID:26107413
Manual control of yaw motion with combined visual and vestibular cues
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1977-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Figure-ground modulation in awake primate thalamus.
Jones, Helen E; Andolina, Ian M; Shipp, Stewart D; Adams, Daniel L; Cudeiro, Javier; Salt, Thomas E; Sillito, Adam M
2015-06-02
Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process.
Figure-ground modulation in awake primate thalamus
Jones, Helen E.; Andolina, Ian M.; Shipp, Stewart D.; Adams, Daniel L.; Cudeiro, Javier; Salt, Thomas E.; Sillito, Adam M.
2015-01-01
Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process. PMID:25901330
Brain white matter microstructure is associated with susceptibility to motion-induced nausea.
Napadow, V; Sheehan, J; Kim, J; Dassatti, A; Thurler, A H; Surjanhata, B; Vangel, M; Makris, N; Schaechter, J D; Kuo, B
2013-05-01
Nausea is associated with significant morbidity, and there is a wide range in the propensity of individuals to experience nausea. The neural basis of the heterogeneity in nausea susceptibility is poorly understood. Our previous functional magnetic resonance imaging (fMRI) study in healthy adults showed that a visual motion stimulus caused activation in the right MT+/V5 area, and that increased sensation of nausea due to this stimulus was associated with increased activation in the right anterior insula. For the current study, we hypothesized that individual differences in visual motion-induced nausea are due to microstructural differences in the inferior fronto-occipital fasciculus (IFOF), the white matter tract connecting the right visual motion processing area (MT+/V5) and right anterior insula. To test this hypothesis, we acquired diffusion tensor imaging data from 30 healthy adults who were subsequently dichotomized into high and low nausea susceptibility groups based on the Motion Sickness Susceptibility Scale. We quantified diffusion along the IFOF for each subject based on axial diffusivity (AD); radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), and evaluated between-group differences in these diffusion metrics. Subjects with high susceptibility to nausea rated significantly (P < 0.001) higher nausea intensity to visual motion stimuli and had significantly (P < 0.05) lower AD and MD along the right IFOF compared to subjects with low susceptibility to nausea. This result suggests that differences in white matter microstructure within tracts connecting visual motion and nausea-processing brain areas may contribute to nausea susceptibility or may have resulted from an increased history of nausea episodes. © 2013 Blackwell Publishing Ltd.
Improved automatic optic nerve radius estimation from high resolution MRI
NASA Astrophysics Data System (ADS)
Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.
2017-02-01
The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.
Improved Automatic Optic Nerve Radius Estimation from High Resolution MRI.
Harrigan, Robert L; Smith, Alex K; Mawn, Louise A; Smith, Seth A; Landman, Bennett A
2017-02-11
The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.
Sensitivity to synchronicity of biological motion in normal and amblyopic vision
Luu, Jennifer Y.; Levi, Dennis M.
2017-01-01
Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the nonamblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact. PMID:23474301
Global motion perception deficits in autism are reflected as early as primary visual cortex
Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.
2014-01-01
Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. PMID:25060095
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.
The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.
Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P
2015-01-01
Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.
A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.
Fisher, Yvette E; Leong, Jonathan C S; Sporar, Katja; Ketkar, Madhura D; Gohl, Daryl M; Clandinin, Thomas R; Silies, Marion
2015-12-21
Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Ai-Mei; Nguyen, Truong
2009-04-01
In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.
Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil
2011-01-01
Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934
Insect Detection of Small Targets Moving in Visual Clutter
Barnett, Paul D; O'Carroll, David C
2006-01-01
Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249
Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J. J.; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine
2017-01-01
The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex. PMID:28861024
Stroboscopic Vision as a Treatment for Retinal Slip Induced Motion Sickness
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Somers, J. T.; Ford, G.; Krnavek, J. M.; Hwang, E. J.; Leigh, R. J.; Estrada, A.
2007-01-01
Motion sickness in the general population is a significant problem driven by the increasingly more sophisticated modes of transportation, visual displays, and virtual reality environments. It is important to investigate non-pharmacological alternatives for the prevention of motion sickness for individuals who cannot tolerate the available anti-motion sickness drugs, or who are precluded from medication because of different operational environments. Based on the initial work of Melvill Jones, in which post hoc results indicated that motion sickness symptoms were prevented during visual reversal testing when stroboscopic vision was used to prevent retinal slip, we have evaluated stroboscopic vision as a method of preventing motion sickness in a number of different environments. Specifically, we have undertaken a five part study that was designed to investigate the effect of stroboscopic vision (either with a strobe light or LCD shutter glasses) on motion sickness while: (1) using visual field reversal, (2) reading while riding in a car (with or without external vision present), (3) making large pitch head movements during parabolic flight, (4) during exposure to rough seas in a small boat, and (5) seated and reading in the cabin area of a UH60 Black Hawk Helicopter during 20 min of provocative flight patterns.
Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji
2017-01-01
We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka.
Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji
2017-01-01
We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka. PMID:28399163
Neural correlates of coherent and biological motion perception in autism.
Koldewyn, Kami; Whitney, David; Rivera, Susan M
2011-09-01
Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. © 2011 Blackwell Publishing Ltd.
Neural correlates of coherent and biological motion perception in autism
Koldewyn, Kami; Whitney, David; Rivera, Susan M.
2011-01-01
Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. PMID:21884323
Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.
Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno
2016-11-01
Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.
Evidence against the temporal subsampling account of illusory motion reversal
Kline, Keith A.; Eagleman, David M.
2010-01-01
An illusion of reversed motion may occur sporadically while viewing continuous smooth motion. This has been suggested as evidence of discrete temporal sampling by the visual system in analogy to the sampling that generates the wagon–wheel effect on film. In an alternative theory, the illusion is not the result of discrete sampling but instead of perceptual rivalry between appropriately activated and spuriously activated motion detectors. Results of the current study demonstrate that illusory reversals of two spatially overlapping and orthogonal motions often occur separately, providing evidence against the possibility that illusory motion reversal (IMR) is caused by temporal sampling within a visual region. Further, we find that IMR occurs with non-uniform and non-periodic stimuli—an observation that is not accounted for by the temporal sampling hypothesis. We propose, that a motion aftereffect is superimposed on the moving stimulus, sporadically allowing motion detectors for the reverse direction to dominate perception. PMID:18484852
Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.
Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael
2006-08-01
The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.
Flow visualization and modeling for education and outreach in low-income countries
NASA Astrophysics Data System (ADS)
Motanated, K.
2016-12-01
Being able to visualize the dynamic interaction between the movement of water and sediment flux is undeniably a profound tool for students and novices to understand complicated earth surface processes. In a laser-sheet flow visualization technique, a light source that is thin and monochromatic is required to illuminate sediments or tracers in the flow. However, an ideal laser sheet generator is rather expensive, especially for schools and universities residing in low-income countries. This project is proposing less-expensive options for a laser-sheet source and flow visualization experiment configuration for qualitative observation and quantitative analysis of the interaction between fluid media and sediments. Here, Fresnel lens is used to convert from point laser into sheet laser. Multiple combinations of laser diodes of various wavelength (nanometer) and power (milliwatt) and Fresnel lenses of various dimensions are analyzed. The pair that is able to produce the thinnest and brightest light sheet is not only effective but also affordable. The motion of sediments in a flow can be observed by illuminating the laser-sheet in an interested flow region. The particle motion is recorded by a video camera that is capable of taking multiple frames per second and having a narrow depth of view. The recorded video file can be played in a slow-motion mode so students can visually observe and qualitatively analyze the particle motion. An open source software package for Particle Imaging Velocimetry (PIV) can calculate the local velocity of particles from still images extracted from the video and create a vector map depicting particle motion. This flow visualization experiment is inexpensive and the configuration is simple to setup. Most importantly, this flow visualization technique serves as a fundamental tool for earth surface process education and can further be applied to sedimentary process modeling.
Shared sensory estimates for human motion perception and pursuit eye movements.
Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C
2015-06-03
Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.
Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements
Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio
2015-01-01
Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919
Spatiotemporal Processing in Crossmodal Interactions for Perception of the External World: A Review
Hidaka, Souta; Teramoto, Wataru; Sugita, Yoichi
2015-01-01
Research regarding crossmodal interactions has garnered much interest in the last few decades. A variety of studies have demonstrated that multisensory information (vision, audition, tactile sensation, and so on) can perceptually interact with each other in the spatial and temporal domains. Findings regarding crossmodal interactions in the spatiotemporal domain (i.e., motion processing) have also been reported, with updates in the last few years. In this review, we summarize past and recent findings on spatiotemporal processing in crossmodal interactions regarding perception of the external world. A traditional view regarding crossmodal interactions holds that vision is superior to audition in spatial processing, but audition is dominant over vision in temporal processing. Similarly, vision is considered to have dominant effects over the other sensory modalities (i.e., visual capture) in spatiotemporal processing. However, recent findings demonstrate that sound could have a driving effect on visual motion perception. Moreover, studies regarding perceptual associative learning reported that, after association is established between a sound sequence without spatial information and visual motion information, the sound sequence could trigger visual motion perception. Other sensory information, such as motor action or smell, has also exhibited similar driving effects on visual motion perception. Additionally, recent brain imaging studies demonstrate that similar activation patterns could be observed in several brain areas, including the motion processing areas, between spatiotemporal information from different sensory modalities. Based on these findings, we suggest that multimodal information could mutually interact in spatiotemporal processing in the percept of the external world and that common perceptual and neural underlying mechanisms would exist for spatiotemporal processing. PMID:26733827
Apollo Rendezvous Docking Simulator
1964-11-02
Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. The pilot is shown maneuvering the LEM into position for docking with a full-scale Apollo Command Module. From A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. Apollo Rendezvous Docking Simulator: Langley s Rendezvous Docking Simulator was developed by NASA scientists to study the complex task of docking the Lunar Excursion Module with the Command Module in Lunar orbit.
Self-motion Perception Training: Thresholds Improve in the Light but not in the Dark
Hartmann, Matthias; Furrer, Sarah; Herzog, Michael H.; Merfeld, Daniel M.; Mast, Fred W.
2014-01-01
We investigated perceptual learning in self-motion perception. Blindfolded participants were displaced leftward or rightward by means of a motion platform, and asked to indicate the direction of motion. A total of eleven participants underwent 3360 practice trials, distributed over twelve (Experiment 1) or six days (Experiment 2). We found no improvement in motion discrimination in both experiments. These results are surprising since perceptual learning has been demonstrated for visual, auditory, and somatosensory discrimination. Improvements in the same task were found when visual input was provided (Experiment 3). The multisensory nature of vestibular information is discussed as a possible explanation of the absence of perceptual learning in darkness. PMID:23392475
Coherent Motion Sensitivity Predicts Individual Differences in Subtraction
ERIC Educational Resources Information Center
Boets, Bart; De Smedt, Bert; Ghesquiere, Pol
2011-01-01
Recent findings suggest deficits in coherent motion sensitivity, an index of visual dorsal stream functioning, in children with poor mathematical skills or dyscalculia, a specific learning disability in mathematics. We extended these data using a longitudinal design to unravel whether visual dorsal stream functioning is able to "predict"…
Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael
2013-09-01
Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; McHenry, M. Q.; Hess, B. J.
2000-01-01
The dynamics and three-dimensional (3-D) properties of the primate translational vestibuloocular reflex (trVOR) for high-frequency (4-12 Hz, +/-0.3-0.4 g) lateral motion were investigated during near-target viewing at center and eccentric targets. Horizontal response gains increased with frequency and depended on target eccentricity. The larger the horizontal and vertical target eccentricity, the steeper the dependence of horizontal response gain on frequency. In addition to horizontal eye movements, robust torsional response components also were present at all frequencies. During center-target fixation, torsional response phase was opposite (anticompensatory) to that expected for an "apparent" tilt response. Instead torsional response components depended systematically on vertical-target eccentricity, increasing in amplitude when looking down and reversing phase when looking up. As a result the trVOR eye velocity vector systematically tilted away from a purely horizontal direction, through an angle that increased with vertical eccentricity with a slope of approximately 0.7. This systematic dependence of torsional eye velocity tilt on vertical eye position suggests that the trVOR might follow the 3-D kinematic requirements that have been shown to govern visually guided eye movements and near-target fixation.
Takeda, Kenta; Mani, Hiroki; Hasegawa, Naoya; Sato, Yuki; Tanaka, Shintaro; Maejima, Hiroshi; Asaka, Tadayoshi
2017-07-19
The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing. Thirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COP AP ) and mediolateral (COP ML ) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COM AP and COM ML ). The coordinates of the COG in the AP direction (COG AP ) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COP AP and/or COG AP moved forward and vice versa. The COP + COG group received the real-time COP AP and COG AP feedback simultaneously, whereas the COP group received the real-time COP AP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COP AP and COG AP and reduce the COG AP fluctuation, whereas the COP group was required to reduce the COP AP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions. In the post-session, the velocity and root mean square of COM AP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP - COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COM AP velocity and COP - COM parameters. The results suggest that the novel visual feedback training that incorporates the COP AP -COG AP interaction reduces postural sway better than the training using the COP AP alone during quiet standing. That is, even COP AP fluctuation around the COG AP would be effective in reducing the COM AP velocity.
Integrating a Motion Base into a CAVE Automatic Virtual Environment: Phase 1
2001-07-01
this, a CAVE system must perform well in the following motion-related areas: visual gaze stability, simulator sickness, realism (or face validity...and performance validity. Visual Gaze Stability Visual gaze stability, the ability to maintain eye fixation on a particular target, depends upon human...reflexes such as the vestibulo-ocular reflex (VOR) and the optokinetic nystagmus (OKN). VOR is a reflex that counter-rotates the eye relative to the
Takamuku, Shinya; Gomi, Hiroaki
2015-07-22
How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the 'inverse' computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Buchanan, John J
2016-01-01
The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.
Local statistics of retinal optic flow for self-motion through natural sceneries.
Calow, Dirk; Lappe, Markus
2007-12-01
Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.
Silvanto, Juha; Cattaneo, Zaira
2010-05-01
Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.
A rotorcraft flight database for validation of vision-based ranging algorithms
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1992-01-01
A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community.
Vision System Measures Motions of Robot and External Objects
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2008-01-01
A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem (the subsystem that estimates the motion of the camera pair relative to the stationary background) utilizes the 3D information from stereoscopy and the 2D information from optical flow. It computes the relationship between the 3D and 2D motions and uses a least-mean-squares technique to estimate motion parameters. The least-mean-squares technique is suitable for real-time implementation when the number of external-moving-object pixels is smaller than the number of stationary-background pixels.
Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Fermi's Motion Produces a Study in Spirograph
2017-12-08
The LAT's sensitivity to gamma rays is greatest in the center of its wide field of view and decreases toward the edge. LAT scientists regard the effective limit of the instrument's field of view to be 78.5 degrees (red circle) from its center. View a video of this here: bit.ly/Y2K4LN. Credit: NASA/DOE/Fermi LAT Collaboration ----- NASA's Fermi Gamma-ray Space Telescope orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps across the entire sky every three hours, capturing the highest-energy form of light -- gamma rays -- from sources across the universe. These range from supermassive black holes billions of light-years away to intriguing objects in our own galaxy, such as X-ray binaries, supernova remnants and pulsars. Now a Fermi scientist has transformed LAT data of a famous pulsar into a mesmerizing movie that visually encapsulates the spacecraft's complex motion. Click here to continue reading: 1.usa.gov/WhYwCU NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Zago, Myrka; Lacquaniti, Francesco
2005-09-01
Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. However, there are limitations in the visual system that raise questions about the general validity of these theories. Most notably, vision is poorly sensitive to arbitrary accelerations. How then does the brain deal with the motion of objects accelerated by Earth's gravity? Here we review evidence in favor of the view that the brain makes the best estimate about target motion based on visually measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from the expected kinetics in the Earth's gravitational field.
Yu, Tzu-Ying; Jacobs, Robert J.; Anstice, Nicola S.; Paudel, Nabin; Harding, Jane E.; Thompson, Benjamin
2013-01-01
Purpose. We developed and validated a technique for measuring global motion perception in 2-year-old children, and assessed the relationship between global motion perception and other measures of visual function. Methods. Random dot kinematogram (RDK) stimuli were used to measure motion coherence thresholds in 366 children at risk of neurodevelopmental problems at 24 ± 1 months of age. RDKs of variable coherence were presented and eye movements were analyzed offline to grade the direction of the optokinetic reflex (OKR) for each trial. Motion coherence thresholds were calculated by fitting psychometric functions to the resulting datasets. Test–retest reliability was assessed in 15 children, and motion coherence thresholds were measured in a group of 10 adults using OKR and behavioral responses. Standard age-appropriate optometric tests also were performed. Results. Motion coherence thresholds were measured successfully in 336 (91.8%) children using the OKR technique, but only 31 (8.5%) using behavioral responses. The mean threshold was 41.7 ± 13.5% for 2-year-old children and 3.3 ± 1.2% for adults. Within-assessor reliability and test–retest reliability were high in children. Children's motion coherence thresholds were significantly correlated with stereoacuity (LANG I & II test, ρ = 0.29, P < 0.001; Frisby, ρ = 0.17, P = 0.022), but not with binocular visual acuity (ρ = 0.11, P = 0.07). In adults OKR and behavioral motion coherence thresholds were highly correlated (intraclass correlation = 0.81, P = 0.001). Conclusions. Global motion perception can be measured in 2-year-old children using the OKR. This technique is reliable and data from adults suggest that motion coherence thresholds based on the OKR are related to motion perception. Global motion perception was related to stereoacuity in children. PMID:24282224
Jacoby, Jason
2017-01-01
Retinal ganglion cells (RGCs) are frequently divided into functional types by their ability to extract and relay specific features from a visual scene, such as the capacity to discern local or global motion, direction of motion, stimulus orientation, contrast or uniformity, or the presence of large or small objects. Here we introduce three previously uncharacterized, nondirection-selective ON–OFF RGC types that represent a distinct set of feature detectors in the mouse retina. The three high-definition (HD) RGCs possess small receptive-field centers and strong surround suppression. They respond selectively to objects of specific sizes, speeds, and types of motion. We present comprehensive morphological characterization of the HD RGCs and physiological recordings of their light responses, receptive-field size and structure, and synaptic mechanisms of surround suppression. We also explore the similarities and differences between the HD RGCs and a well characterized RGC with a comparably small receptive field, the local edge detector, in response to moving objects and textures. We model populations of each RGC type to study how they differ in their performance tracking a moving object. These results, besides introducing three new RGC types that together constitute a substantial fraction of mouse RGCs, provide insights into the role of different circuits in shaping RGC receptive fields and establish a foundation for continued study of the mechanisms of surround suppression and the neural basis of motion detection. SIGNIFICANCE STATEMENT The output cells of the retina, retinal ganglion cells (RGCs), are a diverse group of ∼40 distinct neuron types that are often assigned “feature detection” profiles based on the specific aspects of the visual scene to which they respond. Here we describe, for the first time, morphological and physiological characterization of three new RGC types in the mouse retina, substantially augmenting our understanding of feature selectivity. Experiments and modeling show that while these three “high-definition” RGCs share certain receptive-field properties, they also have distinct tuning to the size, speed, and type of motion on the retina, enabling them to occupy different niches in stimulus space. PMID:28100743
Spherical Coordinate Systems for Streamlining Suited Mobility Analysis
NASA Technical Reports Server (NTRS)
Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar
2015-01-01
Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results demonstrated that a spherical coordinate system is helpful in describing and visualizing the motion of a space suit. The system is particularly useful in describing the motion of the shoulder, where multiple degrees of freedom can lead to very complex motion paths.
Sensory conflict in motion sickness: An observer theory approach
NASA Technical Reports Server (NTRS)
Oman, Charles M.
1989-01-01
Motion sickness is the general term describing a group of common nausea syndromes originally attributed to motion-induced cerebral ischemia, stimulation of abdominal organ afferent, or overstimulation of the vestibular organs of the inner ear. Sea-, car-, and airsicknesses are the most commonly experienced examples. However, the discovery of other variants such as Cinerama-, flight simulator-, spectacle-, and space sickness in which the physical motion of the head and body is normal or absent has led to a succession of sensory conflict theories which offer a more comprehensive etiologic perspective. Implicit in the conflict theory is the hypothesis that neutral and/or humoral signals originate in regions of the brain subversing spatial orientation, and that these signals somehow traverse to other centers mediating sickness symptoms. Unfortunately, the present understanding of the neurophysiological basis of motion sickness is far from complete. No sensory conflict neuron or process has yet been physiologically identified. To what extent can the existing theory be reconciled with current knowledge of the physiology and pharmacology of nausea and vomiting. The stimuli which causes sickness, synthesizes a contemporary Observer Theory view of the Sensory Conflict hypothesis are reviewed, and a revised model for the dynamic coupling between the putative conflict signals and nausea magnitude estimates is presented. The use of quantitative models for sensory conflict offers a possible new approach to improving the design of visual and motion systems for flight simulators and other virtual environment display systems.
The Role of Visual Cues in Microgravity Spatial Orientation
NASA Technical Reports Server (NTRS)
Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.
2003-01-01
In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body rotation or by simply cognitively initiating a visual reorientation-altered the illusion of convexity produced when viewing a flat, shaded disc. It changed at least one person's ability to recognize previously presented two-dimensional shapes. Overall, results show that most astronauts become more dependent on dynamic visual motion cues and some become responsive to stationary orientation cues. The direction of the subjective vertical is labile in the absence of gravity. This can interfere with the ability to properly interpret shading, or to recognize complex objects in different orientations.
Ahrens, Merle-Marie; Veniero, Domenica; Gross, Joachim; Harvey, Monika; Thut, Gregor
2015-01-01
Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech. PMID:26623650
Heinen, Klaartje; Feredoes, Eva; Weiskopf, Nikolaus; Ruff, Christian C; Driver, Jon
2014-11-01
Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property. © The Author 2013. Published by Oxford University Press.
TH-CD-207B-03: How to Quantify Temporal Resolution in X-Ray MDCT Imaging?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budde, A; GE Healthcare Technologies, Madison, WI; Li, Y
Purpose: In modern CT scanners, a quantitative metric to assess temporal response, namely, to quantify the temporal resolution (TR), remains elusive. Rough surrogate metrics, such as half of the gantry rotation time for single source CT, a quarter of the gantry rotation time for dual source CT, or measurements of motion artifact’s size, shape, or intensity have previously been used. In this work, a rigorous framework which quantifies TR and a practical measurement method are developed. Methods: A motion phantom was simulated which consisted of a single rod that is in motion except during a static period at the temporalmore » center of the scan, termed the TR window. If the image of the motion scan has negligible motion artifacts compared to an image from a totally static scan, then the system has a TR no worse than the TR window used. By repeating this comparison with varying TR windows, the TR of the system can be accurately determined. Motion artifacts were also visually assessed and the TR was measured across varying rod motion speeds, directions, and locations. Noiseless fan beam acquisitions were simulated and images were reconstructed with a short-scan image reconstruction algorithm. Results: The size, shape, and intensity of motion artifacts varied when the rod speed, direction, or location changed. TR measured using the proposed method, however, was consistent across rod speeds, directions, and locations. Conclusion: Since motion artifacts vary depending upon the motion speed, direction, and location, they are not suitable for measuring TR. In this work, a CT system with a specified TR is defined as having the ability to produce a static image with negligible motion artifacts, no matter what motion occurs outside of a static window of width TR. This framework allows for practical measurement of temporal resolution in clinical CT imaging systems. Funding support: GE Healthcare; Conflict of Interest: Employee, GE Healthcare.« less
Saunders, Jeffrey A.
2014-01-01
Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194
The Analysis of Visual Motion: From Computational Theory to Neuronal Mechanisms.
1986-12-01
neuronb. Brain Res. 151:599-603. Frost, B . J., Nakayama, K . 1983. Single visual neurons code opposing motion independent JW of direction. Science 220:744...Biol. Cybern. 42:195-204. llolden, A. 1. 1977. Responses of directional ganglion cells in the pigeon retina. J. Physiol., 270:2,53 269. Horn. B . K . P...R. Soc. Iond. B . 223:165-175. 51 % Computations Underlying Motion ttildret ik Koch %V. Longuet-Iliggins, H. C., Prazdny. K . 1981. The interpretation
Using a Force Concept Inventory Test with Visually Impaired and Blind Students
ERIC Educational Resources Information Center
Bulbul, Mustafa Sahin; Garip, Belkis; Özdemir, Ömer Faruk
2015-01-01
This paper reports on a study to determine whether blind students' conceptualizations of force and motion differ from sighted students. This is particularly concerned with the question of whether the students' visual experiences have any relation to their conceptualizations or misconceptualization about force and motion. The research was designed…
Technique for Measuring Speed and Visual Motion Sensitivity in Lizards
ERIC Educational Resources Information Center
Woo, Kevin L.; Burke, Darren
2008-01-01
Testing sensory characteristics on herpetological species has been difficult due to a range of properties related to physiology, responsiveness, performance ability, and the type of reinforcer used. Using the Jacky lizard as a model, we outline a successfully established procedure in which to test the visual sensitivity to motion characteristics.…
NASA Technical Reports Server (NTRS)
Carpenter-Smith, Theodore R.; Futamura, Robert G.; Parker, Donald E.
1995-01-01
The present study focused on the development of a procedure to assess perceived self-motion induced by visual surround motion - vection. Using an apparatus that permitted independent control of visual and inertial stimuli, prone observers were translated along their head x-axis (fore/aft). The observers' task was to report the direction of self-motion during passive forward and backward translations of their bodies coupled with exposure to various visual surround conditions. The proportion of 'forward' responses was used to calculate each observer's point of subjective equality (PSE) for each surround condition. The results showed that the moving visual stimulus produced a significant shift in the PSE when data from the moving surround condition were compared with the stationary surround and no-vision condition. Further, the results indicated that vection increased monotonically with surround velocities between 4 and 40/s. It was concluded that linear vection can be measured in terms of changes in the amplitude of whole-body inertial acceleration required to elicit equivalent numbers of 'forward' and 'backward' self-motion reports.
Typical Neural Representations of Action Verbs Develop without Vision
Caramazza, A.; Pascual-Leone, A.; Saxe, R.
2012-01-01
Many empiricist theories hold that concepts are composed of sensory–motor primitives. For example, the meaning of the word “run” is in part a visual image of running. If action concepts are partly visual, then the concepts of congenitally blind individuals should be altered in that they lack these visual features. We compared semantic judgments and neural activity during action verb comprehension in congenitally blind and sighted individuals. Participants made similarity judgments about pairs of nouns and verbs that varied in the visual motion they conveyed. Blind adults showed the same pattern of similarity judgments as sighted adults. We identified the left middle temporal gyrus (lMTG) brain region that putatively stores visual–motion features relevant to action verbs. The functional profile and location of this region was identical in sighted and congenitally blind individuals. Furthermore, the lMTG was more active for all verbs than nouns, irrespective of visual–motion features. We conclude that the lMTG contains abstract representations of verb meanings rather than visual–motion images. Our data suggest that conceptual brain regions are not altered by the sensory modality of learning. PMID:21653285
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1988-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans.
NASA Technical Reports Server (NTRS)
Riley, D. R.; Miller, G. K., Jr.
1978-01-01
The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.
Shichinohe, Natsuko; Akao, Teppei; Kurkin, Sergei; Fukushima, Junko; Kaneko, Chris R S; Fukushima, Kikuro
2009-06-11
Cortical motor areas are thought to contribute "higher-order processing," but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons have not distinguished activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a memory-based task designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory, and assessment of visual motion direction, the decision of whether to pursue, and the preparation for pursuit eye movements. Bilateral muscimol injection into SEF resulted in directional errors in smooth pursuit, errors of whether to pursue, and impairment of initial correct eye movements. These results suggest an important role for the SEF in memory and assessment of visual motion direction and the programming of appropriate pursuit eye movements.
The Shuttle Mission Simulator computer generated imagery
NASA Technical Reports Server (NTRS)
Henderson, T. H.
1984-01-01
Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.
Goal-directed action is automatically biased towards looming motion
Moher, Jeff; Sit, Jonathan; Song, Joo-Hyun
2014-01-01
It is known that looming motion can capture attention regardless of an observer’s intentions. Real-world behavior, however, frequently involves not just attentional selection, but selection for action. Thus, it is important to understand the impact of looming motion on goal-directed action to gain a broader perspective on how stimulus properties bias human behavior. We presented participants with a visually-guided reaching task in which they pointed to a target letter presented among non-target distractors. On some trials, one of the pre-masks at the location of the upcoming search objects grew rapidly in size, creating the appearance of a “looming” target or distractor. Even though looming motion did not predict the target location, the time required to reach to the target was shorter when the target loomed compared to when a distractor loomed. Furthermore, reach movement trajectories were pulled towards the location of a looming distractor when one was present, a pull that was greater still when the looming motion was on a collision path with the participant. We also contrast reaching data with data from a similarly designed visual search task requiring keypress responses. This comparison underscores the sensitivity of visually-guided reaching data, as some experimental manipulations, such as looming motion path, affected reach trajectories but not keypress measures. Together, the results demonstrate that looming motion biases visually-guided action regardless of an observer’s current behavioral goals, affecting not only the time required to reach to targets but also the path of the observer’s hand movement itself. PMID:25159287
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s2 vs. 6.69 ± 0.87 cm/s2), and sway area (1.77 ± 0.22 cm2 vs. 1.04 ± 0.25 cm2). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness. PMID:29930534
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine.
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s 2 vs. 6.69 ± 0.87 cm/s 2 ), and sway area (1.77 ± 0.22 cm 2 vs. 1.04 ± 0.25 cm 2 ). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness.
Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task
Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L.
2016-01-01
Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e., optic flow) and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e., engine, tire, and wind sounds). Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion. PMID:27199829
NASA Astrophysics Data System (ADS)
George, Rohini
Lung cancer accounts for 13% of all cancers in the Unites States and is the leading cause of deaths among both men and women. The five-year survival for lung cancer patients is approximately 15%.(ACS facts & figures) Respiratory motion decreases accuracy of thoracic radiotherapy during imaging and delivery. To account for respiration, generally margins are added during radiation treatment planning, which may cause a substantial dose delivery to normal tissues and increase the normal tissue toxicity. To alleviate the above-mentioned effects of respiratory motion, several motion management techniques are available which can reduce the doses to normal tissues, thereby reducing treatment toxicity and allowing dose escalation to the tumor. This may increase the survival probability of patients who have lung cancer and are receiving radiation therapy. However the accuracy of these motion management techniques are inhibited by respiration irregularity. The rationale of this thesis was to study the improvement in regularity of respiratory motion by breathing coaching for lung cancer patients using audio instructions and audio-visual biofeedback. A total of 331 patient respiratory motion traces, each four minutes in length, were collected from 24 lung cancer patients enrolled in an IRB-approved breathing-training protocol. It was determined that audio-visual biofeedback significantly improved the regularity of respiratory motion compared to free breathing and audio instruction, thus improving the accuracy of respiratory gated radiotherapy. It was also observed that duty cycles below 30% showed insignificant reduction in residual motion while above 50% there was a sharp increase in residual motion. The reproducibility of exhale based gating was higher than that of inhale base gating. Modeling the respiratory cycles it was found that cosine and cosine 4 models had the best correlation with individual respiratory cycles. The overall respiratory motion probability distribution function could be approximated to a normal distribution function. A statistical analysis was also performed to investigate if a patient's physical, tumor or general characteristics played a role in identifying whether he/she responded positively to the coaching type---signified by a reduction in the variability of respiratory motion. The analysis demonstrated that, although there were some characteristics like disease type and dose per fraction that were significant with respect to time-independent analysis, there were no significant time trends observed for the inter-session or intra-session analysis. Based on patient feedback with the existing audio-visual biofeedback system used for the study and research performed on other feedback systems, an improved audio-visual biofeedback system was designed. It is hoped the widespread clinical implementation of audio-visual biofeedback for radiotherapy will improve the accuracy of lung cancer radiotherapy.
Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.
2013-01-01
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760
Simulation and visualization of face seal motion stability by means of computer generated movies
NASA Technical Reports Server (NTRS)
Etsion, I.; Auer, B. M.
1980-01-01
A computer aided design method for mechanical face seals is described. Based on computer simulation, the actual motion of the flexibly mounted element of the seal can be visualized. This is achieved by solving the equations of motion of this element, calculating the displacements in its various degrees of freedom vs. time, and displaying the transient behavior in the form of a motion picture. Incorporating such a method in the design phase allows one to detect instabilities and to correct undesirable behavior of the seal. A theoretical background is presented. Details of the motion display technique are described, and the usefulness of the method is demonstrated by an example of a noncontacting conical face seal.
Simulation and visualization of face seal motion stability by means of computer generated movies
NASA Technical Reports Server (NTRS)
Etsion, I.; Auer, B. M.
1981-01-01
A computer aided design method for mechanical face seals is described. Based on computer simulation, the actual motion of the flexibly mounted element of the seal can be visualized. This is achieved by solving the equations of motion of this element, calculating the displacements in its various degrees of freedom vs. time, and displaying the transient behavior in the form of a motion picture. Incorporating such a method in the design phase allows one to detect instabilities and to correct undesirable behavior of the seal. A theoretical background is presented. Details of the motion display technique are described, and the usefulness of the method is demonstrated by an example of a noncontacting conical face seal.
Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin
2009-03-01
Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.
Speed Biases With Real-Life Video Clips
Rossi, Federica; Montanaro, Elisa; de’Sperati, Claudio
2018-01-01
We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate “natural” video compression techniques based on sub-threshold temporal squeezing. PMID:29615875
Speed Biases With Real-Life Video Clips.
Rossi, Federica; Montanaro, Elisa; de'Sperati, Claudio
2018-01-01
We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate "natural" video compression techniques based on sub-threshold temporal squeezing.
Palmisano, Stephen; Allison, Robert S.; Schira, Mark M.; Barry, Robert J.
2015-01-01
This paper discusses four major challenges facing modern vection research. Challenge 1 (Defining Vection) outlines the different ways that vection has been defined in the literature and discusses their theoretical and experimental ramifications. The term vection is most often used to refer to visual illusions of self-motion induced in stationary observers (by moving, or simulating the motion of, the surrounding environment). However, vection is increasingly being used to also refer to non-visual illusions of self-motion, visually mediated self-motion perceptions, and even general subjective experiences (i.e., “feelings”) of self-motion. The common thread in all of these definitions is the conscious subjective experience of self-motion. Thus, Challenge 2 (Significance of Vection) tackles the crucial issue of whether such conscious experiences actually serve functional roles during self-motion (e.g., in terms of controlling or guiding the self-motion). After more than 100 years of vection research there has been surprisingly little investigation into its functional significance. Challenge 3 (Vection Measures) discusses the difficulties with existing subjective self-report measures of vection (particularly in the context of contemporary research), and proposes several more objective measures of vection based on recent empirical findings. Finally, Challenge 4 (Neural Basis) reviews the recent neuroimaging literature examining the neural basis of vection and discusses the hurdles still facing these investigations. PMID:25774143
Pretto, Paolo; Oberfeld, Daniel; Hecht, Heiko; Bülthoff, Heinrich H.
2017-01-01
This study investigated the role of vection (i.e., a visually induced sense of self-motion), optokinetic nystagmus (OKN), and inadvertent head movements in visually induced motion sickness (VIMS), evoked by yaw rotation of the visual surround. These three elements have all been proposed as contributing factors in VIMS, as they can be linked to different motion sickness theories. However, a full understanding of the role of each factor is still lacking because independent manipulation has proven difficult in the past. We adopted an integrative approach to the problem by obtaining measures of potentially relevant parameters in four experimental conditions and subsequently combining them in a linear mixed regression model. To that end, participants were exposed to visual yaw rotation in four separate sessions. Using a full factorial design, the OKN was manipulated by a fixation target (present/absent), and vection strength by introducing a conflict in the motion direction of the central and peripheral field of view (present/absent). In all conditions, head movements were minimized as much as possible. Measured parameters included vection strength, vection variability, OKN slow phase velocity, OKN frequency, the number of inadvertent head movements, and inadvertent head tilt. Results show that VIMS increases with vection strength, but that this relation varies among participants (R2 = 0.48). Regression parameters for vection variability, head and eye movement parameters were not significant. These results may seem to be in line with the Sensory Conflict theory on motion sickness, but we argue that a more detailed definition of the exact nature of the conflict is required to fully appreciate the relationship between vection and VIMS. PMID:28380077
Perceptual learning modifies the functional specializations of visual cortical areas.
Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang
2016-05-17
Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.
Central Inhibition Ability Modulates Attention-Induced Motion Blindness
ERIC Educational Resources Information Center
Milders, Maarten; Hay, Julia; Sahraie, Arash; Niedeggen, Michael
2004-01-01
Impaired motion perception can be induced in normal observers in a rapid serial visual presentation task. Essential for this effect is the presence of motion distractors prior to the motion target, and we proposed that this attention-induced motion blindness results from high-level inhibition produced by the distractors. To investigate this, we…
Global motion perception deficits in autism are reflected as early as primary visual cortex.
Robertson, Caroline E; Thomas, Cibu; Kravitz, Dwight J; Wallace, Gregory L; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I
2014-09-01
Individuals with autism are often characterized as 'seeing the trees, but not the forest'-attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15-27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon
2017-03-01
As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.
Independent and additive repetition priming of motion direction and color in visual search.
Kristjánsson, Arni
2009-03-01
Priming of visual search for Gabor patch stimuli, varying in color and local drift direction, was investigated. The task relevance of each feature varied between the different experimental conditions compared. When the target defining dimension was color, a large effect of color repetition was seen as well as a smaller effect of the repetition of motion direction. The opposite priming pattern was seen when motion direction defined the target--the effect of motion direction repetition was this time larger than for color repetition. Finally, when neither was task relevant, and the target defining dimension was the spatial frequency of the Gabor patch, priming was seen for repetition of both color and motion direction, but the effects were smaller than in the previous two conditions. These results show that features do not necessarily have to be task relevant for priming to occur. There is little interaction between priming following repetition of color and motion, these two features show independent and additive priming effects, most likely reflecting that the two features are processed at separate processing sites in the nervous system, consistent with previous findings from neuropsychology & neurophysiology. The implications of the findings for theoretical accounts of priming in visual search are discussed.
A Compact VLSI System for Bio-Inspired Visual Motion Estimation.
Shi, Cong; Luo, Gang
2018-04-01
This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.
Human comfort response to random motions with a dominant vertical motion
NASA Technical Reports Server (NTRS)
Stone, R. W., Jr.
1975-01-01
Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with vertical acceleration inputs with various power spectra shapes and magnitudes. The data obtained are presented.
A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Raudies, Florian; Neumann, Heiko
2010-03-01
How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals. Copyright 2009 Elsevier Ltd. All rights reserved.
Minimization of Retinal Slip Cannot Explain Human Smooth-Pursuit Eye Movements
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Beutter, Brent R.; Null, Cynthia H. (Technical Monitor)
1998-01-01
Existing models assume that pursuit attempts a direct minimization of retinal image motion or "slip" (e.g. Robinson et al., 1986; Krauzlis & Weisberger, 1989). Using occluded line-figure stimuli, we have previously shown that humans can accurately pursue stimuli for which perfect tracking does not zero retinal slip (Neurologic ARCO). These findings are inconsistent with the standard control strategy of matching eye motion to a target-motion signal reconstructed by adding retinal slip and eye motion, but consistent with a visual front-end which estimates target motion via a global spatio-temporal integration for pursuit and perception. Another possible explanation is that pursuit simply attempts to minimize slip perpendicular to the segments (and neglects parallel "sliding" motion). To resolve this, 4 observers (3 naive) were asked to pursue the center of 2 types of stimuli with identical velocity-space descriptions and matched motion energy. The line-figure "diamond" stimulus was viewed through 2 invisible 3 deg-wide vertical apertures (38 cd/m2 equal to background) such that only the sinusoidal motion of 4 oblique line segments (44 cd/m2 was visible. The "cross" was identical except that the segments exchanged positions. Two trajectories (8's and infinity's) with 4 possible initial directions were randomly interleaved (1.25 cycles, 2.5s period, Ax = Ay = 1.4 deg). In 91% of trials, the diamond appeared rigid. Correspondingly, pursuit was vigorous (mean Again: 0.74) with a V/H aspect ratio approx. 1 (mean: 0.9). Despite a valid rigid solution, the cross however appeared rigid in 8% of trials. Correspondingly, pursuit was weaker (mean Hgain: 0.38) with an incorrect aspect ratio (mean: 1.5). If pursuit were just minimizing perpendicular slip, performance would be the same in both conditions.
Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function
Jiménez Barbosa, Ingrid Astrid
2015-01-01
Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners were also significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners. Conclusions Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour) and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance. PMID:25933026
Cyclic motion encoding for enhanced MR visualization of slip interfaces.
Mariappan, Yogesh K; Glaser, Kevin J; Manduca, Armando; Ehman, Richard L
2009-10-01
To develop and test a magnetic resonance imaging-based method for assessing the mechanical shear connectivity across tissue interfaces with phantom experiments and in vivo feasibility studies. External vibrations were applied to phantoms and tissue and the differential motion on either side of interfaces within the media was mapped onto the phase of the MR images using cyclic motion encoding gradients. The phase variations within the voxels of functional slip interfaces reduced the net magnitude signal in those regions, thus enhancing their visualization. A simple two-compartment model was developed to relate this signal loss to the intravoxel phase variations. In vivo studies of the abdomen and forearm were performed to visualize slip interfaces in healthy volunteers. The phantom experiments demonstrated that the proposed technique can assess the functionality of shear slip interfaces and they provided experimental validation for the theoretical model developed. Studies of the abdomen showed that the slip interface between the small bowel and the peritoneal wall can be visualized. In the forearm, this technique was able to depict the slip interfaces between the functional compartments of the extrinsic forearm muscles. Functional shear slip interfaces can be visualized sensitively using cyclic motion encoding of externally applied tissue vibrations. (c) 2009 Wiley-Liss, Inc.
Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
Freedman, David J.
2014-01-01
Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703
Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.
McLelland, Douglas; Baker, Pamela M; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth
2015-07-15
A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate signals over a shorter time window when visual motion is fast and a longer window when motion is slow. We investigated the mechanisms underlying this useful adaptation by recording from neurons as they responded to stimuli moving in two different directions at different speeds. Computer simulations of our results enabled us to rule out several candidate theories in favor of a model that integrates across multiple parallel channels that operate at different time scales. Copyright © 2015 the authors 0270-6474/15/3510268-13$15.00/0.
NASA Technical Reports Server (NTRS)
Duncan, K. M.; Harm, D. L.; Crosier, W. G.; Worthington, J. W.
1993-01-01
A unique training device is being developed at the Johnson Space Center Neurosciences Laboratory to help reduce or eliminate Space Motion Sickness (SMS) and spatial orientation disturbances that occur during spaceflight. The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) uses virtual reality technology to simulate some sensory rearrangements experienced by astronauts in microgravity. By exposing a crew member to this novel environment preflight, it is expected that he/she will become partially adapted, and thereby suffer fewer symptoms inflight. The DOME PAT is a 3.7 m spherical dome, within which a 170 by 100 deg field of view computer-generated visual database is projected. The visual database currently in use depicts the interior of a Shuttle spacelab. The trainee uses a six degree-of-freedom, isometric force hand controller to navigate through the virtual environment. Alternatively, the trainee can be 'moved' about within the virtual environment by the instructor, or can look about within the environment by wearing a restraint that controls scene motion in response to head movements. The computer system is comprised of four personal computers that provide the real time control and user interface, and two Silicon Graphics computers that generate the graphical images. The image generator computers use custom algorithms to compensate for spherical image distortion, while maintaining a video update rate of 30 Hz. The DOME PAT is the first such system known to employ virtual reality technology to reduce the untoward effects of the sensory rearrangement associated with exposure to microgravity, and it does so in a very cost-effective manner.
Visually Guided Control of Movement
NASA Technical Reports Server (NTRS)
Johnson, Walter W. (Editor); Kaiser, Mary K. (Editor)
1991-01-01
The papers given at an intensive, three-week workshop on visually guided control of movement are presented. The participants were researchers from academia, industry, and government, with backgrounds in visual perception, control theory, and rotorcraft operations. The papers included invited lectures and preliminary reports of research initiated during the workshop. Three major topics are addressed: extraction of environmental structure from motion; perception and control of self motion; and spatial orientation. Each topic is considered from both theoretical and applied perspectives. Implications for control and display are suggested.
NASA Technical Reports Server (NTRS)
Kiteley, G. W.; Harris, R. L., Sr.
1978-01-01
Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.
Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.
2013-05-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray
2013-01-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Flow Visualization Proposed for Vacuum Cleaner Nozzle Designs
NASA Technical Reports Server (NTRS)
2005-01-01
In 1995, the NASA Lewis Research Center and the Kirby Company (a major vacuum cleaner company) began negotiations for a Space Act Agreement to conduct research, technology development, and testing involving the flow behavior of airborne particulate flow behavior. Through these research efforts, we hope to identify ways to improve suction, flow rate, and surface agitation characteristics of nozzles used in vacuum cleaner nozzles. We plan to apply an advanced visualization technology, known as Stereoscopic Imaging Velocimetry (SIV), to a Kirby G-4 vacuum cleaner. Resultant data will be analyzed with a high-speed digital motion analysis system. We also plan to evaluate alternative vacuum cleaner nozzle designs. The overall goal of this project is to quantify both velocity fields and particle trajectories throughout the vacuum cleaner nozzle to optimize its "cleanability"--its ability to disturb and remove embedded dirt and other particulates from carpeting or hard surfaces. Reference
Schlieren technique in soap film flows
NASA Astrophysics Data System (ADS)
Auliel, M. I.; Hebrero, F. Castro; Sosa, R.; Artana, G.
2017-05-01
We propose the use of the Schlieren technique as a tool to analyse the flows in soap film tunnels. The technique enables to visualize perturbations of the film produced by the interposition of an object in the flow. The variations of intensity of the image are produced as a consequence of the deviations of the light beam traversing the deformed surfaces of the film. The quality of the Schlieren image is compared to images produced by the conventional interferometric technique. The analysis of Schlieren images of a cylinder wake flow indicates that this technique enables an easy visualization of vortex centers. Post-processing of series of two successive images of a grid turbulent flow with a dense motion estimator is used to derive the velocity fields. The results obtained with this self-seeded flow show good agreement with the statistical properties of the 2D turbulent flows reported on the literature.
NASA Technical Reports Server (NTRS)
Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.
1984-01-01
Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.
The Effect of Selected Cinemagraphic Elements on Audience Perception of Mediated Concepts.
ERIC Educational Resources Information Center
Orr, Quinn
This study is to explore cinemagraphic and visual elements and their inter-relations through the reinterpretation of previous research and literature. The cinemagraphic elements of visual images (camera angle, camera motion, subject motion, color, and lighting) work as a language requiring a proper grammar for the messages to be conveyed in their…
ERIC Educational Resources Information Center
Kim, Nam-Gyoon; Park, Jong-Hee
2010-01-01
Recent research has demonstrated that Alzheimer's disease (AD) affects the visual sensory pathways, producing a variety of visual deficits, including the capacity to perceive structure-from-motion (SFM). Because the sensory areas of the adult brain are known to retain a large degree of plasticity, the present study was conducted to explore whether…
The visual attention saliency map for movie retrospection
NASA Astrophysics Data System (ADS)
Rogalska, Anna; Napieralski, Piotr
2018-04-01
The visual saliency map is becoming important and challenging for many scientific disciplines (robotic systems, psychophysics, cognitive neuroscience and computer science). Map created by the model indicates possible salient regions by taking into consideration face presence and motion which is essential in motion pictures. By combining we can obtain credible saliency map with a low computational cost.
ERIC Educational Resources Information Center
Bidet-Ildei, Christel; Kitromilides, Elenitsa; Orliaguet, Jean-Pierre; Pavlova, Marina; Gentaz, Edouard
2014-01-01
In human newborns, spontaneous visual preference for biological motion is reported to occur at birth, but the factors underpinning this preference are still in debate. Using a standard visual preferential looking paradigm, 4 experiments were carried out in 3-day-old human newborns to assess the influence of translational displacement on perception…
A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example
ERIC Educational Resources Information Center
Elnagar, Ashraf; Lulu, Leena
2007-01-01
We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…
Interactions between motion and form processing in the human visual system.
Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara
2013-01-01
The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by "motion-streaks" influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS.
Interactions between motion and form processing in the human visual system
Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara
2013-01-01
The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by “motion-streaks” influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS. PMID:23730286
Centralized Networks to Generate Human Body Motions
Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan
2017-01-01
We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons’ states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers’ trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings. PMID:29240694
Centralized Networks to Generate Human Body Motions.
Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres
2017-12-14
We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.
Update on the Center for Engineering Strong Motion Data
NASA Astrophysics Data System (ADS)
Haddadi, H. R.; Shakal, A. F.; Stephens, C. D.; Oppenheimer, D. H.; Huang, M.; Leith, W. S.; Parrish, J. G.; Savage, W. U.
2010-12-01
The U.S. Geological Survey (USGS) and the California Geological Survey (CGS) established the Center for Engineering Strong-Motion Data (CESMD, Center) to provide a single access point for earthquake strong-motion records and station metadata from the U.S. and international strong-motion programs. The Center has operational facilities in Sacramento and Menlo Park, California, to receive, process, and disseminate records through the CESMD web site at www.strongmotioncenter.org. The Center currently is in the process of transitioning the COSMOS Virtual Data Center (VDC) to integrate its functions with those of the CESMD for improved efficiency of operations, and to provide all users with a more convenient one-stop portal to both U.S. and important international strong-motion records. The Center is working with COSMOS and international and U.S. data providers to improve the completeness of site and station information, which are needed to most effectively employ the recorded data. The goal of all these and other new developments is to continually improve access by the earthquake engineering community to strong-motion data and metadata world-wide. The CESMD and its Virtual Data Center (VDC) provide tools to map earthquakes and recording stations, to search raw and processed data, to view time histories and spectral plots, to convert data files formats, and to download data and a variety of information. The VDC is now being upgraded to convert the strong-motion data files from different seismic networks into a common standard tagged format in order to facilitate importing earthquake records and station metadata to the CESMD database. An important new feature being developed is the automatic posting of Internet Quick Reports at the CESMD web site. This feature will allow users, and emergency responders in particular, to view strong-motion waveforms and download records within a few minutes after an earthquake occurs. Currently the CESMD and its Virtual Data Center provide selected strong-motion records from 17 countries. The Center has proved to be significantly useful for providing data to scientists, engineers, policy makers, and emergency response teams around the world.
Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G
2014-10-15
Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal "predictability" of the moving pattern. Such stimulus predictability, and its relationship to models of predictive coding, has found considerable support in recent years in accounting for a number of other perceptual and neural phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.
Cazzoli, Dario; Hopfner, Simone; Preisig, Basil; Zito, Giuseppe; Vanbellingen, Tim; Jäger, Michael; Nef, Tobias; Mosimann, Urs; Bohlhalter, Stephan; Müri, René M; Nyffeler, Thomas
2016-11-01
An impairment of the spatial deployment of visual attention during exploration of static (i.e., motionless) stimuli is a common finding after an acute, right-hemispheric stroke. However, less is known about how these deficits: (a) are modulated through naturalistic motion (i.e., without directional, specific spatial features); and, (b) evolve in the subacute/chronic post-stroke phase. In the present study, we investigated free visual exploration in three patient groups with subacute/chronic right-hemispheric stroke and in healthy subjects. The first group included patients with left visual neglect and a left visual field defect (VFD), the second patients with a left VFD but no neglect, and the third patients without neglect or VFD. Eye movements were measured in all participants while they freely explored a traffic scene without (static condition) and with (dynamic condition) naturalistic motion, i.e., cars moving from the right or left. In the static condition, all patient groups showed similar deployment of visual exploration (i.e., as measured by the cumulative fixation duration) as compared to healthy subjects, suggesting that recovery processes took place, with normal spatial allocation of attention. However, the more demanding dynamic condition with moving cars elicited different re-distribution patterns of visual attention, quite similar to those typically observed in acute stroke. Neglect patients with VFD showed a significant decrease of visual exploration in the contralesional space, whereas patients with VFD but no neglect showed a significant increase of visual exploration in the contralesional space. No differences, as compared to healthy subjects, were found in patients without neglect or VFD. These results suggest that naturalistic motion, without directional, specific spatial features, may critically influence the spatial distribution of visual attention in subacute/chronic stroke patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains
NASA Technical Reports Server (NTRS)
Zaal, P. M. T; Pool, D. M.
2014-01-01
In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.
Effects of False Tilt Cues on the Training of Manual Roll Control Skills
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.
2015-01-01
This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.
Aging and the Visual Perception of Motion Direction: Solving the Aperture Problem.
Shain, Lindsey M; Norman, J Farley
2018-07-01
An experiment required younger and older adults to estimate coherent visual motion direction from multiple motion signals, where each motion signal was locally ambiguous with respect to the true direction of pattern motion. Thus, accurate performance required the successful integration of motion signals across space (i.e., accurate performance required solution of the aperture problem) . The observers viewed arrays of either 64 or 9 moving line segments; because these lines moved behind apertures, their individual local motions were ambiguous with respect to direction (i.e., were subject to the aperture problem). Following 2.4 seconds of pattern motion on each trial (true motion directions ranged over the entire range of 360° in the fronto-parallel plane), the observers estimated the coherent direction of motion. There was an effect of direction, such that cardinal directions of pattern motion were judged with less error than oblique directions. In addition, a large effect of aging occurred-The average absolute errors of the older observers were 46% and 30.4% higher in magnitude than those exhibited by the younger observers for the 64 and 9 aperture conditions, respectively. Finally, the observers' precision markedly deteriorated as the number of apertures was reduced from 64 to 9.
Teaching Motion with the Global Positioning System
ERIC Educational Resources Information Center
Budisa, Marko; Planinsic, Gorazd
2003-01-01
We have used the GPS receiver and a PC interface to track different types of motion. Various hands-on experiments that enlighten the physics of motion at the secondary school level are suggested (visualization of 2D and 3D motion, measuring car drag coefficient and fuel consumption). (Contains 8 figures.)
Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa
2011-07-01
Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.