Sample records for central apennines italy

  1. Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the central Apennines, Italy

    USGS Publications Warehouse

    Akinci, A.; Galadini, F.; Pantosti, D.; Petersen, M.; Malagnini, L.; Perkins, D.

    2009-01-01

    We produce probabilistic seismic-hazard assessments for the central Apennines, Italy, using time-dependent models that are characterized using a Brownian passage time recurrence model. Using aperiodicity parameters, ?? of 0.3, 0.5, and 0.7, we examine the sensitivity of the probabilistic ground motion and its deaggregation to these parameters. For the seismic source model we incorporate both smoothed historical seismicity over the area and geological information on faults. We use the maximum magnitude model for the fault sources together with a uniform probability of rupture along the fault (floating fault model) to model fictitious faults to account for earthquakes that cannot be correlated with known geologic structural segmentation.

  2. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  3. Transient deformation of karst aquifers observed by GPS: improved knowledge from Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Silverii, F.; D'Agostino, N.; Borsa, A. A.

    2017-12-01

    The redistribution of water masses due to temporal variations of hydrological conditions can produce observable deformation of the shallow crust. Space geodesy, e.g., GPS and InSAR, has provided a considerable improvement in terms of data accuracy and spatial and temporal resolution for the detection and investigation of this kind of deformation. In particular, in the areas where snow and water accumulate for long periods, such as aquifers, relatively high deformation (up to several millimeters) has been observed. Karst aquifers are able to store huge amounts of water and a clear deformation related to the groundwater storage variations has been observed in some regions. In a recent study we showed that the karst aquifers of Southern Apennines deform in response of seasonal and interannual variations of groundwater content, producing a visible transient signal in the time series of the surrounding GPS sites. In this work, we analyze the GPS time series and hydrological data of Central Italy, an interesting and complex area which hosts huge karst aquifers and is characterized by high seismic activity. We show that a noticeable transient signal with features similar to those of Southern Apennines affects also the time series of Central Apennines, suggesting that the large karst aquifers of this region experience a process analogue to the ones in Southern Italy. Thanks to the availability of a dense GPS network and different kinds of hydrological data (rainfall, spring discharge, groundwater level) we focus on the process causing the observed deformation. In particular, we model the observed deformation by inverting the GPS data using Green's functions for finite strain cuboid sources (Barbot et al. 2017). An enhanced understanding of the causes and implications of the highlighted deformation of karst aquifers is of primary interest for an improved management of this important water resource and for a better understanding of the possible interactions between groundwater variations, variations of pore pressure in the crust and seismicity.

  4. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy).

    PubMed

    Barberio, Marino Domenico; Barbieri, Maurizio; Billi, Andrea; Doglioni, Carlo; Petitta, Marco

    2017-09-15

    Seismic precursors are an as yet unattained frontier in earthquake studies. With the aim of making a step towards this frontier, we present a hydrogeochemical dataset associated with the 2016 Amatrice-Norcia seismic sequence (central Apennines, Italy), developed from August 24 th , with an M w 6.0 event, and culminating on October 30 th , with an M w 6.5 mainshock. The seismic sequence occurred during a seasonal depletion of hydrostructures, and the four strongest earthquakes (M w  ≥ 5.5) generated an abrupt uplift of the water level, recorded up to 100 km away from the mainshock area. Monitoring a set of selected springs in the central Apennines, a few hydrogeochemical anomalies were observed months before the onset of the seismic swarm, including a variation of pH values and an increase of As, V, and Fe concentrations. Cr concentrations increased immediately after the onset of the seismic sequence. On November 2016, these elements recovered to their usual low concentrations. We interpret these geochemical anomalies as reliable seismic precursors for a dilational tectonic setting.

  5. Quaternary gravitational morpho-genesis of Central Apennines (Italy): Insights from the Mt. Genzana case history

    NASA Astrophysics Data System (ADS)

    Esposito, C.; Bianchi-Fasani, G.; Martino, S.; Scarascia-Mugnozza, G.

    2013-10-01

    This paper focuses on a study aimed at defining the role of geological-structural setting and Quaternary morpho-structural evolution on the onset and development of a deep-seated gravitational slope deformation which affects the western slope of Mt. Genzana ridge (Central Apennines, Italy). This case history is particularly significant as it comprises several aspects of such gravitational processes both in general terms and with particular reference to the Apennines. In fact: i) the morpho-structural setting is representative of widespread conditions in Central Apennines; ii) the deforming slope partially evolved in a large rockslide-avalanche; iii) the deformational process provides evidence of an ongoing state of activity; iv) the rockslide-avalanche debris formed a stable natural dam, thus implying significant variations in the morphologic, hydraulic and hydrogeological setting; v) the gravitational deformation as well as the rockslide-avalanche reveal a strong structural control. The main study activities were addressed to define a detailed geological model of the gravity-driven process, by means of geological, structural, geomorphological and geomechanical surveys. As a result, a robust hypothesis about the kinematics of the process was possible, with particular reference to the identification of geological-structural constraints. The process, in fact, involves a specific section of the slope exactly where a dextral transtensional structure is present, thus implying local structural conditions that favor sliding processes: the rock mass is intensively jointed by high angle discontinuity sets and the bedding attitude is quite parallel to the slope angle. Within this frame the gravitational process can be classified as a structurally constrained translational slide, locally evolved into a rockslide-avalanche. The activation of such a deformation can be in its turn related to the Quaternary morphological evolution of the area, which was affected by a significant topographic stress increase, testified by stratigraphic and morphologic evidence.

  6. Late Miocene uplift in the Romagnan Apennines and the detachment of subducted lithosphere

    NASA Astrophysics Data System (ADS)

    van der Meulen, M. J.; Kouwenhoven, T. J.; van der Zwaan, G. J.; Meulenkamp, J. E.; Wortel, M. J. R.

    1999-12-01

    We report part of a test of the hypothesis that detachment of subducted lithosphere may be a process of lateral propagation of a horizontal tear [Wortel and Spakman, Proc. Kon. Ned. Akad. Wetensch., 95 (1992) 325-347]. We have used the Apennines as a test area. The test procedure consists of the comparison of hypothetical vertical motions, predicted from the expected redistribution of slab pull forces, with observed vertical motions. We demonstrate that a Late Miocene depocentre migration from the Northern towards the Central Apennines is associated with uplift of (the fore-arc of) the Northern Apennines. Such a combination of a depocentre shift and uplift is thought to be diagnostic for lateral migration of slab detachment. The depocentre migration was identified in earlier work [van der Meulen et al., Earth Planet. Sci. Lett., 154 (1998) 203-219]. This contribution focuses on uplift, which has primarily been identified through the geohistory analysis of the Monte del Casino Section (Romagnan Apennines, Northern Italy). Owing to methodological problems, the start and duration of the uplift phase could not be constrained, and only a minimum estimate of the total amount of uplift (483±180 m) is obtained. The data do allow for an estimate of the uplift rate: 163±61 cm/ky. A review of regional data results in better constraints on the timing of the above lateral reorganisation of the fore-arc, and on the spatial extent of the uplifted area. Depocentre development in the Central Apennines began between 8.6 and 8.3 Ma B.P. Uplift started between 9 and 8 Ma B.P., and affected the entire northernmost Apennines.

  7. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time intervals to assess active and capable faults for engineering practices in Italy. Eng. Geol., 139/140, 50-65.

  8. Middle Eocene seagrass facies from Apennine carbonate platforms (Italy)

    NASA Astrophysics Data System (ADS)

    Tomassetti, Laura; Benedetti, Andrea; Brandano, Marco

    2016-04-01

    Two stratigraphic sections located in the Latium-Abruzzi (Monte Porchio, Central Apennines, Central Italy) and in the Apulian carbonate platform (S. Cesarea-Torre Tiggiano, Salento, Southern Italy) were measured and sampled to document the sedimentological characteristic and the faunistic assemblages of Middle Eocene seagrass deposits. The faunistic assemblages are dominated by porcellaneous foraminifera Orbitolites, Alveolina, Idalina, Spiroloculina, Quinqueloculina, Triloculina and abundant hooked-shaped gypsinids, associated with hooked red algae and green algae Halimeda. Fabiania, rotaliids and textulariids as well as nummulitids are subordinated. The samples were assigned to Lutetian (SBZ13-16) according to the occurrence of Nummulites cf. lehneri, Alveolina ex. gr. elliptica, Idalina berthelini, Orbitolites complanatus, Slovenites decastroi and Medocia blayensis. At Santa Cesarea reticulate nummulites occur in association with Alveolina spp. and Halkyardia minima marking the lower Bartonian (SBZ17). Three main facies associations have been recognised: I) larger porcellaneous foraminiferal grainstones with orbitolitids and alveolinids deposited into high-energy shallow-water settings influenced by wave processes that reworked the sediments associated with a seagrass; II) grainstone to packstone with small porcellaneous foraminifera and abundant permanently-attached gypsinids deposited in a more protected (e.g., small embayment) in situ vegetated environment; III) bioclastic packstone with parautochthonous material reworked from the seagrass by rip currents and accumulated into rip channels in a slightly deeper environment. The biotic assemblages suggest that the depositional environment is consistent with tropical to subtropical vegetated environments within oligotrophic conditions.

  9. Imaging the polarity switch between large seismogenic normal faults in the southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Fracassi, U.; Milano, G.; di Giovambattista, R.; Ventura, G.

    2009-04-01

    The backbone of Italy's Apennines hosts the majority of the seismic moment release in the Italian peninsula. In particular, the area among the southern Abruzzo, southeastern Lazio and Molise regions in central-southern Italy includes the polarity switch, from north to south, between the large SW-verging seismogenic normal faults (the southernmost one being the Aremogna-Cinque Miglia, responsible for a Mw 6.4 event dated 800 B.C-1030 A.D.) and those NE-verging ones (the northernmost one being the Boiano Basin, responsible for the 26 July 1805, Mw 6.6 Molise earthquake), including the Carpino-Le Piane fault system. In addition, the area between these two faults is the locus of extension parallel to the chain axis, as shown by a low-magnitude (M < 3.3) seismic sequence occurred in 2001. As GPS data illustrate, NE-SW striking extension predominates in the western and the inner sectors of the Apennines. All active normal faults along the crest of the Apennines are essentially parallel to the mountain range (NW-SE) and are governed by the current extensional regime that has been in place since the Middle-Upper Pleistocene. However, the occurrence of such polarity switch between antithetic, conjugate seismogenic normal faults in Italy is very uncommon. In addition, the area of research marks the abrupt end of the two (three?) sub-parallel seismogenic belts in Abruzzo (to the north) and the inception of the single, aligned one in Molise (to the south), including the western termination of E-W striking, large oblique-slip faulting in the foreland. In other words, this is a critical area concerning seismogenesis in central Italy and, therefore, the tectonic mechanism that either causes or influences such polarity switch could represent a key ingredient in the above scenario. Between January and May 2005, the RSN (Italy's National Seismometric Network) recorded a rise in the background seismicity, that has been recently relocated. This sequence is essentially a low magnitude (Md < 3), swarm activity that clustered within the Ortona-Roccamonfina line, a regional structure striking NNE-SSW and separating the central from the southern Apennines, hypothesized and discussed by numerous authors; in particular its field evidence is still debated, as much as its present-day activity. Our data show that, at least in the area where the 2005 sequence has occurred, the spatial trend of seismic activity essentially coincides with a sector of the Ortona-Roccamonfina line. Concerning fault polarity switches, there are numerous case studies in the literature where such examples have been recognized and associated with accommodation zones. Various authors have shown that either a hard (transfer fault) or soft linkage (relay ramp) is kinematically needed to accommodate strain between the two. This would be particularly true in the case we present, i.e. with two large (~20-25 km long) convergent, approaching faults, at a distance (20-25 km) comparable in size to the length of the faults in question. According to these literature models for transfer zones, such transfer would occur at ~45° to the strike of the concerned faults, that is ~N-S in the studied area. The location of the clustered seismicity that occurred in 2005 between the Abruzzo and Molise regions shows a ~NNE-SSW alignment and falls within the area where a major polarity switch between large seismogenic faults occur. On the basis of (i) the spatial-temporal characteristics of this data and (ii) the geometry and kinematics of active faulting in the region, we hypothesize (a) the existence of a transfer zone between the Aremogna-Cinque Miglia and Boiano Basin faults, and (b) the activity of such linkage along the Ortona-Roccamonfina line in this sector of the chain where a major transition, both structural and seismogenic, occurs. Alternatively, this polarity switch could result mainly from the rheologic and tectonic control exerted by the abrupt passage between the two diverse paleogeographic domains that make up the boundary between the central and southern Apennines. The role of such possible control onto the nature and geometry of the transfer zone and their interaction with one another, including seismic activity, is part of a larger study currently underway.

  10. Surface Evolution and Uplift History of the Central Apennines, Italy: New Constraints from Thermochronology and Paleoaltimetry

    NASA Astrophysics Data System (ADS)

    San José, M.; Faccenna, C.; Fellin, M. G.; Willett, S.; Funiciello, F.; Caves Rugenstein, J. K.

    2017-12-01

    The topography of mountain belts results from interactions between surface processes, lithospheric thickening, and mantle dynamics. However, the contributions of each mechanism have yet to be clearly quantified. The Apennines (Italy) provide a study area where all of these processes are at play. The central part of the Apennines is an orogenic wedge formed by the westward subducting Adriatic microplate during Miocene-Pliocene, and overlies an area of local slab detachment. Recent studies indicate anomalously high uplift rates in this area (Faccenna et al., 2015), as well as a simultaneous onset of post-orogenic extension across the Central Apennines at ̴ 2 Ma (Cosentino et al., 2017). These observations have been interpreted as an expression of dynamic topography due to the slab break-off and inherent mantle upwelling. In order to test this hypothesis and further constrain the topographic evolution of the orogen, we use low-temperature thermochronology to date the exhumation, and stable isotope paleoaltimetry (18O/16O on carbonates) to reconstruct paleoelevations. We couple this paleotopographic dataset with geomorphological analysis of the present day topography. Here we present a set of 30 new (U-Th)/He cooling ages on apatites (AHe) sampled from widespread syn-orogenic flysch basin deposits (including one high-resolution vertical profile), as well as preliminary isotopic measurements. Initial results show mean AHe ages ranging from 1.62 (± 0.38 ) Ma to 2.6 (±0.02) Ma, suggesting a regionally uniform exhumation during Pleistocene. Denudation rates inferred from our vertical profile are extremely high (>1 mm/year from 2 to 1 Ma). Some samples have not been thermally reset due to insufficient burial, and yield exhumation ages older than stratigraphic depositional ages (generally > 5 Ma). These results support the hypothesis that exhumation is mainly controlled by rapid regional scale uplift related to the opening of the Adriatic slab window at the end of the orogenic phase. However, denudation is not only driven by geodynamic processes, but also by climatic changes. Further research will consider climatic variations in the interpretation of our results.

  11. Recent and active tectonics of the external zone of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boccaletti, Mario; Corti, Giacomo; Martelli, Luca

    2011-08-01

    We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological-structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines-Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N-S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW-SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines-Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.

  12. Knowledge of seismic hazard for the preservation of cultural heritage: the case study of Naples (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Porfido, Sabina; Alessio, Giuliana; Gaudiosi, Germana; Nappi, Rosa; Spiga, Efisio

    2017-04-01

    The recent seismic sequence that struck central Italy, started the August 24, 2016, is characterized by five events with magnitude Mw> 5.0. The strongest events of the seismic sequence were the August 24, with Mw = 6.0 located between Accumoli and Amatrice towns and the October 30 with Mw = 6.5, located between Norcia and Visso town. These earthquakes shocked not only Central Italy, with the death of about 300 people and the almost complete destruction of historical towns (Amatrice, Arquata del Tronto, Accumoli, Pescara del Tronto, Castelluccio, Norcia, Visso), but also shook the entire Italian country, strongly proposing the issue of the vulnerability of the city historical centers. The knowledge, the conservation and preservation of the natural and urban environment represent issues to be faced urgently for preventing the devastation of our heritage, unique in the world. The historical center of Naples was affected by the 30 event October 2016 with an intensity I = V MCS. In the last millennium more than a hundred earthquakes hit Naples, with intensity I> III MCS, ten of which has exceeded the damage level, sometimes with intensity greater of VII MCS. The historical Neapolitan urban context suffered devastating effects, reaching levels of damage equal to the VIII degree MCS, as a result of the large earthquakes occurred in 1456 (I0=XI MCS), 1688 (I0=XI MCS) and 1805 (I0=X MCS). In the twentieth century the city of Napoli was shaken by the 1930, 1962 and 1980, the three strong earthquakes occurred in southern Apennines, between Irpinia and Basilicata regions. The review of earthquakes with higher energy (M> 6) shows that the metropolitan area of Naples suffered high damage levels with intensity I = VIII MCS, especially in the historical center, with a damage recurring on the same architectonic elements of the historical heritage. The recent past of the seismic history teaches us that the Apennines is highly seismic, consequently in the future we can expected seismic events of the same magnitude that could still cause damages to the city of Naples. This brief review of the strong Apennines earthquakes highlights that the city of Naples has a high seismic risk level. Therefore is crucial to implement all appropriate measures to reduce seismic risk, but also for planning measures of prevention, useful for the preservation of the rich local architectural heritage declared a World Heritage Site by UNESCO in 1995. References Porfido, et al., 2007-Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the southern Apennines, in «Boll. Soc. Geol. It.»,126, p. 333-346 Porfido S., Alessio G., Gaudiosi G., Nappi R., Spiga E., 2017-Analisi dei risentimenti dei forti terremoti appenninici che hanno colpito Napoli. Proc. Int, Conf.:La Baia di Napoli. Strategie integrate per la conservazione e la fruizione del paesaggio culturale". (in press) Pucci S., P. M. De Martini, R. Civico, F. Villani, R. Nappi et al. 2017 - Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy) DOI: 10.1002/2016GL071859

  13. Persistency of rupture directivity in moderate-magnitude earthquakes in Italy: Implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Rovelli, A.; Calderoni, G.

    2012-12-01

    A simple method based on the EGF deconvolution in the frequency domain is applied to detect the occurrence of unilateral ruptures in recent damaging earthquakes in Italy. The spectral ratio between event pairs with different magnitudes at individual stations shows large azimuthal variations above corner frequency when the target event is affected by source directivity and the EGF is not or vice versa. The analysis is applied to seismograms and accelerograms recorded during the seismic sequence following the 20 May 2012, Mw 5.6 main shock in Emilia, northern Italy, the 6 April 2009, Mw 6.1 earthquake of L'Aquila, central Italy, and the 26 September 1997, Mw 5.7 and 6.0 shocks in Umbria-Marche, central Italy. Events of each seismic sequence are selected as having consistent focal mechanisms, and the station selection obeys to the constraint of a similar source-to-receiver path for the event pairs. The analyzed data set of L'Aquila consists of 962 broad-band seismograms relative to 69 normal-faulting earthquakes (3.3 ≤ MW ≤ 6.1, according to Herrmann et al., 2011), stations are selected in the distance range 100 to 250 km to minimize differences in propagation paths. The seismogram analysis reveals that a strong along-strike (toward SE) source directivity characterized all of the three Mw > 5.0 shocks. Source directivity was also persistent up to the smallest magnitudes: 65% of earthquakes under study showed evidence of directivity toward SE whereas only one (Mw 3.7) event showed directivity in the opposite direction. Also the Mw 5.6 main shock of the 20 May 2012 in Emilia result in large azimuthal spectral variations indicating unilateral rupture propagation toward SE. According to the reconstructed geometry of the trust-fault plane, the inferred directivity direction suggests top-down rupture propagation. The analysis over the Emilia aftershock sequence is in progress. The third seismic sequence, dated 1997-1998, occurred in the northern Apennines and, similarly to L'Aquila faults, was characterized by normal-faulting earthquakes with strike substantially parallel to the Apennine trend. Although the amount of data is not as abundant as for the most recent earthquakes, the available data were already object of previous studies indicating unilateral rupture propagation in several of the strongest (5.5 < Mw < 6.0) shocks. We show that the effect of directivity is particularly significant in intermontane basins where long-period (T > 1 sec) ground motions are amplified by soft sediments and the combination of local amplification with source directivity causes exceedance of spectral ordinates at those periods up to more than 2 standard deviations from the expected values of commonly used GMPEs for soft sites. These results arise a concern in terms of seismic hazard because source directivity is found to be recurrent feature in the Apennines. Moreover, the predominant fault strike and intermontane basins are both aligned along the Apennine chain offering a condition potentially favorable to extra-amplifications at periods relevant to seismic risk.

  14. Ethnobotanical study on the medicinal plants in the Mainarde Mountains (central-southern Apennine, Italy).

    PubMed

    Fortini, P; Di Marzio, P; Guarrera, P M; Iorizzi, M

    2016-05-26

    New documentation of the uses of plants in the popular medicine of the Mainarde Mountain, a protected area of the central-southern Apennine characterised by a high floristic richness, is here reported. Field data were collected through semi-structured and open interviews with native People between 2011 and 2014. The plants were identified and vouchers specimens were scanned to create a Virtual Herbarium. The Ethnobotanicity Index (EI), the Relative Importance Index (RI) and the Fidelity Level Index (FL) were calculated. The plant uses surveyed in the study area were compared with those described in medical and ethnobotanical literature. Seventy-one interviews were conducted, the age range of the informants was between 21 and 98 years. The inventory included 106 taxa belonging to 45 families; among these, 87 were wild species and 20 were cultivated species. The uses recorded were 429, among these, 69.1% of the uses concerned internal applications to treat digestive system disorders, infections and respiratory system disorders mainly, while 31.9% concerned external applications, especially to treat skin/subcutaneous cellular tissue disorders and injuries. In particular, 17 new uses and 16 unusual and rarely mentioned plants are documented. The data collected support evidence on traditional uses for plant in the Apennine. Findings from medical flora and from new or rare medical uses reinforce the usefulness of such research efforts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. 3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ercoli, Maurizio; Pauselli, Cristina; Frigeri, Alessandro; Forte, Emanuele; Federico, Costanzo

    2014-07-01

    The activation of Late Quaternary faults in the Central Apennines (Italy) could generate earthquakes with magnitude of about 6.5, and the Monte Vettore fault system probably belongs to the same category of seismogenetic faults. Such structure has been defined `silent', because of its geological and geomorphological evidences of past activation, but the absence of historical records in the seismic catalogues to be associated with its activation. The `Piano di Castelluccio' intramountain basin, resulting from the Quaternary activity of normal faults, is characterized by a secondary fault strand highlighted by a NW-SE fault scarp: it has been already studied through palaeoseismological trenches, which highlighted evidences of Quaternary shallow faulting due to strong earthquakes, and through a 2-D ground penetrating radar (GPR) survey, showing the first geophysical signature of faulting for this site. Within the same place, a 3-D GPR volume over a 20 × 20 m area has been collected. The collection of radar echoes in three dimensions allows to map both the vertical and lateral continuity of shallow geometries of the fault zone (Fz), imaging features with high resolution, ranging from few metres to centimetres and therefore imaging also local variations at the microscale. Several geophysical markers of faulting, already highlighted on this site, have been taken as reference to plan the 3-D survey. In this paper, we provide the first 3-D subsurface imaging of an active shallow fault belonging to the Umbria-Marche Apennine highlighting the subsurface fault geometry and the stratigraphic sequence up to a depth of about 5 m. From our data, geophysical faulting signatures are clearly visible in three dimensions: diffraction hyperbolas, truncations of layers, local attenuated zones and varying dip of the layers have been detected within the Fz. The interpretation of the 3-D data set provided qualitative and quantitative geological information in addition to the fault location, like its geometry, boundaries and an estimation of the fault throw.

  16. Seismicity and seismogenic structures of Central Apennines (Italy): constraints on the present-day stress field from focal mechanisms - The SLAM (Seismicity of Lazio-Abruzzo and Molise) project

    NASA Astrophysics Data System (ADS)

    Frepoli, Alberto; Battista Cimini, Giovanni; De Gori, Pasquale; De Luca, Gaetano; Marchetti, Alessandro; Montuori, Caterina; Pagliuca, Nicola

    2016-04-01

    We present new results for the microseismic activity in the Central Apennines recorded from a total of 81seismic stations. The large number of recording sites derives from the combination of temporary and permanent seismic networks operating in the study region. Between January 2009 and October 2013 we recorded 6923 earthquakes with local magnitudes ML ranging from 0.1 to 4.8. We located hypocentres by using a refined 1D crustal velocity model. The majority of the hypocenters are located beneath the axes of the Apenninic chain, while the seismic activity observed along the peri-Tyrrhenian margin is lower. The seismicity extends to a depth of 32 km; the hypocentral depth distribution exhibits a pronounced peak of seismic energy release in the depth range between 8 and 20 km. During the observation period we recorded two major seismic swarms and one seismic sequence in the Marsica-Sorano area in which we have had the largest detected magnitude (ML = 4.8). Fault plane solutions for a total of 600 earthquakes were derived from P-polarities. This new data set consists of a number of focal plane solutions that is about four times the data so far available for regional stress field study. The majority of the focal mechanisms show predominantly normal fault solutions. T-axis trends are oriented NE-SW confirming that the area is in extension. We also derived the azimuths of the principal stress axes by inverting the fault plane solutions and calculated the direction of the maximum horizontal stress, which is mainly sub-vertical oriented. The study region has been historically affected by many strong earthquakes, some of them very destructive. This work can give an important contribution to the seismic hazard assessment in an area densely populated as the city of Rome which is distant around 60 km from the main seismogenic structures of Central Apennine.

  17. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  18. Combining historical and geomorphological information to investigate earthquake induced landslides

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Ferrari, G.; Galli, M.; Guidoboni, E.; Guzzetti, F.

    2003-04-01

    Landslides are caused by many different triggers, including earthquakes. In Italy, a detailed new generation catalogue of information on historical earthquakes for the period 461 B.C to 1997 is available (Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997, ING-SGA 2000). The catalogue lists 548 earthquakes and provides information on a total of about 450 mass-movements triggered by 118 seismic events. The information on earthquake-induced landslides listed in the catalogue was obtained through the careful scrutiny of historical documents and chronicles, but was rarely checked in the field. We report on an attempt to combine the available historical information on landslides caused by earthquakes with standard geomorphological techniques, including the interpretation of aerial photographs and field surveys, to better determine the location, type and distribution of seismically induced historical slope failures. We present four examples in the Central Apennines. The first example describes a rock slide triggered by the 1279 April 30 Umbria-Marche Apennines earthquake (Io = IX) at Serravalle, along the Chienti River (Central Italy). The landslide is the oldest known earthquake-induced slope failure in Italy. The second example describes the location of 2 large landslides triggered by the 1584 September 10 earthquake (Io = IX) at San Piero in Bagno, along the Savio River (Northern Italy). The landslides were subsequently largely modified by mass movements occurred on 1855 making the recognition of the original seismically induced failures difficult, if not impossible. In the third example we present the geographical distribution of the available information on landslide events triggered by 8 earthquakes in Central Valnerina, in the period 1703 to 1979. A comparison with the location of landslides triggered by the September-October 1997 Umbria-Marche earthquake sequence is presented. The fourth example describes the geographical distribution of the available information on landslides triggered by the great 1915 January 13 Marsica (Central Italy) earthquake (Io = XI) mostly along the Liri River valley. Problems encountered in matching the recent historical information with the local geomorphological setting are discussed. A critical analysis of the four studied examples allows general considerations on the advantages and limitations of a combined historical and geomorphological approach to investigate past earthquake induced landslides. Lastly, a preliminary analysis of the relationship between the earthquake intensity and the distance of the known slope failures to the triggering earthquake epicentres is presented, for the four investigated areas and for the entire catalogue of historical earthquakes.

  19. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers

    PubMed Central

    Benazzo, Andrea; Trucchi, Emiliano; Cahill, James A.; Maisano Delser, Pierpaolo; Mona, Stefano; Fumagalli, Matteo; Cornetti, Luca; Ghirotto, Silvia; Girardi, Matteo; Ometto, Lino; Panziera, Alex; Rota-Stabelli, Omar; Zanetti, Enrico; Karamanlidis, Alexandros; Groff, Claudio; Paule, Ladislav; Gentile, Leonardo; Vicario, Saverio; Boitani, Luigi; Fuselli, Silvia; Vernesi, Cristiano; Bertorelle, Giorgio

    2017-01-01

    About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles (i) can be an important driver of divergence in isolation, (ii) can be tolerated when balancing selection prevents random loss of variation at important genes, and (iii) is followed by or results directly in favorable behavioral changes. PMID:29078308

  20. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers.

    PubMed

    Benazzo, Andrea; Trucchi, Emiliano; Cahill, James A; Maisano Delser, Pierpaolo; Mona, Stefano; Fumagalli, Matteo; Bunnefeld, Lynsey; Cornetti, Luca; Ghirotto, Silvia; Girardi, Matteo; Ometto, Lino; Panziera, Alex; Rota-Stabelli, Omar; Zanetti, Enrico; Karamanlidis, Alexandros; Groff, Claudio; Paule, Ladislav; Gentile, Leonardo; Vilà, Carles; Vicario, Saverio; Boitani, Luigi; Orlando, Ludovic; Fuselli, Silvia; Vernesi, Cristiano; Shapiro, Beth; Ciucci, Paolo; Bertorelle, Giorgio

    2017-11-07

    About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles ( i ) can be an important driver of divergence in isolation, ( ii ) can be tolerated when balancing selection prevents random loss of variation at important genes, and ( iii ) is followed by or results directly in favorable behavioral changes. Published under the PNAS license.

  1. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network diversion, faulted deposits, deep-seated gravitational slope deformations and large landslides. Moreover the sub-basins represent the surface evidence of traits belonging to the Norcia seismogenic structure, which have repeatedly caused earthquakes in the past, thus determining similar geological, structural and morphostructural features within the wider Norcia area, without causing the whole structure to rupture. The size of these sub-basins and, thus, the size of the relevant seismogenic segments, allows to calculate a maximum magnitude for the three sub-basins and for the seismogenic area as a whole. References Aringoli D., Cavitolo P., Farabollini P., Galindo-Zaldivar J., Gentili B., Giano S.I., Lòpez-Garrido A.C.,. Materazzi M, Nibbi L., Pedrera A., Pambianchi G., Ruano P., Ruiz-Constàn A., Sanz de Galdeano C., Savelli D., Tondi E., Troiani F. 2014. Morphotectonic characterization of the quaternary intermontane basins in the Umbria-Marche Apennines (Italy). Rend. Fis. Acc. Lincei 25 (Suppl 2), S111-S128. DOI 10.1007/s12210-014-0330-0 CPTI, Working Group, 2004. Catalogo Parametrico Terremoti Italiani, ING, GNDT, SGA, SSN, 92 pp., Bologna. Tondi, E., Cello, G. 2003. Spatiotemporal Evolution of the Central Apennines Fault System (Italy). Journal of Geodynamics, 36, 113-128

  2. Paleomagnetism and paleogeography of Jurassic radiolarian cherts from the Northern Apennines of Italy

    USGS Publications Warehouse

    Aiello, I.W.; Hagstrum, J.T.

    2001-01-01

    Oriented samples of Jurassic radiolarian chert were collected from the Tuscan domain (continental margin) and the Ligurid domain (oceanic) of the northern Apennines for paleomagnetic study to determine the paleogeographic origins of these rocks. The oceanic rocks are all thermochemically overprinted by a mostly reversed-polarity component of magnetization (B) that was likely acquired during late Miocene regional uplift of the northern Apennines. This component also dominates the lower brittle chert of the Tuscan Cherts, but disappears upsection in the more clay-rich and ductile siliceous marlstones. In addition, the Tuscan Cherts retain an inferred primary magnetization (C), isolated at temperatures between 560 and 660 degrees C, which passes a fold test and shows a polarity stratigraphy. This component indicates a paleolatitude of 11 degrees + or -4 degrees N, and a counterclockwise vertical-axis rotation of 29 degrees + or -9 degrees with respect to the southern Alps of Italy, of 49 degrees + or -8 degrees with respect to Africa, and of 91 degrees + or -8 degrees with respect to Eurasia. Our results suggest that the Tuscan domain was farther south than other deep-water continental margin sections of Adria, and that transcurrent faulting might have played a significant role in the orogenic evolution of the northern Apennines.

  3. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  4. Kinematic analysis of recent and active faults of the southern Umbria-Marche domain, Northern Apennines, Italy: geological constraints to geodynamic models

    NASA Astrophysics Data System (ADS)

    Pasqui, Valeria; Viti, Marcello; Mantovani, Enzo

    2013-04-01

    The recent and active deformation that affects the crest zone of the Umbria-Marche belt (Northern Apennines, Italy) displays a remarkable extensional character, outlined by development of normal fault sets that overprint pre-existing folds and thrusts of Late Miocene-Early Pliocene age. The main extensional fault systems often bound intermontane depressions hosting recent, mainly continental, i.e. fluvial or lacustrine deposits, separating the latter from Triassic-Miocene, mainly carbonatic and siliciclastic marine rocks that belong to the Romagna-Umbria-Marche stratigraphic succession. Stratigraphic data indicate that the extensional strain responsible for the development of normal fault-bounded continental basins in the outer zones of the Northern Apennines was active until Middle Pleistocene time. Since Middle Pleistocene time onwards a major geodynamic change has affected the Central Mediterranean region, with local reorganization of the kinematics in the Adria domain and adjacent Apennine belt. A wide literature illustrates that the overall deformation field of the Central Mediterranean area is presently governed by the relative movements between the Eurasia and Africa plates. The complex interaction of the Africa-Adria and the Anatolian-Aegean-Balkan domains has led the Adria microplate to migrate NW-ward and to collide against Eurasia along the Eastern Southern Alps. As a consequence Adria is presently moving with a general left-lateral displacement with respect to the Apennine mountain belt. The sinistral component of active deformations is also supported by analysis of earthquake focal mechanisms. A comparison between geophysical and geological evidence outlines an apparent discrepancy: most recognized recent and active faults display a remarkable extensional character, as shown by the geometry of continental basin-bounding structutes, whereas geodetic and seismologic evidence indicates the persistency of an active strike-slip, left-lateral dominated strain field. The coexistence of extensional and strike-slip regimes, in principle difficult to achieve, may be explained in the framework of a transtensional deformation model where extensional components, normal to the main NW-directed structural trends, are associated to left-lateral strike-slip movements parallel to the main NW-directed structural trends. Critical for the evaluation of the internal consistency of a deformation model for the brittle upper crustal levels is the definition of the kinematics of active faults. In this study we illustrate the preliminary results of a kinematic analysis carried out along 20, exceptionally well exposed, recent and active fault surfaces cropping out in the southernmost portion of the Umbria-Marche belt adjacent to its termination against the the Latium-Abruzzi domain to the East. The collected data indicate that the investigated faults reflect a kinematically oblique character, and that development of these structures may be explained in the framework of a left-dominated transtensional strain field. More important, the data indicate that fault kinematic analysis is an effective tool in testing geodynamic models for actively deforming crustal domains.

  5. Late Miocene remagnetization within the internal sector of the Northern Apennines, Italy

    USGS Publications Warehouse

    Aiello, I.W.; Hagstrum, J.T.; Principi, G.

    2004-01-01

    Paleomagnetic and geologic evidence indicates that Upper Jurassic radiolarian cherts of both the Tuscan Cherts Formation (continental margin, Tuscan Units) and the Monte Alpe Cherts Formation (oceanic crust, Ligurian Units) were remagnetized during Miocene orogenesis of the Northern Apennines of Italy. Characteristic overprint magnetizations with reversed polarities have been found over a large area within the internal sector of the Northern Apennines, including eastern Liguria, Elba Island and the Thyrrenian margin, and west of the Middle Tuscan Ridge. The reversed-polarity overprint (average direction: D=177??, I=-52??, ??95=15??) was most likely acquired during Late Miocene uplift and denudation of the orogenic chain, and thermochemical remagnetization was a probable consequence of increased circulation of orogenic fluids. Similarly, mostly reversed-polarity directions of magnetization have been found by other workers in overlying post-orogenic Messinian sediments (D=177??, I=-57??, ??95=3??), which show little counterclockwise (CCW) vertical-axis rotation with respect to stable Europe (-8??5??). The Monte Alpe Cherts sampled at sites in the external sector of the Northern Apennines, close to major tectonic features, have normal- polarity overprint directions with in situ W-SW declinations. Since the overlying post-orogenic Messinian sediments have not been substantially rotated about vertical axes, the evidence points to an earlier,pre-Late Miocene remagnetization in the external parts of the orogenic chain. ?? 2004 Elsevier B.V. All rights reserved.

  6. Analytical monitoring of soil bioengineering structures in the Tuscan Emilian Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Selli, Lavinia; Guastini, Enrico

    2014-05-01

    Soil bioengineering has been an appropriate solution to deal with erosion problems and shallow landslides in the North Apennines, Italy. The objective of our research was a check about critical aspects of soil bioengineering works. We monitored the works that have been carried out in the Tuscan Emilian Apennines by testing the suitability of different plant species and analyzed in detail timber structures of wooden crib walls. Plant species were mainly Salix alba and Salix purpurea that gave good sprouting and survival rates. However, showed some issues in growing on dry and sunny Apennine lands, where other shrubs like Spanish Broom, blackthorn, cornel-tree and Eglantine would be more indicated. The localized analysis on wooden elements has been led gathering parts from the poles and obtaining samples in order to determine their density. The hypothetical initial density of the wood used in the structure has been estimated, then calculating the residual density. This analysis allows us to determine the general condition of the wood, highlighting the structures in worst condition (the one in Pianaccio show a residual density close to 70%, instead of 90% as found on other structures) and those whose degraded wood has undergone the greatest damage (Pianaccio here too, with 50%, followed by Campoferrario - 60% - and by Pian di Favale with 85%, a rather good value for the most degraded wood in the structure).

  7. Seismic swarms and diffuse fracturing within Triassic evaporites fed by deep degassing along the low-angle Alto Tiberina normal fault (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio

    2017-01-01

    We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.

  8. Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Storti, Fabrizio; Bausã, Jordi; MuñOz, Josep A.

    2012-08-01

    Thrust-related anticlines exposed at the mountain front of the Cenozoic Appenninic thrust-and-fold belt share the presence of hinterlandward dipping extensional fault zones running parallel to the hosting anticlines. These fault zones downthrow the crests and the backlimbs with displacements lower than, but comparable to, the uplift of the hosting anticline. Contrasting information feeds a debate about the relative timing between thrust-related folding and beginning of extensional faulting, since several extensional episodes, spanning from early Jurassic to Quaternary, are documented in the central and northern Apennines. Mesostructural data were collected in the frontal anticline of the Sibillini thrust sheet, the mountain front in the Umbria-Marche sector of the northern Apennines, with the aim of fully constraining the stress history recorded in the deformed multilayer. Compressional structures developed during thrust propagation and fold growth, mostly locating in the fold limbs. Extensional elements striking about perpendicular to the shortening direction developed during two distinct episodes: before fold growth, when the area deformed by outer-arc extension in the peripheral bulge, and during a late to post thrusting stage. Most of the the extensional deformation occurred during the second stage, when the syn-thrusting erosional exhumation of the structures caused the development of pervasive longitudinal extensional fracturing in the crestal sector of the growing anticline, which anticipated the subsequent widespread Quaternary extensional tectonics.

  9. Present vertical movements in Central and Northern Italy from GPS data: Possible role of natural and anthropogenic causes

    NASA Astrophysics Data System (ADS)

    Cenni, N.; Viti, M.; Baldi, P.; Mantovani, E.; Bacchetti, M.; Vannucchi, A.

    2013-11-01

    Insights into the present vertical kinematic pattern in Central and Northern Italy are gained by the analysis of GPS data acquired by a network of 262 permanent stations, working over various time intervals since 2001. Uplift is observed in the Alps (up to 5 mm/yr) and Apennines (1-2 mm/yr), whereas subsidence is recognized in the southern Venetian Plain (2-4 mm/yr) and the eastern Po Valley, where the highest rates are observed (up to 9 mm/yr between Reggio Emilia and Rimini). On the other hand, the western part of the Po Valley presents very low vertical rates. The boundary between subsiding and not subsiding Po Valley nearly corresponds to the Giudicarie tectonic discontinuity. It is argued that the different kinematic patterns of the eastern and western Padanian sectors may also be related to the underthrusting of the eastern domain beneath the western one. Some considerations are then reported on how the various causes of vertical movements (tectonic and sedimentological processes) may contribute to the observed kinematics.

  10. Multiple subduction imprints in the mantle below Italy detected in a single lava flow

    NASA Astrophysics Data System (ADS)

    Nikogosian, Igor; Ersoy, Özlem; Whitehouse, Martin; Mason, Paul R. D.; de Hoog, Jan C. M.; Wortel, Rinus; van Bergen, Manfred J.

    2016-09-01

    Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.

  11. Tomographic models and seismotectonics of the Reggio Emilia region, Italy

    NASA Astrophysics Data System (ADS)

    Ciaccio, M. G.; Chiarabba, C.

    2002-02-01

    The aim of this study is to define the Vp and Vp/Vs structure of the fault zone ruptured by the M L 5.1 earthquake of October 15, 1996 which occurred near Reggio Emilia (central-northern Italy). A 1-month-long seismic sequence followed the mainshock and occurred in a small region along the outer border of the northern Apenninic belt, at depth ranging between 10 and 17 km. P- and S-wave arrival times from 304 aftershocks recorded by two local dense seismic arrays installed in the epicentral region have been inverted to obtain one- and three-dimensional velocity models by using state of the art local earthquake tomographic techniques. Velocity models and aftershock relocation help us to infer the seismotectonic of the region. Earthquakes originated along a NW-dipping backthrust of a NE-trending main thrust, composing the western part of the broad Ferrara Arc. A main high Vp and high Vp/Vs region delineates a pop-up structure in the center of the area. The high Vp/Vs within the pop-up structure supports the presence of a zone with increased pore pressure. The hypocentral depth of both mainshock and aftershocks is greater than those usually found for the main seismogenic regions of the Apenninic belt. P-wave velocity values in the seismogenic area, obtained by tomography, are compatible with rocks of the Mesozoic cover and suggest that seismicity occurred within the Mesozoic units stack at present by compressional tectonics.

  12. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.

  13. Geomorphological records of diachronous quarrying activities along the ancient Appia route at the Aurunci Mountain pass (Central Italy)

    NASA Astrophysics Data System (ADS)

    Di Luzio, E.; Carfora, P.

    2018-04-01

    The topic of this research consists in the description of landscape modifications occurring from the 4th century BCE to the 19th century CE as a consequence of quarrying activities on carbonate slopes along a tract of the ancient Appia route crossing the central Apennine belt at the Aurunci Mountain pass (Lazio region, central Italy). The main objectives were to discern different quarrying phases and techniques, quantify quarrying activities and understand the role of quarrying in create morphological features. Multidisciplinary studies were completed including aerial photogrammetry, geoarchaeological field surveys, morphometric characterization of quarry areas, structural analysis of rock outcrops aided by terrestrial photogrammetry, GPS measurements. The results of this study show how the local geomorpological and tectonic setting determined which kinds of extractable rock material, i.e., rock blocks or breccias, were used for different purposes. Moreover, different phases of extraction were evidenced. A main Roman quarrying phase, lasting between the 4th century BCE and the 1st century CE, was recognized as taking place over eight quarry areas. These are delimited by sharp edges and have regular shapes, revealing in some cases a staircase-like morphological profile, and are characterized by similar volumes of extracted rock material. A later quarrying phase -the Bourbon Age, 19th century CE-is assumed to be evidenced instead by five quarries with a peculiar semi-elliptical shape and different volumes of carved material. Seven quarries were found to be of uncertain age. The quarry system described in this paper, together with geomorphological records of slope cuts, terraced surfaces, and the remains of retaining walls, represents a unique and important example of anthropogenic landscape modification in the territory of the central Apennines caused by the construction and maintenance of a Roman road over the centuries. This could be relevant for further studies on the relations between natural environments and the development of civilisation. In addition, the multi-methodological analyses of geomorphological records originated by quarrying activities may be considered for the characterization of similar quarry landscapes.

  14. Gypsum karst in Italy: a review

    NASA Astrophysics Data System (ADS)

    De Waele, Jo; Chiarini, Veronica; Columbu, Andrea; D'Angeli, Ilenia M.; Madonia, Giuliana; Parise, Mario; Piccini, Leonardo; Vattano, Marco; Vigna, Bartolomeo; Zini, Luca; Forti, Paolo

    2016-04-01

    Although outcropping only rarely in Italy, gypsum karst has been described in detail since the early XXth century (Marinelli, 1917). Gypsum caves are now known from almost all Italian regions (Madonia & Forti, 2003), but are mainly localised along the northern border of the Apennine chain (Emilia Romagna and Marche regions), Calabria, and Sicily, where the major outcrops occur. Recently, important caves have also been discovered in the underground gypsum quarries in Piedmont (Vigna et al., 2010). During the late 80s and 90s several multidisciplinary studies have been carried out in many gypsum areas. All this work converged into a comprehensive overview in 2003 (Madonia & Forti, 2003). Further detailed studies focused on the gypsum areas of Emilia Romagna (Chiesi et al., 2010; Forti & Lucci, 2010; Demaria et al., 2012; De Waele & Pasini, 2013; Ercolani et al., 2013; Columbu et al., 2015; Lucci & Piastra, 2015; Tedeschi et al., 2015) and of Sicily (Madonia & Vattano, 2011). Sinkholes related to Permo-Triassic gypsum have been studied in Friuli Venezia Giulia (Zini et al., 2015). This presentation will review the state of the art regarding different aspects of evaporite karst in Italy focusing on the main new results. References Chiesi M., et al. (2010) - Origin and evolution of a salty gypsum/anhydrite karst spring: the case of Poiano (Northern Apennines, Italy). Hydrogeology Journal, 18, pp. 1111-1124. Columbu A. et al. (2015) - Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region. Geology, 43(6), 539-542. Demaria D. et al. (Eds.) (2012), Le Grotte Bolognesi, GSB-USB, 431 p. De Waele J., Pasini G. (2013) - Intra-messinian gypsum palaeokarst in the northern Apennines and its palaeogeographic implications. Terra Nova 25, pp. 199-205. Ercolani M., et al. (Eds.) (2013), I Gessi e la Cave i Monte Tondo. Studio multidisciplinare di un'area carsica nella Vena del Gesso Romagnola. Memorie Ist. It. Spel. II(26), 559 p. Forti P., Lucci P. (Eds.) (2010) - Il Progetto Stella-Basino. Studio multidisciplinare di un sistema carsico nella Vena del Gesso Romagnola. Memorie Ist. It. Spel. II(14), 260 p. Lucci P., Piastra S. (Eds.) (2015), I Gessi di Brisighella e Rontana: studio multidisciplinare di un'area carsica nella Vena del Gesso Romagnola. Memorie Ist. It. Spel. II(28), 751 p. Madonia G., Forti P. (2003) - Le aree carsiche gessose d'Italia. Memorie Ist. It. Spel. II(14), 285 p. Madonia G., Vattano M. (2011) - New knowledge on the Monte Conca gypsum karst system (central-western Sicily, Italy). Acta Carsologica, 40, (1), pp. 53-64. Marinelli O. (1917) - Fenomeni carsici nelle regioni gessose d'Italia. Mem. Geografiche di Giotto Dainelli, 34, pp. 263-416, suppl. to Riv. Geografica It Tedeschi L. et al. (2015) - Comportamento idrogeologico di alcune risorgenti carsiche nei gessi dell'Emilia-Romagna. Memorie Ist. It. Spel. II(29), pp. 399-404. Vigna B. et al. (2010) - Evolution of karst in Messinian gypsum (Monferrato, Northern Italy). Geodinamica Acta, 23(1-3), pp. 29-40. Zini L. et al. (2015) - a multidisciplinary approach in sinkhole analysis: the Quinis village case study (NE-Italy). Engineering Geology, 197, pp.132-144.

  15. Secondary metabolites from Pinus mugo Turra subsp. mugo growing in the Majella National Park (Central Apennines, Italy).

    PubMed

    Venditti, Alessandro; Serrilli, Anna Maria; Vittori, Sauro; Papa, Fabrizio; Maggi, Filippo; Di Cecco, Mirella; Ciaschetti, Gianpiero; Bruno, Maurizio; Rosselli, Sergio; Bianco, Amandodoriano

    2013-11-01

    In this study, we examined the composition regarding secondary metabolites of P. mugo Turra ssp. mugo growing in the protected area of Majella National Park, which is the southernmost station of the habitat of this species. Both the nonpolar and polar fractions were considered. In particular, the essential-oil composition showed a high variety of compounds, and 109 compounds were detected, and 101 were identified, among which abietane-type compounds have a taxonomic relevance. Abietanes were also isolated from the polar fraction, together with an acylated flavonol and a remarkably high amount of shikimic acid. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio

    2016-09-01

    The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).

  17. Reactivation of a Deep Seated Gravitational Slope Deformation observed during the recent seismic events in Central Italy.

    NASA Astrophysics Data System (ADS)

    Amato, Gabriele; Aringoli, Domenico; Devoti, Roberto; Fubelli, Giandomenico; Galvani, Alessandro; Pambianchi, Gilberto; Sepe, Vincenzo

    2017-04-01

    Deep-Seated Gravitational Slope Deformations (DSGSDs) represent an important geomorphological feature of the European mountain chains and several cases from Central Apennine (Italy) are accurately described in literature. These phenomena generally present evident geomorphological markers (e.g. double ridges, trenches, counterslopes) and low activity rates (i.e. mm to cm per year), which can be triggered by many different means (e.g. seismic activity, erosional processes, rainfall, post-glacial debuttressing). To understand which is the most influential factor in DSGSDs' activity is rarely an easy task because this can vary from case to case. This work illustrates the outcomes provided by a monitoring activity conducted along the Mt. Frascare slope (Fiastra Lake, Marche region, Italy). The monitoring system is composed by 4 low cost GPS stations, based on single-frequency receivers, and 2 double-frequency GPS stations, aimed to cross-check the surface deformations measured by the two types of monitoring stations. The 6 GPS stations have been operated in place starting from October 2014 grounded on the base of a geomorphological field survey of the investigated phenomenon. Two stations have been equipped with both receiver types in order to facilitate the comparison of the results. The Fiastra DSGSD affects a marly limestone bedrock throughout a >5km2 area and along a slope against which a dam for hydroelectric power leans. Our monitoring system allowed to measure the Fiastra DSGSD's seismically induced relative displacements on the order of two mean steps of about 10 cm, due to the recent seismic sequence occurred in Central Italy in 2016, which resulted considerably higher than the observed mean annual velocity (≈5mm/y).

  18. The structural hinge of a chain-foreland basin: Quaternary activity of the Pede-Apennine Thrust front (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Benvenuti, Marco; Bonini, Marco; Carnicelli, Stefano; Piccardi, Luigi; Sani, Federico

    2018-01-01

    The Pede-Apennine margin (Northern Italy) is a major WNW-ESE-trending morpho-structural element that delimits the Po Plain to the southwest and consists of a system of southwest dipping thrusts, generally referred to as Pede-Apennine Thrust (PAT). The leading edge of the chain lies further north-east and is buried beneath the Plio-Quaternary marine and fluvial deposits of the Po Plain. Whereas the buried external thrust fronts are obvious active structures (as demonstrated by the 2012 Emilia earthquakes; e.g. Burrato et al., 2012), ongoing activity of the PAT is debated. Using a multidisciplinary approach that integrates structural, seismic, sedimentological and pedological field data, we describe the recent activity of the PAT structures in a sector of the Pede-Apennine margin between the Panaro and the Enza Rivers (Emilia-Romagna). We found that the PAT is emergent or sub-emergent and deforms Middle Pleistocene deposits. We also infer a more recent tectonic phase ( 60-80 ka) by Optically Stimulated Luminescence (OSL) dating of soil profiles that have been deformed by a recent reactivation of the PAT. Furthermore, we show evidence that the PAT and its external splay thrusts strongly influenced the drainage pattern, causing fluvial diversions and forcing paleo-rivers to develop roughly parallel to the margin. Finally, numerical Trishear modelling has been used to calculate deformation rates for the PAT along two transects. Extrapolated slip rates vary between 0.68 and 0.79 mm·yr- 1 for about the last 1.2-0.8 million years.

  19. Dynamic modeling of normal faults of the 2016 Central Italy earthquake sequence

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo

    2017-04-01

    The earthquake sequence of the Central Italy in 2016 are characterized mainly by the Mw6.0 24th August, Mw5.9 26th October and Mw6.4 30th October as well as two Mw5.4 earthquakes (24th August, 26th October) (catalogue INGV). They all show normal faulting mechanisms corresponding to the Apennines's tectonics. They are aligned briefly along NNW-SSE axis, and they may not be on a single continuous fault plane. Therefore, dynamic rupture modeling of sequences should be carried out supposing co-planar normal multiple segments. We apply a Boundary Domain Method (BDM, Goto and Bielak, GJI, 2008) coupling a boundary integral equation method and a domain-based method, namely a finite difference method in this study. The Mw6.0 24th August earthquake is modeled. We use the basic information of hypocenter position, focal mechanism and potential ruptured dimension from the INGV catalogue and Tinti et al., GRL, 2016), and begin with a simple condition (homogeneous boundary condition). From our preliminary simulations, it is shown that a uniformly extended rupture model does not fit the near-field ground motions and localized heterogeneity would be required.

  20. On a report that the 2012 M 6.0 earthquake in Italy was predicted after seeing an unusual cloud formation

    USGS Publications Warehouse

    Thomas, J.N.; Masci, F; Love, Jeffrey J.

    2015-01-01

    Several recently published reports have suggested that semi-stationary linear-cloud formations might be causally precursory to earthquakes. We examine the report of Guangmeng and Jie (2013), who claim to have predicted the 2012 M 6.0 earthquake in the Po Valley of northern Italy after seeing a satellite photograph (a digital image) showing a linear-cloud formation over the eastern Apennine Mountains of central Italy. From inspection of 4 years of satellite images we find numerous examples of linear-cloud formations over Italy. A simple test shows no obvious statistical relationship between the occurrence of these cloud formations and earthquakes that occurred in and around Italy. All of the linear-cloud formations we have identified in satellite images, including that which Guangmeng and Jie (2013) claim to have used to predict the 2012 earthquake, appear to be orographic – formed by the interaction of moisture-laden wind flowing over mountains. Guangmeng and Jie (2013) have not clearly stated how linear-cloud formations can be used to predict the size, location, and time of an earthquake, and they have not published an account of all of their predictions (including any unsuccessful predictions). We are skeptical of the validity of the claim by Guangmeng and Jie (2013) that they have managed to predict any earthquakes.

  1. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-07-08

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less

  2. An integrated bio-chemostratigraphic framework for Lower Cretaceous (Barremian-Cenomanian) shallow-water carbonates of the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Schmitt, Katharina; Heimhofer, Ulrich; Frijia, Gianluca; Huck, Stefan

    2017-04-01

    Shallow-water carbonate platform sections are valuable archives for the reconstruction of deep-time environmental and climatic conditions, but the biostratigraphic resolution is often rather low. Moreover, chemostratigraphic correlation with well-dated pelagic sections by means of bulk carbonate carbon-isotope stratigraphy is notoriously difficult and afflicted with large uncertainties, as shallow-water sections are particularly prone to the impact of diagenesis. In the current study, an integrated biostratigraphic-chemostratigraphic approach is applied to southern Tethyan Lower Cretaceous carbonate platform deposits (Santa Lucia, Monte La Costa sections) situated in the Central Apennines in Italy. The 500 m thick Santa Lucia section, representing an open lagoonal inner carbonate platform setting, provides a characteristic carbon- and oxygen-isotope pattern that allows for correlation with pelagic composite reference curves (Vocontian and Umbria Marche basins). Calibrated by means of foraminiferal biostratigraphy and rudist bivalve strontium-isotope stratigraphy, the section serves as local chemostratigraphic shallow-water reference for the Barremian to Cenomanian. The 250 m thick Monte La Costa section comprises predominantly coarse grained (biostromal) and often strongly cemented shelf margin deposits. Although benthic foraminifera are scarce and the carbonates evidently suffered strong diagenetic alteration, high-resolution (rudist shell) strontium-isotope stratigraphy in combination with superimposed carbon-isotope trends and biological-lithological changes (e.g., mass occurrences of Bacinella irregularis s.l) enables correlation with the Early Albian to Cenomanian portion of the Santa Lucia reference section. At both localities, chemostratigraphy indicates a major gap covering large parts of the Lower and middle Cenomanian. After having considerably improved the stratigraphic resolution of the studied sections, selected best-preserved rudist shells are going to be used for sclerochronological investigations. This will allow reconstructing the impact of long-term (Myr) and short-term (seasonal) paleoclimatic and paleoenvironmental changes on Cretaceous shallow seas.

  3. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  4. Orographic barriers GIS-based definition of the Campania-Lucanian Apennine Range (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Cuomo, Albina; Guida, Domenico

    2010-05-01

    The presence of mountains on the land surfaces plays a central role in the space-time dynamics of the hydrological, geomorphic and ecological systems (Roe G. H., 2005). The aim of this paper is to identify, delimitate and classify the orographic relief in the Campania - Lucanian Apennine (Southern Italy) to investigate the effects of large-scale orographic and small-scale windward-leeward phenomena on distribution, frequency and duration of rainfall. The scale-dependent effects derived from the topographic relief favor the utilization of a hierarchical and multi-scale approach. The approach is based on a GIS procedure applied on Digital Elevation Model (DEM) with 20 meters cell size and derived from Regional Technical Map (CTR) of Campania region (1:5000). The DEM has been smoothed from data spikes and pits and we have then proceed to: a) Identify the three basic landforms of the relief (summit, hillslope and plain) by generalizing a previous 10-type landforms using the TPI method (Weiss A. 2001) and by simplifying the established rules of the differential geometry on topographic surface; b) Delimitate the mountain relief by modifying the method proposed by O. Z. Chaudhry and W. A. Mackaness (2008). It is based on three concepts: prominence , morphological variability and parent-child relationship. Graphical results have shown a good spatial correspondence between the digital definition of mountains and their morpho-tectonic structure derived from tectonic geomorphological studies; c) Classify, by using a set rules of spatial statistics (Cluster analysis) on geomorphometric parameters (elevation, curvature, slope, aspect, relative relief and form factor). Finally, we have recognized three prototypal orographic barriers shapes: cone, tableland and ridge, which are fundamental to improve the models of orographic rainfall in the Southern Apennines. References Chaudhry O. Z.and Mackaness W. A. (2008). Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis. Transactions in GIS. 12(5), pp. 567-589 Roe Gerard H. 2005. Orographic precipitation. Annual Review of Earth and Planetary Sciences. Vol. 33: 645-671. Weiss A., 2001. Topographic position and landform analysis. Poster Presentation. ESRI User Conference. San Diego, CA.

  5. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface exposure rates are rather due to gravitational and landsliding movements aided by weathering and slope degradation processes. The so far neglected slope degradation and other (sub)surface processes should thus be carefully taken into consideration before attempting to recover fault slip rates using surface gathered data. The results of the present studies have been recently published (Kastelic et al., 2016) and our research is ongoing, implementing the so-far results with newer measurements and other techniques in order to improve our knowledge on the magnitude of the exposure and its causative process(es). Kastelic, V., P. Burrato, M. M. C. Carafa, and R. Basili (2016), Repeated surveys reveal nontectonic exposure of supposedly active normal faults in the central Apennines, Italy, J. Geophys. Res. Earth Surf., 121, doi:10.1002/2016JF003953.

  6. Seismogenic structures of the central Apennines and its implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Riaz, M. S.; Shan, B.

    2017-12-01

    The central Apennines belt is formed during the Miocene-to-Pliocene epoch under the environment where the Adriatic Plate collides with and plunges beneath the Eurasian Plate, eventually formed a fold and thrust belt. This active fold and thrust belt has experienced relatively frequent moderate-magnitude earthquakesover, as well as strong destructive earthquakes such as the 1997 Umbira-Marche sequence, the 2009 Mw 6.3 L'Aquila earthquake sequence, and three strong earthquakes occurred in 2016. Such high seismicity makes it one of the most active tectonic zones in the world. Moreover, most of these earthquakes are normal fault events with shallow depths, and most earthquakes occurred in the central Apennines are of lower seismic energy to moment ratio. What seismogenic structure causes such kind of seismic features? and how about the potential seismic hazard in the study region? In order to make in-depth understanding about the seismogenic structures in this reion, we collected seismic data from the INGV, Italy, to model the crustal structure, and to relocate the earthquakes. To improve the spatial resolution of the tomographic images, we collected travel times from 27627 earthquakes with M>1.7 recorded at 387 seismic stations. Double Difference Tomography (hereafter as DDT) is applied to build velocity structures and earthquake locations. Checkerboard test confirms that the spatial resolution between the depths range from 5 20km is better than 10km. The travel time residual is significantly decreased from 1208 ms to 70 ms after the inversion. Horizontal Vp images show that mostly earthquakes occurred in high anomalies zones, especially between 5 10km, whereas at the deeper depths, some of the earthquakes occurred in the low Vp anomalies. For Vs images, shallow earthquakes mainly occurred in low anomalies zone, at depths range of 10 15km, earthquakes are mainly concentrated in normal velocity or relatively lower anomalies zones. Moreover, mostly earthquakes occurred in high Poisson ratio zones, especially at shallower depths. Since high Poisson's ratio anomalies are usually correspondent to weaker zones, and mostly earthquakes are occurred at the shallow depths. Due to this reason, the strength should be lower, so that the seismic energy to moment ratio is also lower.

  7. Is the April 6th 2009 L'Aquila earthquake a confirmation of the "seismic landscape" concept?

    NASA Astrophysics Data System (ADS)

    Blumetti, Anna Maria; Comerci, Valerio; Guerrieri, Luca; Michetti, Alessandro Maria; Serva, Leonello; Vittori, Eutizio

    2010-05-01

    In the Central Apennines, active extensional tectonics is accommodated by a dense array of normal faults. Major tectonic elements are typically located at the foot of fault escarpments, tens of kilometres long and some hundreds of meters high. Subordinate faults within major blocks produce additional topographic irregularities (i.e., minor graben and fault scarps; Blumetti et al. 1993; Serva et al. 2002; Blumetti and Guerrieri, 2007). During moderate to strong earthquakes (M>6) one or several or all these faults can be rejuvenated up to the surface, and should be therefore regarded as capable faults. Thus, their total throw is the result of several surface faulting events over the last few hundreds of thousands of years. This is true for landscapes that have a "typical" earthquake magnitude (i.e., the earthquake magnitude that better "characterizes" the local landscape; Serva et al. 2002; Michetti et al. 2005) of either 6 or 7. According to this model in the L'Aquila region the seismic landscape is the result of repeated magnitude 7 events. In other words, the maximum magnitude to be expected is around 7, but clearly smaller events can also occur, like in the April 6, 2009 case. The L'Aquila region is well known for being characterized by a high seismic hazard. In particular, two events with Intensity X MCS occurred on November 26, 1461 and February 2, 1703. The latter was the third major seismic event of a seismic sequence that in two weeks shifted from Norcia (January 14) to L'Aquila (February 2). Two other destructive earthquakes hit the same area in 1349, IX-X MCS, and in 1762, IX MCS. Concerning the February 2, 1703, event, a good dataset of geological effects was provided by contemporary reports (e.g. Uria de Llanos, 1703): about 20 km of surface faulting along the Pizzoli fault, with offsets up to about half a meter and impressive secondary effects such as a river diversion, huge deep-seated gravitational movements and liquefaction phenomena involving the "ejection of stones and whitish sulphureous water" along the Aterno River (Blumetti, 1995). Such evidence is in line with a characteristic magnitude 7 landscape and therefore the 1703 event may be considered the typical earthquake producing the seismic landscape in that area. Surface faulting related to the 2009 event was nearly continuous for a length of 2.6 kilometres with offset not exceeding 10 cm (Blumetti et al., 2009) along the Paganica Fault (Bagnaia et al., 1992). Only spot evidence of very small and thin fractures was reported elsewhere, NW and SE of the village of Paganica, both aligned or not to the Paganica fault ruptures. Minor, but unequivocal, coseismic ruptures occurred also along the Bazzano and Roio Faults. Secondary effects were mapped in an area of 1000 km2 including gravitational phenomena, most of them rock falls/avalanches and small slides mostly affecting artificial material (Blumetti et al., 2009). Thus, in terms of characteristics and distribution of geological effects, the 1703 earthquake intensity has been unquestionably higher than the 2009 one (at least one degree, according to the ESI intensity scale). As suggested by the local "seismic landscape" and the historical and paleoseismological evidence, the April 6, 2009, earthquake should not be seen as the "characteristic" earthquake neither for the Paganica Fault nor for the L'Aquila region. Also, as already observed during the September 26, 1997, M5.6 and M6 Colfiorito earthquakes (e.g., Vittori et al., 2000), coseismic surface displacement along several faults during moderate events should not be seen as a surprise but as a typical feature of the seismic landscape of the Central Apennines, and of similar regions characterized by crustal extension. Reference Bagnaia R., D'Epifanio A., Sylos Labini S. (1992) - Aquilan and Subequan basins: an example of Quaternary evolution in central Apennines, Italy. Quaternaria Nova, 2, 187-209. Blumetti A.M., Dramis F. & Michetti A.M. (1993) - Fault-generated mountain fronts in Central Apennines (Central Italy); geomorphological features and seismotectonic implications. Earth Surface Processes and Landforms, 18, 203-223. Blumetti A.M. (1995) - Neotectonic investigations and evidence of paleo­seismicity in the epicentral area of the January-February 1703 Central Italy earthquakes. Bulletin of the American Association of Engineering Geologists, Special Volume n. 6: "Perspectives in Paleoseismology", Texas A&M University, Chapter 7, 83-100. Blumetti A.M., Guerrieri L. (2007) - Fault-generated mountain fronts and the identification of fault segments: implications for seismic hazard assessment. Boll. Soc. Geol. It. (Ital.J.Geosci.), 126 (2), 307-322. Blumetti, A.M., Comerci, V., Di Manna, P., Guerrieri L., Vittori E. (2009) - Geological effects induced by the L'Aquila earthquake (6 April 2009; ML=5.8) on the natural environment. Preliminary Report. 38 pp. http://www.apat.gov.it/site/_files/Inqua/2009_abruzzo_earthquake_report.pdf. Chiarabba, C. et al. (2009) - The 2009 L'Aquila (central Italy) Mw 6.3 earthquake: Main shock and aftershocks. Geophys. Res. Lett., 36, L18308, Michetti A.M., Audemard F., Marco S. (2005) - Future trends in paleoseismology: Integrated study of the seismic landscape as a vital tool in seismic hazard analyses, In: Michetti A.M., Audemard F., Marco S. (Editors), "Paleoseismology, integrated study of the Quaternary geological record for earthquake deformation and faulting", Special Issue, Tectonophysics, 408 (1-4), 3-21. Serva L. Blumetti A.M., Guerrieri L. & Michetti A. M. (2002) - The Apennine intermountain basins: the result of repeated strong earthquakes over a geological time interval. Boll. Soc. Geol. It. Special Volume 1, 939-946. Uria de Llanos A. (1703) - Relazione overo itinerario fatto dall'auditore Alfonso Uria del Llanos per riconoscere li danni causati dalli passati terremoi seguiti li 14 Gennaro e 2 Febraro M.DCCIII: Stamperi Gaetano Zenobj, Roma. Vittori E., G. Deiana, E. Esposito, L. Ferreli, L. Marchegiani, G. Mastrolorenzo, A.M. Michetti, S. Porfido, L. Serva, A.L. Simonelli, E. Tondi (2000) - Ground effects and surface faulting in the September-October 1997 Umbria-Marche (Central Italy) seismic sequence. Journal of Geodynamics, 29, 535-564.

  8. A geochemical approach for assessing the possible uses of the geothermal resource in the eastern sector of the Sabatini Volcanic District (Central Italy)

    NASA Astrophysics Data System (ADS)

    Cinti, Daniele; Tassi, Franco; Procesi, Monia; Brusca, Lorenzo; Cabassi, Jacopo; Capecchiacci, Francesco; Delgado Huertas, Antonio; Galli, Gianfranco; Grassa, Fausto; Vaselli, Orlando; Voltattorni, Nunzia

    2017-04-01

    The Sabatini Volcanic District (SVD) hosts a hydrothermal reservoir heated by the post-magmatic activity that affected the peri-Tyrrhenian sector of central Italy, giving rise to a number of thermal and mineral discharges. In this study, a complete geochemical and isotopic dataset based on the composition of 215 water and 9 bubbling gases, collected from the eastern sector of this huge hydrothermal system, is reported. The main aims are to (i) investigate the fluid sources and the main chemical-physical processes controlling the fluid chemistry and (ii) construct a conceptual fluid circulation model to provide insights into the possible use(s) of the geothermal resource. The fluid discharges are fed by two main aquifers, characterized by: (1) a Ca-HCO3 to Ca(Na)-HCO3 composition, typical of a shallow hydrological circuit within volcanic and sedimentary formations, and (2) a Ca-HCO3(SO4) to Na(Ca)-HCO3(Cl) composition, produced by the interaction of CO2-rich fluids with Mesozoic and Triassic carbonate-evaporite rocks. A thick sequence of low-permeability volcanic products represents a physical barrier between the two fluid reservoirs. As commonly occurring in central-southern Italy, CO2 is mainly produced by thermo-metamorphic decarbonation within the carbonate-evaporite reservoir, with minor contribution of mantle CO2. A dominant crustal source is also indicated by the relatively low R/Ra values (0.07-1.04). Methane and light hydrocarbons are mostly thermogenic, whereas H2S derives from thermogenic reduction of the Triassic anhydrites. Slightly positive 15N/14N values suggest minor N2 contribution from deep sedimentary sources. On the whole, a comparison of these geochemical features with those of the thermal fluids from the western portion of SVD highlights an eastward increasing influence of the shallow aquifer on the deep-originated fluids, likely caused by the proximity of the Apennine range from where the meteoric water, recharging the hydrothermal system, permeate. Accordingly, gas geothermometry in the CH4-CO2-H2 and H2S-CO2-H2 systems suggests equilibrium temperatures <200 °C, i.e. significantly lower than those measured in fluids from deep geothermal wells (300 °C). Although mitigated by the short distance from the Apennine range, the thermal anomaly recognized by fluid geochemistry in the eastern SVD makes this area suitable for direct exploitation of the geothermal resource.

  9. Integrated analysis of seismological, gravimetric and structural data for identification of active faults geometries in Abruzzo and Molise areas (Italy)

    NASA Astrophysics Data System (ADS)

    Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Porfido, Sabina; Cella, Federico; Fedi, Maurizio; Florio, Giovanni

    2015-04-01

    This paper deals with an interdisciplinary research that has been carried out for more constraining the active faults and their geometry of Abruzzo - Molise areas (Central-Southern Apennines), two of the most active areas from a geodynamic point of view of the Italian Apennines, characterized by the occurrence of intense and widely spread seismic activity. An integrated analysis of structural, seismic and gravimetric (Gaudiosi et al., 2012) data of the area has been carried out through the Geographic Information System (GIS) which has provided the capability for storing and managing large amount of spatial data from different sources. In particular, the analysis has consisted of these main steps: (a) collection and acquisition of aerial photos, numeric cartography, Digital Terrain Model (DTM) data, geophysical data; (b) generation of the vector cartographic database and alpha-numerical data; c) image processing and features classification; d) cartographic restitution and multi-layers representation. In detail three thematic data sets have been generated "fault", "earthquake" and "gravimetric" data sets. The fault Dataset has been compiled by examining and merging the available structural maps, and many recent geological and geophysical papers of literature. The earthquake Dataset has been implemented collecting seismic data by the available historical and instrumental Catalogues and new precise earthquake locations for better constraining existence and activity of some outcropping and buried tectonic structures. Seismic data have been standardized in the same format into the GIS and merged in a final catalogue. For the gravimetric Dataset, the Multiscale Derivative Analysis (MDA) of the gravity field of the area has been performed, relying on the good resolution properties of the Enhanced Horizontal Derivative (EHD) (Fedi et al., 2005). MDA of gravity data has allowed localization of several trends identifying anomaly sources whose presence was not previously detected. The main results of our integrated analysis show a strong correlation among faults, hypocentral location of earthquakes and MDA lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) of some structures of the areas, through the application of the DEXP method (Fedi M. and M. Pilkington, 2012). References Fedi M., Cella F., Florio G., Rapolla A.; 2005: Multiscale Derivative Analysis of the gravity and magnetic fields of the Southern Apennines (Italy). In: Finetti I.R. (ed), CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy, pp. 281-318. Fedi M., Pilkington M.; 2012: Understanding imaging methods for potential field data. Geophysics, 77: G13-G24. Gaudiosi G., Alessio G., Cella F., Fedi M., Florio G., Nappi, R.; 2012: Multiparametric data analysis for seismic sources identification in the Campanian area: merging of seismological, structural and gravimetric data. BGTA,. Vol. 53, n. 3, pp. 283-298.

  10. The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of Italy)

    NASA Astrophysics Data System (ADS)

    Chiaraluce, L.; Collettini, C.; Cattaneo, M.; Monachesi, G.

    2014-04-01

    As part of an interdisciplinary research project, funded by the European Research Council and addressing the mechanics of weak faults, we drilled three 200-250 m-deep boreholes and installed an array of seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastructure managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and monitors a large and active low-angle normal fault. The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network will allow for a broader range of transients to be identified.

  11. Aseismic Deformation Associated with an Earthquake Swarm in the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Gualandi, A.; Nichele, C.; Serpelloni, E.; Chiaraluce, L.; Anderlini, L.; Latorre, D.; Belardinelli, M. E.; Avouac, J. P.

    2017-12-01

    Analyzing the displacement time series from continuous GPS (cGPS) with an Independent Component Analysis (ICA) we detect a transient deformation signal that correlates both in space and time with a seismic swarm activity (maximum Mw = 3.69 ± 0.09) occurred in the hanging wall of the Altotiberina normal fault (Northern Apennines, Italy) in 2013-2014. The geodetic transient lasted ˜6 months and produced a NW-SE trending extension of ˜ 5.3 mm, consistent with the regional tectonic regime. The seismicity and the geodetic signal are consistent with slip on two splay faults in the ATF hanging wall. Comparing the seismic moment associated with the geodetic transient and the seismic events, we observe that seismicity accounts for only a fraction of the measured geodetic deformation. The combined seismic and aseismic slip decreased the Coulomb stress on the locked shallow portion of the ATF, while the transition region to the creeping section has been loaded.

  12. Source inversion of the 1570 Ferrara earthquake and definitive diversion of the Po River (Italy)

    NASA Astrophysics Data System (ADS)

    Sirovich, L.; Pettenati, F.

    2015-08-01

    An 11-parameter, kinematic-function (KF) model was used to retrieve the approximate geometrical and kinematic characteristics of the fault source of the 1570 Mw 5.8 Ferrara earthquake in the Po Plain, including the double-couple orientation (strike angle 127 ± 16°, dip 28 ± 7°, and rake 77 ± 16°). These results are compatible with either the outermost thrust fronts of the northern Apennines, which are buried beneath the Po Plain's alluvial deposits, or the blind crustal-scale thrust. The 1570 event developed to the ENE of the two main shocks on 20 May 2012 (M 6.1) and 29 May 2012 (M 5.9). The three earthquakes had similar kinematics and are found 20-30 km from each other en echelon in the buried chain. Geomorphological and historical evidence exist which suggest the following: (i) the long-lasting uplift of the buried Apenninic front shifted the central part of the course of the Po River approximately 20 km northward in historical times and (ii) the 1570 earthquake marked the definitive diversion of the final part of the Po River away from Ferrara and the closure of the Po delta 40 km south of its present position.

  13. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Pescatore, Tullio; Renda, Pietro; Schiattarella, Marcello; Tramutoli, Mariano

    1999-12-01

    Stratigraphic studies and facies analysis integrated with a new geological and structural survey of the Meso-Cenozoic units outcropping in the Campania-Lucania Apennines, southern Italy, allowed us to restore the palaeogeographic pattern and the tectonic evolution of the chain during Oligo-Miocene times. The southern Apennines are a N150°-striking and NE-verging fold-and-thrust belt mainly derived from the deformation of the African-Apulian passive margin. Four wide belts with different features have been recognized in the chain area. From east to west the following units outcrop: (a) successions characterized by basinal to marginal facies, ranging in age from Cretaceous to Miocene, tectonically lying on Plio-Pleistocene foredeep deposits; (b) successions characterized by shallow-water, basinal and shelf-margin facies, ranging in age from middle Triassic to Miocene ('Lagonegro units'), overthrust on the previous ones; (c) Triassic to Miocene carbonate platform successions ('Apenninic platform units'), overthrust on the Lagonegro units; (d) Jurassic-Cretaceous to Miocene deep-water successions (ophiolite-bearing or 'internal' units and associated siliciclastic wedges), outcropping along the Tyrrhenian belt and the Calabria-Lucania boundary, overthrust on the Apenninic platform units. All these units tectonically lie on the buried Apulian platform which is covered, at least in the eastern sector of the chain, by Pliocene to Pleistocene foredeep deposits. Stratigraphic patterns of the Cretaceous to lower Miocene Lagonegro successions are coherent with the platform margin ones. Calcareous clastics of the Lagonegro basin are in fact supplied by an adjacent western platform, as inferred by several sedimentological evidences (slump and palaeocurrent directions and decreasing grain size towards the depocentre of the basin). Tectonic relationships among the different units of the chain — with particular emphasis on the Lagonegro and Apenninic platform units of the Lucanian segment — are shown by means of both regional and detailed geological cross-sections. The Lagonegro units constantly underlie the carbonate units originating from detachment and thrusting of the western platform and overlie the eastern (i.e. Apulian) platform. The Lagonegro units show a strong lateral variability of map-scale structures. Dome-and-basin folds are in fact largely observable in the Lucanian Apennine. Further, the belt is widely affected by Plio-Quaternary strike-slip and extensional faults. Yet, excluding the brittle deformation due to Quaternary faulting, the complexity of structural styles seems to result from the Neogene refolding of more ancient structures produced by Oligo-Miocene intraplate deformation. This hypothesis is supported by two independent lines of evidence: the first is the recognition of unconformities between the lower Miocene Numidian sandstone and the underlying Lagonegro successions, at least in the southwestern sectors; the second is that the internal (i.e. western) platform remains undeformed until the early Miocene. Both stratigraphic and structural data suggest an external position of the Meso-Cenozoic Lagonegro basin with regard to the coeval Apenninic platform.

  14. Possible astronomical references in two megalithic building of ancient Latium

    NASA Astrophysics Data System (ADS)

    Magli, G.

    In the wide area of the ancient Latium Vetus - roughly enclosed within the coast and the Apennines between Rome and Terracina, in Central Italy - there are several examples of town's walls and buildings constructed with the spectacular megalithic technique called polygonal, in which enormous blocks are cut in irregular shapes and perfectly fit together without mortar. In many cases, for instance in Alatri, Arpino, Circei, Norba and Segni, the megalithic size of the blocks and the ingenuity in construction reach the same magnificence and impression of power and pride which characterize the worldwide famous Mycenaean towns of Tiryns and Mycenae, constructed around the XIII century BC. In Italy however, all polygonal walls are currently attributed to the Romans, and dated to the first centuries of the Roman republic (V-III century BC), although for most of these constructions no reliable stratigraphy is available. In the present work, which is part of an ongoing project aiming at a complete study of these buildings, we investigate the possible astronomical references in the planning of two among the most imposing of them, namely the so called Acropolis of Alatri and Circei.

  15. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    PubMed

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  16. Deep Structure of Northern Apennines Subduction Orogen (Italy) as Revealed by a Joint Interpretation of Passive and Active Seismic Data

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Faccenna, Claudio

    2018-05-01

    The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.

  17. A Seismic Source Model for Central Europe and Italy

    NASA Astrophysics Data System (ADS)

    Nyst, M.; Williams, C.; Onur, T.

    2006-12-01

    We present a seismic source model for Central Europe (Belgium, Germany, Switzerland, and Austria) and Italy, as part of an overall seismic risk and loss modeling project for this region. A separate presentation at this conference discusses the probabilistic seismic hazard and risk assessment (Williams et al., 2006). Where available we adopt regional consensus models and adjusts these to fit our format, otherwise we develop our own model. Our seismic source model covers the whole region under consideration and consists of the following components: 1. A subduction zone environment in Calabria, SE Italy, with interface events between the Eurasian and African plates and intraslab events within the subducting slab. The subduction zone interface is parameterized as a set of dipping area sources that follow the geometry of the surface of the subducting plate, whereas intraslab events are modeled as plane sources at depth; 2. The main normal faults in the upper crust along the Apennines mountain range, in Calabria and Central Italy. Dipping faults and (sub-) vertical faults are parameterized as dipping plane and line sources, respectively; 3. The Upper and Lower Rhine Graben regime that runs from northern Italy into eastern Belgium, parameterized as a combination of dipping plane and line sources, and finally 4. Background seismicity, parameterized as area sources. The fault model is based on slip rates using characteristic recurrence. The modeling of background and subduction zone seismicity is based on a compilation of several national and regional historic seismic catalogs using a Gutenberg-Richter recurrence model. Merging the catalogs encompasses the deletion of double, fake and very old events and the application of a declustering algorithm (Reasenberg, 2000). The resulting catalog contains a little over 6000 events, has an average b-value of -0.9, is complete for moment magnitudes 4.5 and larger, and is used to compute a gridded a-value model (smoothed historical seismicity) for the region. The logic tree weighs various completeness intervals and minimum magnitudes. Using a weighted scheme of European and global ground motion models together with a detailed site classification map for Europe based on Eurocode 8, we generate hazard maps for recurrence periods of 200, 475, 1000 and 2500 yrs.

  18. Investigation and monitoring in support of the structural mitigation of large slow moving landslides: an example from Ca' Lita (Northern Apennines, Reggio Emilia, Italy)

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Borgatti, L.; Caputo, G.; de Simone, N.; Sartini, G.; Truffelli, G.

    2006-01-01

    The Ca' Lita landslide is a large and deep-seated mass movement located in the Secchia River Valley, in the sector of the Northern Apennines falling into Reggio Emilia Province, about 70 km west of Bologna (Northern Italy). It consists of a composite landslide system that affects Cretaceous to Eocene flysch rock masses and chaotic complexes. Many of the components making up the landslide system have resumed activity between 2002 and 2004, and are now threatening some hamlets and an important road serving the upper watershed area of River Secchia, where many villages and key industrial facilities are located. This paper presents the analysis and the quantification of displacement rates and depths of the mass movements, based on geological and geomorphological surveys, differential DEM analysis, interpretation of underground stratigraphic and monitoring data collected during the investigation campaign that has been undertaken in order to design cost-effective mitigation structures, and that has been conducted with the joint collaboration between public offices and research institutes.

  19. High-resolution shallow reflection seismic image and surface evidence of the Upper Tiber Basin active faults (Northern Apennines, Italy)

    USGS Publications Warehouse

    Donne, D.D.; Plccardi, L.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.

    2007-01-01

    Shallow seismic reflection prospecting has been carried out in order to investigate the faults that bound to the southwest and northeast the Quaternary Upper Tiber Basin (Northern Apennines, Italy). On the northeastern margin of the basin a ??? 1 km long reflection seismic profile images a fault segment and the associated up to 100 meters thick sediment wedge. Across the southwestern margin a 0.5 km-long seismic profile images a 50-55??-dipping extensional fault, that projects to the scarp at the base of the range-front, and against which a 100 m thick syn-tectonic sediment wedge has formed. The integration of surface and sub-surface data allows to estimate at least 190 meters of vertical displacement along the fault and a slip rate around 0.25 m/kyr. Southwestern fault might also be interpreted as the main splay structure of regional Alto Tiberina extensional fault. At last, the 1917 Monterchi earthquake (Imax=X, Boschi et alii, 2000) is correlable with an activation of the southwestern fault, and thus suggesting the seismogenic character of this latter.

  20. Facies-related fracturing in turbidites: insights from the Marnoso-Arenacea Fm. (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Bedogni, Enrico; Tinterri, Roberto; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael

    2016-04-01

    Natural fractures deeply influence subsurface fluid flow, exerting a primary control on resources like aquifers, hydrocarbons and geothermal reservoirs, and on environmental issues like CO2 storage and nuclear waste disposal. In layered sedimentary rocks, depositional processes-imprinted rock rheology favours the development of both mechanical anisotropy and heterogeneity on a wide range of scales, and are thus expected to strongly influence location and frequency of fractures. To better constrain the contribution of stratigraphic, sedimentological and petrophysical attributes, we performed a high-resolution, multidisciplinary study on a selected stratigraphic interval of jointed foredeep turbidites in the Miocene Marnoso-arenacea Formation (Northern Apennines, Italy), which are characterised by a great lateral and vertical variability of grain-size and depositional structures. Statistical relationships among field and laboratory data significantly improve when the single facies scale is considered, and, for similar facies recording different evolutionary stages of the parent turbidity currents, we observed a direct correlation between the three-dimensional anisotropies of rock hardness tensors and the normalized fracture frequencies, testifying for the primary sedimentary flow-related control on fracture distributions.

  1. A quantitative approach to the loading rate of seismogenic sources in Italy

    NASA Astrophysics Data System (ADS)

    Caporali, Alessandro; Braitenberg, Carla; Montone, Paola; Rossi, Giuliana; Valensise, Gianluca; Viganò, Alfio; Zurutuza, Joaquin

    2018-03-01

    To investigate the transfer of elastic energy between a regional stress field and a set of localized faults we project the stress rate tensor inferred from the Italian GNSS velocity field onto faults selected from the Database of Individual Seismogenic Sources (DISS 3.2.0). For given Lamé constants and friction coefficient we compute the loading rate on each fault in terms of the Coulomb Failure Function (CFF) rate. By varying the strike, dip and rake angles around the nominal DISS values, we also estimate the geometry of planes that are optimally oriented for maximal CFF rate. Out of 86 Individual Seismogenic Sources (ISSs), all well covered by GNSS data, 78 to 81 (depending on the assumed friction coefficient) load energy at a rate of 0-4 kPa/yr. The faults displaying larger CFF rates (4 to 6 ± 1 kPa/yr) are located in the central Apennines and are all characterized by a significant strike-slip component. We also find that the loading rate of 75 per cent of the examined sources is less than 1 kPa/yr lower than that of optimally oriented faults. We also analyzed the 24 August and 30 October 2016, central Apennines earthquakes (Mw 6.0-6.5 respectively). The strike of their causative faults based on seismological and tectonic data and the geodetically inferred strike differ by < 30°. Some sources exhibit a strike oblique to the direction of maximum strain rate, suggesting that in some instances the present-day stress acts on inherited faults. The choice of the friction coefficient only marginally affects this result.

  2. Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case of the Emilia-Romagna Apennine (Italy)

    NASA Astrophysics Data System (ADS)

    Bonini, Marco

    2018-03-01

    The Northern Apennine prowedge exposes two adjacent sectors showing a marked along-strike change in erosion intensity, namely the Emilia Apennine to the northwest and the Romagna Apennine to the southeast. This setting has resulted from Pliocene erosion (≤5 Ma) and exhumation, which have affected the whole Romagna sector and mostly the watershed ridge in Emilia. Such an evolution has conceivably influenced the equilibrium of this fold-and-thrust belt, which can be evaluated in terms of critical Coulomb wedge theory. The present state of the thrust wedge has been assessed by crosschecking wedge tapers measured along transverse profiles with fluid pressure values inferred from deep wellbores. The interpretation of available data suggests that both Emilia and Romagna are currently overcritical. This condition is compatible with the presence in both sectors of active NE-dipping normal faults, which would work to decrease the surface slope of the orogenic wedge. However, the presence of Late Miocene-Pliocene passive-roof and out-of-sequence thrusts in Romagna may reveal a past undercritical wedge state ensuing during the regional erosion phase, thereby implying that the current overcritical condition would be a recent feature. The setting of the Emilia Apennine (i.e., strong axial exhumation and limited erosion of the prowedge) suggests instead a long lasting overcritical wedge, which was probably contemporaneous with the Pliocene undercritical wedge in Romagna. The reasons for this evolution are still unclear, although they may be linked to lithosphere-scale processes that have promoted the uplift of Romagna relative to Emilia. The lessons from the Northern Apennine thus suggest that erosion and exhumation have the ability to produce marked along-strike changes in the equilibrium of a fold-and-thrust belt.

  3. New constraints shed light on strike-slip faulting beneath the southern Apennines (Italy): The 21 August 1962 Irpinia multiple earthquake

    NASA Astrophysics Data System (ADS)

    Vannoli, Paola; Bernardi, Fabrizio; Palombo, Barbara; Vannucci, Gianfranco; Console, Rodolfo; Ferrari, Graziano

    2016-11-01

    On 21 August 1962 an earthquake sequence set off near the city of Benevento, in Italy's southern Apennines. Three earthquakes, the largest having Mw 6.1, struck virtually the same area in less than 40 min (at 18:09, 18:19 and 18:44 UTC, respectively). Several historical earthquakes hit this region, and its seismic hazard is accordingly among the highest countrywide. Although poorly understood in the past, the seismotectonics of this region can be revealed by the 1962 sequence, being the only significant earthquake in the area for which modern seismograms are available. We determine location, magnitude, and nodal planes of the first event (18:09 UTC) of the sequence. The focal mechanism exhibits dominant strike-slip rupture along a north-dipping, E-W striking plane or along a west-dipping, N-S striking plane. Either of these solutions is significantly different from the kinematics of the typical large earthquakes occurring along the crest of the Southern Apennines, such as the 23 November 1980 Irpinia earthquake (Mw 6.9), caused by predominant normal faulting along NW-SE-striking planes. The epicentre of the 21 August 1962, 18:09 event is located immediately east of the chain axis, near one of the three north-dipping, E-W striking oblique-slip sources thought to have caused one of the three main events of the December 1456 sequence (Io XI MCS), the most destructive events in the southern Apennines known to date. We maintain that the 21 August 1962, 18:09 earthquake occurred along the E-W striking fault system responsible for the southernmost event of the 1456 sequence and for two smaller but instrumentally documented events that occurred on 6 May 1971 (Mw 5.0) and 27 September 2012 (Mw 4.6), further suggesting that normal faulting is not the dominant tectonic style in this portion of the Italian peninsula.

  4. Stress and Strain Rates from Faults Reconstructed by Earthquakes Relocalization

    NASA Astrophysics Data System (ADS)

    Morra, G.; Chiaraluce, L.; Di Stefano, R.; Michele, M.; Cambiotti, G.; Yuen, D. A.; Brunsvik, B.

    2017-12-01

    Recurrence of main earthquakes on the same fault depends on kinematic setting, hosting lithologies and fault geometry and population. Northern and central Italy transitioned from convergence to post-orogenic extension. This has produced a unique and very complex tectonic setting characterized by superimposed normal faults, crossing different geologic domains, that allows to investigate a variety of seismic manifestations. In the past twenty years three seismic sequences (1997 Colfiorito, 2009 L'Aquila and 2016-17 Amatrice-Norcia-Visso) activated a 150km long normal fault system located between the central and northern apennines and allowing the recordings of thousands of seismic events. Both the 1997 and the 2009 main shocks were preceded by a series of small pre-shocks occurring in proximity to the future largest events. It has been proposed and modelled that the seismicity pattern of the two foreshocks sequences was caused by active dilatancy phenomenon, due to fluid flow in the source area. Seismic activity has continued intensively until three events with 6.0

  5. Characterization of Earthquake-Induced Ground Motion from the L'Aquila Seismic Sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, L.; Akinci, A.; Mayeda, K. M.; Munafo', I.; Herrmann, R. B.; Mercuri, A.

    2010-12-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data (Peak Ground Acceleration, PGA, Peak Ground Velocity, PGV, and Spectral Acceleration, SA) gathered during the Mw 6.15 L’Aquila earthquake (April 6, 2009, 01:32 UTC). The L’Aquila main-shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12,777 high-quality, high-gain waveforms with excellent S/N ratios (4,259 vertical, and 8,518 horizontal time histories). Seismograms were selected from the recordings of 170 fore-shocks and after-shocks of the sequence (the complete set of all earthquakes with ML ≥ 3.0, from October 1, 2008, to May 10, 2010). All waveforms were downloaded from the ISIDe web page (http://iside.rm.ingv.it/iside/standard/index.jsp), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L’Aquila sequence (2.8 ≤ Mw ≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-98 recently described by Malagnini et al. (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ~ 80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  6. Hominin responses to environmental changes during the Middle Pleistocene in central and southern Italy

    NASA Astrophysics Data System (ADS)

    Orain, R.; Lebreton, V.; Russo Ermolli, E.; Sémah, A.-M.; Nomade, S.; Shao, Q.; Bahain, J.-J.; Thun Hohenstein, U.; Peretto, C.

    2013-03-01

    The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "mid-Pleistocene transition (MPT)", from about 1 to 0.6 Ma, the transition from 41- to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favourable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680-600 ka), La Pineta (ca. 600-620 ka), Guado San Nicola (ca. 380-350 ka) or Ceprano (ca. 345-355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma Basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviours benefited from a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional- and local-scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano Basin (Molise, Italy) attest to the evolution of vegetation and climate between MIS 13 and 9 (ca. 500 to 300 ka). In this basin the persistence of high edaphic humidity, even during the glacial phases, could have favoured the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase, rather than directly to the global climate changes.

  7. Hominin responses to environmental changes during the Middle Pleistocene in Central and Southern Italy

    NASA Astrophysics Data System (ADS)

    Orain, R.; Lebreton, V.; Russo Ermolli, E.; Sémah, A.-M.; Nomade, S.; Shao, Q.; Bahain, J.-J.; Thun Hohenstein, U.; Peretto, C.

    2012-10-01

    The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "Mid-Pleistocene Transition (MPT)", from about 1 to 0.6 Ma, the transition from 41-ka to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favorable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680-600 ka), La Pineta (ca. 600-620 ka), Gaudo San Nicola (ca. 380-350 ka) or Ceprano (ca. 345-355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviors benefited of a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional and local scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano basin (Molise, Italy), attest to the evolution of vegetation and climate between OIS 13 and 9 (ca. 500 to 300 ka). In this basin, the persistence of high edaphic humidity, even during the glacial phases, could have favored the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding to the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase rather than directly to the global climate changes.

  8. Systematic detection and classification of earthquake clusters in Italy

    NASA Astrophysics Data System (ADS)

    Poli, P.; Ben-Zion, Y.; Zaliapin, I. V.

    2017-12-01

    We perform a systematic analysis of spatio-temporal clustering of 2007-2017 earthquakes in Italy with magnitudes m>3. The study employs the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b] with basic data-driven parameters. The results indicate that seismicity in Italy (an extensional tectonic regime) is dominated by clustered events, with smaller proportion of background events than in California. Evaluation of internal cluster properties allows separation of swarm-like from burst-like seismicity. This classification highlights a strong geographical coherence of cluster properties. Swarm-like seismicity are dominant in regions characterized by relatively slow deformation with possible elevated temperature and/or fluids (e.g. Alto Tiberina, Pollino), while burst-like seismicity are observed in crystalline tectonic regions (Alps and Calabrian Arc) and in Central Italy where moderate to large earthquakes are frequent (e.g. L'Aquila, Amatrice). To better assess the variation of seismicity style across Italy, we also perform a clustering analysis with region-specific parameters. This analysis highlights clear spatial changes of the threshold separating background and clustered seismicity, and permits better resolution of different clusters in specific geological regions. For example, a large proportion of repeaters is found in the Etna region as expected for volcanic-induced seismicity. A similar behavior is observed in the northern Apennines with high pore pressure associated with mantle degassing. The observed variations of earthquakes properties highlight shortcomings of practices using large-scale average seismic properties, and points to connections between seismicity and local properties of the lithosphere. The observations help to improve the understanding of the physics governing the occurrence of earthquakes in different regions.

  9. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza fault system in the investigated section. We further hypothesize that the onset of the Piano di Pezza fault activity may date back to the Middle Pleistocene (˜0.5 Ma), so this is a quite young active normal fault if compared to other mature normal fault systems active since 2-3 Ma in this portion of the central Apennines.

  10. Feedbacks Between Channel Adjustment, Sediment Calibre and Landscape Dynamics in Tectonically Perturbed Landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Attal, M.; Cowie, P. A.; Whittaker, A. C.; Tucker, G. E.; Mudd, S. M.; Hurst, M. D.

    2010-12-01

    Knowledge of the coupling between channel geometry and sediment input to rivers is central to understanding the mechanisms and timescales over which landscapes respond to a tectonic perturbation. Here, we document changes to channel geometry and sediment calibre in catchments experiencing a well-constrained increase in relative uplift rate in the Central Apennines (Italy) and the Sierra Nevada (California). In both landscapes, channels and hillslopes steepen and knickpoints propagate upstream through the catchments, leading to the formation of a break in both hillslope and channel gradient that separates the steepened landscape from lower relief topography which has not yet responded to the change in uplift rate. Downstream of this break in slope, channels narrow markedly as river gradient increases. In addition, they are supplied with coarser sediment from the steepened hillslopes, in particular when sediment is supplied via landslides and debris fans. In Italy, channel narrowing can be explained using the equation proposed by Finnegan et al. [2005]: W = kQ3/8S-3/16, where W is channel width, k is a constant, Q is river discharge and S is channel slope. However, to model our field data, the prefactor k must be strongly dependent on uplift rate: the higher the uplift rate, the smaller the prefactor k. Using the Channel-Hillslope Integrated Landscape Development (CHILD) model, we show that the location of the main break in slope along the river profiles in Italy (in terms of height and along stream distance) can be fitted using a detachment-limited model with dynamic channel adjustment (equation above), k dependent on uplift rate and a threshold for erosion. A threshold corresponding to the shear stress required to entrain the median grain size of the sediment along the steepened reaches of the channels best fits the data. Our modelling results show that the response time of the landscape in this setting is strongly dependent on relative uplift rate, since knickpoint retreat rate in the detachment-limited model is a function of channel width and that the higher the relative uplift rate, the narrower the river. In a catchment uplifted at 1.5 mm/yr, knickpoint retreat rate can be up to 3 times higher than in a catchment uplifted at 0.25 mm/yr. This result is in agreement with measurements of knickpoint retreat rates using field data in the Apennines [Whittaker et al., 2008]. Steepened hillslopes along the rapidly incising Feather River, Sierra Nevada, California

  11. Hydrogeological characterization of peculiar Apenninic springs

    NASA Astrophysics Data System (ADS)

    Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L.

    2014-09-01

    In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012-2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs.

  12. The underground seismic array of Gran Sasso (UNDERSEIS), central Italy

    NASA Astrophysics Data System (ADS)

    Scarpa, R.; Muscente, R.; Tronca, F.; Fischione, C.; Rotella, P.; Abril, M.; Alguacil, G.; Martini, M.; de Cesare, W.

    2003-04-01

    Since early May, 2002, a small aperture seismic array has been installed in the underground Physics Laboratories of Gran Sasso, located near seismic active faults of central Apennines, Italy. This array is presently composed by 21 three-component short period seismic stations (Mark L4C-3D), with average distance 90 m and semi-circular aperture of 400 m x 600 m. It is intersecting a main seismogenic fault where the presence of slow earthquakes has been recently detected through two wide band geodetic laser interferometers. The underground Laboratories are shielded by a limestone rock layer having 1400 m thickness. Each seismometer is linked, through a 24 bits A/D board, to a set of 6 industrial PC via a serial RS-485 standard. The six PC transmit data to a server through an ethernet network. Time syncronization is provided by a Master Oscillator controlled by an atomic clock. Earthworm package is used for data selection and transmission. High quality data have been recorded since May 2002, including local and regional earthquakes. In particular the 31 October, 2002, Molise (Mw=5.8 earthquake) and its aftershocks have been recorded at this array. Array techniques such as polarisation and frequency-slowness analyses with the MUSIC noise algorithm indicate the high performance of this array, as compared to the national seismic network, for identifying the basic source parameters for earthquakes located at distance of few hundreds of km.

  13. A critical review of seismotectonic setting of the Campanian Plain (Southern Italy) in GIS environment.

    NASA Astrophysics Data System (ADS)

    Gaudiosi, Germana; Alessio, Giuliana; Luiso, Paola; Nappi, Rosa; Ricciolino, Patrizia

    2010-05-01

    The Plio-Pleistocene Campanian Plain is a structural depression of the Southern Italy located between the eastern side of the Tyrrhenian Sea and the Southern Apennine chain. It is surrounded to the North, East and South by the Mesozoic carbonate massifs of the Apennine chain and, to the West, by the Tyrrhenian Sea. The graben origin is similar to other peri-Tyrrhenian regions and is related to a stretching and thinning of the continental crust by the counterclockwise rotation of the Italian peninsula and the contemporaneous opening of the Tyrrhenian sea. The consequent subsidence of the Campanian carbonate platform took place along the Tyrrhenian coast during the Plio-Pleistocene with a maximum vertical extent of 5 km. The plain is filled by volcanic and clastic, continental and marine deposits. Voluminous volcanic activity of Roccamonfina, Campi Flegrei, Ischia, Procida and Vesuvio occurred in the Plain during the Quaternary. In the middle of the plain lies the city of Naples, bordered by the two active volcanoes of Campi Flegrei and Vesuvio. It is a very densely inhabited area that is exposed to high potential volcanic risk. The stress field acting in the Campanian area is poorly known. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW- SE-trending faults and normal to dextral for the NE-SW-trending structures. These movements are consistent with those of the structures affecting the inner margin of the Southern Apennines. The Campanian Plain is characterized by seismicity of energy lower than the seismic activity of the Southern Apennine chain. The earthquakes mainly occur along the margin of the plain, in the volcanic areas and a minor seismicity spreads out inside the Plain. The aim of this paper is an attempt to identify active, outcropping and buried fault systems of the Campanian plain through the correlation between seismicity and tectonic structures. Seismic, geologic and geomorphologic data have been analysed in GIS environment. In particular, the seismological data used in this study are relative both to the historical and recent seismic activity, collected by the following Catalogues: CPTI04 Catalogue of Parametric Italian Earthquakes, 2004 (217 b.C to 2002); CSI Catalogue of Instrumental Italian Earthquakes (1981-2002); CNT Seismic Bulletin of Istituto Nazionale di Geofisica e Vulcanologia (2003-2008); Data Base of Seismic Laboratory of Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia) (2000-2009); SisCam Catalogue (Seismotectonic Information System of the Campanian Region) (1980-2000). Seismic data were homogenized in an only one Catalogue. The seismicity of Campi Flegrei and Vesuvio volcanoes have not been studied. The Geological Dataset consists of a merge of all outcropping and buried faults extracted from the available geological and structural maps: Geological map of Italy 1:100.000; Geological map of Southern Italy 1:250.000; Neotectonic Map of Italy 1:500.000; Structural Map of Italy 1:500.000. Two main NW-SE and NE-SW active fault systems have been identified from the joined analysis of seismic epicentres and faults. Moreover, tectonic structure without correlated seismic activity and a spread seismicity, apparently not linked with already known structures (buried faults?), have been identified.

  14. View of Florence, Italy area from Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A near vertical view of the Florence, Italy area as photographed from Earth orbit by one of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. The view extends from the Ligurian Sea, an extension of the Mediterranian Sea, across the Apennine Mountians to the Po River Vally. Florence (Firenze) is near the center of the land mass. The mouth of the Arno River is at the center of the coastline. The city of Leghorn (Livorno) is on the coast just south of the Arno River. This picture was taken with type 2443 infrared color film.

  15. Phylogeography of a tough rock survivor in European dry grasslands

    PubMed Central

    Poschlod, Peter; Reisch, Christoph

    2017-01-01

    Phylogeographic analyses of plants in Europe have revealed common glacial refugia and migration routes for several trees and herbs with arctic-alpine distributions. The postglacial histories of dry grassland species in central Europe have rarely been analyzed, even though the extremely species-rich habitat is threatened. Sedum album (Crassulaceae) is a common inhabitant of rocky sites in central European dry grasslands. We inferred the phylogeographic history of S. album over its distribution range in Europe. Genetic diversity within and differentiation between 34 S. album populations was examined using AFLP markers. Population isolation was indicated based on the rarity of the fragments and by isolation-by-distance effects. We sequenced the trnL-trnF region in 32 populations and used chloroplast microsatellites to analyze chloroplast haplotype distributions. Two distinct S. album lineages were detected. One lineage was comprised of populations from eastern and central parts of central Europe, and the Apennine Peninsula. A second lineage was comprised of populations from the Iberian Peninsula and western and northern parts of central Europe. Glacial refugia were identified based on the accumulation of ancient chloroplast haplotypes, high diversity of AFLP fragments within populations, and high levels of rare fragments in Liguria, Serbia, the Apennine and Iberian peninsulas. Cryptic refugia were detected in the Czech Republic and Slovakia. Isolation by distance was present all over the distribution range, and it was separately detected in southwestern and central Europe. In western Europe, where a contact zone between the two lineages can be expected, no isolation by distance was detected. Our results suggest migration routes of S. album northeastward from glacial refugia in southern Iberia, northward from the Apennine Peninsula, and northward and westward from the southeastern parts of central Europe. Therefore, central European grasslands were recently colonized by northern cryptic populations and source populations originating in the east and the Apennine Peninsula. PMID:28640885

  16. Earthquake Forecasting System in Italy

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  17. Miocene unconformities in the Central Apennines: geodynamic significance and sedimentary basin evolution

    NASA Astrophysics Data System (ADS)

    Cipollari, Paola; Cosentino, Domenico

    1995-12-01

    This paper shows the results obtained from an integrated study (geology, biostratigraphy and geochemistry) carried out on the Miocene edimentary deposits in Central Italy in order to define the timing of the sedimentary basin evolution. This paper deals also with the causes of the unconformities recorded in these basins. In the Miocene deposits of the Latina Valley and the Ernici-Simbruini Mts. several unconformities which distinguish different stratigraphic sequences have been recognized (D 0, D 1, D 2 D 3 and D 4). For each unconformity a general description together with a geodynamical significance is provided. In particular, D 0 unconformity appears to be related to a regional tectonic event (Adria-Europe collision). As a consequence, the Adria lithosphere folded and the area underwent a regional erosive event. D 1, D 2 and D 3 unconformities have had a more local tectonic control since they represent the stratigraphic record of the migration of the Apennines thrust belt/foredeep system. D 1 and D 2 unconformities are related to the late Tortonian foredeep stage, whereas D 3 is linked to the early Messinian piggy-back stage. Moreover, the D 4 unconformity, which took place during the Messinian piggy-back stage, is strictly linked to the sea-level drop of the Messinian salinity crisis. In this paper the genesis and evolution of a late Tortonian foreland basin is also stressed (Latina Valley foredeep basin). Finally, taking into account sequence boundaries, nannofossil biostratigraphy and geochemistry isotopic data, a comparison with the curve of the 3rd order of the relative coastal onlap (Haq et al., 1988) has been attempted in order to distinguish the unconformities controlled either by tectonic or eustatic processes.

  18. A quantitative approach to the loading rate of seismogenic sources in Italy

    NASA Astrophysics Data System (ADS)

    Caporali, Alessandro; Braitenberg, Carla; Montone, Paola; Rossi, Giuliana; Valensise, Gianluca; Viganò, Alfio; Zurutuza, Joaquin

    2018-06-01

    To investigate the transfer of elastic energy between a regional stress field and a set of localized faults, we project the stress rate tensor inferred from the Italian GNSS (Global Navigation Satellite Systems) velocity field onto faults selected from the Database of Individual Seismogenic Sources (DISS 3.2.0). For given Lamé constants and friction coefficient, we compute the loading rate on each fault in terms of the Coulomb failure function (CFF) rate. By varying the strike, dip and rake angles around the nominal DISS values, we also estimate the geometry of planes that are optimally oriented for maximal CFF rate. Out of 86 Individual Seismogenic Sources (ISSs), all well covered by GNSS data, 78-81 (depending on the assumed friction coefficient) load energy at a rate of 0-4 kPa yr-1. The faults displaying larger CFF rates (4-6 ± 1 kPa yr-1) are located in the central Apennines and are all characterized by a significant strike-slip component. We also find that the loading rate of 75% of the examined sources is less than 1 kPa yr-1 lower than that of optimally oriented faults. We also analysed 2016 August 24 and October 30 central Apennines earthquakes (Mw 6.0-6.5, respectively). The strike of their causative faults based on seismological and tectonic data and the geodetically inferred strike differ by <30°. Some sources exhibit a strike oblique to the direction of maximum strain rate, suggesting that in some instances the present-day stress acts on inherited faults. The choice of the friction coefficient only marginally affects this result.

  19. The MAFI Project: Mapping Active Faults in Italy by Using Microseismicity Data.

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Amato, A.; Augliera, P.; Bagh, S.; Cattaneo, M.; Chiaraluce, L.; de Gori, P.; di Bartolomeo, P.; Govoni, A.; Michelini, A.; Moretti, M.; Piccinini, D.; Romanelli, M.

    2004-12-01

    In past years, earthquake forecasting and seismic hazard in Italy have been approached by using geological and geophysical data yielding only a partial definition of seismic release for the main active structures. In this project, we collect seismological and geodetic data to yield deterministic constraints for seismic hazard studies in areas where large earthquakes are expected to occur in a near future, called lacunae. The basic idea is to massively deploy arrays of instruments in the lacunae areas to acquire seismic and geodetic data with the goals of defining location, geometry and kinematics of the active faults and possibly constraining their strain rate. We selected three target regions: two along the Apennines (Northern Umbria and Abruzzo) and one in the Southern Alps (Alpago-Cansiglio). These areas are characterized by different tectonics and different historical seismic release. We present results for the areas located along the Apennines: the Umbria 2000-2001 and the Abruzzo 2003-2004 experiments while for the Alpago-Cansiglio we are still collecting and processing data. Preliminary results for the Umbria lacuna shows that the collected microearthquakes allow us to clearly recognize the fault system geometry and the deep structure (P- and S-wave velocity and attenuation).

  20. Non-volcanic CO2 Earth degassing: Case of Mefite d'Ansanto (southern Apennines), Italy

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Minopoli, C.; Vilardo, G.

    2010-06-01

    Mefite d'Ansanto, southern Apennines, Italy is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth. The emission is fed by a buried reservoir, made up of permeable limestones and covered by clayey sediments. We estimated a total gas flux of ˜2000 tons per day. Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time people and animals. The application of a physical numerical model allowed us to define the zones which potentially can be affected by dangerous CO2 concentration at breathing height for humans. The geometry of the Mefite gas reservoir is similar to those designed for sequestering CO2 in geological storage projects where huge amounts of CO2 should be injected in order to reduce atmospheric CO2 concentration. The approach which we have used at Mefite to define hazardous zones for the human health can be applied also in case of large CO2 leakages from storage sites, a phenomena which, even if improbable, can not be ruled out.

  1. Fissumella motolae new genus new species from the late Aptian-early Albian of Southern Italy

    NASA Astrophysics Data System (ADS)

    Cruz, Erzika; Consorti, Lorenzo; Di Lucia, Matteo; Parente, Mariano; Ciria, Alex; Caus, Esmeralda

    2016-04-01

    Benthic foraminifera, together with calcareous algae and rudist bivalves, play a key role in the biostratigraphy of Cretaceous carbonate platforms of the peri-Adriatic area. In the biozonation currently adopted for the carbonate platforms of central and southern Apennines (Italy) there is a stratigraphic interval, roughly corresponding to most of the Albian stage, which is poorly defined and assigned to a single biozone, called "Ostracoda and Miliolidae" biozone (Chiocchini et al., 2008). We describe here a new peneropliform benthic foraminifer, Fissumella motolae n. gen., n. sp. which could be used for a finer biostratigraphic subdivision of this interval. Its porcelaneous test shows a peneropliform shape with rounded margins. In the early stage of growth the chambers are streptospirally arranged, becoming later planispiral involute. The aperture is single, migrating during ontogeny from an interiomarginal position to the center of septa. The chamber lumina are traversed by few and short radial septula. Fissumella motolae is a common constituent of benthic foraminiferal assemblages of the Apennine Carbonate Platform. We have found it in the same stratigraphic interval in several stratigraphic sections distributed along a NW-SE transect from Monte Croce (in the Aurunci Mts.) to Monte Tobenna (in the Picentini Mts.) to Monte Motola (in the Cilento Promontory). It first appears in the levels with Archaeoalveolina reicheli, close to Aptian-Albian boundary, and then continues for some tens of meters, associated with Praechrysalidina infracretacea, Cuneolina parva, Sabaudia minuta, conical imperforate foraminifers, miliolids, textularids, nezzazzatids, dasycladalean green algae and ostracods. Carbon isotope stratigraphy has been used to better constrain the correlation between the studied sections and their chronostratigraphic calibration. Chiocchini, M., Chiocchini, R. A., Didaskalou, P., and Potetti, M., 2008. Microbiostratigrafia del Triassico superiore, Giurassico e Cretacico in facies di piattaforma carbonatica del Lazio centro- meridionale e Abruzzo: revisione finale, Mem. Descr. Carta Geol. d' It., 5-170.

  2. Paleomagnetic data from the Pignola 2 section (Southern Apennines, Italy) and the Dibona section (Dolomites, Italy): a contribution to the Carnian magnetostratigraphy

    NASA Astrophysics Data System (ADS)

    Maron, Matteo; Muttoni, Giovanni; Guido, Roghi; Mazza, Michele; Manuel, Rigo

    2015-04-01

    New magnetostratigraphic data for the Carnian have been obtained from the Pignola 2 section (Southern Apennines, Italy) and the Dibona section (Dolomites, Italy), obtaining 6 and 9 magnetozones respectively, both calibrated with conodonts and pollens. These new data cover the Julian/Tuvalian interval (Carnian) that is currently lacking of a clear magnetostratigraphic record. The Pignola 2 and Dibona sections have been compared with the magnetostratigraphy of other Tethyan sections from literature (e.g. Pizzo Mondello, Silická Brezová, Bolücektasi Tepe), integrating the magnetostratigraphy of the Carnian around the Julian/Tuvalian boundary. Considering also the sections of Mayerling and Prati di Stuores, containing the Ladinian/Carnian boundary, we obtained a continuous magnetostratigraphy for the Carnian Stage. Sections like Pizzo Mondello and Silická Brezová span from the late Carnian to the late Norian and have been correlated with Norian/Rhaetian sections up to the Hettangian base, like Pignola-Abriola, Steinbergkogel, Brumano-Italcementi Quarry. This sequence of correlations reveals a continuous magnetostratigraphic record along the whole Late Triassic valid for the Tethyan realm. The radiometric age from the Pignola 2 section (230.91±0.33 Ma from the "green clay-radiolaritic horizon") and the recent proposal for the age of the Rhaetian base (205.7 Ma from the Pignola-Abriola section, obtained by means of correlation with the Newark Astrochronological Polarity Time Scale and coherent with recent radiometric ages around the Norian/Rhaetian boundary), constrain our Late Triassic Tethyan composite magnetostratigraphy to a well-defined time interval, therefore improving current versions of the Triassic time scale.

  3. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.

    2018-05-01

    We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.

  4. Coseismic deformation of the destructive April 6, 2009 L'Aquila earthquake (central Italy) from GPS data

    NASA Astrophysics Data System (ADS)

    Anzidei, M.; Boschi, E.; Cannelli, V.; Devoti, R.; Esposito, A.; Galvani, A.; Melini, D.; Pietrantonio, G.; Riguzzi, F.; Sepe, V.; Serpelloni, E.

    2009-09-01

    On April 6, 2009, 01:32:39 GMT, the city of L'Aquila was struck by a Mw 6.3 earthquake that killed 307 people, causing severe destruction and ground cracks in a wide area around the epicenter. Four days before the main shock we augmented the existing permanent GPS network with five GPS stations of the Central Apennine Geodetic Network (CaGeoNet) bordering the L'Aquila basin. The maximum horizontal and vertical coseismic surface displacements detected at these stations was 10.39 ± 0.45 cm and -15.64 ± 1.55 cm, respectively. Fixing the strike direction according to focal mechanism estimates, we estimated the source geometry with a non linear inversion of the geodetic data. Our best fitting fault model is a 13 × 15.7 km2 rectangular fault, SW-dipping at 55.3 ± 1.8°, consistent with the position of observed surface ruptures. The estimated slip (495 ± 29 mm) corresponds to a 6.3 moment magnitude, in excellent agreement with seismological data.

  5. Snow in Italy

    NASA Image and Video Library

    2012-02-24

    NASA image acquired February 24, 2012 By late February, 2012, the great European cold wave had begun to loosen its frigid grip, but significant snow still remained in the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite captured this true-color image of snow in Italy on February 24 at 12:35 UTC (1:30 p.m. local time). In the north of the image, bright white clouds blanket the region in a broad arc. Snow, which tends to be generally less bright that clouds, covers the Alps in the north of Italy. The Apennine Mountains, which form the backbone of the Italian peninsula, also carry a blanket of snow. Although clouds and snow can, at times, be distinguished visually in a true-color image, sometimes they can appear very similar. When it is important to clearly define snow from cloud, false color images are often helpful. Rome, which can be seen as a gray smudge on the southwestern coast of the peninsula, recorded highs of a spring-like 50°F the day this image was captured, but earlier in the month the temperatures dove as low as 26°F on February 5. During that cold snap a rare intense snowfall blanketed Rome, causing the closure of the Colosseum, the Roman Forum and the Palatine Hill due to concerns of the risk of icy footing for tourists, and roads became impassible. Further north, temperatures plummeted to −21 °C (−6 °F) on 7 February. On February 11, news media reported over 2 meters (6.5 feet) of snow had fallen in Urbino, a walled town situated on a high sloping hillside on the eastern side of the Apennine Mountains. That same snowfall cut access to many remote towns in the Apennines, blocking roads and trapping some people in the homes. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Regional deformation of late Quaternary fluvial sediments in the Apennines foreland basin (Emilia, Italy)

    NASA Astrophysics Data System (ADS)

    Stefani, Marco; Minarelli, Luca; Fontana, Alessandro; Hajdas, Irka

    2018-04-01

    Our research is aimed at estimating the vertical deformation affecting late Quaternary units accumulated into the foreland basin of the Northern Apennines chain. Beneath the study alluvial plain, compressive fault-fold structures are seismically active. We reconstructed the stratigraphic architecture and the depositional evolution of the alluvial deposits, which accumulated in the first 40 m of subsurface, through the last 45,000 years, from before the Last Glacial Maximum to the present. A 58 km-long stratigraphic profile was correlated from the foothill belt near Bologna to the vicinity of the Po River. The analysis of the profile documents subsidence movements through the last 12,000 years, exceeding - 18 m in syncline areas, with subsidence rates of at least 1.5 m/ka. Anticlines areas experienced a much lower subsidence than the syncline ones.

  7. Anatomy of an Active Seismic Source: the Interplay between Present-Day Seismic Activity and Inherited Fault Zone Architecture (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.

    2017-12-01

    The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps. A comparable structural setting was imaged South-West of the study area, during the 2009 L'Aquila seismic sequence. Here at 2 km depth, the master normal fault cross-cuts a 10 km long flat structure and clear lateral ramps are illuminated, suggesting the superposition of normal seismic faulting on inherited compressional structures.

  8. Helminth infections in faecal samples of Apennine wolf (Canis lupus italicus) and Marsican brown bear (Ursus arctos marsicanus) in two protected national parks of central Italy

    PubMed

    Paoletti, Barbara; Iorio, Raffaella; Traversa, Donato; Di Francesco, Cristina E; Gentile, Leonardo; Angelucci, Simone; Amicucci, Cristina; Bartolini, Roberto; Marangi, Marianna; Di Cesare, Angela

    This article reports the results of a copromicroscopic and molecular investigation carried out on faecal samples of wolves (n=37) and brown bears (n=80) collected in two protected national parks of central Italy (Abruzzo Region). Twenty-three (62.2%) samples from wolves were positive for parasite eggs. Eight (34.78%) samples scored positive for single infections, i.e. E. aerophilus (21.74%), Ancylostoma/Uncinaria (4.34%), Trichuris vulpis (4.34%), T. canis (4.34%). Polyspecific infections were found in 15 samples (65.21%), these being the most frequent association: E. aerophilus and Ancylostoma/Uncinaria. Thirty-seven (46.25%) out of the 80 faecal samples from bears were positive for parasite eggs. Fourteen (37.83%) samples were positive for B. transfuga, and six (16.21%) of them also contained Ancylostoma/Uncinaria, one (2.7%) E. aerophilus and one (2.7%) both E. aerophilus and Ancylostoma/Uncinaria. Of the other samples, 19 (51.35%) were positive for Ancylostoma/Uncinaria, two (5.4%) for E. aerophilus and two (5.4%) for both. Molecular analysis found the roundworm and capillariid eggs found in wolves and bear samples to be Toxocara canis, Baylisascaris transfuga and Eucoleus aerophilus (syn. Capillaria aerophila). Considering the high prevalence of zoonotic intestinal helminths detected in this study, it is important to improve the knowledge and awareness of the general public and park operators regarding the potential health risk associated with infections in wildlife.

  9. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.

  10. From Extension to Transcurrence: Regime Transition as a new key to Interpret Seismogenesis in the Southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Fracassi, U.; Vannoli, P.; Burrato, P.; Basili, R.; Tiberti, M. M.; di Bucci, D.; Valensise, G.

    2006-12-01

    The backbone of the Southern Apennines is perhaps the largest seismic moment release area in Italy. The region is dominated by an extensional regime dating back to the Middle Pleistocene, with maximum extension striking SW-NE (i.e. orthogonal to the mountain belt). The full length (~ 200 km) of the mountain range has been the locus of several destructive earthquakes occurring in the uppermost 10-12 km of the crust. This seismicity is due to a well documented normal faulting mechanism. Instrumental earthquakes (e.g. 5 May 1990, 31 Oct 2002, 1 Nov 2002; all M 5.8) that have occurred in the foreland, east of the Southern Apennines, have posed new questions concerning seismogenic processes in southern Italy. Although of moderate magnitude, these events unveiled the presence of E-W striking, deeper (13-25 km) strike-slip faults. Recent studies suggest that these less known faults belong to inherited shear zones with a multi-phase tectonic history, the most recent phase being a right-lateral reactivation. The direction of the maximum horizontal extension of these faults (in a transcurrent regime) coincides with the maximum horizontal extension in the core of the Southern Apennines (in an extensional regime) and both are compatible with the general framework provided by the Africa-Europe convergence. However, the regional extent along strike of the E-W shear zones poses the issue of their continuity from the foreland towards the thrust-belt. The 1456 (M 6.9) and 1930 (M 6.7) earthquakes, that occurred just east of the main extensional axis, were caused by faults having a strike intermediate between the E-W, deeper strike-slip faults in the foreland and the NW-SE-trending, shallower normal faults in the extensional belt. Hence, the location and geometry of these seismogenic sources suggests that there could be a transition zone between the crustal volumes affected by the extensional and transcurrent regimes. To image such transition, we built a 3D model that incorporates data available from surface and subsurface geology (published and unpublished), seismogenic faults, seismicity, focal mechanisms, and gravity anomalies. We explored the mechanisms of fault interaction in the Southern Apennines between the extensional upper portion and the transcurrent deeper portion of the seismogenic layer. In particular, we studied (a) how the reactivation of regional shear zones interacts with an adjacent, although structurally independent, extensional belt; (b) at what depth range the interaction occurs; and (c1) whether oblique slip in earthquakes like the 1930 event is merely due to the geometry of the causative fault, or (c2) such geometry and kinematics are the result of oblique slip due to fault interaction. We propose that (a) the 1456 and 1930 earthquakes are the expression of the transition between the two tectonic regimes, and that (b) these events can be seen as templates of the seismogenic oblique-slip faulting that occurs at intermediate depths between the shallower extensional faults and the deeper strike-slip faults. These findings suggest that a transtensional faulting mechanism governs the release of major earthquakes in the transition zone between extensional and transcurrent domains.

  11. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to define the zones which potentially can be affected by dangerous CO2 concentration at breathing height for humans. 4) Many evidences indicate that at depth, in the seismic zone of the Apennines, the gas can be stored in over-pressurized reservoirs. Such gas reservoirs have been taught to have played a major role in triggering the seismicity of the last two main crises occurred in the area (Colfiorito 1997 and L'Aquila 2009).

  12. Sedimentary and tectonic evolution of Plio Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy)

    NASA Astrophysics Data System (ADS)

    Cavinato, Gian Paolo; Carusi, Claudio; Dall'Asta, Massimo; Miccadei, Enrico; Piacentini, Tommaso

    2002-04-01

    The Fucino Basin was the greatest lake of the central Italy, which was completely drained at the end of 19th century. The basin is an intramontane half-graben filled by Plio-Quaternary alluvial and lacustrine deposits located in the central part of the Apennines chain, which was formed in Upper Pliocene and in Quaternary time by the extensional tectonic activity. The analysis of the geological surface data allows the definition of several stratigraphic units grouped in Lower Units and Upper Units. The Lower Units (Upper Pliocene) are exposed along the northern and north-eastern basin margins. They consist of open to marginal lacustrine deposits, breccia deposits and fluvial deposits. The Upper Units (Lower Pliocene-Holocene) consist of interbedded marginal lacustrine deposits and fluvial deposits; thick coarse-grained fan-delta deposits are interfingered at the foot of the main relief with fluvial-lacustrine deposits. Most of the thickness of the lacustrine sequences (more than 1000-m thick) is buried below the central part of the Fucino Plain. The basin is bounded by E-W, WSW-ENE and NW-SE fault systems: Velino-Magnola Fault (E-W) and Tremonti-Celano-Aielli Fault (WSW-ENE) and S. Potito-Celano Fault (NW-SE) in the north; the Trasacco Fault, the Pescina-Celano Fault and the Serrone Fault (NW-SE) in the south-east. The geometry and kinematic indicators of these faults indicate normal or oblique movements. The study of industrial seismic profiles across the Fucino Basin gives a clear picture of the subsurface basin geometry; the basin shows triangular-shaped basin-fill geometry, with the maximum deposits thickness toward the main east boundary fault zones that dip south-westward (Serrone Fault, Trasacco Fault, Pescina-Celano Fault). On the basis of geological surface data, borehole stratigraphy and seismic data analysis, it is possible to recognize and to correlate sedimentary and seismic facies. The bottom of the basin is well recognized in the seismic lines available from the good and continuous signals of the top of Meso-Cenozoic carbonate rocks. The shape of sedimentary bodies indicates that the filling of the basin was mainly controlled by normal slip along the NW-SE boundary faults. In fact, the continental deposits are frequently in on-lap contact over the carbonate substratum; several disconformable contacts occurred during the sedimentary evolution of the basin. The main faults (with antithetic and synthetic fault planes) displace the whole sedimentary sequence up to the surface indicating a recent faults' activity (1915 Avezzano earthquake, Ms=7.0). The stratigraphic and tectonic setting of the Fucino Basin and neighboring areas indicates that the extensional tectonic events have had an important role in driving the structural-sedimentary evolution of the Plio-Quaternary deposits. The geometry of the depositional bodies, of the fault planes and their relationships indicate that the Fucino Basin was formed as a half-graben type structure during Plio-Quaternary extensional events. Some internal complexities are probably related to the fold-and-thrust structures of the Apenninic orogeny formed in Messinian time, in this area, and to a different activity timing of the E-W and WSW-ENE fault systems and the NW-SE fault systems. We believe, based on the similarity of the surface characteristics, that the structural setting of the Fucino Basin can be extrapolated to the other great intramontane basins in Central Italy (e.g. Rieti, L'Aquila, Sulmona, Sora, Isernia basins).

  13. Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d'Aveto Formation case (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Di Capua, Andrea; Groppelli, Gianluca

    2016-12-01

    The occurrence of PDC deposits in a foredeep basin sequence, named Val d'Aveto Formation (32-29 Ma, Northern Apennines, Italy), provides new information on the behavior of pyroclastic density currents entering the water. In this work, stratigraphic, petrographic and mineralogical features that characterize three pyroclastic deposits have been described and analyzed in the field (facies and lithological analysis on the blocky-size fraction) and in the laboratory (image analyses on the blocky-size detritus, optical analyses of the microtextures, mineralogical analyses through X-ray powder diffraction (XRPD) and scanning electron microscope with energy dispersive X-ray spectometry (SEM-EDS). The deposits are lapilli- to blocky-size, with a blocky-size fraction constituted of accidental detritus. In thin sections, their groundmass texture varies from porphyritic to eutaxitic where coarser particles become close each others. Growth rims have been also detected around plagioclase crystals. Pyrite habits and oxidation, and plagioclase albitization are consistent with hydrothermal temperature conditions of 200 °C. All these results have been compared with the information provided by modern examples of PDC deposits and laboratory experiments on the behavior of water/hot particles mixing. Grain-to-grain collision has been considered as the main flow mechanism that sustained and avoided the disaggregation of the PDCs entering the water.

  14. Low shear velocity in a normal fault system imaged by ambient noise cross correlation: The case of the Irpinia fault zone, Southern Italy

    NASA Astrophysics Data System (ADS)

    Vassallo, Maurizio; Festa, Gaetano; Bobbio, Antonella; Serra, Marcello

    2016-06-01

    We extracted the Green's functions from cross correlation of ambient noise recorded at broadband stations located across the Apennine belt, Southern Italy. Continuous records at 26 seismic stations acquired for 3 years were analyzed. We found the emergence of surface waves in the whole range of the investigated distances (10-140 km) with energy confined in the frequency band 0.04-0.09 Hz. This phase reproduces Rayleigh waves generated by earthquakes in the same frequency range. Arrival time of Rayleigh waves was picked at all the couples of stations to obtain the average group velocity along the path connecting the two stations. The picks were inverted in separated frequency bands to get group velocity maps then used to obtain an S wave velocity model. Penetration depth of the model ranges between 12 and 25 km, depending on the velocity values and on the depth of the interfaces, here associated to strong velocity gradients. We found a low-velocity anomaly in the region bounded by the two main faults that generated the 1980, M 6.9 Irpinia earthquake. A second anomaly was retrieved in the southeast part of the region and can be ascribed to a reminiscence of the Adria slab under the Apennine Chain.

  15. A contribution to the seismic hazard of the Apulia Region (Southern Italy): environmental effects triggered by historical earthquakes in last centuries.

    NASA Astrophysics Data System (ADS)

    Porfido, Sabina; Alessio, Giuliana; Nappi, Rosa; De Lucia, Maddalena; Gaudiosi, Germana

    2016-04-01

    The aim of this study is a critical revision of the historical and recent seismicity of the Apulia and surrounding seismogenetic areas, for re-evaluating the macroseismic effects in MCS scale and ground effects in natural environment according to the ESI 2007 scale (Michetti et al., 2007) as a contribution to the seismic hazard of the region. The most important environmental effect due to historical earthquakes in the Apulia was the tsunami occurrence, followed by landslides, liquefaction phenomena, hydrological changes and ground cracks. The Apulia (Southern Italy) has been hit by several low energy and a few high energy earthquakes in the last centuries. In particular, the July 30, 1627 earthquake (I=X MCS, Rovida et al., 2011) and the May 5, 1646 event (I=X MCS), the strongest earthquakes of the Gargano promontory have been reviewed, together with the March 20, 1731 earthquake (I=IX MCS, Mw=6.5, Rovida et al., 2011), the most relevant of the Foggia province, and the February 20, 1743 earthquake (I=IX MCS, Mw= 7.1, Rovida et al., 2011, I ESI=X, Nappi et al, 2015), the strongest of the Salento area,. The whole Apulia region has also been struck by strong earthquakes of neighboring seismogenetic areas located in the Southern Apennines, Adriatic and Ionian Sea, Albania and Greece, well propagated throughout the Italian peninsula, and in particular in the southern regions, where the intensity degrees are higher, sometimes exceeding the limit of damage. Some well documented examples of Greek earthquakes strongly felt in the whole Apulia region were: the August 27, 1886 earthquake (Peloponnesus, Greece); the May 28, 1897 earthquake (Creta-Cypro); the June 26, 1926 earthquake (Creta and Cipro, Imax=X MCS), felt all over the Southern Italy; the August 28, 1962 earthquake (epicenter in Peloponnesus area). It is noteworthy that earthquakes located in the Southern Apennines were powerfully felt in the whole Apulia region; among the strongest historical events of the Campania-Lucania Apennines we mention the 1456 (Imax =XI MCS), 1694 (Imax =XI MCS) and 1857 (Imax=XI MCS) earthquakes. More recently, the July 23, 1930 (Imax=X MCS) and the November 23, 1980 (Imax=X MCS) Irpinia earthquakes gave rise to several ground effects, mostly hydrological variations, in the Apulian region. This study is a contribution for a better evaluation of the whole Apulia region seismic hazard that represents one of the most crowded touristic destination of the Southern Italy, all over the summer season.

  16. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy

    NASA Astrophysics Data System (ADS)

    Serri, G.; Innocenti, F.; Manetti, P.

    1993-07-01

    Serri, G., Innocenti, F. and Manetti, P., 1993. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near The Earth's Surface. Tectonophysics, 223: 117-147. The Neogene-Quaternary magmatism of the northern Apenninic arc took place in four phases separated in space and time which become progressively younger from west to east: Phase I, 14 Ma; Phase II, 7.3-6.0 Ma; Phase III, 5.1-2.2 Ma; Phase IV, 1.3-0.1 Ma. This magmatism is the result of the activation of three physically separate sources: (1) the Adriatic continental crust, extracted from the mantle in the late Proterozoic; (2) a strongly refractory, recently K-enriched harzburgitic mantle located in the mechanical boundary layer (MBL) of the lithosphere; and (3) a recently metasomatized, cpx-rich mantle, compositionally variable from Iherzolite to wehrlite-clinopyroxenite, interpreted as an ephemerally K-enriched asthenosphere. The Adriatic continental crust is the dominant source of the acid plutonic and volcanic rocks of the Tuscan region. The acid magmatism is mostly found inside an ellipsoidal area (about 150 × 300 km) centred on Giglio Island, here defined as the Tuscan Crustal Dome. Within this area, mantle-derived magmas unaffected by important crustal contamination processes and mixing with crustal anatectic melts have so far not been found. Pure crustal magmas are rare but are represented, for example by some of the San Vincenzo and Roccastrada rhyolites. Virtually all the Tuscan acid centres show evidence of mixing with potassic mantle-derived magmas. Major and trace elements, as well as {87Sr }/{86Sr } and {143Nd }/{144Nd } data, on primitive rocks (Mg# > 65) reveal two groups of mantle-derived magmas. These define two distinct mantle enrichment trends, both essentially due to the additions of K-rich components which metasomatized separate, compositionally diverse, upper mantle sectors. In both cases the most remarkable mineralogical effect of these enrichment processes is the production of variable amount of phlogopite through reaction between fluids and/or melts with the mantle. The rocks of group I (ol-hy and Q-normative, lamproites, ultrapotassic high-Mg latites, ultrapotassic shoshonites and shoshonites: saturated trend) are considered to be derived by partial melting at low pressure (< 50 km) of strongly (lamproites) to moderately depleted phlogopite harzburgitic sources produced by reaction of residual peridotites with a K-Si-rich, Ca-Sr-poor melt with high ratios of {87Sr }/{86Sr (> 0.717) }, Ce/Sr (> 0.3) and {K 2O }/{Na 2O (> 6-7) }, and low ratios of {143Nd }/{144Nd ( 0.5121-0.5120) } and Ba/La (< 20) ratios; it is proposed that this component was formed by partial melting of subducted carbonate-free material of the upper crustal reservoir (e.g., non-restitic felsic granulites). This material is very common in the central Mediterranean region either as granitoid plutons/terrigenous sediments or as metasedimentary, non-restitic lower crust. The primitive rocks of group II are critically undersaturated, mostly leucitites, tephritic leucitites, leucite basanites, melilitites (undersaturated trend). Experimental petrology suggests that these rocks were formed by partial melting of a variably enriched phlogopite, clinopyroxene-rich mantle at higher pressure than group I primitive magmas. Trace-element modelling indicates that three components were involved in the genesis of group II mantle source: (a) a typical MORB-OIB-like mantle; (b) a component with very high Sr, Ca and Sr/Ce values and very low silica and sodium content, probably carried by a carbonatite melt somehow related to subducted marine carbonates; and (c) a recently added K-rich, Ca-Sr-poor crustal component, relatively well constrained to high {87Sr }/{86Sr (> 0.712) } and {K 2O }/{Na 2O (> 8-9) } values, and low {143Nd }/{144Nd (< 0.51205) }, Ba/La (< 20) and Ce/Sr (> 0.10) ratios. These constraints do not allow to exclude a complete identity between the K-rich components which metasomatized the mantle sources of the saturated and undersaturated trend magmas. The geochemical and isotopic features of the components that metasomatized the mantle sources of the northern Apenninic arc magmatism can be explained by a geodynamic process which causes a large amount of crustal materials to be incorporated within the upper mantle. We propose that the delamination and subduction of the Adriatic continental lithosphere related to the still ongoing northern Apennine continental collision provide a viable mechanism to explain the genesis and eastward discontinuous migration of the magmatism in central Italy. The subduction of delaminated lithospheric mantle with lower crustal slivers would have exposed uppermost mantle (Adriatic MBL) and crustal units previously imbricated in the Apennine chain to the heating advected by the upwelling of a recently and ephemerally K-enriched asthenospheric mantle wedge and by the underplating of magmas derived from it. We consider that the diapiric uprising of a hot, crustally contaminated asthenosphere occurs in the wake left above the sinking of the Adriatic delaminated/subducting continental lithosphere. The delamination/subduction process of the Adriatic lithosphere has probably started in the Early-Middle Miocene, but earlier than 15-14 Ma ago, as indicated by the age and petrologic characteristics of the first magmatic episode (Sisco lamproite) of the northern Apennine orogenesis.

  17. New constraints on Neogene counter-clockwise rotation of Adria relative to Europe

    NASA Astrophysics Data System (ADS)

    Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil

    2017-04-01

    The Adriatic microplate (Adria) is a key player in the geodynamics of Alpine-Mediterranean belts because of its location between two converging plates, Europe and Africa. Most of Adria has been subducted and is presently surrounded by deformed margins comprising the Alps, Apennines, Dinarides and the Calabrian Arc. The Alps-Apennines and Alps-Dinarides junctions are marked by switches in subduction polarity, with Adria being the indenting upper plate in the Alps and the lower plate in the Apennines and Dinarides. Reconstructing Neogene motion and rotation of Adria is therefore key to understanding how such contrasting orogenic styles develop within a similar convergent tectonic regime. We propose a new kinematic reconstruction that balances shortening and extension in the northern Apennines; it reveals that Adria rotated counter-clockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Syn-collisional back-arc extension in the Liguro-Provençal and northern Tyrrhenian basins exceeds collisional shortening in the northern Apennines, indicating that after 20 Ma Adria and Europe diverged. When combined with existing estimates of Neogene shortening in the Western and Eastern Alps, this overall divergence in the Apennines constrains Adria to have moved to the NW while rotating counter-clockwise relative to Europe. We furthermore consider the length of the present Adriatic slab (135 km) imaged by P-wave tomography in the southern Dinarides to represent the maximum convergence since late Paleogene slab-breakoff, constraining Adria to have rotated 6.5˚ counter-clockwise about an axis in northwestern Italy. Thus, the best fit of available structural data from the Apennines, Alps and Dinarides constrains Adria to have moved 113 km to the NW (azimuth 325˚ ) while rotating 6.5˚ counter-clockwise relative to Europe since 20 Ma. Our model predicts some 80-100 km of Neogene extension between Adria and Africa, most likely accommodated along a NW-SE striking rift system on the African margin and by transtension along NW-SE striking transform faults in the Ionian Sea. We propose that this Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenic slab pulling to the northeast and crustal wedging in the Western Alps, which acted as a pivot and stopped further northwestward motion of Adria.

  18. Renaissance man

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo

    2008-09-01

    In August 1945, a year after Rome was liberated from the Germans, I was on holiday with my family and a group of young physicists in Italy's Apennine Mountains. We were following a tradition that began in the 1920s whereby the physicists of Enrico Fermi's "Rome group" would always spend their vacations together. But the rest of the group - Franco Rasetti, Emilio Segrè, Bruno Pontecorvo and Fermi himself - had left Italy before the outbreak of the Second World War and of the group known as "i ragazzi di Via Panisperna" (the boys from Panisperna Street), as they were later dubbed by the senior members of the faculty, my father Edoardo Amaldi was the only one still there.

  19. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: the phylogeography of the chalk-hill blue Polyommatus coridon (Lepidoptera, Lycaenidae)

    PubMed Central

    Kühne, Gero; Kosuch, Joachim; Hochkirch, Axel; Schmitt, Thomas

    2017-01-01

    Most warm-adapted Central European species are thought to have survived ice ages exclusively in Mediterranean refugia. During recent years, this point of view has been questioned. Therefore, we tested the hypothesis that extra-Mediterranean refugia also played a role in warm-adapted insect species and selected the chalk-hill blue, Polyommatus coridon. We sequenced two mitochondrial loci (COI, CR) in 150 individuals from 30 populations covering nearly the complete range. Minimum spanning networks and other statistical analyses concordantly revealed four genetic lineages with strong phylogeographic signal: a western group in Italy, France and western/central Germany, an eastern lineage in the Balkan Peninsula, the Carpathian Basin and eastern Central Europe, an Alpine group with populations in the Alps and southern Germany and a Pyrenean group. Our results are generally consistent with previous analyses for P. coridon based on allozymes and DNA sequences, but provide additional insights. We propose that these four lineages have evolved during allopatry in different glacial refugia, two in typical Mediterranean refugia (Apennines and Balkan Peninsulas), but two in extra-Mediterranean areas south of the Alps and Pyrenees. This supports survival of warm-adapted organisms in these regions in close geographic proximity to the refugia of high mountain species.

  20. A helium isotope cross-section study through the Vulture line, southern Apennines

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Martelli, Mauro; Nuccio, Mario; Paternoster, Michele; Stuart, Finlay

    2013-04-01

    We report the results of a geochemical study of gas emissions and spring waters collected along a NE-SW transect through the southern Apennines in order to quantify the contribution of mantle-derived helium in crustal fluids and consequently to evaluate the existence of a structural discontinuity (the "Vulture line"). This tectonic discontinuity is interpreted as N40°-50° trending deep fault, cutting the entire chain-foreland system in southern Apennines (Schiattarella et al., 2005). The lithospheric discontinuity was generated by variation in the velocity of subduction rollback along the length of the subducting plate and has generated a vertical slab window (i.e., Doglioni et al., 1994; D'Orazio et al., 2007), that is responsible for the origin of Mt. Vulture volcano. Mount Vulture is the eastern-most occurrence of the Quaternary Italian volcanism, and is the only volcano to the east of the Apennine mountain belt. Its volcanic activity started at 742±11 kyr and continued until 142±11 kyr, interrupted by several long inter-eruptive periods (Buettner et al., 2006, and references therein). The volcanism is strongly silica undersaturated, from alkaline potassic to ultrapotassic affinities. We investigated lavas from the Mt. Vulture displaying 3He/4He (up to ~6.0 Ra) and Sr isotopes that are consistent with an origin in mantle that has had minimal pollution from subducted Adriatic slab. This value is rather constant along the history of the volcano, and represent the highest helium isotope signature of the Italian peninsular magmatism even if it is slightly lower than that of the most uncontaminated Sicilian terms. Similar 3He/4He in fluids from around Mt. Vulture indicate that the deep volcanic system is still degassing. The 3He/4He of the investigated fluids along the NE-SW transect of the Vulture line highlights that degassing of mantle-derived helium occur from the Apulian foreland to the Tyrrhenian sea. The highest contribution of mantle-derived fluids is present at Mt. Vulture volcano and the surrounding area, while it decreases toward the Tyrrhenian sea. This may be due to different causes: a) volatiles degassing from near-surface melts beneath Mt. Vulture are quantitatively dominant with respect to crustal gases, in contrast to gas emissions located close to the peri-Thyrrenian area and/or b) the 3He/4He of the peri-Tyrrhenian magmas is expected to be lower than 6 Ra. Our data suggest the active role of Vulture line (lithospheric faults) to transfer towards the surface mantle-derived fluids from magmatic bodies or from asthenospheric upwelling of hot, possible molten material (Ökeler et al., 2009) accumulated to the base of the crust. Buettner, A., Principe, C., Villa, I.M., Bocchini, D., 2006. 39Ar-40Ar geochronology of Monte Vulture. In: Principe, C. (Ed.), La Geologia del Monte Vulture. Grafiche Finiguerra, Lavello, Italy, pp. 73-86. Doglioni, C., Mongelli, F., Pieri, P., 1994. The Puglia uplift (SE Italy): an anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere. Tectonics 13 (5), 1309-1321. D'Orazio, M., Innocenti, F., Tonarini, S., Doglioni, C., 2007. Carbonatites in a subduction system: the Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos 98, 313-334. Ökeler, A., Gu, Y.J., Lerner-Lam, A., Steckler, M.S., 2009. Seismic structure of the southern Apennines as revealed by wave form modelling of regional surface waves. Geophysical Journal International 178, 1473-1492. Schiattarella, M., Beneduce, P., Giano, S.I., Giannandrea, P., Principe, C., 2005. Assetto strutturale ed evoluzione morfotettonica quaternaria del vulcano del Monte Vulture (Appennino Lucano). Bollettino della Societa Geologica Italiana 124, 543-562.

  1. Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal

    NASA Astrophysics Data System (ADS)

    Sagnotti, Leonardo; Scardia, Giancarlo; Giaccio, Biagio; Liddicoat, Joseph C.; Nomade, Sebastien; Renne, Paul R.; Sprain, Courtney J.

    2014-11-01

    We report a palaeomagnetic investigation of the last full geomagnetic field reversal, the Matuyama-Brunhes (M-B) transition, as preserved in a continuous sequence of exposed lacustrine sediments in the Apennines of Central Italy. The palaeomagnetic record provides the most direct evidence for the tempo of transitional field behaviour yet obtained for the M-B transition. 40Ar/39Ar dating of tephra layers bracketing the M-B transition provides high-accuracy age constraints and indicates a mean sediment accumulation rate of about 0.2 mm yr-1 during the transition. Two relative palaeointensity (RPI) minima are present in the M-B transition. During the terminus of the upper RPI minimum, a directional change of about 180 ° occurred at an extremely fast rate, estimated to be less than 2 ° per year, with no intermediate virtual geomagnetic poles (VGPs) documented during the transit from the southern to northern hemisphere. Thus, the entry into the Brunhes Normal Chron as represented by the palaeomagnetic directions and VGPs developed in a time interval comparable to the duration of an average human life, which is an order of magnitude more rapid than suggested by current models. The reported investigation therefore provides high-resolution integrated palaeomagnetic and radioisotopic data that document the fine details of the anatomy and tempo of the M-B transition in Central Italy that in turn are crucial for a better understanding of Earth's magnetic field, and for the development of more sophisticated models that are able to describe its global structure and behaviour.

  2. Recent seismicity and crustal stress field in the Lucanian Apennines and surrounding areas (Southern Italy): Seismotectonic implications

    NASA Astrophysics Data System (ADS)

    Maggi, C.; Frepoli, A.; Cimini, G. B.; Console, R.; Chiappini, M.

    2009-01-01

    We analyzed the instrumental seismicity of Southern Italy in the area including the Lucanian Apennines and Bradano foredeep, making use of the most recent seismological data base available so far. P- and S-wave arrival times, recorded by the Italian National Seismic Network (RSNC) operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were re-picked along with those of the SAPTEX temporary array deployed in the region in the period 2001-2004. For some events located in the upper Val d'Agri, we also used data from the Eni-Agip oil company seismic network. We examined the seismicity occurred during the period between 2001 and 2006, considering 514 events with magnitudes M ≥ 2.0. We computed the VP/ VS ratio obtaining a value of 1.83 and we carried out an analysis for the one-dimensional (1D) velocity model that approximates the seismic structure of the study area. Earthquakes were relocated and, for well- recorded events, we also computed 108 fault plane solutions. Finally, using 58 solutions, the most constrained, we computed regional stress field in the study area. Earthquake distribution shows three main seismic regions: the westernmost (Lucanian Apennines) characterized by high background seismicity, mostly with shallow hypocenters, the easternmost below the Bradano foredeep and the Murge with deeper and more scattered seismicity, and finally the more isolated and sparse seismicity localized in the Sila Range and in the offshore area along the northeastern Calabrian coast. Focal mechanisms computed in this work are in large part normal and strike-slip solutions and their tensional axes ( T-axes) have a generalized NE-SW orientation. The denser station coverage allowed us to improve hypocenters determination compared to those obtained by using only RSNC data, for a better characterization of the crustal and subcrustal seismicity in the study area.

  3. The Seismotectonics of the Po Plain (Northern Italy): Tectonic Diversity in a Blind Faulting Domain

    NASA Astrophysics Data System (ADS)

    Vannoli, Paola; Burrato, Pierfrancesco; Valensise, Gianluca

    2015-05-01

    We present a systematic and updated overview of a seismotectonic model for the Po Plain (northern Italy). This flat and apparently quiet tectonic domain is, in fact, rather active as it comprises the shortened foreland and foredeep of both the Southern Alps and the Northern Apennines. Assessing its seismic hazard is crucial due to the concentration of population, industrial activities, and critical infrastructures, but it is also complicated because (a) the region is geologically very diverse, and (b) nearly all potential seismogenic faults are buried beneath a thick blanket of Pliocene-Pleistocene sediments, and thus can be investigated only indirectly. Identifying and parameterizing the potential seismogenic faults of the Po Plain requires proper consideration of their depth, geometry, kinematics, earthquake potential and location with respect to the two confronting orogens. To this end, we subdivided them into four main, homogeneous groups. Over the past 15 years we developed new strategies for coping with this diversity, resorting to different data and modeling approaches as required by each individual fault group. The most significant faults occur beneath the thrust fronts of the Ferrara-Romagna and Emilia arcs, which correspond to the most advanced and buried portions of the Northern Apennines and were the locus of the destructive May 2012 earthquake sequence. The largest known Po Plain earthquake, however, occurred on an elusive reactivated fault cutting the Alpine foreland south of Verona. Significant earthquakes are expected to be generated also by a set of transverse structures segmenting the thrust system, and by the deeper ramps of the Apennines thrusts. The new dataset is intended to be included in the next version of the Database of Individual Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/, version 3.2.0, developed and maintained by INGV) to improve completeness of potential sources for seismic hazard assessment.

  4. Predictive modelling of fault related fracturing in carbonate damage-zones: analytical and numerical models of field data (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Mannino, Irene; Cianfarra, Paola; Salvini, Francesco

    2010-05-01

    Permeability in carbonates is strongly influenced by the presence of brittle deformation patterns, i.e pressure-solution surfaces, extensional fractures, and faults. Carbonate rocks achieve fracturing both during diagenesis and tectonic processes. Attitude, spatial distribution and connectivity of brittle deformation features rule the secondary permeability of carbonatic rocks and therefore the accumulation and the pathway of deep fluids (ground-water, hydrocarbon). This is particularly true in fault zones, where the damage zone and the fault core show different hydraulic properties from the pristine rock as well as between them. To improve the knowledge of fault architecture and faults hydraulic properties we study the brittle deformation patterns related to fault kinematics in carbonate successions. In particular we focussed on the damage-zone fracturing evolution. Fieldwork was performed in Meso-Cenozoic carbonate units of the Latium-Abruzzi Platform, Central Apennines, Italy. These units represent field analogues of rock reservoir in the Southern Apennines. We combine the study of rock physical characteristics of 22 faults and quantitative analyses of brittle deformation for the same faults, including bedding attitudes, fracturing type, attitudes, and spatial intensity distribution by using the dimension/spacing ratio, namely H/S ratio where H is the dimension of the fracture and S is the spacing between two analogous fractures of the same set. Statistical analyses of structural data (stereonets, contouring and H/S transect) were performed to infer a focussed, general algorithm that describes the expected intensity of fracturing process. The analytical model was fit to field measurements by a Montecarlo-convergent approach. This method proved a useful tool to quantify complex relations with a high number of variables. It creates a large sequence of possible solution parameters and results are compared with field data. For each item an error mean value is computed (RMS), representing the effectiveness of the fit and so the validity of this analysis. Eventually, the method selects the set of parameters that produced the least values. The tested algorithm describes the expected H/S values as a function of the distance from the fault core (D), the clay content (S), and the fault throw (T). The preliminary results of the Montecarlo inversion show that the distance (D) has the most effective influence in the H/S spatial distribution and the H/S value decreases with the distance from the fault-core. The rheological parameter shows a value similar to the diagenetic H/S values (1-1.5). The resulting equation has a reasonable RMS value of 0.116. The results of the Montecarlo models were finally implemented in FRAP, a fault environment modelling software. It is a true 4D tool that can predict stress conditions and permeability architecture associated to a given faults during single or multiple tectonic events. We present some models of fault-related fracturing among the studied faults performed by FRAP and we compare them with the field measurements, to test the validity of our methodology.

  5. Long term landscape evolution within central Apennines (Italy): Marsica and Peligna region morphotectonics and surface processes

    NASA Astrophysics Data System (ADS)

    Miccadei, E.; Piacentini, T.; Berti, C.

    2010-12-01

    The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.

  6. Tectonic styles of future earthquakes in Italy as input data for seismic hazard

    NASA Astrophysics Data System (ADS)

    Pondrelli, S.; Meletti, C.; Rovida, A.; Visini, F.; D'Amico, V.; Pace, B.

    2017-12-01

    In a recent elaboration of a new seismogenic zonation and hazard model for Italy, we tried to understand how many indications we have on the tectonic style of future earthquake/rupture. Using all available or recomputed seismic moment tensors for relevant seismic events (Mw starting from 4.5) of the last 100 yrs, first arrival focal mechanisms for less recent earthquakes and also geological data on past activated faults, we collected a database gathering a thousands of data all over the Italian peninsula and regions around it. After several summations of seismic moment tensors, over regular grids of different dimensions and different thicknesses of the seismogenic layer, we applied the same procedure to each of the 50 area sources that were designed in the seismogenic zonation. The results for several seismic zones are very stable, e.g. along the southern Apennines we expect future earthquakes to be mostly extensional, although in the outer part of the chain strike-slip events are possible. In the Northern part of the Apennines we also expect different, opposite tectonic styles for different hypocentral depths. In several zones, characterized by a low seismic moment release, defined for the study region using 1000 yrs of catalog, the next possible tectonic style of future earthquakes is less clear. It is worth to note that for some zones the possible greatest earthquake could be not represented in the available observations. We also add to our analysis the computation of the seismic release rate, computed using a distributed completeness, identified for single great events of the historical seismic catalog for Italy. All these information layers, overlapped and compared, may be used to characterize each new seismogenic zone.

  7. GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy

    NASA Astrophysics Data System (ADS)

    Mancini, F.; Ceppi, C.; Ritrovato, G.

    2010-09-01

    This study focuses on landslide susceptibility mapping in the Daunia area (Apulian Apennines, Italy) and achieves this by using a multivariate statistical method and data processing in a Geographical Information System (GIS). The Logistic Regression (hereafter LR) method was chosen to produce a susceptibility map over an area of 130 000 ha where small settlements are historically threatened by landslide phenomena. By means of LR analysis, the tendency to landslide occurrences was, therefore, assessed by relating a landslide inventory (dependent variable) to a series of causal factors (independent variables) which were managed in the GIS, while the statistical analyses were performed by means of the SPSS (Statistical Package for the Social Sciences) software. The LR analysis produced a reliable susceptibility map of the investigated area and the probability level of landslide occurrence was ranked in four classes. The overall performance achieved by the LR analysis was assessed by local comparison between the expected susceptibility and an independent dataset extrapolated from the landslide inventory. Of the samples classified as susceptible to landslide occurrences, 85% correspond to areas where landslide phenomena have actually occurred. In addition, the consideration of the regression coefficients provided by the analysis demonstrated that a major role is played by the "land cover" and "lithology" causal factors in determining the occurrence and distribution of landslide phenomena in the Apulian Apennines.

  8. The Macroseismic Intensity Distribution of the 30 October 2016 Earthquake in Central Italy (Mw 6.6): Seismotectonic Implications

    NASA Astrophysics Data System (ADS)

    Galli, Paolo; Castenetto, Sergio; Peronace, Edoardo

    2017-10-01

    The central Italy Apennines were rocket in 2016 by the strongest earthquakes of the past 35 years. Two main shocks (Mw 6.2 and Mw 6.6) between the end of August and October caused the death of almost 300 people, and the destruction of 50 villages and small towns scattered along 40 km in the hanging wall of the N165° striking Mount Vettore fault system, that is, the structure responsible for the earthquakes. The 24 August southern earthquake, besides causing all the casualties, razed to the ground the small medieval town of Amatrice and dozens of hamlets around it. The 30 October main shock crushed definitely all the villages of the whole epicentral area (up to 11 intensity degree), extending northward the level of destruction and inducing heavy damage even to the 30 km far Camerino town. The survey of the macroseismic effects started the same day of the first main shock and continued during the whole seismic sequence, even during and after the strong earthquakes at the end of October, allowing the definition of a detailed picture of the damage distribution, day by day. Here we present the results of the final survey in terms of Mercalli-Cancani-Sieberg intensity, which account for the cumulative effects of the whole 2016 sequence (465 intensity data points, besides 435 related to the 24 August and 54 to the 26 October events, respectively). The distribution of the highest intensity data points evidenced the lack of any possible overlap between the 2016 earthquakes and the strongest earthquakes of the region, making this sequence a unique case in the seismic history of Italy. In turn, the cross matching with published paleoseismic data provided some interesting insights concerning the seismogenic behavior of the Mount Vettore fault in comparison with other active normal faults of the region.

  9. 137Caesium in samples of wild-grown Boletus edulis Bull. from Lucca province (Tuscany, Italy) and other Italian and European geographical areas.

    PubMed

    Betti, Laura; Palego, Lionella; Lucacchini, Antonio; Giannaccini, Gino

    2017-01-01

    Samples of the edible mushroom Boletus edulis Bull. were studied to assess the risk for human health related to their content of the artificial radionuclide 137 Cs. Fresh B. edulis carpophores were collected in four undeveloped microhabitats of Lucca province (Tuscany, North-Central Italy). Dried non-cultivated samples coming from this same district and 11 other Italian provinces or European countries were instead purchased fromcommercial sources. Contents of 137 Cs, reported as Bq kg ‒1 dry weight (dw), were measured by γ-spectrometry. The radionuclide concentration varied depending on the gathering site in fresh samples, with 41.8 ± 5.2 Bq kg ‒1 dw at site 1 (Tosco-Emiliani Apennine) and four-fold less, 12.8 ± 1.3 Bq kg ‒1 dw, at site 2 (Apuan Alps). Moreover, fresh or dried carpophores from Lucca province displayed among the lowest 137 Cs contents in Europe. Average 137 Cs levels in all analysed samples were substantially below the legal threshold for edible mushrooms, 600 Bq kg ‒1 dw. Conclusively, we report that 137 Cs amounts in B. edulis depend on both the distance from the Chernobyl accident and multifactorial features of collection sites. We also show that the consumption of European B. edulis does not represent a major health risk with respect to 137 Cs radio contamination.

  10. The Manciano Sandstone: a shoreface deposit of Miocene basins of the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Martini, I. P.; Cascella, A.; Rau, A.

    1995-09-01

    Well exposed, diamond-line cut, quarry-exposures of the Manciano Sandstone allow a detailed analysis of sandy, fossiliferous, nearshore deposits of the shelf of the Northern Apennines. The Manciano Sandstone is characterized by medium to very coarse, washed, fairly well sorted, lithic sandstone, with thin interlayers of sandy conglomerates. It displays two principal, rhythmically alternating sandy facies: (a) slightly burrowed (mostly Macaronichnus, Ophiomorpha, Skolithos) units, trough cross-bedded, locally showing possible tidal bundles with few whole Scutella (echinoid) shells reworked on foresets, or occasional large-scale (approximately 2 m) planar cross-bedded, bar-accretion units; and (b) slightly finer, darker-coloured reddish-brown sandstone units, heavily bioturbated ( Cruziana-Skolithos) ichnofauna) representing slightly more sheltered settings. Large oysters are present in near-living position in a few thin layers and, more commonly, as reworked, comminuted fragments in sandy layers. Many calcareous pebbles and oyster fragments are bored. Other fossils consist of echinoids ( Scutella), some balanids and reworked foraminifera and bryozoa. The Manciano sands were deposited primarily in a wave-dominated shoreface, containing migrating bars/ridges and affected by wave-induced, possibly tidal-enhanced currents. This tidal influence confirms the opening of the Miocene Apenninic Sea to oceans, both the developing Atlantic Ocean to the west and, through a long, narrow seaway, the Asian portion of the Tethys Sea to the east.

  11. High-temperature rapid pyrometamorphism induced by a charcoal pit burning: The case of Ricetto, central Italy

    NASA Astrophysics Data System (ADS)

    Capitanio, Flavio; Larocca, Francesco; Improta, Salvatore

    Bulk chemistry and mineralogy of the peculiar rock of Ricetto (Carseolani Mts., Central Apennines, Italy) was studied to resolve its controversial origin: igneous dyke or anthropic product. This hybrid rock consists of a colorless, felsic component made up of glass plus quartz, and a brown, femic component made up of fans and spherulites of diopside, calcic plagioclase, wollastonite, and melilite. Textural relationships indicate very rapid cooling and immiscibility phenomena. The bulk chemistry of the rock is the same as that of the surrounding siliciclastic sandstone. The 14C analysis of a coal fragment from bottom of the body yields the conventional age of 227(+/-50) years. The Ricetto occurrence is an example of pyrometamorphism of a siliceous limestone induced by a charcoal pit burning. The small size of the heat source at Ricetto caused an intense but short-lived melting of the country rock. Prograde metamorphism caused a temperature increase up to 1,000-1,100 °C when melilite crystallization conditions were reached at appreciable P(CO2) and high f(O2). Melting occurred in a close system represented by the simplified equation: 3Cal+16.5Qtz+Ms+Bt-->Mel+Melt+2H2O+3CO2+0.5O2. Diopside+calcic plagioclase+wollastonite formed by melilite breakdown during rapid cooling, through the reaction: 6Mel+6Qtz+0.5O2-->3Di+2An+7Wo. Liquid immiscibility caused the separation between the felsic melt component and the femic melilite-bearing component. Immiscibility was characterized by different fractionation of alumina and alkalies between these two phases. Differences in bulk, glass, and mineral chemistry between the Ricetto and other melilite-bearing pyrometamorphic rocks can be attributed mainly to different protoliths.

  12. Breaking barriers and halting rupture: the 2016 Amatrice-Visso-Castelluccio earthquake sequence, central Italy

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Walters, R. J.; Wedmore, L. N. J.; Craig, T. J.; McCaffrey, K. J. W.; Wilkinson, M. W.; Livio, F.; Michetti, A.; Goodall, H.; Li, Z.; Chen, J.; De Martini, P. M.

    2017-12-01

    In 2016 the Central Italian Apennines was struck by a sequence of normal faulting earthquakes that ruptured in three separate events on the 24th August (Mw 6.2), the 26th Oct (Mw 6.1), and the 30th Oct (Mw 6.6). We reveal the complex nature of the individual events and the time-evolution of the sequence using multiple datasets. We will present an overview of the results from field geology, satellite geodesy, GNSS (including low-cost short baseline installations), and terrestrial laser scanning (TLS). Sequences of earthquakes of mid to high magnitude 6 are common in historical and seismological records in Italy and other similar tectonic settings globally. Multi-fault rupture during these sequences can occur in seconds, as in the M 6.9 1980 Irpinia earthquake, or can span days, months, or years (e.g. the 1703 Norcia-L'Aquila sequence). It is critical to determine why the causative faults in the 2016 sequence did not rupture simultaneously, and how this relates to fault segmentation and structural barriers. This is the first sequence of this kind to be observed using modern geodetic techniques, and only with all of the datasets combined can we begin to understand how and why the sequence evolved in time and space. We show that earthquake rupture both broke through structural barriers that were thought to exist, but was also inhibited by a previously unknown structure. We will also discuss the logistical challenges in generating datasets on the time-evolving sequence, and show how rapid response and international collaboration within the Open EMERGEO Working Group was critical for gaining a complete picture of the ongoing activity.

  13. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  14. Fingerprinting stress: stylolite and calcite twinning paleopiezometry reveal the complexity of stress distribution during the growth of the Monte Nero anticline (Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille

    2016-04-01

    This contribution presents for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a structure part of a complex fold and thrust belts. We report a high-resolution deformation and stress history that was experienced by Meso-Cenozoic limestone strata in the overturned Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). New methodological development enables an easier use for the inversion technique of sedimentary and tectonic stylolite roughness. A stylolite-fracture network developed during layer-parallel shortening (LPS), as well as syn- and post-folding. Stress fingerprinting shows how stress builds up in the sedimentary strata during LPS with variations of differential stress before folding around a value of 50 MPa. The stress regime oscillated between strike-slip and compressional during LPS and became transiently extensional in limbs of developing fold due to a coeval increase of vertical stress related to local burial and decrease of maximum horizontal stress related to hinge development, before ultimately becoming strike-slip again during late stage fold tightening. Our case study shows that stress fingerprinting is possible and that this novel method can be used to unravel complex temporal relationships that relate to local variations within evolving regional orogenic stresses. Beyond regional implication, this study validates our approach as a new exciting toolbox to high-resolution stress fingerprinting in basins and orogens.

  15. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte Nero anticline in the Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille

    2016-07-01

    In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques.

  16. Thermoregulation of alpacas bred in Italy

    NASA Astrophysics Data System (ADS)

    Mattiello, Silvana; Formis, Elena; Barbieri, Sara

    2011-03-01

    The present study monitored daily and seasonal variations of rectal temperature in response to different environmental temperatures in alpacas bred in the Italian Apennines at 300 m a.s.l. In each season, the rectal temperature of 33 clinically healthy alpacas was measured three times/day (morning, midday, afternoon). Ambient temperatures were also recorded. Rectal temperatures ranged from a minimum value of 35.1 to a maximum of 39.4°C, with a maximum daily thermal excursion (ΔTrec) of 3.2°C. Temperatures increased throughout the day, with highly significant differences recorded in both young and adult animals between all the time bands ( P < 0.001). These differences were particularly dramatic for adults in summer, when the mean rectal temperature in the morning was 36.3 ± 0.13°C, probably as a consequence of recent shearing. Significant ΔTrec differences were recorded depending on the season in both young and adult animals ( P < 0.001), with the highest ΔTrec values recorded in summer (although the highest daily ambient excursion value was recorded in winter). In conclusion, similarly to alpacas bred in their natural environment, alpacas bred in Italy show a wide thermal neutrality zone, which is probably an adaptive response, that allows the animals to save energy. In the Italian Apennines, in order to prevent situations of hypothermia, with possible detrimental effects on alpacas' health and welfare, shearing should be carried out only in warm seasons.

  17. Ivrea mantle wedge and arc of the Western Alps (II): Kinematic evolution of the Alps-Apennines orogenic system

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Kissling, Eduard; van Hinsbergen, Douwe J. J.; Molli, Giancarlo

    2017-04-01

    Integration of geological and geophysical data on the deep structure of the Alps (Kissling et al. 2017) reveals that the deep-seated Ivrea mantle played a crucial role during the formation of the arc of the Western Alps. Exhumation of the mantle beneath the Ivrea Zone to shallow crustal depths during Mesozoic rifting led to the formation of a strong Ivrea mantle wedge; its strength exceeds that of surrounding mostly quartz-bearing units, and consequently allows for indentation and wedging of a quasi-rigid Ivrea mantle wedge into the Western Alps during Alpine orogeny. A first early stage (pre-35 Ma) of the West-Alpine orogenic evolution is characterized by top-NNW thrusting in sinistral transpression causing at least some 260km displacement of internal Western Alps and E-W-striking Alps farther east, together with the Adria micro-plate, towards N to NNW with respect to stable Europe. It is during the second stage (35-25 Ma) that the Ivrea mantle wedge played a crucial role by accentuating the arc. This stage is associated with top-WNW thrusting in the external zones of the central portion of the arc and lateral indentation and wedging of the Ivrea mantle slice beneath the already existing nappe pile towards WNW by some 100-150km. The final stage of arc formation (25-0 Ma) is associated with orogeny in the Apennines leading to oroclinal bending in the southernmost Western Alps that by now became parts of the Apenninic orogen, in connection with the 50° counterclockwise rotation of the Corsica-Sardinia block and the Ligurian Alps. The lithological composition of some tectonic units originating from the Alpine Tethys (Piemont-Liguria Ocean) found in the Alps and the northern Apennines has much in common. The non-metamorphic parts of the Piemont-Liguria derived units form the upper plate of the Western Alps that is devoid of Austroalpine elements, while the lower plate includes highly metamorphic units derived from the same Piemont-Liguria Ocean. This points to a lateral transition from continent-continent collision in the Central and Eastern Alps to intra-oceanic subduction in the Western Alps during Alpine orogeny, leaving large parts of the Piemont-Liguria Ocean that belong to the Adria microplate open until about 25 Ma. It is these parts that from now on formed the highest tectonic units in the Apennines, namely the Ligurides. However, internal units of the Northern Apennines previously suffered Alpine-type shortening associated with an E-dipping Alpine subduction zone. They became " backthrusted" to the NE during Apenninic orogeny commencing in the Late Oligocene. Apenninic orogeny is associated with a change in subduction polarity from Alpine E-directed subduction, previously affecting the Internal Ligurides and other parts of the Northern Apennines, towards NW-directed subduction and roll back of the Adria slab beneath Northern Apennines, pulled by the negative buoyancy of those parts of the old oceanic lithosphere of the Piemont-Liguria Ocean that remained unaffected by Alpine orogeny. Reference: Edi Kissling, Stefan M. Schmid, Tobias Diehl (2017). Ivrea mantle wedge and arc of the Western Alps (1): Geophysical evidence for the deep structure. Abstract Volume EGU 2017.

  18. Solid discharge and landslide activity at basin scale

    NASA Astrophysics Data System (ADS)

    Ardizzone, F.; Guzzetti, F.; Iadanza, C.; Rossi, M.; Spizzichino, D.; Trigila, A.

    2012-04-01

    This work presents a preliminary analysis aimed at understanding the relationship between landslide sediment supply and sediment yield at basin scale in central and southern Italy. A database of solid discharge measurements regarding 116 gauging stations, located along the Apennines chain in Italy, has been compiled by investigating the catalogues, named Annali Idrologici, published by Servizio Idrografico e Mareografico Italiano in the period from 1917 to 1997. The database records several information about the 116 gauging stations, and especially reports the sediment yield monthly measurements (103 ton) and the catchments area (km2). These data have been used to calculate the average solid yield and the normalized solid yield for each station in the observation period. The Italian Landslide Inventory (Progetto IFFI) has been used to obtained the size of the landslides, in order to estimate the landslide mobilization rates. The IFFI Project funded by the Italian Government is realized by ISPRA (Italian National Institute for Environmental Protection and Research - Geological Survey of Italy) in partnership with the 21 Regions and Self Governing Provinces. 21 of the 116 gauging stations and the related catchments have been selected on the basis of the length of the solid discharge observation period and excluding the catchments with dams located upstream the stations. The landslides inside the selected catchments have been extracted from the IFFI inventory, calculating the planimetric area of each landslide. Considering both the shallow and deep landslides, the landslide volume has been estimated using an empirical power law relation (landslide area vs. volume). The total landslide volume in the study areas and the average sediment yield measured at the gauging stations have been compared, analysing the behaviour of the basins which drainage towards the Tyrrhenian sea and the basins which drainage towards the Adriatic sea.

  19. Second Workshop on the European Geotraverse

    NASA Astrophysics Data System (ADS)

    Galson, D. A.; Müller, S.; Munsch, B.

    The Second Workshop on the European Geotraverse (EGT) Project (Eos, July 19, 1983, p. 458; March 5, 1985, p. 112) was held February 7-9, 1985, at the Venetian Institute of Science, Letters, and Arts, Venice, Italy, and was organized by C. Morelli (Institute of Mining and Applied Geophysics, University of Trieste, Italy) with support from both the Secretariat of the European Science Foundation (ESF) in Strasbourg, France, and the Scientific Coordinating Committee (SCC) for the EGT Project. The workshop focused on the Southern Segment of the EGT (EGT-S), which encompasses the Central, Southern, and Western Alps, the Po Basin, the Northern Apennines, the Ligurian and Tyrrhenian Seas, Corsica and Sardinia, the Sardinian and Sicilian Channels, and the complex geological structures of Tunisia. About 100 earth scientists, from Austria (1 representative), Belgium (1), Denmark (2), the Federal Republic of Germany (7), France (10), Italy (52), The Netherlands (3), Spain (1), Switzerland (9), Tunisia (6), and the United Kingdom (4), assembled to present and discuss new geological and geophysical data in order to obtain a better understanding of the structure, dynamics, and evolution of the lithosphere in this part of the world and to identify areas where and problems on which further work is needed. A particularly important aspect of the workshop was the presentation of data and results from the EGT-S 1983 field program, which was primarily a large-scale land and sea seismic refraction survey that extended from the Southern Alps to southern Sardinia. Another important aspect was preparation for the EGT-S 1985 field program, which will be a southward extension of the 1983 program to southern Tunisia. The workshop was divided into seven sessions, during which 42 scientific papers were given dealing with various aspects of the regional geophysics, geology, and tectonics.

  20. Multi-temporal analysis of slope movements in the Southern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Parise, M.

    2012-04-01

    Many types of thematic maps dealing with slope movements have been proposed in the scientific literature to describe the features and activity of landslides. One of the most common is the classical landslide inventory map: this can be defined as a photograph of the landscape at a given time, that is the moment of the field surveys, or the date of the air photographs and/or satellite images used for mapping. Unless further data (such as dates of occurrence of the landslides, frequency of movement, etc.) are not added, it does nothing more than depicting the instability situation at that given time. In order to reach more insights into the history and evolution of unstable slopes, a multi-time approach must be performed. This can be carried out through a multi-temporal analysis, based upon aerial photo interpretation of different years, possibly integrated by field surveys. Production of landslide inventory map for each available set of air photos results in the final output of landslide activity maps (LAMs), deriving from comparison of the individual inventory map. LAMs provide insights into the evolution of the landslide process, allowing to reconstruct a relative history of the mass movement, and to highlight the most active sectors in time. All these information may result extremely useful to correlate likely movements to anthropogenic activity or specific triggering factors, such as a seismic event or a rainstorm. In addition, LAMs can also be of effective use in evaluating the efficiency of remediation works. The Southern Apennines of Italy are intensely affected by a variety of slope movements, that interest very different settings and are at the origin of severe damage to the built-up environments, claiming every year a high number of casualties. Notwithstanding the availability of landslide maps for the whole Italian territory, with very good detail at local sites of interest, what is often lacking over the country is a thorough knowledge of the overall history of the slopes, in terms of temporal evolution of the phenomena. LAMs can provide a significant contribution in covering this lack, and allowing one to better understand the presently observed situation within a more general framework. Starting from the above considerations, some examples of LAMs are presented in this article, covering different geological and morphological contexts of the Southern Apennines of Italy, aimed at highlighting the potentiality of such an approach for the understanding of the landsliding activity, at the same time giving significant hints to be used for remediation and/or stabilization works and for land management issues.

  1. Why is the central area of the Alburni Mts in southern Italy so full of caves?

    NASA Astrophysics Data System (ADS)

    Cafaro, Simona; Gueguen, Erwan; Parise, Mario; Schiattarella, Marcello

    2016-04-01

    The Alburni Mts represent one of the most important karst area of southern Italy, with about 250 registered caves. Located in the southern Apennines, they constitute an impressive carbonate massif within the Mesozoic-Cenozoic Campania-Lucania platform. The study area is located inside the National Park of Cilento, Vallo di Diano and Alburni, and is bounded by two major rivers: the Calore and Tanagro rivers. This area has been repeatedly affected during Pleistocene by the activity of a regional, partly blind, NW-SE-striking fault system responsible for several huge earthquakes. The massif is limited to the north by an important normal fault zone (Alburni Line), whereas towards the E-SE it is bounded by a complex fault system linking the Alburni Mts to the Maddalena Mts across the Auletta basin and the Vallo di Diano valley. The entire massif is structured by NW-SE trending transtensional faults delimiting half-graben basins, and offset also by NE-SW trending faults. In particular, structural and geomorphological data have shown that the central area of the calcareous ridge is characterized by a relative structural low rhombic-shaped in planimetric view. Approximately 180 karst caves of the known 250, including some of the most significant from a speleological viewpoint, are located in this area. Is this simply due to repeated exploration activity in the last 25 years in this specific sector or might it be related to geological matter? New morphometric and structural data suggest that a relevant transversal structure, consisting of a complex NE-SW fault system, responsible for the genesis of the downthrown area in the central sector of the flat-topped ridge, was able to create the tectonic framework for the development of a great number of karst caves which present peculiar features and hydrological behaviour due to such structural controls. In this contribution we present and discuss these data, aimed at contributing to increase the knowledge on an area of sure karst and speleological interest.

  2. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Davolio, Silvio

    2017-11-01

    Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense air-sea interactions and it is reasonable to hypothesize that the Adriatic sea surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic Sea have been developed and applied in order to characterize the air mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of air that flows over the Adriatic Sea. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.

  3. Architectural and microstructural characterization of a seismogenic normal fault in dolostones (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio

    2015-04-01

    Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone (fracture spacing > 10 cm). Other than by the main boundary normal fault, slip was accommodated in the cataclastic zone by minor sub-parallel synthetic and antithetic normal faults and by few tear strike-slip fault; the rest of the footwall shows progressively less pervasive damage down to the background intensity of deformation. High strain domains include (1) pervasively fragmented dolostones with radial fractures (evidence of in-situ shattering), (2) shiny (mirror-like) fault surfaces truncating dolostone clasts, (3) mm-thick ultra-cataclastic layers with lobate and cuspate boundaries, (4) mixed calcite-dolomite "foliated cataclasites". The above microstructures can be associated with seismic faulting. Fluids infiltration during deformation is attested by the occurrence of multiple generations of carbonate-filled veins, often exploited as minor faults with a mylonite-like fabric (e.g. presence of micrometer in size euhedral calcite grains). The attitude of the studied segment of the CIFZ, the thickness of the footwall block and the kinematics of the minor faults compares well with the hypocentral and focal mechanisms distribution typical of the earthquake sequences in the Apennines. In particular, the CIFZ can be considered as an exhumed analogue of the normal fault system that caused the L'Aquila 2009 seismic sequence.

  4. Karst geomorphology and hydrology at the Campania - Basilicata border (southern Apennines of Italy)

    NASA Astrophysics Data System (ADS)

    Farfan Gonzalez, H.; Parise, M.

    2009-04-01

    This paper describes the main karst geomorphological and hydrological features of the area at the boundary between the Campania and Basilicata regions, in the southern Apennines of Italy. Even not far from the most important karst area of southern Italy (the Alburni Massif, hosting hundreds of caves, with very complex subterranean systems that have been extensively explored in the last 50 years), this sector has never been object of detailed karstic studies. Geologically, it shows a carbonate bedrock consisting of Cretaceous limestones and dolomites, in tectonic contact with terrigenous deposits of Miocene age. The territory is an active seismogenic zone, as testified by the November 23, 1980, earthquake that hit this part of southern Italy with a 6.8 magnitude, causing over 2,700 victims and destroying several small towns in the two regions. In 2007, within the framework of joint projects between the Italian Speleological Society (SSI) and the Cuban Speleological Society (SEC), a scientific and speleological expedition was carried out in a sector of this area. The efforts produced during the expedition, and in the preceeding phases as well, resulted in discovery, survey and documentation of 62 caves, and in supporting the progresses of the exploration activities in the main karst system in the area, a complex of two caves that reach a maximum depth of 123 meters and an overall length of 1,8 km. At the surface, a variety of karst landforms is recognizable. The main carbonate ridges show several orders of palaeosurfaces, located at different heights above sea level. Bounded by fault lines or fault line scarps, they present variable extension, the highest surfaces showing a much better continuity. On the Campanian side, several sinkholes are also present, some of which opened in the aftermath of the 1980 earthquake. The same event caused in Basilicata the formation of several caves of structural origin, controlled in their development by tectonics and extremely unstable, due to high disruption of the rock mass. Maximum depth observed in this type of caves is 25-30 meters.

  5. Analysis of intraspecific seed diversity in Astragalus aquilanus (Fabaceae), an endemic species of Central Apennine.

    PubMed

    Di Cecco, V; Di Musciano, M; D'Archivio, A A; Frattaroli, A R; Di Martino, L

    2018-05-20

    This work aims to study seeds of the endemic species Astragalus aquilanus from four different populations of central Italy. We investigated seed morpho-colorimetric features (shape and size) and chemical differences (through infrared spectroscopy) among populations and between dark and light seeds. Seed morpho-colorimetric quantitative variables, describing shape, size and colour traits, were measured using image analysis techniques. Fourier transform infrared (FT-IR) spectroscopy was used to attempt seed chemical characterisation. The measured data were analysed by step-wise linear discriminant analysis (LDA). Moreover, we analysed the correlation between the four most important traits and six climatic variables extracted from WorldClim 2.0. The LDA on seeds traits shows clear differentiation of the four populations, which can be attributed to different chemical composition, as confirmed by Wilk's lambda test (P < 0.001). A strong correlation between morphometric traits and temperature (annual mean temperature, mean temperature of the warmest and coolest quarter), colorimetric traits and precipitation (annual precipitation, precipitation of wettest and driest quarter) was observed. The characterisation of A. aquilanus seeds shows large intraspecific plasticity both in morpho-colorimetric and chemical composition. These results confirm the strong relationship between the type of seed produced and the climatic variables. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  6. First-order and subsidiary faults controlling the time-space evolution of the Central Italy 2016 seismic sequence - a multi-source data detailed 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Lavecchia, Giusy; de nardis, Rita; Ferrarini, Federica; Cirillo, Daniele; Brozzetti, Francesco

    2017-04-01

    The Central Italy 2016 seismic sequence, with its three major events (24 August, Mw 6.0/6.2; 26 October Mw5.9/6.0; 30 October Mw6.5/6.6), activated a well-known active west-dipping extensional fault alignment of central Italy (Vettore-Gorzano faults, VEGO). Soon after the first event, based on geological, interferometric and at that moment available seismological data, a preliminary 3D fault model of VEGO was built. Such a model is here updated and improved at the light of a large amount of relocated earthquake data (time interval 24 August to 30 November 2016, 0.1≤ML ≤6.5, Chiaraluce at al., submitted to SRL) plus additional geological information. The 3D modeling was done using the software package MOVE from the Midland Valley. All the available data were taken into consideration (surface traces, fault-slip data, primary co-seismic surface fractures, geological maps and cross-sections, hypocentral locations and focal mechanisms of both background seismicity and seismic sequences). The VEGO geometric configuration did not substantially changed with respect to the previous model, but some additional structures involved in the sequence were reconstructed. In particular, four additional faults are well evident: a NE-dipping normal fault (dip-angle 50˚ ) antithetic to Vettore Fault, located at depths between 1 and 5 km; a WNW dipping plane (dip-angle 30˚ ) located at depth between 1 and 4 km within the Vettore footwall volume; this structure represents a splay of the late Miocene Sibillini thrust, which is evidently cross-cut and dislocated by the Vettore normal fault; a SW-dipping normal fault representing an unknown northward prosecution of the VEGO alignment, where since 26 October a relevant seismic activity was released; an unknown east-dipping low-angle detachment, where VEGO detaches at a depth of about 10-11 km. An uninterrupted microseismic activity has illuminated such a detachment not only during the overall sequence, but also in the previous months. At the light of the reconstructed geometric pattern integrated with the evidences of primary co-seismic fractures, it results evident that the Central Italy seismic sequence represents a "classic", although complex, intra-Apennine normal-faulting event, reactivating a long-term quiescent seismogenic alignment (e.g. VEGO). The reactivated and inverted compressional structures are confined at shallow depth within the Vettore footwall, and in no way control the major events of the sequence. Conversely, an important regional role is played by the east-dipping detachment. It represents the missing geometric link between the Altotiberina LANF of northern Umbria and the recently discovered LANF of Latium-Abruzzi.

  7. Woody plant encroachment effect on soil organic carbon dynamics: results from a latitudinal gradient in Italy

    NASA Astrophysics Data System (ADS)

    Pellis, Guido; Chiti, Tommaso; Moscatelli, Maria Cristina; Marinari, Sara; Papale, Dario

    2016-04-01

    Woody plant encroachment into pastures and grasslands represents a significant land cover change phenomenon, with a considerable impact on carbon dynamics at an ecosystem level. It was estimated that 7.64% of the Southern Europe land was subject to that process between 1950 to 2010. As a result of woody encroachment, changes in vegetation composition can produce substantial changes to the soil organic carbon (SOC) cycle. Despite the numerous papers published on land-use change, an evaluation of the IPCC terrestrial carbon pools changes occurring during woody encroachment on abandoned pastures and grasslands is still lacking, particularly for the Italian territory. Therefore, the aim of this study was to investigate the role of woody encroachment on carbon sequestration over abandoned pastures and grasslands in Alpine and Apennine ecosystems, with a particular focus on the SOC. We applied a chronosequence approach to seven selected sites located along a latitudinal gradient in Italy. Each chronosequence consisted of a pasture currently managed, three sites abandoned at different times in the past and, finally, a mature forest stand representing the last phase of the succession. The European Commission sampling protocols to certify SOC changes was adopted to estimate the variations following woody encroachment. Soil samples were collected at different depths in the topsoil (0-30 cm) and subsoil (30-70 cm), despite the original protocol formulation being limited to the topsoil only. In addition, aboveground living biomass (AGB), dead wood and litter were also measured following international protocols. Considering all C pools together, woody plant encroachment leads to a progressive C stock accumulation in all the chronosequences. The total C stock of mature forest stands ranges from 1.78±0.11 times (Eastern Alps) to 2.48±0.31 times (central Apennine) the initial value on pastures. Unsurprisingly, the C stocks of AGB, dead wood and litter all increase during the process of woody encroachment. Instead, the SOC dynamics are more complex, as previous studies suggest they are strongly affected by precipitation and temperature. Accordingly, we found that in the Apennine sites, characterised by a Mediterranean mountainous climate, the SOC increased more than 50% from pasture to forest stages. Conversely, the increment appears not or barely statistically significant in the two colder and more humid Eastern Alps sites. Our results also indicate a substantial amount of SOC is stored in the subsoil, despite many existing sampling protocols (including the original form of the one we adopted) typically restrict measurements only to the topsoil. Therefore, it is recommended to measure the SOC along the whole profile to avoid overlooking the significant amount of C that can accumulate in the subsoil during the process of woody encroachment. In conclusion, this study reveals a positive impact of woody encroachment in increasing the C at an ecosystem level and suggests that SOC measurements are extremely important when precise emission-removal estimates due to land use change are required.

  8. UV hazard on Italian Apennines under different shading and ground cover conditions during peak tourist seasons of the year.

    PubMed

    Grifoni, Daniele; Carreras, Giulia; Sabatini, Francesco; Zipoli, Gaetano

    2006-12-01

    In solar UV irradiance monitoring and forecasting services UV information is generally expressed in terms of its effect on erythema and referred to horizontal surface. In this work we define the UV radiative regime, in terms of biologically effective UV irradiance (UVBE) for skin and eye, under full sun and shaded conditions, over a mountainous tourist area of central Italy by means of two all-day measurements (summer and early spring) with different ground albedo (grass and snow cover respectively). UV irradiance was monitored on tilted surfaces (the most frequent for people standing and walking). Results show the significant contribution of ground albedo and sun position in determining the incident UVBE irradiance. On early spring days the UVBE irradiance measured on horizontal surface was much lower than on tilted ones; the opposite condition was observed in summer. The highest UVBE irradiance values, in particular conditions of sun elevation and ground cover, were reached in periods different from the summer both in full sun and shaded condition.

  9. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  10. Insights on the seismotectonics of the western part of northern Calabria (southern Italy) by integrated geological and geophysical data: Coexistence of shallow extensional and deep strike-slip kinematics

    NASA Astrophysics Data System (ADS)

    Ferranti, L.; Milano, G.; Pierro, M.

    2017-11-01

    We assess the seismotectonics of the western part of the border area between the Southern Apennines and Calabrian Arc, centered on the Mercure extensional basin, by integrating recent seismicity with a reconstruction of the structural frame from surface to deep crust. The analysis of low-magnitude (ML ≤ 3.5) events occurred in the area during 2013-2017, when evaluated in the context of the structural model, has revealed an unexpected complexity of seismotectonics processes. Hypocentral distribution and kinematics allow separating these events into three groups. Focal mechanisms of the shallower (< 9 km) set of events show extensional kinematics. These results are consistent with the last kinematic event recorded on outcropping faults, and with the typical depth and kinematics of normal faulting earthquakes in the axial part of southern Italy. By contrast, intermediate ( 9-17 km) and deep ( 17-23 km) events have fault plane solutions characterized by strike- to reverse-oblique slip, but they differ from each other in the orientation of the principal axes. The intermediate events have P axes with a NE-SW trend, which is at odds with the NW-SE trend recorded by strike-slip earthquakes affecting the Apulia foreland plate in the eastern part of southern Italy. The intermediate events are interpreted to reflect reactivation of faults in the Apulia unit involved in thrust uplift, and appears aligned along an WNW-ESE trending deep crustal, possibly lithospheric boundary. Instead, deep events beneath the basin, which have P-axis with a NW-SE trend, hint to the activity of a deep overthrust of the Tyrrhenian back-arc basin crust over the continental crust of the Apulia margin, or alternatively, to a tear fault in the underthrust Apulia plate. Results of this work suggest that extensional faulting, as believed so far, does not solely characterizes the seismotectonics of the axial part of the Southern Apennines.

  11. Present-day stress magnitude at depth from leak-off tests in Italy

    NASA Astrophysics Data System (ADS)

    Mariucci, M. T.; Montone, P.; Pierdominici, S.

    2012-04-01

    We present new results from the analysis of leak-off tests, performed in deep oil wells in Italy, to characterize the present-day stress magnitude and regime in the crust. In the last years we have collected a large number of data (more than 500) from different stress indicators, mainly borehole breakouts, earthquake focal mechanisms and fault data, which provided information on the present-day stress orientations. In some areas the tectonic regime has been inferred either from fault plane solutions of M≥4 earthquakes or from stress inversions of smaller earthquakes. Where seismicity lacks, the regime is not well constrained and little or no information on the magnitude of the crustal stresses is available. In order to improve our knowledge in stress regime and its magnitude in Italy, in this work we use the leak-off test technique. Each test is performed at the bottom of an open hole by sealing off a section and then slowly pressurizing with a fluid until hydraulic tensile fractures develop. The minimum horizontal stress is inferred by leak-off pressure record, the vertical stress is computed by rock density data and the maximum horizontal stress is estimated applying a specific formula from the literature. Thanks to ENI S.p.A. (Italian oil company), that kindly provided new well data, we have been able to perform a critical review of our preliminary calculations and to enhance our previous results concerning stress magnitudes. Totally, we have analyzed 192 leak-off tests at depth between 200 and 5400m (average 1800m). In particular, wells are located along the Italian peninsula and in Sicily: most of them are in the Po Plain and along the Apenninic foredeep; few are in southern Apenninic belt and a few tens are in Sicily. After an accurate selection of the most robust results, we better characterize the Italian stress regime at depth.

  12. Imaging the slab structure in the Alpine region by high-resolution P-wave tomography

    NASA Astrophysics Data System (ADS)

    Guillot, Stéphane; Zhao, Liang; Paul, Anne; Malusà, Marco G.; Xu, Xiaobing; Zheng, Tianyu; Solarino, stefano; Schwartz, Stéphane; Dumont, Thierry; Salimbeni, Simone; Aubert, Coralie; Pondrelli, Silvia; Wang, Qingchen; Zhu, Rixiang

    2017-04-01

    Based upon a finite-frequency inversion of traveltimes, we computed a new high-resolution tomography model using P-wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments (Zhao et al., 2016). This model provides an improved image of the slab structure in the Alpine region, and fundamental pin-points for the analysis of Cenozoic magmatism, (U)HP metamorphism and Alpine topography. Our results document the lateral continuity of the European slab from the Western to the Central Alps, and the down-dip slab continuity beneath the Central Alps, ruling out the hypothesis of slab breakoff to explain Cenozoic Alpine magmatism. A low velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects (Malusà et al., this meeting). A NE-dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines, and becomes near vertical in the Alps-Apennines transition zone. Tear faults accommodating opposite-dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab breakoffs along the Alpine-Zagros-Himalaya orogenic belt might be proficiently reconsidered. Malusà M.G. et alii (2017) On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis. EGU 2017. Zhao L. et alii (2016), Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.

  13. Towards a European tephrochronological framework for Termination 1 and the Early Holocene.

    PubMed

    Davies, Siwan M; Branch, Nicholas P; Lowe, J John; Turney, Chris S M

    2002-04-15

    The record of deposition of tephras in Europe and the North Atlantic during the period 18.5-8.0 (14)C ka BP (the Last Termination and Early Holocene) is reviewed. Altogether, 34 tephras originating from four main volcanic provinces (Iceland, the Eifel district, the Massif Central and Italy) have been identified so far in geological sequences spanning this time-interval. Most of the records have been based, until very recently, on observations of visible layers of tephras. Here, we report on the potential for extending the areas over which some of the tephras can be traced by the search for layers of micro-tephra, which are not visible to the naked eye, and on the use of geochemical methods to correlate them with known tephra horizons. This approach has greatly extended the area in Northern Europe over which the Vedde Ash can be traced. The same potential exists in southern Europe, which is demonstrated for the first time by the discovery of a distinct layer of micro-tephra of the Neapolitan Yellow Tuff in a site in the Northern Apennines in Italy, far to the north of the occurrences of visible records of this tephra. The paper closes by considering the potential for developing a robust European tephrostratigraphy to underpin the chronology of records of the Last Termination and Early Holocene, thereby promoting a better understanding of the nature, timing and environmental effects of the abrupt climatic changes that characterized this period.

  14. An integrated approach for analysing earthquake-induced surface effects: A case study from the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Castaldini, D.; Genevois, R.; Panizza, M.; Puccinelli, A.; Berti, M.; Simoni, A.

    This paper illustrates research addressing the subject of the earthquake-induced surface effects by means of a multidisciplinary approach: tectonics, neotectonics, seismology, geology, hydrogeology, geomorphology, soil/rock mechanics have been considered. The research is aimed to verify in areas affected by earthquake-triggered landslides a methodology for the identification of potentially unstable areas. The research was organized according to regional and local scale studies. In order to better emphasise the complexity of the relationships between all the parameters affecting the stability conditions of rock slopes in static and dynamic conditions a new integrated approach, Rock Engineering Systems (RES), was applied in the Northern Apennines. In the paper, the different phases of the research are described in detail and an example of the application of RES method in a sample area is reported. A significant aspect of the study can be seen in its attempt to overcome the exclusively qualitative aspects of research into the relationship between earthquakes and induced surface effects, and to advance the idea of beginning a process by which this interaction can be quantified.

  15. Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. hirtum from different areas in the Southern Apennines (Italy).

    PubMed

    Mancini, Emilia; Camele, Ippolito; Elshafie, Hazem S; De Martino, Laura; Pellegrino, Carlo; Grulova, Daniela; De Feo, Vincenzo

    2014-04-01

    The chemical composition of the essential oils of Origanum vulgare ssp. hirtum, growing wild in three different localities in the Southern Apennines, was studied by GC-FID and GC/MS analyses. In total, 103 compounds were identified. The oils were mainly composed of phenolic compounds and all oils belonged to the chemotype carvacrol/thymol. The three essential oils were evaluated for their in vitro phytotoxic activity by determining their influence on the germination and initial radicle elongation of Sinapis arvensis L., Phalaris canariensis L., Lepidium sativum L., and Raphanus sativus L. The seed germination and radicle growth were affected in various degrees. Moreover, the antifungal activity of the three essential oils was assayed against three species causing pre- and postharvest fruit decay (Monilinia laxa, M. fructigena, and M. fructicola). At 1000 ppm, the three oils completely inhibited fungal growth. The hemolytic activity of the oils was assayed and showed no effect on the cell membranes of bovine erythrocytes. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Ethnobotanical and phytomedicinal knowledge in a long-history protected area, the Abruzzo, Lazio and Molise National Park (Italian Apennines).

    PubMed

    Idolo, Marisa; Motti, Riccardo; Mazzoleni, Stefano

    2010-02-03

    This study reports on the ethnobotanical and phytomedical knowledge in one of the oldest European Parks, the Abruzzo, Lazio and Molise National Park (Central Italy). We selected this area because we judged the long history of nature preservation as an added value potentially encouraging the survival of uses possibly lost elsewhere. In all, we interviewed 60 key informants (30 men and 30 women) selected among those who, for their current or past occupation or specific interests, were most likely to report accurately on traditional use of plants. The average age of informants was 65 years (range 27-102 years). The ethnobotanical inventory we obtained included 145 taxa from 57 families, corresponding to 435 use-reports: 257 referred to medical applications, 112 to food, 29 to craft plants for domestic uses, 25 to veterinary applications, 6 to harvesting for trade and another 6 to animal food. The most common therapeutic uses in the folk tradition are those that are more easily prepared and/or administered such as external applications of fresh or dried plants, and decoctions. Of 90 species used for medical applications, key informants reported on 181 different uses, 136 of which known to have actual pharmacological properties. Of the uses recorded, 76 (42%) concern external applications, especially to treat wounds. Medical applications accounted for most current uses. Only 24% of the uses we recorded still occur in people's everyday life. Species no longer used include dye plants (Fraxinus ornus, Rubia tinctorum, Scabiosa purpurea, Rhus coriaria and Isatis tinctoria) and plants once employed during pregnancy, for parturition, nursing, abortion (Asplenium trichomanes, Ecballium elaterium, Juniperus sabina and Taxus baccata) or old magical practices (Rosa canina). Our study remarked the relationship existing between the high plant diversity recorded in this biodiversity hotspot of central Apennines and the rich ethnobotanical knowledge. The presence of some very experienced young informants was related to the opportunities offered by living in a major protected area. However, to counter the disappearance of local ethnobotanical culture it would be important to incorporate its preservation among nature reserve activities. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Age and speleogenesis of epigenic gypsum caves in the northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Columbu, Andrea; Chiarini, Veronica; De Waele, Jo; Drysdale, Russell; Forti, Paolo; Hellstrom, John; Woodhead, Jon

    2016-04-01

    Triassic and Messinian gypsum beds host the majority of the caves in the eastern flank of the northern Apennines. To date, more than six hundreds voids have been mapped, including the longest known epigenic gypsum cave system in the world (Spipola-Acquafredda, ~11 km of tunnels) (De Waele et al., 2013). Superimposed caves are typically sub-horizontal (Klimchouk, 2000) and connected through vertical shafts, reflecting the palaeo base-level variations. When preserved, river terraces at the surface lie at the same palaeo altitude of the base level and horizontal cave passages. Notwithstanding the well-known geology of the area known (Vai and Martini, 2001), the age of these caves has been greatly underestimated in the past. Considering the rapid dissolution of the gypsum and uplifting of the area, the start of speleogenesis activity was considered to have occurred during the last glacial age. The age of karst voids can be only indirectly estimated by the dating of the infilling sediments. U-Th dating on carbonate speleothems provides high-precision and accurate ages (Hellstrom, 2003; Scholz and Hoffmann, 2008). We thus applied this methodology to 20 speleothems coming from 14 different caves belonging to the Monte Tondo, Spipola Acquafredda, Castelnuovo, Stella-Rio Basino and Brisighella systems. The results show that: i) caves were forming since at least ~300 ka; ii) the peak of speleogenesis was reached during relatively cold climate stages, when rivers formed terraces at the surface and aggradation caused paragenesis in the stable cave levels (Columbu et al., 2015). Besides the significant contribution to the understanding of the Apennines evaporite karst evolution, this study (and its further advancement) may also refine knowledge of the local vs regional uplifting rates and base-level variations since the late Pleistocene (Wegmann and Pazzaglia, 2009). References Columbu, A., De Waele, J., Forti, P., Montagna, P., Picotti, V., Pons-Branchu, E., Hellstrom, J., Bajo, P., and Drysdale, R., 2015, Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region: Geology. De Waele, J., Fabbri, F., Forti, P., Lucci, P., and Marabini, S., 2013, Evoluzione speleogenetica del sistema carsico del re Tiberio (Vena del gesso Romagnola): I gessi e la cava di Monte Tondo. Memorie dell'istituto Italiano di speleologia. Hellstrom, J., 2003, Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS.: Journal of Analytical Atomic Spectrometry, v. 18. Klimchouk, A. B., 2000, Speleogenesis in noncarbonate lithologies: In: Klimchouk, A.B., Ford, D.C., Palmer, A.N., Dreybrodt, W. (Eds.) Speleogenesis, evolution of karst aquifers, p. 430-442. Scholz, D., and Hoffmann, D., 2008, 230Th/U-dating of fossil corals and speleothems: Quat. Sci. J, v. 57, p. 52. Vai, G. B., and Martini, I. P., 2001, Anatomy of an orogen: The Apennines and adjacent Mediterranean:: Dordrecht, Netherlands, Kluwer Academic Publishers,, p. 631. Wegmann, K. W., and Pazzaglia, F. J., 2009, Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: climatic, lithologic, and tectonic controls on terrace genesis in an active orogen: Quaternary Science Reviews, v. 28, no. 1, p. 137-165.

  18. Intrinsic And Extrinsic Controls On Unsteady Deformation Rates, Northern Apennine Mountains, Italy

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Gunderson, K. L.; Pazzaglia, F. J.; Kodama, K. P.

    2017-12-01

    The slip rates of faults in the Northern Apennine Mountains were unsteady at 104-105 year timescales during the Neogene and Quaternary. Fault slip rates were recovered from growth strata and uplifted fluvial terraces associated with the Salsomaggiore, Quatto Castella, and Castevetro fault-related folds, sampled along the Stirone, Enza, and Panaro Rivers, respectively. The forelimb stratigraphy of each anticline was dated using rock magnetic-based cyclostratigraphy, which varies with Milankovitch periodicity, multispecies biostratigraphy, magnetostratigraphy, OSL luminescence dating, TCN burial dating, and radiocarbon dating of uplifted and folded fluvial terraces. Fault slip magnitudes were constrained with trishear forward models. We observed decoupled deformation and sediment accumulation rates at each structure. From 3.5Ma deformation of a thick and thin-skinned thrusts was temporally variable and controlled by intrinsic rock processes, whereas, the more regional Pede-Apenninic thrust fault, a thick-skinned thrust underlying the mountain front, was likely activated because of extrinsic forcing from foreland basin sedimentation rate accelerations since 1.4Ma. We found that reconstructed slip rate variability increased as the time resolution increased. The reconstructed slip history of the thin-skinned thrust faults was characterized relatively long, slow fold growth and associated fault slip, punctuated by shorter, more rapid periods limb rotation, and slip on the underlying thrust fault timed asynchronously. Thrust fault slip rates slip rates were ≤ 0.1 to 6 mm/yr at these intermediate timescales. The variability of slip rates on the thrusts is likely related to strain partitioning neighboring faults within the orogenic wedge. The studied structures slowed down at 1Ma when there was a switch to slower synchronous fault slip coincident with orogenic wedge thickening due to the emplacement of the out of sequence Pene-Apenninic thrust fault that was emplaced at 1.4±0.7 mm/yr. Both tectonic control and climate controlled variability on syntectonic sedimentation was observed in the growth sections.

  19. A basic tool for post-seismic rebuilding: the new 1:5.000 scale geological map of Amatrice town

    NASA Astrophysics Data System (ADS)

    Mancini, Marco; Vignaroli, Gianluca; Ardizzone, Francesca; Bucci, Francesco; Cardinali, Mauro; Cavinato, Gian Paolo; Cosentino, Giuseppe; Di Salvo, Cristina; Fiorucci, Federica; Gaudiosi, Iolanda; Giallini, Silvia; Peronace, Edoardo; Polpetta, Federica; Putignano, Maria Luisa; Reichenbach, Paola; Santangelo, Michele; Scionti, Veronica; Simionato, Maurizio; Sirianni, Pietro; Stigliano, Francesco

    2017-04-01

    A geological survey has been carried out in the area of Amatrice, the most damaged town after the 24 August 2016 event, to provide a basic reference for geophysical and geotechnical data useful for seismic response analyses and microzonation studies. The morphologies and the stratigraphic-structural setting of the investigated area are detailed on a 1:5000 scale geological map and cross sections, which derive from the integration of field-based observations and photo-geological interpretation. The Amatrice basin is filled by the one km-thick Laga Formation, composed of Messinian syn-orogenic marine sandstones and siltstones (Marini et al., 2015) and covered with disconformity by Quaternary conglomerates and sands, referred to alluvial fans, fluvial terraces and landslides. Presently, the Amatrice basin is a structurally-controlled depression bounded eastward by the Gorzano Mt ridge, and westward by the Sibillini Mts thrust front (Koopman, 1983). Our observations focus on (i) relationships between geometry and extent of cover deposits, (ii) bedding of the substratum, and (iii) areal arrangement and distribution of the main fault systems. Amatrice is located on a N-S trending mesa bounded by steep escarpments. The siliciclastic substratum was folded by syn-orogenic movements, broadly forming a NW-SE-trending synform, and is dissected by two main fault systems of the Plio-Quaternary post-orogenic tectonics. The first system consists of N-S striking high angle normal fault segments, each one having continuous length of up to 2 km; the second consists of E-W-striking normal-to-strike slip fault systems dissecting the first one. N-S-striking faults are morphologically expressed by fault plane scarps and triangular facets, and control the areal distribution of the Quaternary fluvial deposits. These are up to 50 m thick below Amatrice and thin to few metres along the north west direction. East of Amatrice, the stratigraphic setting is dominated by SW-prograding alluvial fans, downlapping the substratum, while on the West the stratigraphic setting is strongly complicated by large scale deformations (folding and tectonic repetitions) produced by shortening mechanisms. The recognized morphological irregularities, stratigraphic heterogeneities, and structural alignments are considered critical elements to define, at local scale, subsoil models useful for evaluating seismic amplification effects. References Koopman, A., (1983) Detachment tectonics in the central Apennines, Italy. Geol. Ultraiectina, 30, 1-155. Marini M., Milli S., Ravnås R., Moscatelli M. (2015) A comparative study of confined vs. semi-confined turbidite lobes from the Lower Messinian Laga Basin (Central Apennines, Italy): Implications for assessment of reservoir architecture. Mar. and Petrol. Geol., 63, 142-165.

  20. Quaternary tectonics from seismic interpretation and its potential relation with deep geothermal fluids in the Marche (Central Italy).

    NASA Astrophysics Data System (ADS)

    Chicco, Jessica; Invernizzi, Chiara; Pierantoni, Pietro Paolo; Costa, Mario

    2017-04-01

    Knowledge of the structural features is fundamental in evaluating geothermal exchange potential and in modelling geothermal systems. In particular, faults and fractures play an important role for the circulation of fluids in the crust, and structural setting can influence groundwater flow, its regime, chemistry and electrical conductivity. In this context, data coming from accurate studies of groundwater physical properties in the Marche region (Central Italy), concerning electrical conductivity above all, revealed some anomalies in several localities that could be ascribed to a strong structural control. Data acquisition and interpretation of some SW-NE seismic reflection profiles crossing the Apennine chain to the Adriatic sea and kindly provided by ENI S.p.A, highlight important deep Plio-Quaternary structures connected with minor surface ones and to hydrogeological conditions. Seismic profiles interpretation allowed to reconstruct the structural setting and to identify the recent evolution of the Apennine Marche sector in more detail with respect to what is already known. In fact, some high angle structures affecting the whole sedimentary sequence and routing at high depth were labelled. These are NW-SE sub-parallel transpressive structures bounded by SW and NE-dipping high-angle reverse faults reaching > 10 km depth (positive flower structures), and probably involving the upper crust basement. Three main alignments were identified from W to the coast line. In some cases, flower nucleation gives rise to the lifting and counter-clockwise rotation of the Pre-Pliocene substratum blocks, with the upwelling and outcropping of Upper Miocene (Messinian) evaporite deposits along the axial zone of the transpressive structural highs. Noting the analyses of groundwater properties coming from wells placed in proximity of these structures or located along the analysed seismic profiles, anomalies in electrical conductivity are relevant. The activity of the deep rooting structures observed in the seismic profiles and the high degree of fracturing that accompanies these complex and recent fault systems can facilitate the exchange between deep and superficial fluids. In other cases, like in coastal structural high, it can have a role in preventing the sea water ingression. This significant consideration can be supported also by the direct relation of electrical conductivity with the amount of rainfall revealed from studied piezometers along the carbonate Marche ridge. It should be explained through a specific behaviour (typical of carbonate aquifers, known as the "piston-flow phase") which implies an increase of groundwater mineralization as a result of transmission of the hydraulic pressure from the saturated zone, through fractures as important way for fluids circulation. Ultimately, we suggest that the structural control could be an important factor in influencing both the surface and the groundwater flow behaviours, and then convective component of the heat transport in the studied area.

  1. Results from CAT/SCAN, the Calabria-Apennine-Tyrrhenian/Subduction-Accretion-Collision Network

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Amato, A.; Guerra, I.; Armbruster, J.; Baccheschi, P.; Diluccio, F.; Gervasi, A.; Harabaglia, P.; Kim, W.; Lerner-Lam, A.; Margheriti, L.; Seeber, L.; Tolstoy, M.; Wilson, C. K.

    2005-12-01

    The Calabrian Arc region is the final remnant of a Western Mediterranean microplate driven by rollback. Calabria itself is an exotic block that rifted off Sardinia and opened the Tyrrhenian Sea back-arc basin in its wake. The Calabrian Arc rapidly advanced to the southeast, with subduction ahead and extension behind, following subduction rollback of the Mesozoic seafloor. The subduction zone meanwhile collided progressively with the Apulia to form the Apennines in peninsular Italy and with the Africa to form the Maghrebides in Sicily. The Calabrian Arc is where the transition from subduction to continental collision is occurring. The collisions on either side of Calabria have restricted oceanic subduction to a narrow 200-km salient with well-defined edges and seismicity that extends to over 500 km depth. The collisions have also slowed, or possibly even halted, the rapid advance of the arc. Whether rollback of the oceanic lower plate of the Ionian Sea continues and whether the upper plate of Calabria continues to move as an independent plate are both uncertain. The Calabrian-Apennine-Tyrrhenian/Subduction-Collision-Accretion Network (CAT/SCAN) is a passive experiment to study of the Calabrian Arc and the transition to the southern Apennines. The land deployment consisted of three phases. The initial phase included an array of 39 broadband seismometers onshore, deployed in the winter of 2003/4. In September 2004, the array was reduced to 28 broadband and 8 short-period instruments. In April 2005, the array was reduced once again to 20 broadband and 2 short-period instruments. The field deployment was completed in October 2005. Offshore, 12 broadband Ocean Bottom Seismometers (OBSs) were deployed in the beginning of October 2004. Data from 4 OBSs have been recovered so far with deployment durations from a few weeks to almost one year. Fishing activity has been strongly implicated in the early recoveries, (with one instrument returned by fishermen), and is suspected for the instruments that were not recovered. The experiment is determining the structure of the Calabrian subduction and southern Apennine collision systems and the structure of the transition from oceanic subduction in Calabria to continental collision in the southern Apennines. We have delineated a strong anisotropy with a fast direction following the curved arc, but weaker anisotropy beneath the Tyrrhenian Sea. Receiver function images show variations in crustal thickness throughout the region, consistent with previous conceptual models. We also image a negative polarity interface dipping to the southwest that we interpret as the main thrust ramp in the north transitioning to the subduction interface in the south. The transition from one to the other is marked by a loss of amplitude in the Moho conversion. Local seismicity is consistent with surface structure in showing extension normal and parallel to the Calabrian forearc as well as continuing southeastward motion of Calabria relative to the southern Apennines and Maghrebides.

  2. Petroleum systems of the Po Basin Province of northern Italy and the northern Adriatic Sea; Porto Garibaldi (biogenic), Meride/Riva di Solto (thermal), and Marnoso Arenacea (thermal)

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Porto Garibaldi total petroleum system dominates the Po Basin Province of onshore northern Italy and offshore Italy and Croatia in the northern Adriatic Sea. Porto Garibaldi contains Pliocene (primarily) and Pleistocene (secondarily) biogenic gas ? approximately 16 TCF (2.66 BBOE) ultimately recoverable ? accumulated in co-eval siliciclastic reservoirs. This area was the northwestern edge of the Gondwanan (African) continental plate in pre-Hercynian time until the assembly of Pangea, a dominantly carbonate passive continental margin during the Mesozoic breakup of Pangea, and a Cenozoic collision zone with siliciclastic foredeep and foreland regions surrounded by thrust belts. At least two other petroleum systems, with Triassic (Meride / Riva di Solto) and Miocene (Marnoso Arenacea) source rocks, contribute oil and thermal gas reserves (nearly 1 BBOE) to the province. The major time of hydrocarbon expulsion of the thermal systems was Late Neogene during the Alpine and Apennine orogenies. Local Mesozoic oil expulsion from Triassic rocks also occurred, but those oils either were not trapped or were leaked from faulty traps through time.

  3. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    How can be univocally inferred the genesis of a linear surface scarp as the result of an active and capable fault (FAC) in tectonically active regions? Or, conversely, how it is possible to exclude that a scarp is the result of a capable fault activation? Trying to unravel this open questions, we show two ambiguous case studies about the problem of the identification of active and capable faults in a tectonically active area just based on the presence of supposed fault scarps at surface. The selected cases are located in the area comprised between the Middle Aterno Valley Fault (MAVF) and the Campo Imperatore Plain (Abruzzi Region, central Apennines), nearby the epicentral area of the April 6th, 2009 L'Aquila earthquake. In particular, the two case studies analysed are located in a region characterized by a widespread Quaternary faults and by several linear scarps: the case studies of (i) Prata D'Ansidonia area and (ii) Santo Stefano di Sessanio area. To assess the origin and the state of activity of the investigated geomorphic features, we applied a classical geological and geomorphological approach, based on the analysis of the available literature, the interpretation of the aerial photographs, field surveying and classical paleoseismological approach, the latter consisting in digging excavations across the analysed scarps. These analysis were then integrated by morphometrical analyses. As for case (i), we focused on determining the geomorphic "meaning" of linear scarps carved onto fluvial-deltaic conglomerates (dated to the Early Pleistocene; Bertini and Bosi, 1993), up to 3 meters high and up to 1,5 km long, that border a narrow, elongated and flat-bottom depressions, filled by colluvial deposits. These features groove the paleo-landsurface of Valle Daria (Bosi and Bertini, 1970), wide landsurface located between Barisciano and Prata D'Ansidonia. Entwining paleoseismological trenching with geophysical analyses (GPR, ERT and microgravimetrical prospections), it could be possible to infer the genesis of the scarps as due to complex tectono-karstic phenomena. As for case (ii), our ongoing analyses are aimed to analyze the tectonic "significance" of some closed depressions, up to 4 km long and to 0,5-1 km large, that occur along the south-western slope of the Gran Sasso Range. All these small depression are NW-SE trending. As already described by Bosi et al. (1989), Galadini and Giuliani (1993), D'Agostino et al. (1998), Falcucci et al. (2015), these closed depressions are bounded by scarps carved onto the carbonate bedrock and, subordinately, onto early Quaternary slope deposits, reaching height of up to 5 m. These scarps are preferentially NE dipping, even if in few cases some SW dipping scarp are also present . The field work has permitted to attest that these scarps are related to shear planes that that displaced two subsequent of Early Pleistocene breccias formations (the Valle Valiano Fm. and Fonte Vedice Fm.; Bosi e Bertini, 1993; D'agostino et al., 1997). A paleoseismological trench was also performed across one of these scarps, attesting the activity of these shear planes also in recent times, providing indications result about the deformation style. Reference Bertini, T., & Bosi, C. (1993). La tettonica quaternaria della conca di Fossa (L'Aquila). Il Quaternario, 6(2), 293-314. Bertini, T., Bosi, C., & Galadini, F. (1989). La conca di Fossa-S. Demetrio dei Vestini. CNR, Centro di Studio per la Geologia Tecnica, ENEA, PAS in Elementi di tettonica pliocenicoquaternaria ed indizi di sismicita olocenica nell'Appennino laziale-abruzzese, Societa Geologica Italiana, L'Aquila, 26-58. Bosi, C., & Bertini, T. (1970). Geologia della media valle dell'Aterno. Memorie Società Geologica Italiana, 9(4), 719-777. D'Agostino, N., F. Speranza, & R. Funiciello., (1997) "Le Brecce Mortadella dell'Appennino Centrale: primi risultati di stratigrafia magnetica." Il Quaternario10.2: 385-388. D'Agostino, N., Chamot-Rooke, N., Funiciello, R., Jolivet, L. & Speranza, F., (1998). The role of pre-existing thrust faults and topography on the styles of extension in the Gran Sasso range (central Italy). Tectonophysics 292, 229-254. Falcucci, E., Gori, S., Moro, M., Fubelli, G., Saroli, M., Chiarabba, C., & Galadini, F. (2015). Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy. Tectonophysics, 651, 186-198. Galadini, F. & Giuliani R. (1993), Role of the structural geology analysis in the recent tectonics studies: an example from an area located SW of the Gran Sasso (Central Italy). Ann. Geof., 36 (1), 287-292.

  4. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial deposition within the Middle Aterno River Valley. These fluvial deposits are deeply embedded into the lacustrine sequence, thus suggesting the happening of a hydrographic connection among the originally separated tectonic depressions. This was probably due to the headward erosion by streams draining the Sulmona depression that progressively captured the hydrological networks of the Subequana basin, the Middle Aterno Valley, the L'Aquila and Paganica-Castelnuovo-San Demetrio basins to the North. Stream piracy was probably helped by an increase of the regional uplift rate, occurred between the Lower and the Middle Pleistocene. To reconstruct the paleo-landscape that characterised the early stages of these basins formation we sampled the remnants of the Quaternary erosinal/depositional surfaces and reconstructed the ancient topographic surfaces using the Topo to Raster tool of ArcGIS 10.0 package. Finally we have cross-checked the geological and geomorphological data with the model of the Middle Aterno River paleo-drainage basin obtained through the GIS based method. References Falcucci E., Scardia G., Nomade S., Gori S., Giaccio B., Guillou H., Fredi P. (2012). Geomorphological and Quaternary tectonic evolution of the Subequana basin and the Middle Aterno Valley (central Apennines).16th Joint Geomorphological Meeting Morphoevolution of Tectonically Active Belts Rome, July 1-5, 2012

  5. Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy

    USGS Publications Warehouse

    Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; de Vivo, B.

    2003-01-01

    The Campanian Plain is an 80 x 30 km region of southern Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600 ka, has been identified as the Campanian Volcanic Zone (CVZ). The products of three periods of trachytic ignimbrite volcanism (289-246 ka, 157 ka and 106 ka) have been identified in the Apennine area in the last 300 ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310 km3), occurred in the CVZ 39 ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally zoned magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte. The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift, Initially the venting of volatile-rich type A magma deposited the products to the N-NE of the CVZ. During the eruption, the Acerra graben already affected by a NE-SW fault system, was transected by E-W faults, forming a cross-graben that extended to the gulf of Naples. E-W faults were then further dislocated by NE-SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E-SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the Naples area. This initial volcanic activity is assumed to be a precursor to the CI trachytic eruptions, which vented along regional faults.

  6. Hillslope degradation in small Mediterranean catchments along the Apennine chain in Italy

    NASA Astrophysics Data System (ADS)

    Brandolini, Pierluigi; Capolongo, Domenico; Cappadonia, Chiara; Cevasco, Andrea; Conoscenti, Christian; Del Monte, Maurizio; Pepe, Giacomo; Piccarreta, Marco; Vergari, Francesca

    2017-04-01

    In this research, the results coming from the investigation of some small catchments located along the Apennines (Italy) affected by hillslope degradation are presented. Four key study areas, particularly sensitive to climatic and anthropic changes, have been selected in Liguria (Cinque Terre), Tuscany (Val d'Orcia), Basilicata (Fossa Bradanica)) and Sicily (Scillato) regions. These areas are characterized by different climatic and geological conditions, orographic and tectonic settings, land use evolution and land management practices. All of them recorded very severe landscape changes in the last few centuries, because of unsustainable anthropogenic modification together with their increasing proneness to fast erosion by mass movements and runoff on slopes. Hence, degradation processes are widespread in the selected areas leading to loss and depletion of soil, economic damage, risk conditions and environmental changes. Interestingly, despite the small extent, the selected basins can be considered representative of the land degradation issues that occurred at the wider regional scale. The obtained results show that the maximum denudation effects occur during occasional but extreme rainfall events that can mobilize, in a few hours or days, the total annual sediment yield estimated for a single catchment and for a single slope. Furthermore, the case studies revealed that land mismanagement has a crucial impact in increasing the erosion rates, especially when crop-land are abandoned and/or land maintenance practices are no longer carried out. Since hillslope degradation, together with the recent changes in the rainfall regime and in land use, can lead to an increasing in both geomorphological hazard and risk, our findings can contribute: (i) to define a proper land management; (ii) to support the decision-making; (iii) to schedule an effective strategy for landscape conservation and its enhancement.

  7. Geoelectrical Tomographies for the study of some landslide areas in the Lucanian Apennine Chain (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Perrone, A.; Lapenna, V.; Piscitelli, S.; Rizzo, E.; Sdao, F.

    2003-04-01

    In the frame of the two projects supported by the Italian Ministry of Research: "Design of geophysical monitoring network in areas of the Basilicata Region characterized by a high hydrogeological hazard" and "Geomorphological study and landslides control in some areas of the Basilicata region characterized by historical-cultural heritage", we developed a research activity focussed on a 2D electromagnetic monitoring and modelling of landslide bodies. Basilicata region (Southern Italy), being dissected by numerous and often significant rivers and characterized by the outcrop of terrains with bad mechanical properties, is one of the more exposed regions of the southern Apennine chain to hydrogeologic hazard and shows a complete panorama of mass movements. In order to study some landslide areas located in the Basilicata region, such as Varco Izzo, Latronico, Campomaggiore and Maratea, we carried out 2D electrical resistivity imaging (ERI), 2D-3D self-potential tomographies and maps, combining advanced technologies for data acquisition and new methods for data inversion (Loke and Barker, 1996; McCann and Forster, 1990; Patella, 1997). The geophysical results allowed us: to outline the discontinuity between landslide material and bedrock, to identify the possible reactivation surfaces, to obtain useful information about the thickness of the mobilised material and the main patterns of the underground fluid flow. Geophysical results were compared with the data coming from geological and hydrogeological surveys and from the analysis of aerial photo and boreholes. The good correlation between the main anomalous geoelectrical zones, the main structural lineaments and hydrogeological characteristics of the investigated areas, allowed us to consider the used geoelectrical methods as a possible powerful tool to investigate landslide areas characterised by very complex geology.

  8. Dynamics and conceptual model of the Rossena castle landslide (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Chelli, A.; Mandrone, G.; Ruffini, A.; Truffelli, G.

    2005-11-01

    In the Northern Apennines there are many historical villages and castles, which are of great value and represent a cultural heritage of great importance. Their presence within a territory greatly affected by landslide hazards creates, in many circumstances, the need to solve problems of land management and to act for the preservation of historical monuments. This paper describe an interesting landslide, failed during the night of 28 February 2004, that involved the village of Rossena: the failure damaged the village (Fig. 1), the road and the fields down to the stream but, fortunately, the castle just upslope the village was not involved at all. The 10th century massive castle of Rossena stands on the top of a cliff at about 500 m a.s.l., on the border between the provinces of Parma and Reggio Emilia, and it is surrounded by a small ancient village. The castle of Rossena is the best preserved stronghold of the Longobard times, enlarged and reinforced in the tenth century and partially rebuilt by Bonifacio, the father of Matilda of Canossa (the Vice-Queen of Italy and probably the most important woman in the Middle Ages) as a defensive structure guarding the Enza Valley. In addition, at Conossa, very close to Rossena, there was the meeting between Pope Gregory VII and the Emperor of Germany Henry IV, during the historical event known as "fight for the investitures". For these reasons, the area of Rossena is one of the most relevant from a historical point of view in the entire western part of the Emilia Romagna Region and it also has a high value as a geosite (Coratza et al., 2004).

  9. Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Villani, F.; Pierdominici, S.; Cinti, F. R.

    2009-12-01

    The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.

  10. Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy).

    NASA Astrophysics Data System (ADS)

    Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina; De'Haven Hyman, Jeffrey; Valocchi, Albert J.

    2017-04-01

    The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a numerical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). This fault zone is considered a good analogue for the massive presence of fluid migration in the form of tar. Faults are mechanical features and cause permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead the fault zone to act as a conduit, a barrier, or a combined conduit-barrier system. We integrated existing information and our own structural surveys of the area to better identify the major fault features (e.g., type of fractures, statistical properties, geometrical and petro-physical characteristics). In our model the damage zones of the fault are described as discretely fractured medium, while the core of the fault as a porous one. Our model utilizes the dfnWorks code, a parallelized computational suite, developed at Los Alamos National Laboratory (LANL), that generates three dimensional Discrete Fracture Network (DFN) of the damage zones of the fault and characterizes its hydraulic parameters. The challenge of the study is the coupling between the discrete domain of the damage zones and the continuum one of the core. The field investigations and the basic computational workflow will be described, along with preliminary results of fluid flow simulation at the scale of the fault.

  11. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    PubMed

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  12. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  13. Effects of lateral variations of crustal rheology on the occurrence of post-orogenic normal faults: The Alto Tiberina Fault (Northern Apennines, Central Italy)

    NASA Astrophysics Data System (ADS)

    Pauselli, Cristina; Ranalli, Giorgio

    2017-11-01

    The Northern Apennines (NA) are characterized by formerly compressive structures partly overprinted by subsequent extensional structures. The area of extensional tectonics migrated eastward since the Miocene. The youngest and easternmost major expression of extension is the Alto Tiberina Fault (ATF). We estimate 2D rheological profiles across the NA, and conclude that lateral rheological crustal variations have played an important role in the formation of the ATF and similar previously active faults to the west. Lithospheric delamination and mantle degassing resulted in an easterly-migrating extension-compression boundary, coinciding at present with the ATF, where (i) the thickness of the upper crust brittle layer reaches a maximum; (ii) the critical stress difference required to initiate faulting at the base of the brittle layer is at a minimum; and (iii) the total strengths of both the brittle layer and the whole lithosphere are at a minimum. Although the location of the fault is correlated with lithospheric rheological properties, the rheology by itself does not account for the low dip ( 20°) of the ATF. Two hypotheses are considered: (a) the low dip of the ATF is related to a rotation of the stress tensor at the time of initiation of the fault, caused by a basal shear stress ( 100 MPa) possibly related to corner flow associated with delamination; or (b) the low dip is associated to low values of the friction coefficient (≤ 0.5) coupled with high pore pressures related to mantle degassing. Our results establishing the correlation between crustal rheology and the location of the ATF are relatively robust, as we have examined various possible compositions and rheological parameters. They also provide possible general indications on the mechanisms of localized extension in post-orogenic extensional setting. The hypotheses to account for the low dip of the ATF, on the other hand, are intended simply to suggest possible solutions worthy of further study.

  14. Concordance between macrophytes and macroinvertebrates in a Mediterranean river of central Apennine region.

    PubMed

    Traversetti, Lorenzo; Scalici, Massimiliano; Ginepri, Valeria; Manfrin, Alessandro; Ceschin, Simona

    2014-05-01

    The main aim of this study was to improve the knowledge about the concordance among macrophytes and macroinvertebrates to provide complementary information and facilitate the procedures for quality assessment of river ecosystems. Macrophytes and macroinvertebrates were collected in 11 sampling sites along a central Apennine calcareous river in October 2008 and June 2009. The concordance between the two biomonitoring groups was tested according to several environmental parameters. The comparison of data matrix similarities by Mantel test showed differences in the assemblage of macrophytes and macroinvertebrates along the river since correlation values were 0.04, p > 0.05 in October 2008 and 0.39, p > 0.05 in June 2009. The study revealed lack of concordance between the two groups, emphasizing that the information provided by macrophytes and macroinvertebrates does not overlap in terms of response to environmental parameters. Indeed, the two different biological groups resulted useful descriptors of different parameters. Together, they could represent a complementary tool to reflect the river environmental quality.

  15. The AlpArray-CASE project: temporary broadband seismic network deployment and characterization

    NASA Astrophysics Data System (ADS)

    Dasović, Iva; Molinari, Irene; Stipčević, Josip; Šipka, Vesna; Salimbeni, Simone; Jarić, Dejan; Prevolnik, Snježan; Kissling, Eduard; Clinton, John; Giardini, Domenico

    2017-04-01

    While the northern part of the Adriatic microplate will be accurately imaged within the AlpArray project, its central and southern parts deserve detailed studies to obtain a complete picture of its structure and evolution. The Adriatic microplate forms the upper plate in the Western and Central Alps whereas it forms the lower plate in the Apennines and the Dinarides. However, the tectonics of Adriatic microplate is not well constrained and remains controversial, especially with regard to its contact with the Dinarides. The primary goal of the Central Adriatic Seismic Experiment (CASE) is to provide high quality seismological data and to shed light on seismicity and 3D lithospheric structure of the central Adriatic microplate and its boundaries. The CASE project is an international AlpArray Complementary Experiment carried out by four institutions: Department of Earth Sciences and Swiss Seismological Service of ETH Zürich (CH), Department of Geophysics and Croatian Seismological Service of Faculty of Science at University of Zagreb (HR), Republic Hydrometeorological Service of Republic of Srpska (BIH) and Istituto Nazionale di Geofisica e Vulcanologia (I). It establishes a temporary seismic network, expected to be operational at least for one year, composed by existing permanent and temporary seismic stations operated by the institutions involved and newly deployed temporary seismic stations, installed in November and December 2016, provided by ETH Zürich and INGV: five in Croatia, four in Bosnia and Herzegovina and two in Italy. In this work, we present stations sites and settings and discuss their characteristics in terms of site-effects and noise level of each station. In particular, we analyse the power spectral density estimates in order to investigate major sources of noise and background noise.

  16. The Sasso Pizzuto landslide dam and seismically induced rockfalls along the Nera River gorge (Central Italy).

    NASA Astrophysics Data System (ADS)

    Romeo, Saverio; Di Matteo, Lucio; Melelli, Laura; Cencetti, Corrado; Dragoni, Walter; Fredduzzi, Andrea; De Rosa, Pierluigi

    2017-04-01

    The seismically induced landslides are among the most destructive and dangerous effects of an earthquake. In the Italian contest, this is also documented by a national catalogue that collects data related to earthquake-induced ground failures in the last millennium (CEDIT database). In particular, Central Italy has been affected by several historical landslides triggered by significant earthquakes, the last of which occurred in August-October 2016, representing the Italian strongest event after the 1980 Irpinia earthquake (Mw 6.9). The study presents the effects of recent seismically induced rockfalls occurred within the Central Italy seismic sequence (October 30, 2016) along the Nera River gorge between Umbria and Marche. The study area is completely included in the Monti Sibillini National Park, where the highest mountain chain in the Umbrian-Marchean Apennine is located. Most of rockfalls have affected the "Maiolica" formation, a stratified and fractured pelagic limestone dating to the Early Cretaceous. The seismic sequence produced diffuse instabilities along the SP 209 road within the Nera River gorge: boulders, debris accumulations and diffuse rockfalls have been mapped. Most of boulders have size ranging from 0.3 to 2.0 m in diameter. Although several strong quakes (Mw > 5) occurred during the August-October sequence, only the main quake triggered the Sasso Pizzuto rockfall producing a landslide dam along the Nera River. The landslide appears to have originated as a wedge failure, which evolved to free fall when the rock block lost the contact with the stable rock mass. In other words, the quake produced the "explosion" of the rock wall allowing the rockfall process. Once the rock mass reached the toe of the slope, it was broken triggering a rock avalanche that obstructed both the Nera River and SP 209 road. With the aim to estimate the total volume of involved rock, a field survey was carried out by using a laser rangefinder. Remote measures were acquired taking into account the inclination, horizontal, vertical and slope distance. Through topographical calculations and GIS analysis, it has been possible to reconstruct the size and shape of debris accumulation estimating a volume of about 70000 m3 (±8000 m3 due to measurements accuracy). This agrees with qualitative measures independently performed. The maximum distance between the debris accumulation and rockfall source area is about 200 m; the altitude difference is 270 m. The landslide debris partially dammed the Nera River, generating a lake upstream: currently the stream is flowing on the road among debris.

  17. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-08-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.

  18. Modeling River Incision Across Active Normal Faults Using the Channel-Hillslope Integrated Landscape Development Model (CHILD): the case of the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G.; Whittaker, A.; Cowie, P.; Roberts, G.

    2005-12-01

    River systems constitute some of the most efficient agents that shape terrestrial landscapes. Fluvial incision rates govern landscape evolution but, due to the variety of processed involved and the difficulty of quantifying them in the field, there is no "universal theory" describing the way rivers incise into bedrock. The last decades have seen the birth of numerous fluvial incision laws associated with models that assign different roles to hydrodynamic variables and to sediments. In order to discriminate between models and constrain their parameters, the transient response of natural river systems to a disturbance (tectonic or climatic) can be used. Indeed, the different models predict different kinds of transient response whereas most models predict a similar power law relationship between slope and drainage area at equilibrium. To this end, a coupled field - modeling study is in progress. The field area consists of the Central Apennines that are subject to active faulting associated with a regional extensional regime. Fault initiation occurred 3 My ago, associated with throw rates of 0.3 +/- 0.2 mm/yr. Due to fault interaction and linkage, the throw rate on the faults located near the center of the fault system increased dramatically 0.7 My ago (up to 2 mm/yr), whereas slip rates on distal faults either decayed or remained approximately constant. The present study uses the landscape evolution model, CHILD, to examine the behavior of rivers draining across these active faults. Distal and central faults are considered in order to track the effects of the fault acceleration on the development of the fluvial network. River characteristics have been measured in the field (e.g. channel width, slope, sediment grain size) and extracted from a 20m DEM (e.g. channel profile, drainage area). We use CHILD to test the ability of alternative incision laws to reproduce observed topography under known tectonic forcing. For each of the fluvial incision models, a Monte-Carlo simulation has been performed, allowing the exploration of a wide range of values for the different parameters relative to tectonic, climate, sediment characteristics, and channel geometry. Observed profiles are consistent with a dominantly wave-like, as opposed to diffusive, transient response to accelerated fault motion. The ability of the different models to reproduce more or less accurately the catchment characteristics, in particular the specific profiles exhibited by the rivers, are discussed in light of our first results.

  19. Detailed crustal structure in the area of the southern Apennines-Calabrian Arc border from local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Totaro, C.; Koulakov, I.; Orecchio, B.; Presti, D.

    2014-12-01

    We present a new seismic velocity model for the southern Apennines-Calabrian Arc border region with the aim to better define the crustal structures at the northern edge of the Ionian subduction zone. This sector also includes the Pollino Mts. area, where a seismic sequence of thousands of small to moderate earthquakes has been recorded between spring 2010 and 2013. In this sector a seismic gap was previously hypothesized by paleoseismological evidences associated with the lack of major earthquakes in historical catalogs. To perform the tomographic inversion we selected ca. 3600 earthquakes that have occurred in the last thirty years and recorded by permanent and temporary networks managed by INGV and Calabria University. Using for the first time the Local Tomography Software for passive tomography inversion (LOTOS hereinafter) to crustal analysis in southern Italy, we have computed the distribution of Vp, Vs, and the Vp/Vs ratio. The obtained velocity model, jointly evaluated with results of synthetic modeling, as well as with the hypocenter distribution and geological information, gives us new constraints on the geodynamical and structural knowledge of the study area. The comparison between the shallow tomography sections and surface geology shows good correlation between velocity patterns and the main geological features of the study area. In the upper crust a low-velocity anomaly of P- and S-waves is detectable beneath the Pollino Mts. area and seems to separate the Calabrian and southern Apennines domains, characterized by higher velocities. The distributions of high Vp/Vs ratio, representing strongly fractured rocks with likely high fluid content, clearly correlate with areas of significant seismicity. In the lower crust we detect a clear transition from high to low seismic velocities in correspondence with the Tyrrhenian coast of the study area, which may represent the transition from the thinner Tyrrhenian crust to the thicker one beneath Calabria. In this area, also characterized by a progressive detachment of a retreating lithospheric slab, the generation of a Subduction-Transform Edge Propagator (STEP) fault zone, that laterally decouples subducting lithosphere from non-subducting lithosphere in a scissor type of fashion, may have taken place. These conditions imply the existence of a kinematic decoupling which allows for differential movement between the Calabrian Arc and the southern Apennine chain. The low velocity anomaly separating the southern Apennines and the Calabrian Arc domain may be related to fluid upwelling occurring in correspondence with the northern edge of the Calabrian subducting slab.

  20. The 2016 Central Italy Earthquake: an Overview

    NASA Astrophysics Data System (ADS)

    Amato, A.

    2016-12-01

    The M6 central Italy earthquake occurred on the seismic backbone of the Italy, just in the middle of the highest hazard belt. The shock hit suddenly during the night of August 24, when people were asleep; no foreshocks occurred before the main event. The earthquake ruptured from 10 km to the surface, and produced a more than 17,000 aftershocks (Oct. 19) spread on a 40x20 km2 area elongated NW-SE. It is geologically very similar to previous recent events of the Apennines. Both the 2009 L'Aquila earthquake to the south and the 1997 Colfiorito to the north, were characterized by the activation of adjacent fault segments. Despite its magnitude and the well known seismic hazard of the region, the earthquake produced extensive damage and 297 fatalities. The town of Amatrice, that paid the highest toll, was classified in zone 1 (the highest) since 1915, but the buildings in this and other villages revealed highly vulnerable. In contrast, in the town of Norcia, that also experienced strong ground shaking, no collapses occurred, most likely due to the retrofitting carried out after an earthquake in 1979. Soon after the quake, the INGV Crisis Unit convened at night in the Rome headquarters, in order to coordinate the activities. The first field teams reached the epicentral area at 7 am with the portable seismic stations installed to monitor the aftershocks; other teams followed to map surface faults, damage, to measure GPS sites, to install instruments for site response studies, and so on. The INGV Crisis Unit includes the Press office and the INGVterremoti team, in order to manage and coordinate the communication towards the Civil Protection Dept. (DPC), the media and the web. Several tens of reports and updates have been delivered in the first month of the sequence to DPC. Also due to the controversial situation arisen from the L'Aquila earthquake and trials, particular attention was given to the communication: continuous and timely information has been released to citizens and media, through interviews, social media, participation to radio and TV programs; a press conference was organized on the same day of the earthquake; the INGVterremoti social media platform released tens of articles on the seismicity, historical events, seismic hazard, updates on the ongoing research, with a positive feedback from media and citizens.

  1. Some anomalous behaviour of vertebrates and insects preceding M5+ earthquakes in the North Western Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Straser, Valentino

    2013-04-01

    Earthquakes with a magnitude greater than M5+ are an unusual event in the seismic area of the Frignano District and the areas surrounding Parma in the North Western Apennines (Italy). Only two seismic events have occurred in the last four years: on 23 December 2008 (M5.1) and on 27 January 2012 (M5.4). The earthquake of 23 December 2008 allowed the verification of unusual behaviour in man and animals in the run-up to the main shock, in addition to anomalies of an electromagnetic type. An initial study showed that there are elements of coincidence between the seismic events and the number of admissions to hospitals around the epicentre: in the month of December 2008, the days with the greatest number of admissions coincided with seismic shocks. A half hour before the main event of 23 December, recorded at 16:24:21 local time (see: INGV), a slowworm (Anguis fragilis) left its hibernation site and died shortly afterwards from the cold on a road, as did a viper (Vipera aspis) found near some dwellings in an area around twenty kilometres from the epicentre. The investigation proceeded in 2009, but this time based on the number of daily admissions to the hospital A&E department, between June and December 2009. During the six months of the investigation, the maximum number of emergencies was 9 per day, while the earthquakes were in line with the usual number and magnitude for the Frignano seismic district. The earthquakes from June to December 2009 numbered 10, with a magnitude from M2.5 to M3.6. In 8 cases, in the 48 hours preceding the occurrence of the seism, there was a greater number of hospital emergencies. The subsequent occasion to check on a possible relationship between anomalous behaviour in animals and a seism occurred on 27 January 2012 (see: INGV), when an earthquake with a magnitude of M5.4 shook the North Western Apennines, thankfully without resulting in victims. Like 2008, in an area around fifteen kilometres from the epicentre, a grass snake (Zamenis longissimus) was found lying in snow beside a road. A few months later, in the Emilian Po Valley Plain, around 70-80km from the area under investigation, a long seismic sequence featuring seven earthquakes with a magnitude between M5.0 and M6.0, afforded a further opportunity to check for other anomalies. In the area struck by one of the most powerful seisms, local beekeepers noted the sudden disappearance of bees (Apis mellifera) from their hives, especially near San Carlo (Ferrara - Italy), where a deep crack had formed in the ground near the village which, in certain stretches, had raised the ground by as much as half a metre and ejected considerable quantities of mud due to the liquefaction of the sand, in some areas and near the dwellings.

  2. View of Florence, Italy area from Skylab

    NASA Image and Video Library

    1973-08-01

    SL3-33-156 (July-September 1973) --- A near vertical view of the Florence, Italy area as photographed from Earth orbit by one of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. The view extends from the Ligurian Sea, an extension of the Mediterranean Sea, across the Apennine Mountains to the Po River Valley. Florence (Firenze) is near the center of the land mass. The mouth of the Arno River is at the center of the coastline. The city of Leghorn (Livorno) is on the coast just south of the Arno River. This picture was taken with type 2443 infrared color film. The S190-A experiment is part of the Skylab Earth Resources Experiments Package. Federal agencies participating with NASA on the EREP project are the Department of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA

  3. Alps to Apennines zircon roller coaster along the Adria microplate margin.

    PubMed

    Jacobs, J; Paoli, G; Rocchi, S; Ksienzyk, A K; Sirevaag, H; Elburg, M A

    2018-02-09

    We have traced the particle path of high-pressure metasedimentary rocks on Elba Island, Northern Apennines, with the help of a U-Pb-Hf detrital zircon study. One quarter of the analysed zircons are surprisingly young, 41-30 Ma, with a main age peak at ca. 32 Ma, indicating an unexpected early Oligocene maximum deposition age. These Oligocene ages with negative εHf indicate a volcanic source region in the central-southern Alps. Though young by geological means, these zircons record an extraordinary geodynamic history. They originated in a volcanic arc, during the convergence/collision of the the Adria microplate with Europe from ca. 65 to 30 Ma. Thereafter, the Oligocene zircons travelled ca. 400 km southward along the Adria margin and the accretionary prism to present-day Tuscany, where they were subducted to depths of at least 40 km. Shortly thereafter, they were brought to the surface again in the wake of hinge roll back of the Apennine subduction zone and the resulting rapid extensional exhumation. Such a zircon roller coaster requires a microplate that has back-to-back subduction zones with opposing polarities on two sides.

  4. Soil organic carbon pool's contribution to climate change mitigation on marginal land of a Mediterranean montane area in Italy.

    PubMed

    Tommaso, Chiti; Emanuele, Blasi; Guido, Pellis; Lucia, Perugini; Vincenza, Chiriacò Maria; Riccardo, Valentini

    2018-07-15

    To evaluate the mitigation potential provided by the SOC pool, we investigated the impact of woody encroachment in the 0-30 cm depth of mineral soil across a natural succession from abandoned pastures and croplands to broadleaves forests on the central Apennine in Italy. In parallel, to assess the effect of the land use change (LUC) from cropland to pasture, a series of pastures established on former agricultural sites, abandoned at different time in the past, were also investigated. Our results show that woody encroachment on former pastures and croplands contributes largely to mitigate climate change, with an increase of the original SOC stock of 45% (40.5 Mg C ha -1 ) and 120% (66.5 Mg C ha -1 ), respectively. Also the LUC from croplands to pastures, greatly contributes to climate change mitigation trough a SOC increase of about 80% of the original SOC (45.9 Mg C ha -1 ). The management of abandoned lands represent a crucial point in the mitigation potential of agriculture and forestry activities, and particularly the role of the SOC pool. A policy effort should focus on minimizing the risk of speculative management options, particularly when the value of woody biomass become convenient to supply new energy systems allowing monetizing a long term forests productivity. In conclusion, despite both the land abandonment and the LUC can have a different impact on the SOC pool under different climatic conditions, these results can be useful to improve the SOC estimates in the National greenhouse gases Inventory at country level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mechanical coupling between earthquakes and volcanoes inferred from stress transfer models: evidence from Vesuvio, Etna and Alban Hills (Italy)

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Feuillet, N.; Nostro, C.; Musumeci, C.

    2003-04-01

    We investigate the mechanical interactions between tectonic faults and volcanic sources through elastic stress transfer and discuss the results of several applications to Italian active volcanoes. We first present the stress modeling results that point out a two-way coupling between Vesuvius eruptions and historical earthquakes in Southern Apennines, which allow us to provide a physical interpretation of their statistical correlation. Therefore, we explore the elastic stress interaction between historical eruptions at the Etna volcano and the largest earthquakes in Eastern Sicily and Calabria. We show that the large 1693 seismic event caused an increase of compressive stress along the rift zone, which can be associated to the lack of flank eruptions of the Etna volcano for about 70 years after the earthquake. Moreover, the largest Etna eruptions preceded by few decades the large 1693 seismic event. Our modeling results clearly suggest that all these catastrophic events are tectonically coupled. We also investigate the effect of elastic stress perturbations on the instrumental seismicity caused by magma inflation at depth both at the Etna and at the Alban Hills volcanoes. In particular, we model the seismicity pattern at the Alban Hills volcano (central Italy) during a seismic swarm occurred in 1989-90 and we interpret it in terms of Coulomb stress changes caused by magmatic processes in an extensional tectonic stress field. We verify that the earthquakes occur in areas of Coulomb stress increase and that their faulting mechanisms are consistent with the stress perturbation induced by the volcanic source. Our results suggest a link between faults and volcanic sources, which we interpret as a tectonic coupling explaining the seismicity in a large area surrounding the volcanoes.

  6. Anatomy of biocalcarenitic units in the Plio-Pleistocene record of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cau, Simone; Roveri, Marco; Taviani, Marco

    2017-04-01

    The Castell'Arquato Basin (CAB) in the foothills of the thrust-belt Northern Apennines is a foreland basin infilled by Plio-Quaternary sediments and a reference area for Plio-Pleistocene biostratigraphy. The CAB exposes plurimetric biodetrital carbonate units at discrete temporal intervals. Such shell-rich units are at places lithified, turning into conspicuous biodetritral carbonate rocks (biocalcarenites) that display a cyclical stacking motif highlighted by the regular alternation with finer-grained marine deposits. The cyclical nature of thick biocalcarenites has been hypothesized to be orbitally-controlled by obliquity and/or precession cyclicity. Furthermore, biocalcarenite-mudstone couplets form distinct clusters governed by 100-400 ka eccentricity maxima starting from 3.1 Ma at the inception of the Northern Hemisphere glaciation. They correlate with sapropels cycles formed at times of maximum insolation (precession minima). The CAB calcarenites are poorly known with respect to their environmental genetic context what motivated a detailed paleoecological analysis to unravel at best their formative context. Five distinct biofacies arranged in stacking patterns are identified through two-way cluster analysis based on the macrofossil content. Our quantitative and qualitative results suggest that these polytaxic shell concentrations and their bracketing marine mudstones developed in middle shelf settings being sensitive to climatically-driven changes.

  7. Identification of novel sulfur-containing steroids in sediments and petroleum: probable incorporation of sulfur into δ 5,7-sterols during early diagenesis

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Schouten, Stefan; de Leeuw, Jan W.; van Duin, Adri C. T.; Geenevasen, Jan A. J.

    1999-01-01

    A novel sulfur-containing sterane, 4α,7α-epithio-5β-cholestane, has been identified in a sediment extract from the Miocene Northern Apennines marl (Italy) after its isolation by column chromatography and high pressure liquid chromatography. The compound has been characterised by GC-MS and mild Nickel boride desulfurisation and one and two-dimensional 1H NMR techniques. C 27-C 29 homologs have been detected in sediment extracts of three different formations and in one petroleum sample. These sulfur-containing steroids are probably formed by an intramolecular reaction of inorganic sulfides with early diagenetic products of Δ 5,7-sterols.

  8. Integration of rainfall/runoff and geomorphological analyses flood hazard in small catchments: case studies from the southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio

    2017-04-01

    We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For such an approach has been used a methodology that consists of the application of a process-based geomorphological mapping, based on data derived from GIS analysis using high-resolution DEMs, field measurements and aerial photograph interpretations. Our integrated approach, which allows quantification of the flow rate and a semi-quantitative assessment of sediment that can be mobilized during hydro-meteorological events, is applied for the first time to torrential catchmenmts of the southern Apennines and may significantly contribute to previsional studies aimed at risk mitigation in the study region.

  9. Crustal structure, evolution, and volcanic unrest of the Alban Hills, Central Italy

    USGS Publications Warehouse

    Chiarabba, C.; Amato, A.; Delaney, P.T.

    1997-01-01

    The Alban Hills, a Quaternary volcanic center lying west of the central Apennines, 15-25 km southeast of Rome, last erupted 19ka and has produced approximately 290 km3 of eruptive deposits since the inception of volcanism at 580 ka. Earthquakes of moderate intensity have been generated there at least since the Roman age. Modern observations show that intermittent periods of swarm activity originate primarily beneath the youngest features, the phreatomagmatic craters on the west side of the volcano. Results from seismic tomography allow identification of a low-velocity region, perhaps still hot or partially molten, more than 6 km beneath the youngest craters and a high-velocity region, probably a solidified magma body, beneath the older central volcanic construct. Thirty centimeters of uplift measured by releveling supports the contention that high levels of seismicity during the 1980s and 1990s resulted from accumulation of magma beneath these craters. The volume of magma accumulation and the amount of maximum uplift was probably at least 40 ?? 106 m3 and 40 cm, respectively. Comparison of newer levelings with those completed in 1891 and 1927 suggests earlier episodes of uplift. The magma chamber beneath the western Alban Hills is probably responsible for much of the past 200 ka of eruptive activity, is still receiving intermittent batches of magma, and is, therefore, continuing to generate modest levels of volcanic unrest. Bending of overburden is the most likely cause of the persistent earthquakes, which generally have hypocenters above the 6-km-deep top of the magma reservoir. In this view, the most recent uplift and seismicity are probably characteristic and not precursors of more intense activity.

  10. Active transpression in the northern Calabria Apennines, southern Italy

    NASA Astrophysics Data System (ADS)

    Ferranti, L.; Santoro, E.; Mazzella, M. E.; Monaco, C.; Morelli, D.

    2009-10-01

    An integrated analysis of geomorphologic and structural data, offshore seismic profiles and local network seismicity, is used to shed light on the hitherto poorly known active deformation field that affects the Southern Apennines orogen in northern Calabria region. In the Southern Apennines, Middle Pleistocene waning of Miocene-Early Pleistocene thin-skinned frontal thrust belt motion toward the Apulian foreland to the NE was coeval to onset of regional uplift, which is documented by flights of raised marine terraces. Short-wavelength (˜ 5-10 km) and amplitude (˜ 20-50 m) undulations are superposed to the regional uplift (˜ 100 km length and ˜ 500 m amplitude scale) profile of Middle-Upper Pleistocene marine terraces on the Ionian Sea coast of northern Calabria stretching along the borders of the Sila and Pollino mountain ranges and across the intervening Sibari coastal plain. The secondary undulations spatially coincide with the last generation of ˜ W- to ˜ WNW-striking folds traced in bedrock and locally within Early to Middle Pleistocene continental to transitional deposits. The very recent activity of these structures is highlighted by a range of fluvial geomorphic anomalies and by involvement in folding and locally transpressional faulting of the Middle Pleistocene and younger depositional sequences submerged beneath the continental shelf. We argue that the local-scale, but pervasive undulations in the deformation profile of marine terraces represent shallow-crustal folds grown within a recent and still active transpressional field. A major structural culmination bound by fore- and retro-verging transpressional shear zones is represented by the Pollino mountain range and its offshore extension in the Amendolara ridge, and a further SW-directed transpressional belt is found in northern Sila and adjacent sea bottom. Epicenter distribution and focal solutions of low- to moderate crustal earthquakes illuminate the two NW-SE trending structural belts beneath the Amendolara ridge and northern Sila, where partitioning between thrust and left strike-slip motion occurs in response to ˜ E to ˜ NE directed shortening. A local ˜ NW-SE extension is recorded by fault-kinematic analysis on NE-SW striking fault segments parallel to the coast on the eastern flank of Pollino. These small-length normal faults do not form a through-going lineament, rather they accommodate the seaward collapse of the uppermost crust above the deeper shortening compartment. Conversely, the active transpression testified by geomorphic, structural and seismicity data is accommodated along deep-seated oblique back-thrusts that involve the Apulian foreland plate underlying the now inactive thin-skinned accretionary wedge down to near-Moho depths. In light of the tight interlacing between regional and local components of deformation affecting the marine terraces, we suggest that the large-scale uplift in this sector of Calabria may reflect whole crustal-scale folding. The novel seismotectonic frame reconstructed for this region is consistent with GPS velocities suggesting that large part of geodetic shortening detected between the Apennines and the Apulian block on the eastern side of southern Italy might be accommodated in northern Calabria.

  11. Magnetic anomalies possibly linked to local low seismicity

    NASA Astrophysics Data System (ADS)

    Masci, F.; Palangio, P.; di Persio, M.

    2009-09-01

    During the last twenty years a time-synchronized network of magnetometers has operated in Central Italy along the Apennine chain to monitor the magnetic field anomalies eventually related to the tectonic activity. At present time the network consists of five stations. In the past only few anomalies in the local geomagnetic field, possibly associated to earthquakes, has been observed, not least because the network area has shown a low-moderate seismic activity with the epicentres of the few events with Ml≥5 located away from the network station. During 2007 two Ml≍4 earthquakes occurred in proximity of two stations of the network. Here we report the magnetic anomalies in the geomagnetic field that could be related with these tectonic events. To better investigate these two events a study of ULF (ultra-low-frequency) emissions has been carried out on the geomagnetic field components H, D, and Z measured in L'Aquila Observatory during the period from January 2006 to December 2008. We want to stress that this paper refers to the period before the 2009 L'Aquila seismic sequence which main shock (Ml=5.8) of 6 April heavily damaged the medieval centre of the city and surroundings. At present time the analysis of the 2009 data is in progress.

  12. SURMODERR: A MATLAB toolbox for estimation of velocity uncertainties of a non-permanent GPS station

    NASA Astrophysics Data System (ADS)

    Teza, Giordano; Pesci, Arianna; Casula, Giuseppe

    2010-08-01

    SURMODERR is a MATLAB toolbox intended for the estimation of reliable velocity uncertainties of a non-permanent GPS station (NPS), i.e. a GPS receiver used in campaign-style measurements. The implemented method is based on the subsampling of daily coordinate time series of one or more continuous GPS stations located inside or close to the area where the NPSs are installed. The continuous time series are subsampled according to real or planned occupation tables and random errors occurring in antenna replacement on different surveys are taken into account. In order to overcome the uncertainty underestimation that typically characterizes short duration GPS time series, statistical analysis of the simulated data is performed to estimate the velocity uncertainties of this real NPS. The basic hypotheses required are: (i) the signal must be a long-term linear trend plus seasonal and colored noise for each coordinate; (ii) the standard data processing should have already been performed to provide daily data series; and (iii) if the method is applied to survey planning, the future behavior should not be significantly different from the past behavior. In order to show the strength of the approach, two case studies with real data are presented and discussed (Central Apennine and Panarea Island, Italy).

  13. Deformation along the leading edge of the Maiella thrust sheet in central Italy

    NASA Astrophysics Data System (ADS)

    Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio

    2010-09-01

    The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.

  14. Seismic Investigations of the Murci Geothermal Field (Southern Tuscany, Italy): Preliminary Results

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Alexandrakis, C.; Buske, S.

    2013-12-01

    The Monte Amiata region in the Southern Tuscany, Central Italy, describes a volcanic complex with great significance in terms of the regional fresh water supply, mining and geothermal power generation. Mainly for the latter purpose, the volcanic area of Mt Amiata has been the subject of extensive geological and geophysical research (e.g. Dini et al., 2010 and references therein). The insights from these studies have led to successful geothermal production in the Mt Amiata region since the early 1960s (e.g. Batini et al., 2003). Today's most important reservoirs in this area are the Bagnore and the Piancastagnaio fields which are both operated by the company Enel Green Power. The work presented here deals with the Murci area, another potential reservoir located about 10 km southwest of the Mt Amiata volcanic complex. Therefore, in order to get a more detailed understanding of this area, five reflection seismic profiles were carried out. We have performed on three of them a preliminary depth-migrated images, through Kirchhoff prestack depth migration (KPSDM). The vital point of depth migration algorithms is the accuracy of the velocity model that is used for the backpropagation of the seismic data. Therefore, we derived a suitable 1D starting model from nearby well logs and VSP measurements. In order to remove the large topography effects along the profiles, we then utilized first-arrival tomography for each seismic line. For the following processing we incorporated these 2D tomographic results into our starting model which compensates for static effects and improves the resolution in the near-surface area. The velocity models were then used in the application of KPSDM to the seismic data for each profile, respectively. The resulting preliminary images show a zone of high seismic reflectivity, known as the 'K-horizon' (e.g. Brogi, 2008), and could improve its geological interpretation. These promising results encourage us to proceed with deeper migration velocity analysis which will reveal more details about the structures of the Murci area. Batini, F. et al., 2003: Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy), Episodes, 26, 239-244. Brogi, A., 2008. The structure of the Monte Amiata volcano-geothermal area (Northern Apennines, Italy): Neogene-Quaternary compression versus extension, Int J Earth Sci (Geol Rundsch) (2008) 97:677-703 Dini, I. et al., 2010. Geological Evaluation of the Base of the Mt. Amiata Volcanic Complex (Tuscany, Italy), Procedings World Geothermal Congress 2010, Bali, Indonesia, April 2010.

  15. Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy

    NASA Astrophysics Data System (ADS)

    Montone, Paola; Mariucci, M. Teresa

    1999-09-01

    We have analysed borehole breakout data from 12 deep wells in order to constrain the direction of the minimum and maximum horizontal stress in a part of the Po Plain, northern Italy, characterised by a ˜N-S prevailing compressional stress regime, and in order to shed light on the regional state of stress and on the correlation between the active stress field and the orientation of tectonic structures. The results have been compared with seismological data relating to 1988-1995 crustal seismicity (2.5< Md<4.8) and to the 1983 Parma ( Ms=5.0) and the 1996 Reggio Emilia ( Ms=5.1) events. Plio-Pleistocene mesostructural data are also described in order to better define the present-day stress field and to understand the active tectonic processes in particular stress provinces. The borehole breakout analysis, in accordance with the seismicity and mesostructural data, shows the presence of a predominant compression area, characterised by approximately N-S maximum horizontal stress, along the outer thrust of the Ferrara arc. Particularly, the breakout analysis indicates a minimum horizontal stress, N81W±22° relative to a total of eleven analysed wells, with 3746 m cumulative total length of breakout zones. Among these, nine wells are located in the same tectonic structure, consisting of an arc of asymmetric folds overthrust towards the NE. The breakout results for these wells are quite similar in terms of minimum horizontal stress direction (˜E-W oriented). The other two wells are located in the outside sector of the arc and one of them shows a different minimum horizontal stress direction, probably distinctive of another tectonic unit. On the basis of these new reliable stress indicators, the active compressive front in this area is located along the termination of the external northern Apenninic arc.

  16. Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): Coralline assemblage characterization and related trace fossils

    NASA Astrophysics Data System (ADS)

    Checconi, Alessio; Bassi, Davide; Carannante, Gabriele; Monaco, Paolo

    2010-03-01

    An integrated analysis of rhodolith assemblages and associated trace fossils (borings) found in hemipelagic Middle Miocene Orbulina marls (Vitulano area, Taburno-Camposauro area, Southern Apennines, Italy) has revealed that both the biodiversity of the constituent components and taphonomic signatures represent important aspects which allow a detailed palaeoecological and palaeoenvironmental interpretation. On the basis of shape, inner arrangement, growth forms and taxonomic coralline algal composition, two rhodolith growth stages were distinguished: (1) nucleation and growth of the rhodoliths, and (2) a final growth stage before burial. Nucleation is characterized by melobesioids and subordinately mastophoroids, with rare sporolithaceans and lithophylloids. The rhodolith growth (main increase in size) is represented by abundant melobesioids and rare to common mastophoroids; very rare sporolithaceans are also present. The final growth stage is dominated by melobesioids with rare mastophoroids and very rare sporolithaceans. Each rhodolith growth stage is characterized by a distinct suite of inner arrangement and growth form successions. Well diversified ichnocoenoeses ( Gastrochaenolites, Trypanites, Meandropolydora and/or Caulostrepsis, Entobia, Uniglobites, micro-borings) related to bivalves, sponges, polychaetes, barnacles, algae, fungi, and bacteria are distinguished in the inner/intermediate rhodolith growth stage, while mainly algal, fungal and bacterial micro-borings are present in the outer final growth stage. Rhodolith growth stages and associated ichnocoenoeses indicate significant change in the depositional setting during the rhodolith growth. In the Vitulano area, the Middle Miocene rhodolith assemblages formed in a shallow-water open-shelf carbonate platform, were susceptible to exportation from their production area and then to sedimentation down to deeper-water hemipelagic settings, where the rhodoliths shortly kept growth and were finally buried. Such re-deposition of unlithified or only weakly lithified (i.e. rhodoliths and intraclasts) shallow-water carbonates into deeper-water settings was likely favoured by storm-generated offshore return currents rather than sediment gravity flows.

  17. Assessing landslide susceptibility by statistical data analysis and GIS: the case of Daunia (Apulian Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ceppi, C.; Mancini, F.; Ritrovato, G.

    2009-04-01

    This study aim at the landslide susceptibility mapping within an area of the Daunia (Apulian Apennines, Italy) by a multivariate statistical method and data manipulation in a Geographical Information System (GIS) environment. Among the variety of existing statistical data analysis techniques, the logistic regression was chosen to produce a susceptibility map all over an area where small settlements are historically threatened by landslide phenomena. By logistic regression a best fitting between the presence or absence of landslide (dependent variable) and the set of independent variables is performed on the basis of a maximum likelihood criterion, bringing to the estimation of regression coefficients. The reliability of such analysis is therefore due to the ability to quantify the proneness to landslide occurrences by the probability level produced by the analysis. The inventory of dependent and independent variables were managed in a GIS, where geometric properties and attributes have been translated into raster cells in order to proceed with the logistic regression by means of SPSS (Statistical Package for the Social Sciences) package. A landslide inventory was used to produce the bivariate dependent variable whereas the independent set of variable concerned with slope, aspect, elevation, curvature, drained area, lithology and land use after their reductions to dummy variables. The effect of independent parameters on landslide occurrence was assessed by the corresponding coefficient in the logistic regression function, highlighting a major role played by the land use variable in determining occurrence and distribution of phenomena. Once the outcomes of the logistic regression are determined, data are re-introduced in the GIS to produce a map reporting the proneness to landslide as predicted level of probability. As validation of results and regression model a cell-by-cell comparison between the susceptibility map and the initial inventory of landslide events was performed and an agreement at 75% level achieved.

  18. Anatomy of major coal successions: Facies analysis and sequence architecture of a brown coal-bearing valley fill to lacustrine tract (Upper Valdarno Basin, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ielpi, Alessandro

    2012-07-01

    A late Pliocene incised valley fill to lacustrine succession, which contains an interbedded brown coal seam (< 20 m thick), is examined in terms of facies analysis, physical stratigraphy and sequence architecture. The succession (< 50 m thick) constitutes the first depositional event of the Castelnuovo Synthem, which is the oldest unconformity bounded stratigraphic unit of the nonmarine Upper Valdarno Basin, Northern Apennines (Italy). The integration of field surveys and borehole logs identified the following event sequence: first valley filling stages by coarse alluvial fan and channelised streams; the progressive setting of low gradient floodbasins with shallow floodplain lakes; subsequent major waterlogging and extensive peat mire development; and system drowning and establishment of permanent lacustrine conditions. The deposits are grouped in a set of nested valley fills and are arranged as high-frequency depositional sequences. The sequences are bounded by minor erosive truncations and have distinctive upward trends: lowstand system tract thinning; transgressive system tract thickening; highstand system tract thinning and eventual non-deposition; and the smoothing of along-sequence boundary sub-aerial incisions. Such features fit in with the notion of an idealised model where second-order (high-frequency) fluctuations, modulated by first-order (low-frequency) base-level rising, have short-lived standing + falling phases and prolonged transgressions, respectively. Furthermore, the general sequence architecture reveals how a mixed palustrine-siliciclastic system differs substantially from a purely siliciclastic one. In the transgressive phases, terrigenous starvation induces prevailing peat accumulation, generating abnormally thick transgressive system tracts that eventually come to occupy much of the same transgression-generated accommodation space. In the highstand phases, the development of thick highstand system tracts is then prevented by sediment upstream trapping due to retrogressive fluvial aggradations, probably coupled with low-accommodation settings inherited from the transgressive phases.

  19. Attenuation in the Upper Mantle Beneath the Northern Apennines (Italy) from Teleseismic P- and S-Wave Spectra

    NASA Astrophysics Data System (ADS)

    Lucente, F. P.; Piccinini, D.; Dibona, M.; Levin, V.; Park, J.

    2007-12-01

    We present preliminary results for seismic attenuation in the mantle beneath the Italian region. We estimate P- and S-wave spectral ratios from teleseisms recorded at the temporary broadband seismic network deployed during the RETREAT (Retreating-TRrench, Extension, and Accretion Tectonics) project. We examine body-wave attenuation variation across the northern part of the Apennines mountain belt, which represents the accretionary wedge exposed during recent episodes of the subduction process in Italy. The data recorded during the three-year seismic campaign were analyzed using an ad hoc semi-automated procedure based on the cross-correlation analysis of a single phase across all the stations for each event. The seismic phases analyzed (P, S, SKS) display different patterns of seismic attenuation. Furthermore, we observe systematic variations in the distribution of the attenuation values as function of both the azimuth and the incidence angle of the seismic rays. Relatively high attenuation values are found on the Tyrrhenian side by seismic rays coming from the SW for both P- and S-phases. For NE-approaching rays the pattern of high attenuation values varies considerably, depending on the seismic phases: for P-waves it grossly corresponds to the mountain belt, while for S-waves it extends over almost the whole study area. By correlating attenuation estimates and the velocity structure from the existing tomographic models, we can make some inferences on the thermal state of the sublithospheric mantle, and on the physical properties of the tectonic elements which constitute the subduction system in the region. From the analysis of the P-phases we can clearly distinguish three main areas with different attenuation values, corresponding to the back-arc mantle (high attenuation), to the slab (low attenuation) and to the retro-slab mantle (high attenuation). The correspondence between the identified elements of the subduction system and the S- waves attenuation is not straightforward, and need to be further investigated.

  20. 3D Quaternary deformation pattern in the central Po Plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Sileo, G.; Mueller, K.; Michetti, A. M.; Livio, F.; Berlusconi, A.; Carcano, C.; Rogledi, S.; Vittori, E.

    2009-04-01

    The Po Plain is a foredeep basin flanked by the two major and active orogens of the Italian Peninsula, the Alps to the North and the Apennines to the South. The basin has a quasi - triangular shape and grades longitudinally to the East in the Adriatic Sea. We used petroleum industry seismic reflection data acquired by ENI E&P in the Central Po Plain, over an area spanning about 6800 km2 from Lake Como to the W to Lake Garda to the E, and from the Lombardian Southern Alps to the N and the Emilia Apennines to the S, in order to analyze and interpret selected seismic reflectors and to define the evolution in space and time of the local active tectonic structures. Folds associated with underlying thrusts were recognized based on deformation recorded by two regional sequence boundary horizons, i.e. the ‘A' Surface (1.6 Myr) and the ‘R' Surface (0. 9 Myr; e.g., Carcano & Piccin, 2002; Muttoni et al., 2003), characterized by good stratigraphic and age bracketing, and marking significant changes in the sedimentary architecture of the Po Basin. Age controls are based on stratigraphic, paleontological and magnetostratigraphic analysis by ENI E&P and Regione Lombardia (Carcano & Piccin, 2002; Scardia et al., 2006). The analysis of strain recorded by these horizons allowed us to: A) recognize a belt of active fold and thrust structures, each 10 to 20 km long, arranged with an en-echelon pattern across the whole Po Basin, and B) analyze their evolution over the Quaternary. 'A' surface (1.6 Myr) The ‘A' surface has been mapped over about 7800 Km2. From North to South four major morphobathymetric domains can be defined in the Pleistocene marine Po Basin: an Alpine platform domain, a slope that links it with the wider central basin domain, a smaller and steeper slope and an Apennine platform domain. The basin shape has an asymmetric transversal profile and is ca. 40 km wide. Several tectonic structures affect this surface. On the Alpine platform domain two small structures have been identified. We interpreted them as N-verging fault propagation folds with low angle ramps that detach the Gonfolite Lombarda clastics (Oligo - Miocene; Bernoulli et al., 1989; Gelati et al., 1991) from the underlying Upper Cretaceous carbonates. The present-day geomorphic evidence of these two structures are represented by the Pievedizio, Capriano, Castenedolo and Ciliverghe Hills South of Brescia (Livio et al, 2008; Michetti et al., 2008). On the basin floor domain nine structures have been identified. Six of them belong to the Southern Alps and we interpreted them as S-verging fault propagation folds. All these structures have a double plunging termination (Burbank & Anderson, 2001) that mark the endpoints of actively slipping blind thrusts. These structures range from 11 to 16 km long with an average strike of N 110° E. The remaining three structures record shortening at the leading edge of the Apennines; their axial lengths range from 8 to 28 km and the average axial strike is 110°. These structures thus define the 3D architecture of blind thrusts hidden beneath the basin floor; these collectively define the two active, facing fronts of the Apennines and Southern Alps thrust belts (Fantoni et al. 2004). ‘R' Surface The second analyzed surface is the ‘R' surface (0.9 Myr.); strain measured across this sequence stratigraphic boundary confirmed and further defines the magnitude and timing of shortening accommodated by fault propagation folds described on the ‘A' surface. Differences between the basin between "A" and "R" surface time include the arrangement of the structures on the basin floor and by the number of the identified structures. The Alpine platform domain in "R" time is in fact more extended than on the ‘A' surface, and a less steep slope links it with a wider but less deep basin domain; the Apennines platform is smaller, because it has been involved in the deformation of the more internal Apennines structures. The basin floor is ca. 30 km wide with a progressive westward narrowing, and still displays an asymmetric transversal profile. Sedimentation rates are considerably higher than uplift rates of the structures, resulting in a paleobathymetry gentler than the ‘A' surface The measurement of the folds axial length becomes consequently more difficult. In order to filter the tectonic signal we conducted a profile curvature analysis perpendicular to the mean axial direction of the structures. We recognized six structures with an average length of 18 - 20 km and an average axial strike of N 110° E. The comparison of these structures with those recognized on the ‘A' surface clearly shows a decreasing number of folds, suggesting some thrusts shut off between "A" and "R" surface time. The similar geometry of folded "R" and "A" surfaces suggest consistent fault geometry and stress orientation during this time. This kinematic pattern is consistent with a spatially - varying shortening rate model (e.g., Salvini & Storti, 2002). The folds appear to grow with constant fault geometry and the displacement varies along strike since the tip of the faults migrates laterally in a direction perpendicular to the regional horizontal stress (Mueller & Talling, 1997, Keller et al., 1999; Champel et al, 2002; Burbank & Anderson, 2001). In summary, the analysis of the two described Quaternary seismic surfaces allowed us to understand the evolution of active folds within the Po Plain and their growth mechanism and evolution both in space and time. These folds are the modern loci of compressive strain that links the Southern Alps with the Northern Apennines. Comparing the two surfaces we can observe a significant shift in the localization of the tectonic deformation, consisting A) in the reactivation of N-verging backthrusts and associated folds in the Southern Alps instead of the main forethrusts, and B) in a similar backward skip of the activity from the outermost Apennines fronts, with the reactivation of the Pedeappenninic Thrust Fault (e.g. Boccaletti & Martelli, 2004). This might be related to a differential sedimentary load between proximal and distal portions of the basin related to increased erosion, especially in the Alps in hinterland areas and corresponding sedimentation in the foreland, both triggered by climate change in the Mid-Pleistocene (e.g. Muttoni et al., 2002). REFERENCES Boccaletti, M. & Martelli, L., (Editors) (2004) - Carta Sismotettonica della Regione Emilia-Romagna: Note Illustrative. Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli CNR - Firenze, SELCA S.r.l., Firenze, 60 p. Burbank, D., Anderson, R. (2001) - Tectonic Geomorphology. Wiley Blackwell. ISBN: 978-0-632-04386-6 Carcano, C. & Piccin, A. (Editors) (2002) - Geologia Degli Acquiferi Padani Della Regione Lombardia. Firenze: S.El.Ca. Champel, B., Van Der Beek, P., Mugnier J.& Leturmy, P. (2002) - Growth And Lateral Propagation Of Fault-Related Folds In The Siwaliks Of Western Nepal: Rates, Mechanisms, And Geomorphic Signature. Journal Of Geophysical Research, 107, B6, doi 10.1029/2001jb000578. Desio, A. (1965) - I Rilievi Isolati Della Pianura Lombarda Ed I Movimenti Tettonici Del Quaternario. Rend. Ist. Lom. Acc. Sc. Lett., Sez. A 99 pp.881-894. Fantoni, R., Bersezio, R., & Forcella, F., (2004) - Alpine structure and deformation chronology at the Southern Alps-Po Plain border in Lombardy. Boll. Soc. Geol. It., 123, 3, p. 463- 476. Keller, E. A., Gurrola, L. & Tierney, T. E. (1999) - Geomorphic Criteria To Determine Direction Of Lateral Propagation Of Reverse Faulting And Folding. Geology (Boulder), 27, 6, p. 515-518. Livio F., Berlusconi A., Michetti A.M., Sileo G., Zerboni A., Cremaschi M., Trombino L., Carcano C., Rogledi S., Vittori E., Mueller K. (2008) - Fagliazione Superficiale Olocenica E Paleoliquefazione Nel Sito Di Monte Netto, Brescia: Implicazioni Sismotettoniche. Rend. Online Sgi, 1, Note Brevi, www.Socgeol.It, p. 101-103. Michetti A.M., Berlusconi A., Livio F., Sileo G., Zerboni A., Cremaschi M., Trombino L, Mueller K., Vittori E., Carcano C., Rogledi S. (2008) - Holocene Surface Faulting At Monte Netto, Brescia, And The Christmas 1222 (Io = Ix Mcs) Earthquake In The Po Plain, Italy: What Does It Mean "Blind Fault"? Geophysical Research Abstracts, 10, Egu2008-A-00000, 2008 Egu General Assembly 2008. Mueller, K. & Talling, P. (1997) - Geomorphic Evidence For Tear Faults Accommodating Lateral Propagation Of An Active Fault-Bend Fold, Wheeler Ridge, California. Journal Of Structural Geology, 19, 3-4, p. 397-411. Muttoni G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., Sciunnach, D. (2002) - Onset Of Major Pleistocene Galciations In The Alps. Geology. - 2003. - 11 : 31. - p. 989-992. Salvini, F. & Storti, F. (2002) - Three-Dimensional Architecture Of Growth Strata Associated To Fault-Bend, Fault-Propagation, And Decollement Anticlines In Non-Erosional Environments. Sedimentary Geology, 146, p 57 - 73 Scardia, G., Muttoni, G. & Sciunnach, D. (2006) - Subsurface Magnetostratigraphy Of Pleistocene Sediments From The Po Plain (Italy): Constraints On Rates Of Sedimentation And Rock Uplift. GSA Bulletin 118, 11/12, p.1299-1312.

  1. INTEGRATION OF SHORT-TERM CO-SEISMIC DEFORMATION (InSAR) IN THE GEOMORPHIC DEVELOPMENT OF AN ACTIVELY UPLIFTING FOOTWALL, L’AQUILA EARTHQUAKE (06 APRIL, 2009), ITALY

    NASA Astrophysics Data System (ADS)

    Berti, C.; Pazzaglia, F. J.; Ramage, J. M.; Miccadei, E.; Piacentini, T.

    2009-12-01

    Central Italy is a well know region of frequent seismic activity focused along the topographic axis of the Apennines, with several, damaging > M. 5 events in the past decade. Conversely, the integrated effect of these earthquakes in shaping the long term development of the landscape is a poorly understood, but potentially powerful process in describing the region’s paleoseismicity and steadiness of hazardous earthquakes. The recent M. 6.3 L’Aquila earthquake of 06 April, 2009 ruptured a fault in a region of well-known geologic, geomorphic, and geodetic constraining data including hanging wall continental basin Quaternary deposits, footwall stream networks with distinct knickpoints, a dense GPS network, and InSAR interferometry. Collectively, the geodetic data describe the short-term, co- and immediately post-seismic behavior of the earthquake, whereas the geologic and geomorphic data record how discrete rupture events are encoded in the landscape and reflected in processes actively shaping the topography. Envisat and ALOS derived interferograms generated using ROI PAC show close spatial overlap of the InSAR-determined rupture and the Paganica fault, separating a deeply incised, uplifted carbonate footwall block and an actively subsiding Quaternary continental basin. Deposition in the continental basin has been unsteady and is commonly attributed to climate-modulated sediment flux from the uplifted footwall. We note however, that the longitudinal profiles of streams in the footwall are marked by distinct knickpoints that do not correspond to known or obvious lithologic or structural controls. Rather, the knickpoints are located a linear distance from the Paganica fault and at a topographic elevation consistent with detachment-limited stream-power erosional retreat processes instigated by instantaneous base level fall at the mountain front. Furthermore, the magnitude of river incision and elevation of the knickpoints scales with the co-seismic deformation pattern we measure through our InSAR approach. The time of the base level falls can be estimated assuming a model for knickpoint retreat rate and through correlation of knickpoints to lithostratigraphic packages of sediment in the continental basin. These results suggest that the Paganica fault has a characteristic rupture geometry, but an unsteady rupture behavior punctuated by periods of frequent activity interspersed with periods of quiescence that persist for several millennia. We conclude that the Paganica fault is currently in an active rupture phase. Regional geomorphic metrics suggest that as the Paganica fault passes through its current active phase, deformation should be transferred to the Campo Imperatore fault, which is currently in a relatively inactive, interseismic phase. Such a prediction is testable by geodetic techniques including InSAR to capture the slow, but cumulative interseismic component of active extension for this part of the Apennines.

  2. Modeling the effects of pumping wells in spring management: The case of Scirca spring (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Dragoni, W.; Mottola, A.; Cambi, C.

    2013-06-01

    One of the techniques used to increase the water yield of springs during dry seasons and droughts is drilling wells close to them. Where there is a low-hydraulic conductivity boundary close to a spring (the case considered here), this technique implies low well efficiency, high drawdown, and high cost of withdrawals. In addition, a set of pumping wells close to a spring can cause both it and the stream originating from it to dry up - a situation which is not always acceptable from an environmental point of view. In order to study better management strategies, this paper presents a finite difference model of the Scirca spring (Umbria - Marche Apennines, Italy), which originates from a limestone massif in which some formations are karstified. The model, built with Modflow using the equivalent porous media (EPM) approach, simulated the effects of pumping wells at various distances from the spring. Hydraulic Conductivity and Storativity were calibrated and validated on discharge data during recession, when recharge is nil. "Inverse modeling" was then used to estimate the daily recharge of the hydro-geological system of the Scirca spring for a period of several years. Lastly, the efficiency of various management schemes was evaluated by simulating the reaction of the spring, in terms of discharge, to a series of pumping scenarios, all guaranteeing a certain imposed withdrawal during summer, much larger than the natural spring discharge, given by spring discharge and well drawdown. The wells were located between 2850 and 100 m from the spring, the pumping time-span was set at 90 days, and pumping rates of 60, 90 and 120 l/s were applied. Results show that the maximum discharge at which spring drainage is avoided and that minimum vital flow is guaranteed is 90 l/s. The higher water volumes extracted during summer (dry season) are balanced by a lowering of the maximum natural discharges in winter and spring (recharge seasons). Simulations indicate that, by drilling pumping wells far from the spring, the efficiency of the whole system can be optimized in terms of total withdrawal, drilling and management costs, with reduced environmental impact. The mathematical model also shows how long the system takes to regain its "undisturbed" state, with a tolerance of 0.5 l/s. The model highlights the possibility of forcing the system to supply a smaller amount of water in winter, in order to increase the summer yield. Such a management scheme, which can be applied to other springs, may be useful in better meeting the demand for water during dry seasons.

  3. The Tyrrhenian stage geodinamic evolution of Apenninic-Maghrebian orogen (Southern Apennines and Sicily)

    NASA Astrophysics Data System (ADS)

    Lentini, F.; Carbone, S.; Barreca, G.

    2009-04-01

    In the Central Mediterranean region the foreland domains are represented by two continental blocks, the Apulian Block to the north and the Pelagian Block to the south, respectively belonging to the Adria and to the Africa plates. They are separated since Permo-Triassic times by the oceanic crust of the Ionian Sea. The Apenninic-Maghrebian orogen is located between two oceanic crusts: the old Ionian crust, at present time subducting beneath the Calabrian Arc, and the new crust of the opening Tyrrhenian Sea. The orogenic belt is represented by a multilayer allochthonous edifice, composed of the Calabride Chain (CC) tectonically overlying the Apenninic-Maghrebian Chain (AMC), which in turn overthrust onto the Upper Miocene and Pliocene top-levels of a deep seated thrust system, originating by the deformation of the innermost carbonates of the Pelagian/Apulian blocks (External Thrust System: ETS). The AMC tectonic units derive from the orogenic transport during Oligo-Miocene times of sedimentary sequences deposited in palaeogeographical domains located between the Europe and the Afro-Adriatic plates. These units are composed of Meso-Cenozoic shallow-water carbonate successions detached from a continental type crust sector, the Panormide/Apenninic Block, recognizable by means of seismic lines shot in the Tyrrhenian offshore of Southern Apennines and Northern Sicily. The Meso-Cenozoic basinal units, that compose the AMC, can be distinguished into two main groups of sequences, originally located on oceanic crusts separated by the Panormide/Apenninic Block: the external ones (Ionides) related to an original basin belonging to branches of the Ionian Palaeobasin involved in the orogenesis, and the internal ones ascribed to the Alpine Tethys (Sicilide Units). The terrigenous deposits of the basinal sequences belonging to the Ionides are represented by Tertiary foreland/foredeep deposits, whose relationships with the substratum are occasionally preserved, although large detachments occurred with further forward transport, which generated repeated slices with an apparent increase to the original thickness. . The Alpine Tethydes are composed of sedimentary sequences, which were deposited in the Alpine Tethys, and originally were located between the European and the Panormide/Apenninic Block. They are represented by allochthonous far travelled tectonic units, resting on both the Panormide/Apenninic Platforms and the Ionides. The Calabride Chain originated by the delamination of the European margin. This roof thrust system includes nappes of Hercynian basement with remains of the original Meso-Cenozoic covers deformed during the Paleogene and sutured by the Late Oligocene-Early Burdigalian Capo d'Orlando Flysch. The geological, geophysical data and the volcanological characters permit to restore the palaeogeography and the geodynamic evolution, and allow to recognize three orogenic stages: the Eo-Alpine, originated during Cretaceous-Eocene times, evident in the western Calabria, in the Tyrrhenian basin and the Alpine Corsica; the Balearic stage (Late Oligocene-Early Miocene), in which the Corsica-Sardinia block rotated and collided with the Adria-Africa margins with thrusting of the Alpine Tethydes over Panormide/Apenninic platforms; and the Tyrrhenian stage (Middle Miocene to Present), when the onset of the Tyrrhenian back-arc basin occurred and after the closure of the interposed Palaeoionian branches the Ionides were tectonically transported onto the foreland blocks. The CROP crustal sections allow to distinguish thickness and distribution of the crusts in this area of the Mediterranean Sea, and their clear influence on geodynamic evolution of the Tyrrhenian stage. They confirm that both the foreland blocks extend below the orogenic belt, reaching the Tyrrhenian margins, with a gradual thinning and a transition to a Palaeo-Ionian slab, probably not active at present time, from which the Ionides detached and overrode the ETS. The seismogeological data indicate the presence of the Panormide/Apenninic blocks, that took part in the closure of the branches of the Palaeo-Ionian Sea interposed between the Panormide/Apenninic crust and the Pelagian/Apulian Blocks. At the present time the Panormide/Apenninic blocks are colliding with the foreland blocks. Such a collisional stage along the Tyrrhenian coast of north-western Sicily and the contemporaneous active subduction processes below the Calabrian Arc produce the NW-SE oriented South Tyrrhenian System. This system drives the transfer of the orogenic front towards areas characterized by still subducting oceanic crust of the Ionian sector. In particular it consists of predominantly NW-SE oriented right lateral faults system with antithetical NE-SW and coeval associated N-S normal faults and south-verging thrusts. All these structures are compatible with an unique cinematic framework dominated by transcurrent tectonics. Geological mapping carried out in the on-shore areas of Sicily, integrated with stratigraphical and structural analysis, permit to recognize some main structures in connection with the geodynamic evolution of the Tyrrhenian stage and allow to propose an updated structural model of this area.

  4. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Marchetti, Mauro

    2002-05-01

    The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area. This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating. In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations. Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the mountain sector of the basins and in-channel gravel extraction (now illegal but very intense in the 1960s and 1970s) are causing erosion along the rivers and along large sectors of the Adriatic coast. These changes are comparable with those occurring in basins of other Mediterranean rivers.

  5. Ground Deformation and Sources geometry of the 2016 Central Italy Earthquake Sequence Investigated through Analytical and Numerical Modeling of DInSAR Measurements and Structural-Geological Data

    NASA Astrophysics Data System (ADS)

    Solaro, G.; Bonano, M.; Boncio, P.; Brozzetti, F.; Castaldo, R.; Casu, F.; Cirillo, D.; Cheloni, D.; De Luca, C.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Lanari, R.; Lavecchia, G.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Tizzani, P.; Zinno, I.

    2017-12-01

    The 2016 Central Italy seismic sequence started on 24th August with a MW 6.1 event, where the intra-Apennine WSW-dipping Vettore-Gorzano extensional fault system released a destructive earthquake, causing 300 casualties and extensive damage to the town of Amatrice and surroundings. We generated several interferograms by using ALOS and Sentinel 1-A and B constellation data acquired on both ascending and descending orbits to show that most displacement is characterized by two main subsiding lobes of about 20 cm on the fault hanging-wall. By inverting the generated interferograms, following the Okada analytical approach, the modelling results account for two sources related to main shock and more energetic aftershock. Through Finite Element numerical modelling that jointly exploits DInSAR deformation measurements and structural-geological data, we reconstruct the 3D source of the Amatrice 2016 normal fault earthquake which well fit the main shock. The inversion shows that the co-seismic displacement area was partitioned on two distinct en echelon fault planes, which at the main event hypocentral depth (8 km) merge in one single WSW-dipping surface. Slip peaks were higher along the southern half of the Vettore fault, lower along the northern half of Gorzano fault and null in the relay zone between the two faults; field evidence of co-seismic surface rupture are coherent with the reconstructed scenario. The following seismic sequence was characterized by numerous aftershocks located southeast and northwest of the epicenter which decreased in frequency and magnitude until the end of October, when a MW 5.9 event occurred on 26th October about 25 km to the NW of the previous mainshock. Then, on 30th October, a third large event of magnitude MW 6.5 nucleated below the town of Norcia, striking the area between the two preceding events and filling the gap between the previous ruptures. Also in this case, we exploit a large dataset of DInSAR and GPS measurements to investigate the ground displacement field and to determine, by using elastic dislocation modelling, the geometries and slip distributions of the causative normal fault segments.

  6. The fossil hydrothermal rootzone from the Northern Apennine ophiolites (Italy)

    NASA Astrophysics Data System (ADS)

    Tribuzio, R.; Zanetti, A.; Dallai, L.

    2003-04-01

    The Northern Apennine ophiolites are lithosphere remnants of the Late Jurassic -- Early Cretaceous Ligurian Tethys, which is considered to have developed in conjunction with the opening of the Central Atlantic Ocean. In the Bonassola area, a km-scale gabbroic body permits the study of the magmatic-hydrothermal transition. The body mostly consists of coarse-grained gabbros of cumulus origin that exhibit granulite-facies recrystallization along ductile shear zones, which most likely occurred in the absence of seawater-derived fluids. These shear zones are crosscut at high angle by parallel swarms of hornblende (± plagioclase) veins. The development of these veins is correlated with coronal hornblende growth at the expenses of igneous clinopyroxene in the host gabbro. Scattered, elongated bodies of hornblende-bearing albitites also crop out. In particular, two different generations of albitite bodies have been recognized. The albitite (1) bodies show irregular contacts against the host gabbro, which are characterized by hornblende-rich reaction zones. These albitites are inferred to have developed when the gabbro was not completely solidified. The albitite (2) bodies has sharp contacts, post-date the granulite-facies foliation in the host gabbros, and show the same elongation direction of hornblende veins. The albitite (2) bodies are therefore related to the same brittle deformation event that gave rise to the hornblende veins. Major, trace, halogen and oxygen isotope analyses of hornblende from both veins and albitite bodies have been carried out. The geochemical signature of hornblende from albitite (1) bodies and related contact reaction zones is similar to that of accessory titanian pargasite of igneous origin in the host gabbro, thus indicating that these albitites were derived by extreme differentiation of basaltic liquid. Two different chemical fingerprints have been recognized for the vein hornblendes. The first type indicates a formation by local reaction between migrating seawater-derived fluids and the gabbros. The development of these veins can be ascribed to a high-temperature, amphibolite-facies hydrothermal event. On the other hand, the hornblende from the less diffuse, thickest and fibrous veins has intermediate geochemical features, similar to the hornblende from albitite (2) bodies. These hornblendes provide evidence for interaction between magmatic and hydrothermal systems.

  7. Earth observations taken from Space Shuttle Columbia during STS-78 mission

    NASA Image and Video Library

    1996-06-28

    STS078-751-012 (20 June-7 July 1996) --- The international crew of the Life and Microgravity Spacelab (LMS-1) mission onboard the Space Shuttle Columbia photographed this oblique view of the "toe" of Italy and the island of Sicily. Southern Italy is known as the Mezzogiorno because of the intensity of sunshine there at midday (Mezzogiorno is the Italian term for "midday" or "noon"). Mezzogiorno is a mainland subregion consisting of the modern southern Italian regions of Abruzzi, Molise, Campania, Puglia, Basilicata, and Calabria and an insular subregion composed of Sicily and Sardinia. Southern Italy is dominated by the Apennine Range, seen in the photo on the west side, and up to one-half of the land is too steep for any form of cultivation. Coastal plains are generally narrow and poorly drained and are limited to the environs of the cities of Naples and Salerno, Foggia, and Taranto. Chief crops in this region include wheat, olives, grapes, peaches, apricots, pears, and various vegetables. Iron, steel, machine tools, agricultural machinery, and petrochemicals are produced in the industrial triangle of Bari, Brindisi, and Taranto; industries around Naples are more diversified and produce textiles and various consumer goods, iron, steel, Olivetti office machinery, Pirelli cables, Alfa Romeo automobiles, and ships. The Adriatic Sea on the east separates it from the Balkans, and the Mediterranean Sea on the south separates it from North Africa. Three major tectonic plates, converging from the south, the west, and the northeast, create geologically unstable conditions throughout southern Italy and Sicily. The most famous of southern Italy's four active volcanoes is Mount Vesuvius, whose eruption in AD 79 destroyed Pompeii. Sicily's Mount Etna and Stromboli, on an island north of Sicily, were active during this Space Shuttle mission.

  8. Neogene-Quaternary evolution of the offshore sector of the Southern Apennines accretionary wedge, Gulf of Taranto, Italy

    NASA Astrophysics Data System (ADS)

    Teofilo, G.; Antoncecchi, I.; Caputo, R.

    2018-07-01

    Southern Apennines represent a collisional orogenic belt whose compressional regime is commonly assumed to have ceased during Middle Quaternary. On the other hand, to the south the Calabria Arc is still characterized by subduction and the principal aim of the present research is to shed some light on the space and time transition from the ceased collision to the active subduction. Accordingly, we investigated the offshore sector of the Southern Apennines accretionary wedge, corresponding to the Taranto Gulf. To gain insights into the offshore accretionary wedge, we reconstructed a 3D geological and tectonic model by interpreting a grid of 40 seismic reflection lines (1100 km, 80 intersections), within an area of ca. 104 km2, calibrated with 17 wells. The geometric and chronological constraints allow documenting a systematic Messinian-Quaternary thrust migration from internal towards external sectors of the wedge. The migrating deformational process was essentially associated with a leading-imbricate thrust system with a general NE-younging direction, where we could recognize and distinguish some major advancing phases characterized by alternating fast thrust propagation events and strain accumulation periods within the wedge. This process is well emphasized by the jump of the foredeep and piggy-back basins. The NE-wards wedge migration was also associated with a lithospheric-scale flexural folding that generated a set of normal faults striking parallel to the coeval thrusts, likely reactivating optimally oriented structures inherited from Mesozoic events. Finally, a persisting thrust activity up to the latest Quaternary and possibly up to Present in correspondence of the externalmost sector of the accretionary wedge has been documented and explained in terms of strain partitioning in the frame of a recent oblique convergence. The results of this research have possible implications for the seismic hazard assessment of the broader region which is possibly greater than previously assumed.

  9. Importance of Common Wall Lizards in the Transmission Dynamics of Tick-Borne Pathogens in the Northern Apennine Mountains, Italy.

    PubMed

    Tomassone, Laura; Ceballos, L A; Ragagli, C; Martello, E; De Sousa, R; Stella, M C; Mannelli, A

    2017-11-01

    During the investigations on ticks and tick-borne pathogens (TBP) range expansion in the Northern Apennines, we captured 107 Podarcis muralis lizards. Sixty-eight animals were infested by immature Ixodes ricinus, Haemaphysalis sulcata and H. punctata. Borrelia burgdorferi s.l. was detected in 3.7% of I. ricinus larvae and 8.0% of nymphs. Together with the species-specific B. lusitaniae, we identified B. garinii, B. afzelii and B. valaisiana. Rickettsia spp. (18.1% larvae, 12.0% nymphs), namely R. monacensis, R. helvetica and R. hoogstraalii, were also found in I. ricinus. R. hoogstraalii was detected in H. sulcata nymphs as well, while the two H. punctata did not harbour any bacteria. One out of 16 lizard tail tissues was positive to R. helvetica. Our results support the hypothesis that lizards are involved in the epidemiological cycles of TBP. The heterogeneity of B. burgdorferi genospecies mirrors previous findings in questing ticks in the area, and their finding in attached I. ricinus larvae suggests that lizards may contribute to the maintenance of different genospecies. The rickettsiae are new findings in the study area, and R. helvetica infection in a tail tissue indicates a systemic infection. R. hoogstraalii is reported for the first time in I. ricinus ticks. Lizards seem to favour the bacterial exchange among different tick species, with possible public health consequences.

  10. A Physically-based Model For Rainfall-triggered Landslides At A Regional Scale

    NASA Astrophysics Data System (ADS)

    Teles, V.; Capolongo, D.; Bras, R. L.

    Rainfall has long been recognized as a major cause of landslides. Historical records have shown that large rainfall can generate hundreds of landslides over hundreds of square kilometers. Although a great body of work has documented the morphology and mechanics of individual slope failure, few studies have considered the process at basin and regional scale. A landslide model is integrated in the landscape evolution model CHILD and simulates rainfall-triggered events based on a geotechnical index, the factor of safety, which takes into account the slope, the soil effective cohesion and weight, the friction angle, the regolith thickness and the saturated thickness. The stat- urated thickness is represented by the wetness index developed in the TOPMODEL. The topography is represented by a Triangulated Irregular Network (TIN). The factor of safety is computed at each node of the TIN. If the factor of safety is lower than 1, a landslide is intiated at this node. The regolith is then moved downstream. We applied the model to the Fortore basin whose valley cuts the flysch terrain that constitute the framework of the so called "sub-Apennines" chain that is the most eastern part of the Southern Apennines (Italy). We will discuss its value according to its sensitivity to the used parameters and compare it to the actual data available for this basin.

  11. The Northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments

    NASA Astrophysics Data System (ADS)

    Bertini, Adele

    2006-06-01

    The Messinian stage has long been associated with an overall warm and dry climate whereas recent researches indicate either a warm and humid or a cool and dry climate. The integrated stratigraphic record of vegetation and climatic changes from Northern Apennines sites provides the solution to this apparent contradiction. Its integration with the updated geological and sedimentological studies provides additional data for the reconstruction of the depositional palaeoenvironments in both marginal and deeper sub-basins of the Apennines foredeep. The onset of the Mediterranean salinity crisis (MSC) is recorded in the Gessoso-Solfifera of the Vena del Gesso (marginal sub-basin). Cyclical humid conditions, corresponding to precession minima, developed during the deposition of the shales interbedded with the gypsum (5.9 to 5.6 Ma); some cooler events took also place under the effects of global (glacial stadials) and regional factors (Apennines uplift). At present no major changes from moist to dry conditions are attested to just before the salinity crisis, as well as in Sicily. So climate did not play a major role in the onset of the MSC despite the favourable context provided by inferred thermo-xeric conditions in southern Italy. A drier episode indicated by the expansion of the open vegetation including the northward migration of Lygeum postdates the onset of the salinity crisis of about 400 kyr, in the lower post-evaporitic deposits of Maccarone (deeper sub-basin). It falls within a period of global warming whereas at a regional scale it could correlate p.p. to the evaporite deposition in deeper basins and to hiatuses in the marginal basins of Sicily and of the western sector of Northern Apennines. Its sudden end, about 100 kyr later, in coincidence with a significant increase of Pinaceae, indicates a turnover in the terrestrial setting not linked to major climate changes but possibly to a complex interaction between other palaeoenvironmental factors (e.g., tectonics and eustatism). In contrast organic-walled dinoflagellate cysts exclude significant modifications in aquatic settings (insaturation of either open marine or brackish conditions). In the latter, a later change is marked by the arrival of Impagidinium (?) sp. 1., a species here referred instead to Caspidinium rugosum, about 7 m below the first colombaccio. This occurrence together with the spread of Pediastrum indicates a freshwater dilution i.e. the "Lago-Mare" event during wetter climatic conditions on the adjacent landmass (increase of Tsuga and Cedrus). The successive arrival and/or dominance of other "Paratethyan" taxa such as I. (?) sp. 2, I. (?) sp. 3 and Galeacysta etrusca indicate highly variable water environments (marine vs. continental water inputs) during the deposition of the uppermost post-evaporitic deposits. The Lago-Mare is stratigraphically sandwiched between an ash layer (130 m below) dated at 5.5 Ma and the beginning of the Pliocene where a peak of Impagidinium patulum marks the onset of open marine conditions. The dominant humid, subtropical to warm temperate climate indicates differences in both temperature and moisture values with respect to the coeval southern sections, revealing climatic gradients within the Mediterranean, at least from the Messinian. No dramatic vegetation and climate changes have been recorded during the MSC; major changes occurred later as indicated by the palynological record from 2.6 Ma. This palynostratigraphic record is a good reference for more recent models of the development of the MSC and for establishing time-relationships between the Apennine and Sicilian successions.

  12. One microplate - three orogens: Alps, Dinarides, Apennines and the role of the Adriatic plate

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Le Breton, Eline; Balling, Philipp; Handy, Mark R.; Molli, Giancarlo; Tomljenović, Bruno

    2017-04-01

    The motion of the Adriatic microplate with respect to the Eurasian and African plates is responsible for the Mesozoic to present tectonic evolution of the Alps, Carpathians, the Dinarides and Hellenides as well as the Apennines. The classical approach for reconstructing plate motions is to assume that tectonic plates are rigid, then apply Euler's theorem to describe their rotation on an ideally spherical Earth by stepwise restorations of magnetic anomalies and fracture zones in oceanic basins. However, this approach is inadequate for reconstructing the motion of Mediterranean microplates like Adria, which, at present, is surrounded by convergent margins and whose oceanic portions have by now been entirely subducted. Most constraints on the motion of the Adriatic microplate come either from palaeomagnetics or from shortening estimates in the Alps, i.e., its northern margin. This approach renders plate tectonic reconstructions prone to numerous errors, yielding inadmissible misfits in the Ionian Sea between southern Italy and northern Greece. At the same time, Adria's western and eastern margins in the Apennines and in the Dinarides have hitherto not been appropriately considered for improving constraints on the motion of Adria. This presentation presents new results of ongoing collaborative research that aims at improving the relative motion path for the Adriatic microplate for the Cenozoic by additionally quantifying and restoring the amount of shortening and extension in a set of geophysical-geological transects from the Tyrrhenian Sea, the Apennines and the Dinarides. Already now, our approach yields an improved motion path for the Adriatic microplate for the last 20 Ma, which minimizes misfits in previous reconstructions. The currently largest challenge in our reconstructions is to reconcile amount and age of shortening in the Dinarides fold-and-thrust belt. For one thing, we see good agreement between the cross-sectional length of subducted material (c. 135 km, estimated from p-wave tomographic models) and shortening in the external carbonate platform of the Dinarides thrust belt (c. 127 km, from balanced cross sections). However, most of the thrust belt shortening is of Palaeogene age, which is difficult to bring into agreement with the fact that most of the subduction observed in tomographic models is most likely of Neogene age. This suggests that a substantial amount of Neogene crustal shortening must have been accommodated in the internal parts of the Dinarides fold-and-thrust belt rather than along its front. More field studies are therefore badly needed to obtain a better understanding of the timing of individual faults and their role during the Neogene evolution of the NE margin of the Adriatic plate.

  13. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults

    PubMed Central

    Cowie, P. A.; Phillips, R. J.; Roberts, G. P.; McCaffrey, K.; Zijerveld, L. J. J.; Gregory, L. C.; Faure Walker, J.; Wedmore, L. N. J.; Dunai, T. J.; Binnie, S. A.; Freeman, S. P. H. T.; Wilcken, K.; Shanks, R. P.; Huismans, R. S.; Papanikolaou, I.; Michetti, A. M.; Wilkinson, M.

    2017-01-01

    Many areas of the Earth’s crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (104 yr; 102 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting. PMID:28322311

  14. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults.

    PubMed

    Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M

    2017-03-21

    Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36 Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36 Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10 4  yr; 10 2  km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  15. Assessment of soil erosion sensitivity and post-timber-harvesting erosion response in a mountain environment of Central Italy

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Schütt, Brigitta

    2014-01-01

    This study aimed to assess the effects of forest management on the occurrence of accelerated soil erosion by water. The study site is located in a mountainous area of the Italian Central Apennines. Here, forest harvesting is a widespread forestry activity and is mainly performed on the moderate to steep slopes of the highlands. Through modeling operations based on data on soil properties and direct monitoring of changes in the post-forest-harvesting soil surface level at the hillslope scale, we show that the observed site became prone to soil erosion after human intervention. Indeed, the measured mean soil erosion rate of 49 t ha- 1 yr- 1 for the harvested watershed is about 21 times higher than the rate measured in its neighboring undisturbed forested watershed (2.3 t ha- 1 yr- 1). The erosive response is greatly aggravated by exposing the just-harvested forest, with very limited herbaceous plant cover, to the aggressive attack of the heaviest annual rainfall without adopting any conservation practices. The erosivity of the storms during the first four months of field measurements was 1571 MJ mm h- 1 ha- 1 in total (i.e., from September to December 2008). At the end of the experiment (16 months), 18.8%, 26.1% and 55.1% of the erosion monitoring sites in the harvested watershed recorded variations equal or greater than 0-5, 5-10 and > 10 mm, respectively. This study also provides a quantification of Italian forestland surfaces with the same pedo-lithological characteristics exploited for wood supply. Within a period of ten years (2002-2011), about 9891 ha of coppice forest changes were identified and their potential soil erosion rates modeled.

  16. Morphometric and landsliding analyses in chain domain: the Roccella basin, NE Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Rapisarda, Francesco

    2009-10-01

    The dynamic interaction of endogenic and exogenic processes in active geodynamic context leads to the deterioration of the physico-mechanical characteristics of the rocks, inducing slopes instability. In such context, the morphometric parameters and the analysis of landslide distribution contribute to appraise the evolutive state of hydrographic basins. The aim of the study is the morphometric characterization of the Roccella Torrent basin (Rtb) located in South Italy. Landsliding and tectonic structure dynamically interact with the drainage pattern that records these effects and permits the definition of the evolutive geomorphic stage of the basin. The Air Photograph Investigation and field surveys permitted to draw the main geomorphic features, the drainage pattern of the Rtb, to calculate the morphometric parameters and to delimit the landslides’ bodies. Detailed analysis about the landslide distribution within a test site 17 km2 wide were carried out to elaborate indicative indexes of the landslides type and to single out the lithotypes that are more involved in slope instability phenomena. The morphometric parameters indicate the rejuvenation state within the Rtb where the stream reaches show the effects of increased energy relief in agreement with the geological settings of this sector of the Apennine-Maghrebian Chain.

  17. A multidisciplinary approach to characterize the geometry of active faults: the example of Mt. Massico, Southern Italy

    NASA Astrophysics Data System (ADS)

    Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M.

    2018-06-01

    We present the results of a multidisciplinary and multiscale study at Mt. Massico, Southern Italy. Mt. Massico is a carbonate horst located along the Campanian-Latial margin of the Tyrrhenian basin, bordered by two main NE-SW systems of faults, and by NW-SE and N-S trending faults. Our analysis deals with the modelling of the main NE-SW faults. These faults were capable during Plio-Pleistocene and are still active today, even though with scarce and low-energy seismicity (Mw maximum = 4.8). We inferred the pattern of the fault planes through a combined interpretation of 2-D hypocentral sections, a multiscale analysis of gravity field and geochemical data. This allowed us to characterize the geometry of these faults and infer their large depth extent. This region shows very striking gravimetric signatures, well-known Quaternary faults, moderate seismicity and a localized geothermal fluid rise. Thus, this analysis represents a valid case study for testing the effectiveness of a multidisciplinary approach, and employing it in areas with buried and/or silent faults of potential high hazard, such as in the Apennine chain.

  18. Source characteristics of 2000 small earthquakes nucleating on the Alto Tiberina fault system (central Italy).

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Tinti, E.; Chiaraluce, L.; Di Stefano, R.; Valoroso, L.

    2014-12-01

    The Alto Tiberina Fault (ATF) is a 60 km long east-dipping low-angle normal fault, located in a sector of the Northern Apennines (Italy) undergoing active extension since the Quaternary. The ATF has been imaged by analyzing the active source seismic reflection profiles, and the instrumentally recorded persistent background seismicity. The present study is an attempt to separate the contributions of source, site, and crustal attenuation, in order to focus on the mechanics of the seismic sources on the ATF, as well on the synthetic and the antithetic structures within the ATF hanging-wall (i.e. Colfiorito fault, Gubbio fault and Umbria Valley fault). In order to compute source spectra, we perform a set of regressions over the seismograms of 2000 small earthquakes (-0.8 < ML< 4) recorded between 2010 and 2014 at 50 permanent seismic stations deployed in the framework of the Alto Tiberina Near Fault Observatory project (TABOO) and equipped with three-components seismometers, three of which located in shallow boreholes. Because we deal with some very small earthquakes, we maximize the signal to noise ratio (SNR) with a technique based on the analysis of peak values of bandpass-filtered time histories, in addition to the same processing performed on Fourier amplitudes. We rely on a tool called Random Vibration Theory (RVT) to completely switch from peak values in the time domain to Fourier spectral amplitudes. Low-frequency spectral plateau of the source terms are used to compute moment magnitudes (Mw) of all the events, whereas a source spectral ratio technique is used to estimate the corner frequencies (Brune spectral model) of a subset of events chosen over the analysis of the noise affecting the spectral ratios. So far, the described approach provides high accuracy over the spectral parameters of earthquakes of localized seismicity, and may be used to gain insights into the underlying mechanics of faulting and the earthquake processes.

  19. Applying the Multiple Inverse Method to the analysis of earthquake focal mechanism data: New insights into the active stress field of Italy and surrounding regions

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Chiara; Mazzoli, Stefano; Megna, Antonella; Saggese, Ferdinando; Santini, Stefano; Vitale, Stefano

    2012-12-01

    In order to obtain new insights into the active tectonic setting of the Italian territory and surrounding regions, the Multiple Inverse Method (MIM) has been applied to the analysis of fault plane solutions from more than 700 earthquakes with Mw ≥ 4. The active stress field in the top 40 km of the lithosphere has been defined for four 10 km-thick layers, each including 810 square cells of 1.5° side. The obtained stress field maps point out that most of the upper crustal seismicity of the Western and Central Alps is controlled by a strike-slip regime, which is dominant also in part of the Dinarides, Albanides and Hellenides and in a large sector encompassing eastern Sicily and the Malta area to the eastern Tunisia offshore. On the other hand, the well-known extensional belt occurring in the interior of the Apennines appears to extend well beyond the backbone of Italy, potentially reaching the outer foothills of the northern Marche region, while the adjacent Adria block (extending to the eastern Po Plain and the outer Dinarides) sticks out as a major area characterised by dominant thrust faulting in the upper crust. A similar regime characterises also a large sector of the western Tyrrhenian Sea, from NE Tunisia through western Sicily and the west coast of Sardinia, to the Provence coast. Besides lateral variations, our analysis also points out a significant vertical heterogeneity of the stress field, the deeper levels (20 to 40 km) investigated in this study being characterised by dominant horizontal maximum compression even in areas of upper crustal extension. The application of the MIM to a large seismological dataset, providing basic information for the compilation of active stress maps, contributes to a better understanding of active tectonic processes and may be used for improving seismotectonic zoning and reservoir management.

  20. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy

    NASA Astrophysics Data System (ADS)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo

    2017-08-01

    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., "nastrino") exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of < 3 km by phyllosilicate-rich layers and overpressured fluids. The same weakening processes may also have been decisive in facilitating the co-seismic slip propagation during the 2016 Mw 6.0 Amatrice and Mw 6.5 Norcia earthquakes. The microstructures found along the Mt. Vettoretto Fault, which is certainly a seismogenic fault, provide a realistic synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic faults.

  1. Correlation between pore fluid pressures and DInSAR post-seismic deformation of the May 20, 2012 Emilia-Romagna (Italy) earthquake

    NASA Astrophysics Data System (ADS)

    Moro, M.; Stramondo, S.; Albano, M.; Barba, S.; Solaro, G.; Saroli, M.; Bignami, C.

    2015-12-01

    The present work focuses on the detection and analysis of the postseismic surface deformations following the two earthquakes that hit the Emilia Romagna region (Italy) on May 20 and 29, 2012. The 2012 Emilia earthquake sequence struck the central sector of the Ferrara arc, which represents the external fold-and-thrust system of the Northern Apennines thrust belt buried below the Po plain. The May 20 event occurred on the Ferrara basal thrust at depth, at about 6-7 km, while, during the May 29 event, the rupture jumped on an inner splay of the Ferrara system. The analysis of the postseismic displacements was carried out thanks to a dataset of SAR COSMO­ SkyMed images covering a time span of about one year (May 20, 2012 - May 11, 2013) after the May 20 event. The DInSAR results revealed the presence of two deformation patches: the first one is located in the area that experienced the coseismic uplift. Here the postseismic displacements point out a further ground uplift occurring along the first three months after the 20 May event. The second deformation patch is located in the villages of San Carlo and Mirabello, where ground subsidence lasting about four months was detected. We hypothesized that both the observed phenomena are related to the pore pressure perturbation caused by the coseismic deformation. In particular, the ground uplift is due to the deep crustal deformations caused by the pore fluid diffusion at depth to re-establish the initial hydrostatic stresses. Instead, the ground subsidence is related to the compaction of the shallow sandy layers caused by the liquefaction phenomena, which widely affected the San Carlo and Mirabello area. Preliminary numerical analyses performed with the Finite Element Method and empirical relations confirmed our hypothesis.

  2. Post-collisional and intraplate Cenozoic volcanism in the rifted Apennines/Adriatic domain

    NASA Astrophysics Data System (ADS)

    Bianchini, G.; Beccaluva, L.; Siena, F.

    2008-02-01

    The distinctive tectono-magmatic characteristics of rift volcanism in the Apennines/Adria domains are discussed focussing attention on the nature of mantle sources, stress regimes, and conditions of magma generation. Post-collisional intensive lithospheric rifting and tectonic collapse of the Apennines generate large amounts of Pliocene-Quaternary orogenic magmas which overlie a nearly vertical subducted slab along the peri-Tyrrhenian border. This magmatism includes the Roman Magmatic Province sensu lato (RMP-s.l.) and the Internal Apennines Volcanism (IAV), and consists of high-K calcalkaline, potassic (shoshonitic) and ultrapotassic (leucitites, leucite basanite and minor lamproites and kamafugites) products. Integrated petrological and geochemical studies of these rocks (and associated mantle xenoliths) indicate that most of them could have been generated by a restricted partial melting range ( F ≤ 5-10%) of extremely inhomogeneous phlogopite-veined lithospheric mantle sources, resulting from subduction related K-metasomatic processes. Moreover, the presence of both intermediate anorogenic and subduction related geochemical features in Mt. Vulture magmas support the existence of a slab window beneath the central-southern Apennines, which could have allowed inflow of subduction components to intraplate mantle sources. This slab discontinuity may mark the transition between the already collisioned Adriatic and the still subducting Ionian lithospheric slabs. By contrast, the Paleogene intraplate magmatism of the Adriatic foreland (i.e., the Veneto Province (VVP) and the minor Mt. Queglia and Pietre Nere magmatic bodies) is characterized by small volumes of basic magmas, varying from tholeiitic to strongly Na-alkaline in composition. This magmatism appears to be related to a limited extensional regime typical of the low volcanicity rifts. Petrogenetic modelling of the intraplate Adriatic foreland magmas indicates that their composition is remarkably depth-dependent, with generation of tholeiites to nephelinites/alkaline lamprophyres by decreasing degrees of partial melting ( F = 25 to ≤ 5%) of lherzolite lithospheric sources at progressively increasing depths (ca. 40 to 100 km). Moreover, geochemical features of these anorogenic magmas testify that their mantle sources are remarkable homogeneous, as also confirmed by lack of veining in the VVP mantle xenoliths. This homogeneity suggests that Na-metasomatic agents pervasively affected the overlying Adriatic lithospheric mantle by porous flow mechanisms without causing significant inhomogeneities at a regional scale.

  3. The Cotoncello Shear Zone (Elba Island, Italy): The deep root of a fossil oceanic detachment fault in the Ligurian ophiolites

    NASA Astrophysics Data System (ADS)

    Frassi, Chiara; Musumeci, Giovanni; Zucali, Michele; Mazzarini, Francesco; Rebay, Gisella; Langone, Antonio

    2017-05-01

    The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island, we investigated for the first time a ​10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U-Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle-ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature < 500 °C. We suggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion. We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work.

  4. Early dolomitization in the Lower Cretaceous shallow-water carbonates of Southern Apennines (Italy): Clues about palaeoclimatic fluctuations in western Tethys

    NASA Astrophysics Data System (ADS)

    Vinci, Francesco; Iannace, Alessandro; Parente, Mariano; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio

    2017-12-01

    A multidisciplinary study of the dolomitized bodies present in the Lower Cretaceous platform carbonates of Mt. Faito (Southern Apennines - Italy) was carried out in order to explore the connection between early dolomite formation and fluctuating climate conditions. The Berriasian-Aptian investigated succession is 466 m thick and mainly consists of shallow-water lagoonal limestones with frequent dolomite caps. The dolomitization intensity varies along the succession and reaches its peak in the upper Hauterivian-lower Barremian interval, where it is present a completely dolomitized interval about 100-m-thick. Field relations, petrography, mineralogy, and geochemistry of the analyzed dolomite bodies allowed identifying two populations of early dolomites, a fine-medium crystalline (FMdol) and a coarse crystalline dolomite (Cdol), both interpreted as the product of mesohaline water reflux. According to our interpretation, FMdol precipitated from concentrated brines in the very early stage of the reflux process, producing typical sedimentary features as dolomite caps. In the successive step of the process, the basin-ward 'latent' reflux precipitated Cdol from less concentrated brines. A peculiar feature of the studied succession is the great consistency between stratigraphic distribution of dolomite bodies and their geochemical signature. The completely dolomitized Hauterivian-Barremian interval, in fact, is characterized by geochemical values suggesting an origin from distinctly saltier brines. Considering that the observed near-surface dolomitization process is controlled by physical and chemical parameters reflecting the paleoenvironmental and paleoclimatic conditions during dolomite formation, we propose that the stratigraphically controlled dolomitization intensity reflects periodic fluctuations in the salinity of dolomitizing fluid, in turn controlled by long-term climate oscillations. The present work highlights that the stratigraphic distribution of early diagenetic dolomite may be used as proxy to define the climatic fluctuations that have influenced the sedimentary dynamics in the Early Cretaceous. Moreover, considering that a comparable early dolomite distribution is present also in the Dinaric Platform, we suggest that a regional scale climate control acted on early dolomite formation and distribution. Refining the knowledge of such a key control may have a significative impact on hydrocarbon reservoir characterization and exploration in the Periadriatic area.

  5. Paleo-fluid flow in folded, poorly lithified Quaternary sediments revealed by diagenetic concretions developed during the growth of Quattro Castella Anticline (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio

    2017-04-01

    Diagenetic concretions and mineral masses may provide a useful tool to better understand paleo-fluid flows in transforming porous media. Moreover, the selective cementation responsible of diagenetic alterations formation, plays a key role in diminishing sediments porosity and permeability and hence reservoir quality. In compressive settings of a fold-and-thrust-belt, the presence of deep or blind thrusts could lead to the generation of folds which may influence syn-kinematic sedimentation, deep fluids migration and shallow fluid flow pattern. In this contribution we present a multidisciplinary field and laboratory study on carbonate concretions developed in Quaternary poorly lithified, shallow marine syn-kinematic sediments of the Quattro Castella Anticline in Northern Apennines (Italy). The study site is located along the Enza River, where shallow marine to continental sediments are exposed along the forelimb of the fold nucleated during Late Miocene and still active today. Field mapping was aimed to link bedding attitude of syn-kinematic sediments with the geometry, arrangement, shape and size of concretionary bodies. The studied concretions are both tabular (i.e. parallel to sediment bedding) and elongate single or coalescent concretionary bodies (i.e. plunging at different angle to bedding dip throughout the stratigraphic section). Concretions dimensions range from a few centimeters in single elongate concretions, up to a few meters in tabular and coalescent ones. In situ permeability measurements and laboratory grain size analyses were performed along the studied section to constrain the petrophysical properties of sediments hosting carbonate concretions. Carbon and oxygen stable isotopes analyses on carbonate concretions (performed both on hand specimens and also on thin sections), together with petrographic and cathodoluminescence observations, were used to better constrain the diagenetic environment in which calcite precipitation occurred. Our results indicate that the growing anticline promoted the development of a local topographic and hydraulic gradient which induced cement precipitation in the form of carbonate concretions in syn-kinematic sediments. Such diagenetic alterations can be a good marker to reconstruct the paleo-fluid flow history in structurally complex siliciclastic reservoirs.

  6. Contrasting fault fluids along high-angle faults: a case study from Southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Sinisi, Rosa; Petrullo, Angela Vita; Agosta, Fabrizio; Paternoster, Michele; Belviso, Claudia; Grassa, Fausto

    2016-10-01

    This work focuses on two fault-controlled deposits, the Atella and Rapolla travertines, which are associated with high-angle extensional faults of the Bradano Trough, southern Apennines (Italy). The Atella travertine is along a NW-SE striking, deep-seated extensional fault, already described in literature, which crosscuts both Apulian carbonates and the overlying foredeep basin infill. The Rapolla travertine is on top of a NE-SW striking, shallow-seated fault, here described for the first time, which is interpreted as a tear fault associated with a shallow thrust displacing only the foredeep basin infill. The results of structural, sedimentological, mineralogical, and C and O isotope analyses are here reported and discussed to assess the provenance of mineralizing fluids, and to evaluate the control exerted by the aforementioned extensional faults on deep, mantle-derived and shallow, meteoric fluids. Sedimentological analysis is consistent with five lithofacies in the studied travertines, which likely formed in a typical lacustrine depositional environment. Mineralogical analysis show that travertines mainly consist of calcite, and minor quartz, feldspar and clay minerals, indicative of a terrigenous supply during travertine precipitation. The isotope signature of the two studied travertines shows different provenance for the mineralizing fluids. At the Atella site, the δ13CPDB values range between + 5.2 and + 5.7‰ and the δ18OPDB values between - 9.0 and - 7.3‰, which are consistent with a mantle-derived CO2 component in the fluid. In contrast, at the Rapolla site the δ13CPDB values vary from - 2.7 to + 1.5‰ and the δ18OPDB values from - 6.8 to - 5.4‰, suggesting a mixed CO2 source with both biogenic-derived and mantle-derived fluids. The results of structural analyses conducted along the footwall damage zone of the fault exposed at the Rapolla site, show that the whole damage zone, in which fractures and joints likely channeled the mixed fluids, acted as a distributed conduit for both fault-parallel and cross-fault fluid migration.

  7. The interaction between surface processes and tectonics during the late Quaternary in the Middle Volturno River valley (southern Italy): new morpho-stratigraphic constraints from fluvial terraces

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Patrizio Ciro Aucelli, Pietro; Cesarano, Massimo; Filocamo, Francesca; Giralt, Santiago; Leone, Natalia; Rosskopf, Carmen Maria; Scorpio, Vittoria

    2017-04-01

    The Middle Volturno River valley is located in the inner part of the Southern Apennines of Italy, between the SW slope of the Matese Massif and the NE slopes of the Caserta mountains and is underlain by Meso-Cenozoic carbonate rocks and Miocene Flysch deposits. The study sector includes the lower Calore River valley and, below the Calore-Volturno confluence, the valley portion that extends until the Triflisco gorge, from Telese village to the Volturno dam. It is generally E-W, NW-SE and NE-SW elongated and characterized by rectilinear and meandering fluvial patterns. The main infilling of the two valley portions is locally preserved as remnants of fluvial terraces hanging over the local base level up to ca. 30-40 m. It is generally interfingered with and covered by several generations of alluvial fan and travertine deposits. New Ar/Ar datings on tephra layers interbedded in the oldest generations of the alluvial fan deposits and new U/Th datings on travertine deposits, allowed to constrain the main infilling to the late Middle and the early Upper Pleistocene. Both deposits are locally covered by the Campanian Ignimbrite Formation (CI, 39 ky BP) and are interested by high-angle faults generated during extensional tectonic phases that affected this sector of the Apennine chain since the Middle Pleistocene. Furthermore, the geomorphological analyses of aerial photos and topographic maps (1:5000 in scale) highlight the presence of a flight of fluvial terraces younger than the CI deposits that can be grouped into four orders. The stratigraphical data, based on field surveys and boreholes analyses, supported by new tephrostratigraphical constraints and literature data, allow to refer the older orders (I and II) to the late Upper Pleistocene. The III and IV orders, instead, can be referred to the early Holocene and historical times, respectively. These chronological constraints allow to hypothesize that the genesis of the I and II orders seem to be driven by late Quaternary tectonics, while climatic and land use changes played a key role for the formation of the younger orders.

  8. Effect of Fault Parameter Uncertainties on PSHA explored by Monte Carlo Simulations: A case study for southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Akinci, A.; Pace, B.

    2017-12-01

    In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.

  9. Longitudinal Strain in the Forearc of a Rollback-Subduction System Forced to Change Length: Structural evolution of the Crotone Basin in NE Calabria, Southern Italy

    NASA Astrophysics Data System (ADS)

    Reitz, M. A.; Seeber, L.

    2009-12-01

    Calabria is a continental fragment incorporated into a forearc overriding the WNW directed subduction system. This system rolled back toward ESE across the central Mediterranean during the Neogene to form the Tyrrhenian Basin. Riding above the megathrust, forearcs seek a dynamic equilibrium between boundary stresses (drag below and lateral containments) with body stress (gravity acting on the shape of the forearc). Changes in boundary conditions are balanced by changes in the shape. The internal deformation history of the forearc, therefore, is expected to reflect changes in subduction tectonics during the evolution of the arc. We analyzed the structure of the Crotone Basin, located in northeastern Calabria, which is located in the exposed part of the forearc closest to the deformation front and to the Apennines. The main purpose was to compare the successive phases of deformation in the basin to the known evolution of the arc. We found four distinct events from the late Tortonian to the present. A widespread unconformity correlated with the onset of rollback marks a regional foundering with multidirectional normal growth faults. Following this pervasive and deeply rooted extension, the Crotone Basin experiences a period of parallel and distal sedimentation (Ponda clay). These sediments mark a relative long period (~5ma) of remarkable tectonic quiescence, even though subduction-rollback is moving the arc rapidly (3-5cm/yr) to the ESE. In addition, the forearc is shortening by progressive collision with Apulia (the Apennines) and Africa (the Maghrebides) during this time, but our study area is still far from the oblique collisions occurring at the ends of the forearc. The Messinian Salinity Crisis (5.3-6Ma) causes major instabilities in the accretion by loading it with evaporite deposits first and then removing the water load. Landward (westward) thrusting of the accretionary complex correlates with the Messinian in the Crotone basin and elsewhere along eastern Calabria. A characteristic fluvial conglomerate that locally caps the evaporite sequence records this thrusting by a systematic fracturing of the cobbles. After a well-known mid-Pliocene basin-forming extensional event, we find evidence of a basin-wide contractional event affecting the entire Neogene sequence up to the mid-to-late Pliocene. The data show a north-south compression with vergence to the north. This arc-longitudinal shortening may correlate with mid-Pliocene N-S shortening reported in the southern Apennines. Finally, many of these shortening structures are cut or reactivated by a recent (mid-Pleistocene?) faults, that accommodate extension also directed N-S to NW-SE. Our data show a shift from radial to longitudinal tectonics in the Pliocene as the Crotone basin nears the oblique collision with Apulia. Longitudinal forearc shortening may lead to extension in the Pleistocene, as the forearc squeezes through the narrow between Africa (Sicily) and Apulia, and begins lengthening as rollback consumes progressively wider Ionian lithosphere.

  10. Crustal structure of northern Italy from the ellipticity of Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Berbellini, Andrea; Morelli, Andrea; G. Ferreira, Ana M.

    2017-04-01

    Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.

  11. Italy: An Open Air Museum

    NASA Astrophysics Data System (ADS)

    Pizzorusso, Ann

    2016-04-01

    Imagine if you could see the River Styx, bathe in the Fountain of Youth, collect water which enhances fertility, wear a gem that heals bodily ailments, understand how our health is affected by geomagnetic fields, venture close to the flames of Hell on Earth and much, much, more. Know something? These things exist - on Earth - today - in Italy and you can visit them because Italy is an open air museum. Ann C. Pizzorusso, in her recent book, reveals how Italy's geology has affected its art, literature, architecture, religion, medicine and just about everything else. She explores the geologic birth of the land, describing the formation of the Alps and Apennines, romantic bays of Tuscany and Lazio, volcanoes of the south and Caribbean-like beaches of Puglia. But that's not all, from the first pages of this visually stunning book, the reader has the impression of being in an art museum, where one can wander from page to page to satisfy one's curiosity-- guided from time to time by the Etruscan priests, Virgil, Dante, Goethe or Leonardo da Vinci himself. Pizzorusso stitches together widely diverse topics - such as gemology, folk remedies, grottoes, painting, literature, physics and religion - using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. Wonderfully illustrated with many photos licensed from Italian museums, HRH Elizabeth II and the Ministero Beni Culturali the book highlights the best works in Italian museums and those outside in the "open air museums." This approach can be used in any other country in the world and can be used for cultural tourism (a tour following the book has been organized for cultural and university groups), an ideal way of linking museums to the surrounding landscape.

  12. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-06

    ISS013-E-78295 (6 Sept. 2006) --- Haze in the Po River Valley of Italy is featured in this image photographed by an Expedition 13 crewmember onboard the International Space Station. The valley is visible across the horizontal center of the frame, with the floor obscured by what NASA scientists refer to as frequent atmospheric haze, a mixture of industrial pollutants, dust and smoke. The visual texture of such haze is perceptibly different from that of bright white clouds which stretch across the top of the scene and cover part of the Alps. The Po River Valley is Italy's industrial heartland and one of the most industrialized regions on Earth, according to scientists. Northern Italy is in the foreground of this southwesterly view. The partially cloud-covered Alps are at lower right; the Adriatic Sea at lower left. Corsica is under partial cloud cover at center; and Sardinia, almost totally obscured, is to its south. The island of Elba is visible just to the west of Italy. By contrast with haze accumulation along the axis of the valley, the Alps and the Apennines are clearly visible, and Lake Garda can be seen in the foothills of the Alps. Other visible geographic features are the lagoon at Venice north of the Po River delta, and three small lakes north of Rome. The winds on the day this image was taken are mainly from the north, as shown by the flow lines in the haze near Venice. The haze typically flows south down the Adriatic Sea. Visibility in the Mediterranean basin is often reduced by hazes such as these, deriving from different sources in industrialized Europe.

  13. Mitochondrial lineage sorting in action – historical biogeography of the Hyles euphorbiae complex (Sphingidae, Lepidoptera) in Italy

    PubMed Central

    2013-01-01

    Background Mitochondrial genes are among the most commonly used markers in studies of species’ phylogeography and to draw conclusions about taxonomy. The Hyles euphorbiae complex (HEC) comprises six distinct mitochondrial lineages in the Mediterranean region, of which one exhibits a cryptic disjunct distribution. The predominant mitochondrial lineage in most of Europe, euphorbiae, is also present on Malta; however, it is nowadays strangely absent from Southern Italy and Sicily, where it is replaced by 'italica'. A separate biological entity in Italy is further corroborated by larval colour patterns with a congruent, confined suture zone along the Northern Apennines. By means of historic DNA extracted from museum specimens, we aimed to investigate the evolution of the mitochondrial demographic structure of the HEC in Italy and Malta throughout the Twentieth Century. Results At the beginning of the Twentieth Century, the European mainland lineages were also present at a moderate frequency in Southern Italy and Sicily. The proportion of 'italica' then steadily increased in this area from below 60 percent to near fixation in about 120 years. Thus, geographical sorting of mitochondrial lineages in the HEC was not as complete then as the current demography suggests. The pattern of an integral 'italica' core region and a disjunct euphorbiae distribution evolved very recently. To explain these strong demographic changes, we propose genetic drift due to anthropogenic habitat loss and fragmentation in combination with an impact from recent climate warming that favoured the spreading of the potentially better adapted 'italica' populations. Conclusions The pattern of geographically separated mitochondrial lineages is commonly interpreted as representing long term separated entities. However, our results indicate that such a pattern can emerge surprisingly quickly, even in a widespread and rather common taxon. We thus caution against drawing hasty taxonomic conclusions from biogeographical patterns of mitochondrial markers derived from modern sampling alone. PMID:23594258

  14. Artist's concept of Hadley-Apennine landing site with alternate traverses

    NASA Image and Video Library

    1971-06-01

    S71-33432 (1 July 1971) --- These alternative traverses can be carried out on foot. They will be used if the Lunar Roving Vehicle (LRV) becomes inoperative. This artist's concept showing part of the Hadley Rille and several of the Apennine Mountains was excerpted from "On the Moon with Apollo 15: A Guidebook to the Hadley-Apennine Region," by Gene Simmons. Artwork by Jerry Elmore.

  15. Evidence for bovine besnoitiosis being endemic in Italy--first in vitro isolation of Besnoitia besnoiti from cattle born in Italy.

    PubMed

    Gentile, A; Militerno, G; Schares, G; Nanni, A; Testoni, S; Bassi, P; Gollnick, N S

    2012-03-23

    Until 2009, bovine besnoitiosis had never been considered endemic in Italy and the only report on the disease in this country referred to animals imported from France shortly before. However, recently, an autochthonous outbreak of bovine besnoitiosis was reported in four herds located at the intersection of the borders between Emilia-Romagna, Toscana and Marche (Northern Apennine Mountains), which has led to an increased awareness concerning this disease. The present study describes a further outbreak of bovine besnoitiosis in Italy. The afflicted herd was a dairy herd with no evidence for contact with cattle from regions known to be endemic for bovine besnoitiosis. The farm investigation was initiated after a three-year old Holstein Friesian dairy cow with generalized thickening and lichenification of the skin was diagnosed with bovine besnoitiosis. The clinical diagnosis was confirmed by gross pathology, histopathology, serology and PCR. Bradyzoites released from tissue cysts obtained from the skin of this animal enabled the first in vitro isolation of Besnoitia besnoiti in Italy. This isolate was named Bb-Italy1. Sequencing of a 2118 bp spanning region including the complete internal transcribed spacer 1 and parts of the 18S and the 5.8S rRNA gene from DNA extracted from skin-derived zoites revealed a 99.9% identity to sequences known for other B. besnoiti isolated from cattle in Europe. Two GKO mice which had been inoculated intraperitoneally with bovine skin-derived bradyzoites became ill 7 days post inoculation. Parasitophorous vacuoles with multiplying zoites were observed in the cell culture inoculated with peritoneal fluids of these mice and a B. besnoiti infection in the mice and in the cell culture could be confirmed by real-time PCR. A serological investigation in the afflicted herd using immunoblots and an immunofluorescent antibody test (IFAT) revealed an overall herd seroprevalence of 9.7% (31/321), whereas within the female animals older than 2 years 17.0% (29/171) of the dams were tested positive. With one exception, an imported cow from Germany, all the seropositive animals were born in Italy. In connection with previously described autochthonous cases of bovine besnoitiosis the case described herein suggests that bovine besnoitiosis should be considered endemic in Italy. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Environmental rehabilitation of dismissed quarry areas in the Emilia Apennines (Italy) based on the exploitation of geosites

    NASA Astrophysics Data System (ADS)

    Soldati, Mauro; Coratza, Paola; Vandelli, Vittoria

    2016-04-01

    The landscape modifications induced by human activity in the past 50 years, due to quarrying in the catchment of Rio della Rocca (Province of Reggio Emilia, northern Italy) and plans for its environmental rehabilitation, are illustrated. The study area is located in the northern Apennines margin, specifically in the municipality of Castellarano, and is characterised by a great variety of abiotic environments and high biodiversity. As regards the geological aspects of the area, the main lithological outcrops consists of yellow sandstones belonging to the Epi-Ligurian Sequence (Upper Eocene - Lower Oligocene) and grey clays (Lower Pliocene - Lower Pleistocene) of the marine units of the Apennine margin. From a geomorphological viewpoint, the landscape evolution of this valley has been deeply influenced by the presence of rocks with different mechanical behaviour, gravitational and rainwash processes and, more recently, human activities. The latter have played a fundamental role in modelling the physical landscape of the area in recent times. In the Sassuolo area (Province of Modena), very close to the study area, there is the largest tile making district in the world, which was developed during the '60s and '70s of the 20th century, partly thanks to the wide availability of clayey raw materials with suitable technological properties. Since the mid-1950s the study area has been affected by intense quarrying activities which have largely modified its environmental and, in particular, geomorphological features. In the 1970s, three clay pits and four sandstone quarries were active in the area. The clay pits were used for tile production whereas the sandstone materials were utilised in large part for the building industry. This production scenario has radically changed during the past twenty years, with the progressive abandonment of quarries due to the introduction of ever-more restrictive environmental policies, imposing rigorous planning on mining activities. Considering the high scenic and environmental value of the study area, multidisciplinary investigations concerning the main geological, botanical and faunistic aspects were carried out in order to plan the environmental rehabilitation of the whole valley. Specific attention was given to recognition and assessment of geosites of the area in order to exploit them within a Masterplan. On the basis of the results attained, proposals of territorial upgrading have been developed by taking into account also appraisal measures for geotourism and recreational purposes. A series of specific proposals have been presented for the protection and use of sites of geological interest in the valley. These proposals include the design of physical protection measurements, the formulation of traditional itineraries, aiming at integrating geological-geomorphological elements and information on flora and fauna, and the appraisal of geosites as basis for fostering tourism and recreation and contributing to economic activities. The aim is to show the link between Man and the geological environment with respect to exploitation of raw materials which are particularly abundant in the area studied.

  17. Fluid Overpressure and Earthquakes Triggering in the Natural Laboratory of the Northern Apennines: Integration of Field and Laboratory Data

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Faulkner, D.

    2007-12-01

    The integration of seismic reflection profiles with well-located earthquakes show that the mainshocks of the 1997-1998 Colfiorito seismic sequence (Central Italy) nucleated at a depth of ~6 km within the Triassic Evaporites (TE, anhydrites and dolostones), where CO2 at near lithostatic pressure has been encountered in two deep boreholes (4 km). In order to investigate the deformation processes operating at depth in the source region of the Colfiorito earthquakes we have characterized: 1) fault zone structure by studying exhumed outcrops of the temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The architecture of large fault zones within the TE is given by a distinct fault core, where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone. Brittle deformation within the fault core is extremely localized along principal slip surfaces associated with dolomite rich cataclasite seams, running parallel to the fault zone. The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). Static permeability measurements on anhydrite samples show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests the permeability values immediately prior to failure are about three orders of magnitude higher than the initial values. The field data suggests that during the seismic cycle, the permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns. Conversely, the permeability of the anhydrites, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, may be potentially as low as the values measured in the lab experiments (k = 10E-17 - 10E-22 m2). This suggests that fluid overpressure can be maintained in this lithology, within the damage zone, as far as the co-seismic period. Our observations and results can be applied to explain the seismicity of the Northern Apennines and other regions where fluids overpressures play a key role in triggering fault instability and earthquakes.

  18. Fluid Overpressure and Earthquakes Triggering in the Natural Laboratory of the Northern Apennines: Integration of Field and Laboratory Data

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Faulkner, D.

    2004-12-01

    The integration of seismic reflection profiles with well-located earthquakes show that the mainshocks of the 1997-1998 Colfiorito seismic sequence (Central Italy) nucleated at a depth of ~6 km within the Triassic Evaporites (TE, anhydrites and dolostones), where CO2 at near lithostatic pressure has been encountered in two deep boreholes (4 km). In order to investigate the deformation processes operating at depth in the source region of the Colfiorito earthquakes we have characterized: 1) fault zone structure by studying exhumed outcrops of the temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The architecture of large fault zones within the TE is given by a distinct fault core, where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone. Brittle deformation within the fault core is extremely localized along principal slip surfaces associated with dolomite rich cataclasite seams, running parallel to the fault zone. The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). Static permeability measurements on anhydrite samples show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests the permeability values immediately prior to failure are about three orders of magnitude higher than the initial values. The field data suggests that during the seismic cycle, the permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns. Conversely, the permeability of the anhydrites, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, may be potentially as low as the values measured in the lab experiments (k = 10E-17 - 10E-22 m2). This suggests that fluid overpressure can be maintained in this lithology, within the damage zone, as far as the co-seismic period. Our observations and results can be applied to explain the seismicity of the Northern Apennines and other regions where fluids overpressures play a key role in triggering fault instability and earthquakes.

  19. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (<120 °C) that permitted microbial activity. The change in temperature regime is locally preserved in individual samples and correlates with the progressive uplift and exposure of mantle rock associated with detachment faulting along a mid-ocean ridge spreading center. The Santa Elena peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can limit sulfate removal during anhydrite precipitation at temperatures above 150 °C. This may play a central role for the availability of sulfate to microbial communities within these systems. Overall, the combined application of in situ and bulk rock multiple sulfur isotope measurements with petrographic observations allows us to resolve the different episodes of sulfur cycling during alteration of the oceanic lithosphere and the temporal changes between abiogenic and biogenic processes that control the sulfur cycling in these systems.

  20. The Seismicity of the Central Apennines Region Studied by Means of a Physics-Based Earthquake Simulator

    NASA Astrophysics Data System (ADS)

    Console, R.; Vannoli, P.; Carluccio, R.

    2016-12-01

    The application of a physics-based earthquake simulation algorithm to the central Apennines region, where the 24 August 2016 Amatrice earthquake occurred, allowed the compilation of a synthetic seismic catalog lasting 100 ky, and containing more than 500,000 M ≥ 4.0 events, without the limitations that real catalogs suffer in terms of completeness, homogeneity and time duration. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate for every single fault in the investigated fault systems, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one fault are allowed to expand into neighboring faults, even belonging to a different fault system, if they are separated by less than a given maximum distance. The seismogenic model upon which we applied the simulator code, was derived from the DISS 3.2.0 database (http://diss.rm.ingv.it/diss/), selecting all the fault systems that are recognized in the central Apennines region, for a total of 24 fault systems. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with those of real observations. These features include long-term periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the linear Gutenberg-Richter distribution in the moderate and higher magnitude range. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.3-0.6. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law was applied to all the events reported in the synthetic catalog for the production of maps showing the exceedence probability of given values of peak acceleration (PGA) on the territory under investigation. The application of a physics-based earthquake simulation algorithm to the central Apennines region, where the 24 August 2016 Amatrice earthquake occurred, allowed the compilation of a synthetic seismic catalog lasting 100 ky, and containing more than 500,000 M ≥ 4.0 events, without the limitations that real catalogs suffer in terms of completeness, homogeneity and time duration. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate for every single fault in the investigated fault systems, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one fault are allowed to expand into neighboring faults, even belonging to a different fault system, if they are separated by less than a given maximum distance. The seismogenic model upon which we applied the simulator code, was derived from the DISS 3.2.0 database (http://diss.rm.ingv.it/diss/), selecting all the fault systems that are recognized in the central Apennines region, for a total of 24 fault systems. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with those of real observations. These features include long-term periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the linear Gutenberg-Richter distribution in the moderate and higher magnitude range. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.3-0.6. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law was applied to all the events reported in the synthetic catalog for the production of maps showing the exceedence probability of given values of peak acceleration (PGA) on the territory under investigation.

  1. The Emilia 2012 seismic sequence: hints on incipient basement-involved deformation in the foreland of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Argnani, Andrea; Carannante, Simona; Massa, Marco; D'Alema, Ezio; Lovati, Sara

    2015-04-01

    The deformation front of the Northern Apennines is buried under the sediments of the Po Plain and was formed mainly during the Pliocene. The remarkably arcuate shape of the thrust front contrasts with the linear northwestern trend of the pede-Apennines, where recent deformation is documented by both geological and geodetic evidence. This study presents new geological and seismological data that are used to assess the structural style of the Ferrara Arc, a sector of the Northern Apennine front that was hit by two strong earthquakes on May 20 (MW 6.1) and May 29 (MW 6.0), 2012. The proposed interpretation is based on a dense grid of commercial seismic profiles and exploration wells, and high-quality relocation of ~5,300 earthquakes (the Emilia sequence). The seismicity was used to calibrate new one-dimensional and three-dimensional local Vp and Vs velocity models for the area. On the basis of these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. Seismicity distribution is elongated in the W-NW to E-SE directions, reaching a depth of 10-12 km. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~45° SSW, and the surface projection indicates an area ~10 km wide and 23 km long. The aftershocks of the May 29 second mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~6 km wide and 33 km long. The analysed multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene, and also show the occurrence of a Mesozoic extensional fault system in the Ferrara arc, which in places has been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were related to ruptures along blind fault surfaces that are not part of the Pliocene-Pleistocene structural system, but are instead related to a deeper system that is itself closely related to re-activation of a Mesozoic extensional fault system. The implication is that the Emilia 2012 seismic sequence was related to activation of a new deformation system that has developed since the late Pleistocene and that affects the deeper structural levels within the Adriatic crust. This interpretation has major relevance for the seismotectonic characterization of the Po Plain, because the location and extent of the Ferrara folds, that were formed during the Pliocene-Pleistocene, cannot simply be used to estimate the seismogenic potential of the Ferrara Arc region.

  2. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR

    NASA Astrophysics Data System (ADS)

    Bayer, Benedikt; Simoni, Alessandro; Mulas, Marco; Corsini, Alessandro; Schmidt, David

    2018-05-01

    Slow moving landslides are widespread geomorphological features in the Northern Apennines of Italy where they represent one of the main landscape forming processes. The lithology of the Northern Apennines fold and thrust belt is characterized by alternations of sandstone, siltstone and clayshales, also known as flysch, and clay shales with a chaotic block in matrix fabric, which are often interpreted as tectonic or sedimentary mélanges. While flysch rocks with a high pelitic fraction host earthslides that occasionally evolve into flow like movements, earthflows are the dominant landslide type in chaotic clay shales. In the present work, we document the kinematic response to rainfall of landslides in these different lithologies using radar interferometry. The study area includes three river catchments in the Northern Apennines. Here, the Mediterranean climate is characterized by two wet seasons during autumn and spring respectively, separated by dry summers and winters with moderate precipitation. We use SAR imagery from the X-band satellite COSMO SkyMed and from the C-band satellite Sentinel 1 to retrieve spatial displacement measurements between 2009 and 2016 for 25 landslides in our area of interest. We also document detailed temporal and spatial deformation signals for eight representative landslides, although the InSAR derived deformation signal is only well constrained by our dataset during the years 2013 and 2015. In spring 2013, long enduring rainfalls struck the study area and numerous landslide reactivations were documented by the regional authorities. During 2013, we measured higher displacement rates on the landslides in pelitic flysch formations compared to the earthflows in the clay shales. Slower mean velocities were measured on most landslides during 2015. We analyse the temporal deformation signal of our eight representative landslides and compare the temporal response to precipitation. We show that earthslides in pelitic flysch formations accelerate faster than earthflows in chaotic clay shales and reach higher velocities, while the kinematic behaviour of the earthflows can be described as rather steady with only minor accelerations. Although we have no detailed pore pressure measurements for the period of interest, the observed behaviour can be explained in our view by the morphological and hydrological characteristics of the different landslide types. On the one hand landslide material and bedrock in the pelitic flysch rocks are more resistant, which is why slope angles are higher in this lithology. On the other hand, landslides in the pelitic flysch formations have often deeper slip surfaces and landslide material is more permeable. This is why long persistent rainfall is necessary to saturate the landslide material and induce pore pressures that are high enough to trigger displacement.

  3. Heterogeneous brittle-ductile deformation at shallow crustal levels under high thermal conditions: The case of a synkinematic contact aureole in the inner northern Apennines, southeastern Elba Island, Italy

    NASA Astrophysics Data System (ADS)

    Papeschi, Samuele; Musumeci, Giovanni; Mazzarini, Francesco

    2017-10-01

    We present an example of interaction between magmatism and tectonics at shallow crustal levels. In the Late Miocene the metamorphic units of the eastern Elba Island (northern Apennines) were intruded at very shallow crustal levels by a large pluton (> 60 km2) with the development of an hectometre-sized contact aureole defined by growth of low-pressure/high-temperature mineral assemblages (Pmax < 0.2 GPa, Tmax 650 °C). Structural data show that the contact aureole is associated with a km-sized antiform of the foliation and by several metre- to decametre-thick high-strain domains consisting of strongly foliated rocks containing synkinematic HT/LP mineral assemblages and ductile shear zones of variable thickness. These shear zones are characterized by a mylonitic foliation variably overprinted by cataclasis. Quartz microfabrics indicate that the dynamic crystallization processes progressively changed from grain boundary migration, associated with the thermal peak of contact metamorphism, to subgrain rotation and bulging recrystallization, the latter mostly associated with the cataclastic overprint. These transitions of recrystallization mechanisms in quartz are related to a progressive decrease of temperature during deformation. Deformation accompanied the development and cooling of the contact aureole, which recorded the switch from high temperature ductile to low temperature brittle conditions. The geometry of the studied deformation structures is consistent with the constraints of the regional tectonic evolution and its local interaction with the localized and transient thermal anomaly related to the coeval emplacement of igneous rocks.

  4. Aseismic transient during the 2010-2014 seismic swarm: evidence for longer recurrence of M ≥ 6.5 earthquakes in the Pollino gap (Southern Italy)?

    PubMed

    Cheloni, Daniele; D'Agostino, Nicola; Selvaggi, Giulio; Avallone, Antonio; Fornaro, Gianfranco; Giuliani, Roberta; Reale, Diego; Sansosti, Eugenio; Tizzani, Pietro

    2017-04-12

    In actively deforming regions, crustal deformation is accommodated by earthquakes and through a variety of transient aseismic phenomena. Here, we study the 2010-2014 Pollino (Southern Italy) swarm sequence (main shock M W 5.1) located within the Pollino seismic gap, by analysing the surface deformation derived from Global Positioning System and Synthetic Aperture Radar data. Inversions of geodetic time series show that a transient slip, with the same mechanism of the main shock, started about 3-4 months before the main shock and lasted almost one year, evolving through time with acceleration phases that correlate with the rate of seismicity. The moment released by the transient slip is equivalent to M W 5.5, significantly larger than the seismic moment release revealing therefore that a significant fraction of the overall deformation is released aseismically. Our findings suggest that crustal deformation in the Pollino gap is accommodated by infrequent "large" earthquakes (M W  ≥ 6.5) and by aseismic episodes releasing a significant fraction of the accrued strain. Lower strain rates, relative to the adjacent Southern Apennines, and a mixed seismic/aseismic strain release are in favour of a longer recurrence for large magnitude earthquakes in the Pollino gap.

  5. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Gebler, A.; Schachtschneider, R.

    2012-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. Several types of data were acquired including gravity, GNSS signals (reflectometry, spectrometry and occultation), laser altimetry and magnetic data. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Magnetic and temperature data were collected at a 10 Hz sampling rate. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The ground speed during the flight was generally around 125 m/s (450 km/h). The output from the first steps of the magnetic data processing will be shown. The measured magnetic data appear to be consistent with the expected signal.

  6. Phylogeography and systematics of the westernmost Italian Dolichopoda species (Orthoptera, Rhaphidophoridae)

    PubMed Central

    Allegrucci, Giuliana; Rampini, Mauro; Di Russo, Claudio; Lana, Enrico; Cocchi, Sara; Sbordoni, Valerio

    2014-01-01

    Abstract The genus Dolichopoda (Orthoptera; Rhaphidopohoridae) is present in Italy with 9 species distributed from northwestern Italy (Piedmont and Liguria) to the southernmost Apennines (Calabria), occurring also in the Tyrrhenian coastal areas and in Sardinia. Three morphologically very close taxa have been described in Piedmont and Liguria, i.e., D. ligustica ligustica, D. ligustica septentrionalis and D. azami azami. To investigate the delimitation of the northwestern species of Dolichopoda, we performed both morphological and molecular analyses. Morphological analysis was carried out by considering diagnostic characters generally used to distinguish different taxa, as the shape of epiphallus in males and the subgenital fig in females. Molecular analysis was performed by sequencing three mitochondrial genes, 12S rRNA, 16S rRNA, partially sequenced and the entire gene of COI. Results from both morphological and molecular analyses highlighted a very homogeneous group of populations, although genetically structured. Three haplogroups geographically distributed could be distinguished and based on these results we suggest a new taxonomic arrangement. All populations, due to the priority of description, should be assigned to D. azami azami Saulcy, 1893 and to preserve the names ligustica and septentrionalis, corresponding to different genetic haplogroups, we assign them to D. azami ligustica stat. n. Baccetti & Capra, 1959 and to D. azami septentrionalis stat. n. Baccetti & Capra, 1959. PMID:25197209

  7. The HyMeX Special Observation Period in Central Italy: precipitation measurements, retrieval techniques and preliminary results

    NASA Astrophysics Data System (ADS)

    Silvio Marzano, Frank; Baldini, Luca; Picciotti, Errico; Colantonio, Matteo; Barbieri, Stefano; Di Fabio, Saverio; Montopoli, Mario; Vulpiani, Gianfranco; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Anagnostou, Marios N.; Kalogiros, John; Anagnostou, Emmanouil N.; Ferretti, Rossella; Gatlin, Patrick.; Wingo, Matt; Petersen, Walt

    2013-04-01

    The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. The capability to predict such high-impact events remains weak because of the contribution of very fine-scale processes and their non-linear interactions with the larger scale processes. These societal and science issues motivate the HyMeX (Hydrological cycle in the Mediterranean Experiment, http://www.hymex.org/) experimental programme. HyMeX aims at a better quantification and understanding of the water cycle in the Mediterranean with emphasis on intense events. The observation strategy of HyMEX is organized in a long-term (4 years) Enhanced Observation Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). HyMEX has identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE). Within each target area several hydrometeorological sites for heavy rainfall and flash flooding have been set up. The hydrometeorological site in Central Italy (CI) is interested by both western and eastern fronts coming from the Atlantic Ocean and Siberia, respectively. Orographic precipitations play an important role due to the central Apennine range, which reaches nearly 3000 m (Gran Sasso peak). Moreover, convective systems commonly develop in CI during late summer and beginning of autumn, often causing localized hailstorms with cluster organized cells. Western fronts may heavily hit the Tiber basin crossing large urban areas (Rome), whereas eastern fronts can cause flash floods along the Adriatic coastline. Two major basins are involved within CI region: Tiber basin (1000 km long) and its tributary Aniene and the Aterno-Pescara basin (300 km long). The first HyMeX SOP1.1 was carried out from Sept. till Nov. 2012 in the NW target area. The Italian SOP1.1 was coordinated by the Centre of Excellence CETEMPS, University of L'Aquila, a city located in the CI heart. The CI area was covered by a uniquely dense meteorological instrumentation thanks to a synergy between Italian institutions and NASA-GSFC. The following RADARs were operated: a Doppler single-polarization C-band radar located at Mt. Midia; the Polar 55C Doppler dual-polarization C-band radar located in Rome; a Doppler C-band polarimetric radar located at Il Monte (Abruzzo); a polarimetric X-band mini-radar in L'Aquila; a polarimetric X-band portable mini-radar in Rome; a single-polarization X-band mini-radar in Rome. DISDROMETERs were also deployed: 4 Parsivel optical disdrometers in Rome (at Sapienza, CNR-ISAC and CNR-INSEAN); 1 2D-video disdrometer in Rome; 3 Parsivels optical disdrometer respectively in L'Aquila (Abruzzo), Avezzano (Abruzzo) and Pescara (Abruzzo). Other INSTRUMENTS were available: 1 K-band vertically-pointing micro rain-radar (MRR), 2 Pludix X-band disdrometers, 1 VLF lightining sensor, 1 microwave radiometer at 23-31 GHz in Rome (at Sapienza); the raingauge network with more than 200 stations in Central Italy. Three overpasses in CI were also performed by the Falcon 20 aircraft equipped with the 95GHz cloud radar RASTA. Analysis of the SOP1.1 main events in CI will be described by focusing on the raindrop size distribution statistics and its geographical variability. Intercomparison of rainfall estimates from disdrometers, raingauges and radars will be illustrated with the aim to provide a quality-controlled and physically consistent rainfall dataset for meteorological modeling validation and assimilation purposes.

  8. The HyMeX Special Observation Period in Central Italy: Precipitation Measurements, Retrieval Techniques and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick; Wingo, Matt; Petersen, Walt; Marzano, Frank Silvio; Baldini, Luca; Picciotti, Errico; Colantonio, Matteo; Barbieri, Stefano; Di Fabio, Saverio; Montopoli, Mario; hide

    2013-01-01

    The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. The capability to predict such high-impact events remains weak because of the contribution of very fine-scale processes and their non-linear interactions with the larger scale processes. These societal and science issues motivate the HyMeX (Hydrological cycle in the Mediterranean Experiment, http://www.hymex.orgl) experimental programme. HyMeX aims at a better quantification and understanding of the water cycle in the Mediterranean with emphasis on intense events. The observation strategy of HyMEX is organized in a long-term (4 years) Enhanced Observation Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). HyMEX has identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE). Within each target area several hydrometeorological sites for heavy rainfall and flash flooding have been set up. The hydrometeorological sire in Central Italy (CI) is interested by both western and eastern fronts coming from the Atlantic Ocean and Siberia, respectively. Orographic precipitations play an important role due to the central Apennine range, which reaches nearly 3000 m (Gran Sasso peak). Moreover, convective systems commonly develop in CI during late summer and beginning of autumn, often causing localized hailstorms with cluster organized cells. Western fronts may heavily hit the Tiber basin crossing large urban areas (Rome), whereas eastern fronts can cause flash floods along the Adriatic coastline. Two major basins are involved within Cl region: Tiber basin (1000 km long) and its tributary Aniene and the Aterno-Pescara basin (300 km long). The first HyMeX SOP1.1 was carried out from Sept. till Nov. 2012 in the NW target area The Italian SOP1.1 was coordinated by the Centre of Excellence CETEMPS, University of L'Aquila, a city located in the CI heart. The CI area was covered by a uniquely dense meteorological instrumentation thanks to a synergy between Italian institutions and NASA-GSFC. The following RADARs were operated: a Doppler single-polarization C-band radar located at Mt Midia; the Polar 55C Doppler dual-polarization C-band radar located in Rome; a Doppler C-hand polarimetric radar located at Il Monte (Abnazo); a polarimetric X-band mini-radar in L' Aquila; a polarimetric X-hand portable mini-radar in Rome; a single-polarization X-band mini-radar in Rome. DISDROMETERs were also deployed: 4 Parsivel optical disdrometers in Rome (at Sapienza, CNR-ISAC and CNR-INSEAN); 1 2D-video disdrometer in Rome; 3 Parsivels optical disdrometer respectively in L'Aquila (Abnazo), Avezzano (Abruzzo) and Pescara (Abnazo). Other INSTRUMENTS were available: 1 K-band vertically-pointing micro rain-radar (MRR), 2 Pludix X-band disdrometers, 1 VLF lightning sensor, 1 microwave radiometer at 23-31 GHz in Rome (at Sapienza); the raingauge network with more than 200 stations in Central Italy. Three overpasses in CI were also performed by the Falcon 20 aircraft equipped with the 950Hz cloud radar RASTA Analysis of the SOP1.1 main events in CI will be described by focusing on the raindrop size distribution statistics and its geographical variability. Intercomparison of rainfall estimates from disdrometers, raingauges and radars will be illustrated with the aim to provide a quality-controlled and physically consistent rainfall dataset for meteorological modeling validation and assimilation purposes.

  9. Calcareous nannofossil events in the pre-evaporitic Messinian

    NASA Astrophysics Data System (ADS)

    Negri, Alessandra; Lozar, Francesca

    2017-04-01

    During the Messinian (7.2 to 5.3 Ma) the Mediterranean area experienced fast and deep climatic and eustatic structural changes. The stratigraphic framework for this interval is relatively well constrained and the beginning of the Messinian salinity crisis dated at 5.97 Ma determine a duration of at least 1.2 Ma for the pre-evaporitic Messinian that is object of this study. Several sites (Faneromeni, Pissouri, Polemi Fanantello borehole, Lemme, Pollenzo, Govone, Moncalvo; Wade and Bown, 2006; Kouwenhoven et al 2006, Morigi et al 2007, Lozar et al 2010, Dela Pierre et al 2011) show similar calcareous nannofossil record behavior, with several Sphenolithus spp. peaks recognised at different quotes in each of the sections. Aim of the present work is to compare the calcareous nannofossil data achieved in the above mentioned sections: interestingly, the occurrence of strongly oligotypic assemblages related to high salinity and unstable environments, appear to correlate precisely among the investigated sites and occur immediately before the onset of the Messinian salinity crisis, then offering the possibility to use them as bioevents for regional correlation. References Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., Lozar, F., Lugli, S., Manzi, V., Natalicchio, M., Roveri, M., Violanti, D., 2011. The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): The Alba section revisited. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 238-255. Kouwenhoven, T.J., Morigi, C., Negri, A., Giunta, S., Krijgsman, W., Rouchy, J.M., 2006 Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: Constraints from integrated microfossil data of the Pissouri Basin (Cyprus). Marine Micropaleontology 60, 17-44. Lozar, F., Violanti, D., Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Irace, A., Martinetto, E., Trenkwalder, S., 2010. Calcareous nannofossils and foraminifers herald the Messinian salinity crisis: the Pollenzo section (Alba, Cuneo; NW Italy). Geobios 43, 21-32. Manzi, V., Roveri, M., Gennari, R., Bertini, A., Biffi, U., Giunta, S., Iaccarino, S., Lanci, L., Lugli, S., Negri, A., Riva, A., Rossi, M.E., Taviani, M., 2007. The deep-water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: The Fanantello section (Northern Apennines, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 251, 470-499. Morigi C., Negri A., Giunta S. , Kouwenhoven T., Krijgsman W., Blanc-Valleron M., Orszag-Sperber F., Rouchy J.M.. 2007. Integrated quantitative biostratigraphy of the latest Tortonian-early Messinian Pissouri section (Cyprus): An evaluation of calcareous plankton bioevents. Biostratigraphie intégrée du passage Tortonien-Messinien dans le bassin de Pissouri (Chypre) : une evaluation des bio-evenements dans le plancton calcaire. Geobios 40 : 267-279. Wade B.S. and Bown P.2006, Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology 233 (2006) 271- 286

  10. Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA-INTERIM reanalysis

    NASA Astrophysics Data System (ADS)

    Punge, H. J.; Bedka, K. M.; Kunz, M.; Reinbold, A.

    2017-12-01

    This article presents a hail frequency estimation based on the detection of cold overshooting cloud tops (OTs) from the Meteosat Second Generation (MSG) operational weather satellites, in combination with a hail-specific filter derived from the ERA-INTERIM reanalysis. This filter has been designed based on the atmospheric properties in the vicinity of hail reports registered in the European Severe Weather Database (ESWD). These include Convective Available Potential Energy (CAPE), 0-6-km bulk wind shear and freezing level height, evaluated at the nearest time step and interpolated from the reanalysis grid to the location of the hail report. Regions highly exposed to hail events include Northern Italy, followed by South-Eastern Austria and Eastern Spain. Pronounced hail frequency is also found in large parts of Eastern Europe, around the Alps, the Czech Republic, Southern Germany, Southern and Eastern France, and in the Iberic and Apennine mountain ranges.

  11. Hydrogeochemical response of groundwater springs during central Italy earthquakes (24 August 2016 and 26-30 October 2016)

    NASA Astrophysics Data System (ADS)

    Archer, Claire; Binda, Gilberto; Terrana, Silvia; Gambillara, Roberto; Michetti, Alessandro; Noble, Paula; Petitta, Marco; Rosen, Michael; Pozzi, Andrea; Bellezza, Paolo; Brunamonte, Fabio

    2017-04-01

    Co-seismic hydrological and chemical response at groundwater springs following strong earthquakes is a significant concern in the Apennines, a region in central Italy characterized by regional karstic groundwater systems interacting with active normal faults capable of producing Mw 6.5 to 7.0 seismic events. These aquifers also provide water supply to major metropolitan areas in the region. On August 24, 2016, a Mw 6.0 earthquake hit Central Italy in the area where Latium joins Umbria, Marche and Abruzzi; this was immediately followed one hour later by a Mw 5.4 shock. The epicenter of the event was located at the segment boundary between the Mt. Vettore and Mt. Laga faults. On October 26, 2016 and on October 30, 2016, three other big shocks (Mw 5.5, Mw 6.0 and Mw 6.5) ruptured again the Vettore Fault and its NW extension. Immediately after Aug. 24, we sampled springs discharging different aquifers in the Rieti area, including the Peschiera spring, which feeds the aqueduct of Rome. Thermal springs connected with deep groundwater flowpaths were also sampled. These springs, sampled previously in 2014 and 2015, provide some pre-earthquake data. Moreover, we sampled 4 springs along the Mt. Vettore fault system: 3 small springs at Forca di Presta, close to the trace of the earthquake surface ruptures, and two in Castel Sant'Angelo sul Nera. The latter are feeding the Nera aqueduct and the Nerea S.p.A. mineral water plant, which also kindly allowed us to collect bottled water samples from the pre-seismic period. The aim of this study is to evaluate the strong earthquake sequence effects on the hydrochemistry and flow paths of groundwater from different aquifer settings based on analysis before and after seismic events. The comparison between the responses of springs ca. 40 km from the epicenter (Rieti basin) and the springs located near the epicenter (Castelsantangelo sul Nera and Forca di Presta) is especially significant for understanding the resilience of groundwater systems in an active tectonic zone because these springs are located near parallel active fault segments within the same extensional regime. The epicentral springs are subject to the direct effects of the shaking and coseismic fault displacement; the more distal ones to the tectonic displacement of large hydrogeologic structures, which affect the chemical composition and flow path even with late responses, lasting for weeks and months after the mainshocks. Temporal trend analysis, based on pre-earthquake and post-earthquake chemical-physical data, point out alteration of different parameters. For example, the lowering of different trace metals in all areas after the first earthquake. These changes could be due to fluctuations in redox equilibria related to degassing and/or interactions with deeper fluid flow. In the Rieti springs, the EC, alkalinity, and trace metals show small transient responses within 1-3 days following the main shocks, however δ2H vs. δ18O remain stable and plot with previous data, indicating no major change in recharge source. Analysis is ongoing and preliminary results will be presented here.

  12. Phytochemical pattern of Gentiana species of Appennino in central Italy.

    PubMed

    Venditti, A; Guarcini, L; Altieri, A; Bianco, A

    2013-01-01

    The molecular pattern of two Gentiana species, G. dinarica and G. lutea, present in a protected area of Appennino Centrale in Italy, was examined. Results were compared with literature data, examining the differences between the two species.

  13. Rock magnetic record of the Karoo-Ferrar effect on sediments: Timing and duration of the environmental change (Monte Serrone section, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Satolli, S.; Muttoni, G.; Di Cencio, A.; Lanci, L.

    2017-12-01

    The early Toarcian is globally characterized by a concomitance of extensional tectonics, volcanism, greenhouse conditions, marine transgression, mass extinction and increase in the total organic carbon, generally resulting in an organic rich facies known as the Toarcian oceanic anoxic event (T-OAE). These events have been related to the eruption of the Karoo-Ferrar igneous province. We characterize the time interval encompassing the T-OAE in the Marne del Serrone section (Northern Apennines, Italy). This 62-m-thick section is characterized by micritic limestones, red-green marls and by 50-cm-thick black shale and massive slumps in its bottom part. The age of the section has been constrained trough magnetostratigraphy and ammonite biostratigraphy in the Spinatum to Variabilis biozones. Non-oriented samples were collected at 5-to-10-cm sampling space and analyzed in order to detect variations in the magnetic minerals content. Rock magnetic investigations comprise mass-normalized NRM and magnetic susceptibility (MS), isothermal remanent magnetization (IRM) at room temperature, and thermal demagnetization of a three-component IRM. The section is magnetic-wise characterized by an alternate predominance of two end-members: magnetite and hematite. Higher SIRM coupled with lower S-ratio documented in red levels and nodular grey-reddish marl indicates higher presence of hematite, suggesting a detrital input. Instead, the black shale is characterized by a comparably high amount of magnetite. Here, the absence of hematite suggests the lack of continental influx. The cyclicity of rock magnetic parameters S-ratio and MS record was studied as a proxy for changes in productivity due to fluctuations in hematite of detrital origin. The latter reflects the expression of orbital modulation on the lithological alternations found in the upper part of the section (Bifrons biozone). The analysis allowed quantifying the timing and duration of the environmental change triggered by the Karoo-Ferrar event, which in the Marne del Serrone section is mirrored by a rapid increase in the SIRM starting in the "Posidonia Beds" and reaches its acme few meters above the anoxic level. The decrease in the magnetization of saturation is gradual after the event and characterized by peaks in the magnetization intensity.

  14. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated the scattering intervals of breakout orientations to fracture and/or active fault zones, to the presence of fluids and to the lithology to identify possible local source of stress.

  15. Artist's concept of Hadley-Apennine landing site with LRV traverses outlined

    NASA Image and Video Library

    1971-06-01

    S71-33433 (1 July 1971) --- An artist's concept of the Hadley-Apennine landing site, depicting the traverses planned on the Apollo 15 lunar landing mission using the Lunar Roving Vehicle (LRV). The Roman numerals indicate the three periods of extravehicular activity (EVA). The Arabic numbers represent the station stops. This artist's concept was excerpted from "On the Moon with Apollo 15: A Guidebook to Hadley Rille and the Apennine Mountains," by Gene Simmons. The station stops indicated here are keyed to information given in the publication. Artwork by Jerry Elmore.

  16. Extensional Structures on the Po Valley Side of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Bettelli, G.; Vannucchi, P.; Capitani, M.

    2001-12-01

    The present-day tectonics of the Northern Apennines is characterized by extension in the inner Tyrrhenian side and compression in the outer Po Valley-Adriatic side. The boundary separating the two domains, extensional and compressional, is still largely undetermined and mainly based on geophysical data (focal mechanisms of earthquakes). Map-scale extensional structures have been studied only along the Tyrrhenian side of the Northern Apennines (Tuscany), while along the Po Valley-Adriatic area the field studies concentrated on compressional features. A new, detailed field mapping of the Po Valley side of the Northern Apennines carried out in the last ten years within the Emilia Romagna Geological Mapping Program has shown the presence of a large extensional fault crossing the high Bologna-Modena-Reggio Emilia provinces, from the Sillaro to the Val Secchia valleys. This Sillaro-Val Secchia Normal Fault (SVSNF) is NW-SE trending, NE dipping and about 80 km long. The age, based on the younger displaced deposits, is post-Miocene. The SVSNF is a primary regional structure separating the Tuscan foredeep units from the Ligurian Units in the south-east sector of the Northern Apennines, and it is responsible for the exhumation of the Tuscan foredeep units along the Apennine water divide. The sub-vertical, SW-NE trending faults, formerly interpreted as strike slip, are transfer faults associated to the extensional structure. A geological cross-section across the SVSNF testifies a former thickness reduction and lamination of the Ligurian Units, as documented in the field, in the innermost areas of the Bologna-Modena-Reggio Emilia hills, implying the occurrence of a former extensional fault. These data indicate that the NE side of the water divide has already gone under extension reducing the compressional domain to the Po Valley foothills and plain. They can also help in interpreting the complex Apennines kinematics.

  17. From underplating to delamination-retreat in the northern Apennines

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Giacomuzzi, G.; Bianchi, I.; Agostinetti, N. P.; Park, J.

    2014-10-01

    Recordings of teleseismic earthquakes from a dense set of temporary and permanent broadband seismic stations reveal the lithospheric structure of the northern Apennines and support the scenario of a retreating detachment within the mid-crust. Lithospheric delamination appears crucial to the formation and evolution of the Apennines orogen. Receiver-function (RF) stacks outline a continuous west-dipping Ps converted phase from a positive velocity jump that we interpret as the top of the lower crust and mantle of the Adria continental lithosphere, which is descending into the shallow mantle. The correlation of seismicity with two RF profiles across the northern Apennines suggests distinct stages of lithospheric delamination. Active penetration of the detachment into the Adria lithosphere seems evident in the south/east, with induced shallow-mantle flow facilitated by slab dehydration. Penetration of the detachment in the north/west seems to have arrested, and is possibly marked by crustal underplating. This layer atop the Apennines slab is visible only down to 80 km depth and suspends above an oppositely-dipping paired positive/negative Ps converted phase in stacked receiver functions. The break in the west-dipping Adria lithosphere conflicts with a westward-subduction scenario continuous from the Oligocene. Lateral changes of deep structure and seismicity along the northern Apennines suggest that underplating of crustal material and delamination-retreat are distinct mechanisms active today in the western and eastern sectors, respectively, of the northern Apennines. Negative Ps-pulses at 100-120 km depth help to define a seismic lithosphere-asthenosphere boundary (LAB), but cross-cut a volume of high-velocity mantle rock, as inferred from tomographic models. We hypothesize that this seismic LAB is a rheological discontinuity that affects the frequency band of seismic body waves, but not the long-term viscous response that governs the evolution and eventual detachment of the continental slab.

  18. The isostatic state of the lunar Apennines and regional surroundings

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.; Sjogren, W. L.; Phillips, R. J.; Nelson, D. L.

    1978-01-01

    High-resolution gravity and topography data taken over the Apennine Mountains have been used to compute their isostatic state. Results show that the Apennines are uncompensated; thus this state implies that the lunar crust and upper mantle have been strong enough over 3.9 b.y. to support the load exerted by this topographic excess. The Apennines produce a maximum shear stress of 60 bars at a depth of 60 km. A lower bound on the lunar crustal viscosity of 10 to the 27th power P is calculated on the basis of the assumption of a 10% relaxation over 3.9 b.y. Studies of a broad negative regional anomaly located between Maria Serenitatis and Imbrium necessitate a locally thicker crust to satisfy the observed data. This anomaly may have been produced by a lateral transport of crustal material from beneath the giant impact basins as a result of rebound at the crust-mantle interface.

  19. Historical reconstruction of oil and gas spills during moderate and strong earthquakes and related geochemical surveys in Southern Apennines

    NASA Astrophysics Data System (ADS)

    Sciarra, Alessandra; Cantucci, Barbara; Ferrari, Graziano; Pizzino, Luca; Quattrocchi, Fedora

    2016-04-01

    The aim of this study is to contribute to the assessment of natural hazards in a seismically active area of southern Italy through the joint analysis of historical sources and fluid geochemistry. In particular, our studies have been focalized in the Val d'Agri basin, in the Apennines extensional belt, since it hosts the largest oilfield in onshore Europe and normal-fault systems with high seismogenic potential (up to M7). The work was organized into three main themes: 1) literature search aimed at identifying fluid emissions during previous moderate-strong earthquakes; 2) consultation of local and national archives to identify historic local place names correlated to natural fluids emissions; 3) geochemical sampling of groundwater and gas issuing at surface, identified on the basis of the bibliographic sources. A reasoned reading of written documents and available historical data was performed. Moreover, we reworked information reported in historical catalogues, referred to liquid and gas hydrocarbon leakages occurred during seismic events of the past (in a range of magnitude from 5 to 7) in the Southern Apennines (with a particular focus on the Val d'Agri). Special attention was given to the phenomena of geochemical emissions related to major historical earthquakes that took place in the area, most notably that of 16 December 1857 (M = 7). A careful analysis of the Robert Mallet's report, a complete work aimed at describing the social impact and the effects on the environment produced by this earthquake through illustrated maps and diagrams, included several hundred monoscopic and stereoscopic photographs, was done. From archival sources (at national and/or local administrations), "sensitive" sites to the onset of leakage of liquid and gaseous hydrocarbons in the past were identified. A soil-gas survey (22 gas concentrations and flux measurements) and 35 groundwater samplings were carried out in specific sites recognized through the above studies. From a geochemical point of view, gathered results individuated Tramutola (Potenza) as a particularly interesting site, characterized by the presence of small oil springs at surface as well as deep-derived gas and hydrocarbons. The importance to track, map and monitor spill of fluids and, in particular, hydrocarbons also in quiescent times could constitute an additional element to set the "natural background noise" of the territory (baseline) not influenced or triggered by human activity.

  20. Parameter regionalisation methods for a semi-distributed rainfall-runoff model: application to a Northern Apennine region

    NASA Astrophysics Data System (ADS)

    Neri, Mattia; Toth, Elena

    2017-04-01

    The study presents the implementation of different regionalisation approaches for the transfer of model parameters from similar and/or neighbouring gauged basin to an ungauged catchment, and in particular it uses a semi-distributed continuously-simulating conceptual rainfall-runoff model for simulating daily streamflows. The case study refers to a set of Apennine catchments (in the Emilia-Romagna region, Italy), that, given the spatial proximity, are assumed to belong to the same hydrologically homogeneous region and are used, alternatively, as donors and regionalised basins. The model is a semi-distributed version of the HBV model (TUWien model) in which the catchment is divided in zones of different altitude that contribute separately to the total outlet flow. The model includes a snow module, whose application in the Apennine area has been, so far, very limited, even if snow accumulation and melting phenomena do have an important role in the study basins. Two methods, both widely applied in the recent literature, are applied for regionalising the model: i) "parameters averaging", where each parameter is obtained as a weighted mean of the parameters obtained, through calibration, on the donor catchments ii) "output averaging", where the model is run over the ungauged basin using the entire set of parameters of each donor basin and the simulated outputs are then averaged. In the first approach, the parameters are regionalised independently from each other, in the second one, instead, the correlation among the parameters is maintained. Since the model is a semi-distributed one, where each elevation zone contributes separately, the study proposes to test also a modified version of the second approach ("output averaging"), where each zone is considered as an autonomous entity, whose parameters are transposed to the ungauged sub-basin corresponding to the same elevation zone. The study explores also the choice of the weights to be used for averaging the parameters (in the "parameters averaging" approach) or for averaging the simulated streamflow (in the "output averaging" approach): in particular, weights are estimated as a function of the similarity/distance of the ungauged basin/zone to the donors, on the basis of a set of geo-morphological catchment descriptors. The predictive accuracy of the different regionalisation methods is finally assessed by jack-knife cross-validation against the observed daily runoff for all the study catchments.

  1. Imaging 2D structures by the CSAMT method: application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Petrillo, Zaccaria; Patella, Domenico

    2009-06-01

    A controlled source audiofrequency magnetotelluric (CSAMT) survey has been undertaken in the Pantano di San Gregorio Magno faulted basin, an earthquake prone area of Southern Apennines in Italy. A dataset from 11 soundings, distributed along a nearly N-S 780 m long profile, was acquired in the basin's easternmost area, where the fewest data are available as to the faulting shallow features. A preliminary skew analysis allowed a prevailing 2D nature of the dataset to be ascertained. Then, using a single-site multi-frequency approach, Dantzig's simplex algorithm was introduced for the first time to estimate the CSAMT decomposition parameters. The simplex algorithm, freely available online, proved to be fast and efficient. By this approach, the TM and TE mode field diagrams were obtained and a N35°W ± 10° 2D strike mean direction was estimated along the profile, in substantial agreement with the fault traces within the basin. A 2D inversion of the apparent resistivity and phase curves at seven almost noise-free sites distributed along the central portion of the profile was finally elaborated, reinforced by a sensitivity analysis, which allowed the best resolved portion of the model to be imaged from the first few meters of depth down to a mean depth of 300 m b.g.l. From the inverted section, the following features have been outlined: (i) a cover layer with resistivity in the range 3-30 Ω m ascribed to the Quaternary lacustrine clayey deposits filling the basin, down to an average depth of about 35 m b.g.l., underlain by a structure with resistivity over 50 Ω m up to about 600 Ω m, ascribed to the Mesozoic carbonate bedrock; (ii) a system of two normal faults within the carbonate basement, extending down to the maximum best resolved depth of the order of 300 m b.g.l.; (iii) two wedge-shaped domains separating the opposite blocks of the faults with resistivity ranging between 30 Ω m and 50 Ω m and horizontal extent of the order of some tens of metres, likely filled with lacustrine sediments and embedded fine gravels.

  2. Do moderate magnitude earthquakes generate seismically induced ground effects? The case study of the M w = 5.16, 29th December 2013 Matese earthquake (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Valente, Ettore; Ascione, A.; Ciotoli, G.; Cozzolino, M.; Porfido, S.; Sciarra, A.

    2018-03-01

    Seismically induced ground effects characterize moderate to high magnitude seismic events, whereas they are not so common during seismic sequences of low to moderate magnitude. A low to moderate magnitude seismic sequence with a M w = 5.16 ± 0.07 main event occurred from December 2013 to February 2014 in the Matese ridge area, in the southern Apennines mountain chain. In the epicentral area of the M w = 5.16 main event, which happened on December 29th 2013 in the southeastern part of the Matese ridge, field surveys combined with information from local people and reports allowed the recognition of several earthquake-induced ground effects. Such ground effects include landslides, hydrological variations in local springs, gas flux, and a flame that was observed around the main shock epicentre. A coseismic rupture was identified in the SW fault scarp of a small-sized intermontane basin (Mt. Airola basin). To detect the nature of the coseismic rupture, detail scale geological and geomorphological investigations, combined with geoelectrical and soil gas prospections, were carried out. Such a multidisciplinary study, besides allowing reconstruction of the surface and subsurface architecture of the Mt. Airola basin, and suggesting the occurrence of an active fault at the SW boundary of such basin, points to the gravitational nature of the coseismic ground rupture. Based on typology and spatial distribution of the ground effects, an intensity I = VII-VIII is estimated for the M w = 5.16 earthquake according to the ESI-07 scale, which affected an area of at least 90 km2.

  3. One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Avino, Rosario; Monopoli, Carmine; Inguaggiato, Salvatore; Frondini, Francesco

    2010-05-01

    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures (Tuscan Roman degassing structure, TRDS, and Campanian degassing structure, CDS) affect the Tyrrhenian side of the Italian peninsula. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. Detailed hydro-geochemical campaigns, with a monthly frequency, started immediately after the main shock of the 6th of April 2009. The new campaigns include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. Almost one year of geochemical data of the main dissolved ions, of dissolved gases (CO2, CH4, N2, Ar, He) and of the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He), highlight both that the epicentral area of L'Aquila earthquakes is affected by an important process of CO2 Earth degassing and that that the gases dissolved in the groundwater reflects the input in to the aquifers of a deep gas phase, CO2- rich, with an high He content and with low 3He/4He ratios, similar to the gases emitted by natural manifestations located in the northern Apennines which are fed by deep pressurized reservoirs. Furthermore a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers occurred respect to the July 1997 samples. This increase, followed by a gentle decline of the anomaly, can be compatible with the occurrence of an episode of deep CO2 degassing concurrently with the earthquakes. The origin of this regional variation is under investigation and, at the present moment, an unambiguous interpretation of the data is not possible because the lack of a systematic monitoring of the springs before the seismic events and because eventual seasonal effects on observed variation in CO2 flux are still under investigation.

  4. Trip to Lago Nero (Tusco-Emilian Apennine, Italy): How has our Apennine been changing?

    NASA Astrophysics Data System (ADS)

    Papini, Piera; Vergari, Simone

    2014-05-01

    The sharp division of disciplines in Italian Secondary school is a problem which hinders the natural learning of pupils. At the end of the 1st education cycle, candidates must stand six written tests and an oral exam during which they present a topic that includes a lot of disciplines and that they develop unifying what they have been taught fragmentarily. Climate changes that are taking place and the use of Earth resources are a significant topic suitable for a multidisciplinary as well as interdisciplinary approach. Thanks to the Region of Tuscany, which has financed the Educational Contract " An agreement for water" (2012-2015), we could develop this module which involves 14 years old students and is focused on the climate change evidence in a lake, Lago Nero, originated in the Tusco-Emilian Apennine during the development of an ancient Wurmian glacier. The didactical path includes: - lessons in the classroom on weather, climate and climate changes caused both by nature and by man. - A focus on Lago Nero - A trip to Lago Nero, observation of the landscape geomorphology: differences between fluvial valleys and glacial valleys, signs of remote events such as roche mountonnée or recent ones such as landslides and floods caused by intense rainfalls. Collection of samples. - Participation at a conference organized by the Region at San Giorgio Library in Pistoia ( http://rinnoviamoci2011.blogspot.it/ ) during which students met some administrators and talked with them. A video made by the pupils was presented on this occasion. http://www.icsfrankcarradori.it/studenti/ Further activities include: - Open day for families of the younger pupils, during which older pupils explained some of the activities carried out, included the module on Lago Nero. - identification of minerals (connection with Chemestry) - identification of rocks outcropping in the area of the lake: what do they tell about geologic history of our mountains? How can they reveal the age of a geologic formation? (connection with Geology). - information from vegetation about climate changes which are taking place. For example, the limit of the arboreal vegetation ( climax of the area is Abieti-Fagetum ) has risen of about 30 m in the last 40 years , as it can be seen from old pictures (connection with Ecology). - Climate changes (connection with Physics) - Education on the necessity to preserve some micro environments peculiar of Apennine chain (glacial relics) which have remained until now thanks to a microclimate which is rich in precipitation and quite cold at northern exposures. Other disciplines which are involved are Geography, Technology and History. The whole class was involved and strongly motivated. It became clear how important the problem is and how significant our personal commitment is to face climate changes. Results in learning turned out to be different but none of them was below standard.

  5. A model for the geomorphic development of normal-fault facets

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.

    2014-12-01

    Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent with this prediction.

  6. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  7. Correlating Mediterranean shallow water deposits with global Oligocene-Miocene stratigraphy and oceanic events.

    PubMed

    Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias

    2013-12-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO 3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.

  8. Shear Wave Structure of Umbria and Marche, Italy, Strong Motion Seismometer Sites Affected by the 1997-98 Umbria-Marche, Italy, Earthquake Sequence

    USGS Publications Warehouse

    Kayen, Robert; Scasserra, Giuseppe; Stewart, Jonathan P.; Lanzo, Giuseppe

    2008-01-01

    A long sequence of earthquakes, eight with magnitudes between 5 and 6, struck the Umbria and Marche regions of central Italy between September 26, 1997 and July 1998. The earthquake swarm caused severe structural damage, particularly to masonry buildings, and resulted in the loss of twelve lives and about 150 injuries. The source of the events was a single seismogenic structure that consists of several faults with a prevailing northwest-southeast strike and crosses the Umbria-Marche border. The focal mechanism of the largest shocks indicates that the events were the product of shallow extensional normal faulting along a NE-SW extension perpendicular to the trend of the Apennines. The network of analog seismometer stations in the Umbria and Marche regions recorded motions of the main September and October 1997 events and a dense array of mobile digital stations, installed since September 29, recorded most of the swarm. The permanent national network Rete Accelerometrica Nazionale (RAN) is administered and maintained by Dipartimento delle Protezione Civile (DPC: Civil Protection Department); the temporary array was managed by Servizio Sismico Nazionale (SSN) in cooperation with small agencies and Universities. ENEA, the operator of many seismometer stations in Umbria, is the public Italian National Agency for New Technologies, Energy and the Environment. Many of the temporary and permanent stations in the Italian seismic network have little or no characterization of seismic velocities. In this study, we investigated 17 Italian sites using an active-source approach that employs low frequency harmonic waves to measure the dispersive nature of surface waves in the ground. We used the Spectral Analysis of Surface Wave (SASW) approach, coupled with an array of harmonic-wave electro-mechanical sources that are driven in-phase to excite the ground. An inversion algorithm using a non-linear least-squares best-fit method is used to compute shear wave velocities for up to 100 meters of the soil column. A draft report was published in the summer of 2008, followed by a comment period, lengthy discussions with Italian colleagues, and improved knowledge of the subsurface at the sites from soil logs. Four of the sites were reprocessed in order to correct issues with phase unwrapping of the field dispersion curves that complicated the velocity profile calculations at the lowest velocity sites. This report presents the final results from the reprocessing effort.

  9. Provenance and accommodation pathways of late Quaternary sediments in the deep-water northern Ionian Basin, southern Italy

    NASA Astrophysics Data System (ADS)

    Perri, Francesco; Critelli, Salvatore; Dominici, Rocco; Muto, Francesco; Tripodi, Vincenzo; Ceramicola, Silvia

    2012-12-01

    The northern Calabria along the southeastern coast of Italy provides a favorable setting in which to study complete transects from continental to deep-marine environments. The present northern Ionian Calabrian Basin is a wedge-top basin within the modern foreland-basin system of southern Italy. The Ionian margin of northern Calabria consists of a moderately developed fluvial systems, the Crati and Neto rivers, and diverse smaller coastal drainages draining both the Calabria continental block (i.e., Sila Massif) and the southern Apennines thrust belt (i.e., Pollino Massif). The main-channel sand of the Crati and Neto rivers is quartzofeldspathic with abundant metamorphic and plutonic lithic fragments (granodiorite, granite, gneiss, phyllite and sedimentary lithic fragments). Sedimentary lithic fragments were derived from Jurassic sedimentary successions of the Longobucco Group. The mud samples contain mostly phyllosilicates, quartz, calcite, feldspars and dolomite. Traces of gypsum are present in some samples. The I-S mixed layers, 10 Å-minerals (illite and micas), chlorite and kaolinite are the most abundant phyllosilicates, whereas smectite and chlorite/smectite mixed layers are in small amounts. The geochemical signatures of the muds reflect a provenance characterized by both felsic and mafic rocks with a significant input from carbonate rocks. Furthermore, the degree of source-area weathering was most probably of low intensity rather than moderately intense because CIA values for the studied mud samples are low. Extrapolation of the mean erosion budget from 1 to 25 Ma suggests that at least 5 to 8 km of crust have been removed from the Calabrian orogenic belt and deposited in the marine basins. The Calabrian microplate played an important role in the dynamic evolution of southern Italian fossil and modern basins, representing the key tectonic element of the entire orogenic belt.

  10. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Schachtschneider, R.; Gebler, A.

    2013-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The measured magnetic data appear to be consistent with the expected signal. Here we present preliminary results of the data processing. From the calibration maneuvers we have been able to correct the data for most of the plane generated signal. High frequency noise, probably associated with the plane engines, has been filtered out. Along profile data are compared with the Italian aeromagnetic grid as provided by the last version of the WDMAM (World Digital Magnetic Anomaly Map).

  11. Large historical eruptions at subaerial mud volcanoes, Italy

    NASA Astrophysics Data System (ADS)

    Manga, M.; Bonini, M.

    2012-11-01

    Active mud volcanoes in the northern Apennines, Italy, currently have gentle eruptions. There are, however, historical accounts of violent eruptions and outbursts. Evidence for large past eruptions is also recorded by large decimeter rock clasts preserved in erupted mud. We measured the rheological properties of mud currently being erupted in order to evaluate the conditions needed to transport such large clasts to the surface. The mud is well-characterized by the Herschel-Bulkley model, with yield stresses between 4 and 8 Pa. Yield stresses of this magnitude can support the weight of particles with diameters up to several mm. At present, particles larger than this size are not being carried to the surface. The transport of larger clasts to the surface requires ascent speeds greater than their settling speed in the mud. We use a model for the settling of particles and rheological parameters from laboratory measurements to show that the eruption of large clasts requires ascent velocities > 1 m s-1, at least three orders of magnitude greater than during the present, comparatively quiescent, activity. After regional earthquakes on 20 May and 29 May 2012, discharge also increased at locations where the stress changes produced by the earthquakes would have unclamped feeder dikes below the mud volcanoes. The magnitude of increased discharge, however, is less than that inferred from the large clasts. Both historical accounts and erupted deposits are consistent in recording episodic large eruptions.

  12. Two cases of acute chest discomfort and the Central Italy earthquake.

    PubMed

    Pannarale, Giuseppe; Torromeo, Concetta; Acconcia, Maria Cristina; Moretti, Andrea; De Angelis, Valentina; Tanzilli, Alessandra; Paravati, Vincenzo; Barillà, Francesco; Gaudio, Carlo

    2017-03-01

    We present the cases of two postmenopausal women presenting to our emergency department with acute chest discomfort soon after the Central Italy earthquake. Different diagnoses were made in the two patients. The role of the earthquake as a stressful event triggering diverse chest pain syndromes is discussed.

  13. Characterisation and reproduction of yellow pigments used in central Italy for decorating ceramics during Renaissance

    NASA Astrophysics Data System (ADS)

    Bultrini, G.; Fragalà, I.; Ingo, G. M.; Lanza, G.

    2006-06-01

    This study presents the characterisation of prototypical yellow pigments used during the Renaissance period in Italy and the successful reproduction of homologous materials in accordance with the ancient recipes. Moreover, a large number of yellow decorative layers of Sicilian ceramic artefacts dated back from 13th to the 19th century have been selected and the main chemical, structural and minero-petrografic features have been studied by X-ray diffraction, optical microscopy and scanning electron microscopy-energy dispersive spectrometry. These results have been compared with literature data of some yellow decorations of Renaissance ceramics made in central Italy. Comparison has also been made with homologous materials that have been successfully reproduced in accordance with ancient recipes described by Cipriano Piccolpasso in the textbook: “I Tre Libri dell’Arte del Vasaio” using the same ingredients proposed by this artist. Such yellow materials reproduce the typical yellow colorants used by craftsmen of relevant sites for ceramic fabrication in central Italy, namely Città di Castello, Urbino and Castel Durante, during the 16th century. Comparative arguments have shown some intriguing differences that are indicators of both technological transfer processes between central and southern Italy as well as of some local implementations likely due to specific raw materials locally available.

  14. Two cases of acute chest discomfort and the Central Italy earthquake

    PubMed Central

    Pannarale, Giuseppe; Torromeo, Concetta; Acconcia, Maria Cristina; Moretti, Andrea; De Angelis, Valentina; Tanzilli, Alessandra; Paravati, Vincenzo; Barillà, Francesco; Gaudio, Carlo

    2017-01-01

    Abstract We present the cases of two postmenopausal women presenting to our emergency department with acute chest discomfort soon after the Central Italy earthquake. Different diagnoses were made in the two patients. The role of the earthquake as a stressful event triggering diverse chest pain syndromes is discussed. PMID:29744121

  15. Self-constrained inversion of microgravity data along a segment of the Irpinia fault

    NASA Astrophysics Data System (ADS)

    Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella

    2016-01-01

    A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.

  16. Artist's concept of Hadley-Apennine landing site with LRV traverses outlined

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An artist's concept of the Hadley-Apennine landing site, depicting the traverses planned on the Apollo 15 lunar landing mission using the Lunar Roving Vehicle (LRV). The Roman numerals indicate the three periods of extravehicular activity (EVA). The Arabic numbers represent the station stops. Art work by Jerry Elmore.

  17. Essential and toxic elements in honeys from a region of central Italy.

    PubMed

    Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L

    2015-01-01

    Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.

  18. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The hydrogeological characteristics hardly permit forced convection in the deep aquifer. Thus, we argue that thermal convection could be the driving mechanism of water flow in the carbonate reservoir. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. A relatively low permeability is required for thermal convection to occur. The carbonate reservoir can be thus envisaged as a hydrothermal convection system of large thickness and extension having a large over-heat ratio. Lateral variation of hydrothermal regime was also tested by using temperature data representing the reservoir thermal conditions. We found that thermal convection is of variable intensity and may more likely occur at an area (Ferrara structural high) where widespread fracturing due to tectonism is expected yielding a local increase in permeability.

  19. Hydrothermal Upflow, Serpentinization and Talc Alteration Associated with a High Angle Normal Fault Cutting an Oceanic Detachment, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.

    2017-12-01

    Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment, positive Eu anomalies, decreased MgO/SiO2, and increases in Sr and Cs. One serpentinite 40 m from the fault has d34S = 4.5‰, consistent with a hydrothermal sulfur source. Far from the fault (1 km) ophicalcites near the paleo-seafloor have negative Ce anomalies indicating seawater alteration, and suggesting a limit to hydrothermal influence on the length scale of 1 km.

  20. 3D decompaction and sequential restoration: a tool to quantify sedimentary and tectonic control on elusive Quaternary structures

    NASA Astrophysics Data System (ADS)

    D'Ambrogi, Chiara; Emanuele Maesano, Francesco

    2015-04-01

    Basin-wide detailed 3D model, deeply constrained by the interpretation of an impressive dense seismic dataset (12.000 km, provided confidentially by ENI S.p.A.) and 136 well stratigraphies, is the core of a workflow of decompaction and sequential restoration in 3D aimed to quantify the sedimentation and uplift rate in the central part of the Po Plain (northern Italy), during Quaternary. The Po basin is the common foredeep of two opposite verging chains, the Southern Alps, to the north, and the Northern Apennines, to the south, that influenced the evolution of the foreland basin from Paleogene onward. In this particular setting there are many examples of interaction of sedimentary processes and tectonics, both at regional and local scale. During the Quaternary the complex interaction of tectonic processes, sea-level fluctuations, climate changes, and sediment supply produced the filling of the basin with the progradation of the fluvio-deltaic system, from west toward east. The most important tectonic phases can be easily recognized along the basin margin marked by the deformation and tilting of river terraces and of exposed syntectonic sediments; conversely their detection is particularly difficult in the central-distal part of the basin. In such structurally complex area analysis of syntectonic deposits and growth strata are strategic to describe the basin evolution and tectonic control; in their analysis 3D decompaction and regional tilting must be taken into account to assess the residual vertical separation that can be attributed to tectonic processes only. The Pleistocene portion of a detailed 3D model, build in the framework of the EU-funded GeoMol Project, is the starting point of a sequential restoration workflow in 3D that included the unfolding and decompaction of 6, chronologically constrained, sedimentary units ranging from 1.5 to 0.45 Myr. This previously unavailable detail in the definition of the geometry of Quaternary bodies in the central part of the Po Basin provided a set of detailed pictures that show the topography and the evolution of the infilling at different point during time. As a matter of fact the resulting 3D surfaces describe the basin configuration and the changes and migration of regional depocentres controlled by thrust activity up to the Pleistocene but also allow to highlight the interference of active tectonic and sedimentation in the central portion of the Po basin, an area considered less affected by the main structures (e.g. the Emilia and Ferrara-Romagna arcs). In the analysis of this structure also the foreland tilting has been subtracted from the topography resulting after unfolding and decompaction, for the 6 time intervals; we obtained a residual signal related to the growing anticline, and the uplift rate of the structure during its Pleistocene evolution. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu

  1. Institutional Innovation and Public Extension Services Provision: The Marche Regional Administration Reform in Central Italy

    ERIC Educational Resources Information Center

    Pascucci, Stefano; De Magistris, Tiziana

    2011-01-01

    This paper describes how Marche Regional Administration (MRA) introduced an innovative institutional reform of an Agricultural Knowledge and Information System (AKIS) in central Italy. In order to study the main features of the MRA reform we used a methodological approach based on three steps: (i) first we applied a desk analysis to sketch the…

  2. Whole-Genome Sequences of Two Listeria monocytogenes Serovar 1/2a Strains Responsible for a Severe Listeriosis Outbreak in Central Italy.

    PubMed

    Orsini, Massimiliano; Cornacchia, Alessandra; Patavino, Claudio; Torresi, Marina; Centorame, Patrizia; Acciari, Vicdalia Aniela; Ruolo, Anna; Marcacci, Maurilia; Ancora, Massimo; Di Domenico, Marco; Mangone, Iolanda; Blasi, Giuliana; Duranti, Anna; Cammà, Cesare; Pomilio, Francesco; Migliorati, Giacomo

    2018-06-14

    We report the whole-genome sequences of two Listeria monocytogenes strains responsible for a severe invasive listeriosis outbreak in central Italy that occurred in 2015 and 2016. These two strains differ by a single band in their pulsed-field gel electrophoresis (PFGE) profiles. Copyright © 2018 Orsini et al.

  3. Italian Renaissance and Hispano-Moresque lustre-decorated majolicas: imitation cases of Hispano-Moresque style in central Italy

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Fermo, P.

    An investigation was carried out on Renaissance lustre-decorated majolica shards, found during excavations made in Umbria (central Italy) and defined by experts, on the ground of the surface decoration, as imitations of the Hispano-Moresque style. A comparison between this particular kind of samples, produced in central Italy, and some Hispano-Moresque lustre shards has been performed. The ceramic bodies as well as the lustred surfaces have been analysed by means of several techniques: inductively coupled plasma optical emission spectrometry, X-ray diffraction (XRD), atomic absorption spectrometry with electrothermal atomisation and scanning electron microscopy. By means of XRD analysis the presence of cosalite (Pb2Bi2S5) has been disclosed in the Italian lustre decorations but was not observed in the Hispano-Moresque ones. A hypothesis has been made, considering bismuth as a discriminating element, between lustres produced in central Italy and the Hispano-Moresque ones. We thought that the Italian artisans were able to manage the use of bismuth. Therefore a recipe, quite similar to the one employed by the Spanish artisans, was used by the Italian ceramists if their aim was to imitate the Hispano-Moresque style.

  4. Italian Dermestidae: notes on some species and an updated checklist (Coleoptera)

    PubMed Central

    Nardi, Gianluca; Háva, Jiří

    2013-01-01

    Abstract An up-to-date checklist of the Italian Dermestidae is provided. The presence of 95 species in Italy is confirmed, while further 5 species (Dermestes (Dermestes) vorax Motschulsky, 1860, Thorictuspilosus Peyron, 1857, T. wasmanni Reitter, 1895, Attagenus (Attagenus) simonis Reitter, 1881 and Globicornis (G.) breviclavis (Reitter, 1878)) and 1 subspecies (A. (A.) tigrinus pulcher Faldermann, 1835) are excluded from the Italian fauna. Attagenus (Attagenus) calabricus Reitter, 1881 and A. (A.) lobatus Rosenhauer, 1856 are for the first time recorded from Abruzzi and Tuscany respectively; A. (A.) silvaticus Zhantiev, 1976 is recorded for the first time from mainland Italy (Apulia); Anthrenus (Anthrenus) angustefasciatus Ganglbauer, 1904 is new to northern Italy (Friuli-Venezia Giulia), central Italy (Tuscany), Apulia and Basilicata; A. (A.) munroi Hinton, 1943 is new to central Italy (Elba Island); A. (A.) delicatus Kiesenwetter, 1851 is for the first time recorded from Apulia; Globicornis (Globicornis) fasciata (Fairmaire & Brisout de Barneville, 1859) is new to southern Italy (Basilicata); G. (Hadrotoma) sulcata (C.N.F. Brisout de Barneville, 1866) is for the first time recorded from central Italy (Abruzzi), Campania and Sicily, whileTrogoderma inclusum LeConte, 1854 is new to Apulia. Seven species (Dermestes (Dermestes) peruvianus Laporte de Castelnau, 1840, D. (Dermestinus) carnivorus Fabricius, 1775, D. (Dermestinus) hankae Háva, 1999, D. (Dermestinus) intermedius intermedius Kalík, 1951, D. (Dermestinus) szekessyi Kalík, 1950, Anthrenus (Anthrenops) coloratus Reitter, 1881 and Trogodermaangustum (Solier, 1849)) recently recorded from Italy (without further details) are discussed. The lectotype and a paralectotype are designated forAttagenus (A.) calabricus Reitter, 1881 from Calabria. Attagenus pellio (Linnaeus, 1758) var. pilosissimus Roubal, 1932 is removed from synonymy with A. (A.) pellio and recognized as a valid species (stat. prom.); it is known from Lombardy, Apulia and Calabria. PMID:24363591

  5. Frictional behaviour and evolution of rough faults in limestone

    NASA Astrophysics Data System (ADS)

    Harbord, C. W. A.; Nielsen, S. B.; De Paola, N.; Holdsworth, R.

    2017-12-01

    Fault roughness is an important parameter which influences the frictional behaviour of seismically active faults, in particular the nucleation stage of earthquakes. Here we investigate frictional sliding and stability of roughened micritic limestone surfaces from the seismogenic layer in Northern-Central Apennines of Italy. Samples are roughened using #60, #220 and #400 grit and deformed in a direct shear configuration at conditions typical of the shallow upper crust (15-60 MPa normal stress). We perform velocity steps between 0.01-1 μm s-1 to obtain rate-and-state friction parameters a, b and L. At low normal stress conditions (30 MPa) and at displacements of <3-4mm there is a clear 2 state evolution of friction with two state parameters, b1 and b2, and accompanying critical slip distances L1 and L2 for all roughnesses. In some cases, on smooth faults (#400 grit), the short term evolution leads to silent slow instability which is modulated by the second state evolution. With increasing slip displacement (>2-4 mm) friction can be modelled with a single state parameter, b, as the short frictional evolution disappears. The longer term state evolution, b2, gives negative values of b, reminiscent of plastic creep experiments at high temperature, reaching a steady state at 3-4 mm displacement. Microstructural observations reveal shiny surfaces decorated by nanometric gouge particles with variable porosity. When normal stress is increased, rough faults (#60 grit) revert to a single state evolution with positive values of b, whilst smoother faults (#220 & #400 grit) retain a two state evolution with negative b2 values. These observations suggest that on carbonate hosted faults sliding may be controlled by plastic processes which can lead to slow stick-slip instability, which may be supressed by frictional wear and accompanying gouge build-up.

  6. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    PubMed Central

    Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-01-01

    Abstract During the Miocene prominent oxygen isotope events (Mi‐events) reflect major changes in glaciation, while carbonate isotope maxima (CM‐events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high‐resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long‐term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi‐events can now be recognized in the δ18O record and coincide with plankton‐rich, siliceous, or phosphatic horizons in the lithology of the section. PMID:27546980

  7. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-04-01

    During the Miocene prominent oxygen isotope events (Mi-events) reflect major changes in glaciation, while carbonate isotope maxima (CM-events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high-resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long-term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi-events can now be recognized in the δ18O record and coincide with plankton-rich, siliceous, or phosphatic horizons in the lithology of the section.

  8. The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section

    NASA Astrophysics Data System (ADS)

    Arragoni, S.; Maggi, M.; Cianfarra, P.; Salvini, F.

    2016-06-01

    Newly collected structural data in Eastern Sardinia (Italy) integrated with numerical techniques led to the reconstruction of a 2-D admissible and balanced model revealing the presence of a widespread Cenozoic fold-and-thrust belt. The model was achieved with the FORC software, obtaining a 3-D (2-D + time) numerical reconstruction of the continuous evolution of the structure through time. The Mesozoic carbonate units of Eastern Sardinia and their basement present a fold-and-thrust tectonic setting, with a westward direction of tectonic transport (referred to the present-day coordinates). The tectonic style of the upper levels is thin skinned, with flat sectors prevailing over ramps and younger-on-older thrusts. Three regional tectonic units are present, bounded by two regional thrusts. Strike-slip faults overprint the fold-and-thrust belt and developed during the Sardinia-Corsica Block rotation along the strike of the preexisting fault ramps, not affecting the numerical section balancing. This fold-and-thrust belt represents the southward prosecution of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani Block. Relative ages relate its evolution to the meso-Alpine event (Eocene-Oligocene times), prior to the opening of the Tyrrhenian Sea (Tortonian). Results fill a gap of information about the geodynamic evolution of the European margin in Central Mediterranean, between Corsica and the Calabria-Peloritani Block, and imply the presence of remnants of this double-verging belt, missing in the Southern Tyrrhenian basin, within the Southern Apennine chain. The used methodology proved effective for constraining balanced cross sections also for areas lacking exposures of the large-scale structures, as the case of Eastern Sardinia.

  9. Could the collapse of a massive speleothem be the record of a large paleoearthquake?

    NASA Astrophysics Data System (ADS)

    Valentini, Alessandro; Pace, Bruno; Vasta, Marcello; Ferranti, Luigi; Colella, Abner; Vassallo, Maurizio

    2016-04-01

    Earthquake forecast and seismic hazard models are generally based on historical and instrumental seismicity. However, in regions characterized by moderate strain rates and by strong earthquakes with recurrence longer than the time span covered by historical catalogues, different approaches are desirable to provide an independent test of seismologically-based models. We used non-conventional methods, such as the so-called "Fragile Geological Features", and in particular cave speleothems, for assessing and improving existing paleoseismological databases and seismic hazard models. In this work we present a detailed study of a massive speleothem found collapsed in the Cola Cave (Abruzzo region, Central Apennines, Italy) that could be considered the record of a large paleoearthquake. Radiometric dating and geotechnical measurements are carried out to characterize the collapse time and the mechanical properties of speleothem. We performed theoretical and numerical modelling in order to estimate the values of the horizontal ground acceleration required to failure the speleothems. In particular we used a finite element method (FEM), with the SAP200 software, starting from the detailed geometry of the speleothem and its mechanical properties. We used several individual seismogenic source geometries and four different ground motion prediction equations to calculate the possible response spectra. We carried out also a seismic noise survey to understand and quantify any ground motion amplification phenomenon. The results suggest two faults located in the Fucino area as the most probable causative sources of the cave speleothem collapses, recorded ~4-5 ka ago, with a Mw=6.8 ± 0.2. Our approach contributes to assess the existence of past earthquakes integrating the classical paleoseismological trenches techniques, and to attribute the retrieved event to geometrically-defined individual seismogenic sources, which represents a key contribution to improve fault-based seismic hazard models.

  10. The Oligocene-Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Brandano, Marco; Cornacchia, Irene; Raffi, Isabella; Tomassetti, Laura

    2016-03-01

    The stratigraphic architecture of the Bolognano Formation documents the evolution of the Majella carbonate platform in response to global and local changes that affected the Mediterranean area during the Oligocene-Miocene interval. The Bolognano Formation consists of a homoclinal ramp that developed in a warm, subtropical environment. Five different lithofacies associations have been identified: Lepidocyclina calcarenites, cherty marly limestones, bryozon calcarenites, hemipelagic marls and marly limestones, and Lithothamnion limestones. Each association corresponds to a single lithostratigraphic unit except for the Lepidocyclina calcarenites that form two distinct lithostratigraphic units (Lepidocyclina calcarenites 1 and 2). These six units reflect alternation of shallow-water carbonate production and drowning. Specifically, two of the three stages of shallow-water carbonate production regard the development of wide dune fields within the middle ramp, one stage dominated by red algae and a sea-grass carbonate factory, whereas the two drowning phases are represented by marly cherty limestones and calcareous marls. A new biostratigraphic framework for Bolognano Formation is presented, based on high-resolution analysis of calcareous nannofossil assemblages, which proved to be very useful for biostratigraphic constraints also in shallow-water settings. Using this approach, we have linked the first drowning phase, late Chattian-Aquitanian p.p. in age, to western Mediterranean volcanism and the Mi-1 event, and the second drowning phase, late Burdigalian-Serravallian in age, to the closure of the Indo-Pacific passage and the occurrence of the global Monterey event. These results permit a new deciphering, in terms of sequence stratigraphy, of the Bolognano Formation that is interpreted as a 2nd-order super-sequence that can be subdivided into 3 transgressive-regressive sequences.

  11. Multidisciplinary approach for fault detection: Integration of PS-InSAR, geomorphological, stratigraphic and structural data in the Venafro intermontane basin (Central-Southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe

    2017-04-01

    A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.

  12. Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events☆

    PubMed Central

    Reuter, Markus; Piller, Werner E.; Brandano, Marco; Harzhauser, Mathias

    2013-01-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene–Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene–Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene–late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale. PMID:25844021

  13. Integrated Photogrammetric Survey and Bim Modelling for the Protection of School Heritage, Applications on a Case Study

    NASA Astrophysics Data System (ADS)

    Palestini, C.; Basso, A.; Graziani, L.

    2018-05-01

    The contribution, considering the use of low-cost photogrammetric detection methodologies and the use of asset Historical-BIM, has as its aim the theme of knowledge and the adaptation of safety in school buildings, a topic brought to attention by the many situations of seismic risk that have interested the central Apennines in Italy. The specific investigation is referred to the Abruzzo region, hit by the recent earthquakes of 2016 and 2009 that have highlighted the vulnerability of the building structures involved in a large seismic crater covering large areas of the territory. The need to consider in advance the performance standards of building components, especially concerning the strategic ways of the functions contained in them, starts here. In this sense, the school buildings have emerged among the types on which to pay attention, a study theme to be promptly considered, considering the functions performed within them and the possible criticality of such constructions, often dated, enlarged or readjusted without appropriate seismic adaptation plans. From here derives the purpose of the research that is directed towards a systematic recognition of the scholastic heritage, deriving from objective and rapid surveys at low cost, taking into consideration the as-built and the different formal and structural aspects that define the architectural organisms to analyse and manage through three-dimensional models that can be interrogated using HBIM connected to databases containing information of a structural and functional nature. In summary, through the implementation of information in the BIM model, it will be possible to query and obtain in real time all the necessary information to optimize, in terms of efficiency, costs, and future maintenance operations.

  14. Seasonal variation of activity patterns in roe deer in a temperate forested area.

    PubMed

    Pagon, Nives; Grignolio, Stefano; Pipia, Anna; Bongi, Paolo; Bertolucci, Cristiano; Apollonio, Marco

    2013-07-01

    We investigated the activity patterns of a European roe deer (Capreolus capreolus) population living in a forested Apennine area in central Italy, in order to shed light on the environmental and biological factors that were expected to account for the observed activity patterns on daily and yearly bases. Daily and seasonal activity patterns of 31 radio-collared roe deer were assessed through sessions of radio tracking for a total period of 18 consecutive months. Roe deer showed bimodal activity patterns throughout the year, with the two highest peaks of activity recorded at dawn and dusk. Activity patterns of males and females differed during the territorial period (from early spring to late summer), whereas they did not during the nonterritorial period. Most likely, behavioral thermoregulation can be held responsible for variation of daily activity patterns in different seasons. In winter, for instance, activity during the dawn period was significantly higher than in other seasons and daylight activity was significantly higher than at night. Nocturnal activity was highest in summer and lowest in winter. During the hunting season, moreover, roe deer showed lower activity levels than during the rest of the year. The prediction that roe deer would show lower activity levels during full moon nights, when the predation risk was assumed to be higher, was not confirmed by our data. Activity rhythms in roe deer were thus subjected to both endogenous and environmental factors, the latter working as exogenous synchronization cues. Accordingly, in changing environmental and ecological conditions, a circadian cycle of activity could be seen as the result of complex interactions among daily behavioral rhythm, digestive physiology, and external modifying factors.

  15. A decade of passive seismic monitoring experiments with local networks in four Italian regions

    NASA Astrophysics Data System (ADS)

    Chiaraluce, L.; Valoroso, L.; Anselmi, M.; Bagh, S.; Chiarabba, C.

    2009-10-01

    We report on four seismic monitoring experiments that in the past ten years we carried out with dense local networks in seismically active Italian areas where for at least a year, tens of three component seismic stations were set up to record microseismicity. The areas observed are Alpago-Cansiglio, located in the Venetian Alps, Città di Castello in the Northern Apennines, Marsica in the Central Apennines and Val d'Agri located in the Southern Apennines. We produced homogeneous catalogues regarding earthquake locations and local magnitudes to investigate seismicity patterns during an inter-seismic period. The four regions are characterised by different kinematics, strain rates and historical/recent seismicity. We investigate earthquake distribution in space, time and size obtaining reference seismic rates and parameters of the Gutenberg and Richter law. We declustered the catalogues to look for coherent signs in the background seismic activity. Despite a difference in the catalogues magnitudes of completeness due both to the diverse detection threshold of the local networks and different seismic release, we detect and observe two common main behaviours: a) The Alpago-Cansiglio and Marsica regions are characterised by a relatively lower rate of seismic release associated to the episodic occurrence of seismic sequences with the largest event being 3 < ML < 4. In these areas the seismicity is not localised around the main faults. b) The Città di Castello and Val d'Agri regions have a relatively high rate of seismicity release almost continuously with time, and the increase in earthquake production is not clearly related to seismic sequences. In these areas the seismicity nucleates around defined fault systems and is usually lower than ML < 3. We suggest that the presence of over-pressured fluids in the Città di Castello and Val d'Agri uppermost crustal volume may favour and mould the higher rate of microseismic release.

  16. Microearthquake sequences along the Irpinia normal fault system in Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Orefice, Antonella; Festa, Gaetano; Alfredo Stabile, Tony; Vassallo, Maurizio; Zollo, Aldo

    2013-04-01

    Microearthquakes reflect a continuous readjustment of tectonic structures, such as faults, under the action of local and regional stress fields. Low magnitude seismicity in the vicinity of active fault zones may reveal insights into the mechanics of the fault systems during the inter-seismic period and shine a light on the role of fluids and other physical parameters in promoting or disfavoring the nucleation of larger size events in the same area. Here we analyzed several earthquake sequences concentrated in very limited regions along the 1980 Irpinia earthquake fault zone (Southern Italy), a complex system characterized by normal stress regime, monitored by the dense, multi-component, high dynamic range seismic network ISNet (Irpinia Seismic Network). On a specific single sequence, the May 2008 Laviano swarm, we performed accurate absolute and relative locations and estimated source parameters and scaling laws that were compared with standard stress-drops computed for the area. Additionally, from EGF deconvolution, we computed a slip model for the mainshock and investigated the space-time evolution of the events in the sequence to reveal possible interactions among earthquakes. Through the massive analysis of cross-correlation based on the master event scanning of the continuous recording, we also reconstructed the catalog of repeated earthquakes and recognized several co-located sequences. For these events, we analyzed the statistical properties, location and source parameters and their space-time evolution with the aim of inferring the processes that control the occurrence and the size of microearthquakes in a swarm.

  17. [Managing patients with prostate cancer in Italy during the first year after diagnosis. A cost description based on a sample of 8 urological wards].

    PubMed

    Lazzaro, Carlo

    2003-09-01

    The aim of the paper is to report of an empirical retrospective study (1994-1999) on the cost of managing patient with prostate cancer (PC) during the first year after diagnosis in Italy. In January 2000, a questionnaire on qualitative, quantitative and economic data concerning the clinical path expected for patients with PC (diagnosis; staging; follow-up; drug; surgery; chemotherapy and radiotherapy) was sent to 14 Italian urological wards (UWs), 5 school of medicine-based (Northern Italy: 2; Central Italy: 1; Southern Italy: 2), 4 self-governing hospital-based (Northern Italy: 1; Southern Italy: 3), 5 Health Authorities hospital-based (Northern Italy: 2; Central Italy: 2; Southern Italy: 1). UWs were expected to contribute to analysis with 15 patients' records per year each, for a total amount of 1.260 filled questionnaires. Only medical costs related to patient management have been considered; hospitals and Health Authorities overheads were not taken into account. A cost description was performed considering the hospital viewpoint. We received 416 out of 1.260 expected questionnaires (redemption rate: 33%) from 8 out of 14 UWs: 2 school of medicine-based (Central Italy: 1; Southern Italy: 1); 2 self-governing hospital-based (Southern Italy: 2); 4 Health Authorities hospital-based (Northern Italy: 1; Central Italy: 3). Only 411 out of 416 questionnaires were included in data analysis. Patients' average age at the time of diagnosis was 74.1 years (range: 68.6-76.7). A moderate percentage of neoplasms in patients' relatives was reported (17.8%; 5.6% for PC). The average cost per patient with CP during the first year after diagnosis was Euro 6,575.31 (range: Euro 5,035.65-Euro 12,367.69). The cost-driver was drug therapy (43.07%), followed by surgery (26.41%), diagnosis (12.39%), staging (8.58%); follow-up (8.25%) and radiotherapy (1.30%); no data on chemotherapy was reported. Diagnosis, staging and follow-up tests and procedures were performed mainly in outpatient setting (81.84% 53.30% and 94.72%, respectively) and requested by hospital urologists (70.26%; 52.88% and 67.95%, respectively). Total PSA was the most frequent test for diagnosis (503 out of 2,047 procedures) and follow-up (782 out of 3,351 procedures), as well as bone scan was for staging (337 out of 1,023 procedures). As far as drug therapy is concerned, LHRH-analogue was the most prescribed drug (227 patients). Surgery (lymphoadenectomy: 9; orchidectomy: 20; urinary outlet dysobstruction: 51; prostatectomy: 104) was performed in 179 patients; 5 out of 179 patients underwent more than one surgical intervention. Radiotherapy (338 sessions) was undertaken in 15 out of 411 patients. Cost of managing patient with PC during the first year after diagnosis in Italy could be reduced by increasing outpatient procedures and decreasing post-surgery hospital stay. Our research may hopefully foster further empirical studies on the health economics of PC in our country.

  18. Fluvial Connectivity and Sediment Dispersal within Continental Extensional Basins; Assessment of Controlling Factors using Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.

    2017-12-01

    Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.

  19. Reconstructing the recent West Nile virus lineage 2 epidemic in Europe and Italy using discrete and continuous phylogeography

    PubMed Central

    Veo, Carla; Ebranati, Erika; Carta, Valentina; Rovida, Francesca; Percivalle, Elena; Moreno, Ana; Lelli, Davide; Calzolari, Mattia; Lavazza, Antonio; Chiapponi, Chiara; Baioni, Laura; Capelli, Gioia; Ravagnan, Silvia; Da Rold, Graziana; Lavezzo, Enrico; Palù, Giorgio; Baldanti, Fausto; Barzon, Luisa; Galli, Massimo

    2017-01-01

    West Nile virus lineage 2 (WNV-2) was mainly confined to sub-Saharan Africa until the early 2000s, when it was identified for the first time in Central Europe causing outbreaks of human and animal infection. The aim of this study was to reconstruct the origin and dispersion of WNV-2 in Central Europe and Italy on a phylodynamic and phylogeographical basis. To this aim, discrete and continuous space phylogeographical models were applied to a total of 33 newly characterised full-length viral genomes obtained from mosquitoes, birds and humans in Northern Italy in the years 2013–2015 aligned with 64 complete sequences isolated mainly in Europe. The European isolates segregated into two highly significant clades: a small one including three sequences and a large clade including the majority of isolates obtained in Central Europe since 2004. Discrete phylogeographical analysis showed that the most probable location of the root of the largest European clade was in Hungary a mean 12.78 years ago. The European clade bifurcated into two highly supported subclades: one including most of the Central/East European isolates and the other encompassing all of the isolates obtained in Greece. The continuous space phylogeographical analysis of the Italian clade showed that WNV-2 entered Italy in about 2008, probably by crossing the Adriatic sea and reaching a central area of the Po Valley. The epidemic then spread simultaneously eastward, to reach the region of the Po delta in 2013, and westward to the border area between Lombardy and Piedmont in 2014; later, the western strain changed direction southward, and reached the central area of the Po valley once again in 2015. Over a period of about seven years, the virus spread all over an area of northern Italy by following the Po river and its main tributaries. PMID:28678837

  20. Carbon, oxygen and strontium isotopic constraints on fluid sources, temperatures and biogeochemical processes during the formation of seep carbonates - Secchia River site, Northern Apennines

    NASA Astrophysics Data System (ADS)

    Viola, Irene; Capozzi, Rossella; Bernasconi, Stefano M.; Rickli, Jörg

    2017-07-01

    Understanding authigenic seep carbonate formation provides clues for hydrocarbon exploration and insights into contributions to gas budgets of marine environments and the atmosphere. Seep carbonates discovered in the outcropping succession along the Secchia riverbanks (near Modena, Italy) belong to the Argille Azzurre Formation of Early Pleistocene age deposited in an upper shelf environment overlying the Miocene foredeep successions, which include hydrocarbon fields. The fluid migration from the hydrocarbon fields, up to the surface, is presently active on land and started in the marine succession during the Late Miocene. Authigenic globular carbonate concretions and carbonate chimneys are interspersed along the strata throughout the section. A comprehensive geochemical characterisation of the carbonates has been carried out to understand the processes leading to their formation. The carbonate concretions are the record of past hydrocarbon vents linked to the Miocene petroleum system of the Northern Apennines. The samples are composed of > 50% microcrystalline dolomite. The δ13C signatures identify two groups in the samples according to different type of formation processes. Globular concretions have positive values that suggest an influence of CO2 associated to secondary methanogenesis due to microbial degradation of higher hydrocarbons. The analysed chimney, with negative δ13C values, is interpreted as former conduit where carbonate precipitation is promoted by Anaerobic Oxidation of Methane coupled with Sulfate Reduction. The δ18O range, coupled with 87/86Sr signatures, indicate that the contribution of deep connate water from the Miocene reservoirs is up to 23% during the formation of the globular concretions. The connate water occurrence is also documented by higher ambient temperatures. The different isotope signatures in seep carbonates result from the relative contribution of the recognised gas and water components, linked to different plumbing systems and fluid supply from a well-defined hydrocarbon field. The seep carbonate characteristics have enlightened variations in biogeochemical processes, which can be rarely quantified in ancient and present-day marine environments.

  1. Seep carbonates and chemosynthetic coral communities in the Early Paleocene alpine accretionary wedge: evidences from the Bocco Shale (Internal Liguride ophiolitic sequence, Northern Apennine, Italy)

    NASA Astrophysics Data System (ADS)

    Pandolfi, Luca; Boschi, Chiara; Luvisi, Edoardo; Alessandro, Ellero; Marroni, Michele; Meneghini, Francesca

    2014-05-01

    In Northern Apennines, the Internal Liguride units are characterized by an ophiolite sequence that represents the stratigraphic base of a Late Jurassic-Early Paleocene sedimentary cover. The Bocco Shale represents the youngest deposit recognized in the sedimentary cover of the ophiolite sequence, sedimented just before the inception of subduction-related deformation history. The Bocco Shale has been interpreted as a fossil example of deposits related to the frontal tectonic erosion of the alpine accretionary wedge slope. The frontal tectonic erosion resulted in a large removal of material from the accretionary wedge front reworked as debris flows and slide deposits sedimented on the lower plate above the trench deposits. These trench-slope deposits may have been successively deformed and metamorphosed during the following accretion processes. The frontal tectonic erosion can be envisaged as a common process during the convergence-related evolution of the Ligure-Piemontese oceanic basin in the Late Cretaceous-Early Tertiary time span. In the uppermost Internal Liguride tectonic unit (Portello Unit of Pandolfi and Marroni. 1997), that crops-out in Trebbia Valley, several isolated blocks of authigenic carbonates, unidentificated corals and intrabasinal carbonatic arenites have been recognized inside the fine-grained sediments that dominate the Early Paleocene Lavagnola Fm. (cfr. Bocco Shale Auctt.). The preliminary data on stable isotopes from blocks of authigenic carbonates (up to 1 m thick and 3 m across) and associated corals archive a methane signatures in their depleted carbon isotope pattern (up to δ13C -30‰ PDB) and suggest the presence of chemosynthetic paleocommunities. The seep-carbonates recognized at the top of Internal Liguride succession (cfr. Bocco Shale Auctt.) occur predominantly as blocks in very thick mudstone-dominated deposits and probably developed in an environment dominated by the expulsion of large volume of cold methane-bearing fluids focused in the frontal part of the Early Paleocene alpine accretionary wedge.

  2. Are drought vulnerability indices useful tools in order to evaluate the state of a water supply system?

    NASA Astrophysics Data System (ADS)

    Preziosi, E.; Del Bon, A.; Romano, E.; Petrangeli, A. B.; Casadei, S.

    2012-04-01

    Water resources availability is affected both by anthropic drivers (increasing demand, modification in the uses) and natural ones such as precipitation decrease related to global climate changes. Water managers and water policy makers are more and more aware that they are facing a changing climate in which the availability of water is claimed to be decreasing in many parts of the world. The possibility that droughts will be more frequent and severe in the next decades is getting a real possibility and a wise manager should know in advance how to face this new reality. Hence new tools and, more important, a methodology to assess the weakest points of a complex water supply system to water scarcity scenarios, are necessary. The importance of simulation models to assess in advance the impacts of possible conditions of severe water shortage and the effects of feasible mitigation options on water supply systems is well known. Vulnerability is commonly used to characterize the performance of water supply systems, and it can be a helpful indicator in the evaluation of the most likely failures in a complex system in ordinary as well as in more severe climatic conditions. However a common procedure about the exploitation of modeling results is not established yet. In this research the water supply network of a case study area in Central Italy was modeled under different climatic and management hypothesis. In this area both ground water resources (well fields in alluvial aquifers and Apennine springs) and surface water resources stored in two large reservoirs, are exploited mainly for drinking water supply and irrigation. Climate scenarios were drawn based on three simplistic hypothesis: firstly a progressive reduction of precipitation in 55 years, secondly an increase in its variance during time, lastly a combination of the two. The model results were elaborated to calculate different indices, in order to analyze the variation of vulnerability of the water supply system to drought, in time and space. For our case study the model results show that the safety of the water supply system mainly relies on the reservoirs capacity and that the foreseen exploitation of the Apennine springs for drinking water supply could be seriously limited by the discharge natural decrease in fall. A decrease of the water system vulnerability to drought determined by a hypothetical but feasible mitigation option (augmentation of the total reservoir capacity with small reservoirs) was positively tested by the model. As a conclusion, vulnerability indices as well as synoptic risk maps, appear to be useful tools in order to analyze model results. Additionally they could provide scientific based scenarios to be used in a decision making framework considering negotiating among the main users.

  3. Quaternary fault-controlled volcanic vents and crustal thinning: new insights from the magma-rich Tyrrhenian passive margin (Italy)

    NASA Astrophysics Data System (ADS)

    Cardello, Giovanni Luca; Conti, Alessia; Consorti, Lorenzo; Do Couto, Damien

    2017-04-01

    The discover of monogenic Quaternary volcanic vents, that were recently mapped along major fault zones both inland and offshore the Tyrrhenian magma-rich passive margin, poses questions about: timing and role they had into Plio-Pleistocene crustal thinning with relevant consequences for the hazard assessment of an area inhabited by some 0.5 million people. The present-day margin is stretched over 100 km between the Volsci Range (VR) and the Pontian escarpment, being defined by moderate shallow seismicity (Mw≤4.6), relative high geothermal gradient and ongoing hydrothermal activity. Although major central volcanoes (e.g., Colli Albani), occurring at major fault intersections are well studied, smaller volcanic fields were so far unconstrained. Both field survey in the VR and offshore high-resolution geophysical data, allow us to: 1) better define the anatomy of the poorly known VR volcanic field; 2) furnish new insights on the regional Quaternary dynamics; 3) propose modes and reason of magma emplacement. The VR is composed of about 40 punctual and linear monogenic and mostly phreatomagmatic vents occurring at the edges of the Apennine carbonate fold-and-thrust belt and within the VR backbone. Volcanites are characterized by zeolitized to incoherent tuffs and surge deposits locally covered by lavas and slope deposits. Most explosive units host carbonate-rich lithics with different degrees of rounding and decarbonation, which frequently belong to Albian-Cenomanian aquifers. By comparing cross-section with lithic analyses we demonstrate that fragmentation, transport, progressive disintegration and decarbonation occur at multiple depths, depending on the fold-and-thrust belt setting. Thus, along the same vent zone, juvenile lithic composition proves repeated fragmentation within pressured-aquifers, testifying for fissural activity with implications for local seismic and volcanic assessment. Pyroclastic deposits occur as well in the Pontina and Fondi coastal plains at shallow depth suggesting recent (<10 kyr) and possibly local eruptions. Offshore, 25 km north of Ventotene, a middle Pleistocene 200 m-high truncated volcano was found partially covered by middle to recent deposits. It is delimited by well defined WNW-striking fault-controlled escarpment dissected by NE-striking faults. As on the Ponza-Zannone high, volcanic complex occur on a horst intersecting the two main regional trends, possibly associated with younger SE-stretching. Quaternary stretching rotation occurs as a response to Tyrrhenian back-arc opening and contemporaneous inarching of the Apennine front. In this frame, frontal to lateral slab tearing and retreat is tracked by E-rejuvenated volcanic activity along the Palmarola-Vesuvius lineament. In conclusion, we argue about the role NE-dipping crustal detachment(s) may have played into crustal thinning, driving and occasionally hampering magma-emplacement.

  4. Geophysical approach for emergency management of landslide: the experience of Basilicata Civil Protection (southern Italy)

    NASA Astrophysics Data System (ADS)

    Colangelo, G.; Lapenna, V.; Perrone, A.; Loperte, A.

    2009-04-01

    The Basilicata region (Southern Italy), being dissected by numerous and often significant rivers and characterized by the outcrop of terrains with bad mechanical properties, is one of the more exposed regions of the southern Apennine chain to hydrogeologic hazard and shows a complete panorama of mass movements. During the last years, after strong precipitations, this region has been affected by the reactivation of many quiescent landslides that involved buildings and infrastructures constructed on the slopes. The risk for people and assets needed the intervention of the end users involved in the risk management and, in particular, the inspection of Regional Department of Infrastructure and Civil Protection (RDICP). In many involved areas and for many families evacuation decrees have been issued in order to allow the damage valuation. An important contribution has been provided by the geophysical data and, in particular, by the 2D electrical resistivity tomographies (ERTs) that have been carried out in the areas some days after the event by IMAA-CNR. In this work we present the results regarding the application of unconventional geoelectrical techniques used for the emergency management of landslide in Basilicata Region (southern Italy). The information obtained by the application of indirect surveys appeared to be particularly useful for the end users involved in the risks management. In particular, taking into account the cycle of landslides emergency, the obtained data could give a valid contribution during the post-event phase which mainly regards the damage valuation. Indeed, only a corrected assessment of the damage and a precise geometric reconstruction of the landslide body, can direct the intervention actions of the end users. The results represent a valid cognitive support to choose the most appropriate technical solution for strengthening of the slopes and an example of best practice for the cooperation between the research activity (IMAA-CNR) and field emergency (Regional Civil Protection).

  5. Preliminary study of plants used in ethnoveterinary medicine in Tunisia and in Italy.

    PubMed

    Viegi, Lucia; Ghedira, Kamel

    2014-01-01

    A survey relative to the use of plants for the cure of animals in Tunisia was conducted in order to make a comparison with the same species (or similar ones) in central and southern Italy. available bibliographical data both for Italy and for Tunisia were consulted. Thirty-nine plants, representing 22 families, used in Tunisia in ethnoveterinary medicine were reported, and comparisons made with close species used in Central and Southern Italy. Seven of the 39 species (about the 18% of the total) are not present in Italian flora. Fourteen of the 39 species (35% of the total) are also used in Italy. Camelidae (dromedaries and camels) are the most valuable types of domestic animals cured in Tunisia, but ovines, horses, bulls, dogs are also treated. Some uses coincide with those existing in different Italian regions. The plants used are the most common and most easily found in these areas. The present study confirms the convergence in ethnoveterinary medicine between Tunisia and Italy, even if it appears less significant than in human ethnobotany. Further studies are required in areas of Tunisia that have not yet been studied, in order to get the possibility of an evaluation of active compounds.

  6. Interregional comparison of karst disturbance: west-central Florida and southeast Italy.

    PubMed

    North, Leslie A; van Beynen, Philip E; Parise, Mario

    2009-04-01

    The karst disturbance index (KDI) consists of 31 environmental indicators contained within the five broad categories: geomorphology, hydrology, atmosphere, biota, and cultural. The purpose of this research is to apply the KDI to two distinct karst areas, west Florida, USA, and Apulia, Italy. Through its application, the utility of the index can be validated and other important comparisons can be made, such as differences in the karst legislations implemented in each region and the effect of time exposure to human occupation to each karst terrain. Humans have intensively impacted the karst of southeast Italy for thousands of years compared to only decades in west-central Florida. However, west-central Florida's higher population density allows the region to reach disturbance levels comparable to those reached over a longer period in Apulia. Similarly, Italian karst is more diverse than the karst found in west-central Florida, creating an opportunity to test all the KDI indicators. Overall, major disturbances for southeast Italy karst include quarrying, stone clearing, and the dumping of refuse into caves, while west-central Florida suffers most from the infilling of sinkholes, soil compaction, changes in the water table, and vegetation removal. The application of the KDI allows a benchmark of disturbance to be established and later revisited to determine the changing state of human impact for a region. The highlighting of certain indicators that recorded high levels of disturbance also allows regional planners to allocate resources in a more refined manner.

  7. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project.

    PubMed

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.

  8. Lethal distemper in badgers (Meles meles) following epidemic in dogs and wolves.

    PubMed

    Di Sabatino, Daria; Di Francesco, Gabriella; Zaccaria, Guendalina; Malatesta, Daniela; Brugnola, Luca; Marcacci, Maurilia; Portanti, Ottavio; De Massis, Fabrizio; Savini, Giovanni; Teodori, Liana; Ruggieri, Enzo; Mangone, Iolanda; Badagliacca, Pietro; Lorusso, Alessio

    2016-12-01

    Canine distemper virus (CDV) represents an important conservation threat to many wild carnivores. A large distemper epidemic sustained by an Arctic-lineage strain occurred in Italy in 2013, mainly in the Abruzzi region, causing overt disease in domestic and shepherd dogs, Apennine wolves (Canis lupus) and other wild carnivores. Two badgers were collected by the end of September 2015 in a rural area of the Abruzzi region and were demonstrated to be CDV-positive by real time RT-PCR and IHC in several tissues. The genome of CDV isolates from badgers showed Y549H substitution in the mature H protein. By employing all publicly available Arctic-lineage H protein encoding gene sequences, six amino acid changes in recent Italian strains with respect to Italian strains of dogs from 2000 to 2008, were observed. A CDV strain belonging to the European-wildlife lineage was also identified in a fox found dead in the same region in 2016, proving co-circulation of an additional CDV lineage. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    PubMed Central

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489

  10. Seismic signature of active intrusions in mountain chains.

    PubMed

    Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido

    2018-01-01

    Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO 2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains.

  11. Seismic signature of active intrusions in mountain chains

    PubMed Central

    Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido

    2018-01-01

    Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains. PMID:29326978

  12. Chemical analysis of essential oils from different parts of Ferula communis L. growing in central Italy.

    PubMed

    Maggi, Filippo; Papa, Fabrizio; Dall'Acqua, Stefano; Nicoletti, Marcello

    2016-01-01

    Ferula communis is a showy herbaceous plant typical of the Mediterranean area where it is used as a traditional medicine. The plant is a source of bioactive compounds such as daucane sesquiterpenes and prenylated coumarins. In Italy, most of phytochemical studies focused on Sardinian populations where poisonous and nonpoisonous chemotypes were found, while investigations on peninsular populations are scarce. In this work, we report the chemical characterisation of the essential oils obtained from different parts of F. communis growing in central Italy. The chemical profiles of the plant parts, as detected by GC-FID and GC-MS, were different from each other and from those reported in insular populations. Notably, α-pinene (10.5%), γ-terpinene (7.6%) and hedycariol (8.4%) were the major volatile constituents in flowers; α-pinene (55.9%), β-pinene (16.8%) and myrcene (5.9%) in fruits; β-eudesmol (12.1%), α-eudesmol (12.1%) and hedycariol (10.3%) in leaves; (E)-β-farnesene (9.5%), β-cubebene (8.2%) and (E)-caryophyllene (7.2%) in roots. The volatile profiles detected did not allow to classify the investigated central Italy population into the poisonous and nonpoisonous chemotypes previously described in Sardinia.

  13. Geological evidence of pre-2012 Emilia, Italy, seismic events

    NASA Astrophysics Data System (ADS)

    Caputo, Riccardo; Minarelli, Luca; Papathanassiou, Giorgos; Poli, Eliana M.; Rapti-Caputo, Dimitra; Sboras, Sotiris; Stefani, Marco; Zanferrari, Adriano

    2013-04-01

    In May 2012, two moderate (ML = 5.9 and 5.8) earthquakes, associated with a noticeable aftershock sequence, affected the eastern sector of the Po Plain, Italy. The causative faults are two segments of the Ferrara Arc thrust system representing the most frontal portion of the buried Northern Apennines fold-and-thrust belt. Few weeks after the earthquake, a palaeoseismological trench was excavated south of the San Carlo village (western Ferrara Province), where a system of aligned ground ruptures were observed. In the trench walls we observed several features documenting the occurrence of past liquefaction events affecting the same site. For example, i) 10 cm-thick dikes filled with injected sand and associated with vertical displacements have no correspondence with the fractures mapped at the surface before the excavation; ii) some thick dikes are arrested below the ploughed level or even by older sedimentary layers; iii) along the internal slope of the palaeo-channel exposed by the trench, load structures and slided blocks are observed; iv) in correspondence with the ground fractures characterised by vertical displacement and opening occurred during the 2012 earthquake and thick dikes, observed at the surface and in the trench's walls, respectively, sand and water ejection did not occur. In conclusion, the results of the palaeoseismological investigation document for the first time that shacking (i.e. seismic) events occurred in the past producing a sufficient ground motion capable of triggering liquefaction phenomena prior to, but likely stronger than, the May 2012 earthquake. A likely candidate is the November 17, 1570 Ferrara earthquake.

  14. Stress Regime in Italy: State of the art

    NASA Astrophysics Data System (ADS)

    Montone, P.; Mariucci, M.; Pierdominici, S.; Amicucci, L.

    2005-12-01

    Stress data collection and analysis in Italy increased a lot in the last decade but there is still a lot of work to be done. First of all concerning stress magnitudes: deep data are very few and an organized collection of shallow depth data is not yet available for scientific purposes, despite the large amount of shallow rock stress measurements. Stress magnitude data could contribute to deal with a wide spectrum of engineering problems but also to get reliable stress profiles from surface to earthquake depths useful for seismotectonic models. Here we present our latest work on stress magnitude determination inferred from more than two hundreds new leak-off test data from oil wells, kindly provided by ENI S.p.A (Italian Oil Company). We analyzed them notwithstanding the problems of the datum itself and did our best to obtain as much as possible reliable information on the state of stress of Italian peninsula. We calculated the values of the principal stress axis and stress regime at different depths, ranging from about 200m to 5000m, also considering the possible scattering of data and their uncertainties. We compared the results with horizontal stress orientations from borehole breakout analysis and other stress indicators. We analyzed the pictures of stress regime at different depths and along different transects through the Apennines, speculating about the reasons of regime changes that are observed in some areas. The state of stress depicted by the new data confirms the results of previous studies making them and the new ones more confident.

  15. View of Hadley-Apennine area, looking north, photographed by Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An oblique view of the Hadley-Apennine area, looking north, as photographed by the Fairchild metric camera in the SIM bay of the Apollo 15 Command/Service Module in lunar orbit. Hadley Rille meanders through the lower center of the picture. The Apennine Mountains are at lower right. The Apollo 15 Lunar Module touchdown point is on the east side of the 'chicken beak' of Hadley Rille. The Caucasus Mountains are at upper right. The dark mare area at the extreme upper right is a portion of the Sea of Serenity. The Marsh of Decay is at lower left. The large crater near the horizon is Aristillus, which is about 55 kilometers (34.18 statute miles) in diameter. The crater just to the south of Aristillus is Autolycus, which is about 40 kilometers (35 statute miles) in diameter. The crater Cassini is barely visible on the horizon at upper right.

  16. C4 -consumers in southern Europe: the case of Friuli V.G. (NE-Italy) during early and central Middle Ages.

    PubMed

    Iacumin, P; Galli, E; Cavalli, F; Cecere, L

    2014-08-01

    Isotope variations were studied in necropolises of the early (6th to 7th century CE) and central (10th to 11th century CE) medieval period located in Fruili-Venezia Giulia (Northeastern Italy). The two periods each shortly followed two great barbarian invasions that changed the politics and economy of Italy: the arrivals of Langobards in 578 CE and the Hungarian incursions from the end of the 9th to the first half of the 10th century. These events had a tragic effect on the economy of Friuli-Venezia Giulia: severe depopulation and the partial abandonment of the countryside with fall of agricultural production. © 2014 Wiley Periodicals, Inc.

  17. A 3-D velocity model for earthquake location from combined geological and geophysical data: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro

    2014-05-01

    Accurate hypocenter location at the crustal scale strongly depends on our knowledge of the 3D velocity structure. The integration of geological and geophysical data, when available, should contribute to a reliable seismic velocity model in order to guarantee high quality earthquake locations as well as their consistency with the geological structure. Here we present a 3D, P- and S-wave velocity model of the Upper Tiber valley region (Northern Apennines) retrieved by combining an extremely robust dataset of surface and sub-surface geological data (seismic reflection profiles and boreholes), in situ and laboratory velocity measurements, and earthquake data. The study area is a portion of the Apennine belt undergoing active extension where a set of high-angle normal faults is detached on the Altotiberina low-angle normal fault (ATF). From 2010, this area hosts a scientific infrastructure (the Alto Tiberina Near Fault Observatory, TABOO; http://taboo.rm.ingv.it/), consisting of a dense array of multi-sensor stations, devoted to studying the earthquakes preparatory phase and the deformation processes along the ATF fault system. The proposed 3D velocity model is a layered model in which irregular shaped surfaces limit the boundaries between main lithological units. The model has been constructed by interpolating depth converted seismic horizons interpreted along 40 seismic reflection profiles (down to 4s two way travel times) that have been calibrated with 6 deep boreholes (down to 5 km depth) and constrained by detailed geological maps and structural surveys data. The layers of the model are characterized by similar rock types and seismic velocity properties. The P- and S-waves velocities for each layer have been derived from velocity measurements coming from both boreholes (sonic logs) and laboratory, where measurements have been performed on analogue natural samples increasing confining pressure in order to simulate crustal conditions. In order to test the 3D velocity model, we located a selected dataset of the 2010-2013 TABOO catalogue, which is composed of about 30,000 micro-earthquakes (see Valoroso et al., same session). Earthquake location was performed by applying the global-search earthquake location method NonLinLoc, which is able to manage strong velocity contrasts as that observed in the study area. The model volume is 65km x 55km x 20km and is parameterized by constant velocity, cubic cells of side 100 m. For comparison, we applied the same inversion code by using the best 1D model of the area obtained with earthquake data. The results show a significant quality improvement with the 3D model both in terms of location parameters and correlation between seismicity distribution and known geological structures.

  18. Geochemical variation of groundwater in the Abruzzi region: earthquakes related signals?

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Chiodini, G.; Caliro, S.; Frondini, F.; Avino, R.; Minopoli, C.; Morgantini, N.

    2009-12-01

    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures affect the Tyrrhenian side of the Italian peninsula. The northern degassing structure (TRDS, Tuscan Roman degassing structure) includes Tuscany, Latium and part of Umbria regions (~30000 km2) and releases > 6.1 Mt/y of deeply derived CO2. The southern degassing structure (CDS, Campanian degassing structure) affects the Campania region (~10000 km2) and releases > 3.1 Mt/y of deeply derived CO2. The total CO2 released by TRDS and CDS (> 9.2 Mt/y) is globally significant, being ~10% of the estimated present-day total CO2 discharge from sub aerial volcanoes of the Earth. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS plumes, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes, by reducing fault strength and potentially controlling the nucleation, arrest, and recurrence of both micro and major (M>5) earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. In order to investigate this process, detailed hydro-geochemical campaigns started immediately after the main shock of the 6th of April 2009. The surveys include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. The new data includes the determination of the main dissolved ions, the dissolved gases (CO2, CH4, N2, Ar, He) and the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He). All the springs collected in 2009 show a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers, respect to the 1997. The origin of this regional variation is still under investigation. A monthly sampling of the main spring has been programmed in order to differentiate the variation derived by seasonal processes from eventual signals linked to seismic processes. The first results will be presented and discussed.

  19. Regional Landslide Mapping Aided by Automated Classification of SqueeSAR™ Time Series (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Iannacone, J.; Berti, M.; Allievi, J.; Del Conte, S.; Corsini, A.

    2013-12-01

    Space borne InSAR has proven to be very valuable for landslides detection. In particular, extremely slow landslides (Cruden and Varnes, 1996) can be now clearly identified, thanks to the millimetric precision reached by recent multi-interferometric algorithms. The typical approach in radar interpretation for landslides mapping is based on average annual velocity of the deformation which is calculated over the entire times series. The Hotspot and Cluster Analysis (Lu et al., 2012) and the PSI-based matrix approach (Cigna et al., 2013) are examples of landslides mapping techniques based on average annual velocities. However, slope movements can be affected by non-linear deformation trends, (i.e. reactivation of dormant landslides, deceleration due to natural or man-made slope stabilization, seasonal activity, etc). Therefore, analyzing deformation time series is crucial in order to fully characterize slope dynamics. While this is relatively simple to be carried out manually when dealing with small dataset, the time series analysis over regional scale dataset requires automated classification procedures. Berti et al. (2013) developed an automatic procedure for the analysis of InSAR time series based on a sequence of statistical tests. The analysis allows to classify the time series into six distinctive target trends (0=uncorrelated; 1=linear; 2=quadratic; 3=bilinear; 4=discontinuous without constant velocity; 5=discontinuous with change in velocity) which are likely to represent different slope processes. The analysis also provides a series of descriptive parameters which can be used to characterize the temporal changes of ground motion. All the classification algorithms were integrated into a Graphical User Interface called PSTime. We investigated an area of about 2000 km2 in the Northern Apennines of Italy by using SqueeSAR™ algorithm (Ferretti et al., 2011). Two Radarsat-1 data stack, comprising of 112 scenes in descending orbit and 124 scenes in ascending orbit, were processed. The time coverage lasts from April 2003 to November 2012, with an average temporal frequency of 1 scene/month. Radar interpretation has been carried out by considering average annual velocities as well as acceleration/deceleration trends evidenced by PSTime. Altogether, from ascending and descending geometries respectively, this approach allowed detecting of 115 and 112 potential landslides on the basis of average displacement rate and 77 and 79 landslides on the basis of acceleration trends. In conclusion, time series analysis resulted to be very valuable for landslide mapping. In particular it highlighted areas with marked acceleration in a specific period in time while still being affected by low average annual velocity over the entire analysis period. On the other hand, even in areas with high average annual velocity, time series analysis was of primary importance to characterize the slope dynamics in terms of acceleration events.

  20. Italy feels the effect of another deadly quake

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-12-01

    Using radar data from the Copernicus Sentinel-1 satellites, the European Space Agency has released images showing the devastating effect of the 6.5-magnitude earthquake that struck central Italy on 30 October - the largest in the country for over three decades.

  1. Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lepore, Giovanni O.; Bindi, Luca; Pedrazzi, Giuseppe; Conticelli, Sandro; Bonazzi, Paola

    2017-08-01

    Micas from mafic ultrapotassic rocks with lamproitic affinity from several localities of the Central Mediterranean region were studied through single-crystal X-ray diffraction (SC-XRD), electron microprobe analysis (EMPA) and Secondary Ion Mass Spectrometry (SIMS); Mössbauer Spectroscopy (MöS), when feasible, was also applied to minimise the number of unknown variables and uncertainties. Analysed lamproitic samples cover the most important Central Mediterranean type localities, from Plan d'Albard (Western Alps) to Sisco (Corsica), Montecatini Val di Cecina and Orciatico (Tuscany, Italy) and Torre Alfina (Northern Latium, Italy). The studied crystals show distinctive chemical and structural features; all of them belong to the phlogopite-annite join and crystallise in the 1M polytype, except for micas from Torre Alfina, where both 1M and 2M1 polytypes were found. Studied micas have variable but generally high F and Ti contents, with Mg/(Mg + Fe) ranging from 0.5 to 0.9; 2M1 crystals from Torre Alfina radically differ in chemical composition, showing high contents of Ti and Fe as well as of Al in both tetrahedra and octahedra, leading to distinctive structural distortions, especially in tetrahedral sites. SIMS data indicate that studied micas are generally dehydrogenated with OH contents ranging from 0.2 apfu (atoms per formula unit) for Orciatico and Torre Alfina to 1.4 for Plan d'Albard crystals; this feature is also testified by the length of the c parameter, which decreases with the loss of hydrogen and/or the increase of the F → OH substitution. Chemical and structural data suggest that the entry of high charge octahedral cations is mainly balanced by an oxy mechanism and, to a lesser extent, by a M3 +,4 +-Tschermak substitution. Our data confirm that Ti preferentially partitions into the M2 site and that different Ti and F contents, as well as different K/Al values, are both dependant upon fH2O and the composition of magma rather than controlled by P and T crystallisation conditions. The obtained data help to discriminate among lamproite-like rocks formed within a complex geodynamic framework but still related to a destructive tectonic margin and evidence different trends for micas from the youngest Torre Alfina (Northern Latium) lamproites, referred to the Apennine orogeny and those of the older lamproites from Orciatico, Montecatini Val di Cecina (Tuscany), Western Alps, and Corsica, the latter referred to the Alpine orogeny. Phlogopite crystals from the older lamproites fall within the compositional and structural field of worldwide phlogopites from both within-plate and subduction-related settings. Phlogopite from the Plio-Pleistocene lamproite-like occurrence in Tuscany and Northern Latium, despite crystals with low Mg# of the Torre Alfina rock plot well within the general field of the other crystals in less evolved samples, follows a different evolution trend similar to that of shoshonites from Tuscany and Northern Latium. On this basis, we argue that the observed differences are inherited by slight differences in the magma compositions that are related to different genetic and evolution pathways.

  2. Towards the application of seismogeodesy in central Italy: a case study for the 2016 August 24 Mw 6.1 Italy earthquake modelling

    NASA Astrophysics Data System (ADS)

    Chen, Kejie; Liu, Zhen; Liang, Cunren; Song, Y. Tony

    2018-06-01

    Dense strong motion and high-rate Global Navigation Satellite Systems (GNSS) networks have been deployed in central Italy for rapid seismic source determination and corresponding hazard mitigation. Different from previous studies for the consistency between two kinds of sensor at collocated stations, here we focus on the combination of high-rate GNSS displacement waveforms with collocated seismic strong motion accelerators, and investigate its application to image rupture history. Taking the 2016 August 24 Mw 6.1 Central Italy earthquake as a case study, we first generate more accurate and longer period seismogeodetic displacement waveforms by a Kalman filter, then model the rupture behaviour through a joint inversion including seismogeodetic waveforms and InSAR observations. Our results reveal that strong motion data alone can overestimate the magnitude and mismatch the GNSS observations, while 1 Hz sampling rate GNSS is insufficient and the displacement is too noisy to depict rupture process. By contrast, seismogeodetic data enhances temporal resolution and maintains the static offsets that provide vital constraint to the reliable estimation of earthquake magnitude. The obtained model is close to the jointly inverted one. Our work demonstrates the unique usefulness of seismogeodesy for fast seismic hazard response.

  3. View of Commemorative plaque left on moon at Hadley-Apennine landing site

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A close-up view of a commemorative plaque left on the Moon at the Hadley-Apennine landing site in memory of 14 NASA astronauts and USSR cosmonauts, now deceased. Their names are inscribed in alphabetical order on the plaque. The plaque was stuck in the lunar soil by Astronauts David R. Scott and James B. Irwin during their Apollo 15 lunar surface extravehicular activity. The tin, man-like object represents the figure of a fallen astronaut/cosmonaut.

  4. Relationships between sinkholes areal distribution and main tectonic alignments in Abruzzo (Central Italy)

    NASA Astrophysics Data System (ADS)

    Ferrini, G.; Moretti, A.; De Rose, C.; Stagnini, E.,; Serafini, M.

    2012-04-01

    Intermountain basins, developed at the back side of the Apennines overturning front, are the most evident morphological expressions of extensional tectonics in Central Italy and can be recognized in many different sections of the chain. L'Aquila basin and the adjoining Subequana valley are part of a single NW-SE elongated depression (about 60 km long) which began to develop about in the early Quaternary in response to the identification of various regional extensional tectonic alignments and the consequent starting of the basin subsidence. This impressive morphological element is characterized by the presence of several large funnel-shaped features (locally named Fosse = trench) which affect mainly the Meso-Cenozoic carbonatic bedrock but also the Neogenic clastic sedimentary filling of the valley. Some of these last elements are often occupied by ponds or significant artesian water resurgences like the Sinizzo Lake where, during L'Aquila earthquake of April 6th 2009, the shores collapsed and strong microseismic activity, deep rumbles and flow rate changes were reported for the following months. The Fosse mapped in the L'Aquila basin have widths in the order of hundreds of meters, a considerable difference of elevation respect the rims and present a general morphology very close to that of the classic dissolution karst sinkholes. Their evolution/localization is strictly related to the active fault systems which controls also the main tracts of the relief; the low volume of residual sedimentary deposits within the depression, not comparable with the total volume of rock removed, indicates that surface karst dissolution phenomena are absent or secondary. The elevations of the floor of many Fosse are higher respect the actual flood plain depending on their age; in fact relict circular forms, recognizable at upper altitude on the relief slope, confirm that the phenomenon has been active for a considerable period of time. About the genesis of this features, even if at present there is no evidence of hydrothermal activity or gas diffusion, morphological and geostructural analogy with the hydrothermal field of San Vittorino (Rieti) suggest dissolution processes related to the rising of underground mineralized fluids (piping) and a subsequent collapse phase, in a classic sink-hole evolutionary model. To note the areal distribution of these elements developed in a narrow band , WNW-ESE oriented, running for about 40 km parallel back to the tectonic front of the Gran Sasso and coinciding, with good approximation, to the seismogenic source of the earthquake of April 6th 2009 and of the major historical earthquakes which hit the region. Geophysical survey carried out after the last strong seismic event pointed out the presence of large hidden cavities developed in the Neogene sedimentary filling of the L'Aquila basin confirming that the phenomenon cannot be considered exhausted; then a geochemical mapping of the all area is started to identify suitable sites for monitoring fluid in relation to seismic activity and to evaluate the risk of potential, sudden phenomena of gravitational collapse.

  5. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    NASA Astrophysics Data System (ADS)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic events (magnitude >3 up to 5.4) experienced in the Tuscany, Emilia-Romagna and Umbria regions during the period 2012-2014, and these geochemical anomalies. Changes in pH (decreasing) and PCO2 (increasing) are generally observed from a few months to a few weeks before the main shock. This trend has been recognized for the Parma quake of 27 January 2012 (M = 5.4), for the Pieve Fosciana quake of 13 January 2013 (M = 4.8), for the Garfagnana-Lunigiana seismic sequence started June 21, 2013 (Mmax = 5.2), for the Montefeltro seismic sequence started July 11, 2013 (Mmax = 3.9), for the Gubbio seismic sequences of July and December 2013 (Mmax = 3.9), for the Città di Castello seismic sequences of April 2013 and December 2013 (Mmax = 3.9), for the Casentino seismic sequence started October 17, 2014 (Mmax = 3.5), and for the Chianti seismic sequence started December 19, 2014 (Mmax = 4.1). These features suggest that the selected mineral springs can be considered as appropriate sites for the search of geochemical earthquake precursors. Further investigations focused on in-depth analysis of signals are currently in progress.

  6. The promotion of geotourism in protected areas: a proposal of itinerary through the Matese Massif (Campania and Molise regions, Italy).

    NASA Astrophysics Data System (ADS)

    Rosskopf, Carmen Maria; Filocamo, Francesca; Amato, Vincenzo; Cesarano, Massimo

    2016-04-01

    The Matese Massif is a ca. 1000 km2 wide and NW-SE elongated carbonate relief, located in the inner sector of the Southern Apennine chain. It has a tabular setting with steep structural slopes bordering the central high mountain sector including its major peaks and is crossed from approximately west to east by the border between Campania and Molise regions. The Matese Mountains represent a key area for the comprehension of the geological and tectonic evolution of the Southern Apennines since Mesozoic times. Its long-term geomorphological evolution has been controlled by Quaternary tectonics and climate variations that have allowed the temporary or permanent establishment of various environments and morphodynamics. Deposits and landforms originated by glacial, periglacial, karst and fluvial processes, along with a rich assemblage of tectonic-structural features and landforms of complex origin have given origin to a geological heritage of exceptional value. The geosites actually censured within the Campanian sector of Matese are reported in the Geosites Map of Campania, available at the website of Campania Region and partly included in the Italian Geosites Inventory of ISPRA. The geosites of the Molise sector have been recently assessed within the geosite inventory carried out by Molise University. They are reported in the Geosites Map of Molise, available at the website of Molise Region, and partly included in the ISPRA's National Inventory of Geosites. The Matese area is largely included in protected areas: the Campania portion falls within the Matese Regional Park, established in 2002, while most of the Molise sector falls in the extensive ZPS/SIC IT72222287. To better protect and exploit the unique natural and geological heritage of the Matese Massif, numerous initiatives aimed at the establishment of the National Park of Matese have continued for several years and very recent attempts to promote the Matese Geopark have been made, but unfortunately without any success. Meanwhile, there are various initiatives that promote geotourism separately in the Molise and Campania sectors. However, a network of geotourism initiatives linking the two sectors and allowing the exploitation of the geological heritage of the Matese area as a whole is still lacking. Aim of this study is, obviously, the promotion of the geoheritage of the Matese Massif. Specific objects are to contribute to a better connectivity between its two sectors, the development of an overall geotourism network and, somehow, the establishment of the Matese National Park/Geopark. We propose a first geological itinerary that runs through the entire Matese Massif, from south to north. The proposed itinerary includes geosites of local to national relevance and various scientific interest (from Paleontology to Geomorphology). It allows also non-scientific audiences to understand the main steps of the rich geological history of the Matese Mountains and the geomorphic processes that have given rise to the high variety of paleo- and active landscapes and landforms, but also to appreciate its natural heritage.

  7. Monitoring the Restart of a High-Rate Wastewater Disposal Well in the Val d'Agri Oilfield (Italy)

    NASA Astrophysics Data System (ADS)

    De Gori, P.; Improta, L.; Moretti, M.; Colasanti, G.; Criscuoli, F.

    2015-12-01

    The Val d'Agri Quaternary basin in the Southern Apennine range of Italy hosts the largest inland oil field in Europe. Wastewater coming from the oil exploitation is re-injected by a high-rate disposal well into strongly fractured limestones of the hydrocarbon carbonate reservoir. Disposal activity has induced micro-seismicity since the beginning of injection in June 2006. Around 220 small magnitude events (ML < 2.3) were recorded between 2006 and 2013 by the trigger-mode monitoring local network managed by the oil company and by the National Seismic Network of Istituto Nazionale di Geofisica e Vulcanologia. The induced micro-seismicity illuminated a pre-existing high-angle fault located 1 km below the well. Since June 2006, wastewater has been re-injected with only short interruptions due acid stimulations. In January 2015 disposal activity was halted due to technical operations in the oil refinery and wastewater injection restarted after two weeks. We installed 5 short-period stations within 10 km of the disposal well to carefully monitor the re-start phase and the subsequent 3 months of disposal activity. This temporary network was complemented by stations of the National Seismic Network giving this final configuration:9 stations within 10 km of the well with the closest station 2 km apart, 13 stations within 20 km. Here we report on the preliminary analysis of the local earthquake recorded during the survey focusing on the events occurred in the injection area. The seismicity rate is compared with injection data.In spite of the dense network, we found that the rate of induced seismicity (both the number and energy of events) is very low when compared to the seismicity recorded during the first 5 years of injection activity carried out with comparable rate and pressure.

  8. Geohazard assessment through the analysis of historical alluvial events in Southern Italy

    NASA Astrophysics Data System (ADS)

    Esposito, Eliana; Violante, Crescenzo

    2015-04-01

    The risk associated with extreme water events such as flash floods, results from a combination of overflows and landslides hazards. A multi-hazard approach have been utilized to analyze the 1773 flood that occurred in conjunction with heavy rainfall, causing major damage in terms of lost lives and economic cost over an area of 200 km2, including both the coastal strip between Salerno and Maiori and the Apennine hinterland, Campania region - Southern Italy. This area has been affected by a total of 40 flood events over the last five centuries, 26 of them occurred between 1900 and 2000. Streamflow events have produced severe impacts on Cava de' Tirreni (SA) and its territory and in particular four catastrophic floods in 1581, 1773, 1899 and 1954, caused a pervasive pattern of destruction. In the study area, rainstorm events typically occur in small and medium-sized fluvial system, characterized by small catchment areas and high-elevation drainage basins, causing the detachment of large amount of volcaniclastic and siliciclastic covers from the carbonate bedrock. The mobilization of these deposits (slope debris) mixed with rising floodwaters along the water paths can produce fast-moving streamflows of large proportion with significant hazardous implications (Violante et al., 2009). In this context the study of 1773 historical flood allows the detection and the definition of those areas where catastrophic events repeatedly took place over the time. Moreover, it improves the understanding of the phenomena themselves, including some key elements in the management of risk mitigation, such as the restoration of the damage suffered by the buildings and/or the environmental effects caused by the floods.

  9. Evidences of a lithospheric fault zone in the Sicily Channel continental rift (southern Italy) from instrumental seismicity data

    NASA Astrophysics Data System (ADS)

    Calò, M.; Parisi, L.

    2014-10-01

    Sicily Channel is a portion of Mediterranean Sea, between Sicily (Southern Italy) and Tunisia, representing a part of the foreland Apennine-Maghrebian thrust belt. The seismicity of the region is commonly associated with the normal faulting related to the rifting process and volcanic activity of the region. However, certain seismic patterns suggest the existence of some mechanism coexisting with the rifting process. In this work, we present the results of a statistical analysis of the instrumental seismicity and a reliable relocalization of the events recorded in the last 30 yr in the Sicily Channel and western Sicily using the Double Difference method and 3-D Vp and Vs tomographic models. Our procedure allows us to discern the seismic regime of the Sicily sea from the Tyrrhenian one and to describe the main features of an active fault zone in the study area that could not be related to the rifting process. We report that most of the events are highly clustered in the region between 12.5°-13.5°E and 35.5°-37°N with hypocentral depth of 5-40 km, and reaching 70 km depth in the southernmost sector. The alignment of the seismic clusters, the distribution of volcanic and geothermal regions and the location of some large events occurred in the last century suggest the existence of a subvertical shear zone extending for least 250 km and oriented approximately NNE-SSW. The spatial distribution of the seismic moment suggests that this transfer fault zone is seismically discontinuous showing large seismic gaps in proximity of the Ferdinandea Island, and Graham and Nameless Bank.

  10. Feasibility of performing high resolution cloud-resolving simulations of historic extreme events: The San Fruttuoso (Liguria, italy) case of 1915.

    NASA Astrophysics Data System (ADS)

    Parodi, Antonio; Boni, Giorgio; Ferraris, Luca; Gallus, William; Maugeri, Maurizio; Molini, Luca; Siccardi, Franco

    2017-04-01

    Recent studies show that highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapor content. Analyses of available historical records do not provide a univocal answer, since these may be likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria (Italy): The San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs, as they are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the Reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Liguria Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to Reanalysis products, unconventional data, such as historical meteorological bulletins, newspapers and even photographs can be very valuable sources of knowledge in the reconstruction of past extreme events.

  11. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)

    USGS Publications Warehouse

    de Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E.

    2001-01-01

    The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region.

  12. Soil biodiversity in artificial black pine stands after selective silvicultural treatments: preliminary results

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Fabiani, Arturo; Butti, Fabrizio; De Meo, Isabella; Bianchetto, Elisa; Landi, Silvia; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2016-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wildfires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this reafforestation was to re-establish the pine as a first cover, pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil biodiversity under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera). The results displayed a significant difference between the overall biodiversity of the two areas. In particular, microbial diversity assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (PCR-DGGE) approaches highlighted different a composition and activity of microbial communities within the two areas before thinning. Furthermore, little but significant differences were observed for mesofauna and nematode community as well which displayed a higher diversity level in Amiata areas compared to Pratomagno. In contrast, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis specie dominated, compared to Amiata. As expected, a general degraded biodiversity was observed in both areas before thinning.

  13. Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy)

    NASA Astrophysics Data System (ADS)

    Dimuccio, Luca Antonio; Rodrigues, Nelson; Larocca, Felice; Pratas, João; Amado, Ana Margarida; de Carvalho, Luís A. E. Batista

    2017-02-01

    This study examines the geochemical and mineralogical variations in the ferruginous mineralisations that crop out within Grotta della Monaca, which is considered to be the most striking and best known example of a prehistoric iron mine-cave from the southern Apennines (Calabria, Italy). Previous archaeological research identified three local and distinct ancient exploitation phases of these ferruginous mineralisations: (1) an Upper Palaeolithic phase; (2) a Late Neolithic phase; and (3) a post-Medieval phase. These materials, which have various forms of complex mineralogical admixtures and range in colour from yellow-orange to red and darker brown shades, mainly consist of iron oxides/hydroxides (essentially goethite and lepidocrocite), which are often mixed with subordinate and variable amounts of other matrix components (carbonates, sulphates, arsenates, silicates and organic matter). Such ferruginous mineralisations generally correspond to geochemically heterogeneous massive dyke/vein/mammillary/stratiform facies that are exposed within the local caves along open fractures and inclined bedding planes and that partially cover cave wall niches/notches/pockets and ceiling cupolas/holes. Selected samples/sub-samples are analysed through a multi-technique approach with a handheld portable X-ray Fluorescence, X-ray Diffraction, micro-Raman and Fourier Transform Infrared spectroscope (both conventional and attenuated total reflection), which is combined with subsequent multivariate statistical analysis of the elemental concentration data. The geochemical and mineralogical results are used to individualise similar compositional clusters. As expected, the identified groups, each of which has very specific geochemical-mineralogical ;fingerprints; and spatial distributions, enable us to identify the sampled ferruginous mineralisations. These specific mineral resources can be compared to similar raw materials that are found in other neighbouring archaeological sites, with obvious implications toward understanding local exploitation strategies through time and the exchanges and kinship networks of these materials.

  14. Decentralisation and Interregional Redistribution in the Italian Education System

    ERIC Educational Resources Information Center

    Ferrari, Irene; Zanardi, Alberto

    2014-01-01

    The aim of this paper is to evaluate the potential impact of the reform designed to decentralise public education in Italy, currently under discussion, on interregional redistribution. The central government has always played a prominent financial and administrative role in the provision of compulsory education in Italy. This has had a strong…

  15. Italy's Treasures Are in Their Hands

    ERIC Educational Resources Information Center

    Rocca, Francis X.

    2007-01-01

    Each year more than 300 applicants vie for 18 slots at the Central Institute of Restoration, the program responsible for the restoration of many of Italy's greatest works of art, and the training of experts in the repair of objects of artistic and/or cultural significance. Successful candidates must demonstrate knowledge of art history, chemistry,…

  16. The 2012 Emilia earthquake in northern Italy: coseismic geological effects within a compressive tectonic framework

    NASA Astrophysics Data System (ADS)

    Montone, P.; Alessio, G.; Alfonsi, L.; Brunori, C.; Burrato, P.; Casula, G.; Cinti, F. R.; Civico, R.; Colini, L.; Cucci, L.; De Martini, P. M.; Falcucci, E.; Galadini, F.; Gaudiosi, G.; Gori, S.; Mariucci, M.; Moro, M.; Nappi, R.; Nardi, A.; Nave, R.; Pantosti, D.; Patera, A.; Pesci, A.; Pignone, M.; Pinzi, S.; Pucci, S.; Vannoli, P.; Venuti, A.; Villani, F.

    2012-12-01

    On May 20 2012 a Ml 5.9 seismic event hit the Emilia Po Plain area (northern Italy) triggering an intense earthquake activity along a broad area of the Plain. Nine days later, on May 29 a Ml 5.8 event occurred roughly 10 km to the SW of the first main shock; these events caused 26 victims and several injured and damages. The aftershock area extended for more than 50 km, in WNW-ESE direction, including five major aftershocks with 5.1≤Ml≤5.3 and more than two thousands of minor events. In general, the seismic sequence was confined in the upper 10 km of depth (ISIDe, http://iside.rm.ingv.it/). The focal mechanisms calculated for the main events and also for several M>4.5 aftershocks are almost all consistent with a compression (P-axes) N-S oriented due to thrust fault mechanisms. The two nodal planes, both E-W oriented, show a 40° southward and 60-70° northward dipping plane (QRCMT, Quick Regional Moment Tensors, http://autorcmt.bo.ingv.it/quicks.html), connected with the compressional regime of the area. From a tectonic point of view, the active Apennine thrust fronts, buried under the Po Plain Plio-Quaternary sediments, locally consist of three N-verging arcs. The most external structures, the active Ferrara and Mirandola thrusts and folds are responsible for the Emilia Romagna 2012 earthquake sequence. Just after the 20th May seismic event, the EMERGEO Working Group was active in surveying the epicentral area searching for coseismic geological effects. The survey lasted one month, involving about thirty researchers and technicians of the INGV in field and aerial investigations. Simultaneously, a laboratory-working group gathered, organized and interpreted the observations, processing them in the EMERGEO Information System (siE), on a GIS environment. The most common coseismic effects are: 1) liquefactions related to overpressure of aquifers hosted in buried and confined sand layers, occurring both as single cones or through several aligned vents forming coalescent sand blows; 2) extensional fractures with small vertical throws, apparently organized in an en-echelon pattern, observed mainly in the eastern sector and in the central area; 3) liquefactions directly associable to fractures where huge amounts of liquefied sand and fine sand was ejected from fractures tens of meters long. The dip of the fault plane, the depth of the main shock and the magnitude indeed did not induce any primary rupture at the surface.

  17. Tephra and cryptotephra in a 60,000-year-old lacustrine sequence from the Fucino Basin: new insights into the major explosive events in Italy

    NASA Astrophysics Data System (ADS)

    Di Roberto, Alessio; Smedile, Alessandra; Del Carlo, Paola; De Martini, Paolo Marco; Iorio, Marina; Petrelli, Maurizio; Pantosti, Daniela; Pinzi, Stefania; Todrani, Alessandro

    2018-03-01

    Two cores were sampled in the Fucino Basin (central Apennines, Italy), which represents an extensional intramountain basin filled by Pliocene to Quaternary continental alluvial and lacustrine deposits. The cores were investigated for tephra content and five visible tephras with thickness ranging from 1 to 8 cm were identified. Six additional cryptotephra were identified during the inspection of significant peaks of the magnetic susceptibility curve. Texture and mineralogy of five tephra and six cryptotephra layers were analyzed by means of scanning electron microscope coupled with energy-dispersive X-ray spectrometry system (SEM-EDS) and geochemical measurements were performed by an electron microprobe (EPMA) equipped with five wavelength-dispersive spectrometers (WDS) and using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) system on single glass shards. The results allowed us to assign tephra and cryptotephra to ten known volcanic eruptions that occurred over the last ca. 60 ka in the Campanian Province (Phlegrean Fields and Ischia Island), the Alban Hills volcanic complex, and Lipari island. In particular, we recognized the deposits of the Monte Epomeo Green Tuff and the Piroclastiti di Catavola eruptions of Ischia, the pre-Campanian Ignimbrite Tlc, the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions of the Phlegrean Fields, the Gabellotto-Fiume Bianco eruption of Lipari, and all the four explosive events belonging to the last cycle of volcanic activity of Albano maar (Albano 4-7). Deposits from five of these identified events (i.e., Piroclastiti di Catavola, Gabellotto-Fiume Bianco, Albano 5 and 6 eruptions, and Campanian Ignimbrite) were previously un-reported in the Fucino basin. These findings add new tephra layers to the list of possible tephrochronologic markers in the region and highlight that a comprehensive tephra record may be constructed when the study of cryptotephra layers is included. Moreover, results provide insights into the most recent volcanic activity of Albano maar, allowing us to date the onset of activity at the maar system at ca. 40 ka and to estimate the ages of all four eruptions that made up this eruptive sequence at ca. 37.5 ka (Albano 5), ca. 36.5 ka (Albano 6) and ca. 36 ka (Albano 7), respectively. Our work extends the known dispersal of several major explosive events, suggesting the intensity and magnitude appraisals, and attended risk scenario's need to be revised using improved records of distal fall out.

  18. Studying the active deformation of distributed plate boundaries by integration of GNSS networks

    NASA Astrophysics Data System (ADS)

    D'Agostino, Nicola; Avallone, Antonio; Cecere, Gianpaolo; D'Anastasio, Elisabetta

    2013-04-01

    In the last decade GNSS networks installed for different purposes have proliferated in Italy and now provide a large amount of data available to geophysical studies. In addition to the existing regional and nation-wide scientific GNSS networks developed by ASI (http://geodaf.mt.asi.it), INGV (http://ring.gm.ingv.it) and OGS (http://crs.inogs.it/frednet), a large number (> 400) of continuously-operating GPS stations have been installed in the framework of regional and national networks, both publicly-operated and commercial, developed to provide real-time positioning capability to surveyors. Although the quality of the data and metadata associated to these stations is generally lower with respect to the "scientific" CGPS stations, the increased density and redundancy in crustal motion information, resulting in more than 500 stations with more than 2.5 years of observations, significantly increase the knowledge of the active deformation of the Italian territory and provides a unique image of the crustal deformation field. The obtained GPS velocity field is analysed and various features ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults are presented in this work. Undeforming, aseismic regions (Sardinia, Southern Apulia) provide test sites to evaluate the lower bound on the accuracy achievable to measure tectonic deformation. Integration of GNSS networks significantly improves the resolution of the strain rate field in Central Italy showing that active deformation is concentrated in a narrow belt along the crest of the Apennines, consistently with the distribution of the largest historical and recent earthquakes. Products derived from dense GPS velocity and strain rate fields include map of earthquake potential developed under the assumption that the rate of seismic moment accumulation measured from geodesy distributes into earthquake sizes that follow a truncated Gutenberg-Richter distribution of given b-value and Mmax. The advantage is that, being purely strain-rate based, geodetic models of earthquake potentials require few subjective constraints. In addition, the maps have well-defined error bounds and the approach may apply over regions where poor fault informations are available. This approach provides independent verification of the rates of deformation in regions where geologists have documented faults and allows to evaluate the consistency of the contemporary deformation field and the historical earthquake record. We believe that GNSS networks integration represents an important reality in the framework of the EPOS infrastructure and we strongly support the idea of an European research approach to data sharing among the scientific community.

  19. Climate change versus land management in the Po Plain (Northern Italy) during the Bronze Age: New insights from the VP/VG sequence of the Terramara Santa Rosa di Poviglio

    NASA Astrophysics Data System (ADS)

    Cremaschi, Mauro; Mercuri, Anna Maria; Torri, Paola; Florenzano, Assunta; Pizzi, Chiara; Marchesini, Marco; Zerboni, Andrea

    2016-03-01

    The sedimentary infilling of the moat surrounding the Villaggio Piccolo of the Terramara Santa Rosa di Poviglio was analysed in order to obtain palaeoenvironmental inferences from sediments and pollen assemblage. The high-resolution stratigraphic sequence preserves evidence of the environmental changes that occurred in the Po Plain, in Northern Italy, during the Late Holocene. Our interdisciplinary approach permitted to study climatic and anthropic contributions to the environmental changes in this region. The relationships between these changes and land-use changes were investigated focussing on adaptive strategies of the Terramare people during the Middle and Recent Bronze ages (1550-1170 yr BC). The Terramare are archaeological remains of banked and moated villages, located in the central alluvial plain of the Po river. The Terramara of Santa Rosa consists of two adjoining settlements (Villaggio Grande and Villaggio Piccolo); the moat that separates the two parts of the site is c. 23 m large and reaches a maximum depth of 4 m from the extant ground level. The stratigraphic sequence VP/VG exposed by archaeological excavation inside the moat was sampled for pedosedimentary, thin section, and pollen analyses. Chronology is based on archaeological evidence, stratigraphic correlations and radiocarbon dating. Pedosedimentary features and biological records (pollen of aquatics and algal remains) demonstrate that shallow water, probably subjected to seasonal water-level oscillations, has always been present in the moat. In the lower units of the sequence, the laminations indicate standing water, while occurrence of reworked pollen testified the supply of sediments to the plain from catchment zones located in the Apennine. Open vegetation was widespread; economy was based on wood management, fruit collection on the wild or from cultivated woody plants, crop fields with a fairly diversified set of cereals especially increasing in variety during dryness or phases of water crisis. Probably, grapevines were cultivated near the moat, where the wet habitat was favourable to the growing of wild plants. The extraordinary high-resolution of this sequence makes visible the management of woods (including coppicing) at the Middle Bronze and early Recent Bronze ages. The economy of Santa Rosa di Poviglio should have been probably less based on animal breeding than it was in the other Terramare villages already studied for pollen. This research also confirms the chronological correspondence between an environment stressed by dry conditions and the collapse of the Terramare civilization.

  20. Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy).

    PubMed

    Loppi, Stefano; Pirintsos, Stergios Arg

    2003-01-01

    The results of a study using epiphytic lichens (Parmelia caperata) as sentinels for heavy metal deposition at six selected forest ecosystems of central Italy are reported. The woods investigated are characterized by holm oak (Quercus ilex), turkey oak (Quercus cerris) and beech (Fagus sylvatica) and represent the typical forest ecosystems of central Italy at low, medium and high elevations, respectively. The results showed that levels of heavy metals in lichens were relatively low and consequently no risk of heavy metal air pollution is expected for the six forest ecosystems investigated. However, for two of them there are indications of a potential risk: the beech forest of Vallombrosa showed signs of contamination by Pb as a consequence of vehicle traffic due to the rather high touristic pressure in the area, and the holm oak forest of Cala Violina showed transboundary pollution by Mn, Cr and Ni originating from the steel industry in Piombino. Epiphytic lichens proved to be very effective as an early warning system to detect signs of a changing environment at forest ecosystems.

  1. Beach litter occurrence in sandy littorals: The potential role of urban areas, rivers and beach users in central Italy

    NASA Astrophysics Data System (ADS)

    Poeta, Gianluca; Conti, Luisa; Malavasi, Marco; Battisti, Corrado; Acosta, Alicia Teresa Rosario

    2016-11-01

    Litter washed ashore on the coastline, also called beach litter, constitutes one of the most obvious signs of marine litter pollution. Surveys of beach litter represent a fundamental tool for monitoring pollution in the marine environment and have been used world-wide to classify and quantify marine litter. Identifying the sources of marine and beach litter is, together with education, the prime weapon in combating this type of pollution. This work investigates the impact of three main potential land sources on litter occurrence: urban areas, rivers and beach users. Three sources were analyzed simultaneously on a broad scale (Lazio region, central Italy) using a random sampling design and fitting a generalized linear mixed-effect model. The results show that urban areas are the main drivers for the occurrence of marine litter along central Italy's coastal ecosystems, suggesting that the presence of such litter on Lazio beaches could be effectively reduced by identifying failings in recycling and waste collection procedures and by improving waste processing systems and sewage treatment in urban areas.

  2. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins, suggesting a greater disequilibrium in the last ones. The quantitative analysis points out the segments of the basin boundaries where the fault activity is more efficient and the resulting geomorphological implications.

  3. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  4. Role of melting process and melt-rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites)

    NASA Astrophysics Data System (ADS)

    Renna, Maria Rosaria; Tribuzio, Riccardo; Sanfilippo, Alessio; Thirlwall, Matthew

    2018-04-01

    This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco-Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt-rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco-Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4-0.3 vs. 0.2) and ZrN/YN (0.9-0.6 vs. 0.4-0.3) than that from the Bracco-Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial ɛ Nd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint ( ɛ Nd at the time of basalt formation = - 5.5 and - 5.2, respectively). We propose that the Bracco-Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.

  5. Rhizosphere effect on phosphorus availability in forest soils at different altitudes.

    NASA Astrophysics Data System (ADS)

    De Feudis, Mauro; Cardelli, Valeria; Massaccesi, Luisa; Bol, Roland; Willbold, Sabine; Cocco, Stefania; Corti, Giuseppe; Agnelli, Alberto

    2016-04-01

    Phosphorus (P) is an essential nutrient for plants but it is one of the least available mineral nutrients, and can substantially limit plant growth. Although plants are able to respond to the P shortage, the global warming might modify the soil-plant-microorganisms system and reduce P availability. We evaluated the rhizosphere effect of beech (Fagus sylvatica L.) in forest soils of the Apennines mountains (central Italy) at two altitudes (800 and 1000 m) and along 1° of latitudinal gradient, using latitude and altitude as proxies for temperature change. Specifically, we tested if 1) soil organic C, total N, and organic and available P decrease with increasing latitude and altitude, and 2) the rhizosphere effect on P availability becomes more pronounced when potential nutrient limitations are more severe, as it happens with increasing latitude and altitude. The results suggested that the small latitudinal gradient has no effect on soil properties. Conversely, significant changes occurred between 800 and 1000 m a.s.l., as the soils at higher altitude showed greater TOC, organic and available P contents, and alkaline mono-phosphatases activity than the soils at 800 m a.s.l. Compared to the soils at lower altitude, a marked rhizosphere effect was found at 1000 m a.s.l., and it was mainly attributed to the release of labile organics through rhizodeposition processes. These labile organic compounds were considered able to induce a "priming effect" that fostered the mineralization of the soil organic matter. The enhanced organic carbon cycling, in turn, likely promoted the mineralization of the organic P forms. This was supported by the smaller proportion of orthophosphate monoesters found in the P pool of the rhizosphere than in that of the soil far from the roots, with a consequent increase of the amount of available P. Hence, we speculate that at high altitude the energy supplied by the plants through rhizodeposition to the rhizosphere heterotrophic microbial community promotes the rhizospheric biochemical processes and, in particular, P cycling.

  6. The 2009 L'Aquila earthquake sequence: technical and scientific activities during the emergency and post-emergency phases

    NASA Astrophysics Data System (ADS)

    Cardinali, Mauro

    2010-05-01

    The Central Apennines of Italy is an area characterized by significant seismic activity. In this area, individual earthquakes and prolonged seismic sequences produce a variety of ground effects, including landslides. The L'Aquila area, in the Abruzzo Region, was affected by an earthquake sequence that started on December 2008, and continued for several months. The main shock occurred on April 6, 2009, with local magnitude m = 6.3, and was followed by two separate earthquakes on April 7 and April 9, each with a local magnitude m > 5.0. The main shocks caused 308 fatalities, injured more than 1500 people, and left in excess of 65,000 people homeless. Damage to the cultural heritage was also severe, with tens of churches and historical buildings severely damaged or destroyed. The main shocks and some of the most severe aftershocks triggered landslides, chiefly rock falls and minor rock slides that caused damage to towns, individual houses, and the transportation network. Beginning in the immediate aftermath of the event, and continuing during the emergency and post-emergency phases, we assisted the Italian national Department for Civil Protection in the evaluation of local landslide and hydrological risk conditions. Technical and scientific activities focused on: (i) mapping the location, type, and severity of the main ground effects produced by the earthquake shaking, (ii) evaluating and selecting sites for potential new settlements and individual buildings, including a preliminary assessment of the local geomorphological and hydrological conditions; (iii) evaluating rock fall hazard at individual sites, (iv) monitoring slope and ground deformations, and (v) designing and implementing a prototype system for the forecast of the possible occurrence of rainfall-induced landslides. To execute these activates, we exploited a wide range of methods, techniques, and technologies, and we performed repeated field surveys, the interpretation of ground and aerial photographs taken at different times, the analysis and processing of optical and SAR satellite images, and the statistical analysis of rainfall measurements and quantitative weather forecasts.

  7. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Bracone, Vito

    2009-10-01

    The active tectonic regime along the outer Northern Apennines (Padan-Adriatic area) is a matter of debate. We analyse the active tectonic regime by systematically inverting earthquake focal mechanisms in terms of their driving stress field, comparing two different stress inversion methods. Earthquakes within the area often deviate from Andersonian conditions, being characterized by reverse or transpressional slip on high-angle faults even if the regime is almost purely thrust faulting (e.g. Reggio Emilia 1996 and Faenza 2000 earthquakes). We analyse the stress conditions at faulting for the Reggio Emilia and Faenza earthquakes in order to infer the stress magnitudes and the possible role of fluid pressures. The stress analysis defines a consistent pattern of sub-horizontal active deviatoric compression arranged nearly perpendicular to the eastern front of the Padan-Adriatic fold-and-thrust system, independent of the stress inversion method used. The results are consistent with active compression operating within the Padan-Adriatic belt. The stress field is thrust faulting (sub-vertical σ3), except for the Cesena-Forlì and Ancona areas, where a strike-slip regime (sub-vertical or steeply-plunging σ2) operates. The strike-slip regimes are interpreted as being caused by the superposition of local tensional stresses due to oroclinal bending (i.e. rotations of the belt about vertical axes) on the regional compressional stress field. Kinematic complexities characterize the 1996 Reggio Emilia seismic sequence. The distribution of these complexities is not random, suggesting that they are due to local variations of the regional stress field within the unfaulted rocks surrounding the coseismic rupture. The stress conditions at faulting for the Reggio Emilia 1996 and Faenza 2000 earthquakes, coupled with the observation that seismicity in the Padan-Adriatic area often occurs in swarms, suggest that high pore-fluid pressures (Pf ≥ 70% of the lithostatic load) operate within the compressed crust. The estimated stress difference ( σ1- σ3) is ≤ 460-560 MPa at 15-20 km depth.

  8. New constraints on the crustal structure beneath northern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Park, J. J.

    2009-12-01

    We present new seismological data on the seismic structure beneath the Tyrrhenian Sea between Corsica and the coast of Italy. Teleseismic receiver functions from two Tyrrhenian islands (Elba and Gorgona) identify clear P-to-S mode-converted waves from two distinct interfaces, at ~20 and ~45 km depth. Both interfaces are characterized by an increase of seismic wavespeed with depth. Using a summation of direct and multiply-reflected body waves within the P wave coda we estimate the mean ratio of compressional and shear wave speeds above the 45 km interface to be 1.75-1.80. Using reflectivity computations in 1D layered models we develop a model of seismic wavespeed distribution that yields synthetic seismograms very similar to those observed. We apply a Ps-multiple summation procedure to the synthetic waveforms to further verify the match between observed and predicted wavefields. The lower layer of our model, between 20 and 45 km, has Vp ~ 7.5 km/sec, a value that can be ascribed to either very fast crustal rocks or very slow upper mantle rocks. The Vp/Vs ratio is ~1.8 in this intermediate layer. On the basis of a well-constrained downward increase in seismic wave speed beneath this second layer, we interpret it as the magmatically reworked lower crust, a lithology that has been proposed to explain high-Vp layers in the crustal roots of island-arc terranes and volcanically altered continental margins, as well as lower-crustal high-Vp features sometimes seen beneath continental rifts. The presence of a thick layer of high-Vp, but crustal, lithology beneath the Tyrrhenian Sea differs considerably from previous estimates that interpreted the interface at ~20 km as the Moho. Our new interpretation obviates a need for a crustal thickness change of over 20 km at the crest of the Apennines orogen. We propose an alteration in the properties of the lower crust instead. We argue that ongoing convergent subduction of the Adriatic lithospehre is not required beneath northern Apennines, and that a delamination or vertical "drip" of detached lithosphere would fit the observations well.

  9. Hypogeal geological survey in the "Grotta del Re Tiberio" natural cave (Apennines, Italy): a valid tool for reconstructing the structural setting

    NASA Astrophysics Data System (ADS)

    Ghiselli, Alice; Merazzi, Marzio; Strini, Andrea; Margutti, Roberto; Mercuriali, Michele

    2011-06-01

    As karst systems are natural windows to the underground, speleology, combined with geological surveys, can be useful tools for helping understand the geological evolution of karst areas. In order to enhance the reconstruction of the structural setting in a gypsum karst area (Vena del Gesso, Romagna Apennines), a detailed analysis has been carried out on hypogeal data. Structural features (faults, fractures, tectonic foliations, bedding) have been mapped in the "Grotta del Re Tiberio" cave, in the nearby gypsum quarry tunnels and open pit benches. Five fracture systems and six fault systems have been identified. The fault systems have been further analyzed through stereographic projections and geometric-kinematic evaluations in order to reconstruct the relative chronology of these structures. This analysis led to the detection of two deformation phases. The results permitted linking of the hypogeal data with the surface data both at a local and regional scale. At the local scale, fracture data collected in the underground have been compared with previous authors' surface data coming from the quarry area. The two data sets show a very good correspondence, as every underground fracture system matches with one of the surface fracture system. Moreover, in the cave, a larger number of fractures belonging to each system could be mapped. At the regional scale, the two deformation phases detected can be integrated in the structural setting of the study area, thereby enhancing the tectonic interpretation of the area ( e.g., structures belonging to a new deformation phase, not reported before, have been identified underground). The structural detailed hypogeal survey has, thus, provided very useful data, both by integrating the existing information and revealing new data not detected at the surface. In particular, some small structures ( e.g., displacement markers and short fractures) are better preserved in the hypogeal environment than on the surface where the outcropping gypsum is more exposed to dissolution and recrystallization. The hypogeal geological survey, therefore, can be considered a powerful tool for integrating the surface and log data in order to enhance the reconstruction of the deformational history and to get a three-dimensional model of the bedrock in karst areas.

  10. High Resolution Vp and Vp/Vs Local Earthquake Tomography of the Val d'Agri Region (Southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bagh, S.; De Gori, P.; Pastori, M.; Piccinini, D.; Valoroso, L.; Anselmi, M.; Buttinelli, M.; Chiarabba, C.

    2015-12-01

    The Val d'Agri (VA) Quaternary basin in the southern Apennines extensional belt hosts the largest oilfield in onshore Europe and normal-fault systems with high (up to M7) seismogenic potential. Frequent small-magnitude swarms related to both active crustal extension and anthropogenic activity have occurred in the region. Causal factors for induced seismicity are a water impoundment with severe seasonal oscillations and a high-rate wastewater injection well. We analyzed around 1200 earthquakes (ML<3.3) occurred in the VA and surrounding regions between 2001-2014. We integrated waveforms recorded at 46 seismic stations belonging to 3 different networks: a dense temporary network installed by INGV in 2005-2006, the permanent national network of INGV, and the trigger-mode monitoring network managed by the local operator ENI petroleum company. We used local earthquake tomography to investigate static and transient features of the crustal velocity structure and to accurately locate earthquakes. Vp and Vp/Vs models are parameterized by a 3x3x2 km spacing and well resolved down to about 12 km depth. The complex Vp model illuminates broad antiformal structures corresponding to wide ramp-anticlines involving Mesozoic carbonates of the Apulia hydrocarbon reservoir, and NW-SE trending low Vp regions related to thrust-sheet-top clastic basins. The VA basin corresponds to shallow low-Vp region. Focal mechanisms show normal faulting kinematics with minor strike slip solutions in agreement with the local extensional regime. Earthquake locations and focal solutions depict shallow (< 5 km depth) E-dipping extensional structures beneath the artificial lake located in the southern sector of the basin, and along the western margin of the VA. A few swarms define relatively deep transfer structures accommodating the differential extension between main normal faults. The spatio-temporal distribution of around 220 events correlates with wastewater disposal activity, illuminating a NE-dipping fault between 2-5 km depth in the carbonate reservoir. The fault measures 5 km along dip and corresponds to a pre-existing thrust fault favorably oriented with respect to the local extensional field.

  11. Performances of the snow accumulation melting model SAMM: results in the Northern Apennines test area

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Daniela; Martelloni, Gianluca; Segoni, Samuele; Catani, Filippo; Fanti, Riccardo

    2013-04-01

    In this work we propose a snow accumulation-melting model (SAMM) to forecast the snowpack height and we compare the results with a simple temperature index model and an improved version of the latter.For this purpose we used rainfall, temperature and snowpack thickness 5-years data series from 7 weather stations in the Northern Apennines (Emilia Romagna Region, Italy). SAMM is based on two modules modelling the snow accumulation and the snowmelt processes. Each module is composed by two equations: a mass conservation equation is solved to model snowpack thickness and an empirical equation is used for the snow density. The processes linked to the accumulation/depletion of the snowpack (e.g. compression of the snowpack due to newly fallen snow and effects of rainfall) are modelled identifying limiting and inhibitory factors according to a kinetic approach. The model depends on 13 empirical parameters, whose optimal values were defined with an optimization algorithm (simplex flexible) using calibration measures of snowpack thickness. From an operational point of view, SAMM uses as input data only temperature and rainfall measurements, bringing the additional advantage of a relatively easy implementation. In order to verify the improvement of SAMM with respect to a temperature-index model, the latter was applied considering, for the amount of snow melt, the following equation: M = fm(T-T0), where M is hourly melt, fm is the melting factor and T0 is a threshold temperature. In this case the calculation of the depth of the snowpack requires the use of 3 parameters: fm, T0 and ?0 (the mean density of the snowpack). We also performed a simulation by replacing the SAMM melting module with the above equation and leaving unchanged the accumulation module: in this way we obtained a model with 9 parameters. The simulations results suggest that any further extension of the simple temperature index model brings some improvements with a consequent decrease of the mean error between model and experimental data of the snowpack thickness.

  12. Mitochondrial DNA analysis of medieval sheep (Ovis aries) in central Italy reveals the predominance of haplogroup B already in the Middle Ages.

    PubMed

    Gabbianelli, F; Gargani, M; Pariset, L; Mariotti, M; Alhaique, F; De Minicis, E; Barelli, L; Ciammetti, E; Redi, F; Valentini, A

    2015-06-01

    We retrieved 34 medieval ovicaprine remains, from three archaeological sites of central Italy dating to about 1000 years old, and analyzed them using mitochondrial DNA. We compared the reconstructed haplogroups with modern sheep samples from Europe and the Middle East and sequences from the literature. In modern sheep, haplogroup HA is present in countries with access to the Mediterranean and close to the domestication center, whereas it is very rare or absent in the rest of Europe. The haplogroup HB was predominant in ancient samples (90%), whereas haplogroup HA was found at 10%. Ancient haplogroups match the present distribution in modern sheep in Italy, indicating that the current proportion of HA/HB was already established in the Middle Ages and is not the result of subsequent events such as selective breeding practices. © 2015 Stichting International Foundation for Animal Genetics.

  13. Volatile components of horsetail (Hippuris vulgaris L.) growing in central Italy.

    PubMed

    Cianfaglione, Kevin; Papa, Fabrizio; Maggi, Filippo

    2017-10-01

    Hippuris vulgaris, also known as horsetail or marestail, is a freshwater macrophyte occurring in lakes, rivers, ponds and marshes. According to 'The IUCN Red List of Threatened Species', H. vulgaris is at a high risk of extinction in Italy in the medium-term future. In the present study, we analysed for the first time the volatile composition of H. vulgaris growing in central Italy. For the purpose, the essential oil was obtained by hydrodistillation and analysed by GC-MS. The chemical composition was dominated by aliphatic compounds such as fatty acids (26.0%), ketones (18.7%) and alkanes (11.4%), whereas terpenoids were poorer and mostly represented by diterpenes (7.4%). n-Hexadecanoic acid (25.5%), hexahydrofarnesyl acetone (17.5%) and trans-phytol (7.4%) were the major volatile constituents. These compounds are here proposed as chemotaxonomic markers of the species.

  14. Astronomical tuning of black cherts in the Cenomanian Scaglia Bianca as precursors of the Bonarelli level (OAE2) at Furlo, Italy

    NASA Astrophysics Data System (ADS)

    Batenburg, S. J.; Montanari, A.; Sprovieri, M.; Hilgen, F. J.; Coccioni, R.; Gale, A. S.

    2012-04-01

    Astronomical tuning of the Cenomanian Oceanic Anoxic Event (OAE2) critically depends on the phase relationship between eccentricity forcing and ocean-climate response. The mechanisms leading to oceanic anoxia are heavily debated, and both maxima and minima in eccentricity have been suggested to trigger the widespread deposition of organic-rich sediments. At the Furlo section in the north-eastern Apennines of Italy, the rhythmically bedded Scaglia Bianca formation forms a cyclic prologue to the Bonarelli level, the Tethyan sedimentary expression of OAE2. Regularly occurring black cherts are precursors of the extreme conditions leading to the oceanic anoxic event, and show the hierarchical stacking pattern of eccentricity modulated precession. Previous orbital tuning attempts have placed the occurrence of black cherts either in eccentricity maxima (Mitchell et al. 2008) or eccentricity minima (Lanci et al. 2010). These scenarios require distinctly different oceanographic regimes. Eccentricity maxima enhance the seasonal contrast, thereby intensifying monsoons, leading to an estuarine circulation in the Cretaceous North Atlantic with upwelling and increased productivity (Mitchell et al. 2008), potentially spurred by input of nutrients from volcanic activity (Trabucho Alexandre et al. 2010). Alternatively, it has been suggested that eccentricity minima could cause decreased seasonality, leading to stagnation and reduced ventilation of bottom waters (Lanci et al. 2010; Herbert and Fischer 1986), although eccentricity minima would not lower seasonality but rather avoid large seasonal extremes for a prolonged period of time. Lanci et al. (2010) attempted to establish this phase relation by measurements of CaCO3 content in carbonates, but failed to incorporate the cherts, which reflect a much larger variability in carbonate content. New high-resolution lithological, geophysical and stable isotope data from the Furlo section unequivocally indicate that the timing of black chert deposition, as well as the onset of the oceanic anoxic event itself, is related to eccentricity maxima. The stable 405-kyr periodicity of eccentricity is readily discernible in the data records and can be used for tuning to the astronomical solution (Laskar et al. 2011). A total of five and a half 405-kyr cycles can be identified below the Bonarelli level, which itself comprises a 405-kyr cycle. This cyclostratigraphy can potentially be anchored to the absolute time scale by using the newly determined Cenomanian-Turonian boundary age of 93.9 ± 0.15 Ma, which is based on intercalibration of astrochronological and radioisotopic data for the Cenomanian-Turonian boundary interval near the GSSP in Colorado, USA (Meyers et al., 2012). Correlation to the orbitally tuned Turonian interval of the nearby Gubbio and Contessa sections in Italy (De Vleeschouwer et al., this session) allows the construction of an anchored astronomical time scale for the Cenomanian-Turonian interval of > 5 Ma. Herbert, T. D., and A. G. Fischer. 1986. "Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy." Nature 321 (19): 739-743. Lanci, L., G. Muttoni, and E. Erba. 2010. "Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy." Earth and Planetary Science Letters. Laskar, J., A. Fienga, M. Gastineau, and H. Manche. 2011. "La2010: A new orbital solution for the long term motion of the Earth." Astronomy and Astrophysics arXiv:1103.1084v1. Mitchell, Ross N., David M. Bice, Alessandro Montanari, Laura C. Cleaveland, Keith T. Christianson, Rodolfo Coccioni, and Linda A. Hinnov. 2008. "Oceanic anoxic cycles? Orbital prelude to the Bonarelli Level (OAE 2)." Earth and Planetary Science Letters 267: 1-16. Trabucho Alexandre, J., E. Tuenter, G. A Henstra, K. J van der Zwan, R. S.W van de Wal, H. A Dijkstra, and P. L de Boer. 2010. "The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs." Paleoceanography 25 (4).

  15. School Evaluation and Consultancy in Italy. Sliding Doors towards Privatisation?

    ERIC Educational Resources Information Center

    Serpieri, Roberto; Grimaldi, Emiliano; Vatrella, Sandra

    2015-01-01

    This article focuses on the increasing centrality assumed by non-educational consultants in the processes of policy design and knowledge production about education in Italy. We identify the recent establishment of the National School Evaluation System as a key policy trajectory and we focus on the case of the last policies to evaluate Italian…

  16. An automatic procedure for high-resolution earthquake locations: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Latorre, Diana; Piccinini, Davide

    2014-05-01

    The characterization of the geometry, kinematics and rheology of fault zones by seismological data depends on our capability of accurately locate the largest number of low-magnitude seismic events. To this aim, we have been working for the past three years to develop an advanced modular earthquake location procedure able to automatically retrieve high-resolution earthquakes catalogues directly from continuous waveforms data. We use seismograms recorded at about 60 seismic stations located both at surface and at depth. The network covers an area of about 80x60 km with a mean inter-station distance of 6 km. These stations are part of a Near fault Observatory (TABOO; http://taboo.rm.ingv.it/), consisting of multi-sensor stations (seismic, geodetic, geochemical and electromagnetic). This permanent scientific infrastructure managed by the INGV is devoted to studying the earthquakes preparatory phase and the fast/slow (i.e., seismic/aseismic) deformation process active along the Alto Tiberina fault (ATF) located in the northern Apennines (Italy). The ATF is potentially one of the rare worldwide examples of active low-angle (< 15°) normal fault accommodating crustal extension and characterized by a regular occurrence of micro-earthquakes. The modular procedure combines: i) a sensitive detection algorithm optimized to declare low-magnitude events; ii) an accurate picking procedure that provides consistently weighted P- and S-wave arrival times, P-wave first motion polarities and the maximum waveform amplitude for local magnitude calculation; iii) both linearized iterative and non-linear global-search earthquake location algorithms to compute accurate absolute locations of single-events in a 3D geological model (see Latorre et al. same session); iv) cross-correlation and double-difference location methods to compute high-resolution relative event locations. This procedure is now running off-line with a delay of 1 week to the real-time. We are now implementing this procedure to obtain high-resolution double-difference earthquake locations in real-time (DDRT). We show locations of ~30k low-magnitude earthquakes recorded during the past 4 years (2010-2013) of network operation, reaching a completeness magnitude of the catalogue of 0.2. The spatiotemporal seismicity distribution has an almost constant and high rate of r = 24.30e-04 eqks/day*km2, interrupted by low to moderate magnitude seismic sequences such as the 2010 Pietralunga sequence (M L 3.8) and the still ongoing 2013 Gubbio sequence (M L 4.0 on 22nd December 2013). Low-magnitude seismicity images the fine scale geometry of the ATF: an E-dipping plane at low angle (15°) from 4 km down to ~15 km of depth. While in the ATF hanging-wall we observe the activation of high-angle minor synthetic and antithetic normal faults (4-5 km long) confined at depth by the detachment. Both seismic sequences activated up to now only these high-angle fault segments.

  17. Fault fluid evolution at the outermost edges of the southern Apennines fold-and-thrust belt, Italy

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Belviso, Claudia; Cavalcante, Francesco; Vita Petrullo, Angela

    2017-04-01

    This work focuses on the structural architecture and mineralization of a high-angle, extensional fault zone that crosscuts the Middle Pleistocene tuffs and pyroclastites of the Vulture Volcano, southern Italy. This fault zone is topped by a few m-thick travertine deposit formed by precipitation, in a typical lacustrine depositional environment, from a fault fluid that included a mixed, biogenic- and mantle-derived CO2. The detailed analysis of its different mineralization can shed new lights into the shallow crustal fluid flow that took place during deformation of the outer edge of the southern Apennines fold-and-thrust belt. In fact, the study fault zone is interpreted as a shallow-seated, tear fault associated with a shallow thrust fault displacing the most inner portion of the Bradano foredeep basin infill, and was thus active during the latest stages of contractional deformation. Far from the fault zone, the fracture network is made up of three high-angle joint sets striking N-S, E-W and NW-SE, respectively. The former two sets can be interpreted as the older structural elements that pre-dated the latter one, which is likely due to the current stress state that affects the whole Italian peninsula. In the vicinity of the fault zone, a fourth joint high-angle set striking NE-SW is also present, which becomes the most dominant fracture set within the study footwall fault damage zone. Detailed X-ray diffraction analysis of the powder obtained from hand specimens representative of the multiple mineralization present within the fault zone, and in the surrounding volcanites, are consistent with circulation of a fault fluid that modified its composition with time during the latest stages of volcanic activity and contractional deformation. Specifically, veins infilled with and slickenside coated by jarosite, Opal A and/or goethite are found in the footwall fault damage zone. Based upon the relative timing of formation of the aforementioned joint sets, deciphered after an accurate analysis of their abutting and crosscutting relationships, we envision that the fault fluid was first likely derived from a deep-seated, acid fluid, which interacted with either Triassic or Messinian in age evaporitic rocks during its ascendance from depth. From such a fluid, jarosite precipitated within N-S and NE-SW joints and sheared joints located both away and within the fault damage zone. Then, very warm fluids similar to the lahars that were channeled along the eastern flank of the Vulture Volcano caused the precipitation of Opal A within the dense fracture network of the footwall damage zone, likely causing its hydraulic fracturing, and in the N-S striking veins present in the vicinity of the fault zone. Finally, gotheite coated the major slickensides and sealed the NE-SW fractures, postdating all previous mineralization. Gothetite precipitate from a fault fluid, meteoric in origin, which interacted with the volcanic aquifer causing oxidation of the iron-rich minerals.

  18. Apollo 15 - Extravehicular Activity (EVA) Panorama

    NASA Image and Video Library

    1971-08-02

    S71-43943 (2 Aug. 1971) --- Mosaic photographs which compose a 360-degree panoramic view of the Apollo 15 Hadley-Apennine landing site, taken near the close of the third lunar surface extravehicular activity (EVA) by astronauts David Scott and James Irwin. This group of photographs was designated the Rover "RIP" Pan because the Lunar Roving Vehicle was parked in its final position prior to the two crewmen returning to the Lunar Module. The astronaut taking the pan was standing 325 feet east of the Lunar Module (LM). The Rover was parked about 300 feet east of the LM. This mosaic covers a field of view from about north-northeast to about south. Visible on the horizon from left to right are: Mount Hadley; high peaks of the Apennine Mountains which are farther in the distance than either Mount Hadley or Hadley Delta Mountain; Silver Spur on the Apennine Front; and the eastern portion of Hadley Delta. Note Rover tracks in the foreground. The numbers of the other two views composing the 360-degree pan are S71-43940 and S71-43942.

  19. View of Commemorative plaque left on moon at Hadley-Apennine landing site

    NASA Image and Video Library

    1971-08-01

    AS15-88-11894 (31 July-2 Aug. 1971) --- A close-up view of a commemorative plaque left on the moon at the Hadley-Apennine landing site in memory of 14 NASA astronauts and USSR cosmonauts, now deceased. Their names are inscribed in alphabetical order on the plaque. The plaque was stuck in the lunar soil by astronauts David R. Scott, commander, and James B. Irwin, lunar module pilot, during their Apollo 15 lunar surface extravehicular activity (EVA). The names on the plaque are Charles A. Bassett II, Pavel I. Belyayev, Roger B. Chaffee, Georgi Dobrovolsky, Theodore C. Freeman, Yuri A. Gagarin, Edward G. Givens Jr., Virgil I. Grissom, Vladimir Komarov, Viktor Patsayev, Elliot M. See Jr., Vladislav Volkov, Edward H. White II, and Clifton C. Williams Jr. The tiny, man-like object represents the figure of a fallen astronaut/cosmonaut. While astronauts Scott and Irwin descended in the Lunar Module (LM) "Falcon" to explore the Hadley-Apennine area of the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  20. View of Hadley-Apennine area, looking north, photographed by Apollo 15

    NASA Image and Video Library

    1971-08-25

    S71-44667 (31 July-2 Aug. 1971) --- An oblique view of the Hadley-Apennine area, looking north, as photographed by the Fairchild metric camera in the Scientific Instrumentation Module (SIM) bay of the Apollo 15 Command and Service Modules (CSM) in lunar orbit. Hadley Rille meanders through the lower center of the picture. The Apennine Mountains are at lower right. The Apollo 15 Lunar Module (LM) touchdown point is on the east side of the "chicken beak" of Hadley Rille. The Caucasus Mountains are at upper right. The dark mare area at the extreme upper right is a portion of the Sea of Serenity. The Marsh of Decay is at lower left. The large crater near the horizon is Aristillus, which is about 55 kilometers (34.18 statute miles) in diameter. The crater just to the south of Aristillus is Autolycus, which is about 40 kilometers (25 statute miles) in diameter. The crater Cassini is barely visible on the horizon at upper right. The three-inch mapping camera was one of eight lunar orbital science experiments mounted in the SIM bay.

  1. Recent Transmission Clustering of HIV-1 C and CRF17_BF Strains Characterized by NNRTI-Related Mutations among Newly Diagnosed Men in Central Italy

    PubMed Central

    Orchi, Nicoletta; Gori, Caterina; Bertoli, Ada; Forbici, Federica; Montella, Francesco; Pennica, Alfredo; De Carli, Gabriella; Giuliani, Massimo; Continenza, Fabio; Pinnetti, Carmela; Nicastri, Emanuele; Ceccherini-Silberstein, Francesca; Mastroianni, Claudio Maria; Girardi, Enrico; Andreoni, Massimo; Antinori, Andrea; Santoro, Maria Mercedes; Perno, Carlo Federico

    2015-01-01

    Background Increased evidence of relevant HIV-1 epidemic transmission in European countries is being reported, with an increased circulation of non-B-subtypes. Here, we present two recent HIV-1 non-B transmission clusters characterized by NNRTI-related amino-acidic mutations among newly diagnosed HIV-1 infected men, living in Rome (Central-Italy). Methods Pol and V3 sequences were available at the time of diagnosis for all individuals. Maximum-Likelihood and Bayesian phylogenetic-trees with bootstrap and Bayesian-probability supports defined transmission-clusters. HIV-1 drug-resistance and V3-tropism were also evaluated. Results Among 534 new HIV-1 non-B cases, diagnosed from 2011 to 2014, in Central-Italy, 35 carried virus gathering in two distinct clusters, including 27 HIV-1 C and 8 CRF17_BF subtypes, respectively. Both clusters were centralized in Rome, and their origin was estimated to have been after 2007. All individuals within both clusters were males and 37.1% of them had been recently-infected. While C-cluster was entirely composed by Italian men-who-have-sex-with-men, with a median-age of 34 years (IQR:30–39), individuals in CRF17_BF-cluster were older, with a median-age of 51 years (IQR:48–59) and almost all reported sexual-contacts with men and women. All carried R5-tropic viruses, with evidence of atypical or resistance amino-acidic mutations related to NNRTI-drugs (K103Q in C-cluster, and K101E+E138K in CRF17_BF-cluster). Conclusions These two epidemiological clusters provided evidence of a strong and recent circulation of C and CRF17_BF strains in central Italy, characterized by NNRTI-related mutations among men engaging in high-risk behaviours. These findings underline the role of molecular epidemiology in identifying groups at increased risk of HIV-1 transmission, and in enhancing additional prevention efforts. PMID:26270824

  2. Petrography and provenance of Apollo 15 soils

    NASA Technical Reports Server (NTRS)

    Basu, A.; Mckay, D. S.

    1979-01-01

    Preliminary petrographic and electron probe data from Apollo 15 soils, collected as a part of a comprehensive project, are presented and four principal soil petrographic provinces at the Apollo 15 site are examined. The ratio of non-mare/mare component decreases gradually from the Apennine Front in the south to the mare surface in the north. KREEP basalts appear to be an essential component of the Apennine Bench Formation. The ANT suite rocks contribute only slightly to the population of monomineralic pyroxene, but approximately 30% of the monomineralic olivine are derived from this suite, suggesting troctolitic and dunitic sources.

  3. [Perceived discrimination at work for being an immigrant: a study on self-perceived mental health status among immigrants in Italy].

    PubMed

    Di Napoli, Anteo; Gatta, Rosaria; Rossi, Alessandra; Perez, Monica; Costanzo, Gianfranco; Mirisola, Concetta; Petrelli, Alessio

    2017-01-01

    exposure to discrimination is widely understood as a social determinant of psychophysical health and a contributing factor to health inequities among social groups. Few studies exist, particularly in Italy, about the effects of discrimination among immigrants at workplace. to analyse the association between perceived discrimination at work for being an immigrant and mental health status among immigrants in Italy. a sub-sample of 12,408 immigrants residing in Italy was analysed. data came from the survey "Social conditions and integration of foreign citizens in Italy", carried out in 2011-2012 by the Italian National Institute of Statistics (Istat). Self-perceived mental health status was measured through mental component summary (MCS) of SF-12 questionnaire, assuming as worse health status MCS score distribution ≤1st quartile. In order to evaluate the probability of poor health status, a multivariate log-binomial model was performed assuming: discrimination at work for being an immigrant as determinant variable; age, gender, educational level, employment status, area of origin, residence in Italy, length of stay in Italy, self-perceived loneliness and satisfaction about life as potential confounding variables. among immigrants, 15.8% referred discrimination at his/her workplace in Italy for being an immigrant. Higher probability of poor mental health status was observed for immigrants who referred discrimination at workplace (Prevalence Rate Ratio - PRR: 1.16) who arrived in Italy since at least 5 years (PRR: 1.14), for not employed subjects (PRR: 1.31), and for people from the Americas (PRR: 1.14). Lower probability of poor mental health status was found in immigrants from Western- Central Asia (PRR: 0.83) and Eastern-Pacific Asia (PRR: 0.79). Compared to immigrants residing in North-Eastern Italy, higher probability of worse mental health status was observed in people who resided in Northern-Western (PRR: 1.30), Central (PRR: 1.26), and Southern (PRR: 1.15) Italian regions. our findings confirm that discrimination at workplace for being an immigrant is a risk factor for self-perceived mental health among immigrants in Italy, suggesting that an overall public health response is essential in addition to work-based interventions. Improving working conditions, promoting organisational strategies to support coping behaviours, and challenging discrimination can improve mental health status of immigrants.

  4. 3D displacements maps of the L'Aquila earthquake by applying SISTEM method to GPS and ENVISAT and ALOS DInSAR data

    NASA Astrophysics Data System (ADS)

    Guglielmino, Francesco; Anzidei, Marco; Briole, Pierre; de Michele, Marcello; Elias, Panagiotis; Nunnari, Giuseppe; Puglisi, Giuseppe; Spata, Alessandro

    2010-05-01

    We present an application of the novel SISTEM (Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements) approach [Guglielmino et al., 2009] to obtain a 3D estimation of the ground deformation pattern produced by the April 6, 2009, Mw 6.3 L'Aquila earthquake, the most destructive in the Abruzzo region since the huge 1703 earthquake [Boschi et al., 2000; Chiarabba et al., 2005]. The focal mechanism of the main shock is of normal faulting with NE-SW oriented T-axis [INGV, 2009]. Most of the aftershocks, located by the INGV seismic network, are in the depth range 5÷15 km, depicting a SW dipping fault plane [INGV, 2009]. Field observations [EMERGEO working group, 2009] have identified surface ground cracks with centimeter to decimeters throws over a wide belt running along the Paganica Fault. A closely spaced GPS (Global Positioning System) network was set up in this sector of the Apennines after 1999 [Anzidei et al., 2005] and more than 10 Continuous GPS (CGPS) stations have been operating in this region over the last years. On March 30 2008, INGV installed five GPS receivers on selected benchmarks of the Central Apennine Geodetic Network (CaGeoNet) bordering the L'Aquila basin in order to detect the eventual ground movements during the seismic sequence. These stations were crucial to resolve the near-field co-seismic deformation pattern properly, allowing direct observation of the details of co-seismic displacement related to the main shock. Thanks to the ESA Earth Watching project, which made Envisat data quickly available after their acquisition, we performed a DInSAR (Differential Interferometric Synthetic Aperture Radar) analysis of ascending and descending images sampling the date of the earthquake. In particular, we analyze the descending pair for the interval 27/04/2008 - 12/04/2009 (tbline = 350 days; Bperp = 44m) and the ascending pair for the interval 11/03/2009 - 15/04/2009 (tbline = 35 days; Bperp = 227m). We also analyzed ALOS PALSAR interferograms produced with images acquired along two different ascending tracks and relevant to the 3/7/2008 - 21/5/2009 time interval (track 638; tbline = 322 days; Bperp = 665 m ) and 2/3/2007 - 22/4/2009 time interval (track 639; tbline = 782 days; Bperp = 466 m ). In order to derive 3D surface motion maps, we apply the SISTEM method to the available geodetic dataset (both GPS and DInSAR). The SISTEM method performs an integration of GPS and DInSAR data for computing displacements on each point of the studied area. The SISTEM is based on elastic theory, and provides the complete 3D strain and the rigid body rotation tensors in the same solution. To achieve higher accuracy and get better the constraint of the 3D components of the displacements, we improved the standard formulation of SISTEM approach, based on a single DInSAR data, in order to take into account both ascending and descending interferograms and the DInSAR data acquired by different sensors(ALOS and ENVISAT). The SISTEM integration results show a complex kinematics, where the main movements (max westward movement of 165 mm associated with a max lowering of 260 mm) are recorded in the area between the surface evidence of the Paganica fault and Monticchio-fossa fault. These results, which provide both accurate and fine spatial characterization of ground deformation, are hence promising for future studies aimed at improving the knowledge of the kinematic of the Paganica fault and identification of additional faults responsible of the seismic sequence and that have contributed to the observed ground deformation. References. Anzidei, M., P. Baldi, A. Pesci, A. Esposito, A. Galvani, F. Loddo, P. Cristofoletti, A. Massucci, and S. Del Mese (2005), Geodetic deformation across the Central Apennines from GPS data in the time span 1999-2003, Ann. Geophys., 48(2), 259-271. Boschi, E., E. Guidoboni, G. Ferrrari, D. Mariotti, G. Valensise, and P. Gasperini (2000), Catalogue of strong Italian earthquakes from 461 B.C. to 1997, Ann. Geofis., 43, 609- 868. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251-268, doi:10.1016/j.tecto.2004.09.013. EMERGEO Working Group (2009), Field geological survey in the epicentral area of the Abruzzi (central Italy) seismic sequence of April 6th, 2009, in Quaderni di Geofisica, vol. 70, Ist. Naz. Di Geofis. e Vulcanol., Rome. Guglielmino F., Nunnari G., Puglisi G., Spata A. (2009), Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements (SISTEM) to obtain threedimensional displacements maps. Submitted to IEEE Transactions on Geoscience and Remote Sensing. Istituto Nazionale di Geofisica e Vulcanologia (INGV) (2009), The L'Aquila seismic sequence— April 2009, Ist. Naz. di Geofis. e Vulcanol., Rome. (Available at http://portale.ingv.it/).

  5. Testing the efficiency of nested barriers to dispersal in the Mediterranean high mountain plant Edraianthus graminifolius (Campanulaceae).

    PubMed

    Surina, Boštjan; Schneeweiss, Gerald M; Glasnović, Peter; Schönswetter, Peter

    2014-06-01

    Due to strong spatial heterogeneity and limited Pleistocene glaciation, the Balkan Peninsula is a major European biodiversity hot spot. Surprisingly little, however, is known about patterns and processes of intraspecific diversification of its biota in general and of high-altitude species in particular. A well-suited system to test hypotheses with respect to various isolating factors acting at different geographic scales and to explore full-range phylogeographic patterns on the Balkan Peninsula is Edraianthus graminifolius (Campanulaceae), distributed in the western Balkan mountain systems, the southwestern Carpathians and the Apennine Peninsula. To this end, we used a dense population sampling and employed amplified fragment length polymorphism (AFLP) markers and plastid DNA sequences supplemented by ecological niche modelling. The strongest splits were inferred to separate southern and northern Balkan populations from the central ones, from where range extension occurred to the Carpathians and, in more recent times, once or twice to the Apennine Peninsula. The three genetic groups in the western Balkan Peninsula were remarkably congruent among molecular markers, suggesting that the barriers to gene flow acted over long time periods facilitating allopatric differentiation. Each main group of Balkan populations contained genetically and geographically distinct subgroups, which likely are the result of local refugia during warmer periods. Evidently, the topographically highly complex and during the Last Glacial Maximum only locally glaciated Balkan Peninsula is a hot spot of species richness and endemism as well as a sanctuary of intraspecific genetic diversity, even if the underlying causes remain insufficiently understood. © 2014 John Wiley & Sons Ltd.

  6. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy

    PubMed Central

    Lamichhane, Jay Ram; Bartoli, Claudia; Varvaro, Leonardo

    2016-01-01

    Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from “bacterial canker” described in Greece, we refer to it as hazelnut decline (HD). PMID:26840951

  7. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy.

    PubMed

    Lamichhane, Jay Ram; Bartoli, Claudia; Varvaro, Leonardo

    2016-01-01

    Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from "bacterial canker" described in Greece, we refer to it as hazelnut decline (HD).

  8. Fishes and their parasites in the water district of Massaciuccoli (Tuscany, Central Italy).

    PubMed

    Macchioni, Fabio; Chelucci, Luca; Torracca, Beatrice; Prati, Maria Cristina; Magi, Marta

    2015-01-01

    This study has been conducted in the district of Massaciuccoli (lake, marsh and reclaimed areas with drainage channels) in Tuscany region (Central Italy). The aim of the research was to detect the presence of parasites in fishes, in particular of Opisthorchis felineus, which causes an important zoonosis. Between 2010-2012, the health status of 381 fishes was monitored, morphometric characteristics were determined, and parasites were searched for and identified. Of the 381 examined fishes, 189 were free of parasites while 192 were infected, among them 91 presented multiple infections. Opisthorchis felineus was not found in any of the examined fishes.

  9. "Glory Catalogued": The Libraries of Florence.

    ERIC Educational Resources Information Center

    Robbins, Wendy

    1983-01-01

    Narration of author's visit to the libraries of Florence, Italy, focuses on city, provincial, and national libraries, including the Laurentian Library, Biblioteca Communale Centrale (city), Biblioteca Marucelliana (regional), and Biblioteca Nazionale Centrale (national). Conversations with the directors of each library are highlighted. (EJS)

  10. Crustal structure of the Alps as seen by attenuation tomography

    NASA Astrophysics Data System (ADS)

    Mayor, Jessie; Calvet, Marie; Margerin, Ludovic; Vanderhaeghe, Olivier; Traversa, Paola

    2016-04-01

    We develop a simple tomographic approach exploiting the decay rate of coda waves to map the absorption properties of the crust in a region delimited approximately by the Rhine Graben to the North, the Apennines to the South, the Massif Central to the West and the Dinarides to the East. Our dataset comprises 40 000 coda records of about 2000 weak to moderate crustal earthquakes, with magnitude ranging from 2.8 to 6 and recorded by broad-band, accelerometric and short-period stations. After proper choice of a coda window minimizing the effects of variable epicentral distances, we measure the coda quality factor Qc in five non-overlapping frequency windows covering the 1-32 Hz band for all available source station pairs. These measurements are subsequently converted into maps of absorption quality factor (Qi) using a linearized, approximate relation between Qc and Qi. In practice the following procedure is applied in each frequency band: (1) we divide the target region into 40 × 40 km cells; (2) for each source-station pair, we assign the measured Qc value to each pixel intercepted by the direct ray path; (3) the results are averaged over all paths and subsequently smoothed with a 3 × 3 pixels moving window. Our approach is consistent with the high sensitivity of Qc to the value of Qi between source and station. Our tomographic approach reveals strong lateral variations of absorption with length scales ranging from 100 km to 1000 km. At low frequency (∼ 1 Hz), the correlation with the surface geology is clear, Cenozoic and Mesozoic sedimentary basins (resp. crystalline massifs) being recognized as high (resp. low)-absorption regions. Furthermore the Qi map delineates finer geological features such as the Ivrea Body, the Rhône Valley, or felsic intrusions in the central Alps. At high-frequency (>16 Hz), only the thickest Cenozoic sedimentary deposits show up as high-attenuation regions and a north/south dichotomy is apparent in the absorption structure. The limit between low-attenuation regions to the North and high-attenuation region to the South correlates geographically with the location of the Periadriatic Lineament (PL), a major late-alpine crustal- to lithospheric-scale structure. Furthermore, the attenuation structure seems to prolong the PL to the West along a line marked by large historical earthquakes. The Apennines orogenic belts exhibit a distinct frequency behavior, with high attenuation at low-frequency and low-attenuation at high-frequency. Low-frequency absorption may likely be explained by the relatively thick cover of Cenozoic sedimentary materials, as well as by shallow geothermal activity. We hypothesize that the frequency dependence of the attenuation structure, in particular in the Apennines, is caused by a change of the wavefield composition which accentuates the sensitivity of the coda to the deeper parts of the medium as the frequency increases.

  11. Six components observations of local earthquakes during the 2016 Central Italy seismic sequence

    NASA Astrophysics Data System (ADS)

    Simonelli, A.; Bernauer, F.; Chow, B.; Braun, T.; Wassermann, J. M.; Igel, H.

    2017-12-01

    For many years the seismological community has looked for a reliable, sensitive, broadband three-component portable rotational sensor. In this preliminary study, we show the possibility of measuring and extracting relevant seismological information from local earthquakes. We employ portable three-component rotational sensors, insensitive to translations, which operate on optical interferometry principles (Sagnac effect). Multiple sensors recording redundantly add significance to the measurements.During the Central Italy seismic sequence in November 2016, we deployed two portable fiber-optic gyroscopes (BlueSeis3A from iXBlue and LCG demonstrator from LITEF) and a broadband seismometer in Colfiorito, Italy. We present here the six-component observations, with analysis of rotational (three redundant components) and translational (three components) ground motions, generated by earthquakes at local distances. For each seismic event, we compare coherence between rotational sensors and estimate a back azimuth consistent with theoretical values. We also estimate Love and Rayleigh wave phase velocities in the 5 to 10 Hz frequency range.

  12. Pre-earthquake multiparameter analysis of the 2016 Amatrice-Norcia (Central Italy) seismic sequence: a case study for the application of the SAFE project concepts

    NASA Astrophysics Data System (ADS)

    De Santis, A.

    2017-12-01

    The SAFE (Swarm for Earthquake study) project (funded by European Space Agency in the framework "STSE Swarm+Innovation", 2014-2016) aimed at applying the new approach of geosystemics to the analysis of Swarm satellite (ESA) electromagnetic data for investigating the preparatory phase of earthquakes. We present in this talk the case study of the most recent seismic sequence in Italy. First a M6 earthquake on 24 August 2016 and then a M6.5 earthquake on 30 October 2016 shocked almost in the same region of Central Italy causing about 300 deaths in total (mostly on 24 August), with a revival of other significant seismicity on January 2017. Analysing both geophysical and climatological satellite and ground data preceding the major earthquakes of the sequence we present results that confirm a complex solid earth-atmosphere coupling in the preparation phase of the whole sequence.

  13. Radioactivity in honey of the central Italy.

    PubMed

    Meli, Maria Assunta; Desideri, Donatella; Roselli, Carla; Feduzi, Laura; Benedetti, Claudio

    2016-07-01

    Natural radionuclides and (137)Cs in twenty seven honeys produced in a region of the Central Italy were determined by alpha ((235)U, (238)U, (210)Po, (232)Th and (228)Th) and gamma spectrometry ((137)Cs, (40)K, (226)Ra and (228)Ra). The study was carried out in order to estimate the background levels of natural ((40)K, (238)U and (232)Th and their progeny) and artificial radionuclides ((137)Cs) in various honey samples, as well as to compile a data base for radioactivity levels in that region. (40)K showed a mean activity of 28.1±23.0Bqkg(-1) with a range of 7.28-101Bqkg(-1). The mean of (210)Po activity resulted 0.40±0.46Bqkg(-1) with a range of 0.03-1.98Bqkg(-1). The mean of (238)U activity resulted 0.020±0.010Bqkg(-1). (226)Ra and (228)Ra resulted always <0.34 and <0.57Bqkg(-1) respectively, (235)U, (228)Th and (232)Th were always <0.007Bqkg(-1). (137)Cs resulted <0.10Bqkg(-1) in all samples. The committed effective doses due to (210)Po from ingestion of honey for infants, children and adults account for 0.002-5.13% of the natural radiation exposure in Italy. The honeys produced in Central Italy were of good quality in relation to the studied parameters, confirming the general image of a genuine and healthy food associated to this traditional products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Assessing climate change over the Marche Region (central Italy) from 1951 to 2050: toward an integrated strategy for climate impacts reduction

    NASA Astrophysics Data System (ADS)

    Sangelantoni, Lorenzo; Russo, Aniello; Marincioni, Fausto; Appiotti, Federica

    2013-04-01

    This study investigates consequences and future impacts of climate change on the social and natural systems of the Marche Region (one of the 20 administrative divisions of Italy). This Region, is located in central part of the peninsula and borders the Adriatic Sea on the East and the Apennine mountains on the West. The Region extends for about 60 km E-W, and has a NW-SE coastline of about 170 km, covering a total area of 9366 km2. Multimodel projections over the Marche Regions, on daily, monthly and seasonal temperature and precipitation parameters, have been extracted from the outputs of a set of Regional Climate Models (RCMs) over Europe run by several research institutes participating to the EU ENSEMBLE project. These climate simulations refer to the boundary conditions of the IPCC A1B emission scenario, and have a horizontal resolution of 25km × 25km covering a time period from 1951 to 2050. Results detail a significant increase of daily, monthly and seasonal mean temperatures, especially in summer, with anomaly values reaching +3°C after the year 2025, referring to the model CliNo 1981-2010. Mountain areas show higher values of temperature anomalies than coastal ones of approximately 0.5 °C. Concurrently, a widespread decrease of seasonal precipitation appears to affect all seasons, except for autumn. Rainfall decrease and temperature increase could reduce the Region's aquifer recharge and overall availability of hydro resources. These alterations could affect human health, agricultural productivity, forest fires, coastal erosion, algal blooms and water quality. Ongoing analysis of extreme climatological indices (e.g. frequency of maximum daily temperature exceeding comfort thresholds) are expected to quantify such impacts. A first analysis, linking climate change to the hydrologic cycle, studied through the computation of the hydro-climatic intensity index (as defined by Giorgi et al., 2012), suggests for the Marche Region an increase of the intensity of both wet and dry extremes. Such changes could alter the Region's hydro-geologic processes leading to increased intensity and frequency of landslide and flood hazards. These trends, considering the geomorphologic, social and economic characteristics of the Marche Region, suggest severe physical impacts scenario over the mountains band with subsequent socio-economic effects on hilly and coastal areas. Greater dry conditions are expected all over the Region, causing soil degradation and reducing river solid transport. In turn, this will impact agriculture productivity and natural beach nourishment likely causing a decline in beach tourism. On the other hand increased flood frequency would impact the several urban and economic settlements located on floodplains. Once these scenarios will be better defined, the next step could be mapping the vulnerability conditions within the Marche Region, thus highlighting exposure and resilience of infrastructures and population. Better knowledge of climate hazards and risks would support decision makers and legislators to implement, in the short terms, policies for the long term reduction of climate impacts in the Marche Region.

  15. Assessing groundwater availability in a folded carbonate aquifer through the development of a numerical model

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Romano, Emanuele; Guyennon, Nicolas; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2015-04-01

    The study of aquifer systems from a quantitative point of view is fundamental for adopting water management plans aiming at preserving water resources and reducing environmental risks related to groundwater level and discharge changes. This is also what the European Union Water Framework Directive (WFD, 2000/60/EC) states, holding the development of numerical models as a key aspect for groundwater management. The objective of this research is to i) define a methodology for modeling a complex hydrogeological structure in a structurally folded carbonate area and ii) estimate the concurrent effects of exploitation and climate changes on groundwater availability through the implementation of a 3D groundwater flow model. This study concerns the Monte Coscerno karst aquifer located in the Apennine chain in Central Italy in the Nera River Valley.This aquifer, is planned to be exploited in the near future for water supply. Negative trends of precipitation in Central Italy have been reported in relation to global climate changes, which are expected to affect the availability of recharge to carbonate aquifers throughout the region . A great concern is the combined impact of climate change and groundwater exploitation, hence scenarios are needed taking into account the effect of possible temperature and precipitation trends on recharge rates. Following a previous experience with model conceptualization and long-term simulation of groundwater flow, an integrated three-dimensional groundwater model has been developed for the Monte Coscerno aquifer. In a previous paper (Preziosi et al 2014) the spatial distribution of recharge to this aquifer was estimated through the Thornthwaite Mather model at a daily time step using as inputs past precipitation and temperature values (1951-2013) as well as soil and landscape properties. In this paper the numerical model development is described. On the basis of well logs from private consulting companies and literature cross sections the multilayer aquifer was conceptualized as five folded hydrostratigraphic units: three main carbonate aquifers are separated by two aquitards, which can be locally discontinuous, leading to a complicated flow pattern. In general the vertical leakance is upward from the basal aquifer to the unconfined uppermost aquifer. As shown by the increasing discharge from north to south, the Nera river acts as the main sink of the study area, gaining groundwater as it cuts through the folded terrain. The numerical model was implemented using the MODFLOW-2000 code and extends over an area of 235 km2 with a grid spacing of 100 meters in each of the 5 layers. Model calibration was achieved by comparing the model results with observed streamflow of the Nera river (8-10 measures per year during 1991-1993 and 1996-2012) which on the basis of the river hydrograph at gaging locations is considered to be derived entirely from groundwater. The effects of climate variation on groundwater discharge to the river in the past 60 years are analyzed. Key issues related to the elaboration of a numerical model of a folded structure are also described.

  16. Occurrence of Campylobacter spp. in Poultry Meat at Retail and Processing Plants' Levels in Central Italy.

    PubMed

    Mezher, Ziad; Saccares, Stefano; Marcianò, Rita; De Santis, Paola; Rodas, Eda Maria Flores; De Angelis, Veronica; Condoleo, Roberto

    2016-01-18

    Human campylobacteriosis remains the most commonly reported gastrointestinal disease in Europe and Campylobacter (C.) jejuni and C. coli are the two species most frequently involved in such foodborne disease. Based on the sampling plan established in the region of Lazio (Central Italy) the aim of our work was to investigate the occurrence of Campylobacter spp. in poultry meat preparations collected by the local veterinary authority at retail shops and processing plants. We also observed whether various factors such as animal species or type of product affected the isolation rate. Occurrence was significantly lower than previous surveys (12/209, 5.7%) and chicken meat was more contaminated than turkey meat.

  17. Modelling the Risk Posed by the Zebra Mussel Dreissena polymorpha: Italy as a Case Study

    NASA Astrophysics Data System (ADS)

    Bosso, Luciano; De Conno, Carmelina; Russo, Danilo

    2017-08-01

    We generated a risk map to forecast the potential effects of the spreading of zebra mussels Dreissena polymorpha across the Italian territory. We assessed the invader's potential impact on rivers, lakes, watersheds and dams at a fine-grained scale and detected those more at risk that should be targeted with appropriate monitoring. We developed a MaxEnt model and employed weighted overlay analyses to detect the species' potential distribution and generate risk maps for Italy. D. polymorpha has a greater probability of occurring at low to medium altitudes in areas characterised by fluviatile deposits of major streams. Northern and central Italy appear more at risk. Some hydroelectric power dams are at high risk, while most dams for irrigation, drinkable water reservoirs and other dam types are at medium to low risk. The lakes and rivers reaches (representing likely expansion pathways) at medium-high or high risk mostly occur in northern and central Italy. We highlight the importance of modelling potential invasions on a country scale to achieve the sufficient resolution needed to develop appropriate monitoring plans and prevent the invader's harmful effects. Further high-resolution risk maps are needed for other regions partly or not yet colonised by the zebra mussel.

  18. Secondary Contact and Admixture between Independently Invading Populations of the Western Corn Rootworm, Diabrotica virgifera virgifera in Europe

    PubMed Central

    Bermond, Gérald; Ciosi, Marc; Lombaert, Eric; Blin, Aurélie; Boriani, Marco; Furlan, Lorenzo; Toepfer, Stefan; Guillemaud, Thomas

    2012-01-01

    The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed. PMID:23189184

  19. Relationship between work-related accidents and hot weather conditions in Tuscany (central Italy).

    PubMed

    Morabito, Marco; Cecchi, Lorenzo; Crisci, Alfonso; Modesti, Pietro Amedeo; Orlandini, Simone

    2006-07-01

    Nowadays, no studies have been published on the relationship between meteorological conditions and work-related mortality and morbidity in Italy. The aim of this study was to evaluate the relationship between hot weather conditions and hospital admissions due to work-related accidents in Tuscany (central Italy) over the period 1998-2003. Apparent temperature (AT) values were calculated to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather conditions might represent a risk factor for work-related accidents in Italy during summer. In particular early warming days during June, characterized by heat discomfort, are less tolerated by workers than warming days of the following summer months. The peak of work-related accidents occurred on days characterized by high, but not extreme, thermal conditions. Workers maybe change their behaviour when heat stress increases, reducing risks by adopting preventive measures. Results suggested that days with an average daytime AT value ranged between 24.8 degrees C and 27.5 degrees C were at the highest risk of work-related accidents. In conclusion, present findings might represent the first step for the development of a watch/warning system for workers that might be used by employers for planning work activities.

  20. Landslides distribution analysis and role of triggering factors in the Foglia river basin (Central Itay)

    NASA Astrophysics Data System (ADS)

    Baioni, Davide; Gallerini, Giuliano; Sgavetti, Maria

    2013-04-01

    The present work is focused on the distribution of landslides in Foglia river basin area (northern Marche-Romagna), using a heuristic approach supported by GIS tools for the construction of statistical analysis and spatial data. The study area is located in the Adriatic side of the northern Apennine in the boundary that marks the transition between the Marche and Emilia-Romagna regions. The Foglia river basin extends from the Apennines to the Adriatic sea with NE-SE trend occupying an area of about 708 km2. The purpose of this study is to investigate any relationships between factors related to the territory, which were taken into account and divided into classes, and landslides, trying to identify any possible existence of relationships between them. For this aim the study of landslides distribution was performed by using a GIS approach superimposing each thematic map, previously created, with landslides surveyed. Furthermore, we tried to isolate the most recurrent classes, to detect if at the same conditions there is a parameter that affects more than others, so as to recognize every direct relationship of cause and effect. Finally, an analysis was conducted by applying the model of uncertainty CF (Certainity Factor). In the Foglia river basin were surveyed a total of 2821 landslides occupy a total area of 155 km2, corresponding to 22% areal extent of the entire basin. The results of analysis carried out highlighted the importance and role of individual factors that led to the development of landslides analyzed. Moreover, this methodology may be applied to all orders of magnitude and scale without any problem by not requiring a commitment important, both from the economic point of view, and of human resources.

  1. Unravelling the Mysteries of Slip Histories, Validating Cosmogenic 36Cl Derived Slip Rates on Normal Faults

    NASA Astrophysics Data System (ADS)

    Goodall, H.; Gregory, L. C.; Wedmore, L.; Roberts, G.; Shanks, R. P.; McCaffrey, K. J. W.; Amey, R.; Hooper, A. J.

    2017-12-01

    The cosmogenic isotope chlorine-36 (36Cl) is increasingly used as a tool to investigate normal fault slip rates over the last 10-20 thousand years. These slip histories are being used to address complex questions, including investigating slip clustering and understanding local and large scale fault interaction. Measurements are time consuming and expensive, and as a result there has been little work done validating these 36Cl derived slip histories. This study aims to investigate if the results are repeatable and therefore reliable estimates of how normal faults have been moving in the past. Our approach is to test if slip histories derived from 36Cl are the same when measured at different points along the same fault. As normal fault planes are progressively exhumed from the surface they accumulate 36Cl. Modelling these 36Cl concentrations allows estimation of a slip history. In a previous study, samples were collected from four sites on the Magnola fault in the Italian Apennines. Remodelling of the 36Cl data using a Bayesian approach shows that the sites produced disparate slip histories, which we interpret as being due to variable site geomorphology. In this study, multiple sites have been sampled along the Campo Felice fault in the central Italian Apennines. Initial results show strong agreement between the sites we have processed so far and a previous study. This indicates that if sample sites are selected taking the geomorphology into account, then 36Cl derived slip histories will be highly similar when sampled at any point along the fault. Therefore our study suggests that 36Cl derived slip histories are a consistent record of fault activity in the past.

  2. Lunar apennine-hadley region: geological inplications of Earth-based radar and infrared measurements.

    PubMed

    Zisk, S H; Carr, M H; Masursky, H; Shorthill, R W; Thompson, T W

    1971-08-27

    Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter-and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennine Mountains scarp.

  3. Lunar Apennine-Hadley region: Geological implications of earth-based radar and infrared measurements

    USGS Publications Warehouse

    Zisk, S.H.; Carr, M.H.; Masursky, H.; Shorthill, R.W.; Thompson, T.W.

    1971-01-01

    Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter- and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennins Mountains scarp.

  4. Landslide hazard prediction in the North-Eastern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Disperati, L.; Guastaldi, E.; Rindinella, A.

    2003-04-01

    In order to assess the landslide hazard nearby the Pergola city (in the Northern-Eastern Apennines, Italy) a ground survey at a scale of 1:10,000 was performed for an extent of about 370 km^2 (Carmignani, 2001), and a GIS of landslides was built. Following statistical analysis allows to assess the correlation among landslide occurrences and causal factors related to the detachment zone (lithology, engineering geology, elevation, slope, aspect, bedding as related with slope face -RBS- and land use). Consequently, considering the morphological, lithological and anthropic characters of current slides, it was agreed to locate possible future landslides in those area actually stable but characterised by similar conditions. Because of that, a geostatistical analysis was performed. Comparing for every landslide the occurence of either single or combined causal factor, the analysis was carried out in grid format. The spatial analysis of the GIS data layers allowed building the unique condition regions (Chung et al., 1995) and creating statistical data on causal factors in relation of landslides. Afterwards, for every region the susceptibility to development of new occurrences (favourability mapping) was calculated by utilising the certainty factor (CF; Chung &Fabbri, 1993). For landslides where crown was identified, the main scarp was considered as occurrence; a buffer around the highest point of landslide was built for all the others (Disperati et al., 2002). Such procedure was applied both for slides (175 occurrences) and flows (464 occurrences). Furthermore, by the application of the procedure to causal factors and their combination, additional information regarding susceptibility to development of new occurrences was calculated. The selection of the most suitable factors combination can be done through the results accuracy assessment in relation of time and/or space (Chung, 1999), by utilising two different hazard information layers, respectively computed from a training dataset of occurrences and a test dataset, a cross validation is made. The valuation both for flows and slides was performed through Prediction Rate Curves (PRC). By utilising the occurrences of the test dataset, PRC derived from the relation between CF trend in the whole area (cumulative percentage), portion of total area and number of landslides. As result, engineering geology can be indicated as the dominant factor for PRC of flows; likewise engineering geology, land use and RBS combination is the more effective combination. On the other side, slope and aspect resulted less determinative in best PRC trend. Moreover, the combination of engineering geology and slope allowed the computation of best PRC for landslide. References CARMIGNANI L. (2001): Realizzazione della cartografia geologica e geotematica e dei relativi supporti informatici alla scala 1/10.000 -- Progetto 1 -- Zona Nord. Progetti strumentali alla funzione di ricostruzione. Interventi strutturali comunitari obiettivo 5b -- Misura 3.1.4 Azioni di ricostruzione e recupero del tessuto urbano infrastrutturale nei territori colpiti dal sisma (Azione 7). Contratto tra la Regione Marche -- Servizio Urbanistica e Cartografia e l'Università degli Studi di Siena. Rapporto Finale. Università degli Studi di Siena, Dipartimento di Scienze della Terra, Dicembre 200 1, pp. 6 I. CHUNG C. J. (1999): Prediction models in spatial data analysis for landslide hazard mapping -- Natural Resources Canada, Geological Survey of Canada-Mineral Resources Division-Spatial Data Analysis Laboratory, http://www.nrcan.gc.ca/gsc/mrd/sdalweb/landslides/index.htm. CHUNG C. J., FABBRI A.G. (1993): The representation of geoscience information for data integration. Non-renewable Resources, v. 2., n. 3, pp. 1 22-139. CHUNG C. J., FABBRI A.G., VAN WESTEN C.J (1995).- Multivariate regression analysis for landslide hazard zonation. In Carrara, A. and Guzzetti, F., eds.: "Geographical Information Systems in Assessing Natural Hazards". Dordrecht, Kluwer Academic Publishers, pp. 107-133. DISPERATI L., GUASTALDI E., CARMIGNANI L. (2002)-- Landslide mapping and hazard prediction in the Pergola area (Marche, Italy). 8th Annual Conference of the International Association for Mathematical Geology, IAMG 2002, 15-20 September 2002, Berlin, Germany, Terra Nostra 04/2002, 2, pp. 507-512.

  5. Coexisting shortening and extension along the "Africa-Eurasia" plate boundary in southern Italy

    NASA Astrophysics Data System (ADS)

    Cuffaro, M.; Riguzzi, F.; Scrocca, D.; Doglioni, C.

    2009-04-01

    We performed geodetic strain rate field analyses along the "Africa (Sicily microplate)"-"Eurasia (Tyrrhenian microplate)" plate boundary in Sicily (southern Italy), using new GPS velocities from a data set spanning maximum ten years (1998-2007). Data from GPS permanent stations maintained from different institutions and the recent RING network, settled in Italy in the last five years by the Istituto Nazionale di Geofisica e Vulcanologia, were included into the analysis. Two dimensional strain and rotation rate fields were estimated by the distance weighted approach on a regularly spaced grid (30*30km), estimating the strain using all stations, but data from each station are weighted by their distance from the grid node by a constant a=70km that specifies how the effect of a station decays with distance from the node grid interpolation. Results show that most of the shortening of the Africa-Eurasia relative motion is distributed in the northwestern side offshore Sicily, whereas the extension becomes comparable with shortening on the western border of the Capo d'Orlando basin, and grater in the northeastern side, offshore Sicily, as directly provided by GPS velocities which show a larger E-ward component of sites located in Calabria with respect to those located either in northern Sicily or in the Ustica-Aeolian islands. Moreover, where shortening and extension have mostly a similar order of magnitude, two rotation rate fields can be detected, CCW in the northwestern side of Sicily, and CW in the northeastern one respectively. Also, 2-D dilatation field records a similar pattern, with negative values (shortening) in the northwestern area of Sicily close to the Ustica island, and positive values (extension) in the northeastern and southeastern ones, respectively. Principal shortening and extension rate axes are consistent with long-term geological features: seismic reflection profiles acquired in the southern Tyrrhenian seismogenic belt show active extensional faults affecting Pleistocene strata and deforming the seafloor in the western sector of the Cefalù Basin, on both NE-SW and W-E trending faults. Combining geodetic data and geological features contributes to the knowledge of the active deformation along the Africa-Eurasia plate boundary, suggesting coexisting, independent geodynamic processes, i.e., active E-W backarc spreading in the hangingwall of the Apennines subduction zone, and shortening of the southern margin of the Tyrrhenian backarc basin operated by the "Africa" NW-motion relative to "Europe".

  6. Chemical weathering of palaeosols from the Lower Palaeolithic site of Valle Giumentina, central Italy

    NASA Astrophysics Data System (ADS)

    Degeai, Jean-Philippe; Villa, Valentina; Chaussé, Christine; Pereira, Alison; Nomade, Sébastien; Aureli, Daniele; Pagli, Marina; Nicoud, Elisa

    2018-03-01

    The major archaeological site of Valle Giumentina (Abruzzo) contains a well-dated Lower Palaeolithic pedosedimentary sequence that provides an excellent opportunity to study the relationships among soil weathering, volcanism and climate change at the glacial/interglacial and submillennial timescales in central Italy and the Mediterranean area during the Middle Pleistocene, as well as the human-environment interactions of some of the earliest settlements in central southern Europe. High-resolution analyses of geochemistry and magnetic susceptibility revealed the presence of eleven palaeosols, ten of which (S2-S11) were formed between 560 and 450 ka based on 40Ar/39Ar dating of sanidine in tephras, i.e. spanning marine isotope stages (MIS) 14-12. The evolution of the major and trace element composition suggests that the palaeosols were mainly formed by in situ weathering of the parent material. The major phases of soil weathering occurred during the MIS 13 interglacial period (S8 and S6) as well as during episodes of rapid environmental change associated with millennial climatic oscillations during the MIS 14 and 12 glaciations (S11 and S2, respectively). Although global forcing such as orbital variations, solar radiation, and greenhouse gas concentrations may have influenced the pedogenic processes, the volcanism in central Italy, climate change in the central Mediterranean, and tectono-sedimentary evolution of the Valle Giumentina basin also impacted and triggered the formation of most palaeosols, which provided subsistence resources for the Lower Palaeolithic human communities. This study highlights the importance of having high-resolution palaeoenvironmental records with accurate chronology as close as possible to archaeological sites to study human-environment interactions.

  7. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-12-01

    Xylella fastidiosa, a xylem-limited bacterium transmitted by xylem-fluid-feeding Hemiptera insects, causes economic losses of both woody and herbaceous plant species. A Xyl. fastidiosa subsp. pauca strain, namely CoDiRO, was recently found to be associated with the 'olive quick decline syndrome' in southern Italy (i.e. Apulia region). Recently, some Xyl. fastidiosa strains intercepted in France from Coffea spp. plant cuttings imported from Central and South America were characterized. The introduction of infected plant material from Central America in Apulia was also postulated even though an ad hoc study to confirm this hypothesis is lacking. In the present study, we assessed the complete and draft genome of 27 Xyl. fastidiosa strains. Through a genome-wide approach, we confirmed the occurrence of three subspecies within Xyl. fastidiosa, namely fastidiosa, multiplex and pauca, and demonstrated the occurrence of a genetic clonal complex of four Xyl. fastidiosa strains belonging to subspecies pauca which evolved in Central America. The CoDiRO strain displayed 13 SNPs when compared with a strain isolated in Costa Rica from Coffea sp. and 32 SNPs when compared with two strains obtained from Nerium oleander in Costa Rica. These results support the close relationships of the two strains. The four strains in the clonal complex contain prophage-like genes in their genomes. This study strongly supports the possibility of the introduction of Xyl. fastidiosa in southern Italy via coffee plants grown in Central America. The data also stress how the current global circulation of agricultural commodities potentially threatens the agrosystems worldwide.

  8. Subduction Related Crustal and Mantle Deformations and Their Implications for Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Okeler, Ahmet

    Ocean-continent convergence and subsequent continental collision are responsible for continental growth, mountain building, and severe tectonic events including volcanic eruptions and earthquake activity. They are also key driving forces behind the extensive thermal and compositional heterogeneities at crustal and mantle depths. Active subduction along the Calabrian Arc in southern Italy and the Hellenic Arc are examples of such collisional tectonics. The first part of this thesis examines the subduction related deformations within the crust beneath the southern Apennines. By modeling regional surface wave recordings of the largest temporary deployment in the southern Apennines, a lower-crustal/upper-mantle low-velocity volume extending down to 50 km beneath the mountain chain is identified. The magnitude (˜ 0.4 km/s slower) and anisotropic nature (˜ 10%) of the anomaly suggest the presence of hot and partially molten emplacement that may extend into the upper-crust towards Mt. Vulture, a once active volcano. Since the Apulian basement units are deformed during the compressional and consequent extensional events, our observations favor the "thick-skin" tectonic growth model for the region. In the deeper mantle, active processes are thermodynamically imprinted on the depth and strength of the phase transitions. This thesis examines more than 15000 SS precursors and provides the present-day reflectivity structure and topography associated with these phase transitions. Through case studies I present ample evidence for both slab penetration into the lower mantle (beneath the Hellenic Arc, Kurile Island and South America) and slab stagnation at the bottom of the Mantle Transition Zone (beneath the Tyrrhenian Sea and eastern China). Key findings include (1) thermal anomalies (˜ 200 K) at the base of the MTZ, which represent the deep source for Cenozoic European Rift Zone, Mount Etna and Mount Cameroon volcanism, (2) significant depressions (by 20-40 km) at the bottom of the Mantle Transition Zone beneath subducting slabs, (3) a strong 520-km reflector near subducting slabs, (4) a weak and elevated (15-25 km) 410-km reflector within active deformation zones, (5) strong lower mantle reflectors (˜ 900 km) while slabs penetrate into the lower mantle, and (6) consistency between the topography of a 300-km reflector and an exothermic phase transformation.

  9. From crustal protoliths to mantle garnet pyroxenites: a highly siderophile elements and Os isotope perspective from the Ligurian mantle section (N. Apennine, Italy)

    NASA Astrophysics Data System (ADS)

    Montanini, A.; Luguet, A.; van Acken, D.; Tribuzio, R.

    2017-12-01

    Pyroxenites are a major form of mantle heterogeneity and may originate through migration of melts or recycling of mafic crustal lithologies. Here, we present HSE (Os, Ir, Pt, Pd, Re) and 187Os/188Os isotopic systematics of "aged" pyroxenites (Mg-rich, Al-poor garnet websterites and Al-rich garnet clinopyroxenites) enclosed in fertile mantle sequences of the Jurassic Alpine-Apennine ophiolites. The garnet clinopyroxenites have heterogeneous mafic crustal precursors that experienced a long-lived evolution of recycling into the mantle (1.5-1.0 Ga) as inferred from Lu-Hf isotope systematics. They originated as melt-dominated systems by crystallization of eclogite-derived melts. The websterites were interpreted as hybrid lithologies with a crustal geochemical fingerprint and a larger peridotite wall rock contribution. The host lherzolites show flat CI-chondrite-normalized HSE patterns. All the pyroxenites are variably depleted in Os and Ir and enriched in the incompatible HSE (Pt, Pd and Re) with respect to host peridotites and have flat to negatively sloping Pd-Re segments. Centimetre- to metre-scale 187Os isotopic heterogeneity is observed in the investigated mantle sequence. The initial 187Os/188Os ratios recalculated for the age of the Mesozoic partial melting event inferred from Nd-Hf isotope systematics are unradiogenic to slightly radiogenic in the peridotites (0.124-0.134) and vary from moderately to highly radiogenic in the pyroxenites (0.149-2.190). Bulk rock HSE compositions of the pyroxenites do not match gabbroic eclogites nor residua after eclogite partial melting, in agreement with lithophile element geochemistry. The HSE patterns of the garnet clinopyroxenites are related to sulphur saturation and sulfide crystallization from partial melts of gabbro-derived eclogites. Decoupling between Re/Os (TMa = 2.0-2.8 Ga) and Lu-Hf isotope systematics of the pyroxenites may be due to fractionation of Re/Os ratios with no Os isotopic homogenization of the sulfide melt fraction during the eclogite partial melting. We show that observed relics of ancient subducted crust are heterogeneous as a consequence of initial geochemical variation in the protoliths, modification during mantle recycling and different degrees of interaction with the host peridotites.

  10. A zonation map for volcaniclastic-flow hazard in the area surrounding the Neapolitan volcanoes (Campania Region, Italy)

    NASA Astrophysics Data System (ADS)

    Bisson, M.; Sulpizio, R.; Zanchetta, G.; Demi, F.; Tarquini, S.

    2009-04-01

    The triggering of destructive volcaniclastic flows is a one of the most recurrent and dangerous natural phenomena that can occur in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a volcanic quiescence (inter-eruptive), when heavy rains remobilize the loose pyroclastic deposits. One of most important example of inter-eruptive volcaniclastic flow hazard is represented by the Apennine relieves that border the southern Campanian Plain. These steep relieves are covered by variable thickness (from few cm to some m) of volcaniclastic material dispersed by the explosive activity of Somma-Vesuvius and Campi Flegrei volcanoes, located few km to the west. The most recent, large dangerous event is certainly that occurred on May 5, 1998, which caused the death of more than 150 people and considerable damage in the villages at the feet of the Apennine relieves. However, this tragic event was only the last of a number of volcaniclastic flow generation that affected the area in historical and pre-historical times. Historical accounts testify for several previous disastrous episodes, like the 40 volcaniclastic-flow events recorded in the southern Campanian Plain relieves during the last 200 years. These events claimed the life of 40 people in AD 1640, 43 people in AD 1764, 120 people in AD 1823, 120 people in AD 1841, 170 people in AD 1910, 30 people in AD 1924, and 30 people in AD 1954. These disasters clearly indicate that a volcanic hazard mitigation strategy urges for the area. With the aim to contribute to the improvement of volcaniclastic flow hazard and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially more prone to disruption. This map has been obtained combining few morphological characteristics (concavity and basin shape factor) and mean slope distribution of the drainage basins, derived from a digital elevation model with resolution of 10 m. The analysed parameters allowed the classification of 1069 drainage basins, which have been grouped into four different classes of disruption proneness: low, medium, high and very high. The map was organised in a GIS environment which allows a rapid query of the different information stored in the linked data base.

  11. Footwall progradation in syn-rift carbonate platform-slope systems (Early Jurassic, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fabbi, Simone; Santantonio, Massimo

    2012-12-01

    The so-called Umbria-Marche Domain of Northern Apennines represents a vast depositional system, also stretching across the Adriatic Sea subsurface, that was characterized by dominantly pelagic sedimentation through most of its Jurassic to Oligocene/Early Miocene history. The pelagic succession is underlain by Hettangian shallow-water carbonates (Calcare Massiccio Fm.), constituting a regional carbonate platform that was subjected to tectonic extension due to rifting of the Adria/African Plate in the earliest Jurassic. While tectonic subsidence of the hangingwalls drove the drowning of the platform around the Hettangian/Sinemurian boundary, the production of benthic carbonate on footwall blocks continued parallel to faulting, through a sequence of facies that was abruptly terminated by drowning and development of condensed pelagites in the early Pliensbachian. By then rifting had ceased, so that the Pliensbachian to Early Cretaceous hangingwall deposits represent a post-rift basin-fill succession onlapping the tectonically-generated escarpment margins of the highs. During the early phases of syndepositional faulting, the carbonate factories of footwall blocks were still temporarily able to fill part of the accommodation space produced by the normal faults by prograding into the incipient basins. In this paper we describe for the first time a relatively low-angle (< 10°) clinoform bed package documenting such an ephemeral phase of lateral growth of a carbonate factory. The clinoforms are sigmoidal, and form low-relief (maximum 5-7 m) bodies representing a shallow-water slope that was productive due to development of a Lithocodium-dominated factory. Continued faulting and hangingwall subsidence then decoupled the slope from the platform top, halting the growth of clinoforms and causing the platform margin to switch from accretionary to bypass mode as the pre-rift substrate became exposed along a submarine fault escarpment. The downfaulted clinoform slope was then buried by base-of-escarpment proximal turbidites, forming a bypass wedge. Such a contact would be imaged along a seismic section as an unconformity, suggestive of shut-off of the local carbonate factory and onlap by pelagic mud. The composition of the turbidites, however, at least initially duplicates that of the clinoforms, indicating that the footwall top was still productive, yet the mechanisms of sediment shedding into the basin had changed due to the modifications of submarine topography induced by synsedimentary tectonics.

  12. Environmental radioactivity in four national parks of the Abruzzo region (central Italy).

    PubMed

    Barbizzi, S; Calvarese, S; Fico, R; Belli, M; Sansone, U

    2004-01-01

    Since 1998, the Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale' in Teramo is conducting radioecological surveys in the Abruzzo region (Central Italy), to acquire knowledge on the geochemical and biological mobility of radionuclides derived from the Chernobyl accident. To this end, samples of grasses, fungi, mosses and soils were collected in four national parks (Sirente-Velino, Abruzzo Lazio and Molise, the Gran Sasso and the park of Monti della Laga and Maiella). The results show that the Chernobyl fallout is still detectable in the samples collected in the four parks but the (137)Cs concentrations are present in the semi-natural environments in quantities that do not create concerns from a radiological point of view.

  13. Molecular detection and phylogenetic analysis of hepatitis E virus strains circulating in wild boars in south-central Italy.

    PubMed

    Aprea, G; Amoroso, M G; Di Bartolo, I; D'Alessio, N; Di Sabatino, D; Boni, A; Cioffi, B; D'Angelantonio, D; Scattolini, S; De Sabato, L; Cotturone, G; Pomilio, F; Migliorati, G; Galiero, G; Fusco, G

    2018-02-01

    Hepatitis E virus (HEV) is a zoonotic pathogen with a worldwide distribution, and infects several mammalian species, including pigs and wild boars, which are recognized as its natural reservoirs. The virus causes a usually self-limiting liver disease with a mortality rate generally below 1%, although mortality rates of 15%-25% have been recorded in pregnant woman. Chronic infections can also occur. The prevalence of HEV has been extensively studied in wild boars and pigs in northern Italy, where intensive pig herds are predominantly located. In contrast, few data have been collected in south-central Italy, where small pig herds are surrounded by large regional parks populated with heterogeneous wild fauna. In this study, 291 liver samples from wild boars caught in south-central Italy were analysed with the molecular detection of viral RNA. Our results confirm the circulation of HEV in these animals, with a mean prevalence of 13.7% (40 of 291). A nucleotide sequence analysis showed that the HEV strains were highly conserved within the same geographic areas. The wild boar HEV strains belonged to the HEV-3c subtype, which is frequently described in wild boars, and to an uncommon undefined subtype (HEV-3j-like).The viral prevalence detected is concerning because it could represent a potential risk to hunters, meat workers and consumers of wild boar liver and derivative products. The hypothesized inter-species transmission of HEV to pigs and the possibility that the virus maintains its virulence in the environment and the meat chain also present potential risks to human health, and warrant further investigations in the near future. © 2017 Blackwell Verlag GmbH.

  14. Sedimentology and composition of sands injected during the seismic crisis of May 2012 (Emilia, Italy): clues for source layer identification and liquefaction regime

    NASA Astrophysics Data System (ADS)

    Fontana, D.; Lugli, S.; Marchetti Dori, S.; Caputo, R.; Stefani, M.

    2015-07-01

    In May 2012 widespread sand blows formed along buried channels in the eastern sector of the Po Plain (Northern Italy) as a consequence of a series of seismic events with main shocks of Mw 6.1 and 5.9. At San Carlo (Ferrara) a trench dug a few week after the earthquakes exposed sand dikes cutting through an old Reno River channel-levee system that was diverted in the 18th century and was deposited starting from the 14th century (unit A). This sequence overlies a Holocene muddy floodplain deposits and contains scattered sandy channel deposits (unit B) and a Pleistocene channel sand unit (unit C). Sands with inverse and normal grading, concave layering and vertical lamination coexisting along the dikes suggest multiple rhythmic opening and closing of the fractures that were injected and filled by a slurry of sand during the compression pulses, and emptied during the extension phase. The pulse mechanism may have lasted for several minutes and formed well stratified sand volcanoes structures that formed at the top of the fractures. Sands from dikes and from the various units show well defined compositional fields from lithoarenitic to quartz-feldspar-rich compositions. Sands from the old Reno levee and channel fill (unit A) have abundant lithic fragments derived from the erosion of Apennine sedimentary carbonate and terrigenous successions. Composition of the sand filling the dikes show clear affinities with sand layers of the old Reno River channel (Unit A) and clearly differ from any sand from deeper Holocene and Pleistocene layers (Unit B and C), which are richer in quartz and feldspar and poorer in sedimentary lithic fragments. Sorting related to sediment flux variations did not apparently affect the sand composition across the sedimentary structures. Textural and compositional data indicate that the liquefaction processes originated from a relatively shallow source consisting of channel sands located within Unit A at 6.8.to 7.5 m depth.

  15. Induced Seismicity from different sources in Italy: how to interpret it?

    NASA Astrophysics Data System (ADS)

    Pastori, M.; De Gori, P.; Piccinini, D.; Bagh, S.; Improta, L.; Chiarabba, C.

    2015-12-01

    Typically the term "induced seismicity" is used to refer minor earthquakes and tremors caused by human activities that alter the stresses and strains on the Earth's crust. In the last years, the interest in the induced seismicity related to fluids (oil and gas, and geothermal resources) extraction or injection is increased, because it is believed to be responsible to enucleate earthquakes. Possible sources of induced seismicity are not only represented by the oil and gas production but also, i.e., by changes in the water level of artificial lakes. The aim of this work is to show results from two different sources, wastewater injection and changes in the water level of an artificial reservoir (Pertusillo lake), that can produce induced earthquakes observed in the Val d'Agri basin (Italy) and to compare them with variation in crustal elastic parameters. Val d'Agri basin in the Apennines extensional belt hosts the largest oilfield in onshore Europe and is bordered by NW-SE ­trending fault systems. Most of the recorded seismicity seems to be related to these structures. We correlated the seismicity rate, injection curves and changes in water levels with temporal variations of Vp/Vs and anisotropic parameters of the crustal reservoirs and in the nearby area. We analysed about 983 high-quality recordings occurred from 2002 to 2014 in Val d'Agri basin from temporary and permanent network held by INGV and ENI corporate. 3D high-precision locations and manual-revised P- and S-picking are used to estimate anisotropic parameters (delay time and fast direction polarization) and Vp/Vs ratio. Seismicity is mainly located in two areas: in the SW of the Pertusillo Lake, and near the Eni Oil field (SW and NE of the Val d'Agri basin respectively). Our correlations well recognize the seismicity diffusion process, caused by both water injection and water level changes; these findings could help to model the active and pre-existing faults failure behaviour.

  16. The rapid moving Capriglio earth flow (Parma Province, North Italy): multi-temporal mapping and GB-InSAR monitoring

    NASA Astrophysics Data System (ADS)

    Bardi, Federica; Raspini, Federico; Frodella, William; Lombardi, Luca; Nocentini, Massimiliano; Gigli, Giovanni; Morelli, Stefano; Corsini, Alessandro; Casagli, Nicola

    2017-04-01

    This research presents the main findings of the multi-temporal mapping and of the long-term, real-time monitoring of the Capriglio landslide in the Emilian Apennines (Northern Italy). The landslide, triggered by prolonged rainfall and rapid snowmelt, activated of April 6th 2013. It is constituted by two main adjacent enlarging bodies with a roto-translational kinematics. They activated in sequence and subsequently joined into a large fast moving earth flow, channelizing downstream the Bardea Creek, for a total length of about 3600 meters. The landslide completely destroyed a 450 m sector of the provincial roadway S.P. 101, and its retrogression tendency put at high risk the Capriglio and Pianestolla villages, located in the upper watershed area of the Bardea River. Furthermore, the advancing toe seriously threatened the Antria bridge, representing the "Massese" provincial roadway S.P. 665R transect over the Bardea Creek, the only strategic roadway left able to connect the above-mentioned villages. With the final aim of supporting local authorities in the hazard assessment and risk management during the emergency phase, on May 5th 2013 aerial optical surveys were conducted to accurately map the landslide extension and evolution. Moreover, a GB-InSAR monitoring campaign was started in order to assess displacements of the whole landslide area. The versatility and flexibility of the GB-InSAR sensors allowed acquiring data with two different configurations, designed and set up to continuously retrieve information on the landslide movements rates (both in its upper slow-moving sectors and in its fast-moving toe). The first acquisition mode revealed that the Capriglio and Pianestolla villages were affected by minor displacements (order of magnitude of few millimetres per month). The second acquisition mode allowed to acquire data every 28'', reaching very high temporal resolution values by applying GB-InSAR technique (Monserrat et al., 2014; Caduff et al., 2015).

  17. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography

    NASA Astrophysics Data System (ADS)

    Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-04-01

    The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.

  18. On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis

    NASA Astrophysics Data System (ADS)

    Malusa', Marco Giovanni; Salimbeni, Simone; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2017-04-01

    The role of surface and deep-seated processes in controlling the topography of complex plate-boundary areas is a highly debated issue. In the Western Alps, which include the highest summits in Europe, factors controlling topographic uplift still remain poorly understood. In the absence of active convergence, recent works have suggested a potential linkage between slab breakoff and fast uplift, but this hypothesis is ruled out by the down-dip continuity of the Alpine slab documented by recent tomographic images of the upper mantle beneath the Alpine region (Zhao et al. 2016). In order to shed light on this issue, we use a densely spaced array of temporary broadband seismic stations and previously published observations to analyze the seismic anisotropy pattern along the transition zone between the Alps and the Apennines, within the framework of the upper mantle structure unveiled by P wave tomography. Our results show a continuous trend of anisotropy fast axes near-parallel to the western alpine arc, possibly due to an asthenospheric counterflow triggered by the eastward retreat of the Apenninic slab. This trend is located in correspondence of a low velocity anomaly in the European upper mantle, and beneath the Western Alps region characterized by the highest uplift rates, which may suggest a potential impact of mantle dynamics on Alpine topography. We propose that the progressive rollback of the Apenninic slab induced a suction effect and an asthenospheric counterflow at the rear of the unbroken Alpine slab and around its southern tip, as well as an asthenospheric upwelling, mirrored by low P wave velocities, which may have favored the topographic uplift of the Alpine belt from the Mt Blanc to the Ligurian coast. Zhao L. et al., 2016. Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.

  19. Earth Observations taken by the Expedition 16 Crew

    NASA Image and Video Library

    2008-02-26

    ISS016-E-030337 (26 Feb. 2008) --- Fucine Lake, central Italy is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. The light tan oval in this image is the floor of a lake in central Italy that has been drained by a tunnel dug through the surrounding hills. Numerous rectangular fields can be seen on this former lake bottom--now one of the most fertile regions of Italy. The existence of a former lake explains the name of the area. The town of Avezzano (bottom left), near the drainage outlet of the basin, lies 80 kilometers east of Rome. The "circumference road" can be detected tracking around the edge of the lake; it roughly follows the boundary between green, vegetated fields around the basin and tan fallow fields within. This recent photograph shows a dusting of snow along mountain ridges to the south (image upper and lower right). The basin of Fucine Lake has no natural outlet. Consequently the level of the original lake fluctuated widely with any higher-than-average rainfall.

  20. Musepick: AN Integrated Technological Framework to Present the Complex of Santissima Annunziata in Ascoli Piceno (italy)

    NASA Astrophysics Data System (ADS)

    Petrucci, E.; Rossi, D.

    2017-05-01

    Nowadays, digital media play a central role in a shift towards updated modes of communicating knowledge. In addition to this, the tragic recent events related to the long series of earthquakes that have taken place in central Italy have also, unfortunately, reiterated the need to document and preserve not only the material value of the architectural heritage but also the intangible values related to the events and people that have characterized their history. In this framework, the paper investigates some of the opportunities offered by technological innovations, in particular, by the specific application areas of augmented reality and augmented virtuality. The case study The historical site chosen as case study is the complex of Santissima Annunziata, which has played a very important role in the city of Ascoli Piceno (Italy) for centuries. The objective was to develop a low-cost web-based platform to serve as a place to gather cultural content related to the diffuse cultural heritage, organized in applications regarding graphical and 3D models as well as 360° images and archival documents.

  1. Energy Optimization Assessments at U.S. Army Installations: Caserma Ederle Vicenza, Italy

    DTIC Science & Technology

    2009-01-17

    Caserma Ederle has one central plant, described in ECM CEP #2. In addi- tion to looking at the planned renovation of the central plant, this study...serving Bldgs 10B, 23, 44 and 66 • east circuit serving Bldg 290 (New Commissary building). The north circuit was recently renovated . Up to the New...water lines as a primary system for the hot water generators. New central plant concept The existing Central Energy Plant is going to be renovated by

  2. An Earthquake Rupture Forecast model for central Italy submitted to CSEP project

    NASA Astrophysics Data System (ADS)

    Pace, B.; Peruzza, L.

    2009-04-01

    We defined a seismogenic source model for central Italy and computed the relative forecast scenario, in order to submit the results to the CSEP (Collaboratory for the study of Earthquake Predictability, www.cseptesting.org) project. The goal of CSEP project is developing a virtual, distributed laboratory that supports a wide range of scientific prediction experiments in multiple regional or global natural laboratories, and Italy is the first region in Europe for which fully prospective testing is planned. The model we propose is essentially the Layered Seismogenic Source for Central Italy (LaSS-CI) we published in 2006 (Pace et al., 2006). It is based on three different layers of sources: the first one collects the individual faults liable to generate major earthquakes (M >5.5); the second layer is given by the instrumental seismicity analysis of the past two decades, which allows us to evaluate the background seismicity (M ~<5.0). The third layer utilizes all the instrumental earthquakes and the historical events not correlated to known structures (4.5

  3. Core segment 15008 - Regolith stratigraphy at Apennine Front Station 2 using multispectral imaging

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Meloy, A.; Hawke, B. R.; Nagle, J. S.

    1982-01-01

    High precision multispectral images for Apennine Front core segment 15008 are presented. These data have a spatial resolution less than approximately 0.5 mm and are analyzed for their compositional information using image analysis techniques. The stratigraphy of the regolith sampled by 15008 is documented here as three distinct zones, the most prominent of which is a feldspathic fragment-rich zone with a chaotic fabric that occurs between 10 and 18 cm depth. It is suggested that this material is the primary rim crest deposit of the local 10 m crater. Above this zone the stratigraphy is more horizontal in nature. Below this zone the soil is observed to be relatively homogeneous with no distinctive structure to 23 cm depth.

  4. Sea-level and climate forcing of the Sr isotope composition of marginal basins in the late Miocene Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Cosentino, D.; Frijia, G.; Castorina, F.; Dudas, F. O.; Iadanza, A.; Cipollari, P.; Caruso, A.; Bowring, S. A.; Strecker, M. R.

    2013-12-01

    Sr isotope records from marginal marine basins track the mixing between sea water and local continental runoff. Because changes in sea level determine the amount of mixing between global marine and continental water, and climate affects the amount of continental runoff, both sea-level and climate changes can potentially be recorded in marine fossil Sr isotope composition. Our 128 new 87Sr/86Sr analyses on 73 oyster, foraminifera, and coral samples from eight late Miocene stratigraphic sections in southern Turkey, Crete, and Sicily show that 87Sr/86Sr in Mediterranean marginal basins started to depart from global ocean values several million years before the Messinian Salinity Crisis (MSC), with sub-basin 87Sr/86Sr commonly dropping 0.000100 below contemporaneous global ocean values. The marked departure coincided with tectonic uplift and basin shallowing along the margins of the Mediterranean Basin. In contrast, centrally-located basins within the Mediterranean (e.g., Cyprus, Sicily, Crete) only record departures during the MSC. Besides this general trend, our 57 new 87Sr/86Sr analyses from the astronomically tuned Lower Evaporite unit deposited during the MSC in the central Apennines (Italy) allow us to explore in detail the effect of sea-level and humidity changes on 87Sr/86Sr . Most of the variation in 87Sr/86Sr that we observe can be explained by changes in eustatic sea level, with greatest departures from global ocean values (with differences up to 0.000150) occurring during sea-level lowstands, which were characterized by relatively arid conditions in the Mediterranean. However, in a few cases, the greatest 87Sr/86Sr departures (up to 0.000300) occur during sea-level highstands, which are marked by more humid conditions. Because the correlations between peaks in Sr departures and highstands (humid conditions) occur only after episodes of prolonged aridity, variations of residence time of continental water (particularly groundwater) could have affected its Sr concentration, and hence the degree to which continental water could perturb 87Sr/86Sr in marine sub-basins. Although our results demonstrate that the forcing behind variations in Sr isotope composition in marginal marine basins is more complex than what is typically included in Sr isotope box models, they also imply that high-resolution records, particularly when combined with independent information on sea-level or climate changes, could offer unique insights into local tectonic, climatic, and sea-level variations.

  5. Epidemiological study of the intestinal helminths of wild boar (Sus scrofa) and mouflon (Ovis gmelini musimon) in central Italy.

    PubMed

    Magi, M; Bertani, M; Dell'Omodarme, M; Prati, M C

    2002-12-01

    Since 1995 the population of wild ungulates increased significantly in the "Parco provinciale dei Monti Livornesi" (Livorno, Tuscany, Central Italy). We studied the intestinal macroparasites of two hosts, the wild boar (Sus scrofa) and the mouflon (Ovis gmelini musimon). In the case of wild boars we found a dominant parasite species, Globocephalus urosubulatus. For this parasite the frequency distribution of the number of parasites per host agrees with a negative binomial distribution. There is not a significant correlation between the age of the animals and the parasitosis. Furthermore the mean parasite burden of male and female wild boars does not differ significantly. In the case of mouflons we found a dominant parasite species Nematodirus filicollis with Trichuris ovis as codominant species.

  6. Landslide vulnerability criteria: a case study from Umbria, central Italy.

    PubMed

    Galli, Mirco; Guzzetti, Fausto

    2007-10-01

    Little is known about the vulnerability to landslides, despite landslides causing frequent and widespread damage to the population and the built-up environment in many areas of the world. Lack of information about vulnerability to landslides limits our ability to determine landslide risk. This paper provides information on the vulnerability of buildings and roads to landslides in Umbria, central Italy. Information on 103 landslides of the slide and slide-earth flow types that have resulted in damage to buildings and roads at 90 sites in Umbria is used to establish dependencies between the area of the landslide and the vulnerability to landslides. The dependencies obtained are applied in the hills surrounding the town of Collazzone, in central Umbria, an area for which a detailed landslide inventory map is available. By exploiting the landslide inventory and the established vulnerability curves, the geographical distribution of the vulnerability to landslides is mapped and statistics of the expected damage are calculated. Reliability and limits of the vulnerability thresholds and of the obtained vulnerability assessment are discussed.

  7. Concentrations of polychlorinated dibenzodioxins, polychlorodibenzofurans, and polychlorobiphenyls in women of reproductive age in Italy: A human biomonitoring study.

    PubMed

    Ingelido, Anna Maria; Abate, Vittorio; Abballe, Annalisa; Albano, Fulvia Lucia; Battista, Tatiana; Carraro, Valter; Conversano, Michele; Corvetti, Rosa; De Luca, Silvia; Franchini, Silva; Fulgenzi, Anna Rita; Giambanco, Laura; Iacovella, Nicola; Iamiceli, Anna Laura; Maiorana, Antonio; Maneschi, Francesco; Marra, Valentina; Pirola, Flavia; Porpora, Maria Grazia; Procopio, Enrico; Suma, Nicola; Valentini, Silvia; Valsenti, Luisa; Vecchiè, Valerio; De Felip, Elena

    2017-04-01

    Polychlorinated dibenzodioxins (PCDDs), polychlorodibenzofurans (PCDFs), and polychlorobiphenyls (PCBs) are persistent organic pollutants that represent a major concern for women of reproductive age because of the neurodevelopmental effects associated to perinatal exposure. This study was aimed at characterizing exposure of women of reproductive age to PCDDs, PCDFs, and PCBs as a function of residence in different Italian Regions, in areas at presumable different environmental contamination and human exposure to these pollutants. Study participants were enrolled in 2011-2012 in 6 Italian Regions representative of Northern, Central and Southern Italy; in each region, areas at presumed different exposure (rural, urban and industrial) were selected for enrolment. Each participant provided a serum sample for the analysis of PCDDs, PCDFs and PCBs. Median concentrations of PCDDs+PCDFs, DL-PCBs, NDL 6 -PCBs and NDL 9 -PCBs in serum samples were respectively 6.0 and 3.5 pgWHO-TE 05 /g fat, and 75 and 93ng/g fat. Age was the variable that most affected median serum concentrations. Age adjusted concentrations were found significantly different between geographical zones: women from Northern Italy showed the highest values, followed by Central and Southern Italy. PCDDs+PCDFs concentrations were significantly higher in the group of women residing in industrial areas compared to the group residing in rural areas. A clear diminishing temporal trend was observed compared to levels reported in previous studies. This study produced the largest dataset on serum concentrations of PCDDs, PCDFs and PCBs in women of childbearing age in Italy. confirmed that environmental and lifestyle factors may influence exposure to these contaminants and thereby the body burden. The observed marked temporal decline in body burden during three decades is in agreement with the general trend observed worldwide. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Probable autochthonous introduced malaria cases in Italy in 2009-2011 and the risk of local vector-borne transmission.

    PubMed

    Romi, R; Boccolini, D; Menegon, M; Rezza, G

    2012-11-29

    We describe two cases of probable autochthonous introduced Plasmodium vivax malaria that occurred in 2009 and 2011 in two sites of South-Central Italy. Although the sources of the infections were not detected, local transmission could not be disproved and therefore the cases were classified as autochthonous. Sporadic P. vivax cases transmitted by indigenous vectors may be considered possible in some areas of the country where vector abundance and environmental conditions are favourable to malaria transmission.

  9. Earth observation taken by the Expedition 29 crew

    NASA Image and Video Library

    2011-10-02

    ISS029-E-021987 (2 Oct. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features Central and Eastern Europe, extending from the Netherlands to Hungary and Italy to northern Poland. Overall, the view includes the Netherlands, Italy, Germany, Poland, and Hungary. When the photo was taken on Oct 2, 2011, the station was over Corsica at 43.18 degrees north latitude and 9.95 degrees east longitude.

  10. Altimetry data and the elastic stress tensor of subduction zones

    NASA Technical Reports Server (NTRS)

    Caputo, Michele

    1987-01-01

    The maximum shear stress (mss) field due to mass anomalies is estimated in the Apennines, the Kermadec-Tonga Trench, and the Rio Grande Rift areas and the results for each area are compared to observed seismicity. A maximum mss of 420 bar was calculated in the Kermadec-Tonga Trench region at a depth of 28 km. Two additional zones with more than 300 bar mss were also observed in the Kermadec-Tonga Trench study. Comparison of the calculated mss field with the observed seismicity in the Kermadec-Tonga showed two zones of well correlated activity. The Rio Grande Rift results showed a maximum mss of 700 bar occurring east of the rift and at a depth of 6 km. Recorded seismicity in the region was primarily constrained to a depth of approximately 5 km, correlating well to the results of the stress calculations. Two areas of high mss are found in the Apennine region: 120 bar at a depth of 55 km, and 149 bar at the surface. Seismic events observed in the Apennine area compare favorably with the mss field calculated, exhibiting two zones of activity. The case of loading by seamounts and icecaps are also simulated. Results for this study show that the mss reaches a maximum of about 1/3 that of the applied surface stress for both cases, and is located at a depth related to the diameter of the surface mass anomaly.

  11. Apennine Front revisited - Diversity of Apollo 15 highland rock types

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Marvin, Ursula B.; Vetter, Scott K.; Shervais, John W.

    1988-01-01

    The Apollo 15 landing site is geologically the most complex of the Apollo sites, situated at a mare-highland interface within the rings of two of the last major basin-forming impacts. Few of the Apollo 15 samples are ancient highland rocks derived from the early differentiation of the moon, or impact melts from major basin impacts. Most of the samples are regolith breccias containing abundant clasts of younger volcanic mare and KREEP basalts. The early geologic evolution of the region can be understood only by examining the small fragments of highland rocks found in regolith breccias and soils. Geochemical and petrologic studies of clasts and matrices of three impact melt breccias and four regolith breccias are presented. Twelve igneous and metamorphic rocks show extreme diversity and include a new type of ferroan norite. Twenty-five samples of highland impact melt are divided into groups based on composition. These impact melts form nearly a continuum over more than an order of magnitude in REE concentrations. This continuum may result from both major basin impacts and younger local events. Highland rocks from the Apennine Front include most of the highland rock types found at all of the other sites. An extreme diversity of highland rocks is a fundamental characteristic of the Apennine Front and is a natural result of its complex geologic evolution.

  12. Inversion of inherited thrusts by wastewater injection induced seismicity at the Val d’Agri oilfield (Italy)

    NASA Astrophysics Data System (ADS)

    Buttinelli, M.; Improta, L.; Bagh, S.; Chiarabba, C.

    2016-11-01

    Since 2006 wastewater has been injected below the Val d’Agri Quaternary basin, the largest on-land oilfield in Europe, inducing micro-seismicity in the proximity of a high-rate injection well. In this study, we have the rare opportunity to revise a massive set of 2D/3D seismic and deep borehole data in order to investigate the relationship between the active faults that bound the basin and the induced earthquakes. Below the injection site we identify a Pliocene thrusts and back-thrusts system inherited by the Apennines compression, with no relation with faults bounding the basin. The induced seismicity is mostly confined within the injection reservoir, and aligns coherently with a NE-dipping back-thrust favorably oriented within the current extensional stress field. Earthquakes spread upwards from the back-thrust deep portion activating a 2.5-km wide patch. Focal mechanisms show a predominant extensional kinematic testifying to an on-going inversion of the back-thrust, while a minor strike-slip compound suggests a control exerted by a high angle inherited transverse fault developed within the compressional system, possibly at the intersection between the two fault sets. We stress that where wastewater injection is active, understanding the complex interaction between injection-linked seismicity and pre-existing faults is a strong requisite for safe oilfield exploitation.

  13. Metabolic and Physiological Characteristics of Novel Cultivars from Serpentinite Seep Fluids

    NASA Astrophysics Data System (ADS)

    Nelson, B.; Chowdhury, S.; Brazelton, W. J.; Schrenk, M. O.

    2011-12-01

    Subsurface waters associated with the alteration of ultramafic rocks become highly reducing and alkaline through a process known as serpentinization. As habitat, these fluids are in many ways metabolically constraining but can provide sufficient energy for chemolithotrophy. As part of an ongoing effort to characterize these communities, heterotrophic enrichment cultures and anaerobic microcosms were initiated with alkaline waters found at three geographically and geochemically distinct sites of active serpentinization. These include the Northern Apennine ophiolite in the Ligurian region of Italy, the Tablelands ophiolite at Gros Morne National Park, Canada and the Coast Range ophiolite at McLaughlin Natural Reserve, California. Enrichment cultures at pH 11 yielded numerous isolates related to Proteobacteria and Firmicutes, some of which are closely related to other cultivars from high pH and subsurface environments. Anaerobic water samples were amended with combinations of electron donors (hydrogen, complex organics, acetate) and acceptors (ferric iron, sulfate) in a block design. After several weeks of incubation, DNA was extracted from cell concentrations and community differences were compared by TRFLP. Of particular interest is the isolation of a putative iron reducing Firmicute from samples enriched with complex organic compounds and ferric citrate. Ongoing studies are aimed at characterizing the physiology of these isolates. These data provide important insights into the metabolic potential of serpentinite subsurface ecosystems, and are a complement to culture-independent genomic analyses.

  14. Fault geometry and mechanics of marly carbonate multilayers: An integrated field and laboratory study from the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.

    2016-12-01

    Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.

  15. On the post-25 Ma geodynamic evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Gueguen, Erwan; Doglioni, Carlo; Fernandez, Manuel

    1998-11-01

    During the Neogene and Quaternary western Mediterranean geodynamics were dominated by the `eastward' migration of the Apenninic arc and associated back-arc basins. The migration was controlled by retreat of the Apenninic slab and was associated with `boudinage' of the lithosphere in the back-arc area. Palaeo-reconstruction of the kinematics of the arc suggests about 775 km of migration from the Late Oligocene to present along a transect from the Gulf of Lions to Calabria. A maximum of 135 km of N-S converge occurred between Africa and Europe during the same time span. The western Mediterranean was thus mainly shaped by the migration of the slab related to west-directed subduction. It is hypothesized that minor N-S convergence deformed the arc but was not the cause of its formation.

  16. Multidisciplinary research for the safe fruition of an active geosite: the Salse di Nirano mud volcanoes (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Coratza, Paola; Albarello, Dario; Cipriani, Anna; Cantucci, Barbara; Castaldini, Doriano; Conventi, Marzia; Dadomo, Andrea; De Nardo, Maria Teresa; Macini, Paolo; Martinelli, Giovanni; Mesini, Ezio; Papazzoni, Cesare Andrea; Quartieri, Simona; Ricci, Tullio; Santagata, Tommaso; Sciarra, Alessandra; Vezzalini, Giovanna

    2017-04-01

    Mud volcanoes are emissions of cold mud due to the ascent to the surface of salty and muddy waters mixed with gaseous (methane) and, in minor part, fluid hydrocarbons (petroleum veils) along faults and fractures. In the Northern Apennines mud volcanoes are closely linked to the active tectonic compression associated with thrusts of regional importance. They are mostly cone-shaped and show variable geometry and size, ranging from one to few metres, and are located in 19 sites in the northwestern part of the Apennines. Particularly noteworthy is the Nirano mud volcano field, located in the Fiorano Modenese district, which, with a surface area of approximately 75,000 m2, is one of the best developed and largest mud volcano field of the entire Italian territory and among the largest in Europe; it is thus protected as natural reserve (Salse di Nirano) since 1982. The Nirano mud volcanoes are found at the bottom of an elliptical depression, interpreted as a collapse-like structure (caldera) that may have developed in response to the deflation of a shallow mud chamber triggered by several ejections and evacuation of fluid sediments. There are several individual or multiple cones within the field of the mud volcanoes of Nirano, with a rather discontinuous activity; apparatuses become dormant or even extinct whereas new vents can appear in other spots. In the research here presented about 50 vents have been mapped and few of them appeared in May 2016. The mud volcanoes of the region have been known since a long time and have always aroused great interest due to their outstanding scenic value, and, in the past the mud volcano emissions have been used in many ways. Beside their cultural value, the mud volcanoes of the study area represent a tourist attractiveness as testified by the increasing number of visitors (e.g. about 70,000 visitors in 2015 in the Salse di Nirano Natural Reserve). Numerous initiatives, targeted at various potential users, have been developed in the last decades. In particular, tourist environmental maps, geotourism maps, books in hard copy and digital format, videos, virtual flights, multimedia and audio CDs have been implemented. Although the hazard from mud volcanoes is generally low, sometimes they may lead to sudden and violent eruptions and isolated casualties have been reported. Very notable case in this regard is the event that occurred in September 2014 in the Natural Reserve of Macalube di Aragona in Sicily where a mud volcano erupted, with an ejection of mud up to about 20 m above the ground and causing the burial of two children killing them. When a given geological site acquires a tourism value, it is necessary to assess the possible natural hazard processes which might threaten the safety of visitors. In particular, fast-occurring processes might directly involve tourists in proximity of the site of interest or along access roads and footpaths. In this context, multidisciplinary research, aiming at analysing the causes and understanding triggering mechanisms of paroxysmal and dangerous phenomena in the Natural Reserve of Nirano, are in progress, funded by the Fiorano municipality. The research team is composed by experts of different disciplines (geology, geomorphology, geophysics, geochemistry, palaeontology, mineralogy, topography) from different institutions. The first results of the multidisciplinary research here presented seem to confirm that no significant and dangerous phenomena can affect visitors along the pathways of the Reserve.

  17. Identification and phylogenetic position of Naegleria spp. from geothermal springs in Italy.

    PubMed

    Montalbano Di Filippo, M; Novelletto, A; Di Cave, D; Berrilli, F

    2017-12-01

    Naegleria spp. are free-living amoebae belonging to the family Vahlkampfiidae, in the class Heterolobosea. Among the recognized species, Naegleria fowleri causes primary amoebic meningoencephalitis (PAM), while two other species, Naegleria australiensis and Naegleria italica, have been reported as pathogenic in experimental animals. Due to the thermotolerance properties of some species, geothermal water sources including hot springs represent suitable habitats for their proliferation. The main aim of this study was a year-round sampling in two geothermal springs in Central Italy, to investigate the presence of Naegleria spp. using PCR/DNA sequencing based methods. The affinities between the sequences generated here and others reported in the literature were explored by using POY, which implements the concept of dynamic homology. Naegleria australiensis, Naegleria italica, and Naegleria lovaniensis, plus an unassigned Naegleria spp. were detected. Indels in the rDNA ITS1 and ITS2 turned out to be critical to distinguish the three species and confirmed their phylogenetic relationships. This is the first molecular report on the Naegleria spp. occurrence in geothermal waters in Central Italy, coupled with a fine genetic characterization. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Vector competence of Italian Aedes albopictus populations for the chikungunya virus (E1-226V).

    PubMed

    Severini, Francesco; Boccolini, Daniela; Fortuna, Claudia; Di Luca, Marco; Toma, Luciano; Amendola, Antonello; Benedetti, Eleonora; Minelli, Giada; Romi, Roberto; Venturi, Giulietta; Rezza, Giovanni; Remoli, Maria Elena

    2018-04-01

    Chikungunya virus (CHIKV) is an emerging arbovirus, belonging to the Togaviridae family, Alphavirus genus, transmitted by Aedes spp. mosquitoes. Since 2007, two different CHIKV strains (E1-226A and E1-226V) have been responsible for outbreaks in European countries, including Italy, sustained by Ae. albopictus mosquitoes. In this study, we assessed the susceptibility to the CHIKV E1-226V, strain responsible for the Italian 2007 outbreak, of eight Ae. albopictus populations collected in Northern, Central, Southern, and Island Italy, by experimental infections. Vector competence was evaluated by estimating infection, dissemination, and transmission rates (IR, DR, TR), through detection of the virus in the bodies, legs plus wings, and saliva, respectively. Additionally, vertical transmission was evaluated by the detection of the virus in the offspring. The results of our study demonstrated that the Italian populations of Ae. albopictus tested were susceptible to CHIKV infection, and can disseminate the virus outside the midgut barrier with high values of IR and DR. Viral infectious RNA was detected in the saliva of three populations from Central, Southern, and Island Italy, also tested for TR and population transmission rate (PTR) values. No progeny of the first and second gonotrophic cycle were positive for CHIKV. This study strongly confirms the role of Ae. albopictus as a potential CHIKV vector in Italy. This may represent a threat, especially considering both the high density of this species, which is widespread throughout the country, and the increasing number of cases of imported arboviruses.

  19. Mass transport-related stratal disruption and sedimentary products

    NASA Astrophysics Data System (ADS)

    Ogata, Kei; Mutti, Emiliano; Tinterri, Roberto

    2010-05-01

    From an outcrop perspective, mass transport deposit are commonly represented by "chaotic" units, characterized by dismembered and internally deformed slide blocks of different sizes and shapes, embedded in a more or less abundant fine-grained matrix. The large amount of data derived from geophysical investigations of modern continental margins have permitted the characterization of the overall geometry of many of these deposits, which, however, remain still relatively poorly described from outcrop studies of collisional basins. Results of this work show that in mass-transport deposits an unsorted, strongly mixed, relatively fine-grained clastic matrix almost invariably occurs in irregularly interconnected patches and pseudo-veins, infilling space between large clasts and blocks. We interpreted the aspect of this matrix as typical of a liquefied mixture of water and sediment, characterized by an extremely high mobility due to overpressured conditions, as evidenced by both lateral and vertical injections. On a much larger scale this kind of matrix is probably represented by the seismically "transparent" facies separating slide blocks of many mass-transport deposits observed in seismic-reflection profiles. The inferred mechanism of matrix production suggests a progressive soft-sediment deformation, linked to different phases of submarine landslide evolution (i.e. triggering, translation, accumulation and post-depositional stages), leading to an almost complete stratal disruption within the chaotic units. From our data we suggest that most submarine landslides move because of the development of ductile shear zones marked by the presence of "overpressured" matrix, both internally and along the basal surface. The matrix acts as a lubricating medium, accommodating friction forces and deformation, thus permitting the differential movement of discrete internal portions and enhancing the submarine slide mobility. Based on our experience, we suggest that this kind of deposit is quite common in the sedimentary record though still poorly reported and understood. Mutti and Carminatti (oral presentation from Mutti et al., 2006) have suggested to call these deposits "blocky-flow deposits", i.e. the deposit of a complex flow that is similar to a debris flow, or hyper-concentrated flow, except that it carries also out-size coherent and internally deformed blocks (meters to hundreds of meters across) usually arranged in isolated slump folds. The origin of blocky flows is difficult to understand on presently available data, particularly because it involves the contemporary origin of coherent slide blocks and a plastic flow that carries them as floating elements over considerable run-out distances. The recognition of the above-mentioned characteristics should be a powerful tool to discriminate sedimentary and tectonic "chaotic" units within accretionary systems, and to distinguish submarine landslide deposits transported as catastrophic blocky flows (and therefore part of the broad family of sediment gravity flows) from those in which transport took place primarily along shear planes (i.e. slumps, coherent slides), also highlighting a possible continuum from slides to turbidity currents. The discussed examples fall into a broad category of submarine slide deposits ranging from laterally extensive carbonate megabreccias (lower-middle Eocene "megaturbidites" of the south-central Pyrenees), to mass transport deposits with a very complex internal geometry developed in a highly tectonically mobile basin (upper Eocene - lower Oligocene Ranzano Sandstone, northern Apennines). References: Mutti, E., Carminatti, M., Moreira, J.L.P. & Grassi, A.A. (2006) - Chaotic Deposits: examples from the Brazilian offshore and from outcrop studies in the Spanish Pyrenees and Northern Apennines, Italy. - A.A.P.G. Annual Meeting, April 9-12, Houston, Texas.

  20. Double-Sided Wedge Model For Retreating Subduction Zones: Applications to the Apenninic and Hellenic Subduction Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Willett, S.; Rahl, J. M.; Cowan, D. S.

    2009-12-01

    We propose a new model for the evolution of accreting wedges at retreating subduction zones. Advance and retreat refer to the polarity of the velocity of the overriding plate with respect to subduction zone. Advance indicates a velocity toward the subduction zone (e.g., Andes) and retreat, away from the subduction zone (e.g. Apennines, Crete). The tectonic mode of a subduction zone, whether advancing or retreating, is a result of both the rollback of the subducting plate and the absolute motion of the overriding plate. The Hellenic and Apenninic wedges are both associated with retreating subduction zones. The Hellenic wedge has been active for about 100 Ma, whereas the Apenninic wedge has been active for about 30 Ma. Comparison of maximum metamorphic pressures for exhumed rocks in these wedges (25 and 30 km, respectively) with the maximum thickness of the wedges at present (30 and 35 km, respectively) indicates that each wedge has maintained a relatively steady size during its evolution. This conclusion is based on the constraint that both frictional and viscous wedges are subject to the constraint of a steady wedge taper, so that thickness and width are strongly correlated. Both wedges show clear evidence of steady accretion during their full evolution, with accretionary fluxes of about 60 and 200 km2 Ma-1. These wedges also both show steady drift of material from the front to the rear of the wedge, with horizontal shortening dominating in the front of the wedge, and horizontal extension within the back of the wedge. We propose that these wedges represent two back-to-back wedges, with a convergent wedge on the leading side (proside), and a divergent wedge on the trailing side (retroside). In this sense, the wedges are bound by two plates. The subducting plate is familiar. It creates a thrust-sense traction beneath the proside of the wedge. The second plate is an “educting” plate, which is creates a normal-sense traction beneath the retroside of the wedge. The educting plate underlies the Tyrrenhian Sea west of the Apennines and the Cretean Sea north of Crete. The stretched crust that overlies this plate represents highly thinned wedge material that has been removed or decreted from the wedge. This decretion process accounts for the mean motion within the wedge, from pro to retro side, and the pervasive thinning within the retroside. It also explains how these wedges are able to maintain a steady wedge size with time. An important prediction of this model is that different deformational styles, involving thickening and thinning, can occur within the same tectonics setting. This is in contrast the widely cited idea that tectonic thinning is a late- or post-orogenic process.

  1. Vaccine storage in the community: a study in central Italy.

    PubMed Central

    Grasso, M.; Ripabelli, G.; Sammarco, M. L.; Manfredi Selvaggi, T. M.; Quaranta, A.

    1999-01-01

    Maintaining the vaccine cold chain is an essential part of a successful immunization programme, but in developed countries faulty procedures may occur more commonly than is generally believed. A survey was conducted in a health district in central Italy to assess the methods of vaccine transportation and storage. Of 52 primary vaccination offices inspected, 39 (76.5%) had a refrigerator for vaccine storage but only 17 (33.3%) kept records of received and stored doses. None of the seven main offices selected for monitoring had a maximum and minimum thermometer and none monitored the internal temperature of the refrigerator. Moreover, other faulty procedures, such as the storage of food and laboratory specimens in vaccine refrigerators and the storage of vaccines on refrigerator door shelves, indicated that the knowledge and practice of vaccine storage and handling were often inadequate. PMID:10327715

  2. Molecular Survey on Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi Sensu Lato, and Babesia spp. in Ixodes ricinus Ticks Infesting Dogs in Central Italy.

    PubMed

    Morganti, Giulia; Gavaudan, Stefano; Canonico, Cristina; Ravagnan, Silvia; Olivieri, Emanuela; Diaferia, Manuela; Marenzoni, Maria Luisa; Antognoni, Maria Teresa; Capelli, Gioia; Silaghi, Cornelia; Veronesi, Fabrizia

    2017-11-01

    Dogs are a common feeding hosts for Ixodes ricinus and may act as reservoir hosts for zoonotic tick-borne pathogens (TBPs) and as carriers of infected ticks into human settings. The aim of this work was to evaluate the presence of several selected TBPs of significant public health concern by molecular methods in I. ricinus recovered from dogs living in urban and suburban settings in central Italy. A total of 212 I. ricinus specimens were collected from the coat of domestic dogs. DNA was extracted from each specimen individually and tested for Rickettsia spp., Borrelia burgdorferi sensu lato, Babesia spp., and Anaplasma phagocytophilum, using real-time and conventional PCR protocols, followed by sequencing. Sixty-one ticks (28.8%) tested positive for TBPs; 57 samples were infected by one pathogen, while four showed coinfections. Rickettsia spp. was detected in 39 specimens (18.4%), of which 32 were identified as Rickettsia monacensis and seven as Rickettsia helvetica. Twenty-two samples (10.4%) tested positive for A. phagocytophilum; Borrelia lusitaniae and Borrelia afzelii were detected in two specimens and one specimen, respectively. One tick (0.5%) was found to be positive for Babesia venatorum (EU1). Our findings reveal the significant exposure of dogs to TBPs of public health concern and provide data on the role of dogs in the circulation of I. ricinus-borne pathogens in central Italy.

  3. Climatic oscillations in central Italy during the Last Glacial-Holocene transition: the record from Lake Accesa

    NASA Astrophysics Data System (ADS)

    Magny, Michel; de Beaulieu, Jacques-Louis; Drescher-Schneider, Ruth; Vannière, Boris; Walter-Simonnet, Anne-Véronique; Millet, Laurent; Bossuet, Gilles; Peyron, Odile

    2006-05-01

    This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial-early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age-depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas-Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700-11 650 cal. yr BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14 300-14 200, 13 900-13 700, 13 400-13 100 and 11 350-11 150 cal.yrBP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2ka cold reversal. Copyright

  4. Balancing shortening and extension around the Adriatic Plate to constrain its independent motion and driving forces since Late Cretaceous time.

    NASA Astrophysics Data System (ADS)

    Le Breton, E.; Handy, M.; Ustaszewski, K. M.

    2015-12-01

    The Adriatic microplate (Adria) is a key player in the geodynamics of the Western Mediterranean area because it separates two major plates, Africa and Europe, that have been converging since Late Cretaceous time. Today, Adria comprises only continental lithosphere and is surrounded by zones of distributed deformation along convergent boundaries (Alps, Apennines, Calabrian Arc, Dinarides-Hellenides,) and back-arc basins (Liguro-Provencal, Tyrrhenian). For a long time, Adria was thought to be a promontory of Africa and thus to have moved coherently with Africa. However, recent re-evaluation of geological and geophysical data from the Alps yields an independent motion path for Adria that features a significant change in the direction and rate of its motion relative to both Africa and Europe since late Cretaceous time. To evaluate this, we first compare existing plate reconstructions of the Western Mediterranean to develop a best-fit model for the motion of Africa, Iberia and the Corsica-Sardinia block relative to Europe. We then use two motion models for Adria in which Adria moved either coherently or independently of Africa since late Cretaceous time. The model for independent Adria motion is further constrained by new estimates of extension and shortening in the Western Mediterranean and Northern Apennines based on field observations and recently published Moho depth maps, seismic profiles along the Gulf of Lion - Sardinian passive margins and the Northern Apennines. Initial results suggest that Miocene extension and opening of the Liguro-Provencal basin exceeds Miocene-to-Recent shortening related to roll-back subduction in the Northern Apennines; we attribute this to counter-clockwise rotation of the Adriatic plate with respect to Europe. Combined with the previously published estimates of shortening in the Alps, this counter-clockwise motion is predicted to have produced significantly less post-Paleogene, orogen-normal shortening in the Dinarides than previously thought. This modified motion path for Adria raises the question of what forces drive the motion of Adria; so far, the most likely explanation invokes a combination of trench suction and slab pull along the northern borders of Adria in Late Cretaceous-Paleogene time, transitional to Africa push since Early Miocene time.

  5. A database on flood and debris-flow processes in alluvial fans: a preliminary analysis aimed at evaluation of the damage

    NASA Astrophysics Data System (ADS)

    Vennari, Carmela; Santangelo, Nicoletta; Santo, Antonio; Parise, Mario

    2015-04-01

    Debris-flow and flood events cause yearly wide damages to buildings and infrastructures, and produce many casualties and fatalities. These processes are very common in Italy, affecting mainly torrential stream basins with different geological and morphological settings: in the Alpine mountain areas they are quite well analysed, whilst much less attention is generally paid in contexts such as those of the Apennines mostly due to the minor frequency of the events. Nevertheless, debris-flows and flood processes occur along many alluvial fans, have greatly contributed to their building up, and are therefore worth to be studied. Along many areas of the Southern Apennines, coalescent alluvial fans are a widespread geomorphic unit, typically located at the foot of steep slopes. In most cases these areas correspond to the more highly urbanised sectors, generally considered to be safer than the bottom valley, as concerns the direct effects from flooding. During intense storms, villages and towns built on alluvial fans may be affected by flooding and/or debris flow processes originated in the above catchment, and rapidly transferred downslope due to the steep slopes and the torrential character of the streams. This creates a very high hazard to the population and is at the origin of the severe and recurrent damage to urban settlements. Starting from the above considerations, we compiled a catalogue of flood and debris-flow events occurred in Campania Region, southern Italy, by consulting very different information sources: national and local newspapers and journals, regional historical archives, scientific literature, internet blogs. More than 350 events, occurred in Campania from 1700 to present, were collected. Information on time of occurrence and location are available for each event, with different level of accuracy, that is typically lower going back to the oldest events for which only the year or the month of occurrence of the event was identified; nevertheless, for more than 75 % of the collected data, the complete date of occurrence is known. All the provinces of Campania are affected by debris-flow and flood processes, but the most interested appear to be Naples and Salerno. Debris flows and flood produced in the Region more than 2400 fatalities, about 200 injured people, and about 100 missing people, with more than 6000 homeless. Very harmful were the events occurred in 1581, 1841, 1910,1924, 1954, 1998; each of these caused more than 100 fatalities. With regard to homeless, the most damaging event took place in the area of Salerno, causing more than 5000 homeless. Buildings and infrastructures were also involved by the events dealt with here. A third of the processes included in the catalogue caused the total destruction of private buildings, and serious damage to communication routes (roads and railways), pipelines, factories and architectonical structures. The most disastrous season, as concerns the damage to infrastructures and humans, is the autumn. The catalogue is still in progress, being continually updated for new events, but, at the same time, continuing to perform archive and literature scrutiny as regards the past events. Further, another important part of the research is the investigation of the link with the triggering events (rainfall): at this aim, daily (or hourly, when available) pluviometric data are being analysed. Our final goal is to provide a method to estimate hazard assessment in alluvial basins torrents, that might be exportable in similar geological-geomorphological contexts. In such an effort, the first and mandatory step is the collection of historical data.

  6. 3D seismic imaging of an active, normal fault zone in southern Apennines (Italy): Clues on fluid-driven microearthquake fracturing

    NASA Astrophysics Data System (ADS)

    Amoroso, O.; Zollo, A.; Virieux, J.

    2012-12-01

    We have reconstructed a 3D detailed image of the crustal volume embedding the active normal fault system in southern Apennines (Italy). It is obtained by the inversion of P and S first arrival times from microearthquakes recorded in the area. The issues of data quality and the implementation of robust tomographic inversion strategy have been addressed to improve the resolution of the seismic image. The arrival times measurements are enhanced by applying techniques based on polarization filtering and refined re-picking. Data inversion has been performed by using a delay-time 3D tomographic method for the joint determination of source locations and velocity model. The dataset consists of 1311 events with magnitude ranging between [0.1, 3.2], recorded from August 2005 to April 2011 by 42 stations operated by the consortium AMRA scarl and INGV. We used a multi-scale inversion approach, in order to first estimate the large wavelength components of the velocity model and then to progressively introduce smaller scale components. P- and S-wave velocity models show a strong lateral variation along a direction orthogonal to the Apeninic chain, between 0-15 km depth. This variation defines two geological formations which are characterized by relatively low and high P-wave velocities. The sharpest lateral transition occurs in the NE direction: it is well correlated with the location of the NW-SE oriented, primary normal fault associated with the 1980, Ms 6.9 earthquake, which cuts at SW the outcrops of the carbonatic Campanian platform, and separates at NE the older Mesozoic limestone formations from the younger Pliocene-Quaternary basin deposits. The main lithological formations, as identified in the referenced active seismic CROP04 profile, can be recognized in the inferred velocity model. In particular, the structural feature associated with the uplift of the Apulian Platform is well detected by the high P-velocity anomaly ranging between 6.0-6.8 km/s. The thickening of the Lagonegro units located in the axial sector is well reproduced by the low P-wave anomalies ranging between 4.0-4.5 km/s. Their eastward extension is just above the Apulian Platform in the depth range between 4.0 and 8.0 km . The seismicity spatial distribution delineates at SE the border of the Irpinia master fault, while at NE it shows a more diffused pattern due to the presence of a system of highly organized, sub-parallel normal faults as it has been inferred from the fault mechanisms and the coherent orientation of the tensional axes. The Vp/Vs ratio shows a large variability ranging from 1.7-1.8 at shallow depths and increasing up to 2-2.2 between 5 km and 12 km depths, where most of present microseismicity occurs. Such high values are a strong proxy for a fluid-saturated state of rock formations and of their inner pore pressure conditions. The evidence for a predominant microearthquake activity confined within the volume of highest Vp/Vs ratio indicates that pore pressure changes induced by fluid flow/diffusion in a highly fractured medium, may be the primary mechanism controlling and driving the background seismic activity along the Irpinia fault zone.

  7. Mt. Vesuvius, Italy

    NASA Image and Video Library

    2001-10-22

    This ASTER image of Mt. Vesuvius Italy was acquired September 26, 2000, and covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. The image is centered at 40.8 degrees north latitude, 14.4 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11091

  8. Symposium on Signal and Image Processing English-Language Abstracts (12th) Held in Juan-Les-Pins, France on 12-16 June 1989

    DTIC Science & Technology

    1989-12-01

    Neril1" (’)INFOCOM Dpt., via Eudossiana 18, 1-00184 Roma, Italy (2) CONTRAVES Italiana SpA. via Affile 102, 1-00139 Roma, Italy SUMMARY The paper...central processor. This makes the perception of the system less accurate and induces a loss in performance. Previous studies have considered the case...current practice. An inner code, often decoded using a weighted input, is concatenated with an outer code decoded without such a weighting . If

  9. Lectotype designation for seven species names in the Daucus guttatus complex (Apiaceae) from the central and eastern Mediterranean basin

    USDA-ARS?s Scientific Manuscript database

    The Daucus guttatus complex includes 2-4 species growing from central and northern Italy to the Middle East. They are characterized by being usually annuals up to 50 cm high; and the primary umbels up to 7 cm in diameter with less than 25(35) rays. Discolored umbels are frequent, bearing one to seve...

  10. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    NASA Astrophysics Data System (ADS)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic catalog into background seismicity and individual sequences of earthquake clusters, also in areas characterized by moderate seismic activity, where the standard declustering techniques may turn out rather gross approximations. With these results acquired, the main statistical features of seismic clusters are explored, including complex interdependence of related events, with the aim to characterize the space-time patterns of earthquakes occurrence in North-Eastern Italy and capture their basic differences with Central Italy sequences.

  11. Collision and Break-off : Numerical models and surface observables

    NASA Astrophysics Data System (ADS)

    Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark

    2013-04-01

    The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary results in this area indicate the stress experienced by the overriding lithosphere changes through the collision and slab break-off process. This change is stress affects the topography, but also offers another observable for understanding collision zones. We relate our numerical model to Arabia-Eurasia collision which is thought to have begun around 35 Ma (Allen and Armstrong, 2008; Vincent et al., 2007). The post collision basin predicted by our numerical model can be associated with the Miocene carbonate deposits of the Qom formation (Morley et al., 2009). These Miocene carbonate deposits are found at approximately 200-300km from the suture zone and are stratigraphically "sandwiched" between terrestrial clastic sedimentary formations. The position of these deposits shows that they are intimately related with the collision process, and that this area of the overriding plate has dipped below sea level for about 10 Myrs during the Early Miocene. Another geographic area that offers possibility for observation of topography change produced during continental collision is the Italian Apennines. Here, slab detachment is proposed to have started around 30 Ma and a tear propagated north to south along Italy (Wortel, 2000). Van der Meulen et al., (1998) observed a period of basin formation followed by uplift using the sedimentary record. Migrating depocentres were interpreted as evidence of a slab tear propagating north to south. These depocentres are located on the overriding plate with the maximum observed depression around 100 km from the suture (Ascione et al., 2012). These observed depocentres could be analogous to the depressions observed in our numerical models. Allen, M. B. and Armstrong, H. A.: Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1-2), 52-58, doi:10.1016/j.palaeo.2008.04.021, 2008. Andrews, E. R. and Billen, M. I.: Rheologic controls on the dynamics of slab detachment, Tectonophysics, 464(1-4), 60-69, doi:10.1016/j.tecto.2007.09.004, 2009. Ascione, A., Ciarcia, S., Di Donato, V., Mazzoli, S. and Vitale, S.: The Pliocene-Quaternary wedge-top basins of southern Italy: an expression of propagating lateral slab tear beneath the Apennines, Basin Research, 24(4), 456-474, doi:10.1111/j.1365-2117.2011.00534.x, 2012. Bottrill, A. D., Van Hunen, J. and Allen, M. B.: Insight into collision zone dynamics from topography: numerical modelling results and observations, Solid Earth, 3(2), 387-399, doi:10.5194/se-3-387-2012, 2012. Gerya, T. V., Yuen, D. a. and Maresch, W. V.: Thermomechanical modelling of slab detachment, Earth and Planetary Science Letters, 226(1-2), 101-116, doi:10.1016/j.epsl.2004.07.022, 2004. Van Hunen, J. and Allen, M. B.: Continental collision and slab break-off: A comparison of 3-D numerical models with observations, Earth and Planetary Science Letters, 302(1-2), 27-37, doi:10.1016/j.epsl.2010.11.035, 2011. Van der Meulen, M. J., Meulenkamp, J. E. and Wortel, R.: Lateral shifts of Apenninic foredeep depocentres reflecting detachment of subducted lithosphere, Earth and Planetary Science Letters, 154(1-4), 203-219, doi:10.1016/S0012-821X(97)00166-0, 1998. Morley, C. K., Kongwung, B., Julapour, A. A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K. and Kazemi, H.: Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area, Geosphere, 5(4), 325-362, doi:10.1130/GES00223.1, 2009. Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S. and Barabadze, T. G.: Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia?Eurasia collision, Terra Nova, 19(2), 160-166, doi:10.1111/j.1365-3121.2007.00731.x, 2007. Wortel, M. J. R.: Subduction and Slab Detachment in the Mediterranean-Carpathian Region, Science, 290(5498), 1910-1917, doi:10.1126/science.290.5498.1910, 2000.

  12. 210Po Log-normal distribution in human urines: Survey from Central Italy people

    PubMed Central

    Sisti, D.; Rocchi, M. B. L.; Meli, M. A.; Desideri, D.

    2009-01-01

    The death in London of the former secret service agent Alexander Livtinenko on 23 November 2006 generally attracted the attention of the public to the rather unknown radionuclide 210Po. This paper presents the results of a monitoring programme of 210Po background levels in the urines of noncontaminated people living in Central Italy (near the Republic of S. Marino). The relationship between age, sex, years of smoking, number of cigarettes per day, and 210Po concentration was also studied. The results indicated that the urinary 210Po concentration follows a surprisingly perfect Log-normal distribution. Log 210Po concentrations were positively correlated to age (p < 0.0001), number of daily smoked cigarettes (p = 0.006), and years of smoking (p = 0.021), and associated to sex (p = 0.019). Consequently, this study provides upper reference limits for each sub-group identified by significantly predictive variables. PMID:19750019

  13. The biological standard of living and mortality in Central Italy at the beginning of the 19th century.

    PubMed

    Coppola, Michela

    2013-12-01

    The biological standard of living in Central Italy at the beginning of the 19th century is analyzed using newly collected data on the height of recruits in the army of the Papal States. The results reveal a decline in height for the cohorts born under French rule (1796-1815). Although this trend was common to many parts of Europe, the estimated magnitude of the decline suggests a worsening of the biological standard of living of the working classes in the Papal States even relative to that of other countries. Despite the differences in the economic systems within the Papal States, no significant geographical variation in height has been found: even the most dynamic and advanced regions experienced a dramatic height decline. Mortality also increased during the period under consideration. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology

    NASA Astrophysics Data System (ADS)

    Malusà, Marco G.; Wang, Jiangang; Garzanti, Eduardo; Liu, Zhi-Chao; Villa, Igor M.; Wittmann, Hella

    2017-10-01

    Detrital thermochronology is often employed to assess the evolutionary stage of an entire orogenic belt using the lag-time approach, i.e., the difference between the cooling and depositional ages of detrital mineral grains preserved in a stratigraphic succession. The impact of different eroding sources to the final sediment sink is controlled by several factors, including the short-term erosion rate and the mineral fertility of eroded bedrock. Here, we use apatite fertility data and cosmogenic-derived erosion rates in the Po river catchment (Alps-Apennines) to calculate the expected percentage of apatite grains supplied to the modern Po delta from the major Alpine and Apenninic eroding sources. We test these predictions by using a cutting-edge dataset of trace-element and Nd-isotope signatures on 871 apatite grains from 14 modern sand samples, and we use apatite fission-track data to validate our geochemical approach to provenance discrimination. We found that apatite grains shed from different sources are geochemically distinct. Apatites from the Lepontine dome in the Central Alps show relative HREE enrichment, lower concentrations in Ce and U, and higher 147Sm/144Nd ratios compared to apatites derived from the External Massifs. Derived provenance budgets point to a dominant apatite contribution to the Po delta from the high-fertility Lepontine dome, consistent with the range independently predicted from cosmonuclide and mineral-fertility data. Our results demonstrate that the single-mineral record in the final sediment sink can be largely determined by high-fertility source rocks exposed in rapidly eroding areas within the drainage. This implies that the detrital thermochronology record may reflect processes affecting relatively small parts of the orogenic system under consideration. A reliable approach to lag-time analysis would thus benefit from an independent provenance discrimination of dated mineral grains, which may allow to proficiently reconsider many previous interpretations of detrital thermochronology datasets in terms of orogenic-wide steady state.

  15. Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years.

    PubMed

    Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela

    2016-01-27

    High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients triggered by global change. The re-visitation approach adopted herein represents a powerful tool for studying climate-related changes in sensitive high-mountain habitats. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography

    NASA Astrophysics Data System (ADS)

    Díaz, J.; Gil, A.; Gallart, J.

    2013-01-01

    In the last 10-15 years, the number of high quality seismic stations monitoring the Euro-Mediterranean region has increased significantly, allowing a corresponding improvement in structural constraints. We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath this complex area, compiled from inversion of Pn and Sn phases sampling the whole region. The method of Hearn has been applied to the traveltime arrivals of the International Seismological Center catalogue for the time period 1990-2010. A total of 579 753 Pn arrivals coming from 12 377 events recorded at 1 408 stations with epicentral distances between 220 km and 1 400 km have been retained after applying standard quality criteria (maximum depth, minimum number of recordings, maximum residual values …). Our results show significant features well correlated with surface geology and evidence the heterogeneous character of the Euro-Mediterranean lithosphere. The station terms reflect the existence of marked variations in crustal thickness, consistent with available Moho depths inferred from active seismic experiments. The highest Pn velocities are observed along a continuous band from the Po Basin to the northern Ionian Sea. Other high velocity zones include the Ligurian Basin, the Valencia Trough, the southern Alboran Sea and central part of the Algerian margin. Most significant low-velocity values are associated to orogenic belts (Betics, Pyrenees, Alps, Apennines and Calabrian Arc, Dinarides-Hellenides), and low-velocity zones are also identified beneath Sardinia and the Balearic Islands. The introduction of an anisotropic term enhances significantly the lateral continuity of the anomalies, in particular in the most active tectonic areas. Pn anisotropy shows consistent orientations subparallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The Sn tomographic image has lower resolution but confirms independently most of the features evidenced in the Pn tomography.

  17. Seismic response in archaeological areas: the case-histories of Rome

    NASA Astrophysics Data System (ADS)

    Donati, Stefano; Funiciello, Renato; Rovelli, Antonio

    1999-03-01

    Rome is affected by earthquakes associated to three different seismogenic districts: the Central Apennines area, the Colli Albani volcanic area and the Roman area. The major effects were exclusively due to Apennine seismicity and reached in some cases felt intensities up to VII-VIII degree (MCS scale). The predominant role in the damage distribution seems to be played by the local geological conditions. The historical centre of the city is characterized by the presence of two geomorphologic domains: the alluvial plain of Tiber river and the topographic relieves of Roman Hills, where tradition indicates the first site of the city foundation. In particular, the right river side is characterized by the outcropping of the regional bedrock along the Monte Mario-Gianicolo ridge, while the eastern relieves are the remnants of the Sabatini and Albani volcanic plateau, deeply eroded by the Tiber river and its tributaries during the last glacial low-stand (Würm). These domains are characterized by a large difference in seismic response, due to the high impedance contrast between Holocene coarse deposits filling the Tiber Valley and sedimentary and volcanic Plio-Pleistocene units. Seismic damage observed in 150 monuments of downtown Rome was indicating a significant concentration on alluvial recent deposits. This result was confirmed by the geographical distribution of conservation and retrofitting activities subsequent to main earthquakes, mostly related to local geological conditions. The cases of Marcus Aurelius' Column and Colosseum confirmed the influence of the Holocene alluvial network in local seismic response. During 2500 years of history, the monuments of Rome have `memorized' the seismic effects of historical earthquakes. In some cases, the integration of historical and geological research and macroseismic observations may provide original and useful indications to seismologists to define the seismic response of the city. Local site effects represent a serious threat for historical buildings in Rome and in other historical towns with similar cultural heritage and geological characteristics, as in the Mediterranean region, even in areas that are not affected by a local seismic activity.

  18. Radiocarbon dating and Dendrochronology for Statigraphic Units near Tebano, Senio Northern Apennines - Time frame of Climatic Fluctuation at the onset of the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Eggenschwiler, Loren; Hajdas, Irka; Cherubini, Paolo; Picotti, Vincenzo; Saurer, Matthias

    2017-04-01

    The presence of Pinus [sylvestris] provides an insight into dramatic events due to climatic changes. Several major and minor climatic fluctuations have had a strong impact on terrestrial and marine environments since the last glacial period to present day (Ravazzi et al. 2006). This study aims to describe the response of a fluvial environment through the use of dendrochronology and stratigraphy. Here, we intend to get a better understanding of how these climatic fluctuations affect the behavior of the Senio River (Lotter et al. 1992). In Tebano, Italy, several Pinus sylvestris subfossil trunks were discovered during excavation for an irrigation pool. Subfossil samples were collected to analyze the climate during the Younger Dryas (11,000 years BP) in detail. Charcoal samples from the Bubano clay quarry extend our research to further to 35,500 cal. years BP. The combination of dendrochronology along with stratigraphy allowed us to examine the climate at a detailed local and apply it to a broader spectrum. Tree-ring measurements and cross dating provided a better understanding and verification of extreme events that occurred during the lifespans of the trees. The use of stable isotopes indicates the extreme conditions that occurred. Radiocarbon dating validates the age of the samples and what geological period they come from. Along with stratigraphy, we were able to compile depth data to create a sediment curve. Using various methods throughout this study, we discovered the climatic situation of Pinus 11,000 years BP and are able to compare them with samples from today. These present day samples mark two of the southernmost extents of the Pinus population. We were then able to comprehend the magnitude of sediment supply and precipitation. Through this collection of methods and data, we are able to understand the influence of climate change in the past and the potential changes of the future. REFERENCES Lotter, A. F.; Eicher, U.; Siegenthaler, U.; Birks, H. J. B. (1992): Late-glacial climatic oscillations as recorded in Swiss lake sediments. In Journal of Quaternary Science 7. DOI: 10.1002/jqs.3390070302. Ravazzi, Cesare; Donegana, Marta; Vescovi, Elisa; Arpenti, Enrico; Caccianiga, Marco; Kaltenrieder, Petra et al. (2006): A new Late-glacial site with Picea abies in the northern Apennine foothills. An exception to the model of glacial refugia of trees. In Veget Hist Archaeobot 15 (4), pp. 357-371. DOI: 10.1007/s00334-006-0055-9.

  19. [Initial epidemiological data on the clinical effects in health workers employed in the manual lifting of patients in wards].

    PubMed

    Colombini, D; Riva, F; Luè, D; Nava, C; Petri, A; Basilico, S; Linzalata, M; Morselli, G; Cotroneo, L; Ricci, M G; Menoni, O; Battevi, N

    1999-01-01

    An investigation was carried out by teams from various centres coordinated by the EPM (Ergonomics of Posture and Movement) Research Unit on 54 different hospitals in various regions of northern and central Italy. The teams examined a total of 3341 health workers whose job involved manual handling of patients (553 male and 2788 females, 1568 working in hospitals and 1773 in geriatric residences). Numerous meetings were held to ensure that the methods of assessing the exposure indexes and spinal impairment were identical in the various teams. The final data were processed centrally at the EPM Research Unit. The sample analyzed may be considered as representative of the situation in hospitals in Italy, at least for northern and central Italy. The mean age was 36 years, mean length of service in the department 6 years and mean length of job duration not exceeding 10 years; staff turnover was high. Physical examination revealed that 8.4% of the workers had had at least one episode of acute low back pain in the previous 12 months: i.e., 4 times the values of the reference groups. Also in the case of clinical-functional spondyloarthropathies of the lumbosacral spine, in the females there was a significantly higher prevalence than in the reference groups. All disorders were more severe in sectors more at risk, i.e., old peoples homes, rehabilitation centres, orthopaedic and surgical departments, and in any case higher in old peoples homes and geriatric residences. The initial data concerning the ratio between presence of spinal disease and risk index were also positive.

  20. Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy

    NASA Astrophysics Data System (ADS)

    Avolio, E.; Pasqualoni, L.; Federico, S.; Fornaciari, M.; Bonofiglio, T.; Orlandi, F.; Bellecci, C.; Romano, B.

    2008-11-01

    Olives are one of the largest crops in the Mediterranean and in central and southern Italy. This work investigates the correlation of the Olea europaea L. pollen season in Perugia, the capital city of the region of Umbria in central Italy, with atmospheric parameters. The aim of the study is twofold. First, we study the correlation between the pollen season and the surface air temperature of the spring and late spring in Perugia. Second, the correlation between the pollen season and large-scale atmospheric patterns is investigated. The average surface temperature in the spring and late spring has a clear impact on the pollen season in Perugia. Years with higher average temperatures have an earlier onset of the pollen season. In particular, a 1°C higher (lower) average surface temperature corresponds to an earlier (later) start of the pollen season of about 1 week. The correlation between the pollen season and large-scale atmospheric patterns of sea level pressure and 500-hPa geopotential height shows that the cyclonic activity in the Mediterranean is unequivocally tied to the pollen season in Perugia. A larger than average cyclonic activity in the Mediterranean Basin corresponds to a later than average pollen season. Larger than average cyclonic activity in Northern Europe and Siberia corresponds to an earlier than average pollen season. A possible explanation of this correlation, that needs further investigation to be proven, is given. These results can have a practical application by using the seasonal forecast of atmospheric general circulation models.

  1. [Polychlorinated biphenyl serum levels in two Italian population groups: sex pattern and correlation with age].

    PubMed

    Turci, Roberta; Marinaccio, Alessandro; Balducci, Claudio; Catenacci, Giovanni; Finozzi, Enrico; Minoia, Claudio

    2006-01-01

    To examine the congener-specific concentrations and patterns of polychlorinated biphenyls in the Italian general population. Two population groups were selected and monitored for the determination of up to 60 congeners in human serum. A very detailed questionnaire was administered to each participant to collect information concerning demographic, lifestyle, and medical factors. Statistical analyses were performed to examine the relationships between PCB serum levels and age. Northern and Central Italy. 162 subjects from Novafeltria, Central Italy and 164 subjects from Pavia, Northern Italy. Serum concentrations of both coplanar and non-coplanar PCB congeners. Relationship between PCB levels and age. The mean concentration of total PCBs was found to be 2.48 and 3.93 microg/l for Novafeltria and Pavia, respectively. As waited, the most abundant congeners were CB-153, CB-138, CB-180, and CB-170. Age resulted to be the most significant determinant of PCB levels. Slight differences in the congener profile were observed in the two population groups. As expected, a strong correlation between age and PCB levels has been observed. It is remarkable that the correlation increased with increasing chlorination in both the population groups. Associations with other variables, such as gender, food and alcohol consumption, and cigarette smoking, appeared to be inconsistent.

  2. Characterization of levofloxacin non-susceptible clinical Streptococcus pyogenes isolated in the central part of Italy.

    PubMed

    Petrelli, D; Di Luca, M C; Prenna, M; Bernaschi, P; Repetto, A; Vitali, L A

    2014-02-01

    We investigated the prevalence, genetics, and clonality of fluoroquinolone non-susceptible isolates of Streptococcus pyogenes in the central part of Italy. S. pyogenes strains (n = 197) were isolated during 2012 from patients with tonsillopharyngitis, skin, wound or invasive infections and screened for fluoroquinolone non-susceptibility (resistance to norfloxacin and levofloxacin minimum inhibitory concentration (MIC) = 2 mg/L) following EUCAST guidelines. First-step topoisomerase parC and gyrA substitutions were investigated using sequencing analysis. Clonality was determined by pulsed field gel electrophoresis (PFGE; SmaI digestion) and by emm typing. The fluoroquinolone non-susceptible phenotype was identified in 18 isolates (9.1 %) and correlated with mutations in parC, but not in gyrA, the most frequent leading to substitution of the serine at position 79 with an alanine. Most of the fluoroquinolone non-susceptible isolates belonged to the emm-type 6, even if other emm-types were also represented (emm75, emm89, and emm2). A significant level of association was measured between PFGE and both emm type and substitutions in parC. The prevalence of fluoroquinolone non-susceptible Streptococcus pyogenes isolates in Italy is of concern and, although the well-known emm type 6 is dominant, other types are appearing and spreading.

  3. The use of phenological data to calculate chilling units in Olea europaea L. in relation to the onset of reproduction

    NASA Astrophysics Data System (ADS)

    Orlandi, F.; Fornaciari, M.; Romano, B.

    2002-02-01

    The aim of this study was to develop a practical method to evaluate the effective relationship between the amount of winter chilling and the response expressed as the spring reproductive re-starting dates in the olive ( Olea europaea L.). Two olive cultivars growing in a special olive orchard in Umbria (central Italy) were studied over a 3-year period (1998-2000): the cultivar Ascolana, typical of central Italy, and the cultivar Giarraffa, typical of southern Italy. The spring reproductive re-starts were assessed using data from detailed phenological observations made on 60 trees of each cultivar in an effort to establish the exact date of reproductive bud swelling. The chilling phenomenon was evaluated by using 341 functions derived from a formula developed by researchers at Utah State University to calculate chilling units. The mathematical functions are defined, and show the very close relationship between the amount of winter chilling and the spring reproductive response in the two cultivars in the orchard studied. The results can be used to define the relationship between local climate and plant development, and the mathematical approach can be used to draw maps that can show the suitability of different cultivars on the basis of local climatic conditions.

  4. The Evolution of Professional Nursing Culture in Italy: Metaphors and Paradoxes.

    PubMed

    Rocco, Gennaro; Affonso, Dyanne D; Mayberry, Linda J; Stievano, Alessandro; Alvaro, Rosaria; Sabatino, Laura

    2014-01-01

    We explored the perceptions of Italian nurses regarding their developing culture as a health profession. We sought to understand the ongoing evolution of the nursing profession and the changes that were central to it becoming an intellectual discipline on par with the other health professions in Italy. In 2010, the Regulatory Board of Nursing established a center of excellence to build evidence-based practice, advocate for interdisciplinary health care, and champion health profession reforms for nursing. In this study, focus groups-involving 66 nurse participants from various educational, clinical, and administrative backgrounds-were utilized to better ascertain how the profession has changed. Six themes, three of them metaphors-"vortex," "leopard spots," and "deductive jungle"-explain nurses' experiences of professional change in Italy between 2001 and 2011 and the multiple dimensions that characterize their professional identity and autonomy.

  5. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    NASA Astrophysics Data System (ADS)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups was recorded. Our results confirm Apennine beech forests as important repositories of saproxylic fungal diversity. We identified species of high scientific concern, in both National Parks. The most represented genus is Mycena with six and five species in the sampling units of "Gran Sasso and Monti della Laga" and "Cilento,Vallo di Diano and Alburni" national Parks respectively. Within the "Gran Sasso and Monti della Laga National Park" the area of Incodara is of special interest due to the occurrence of the species Ossicaulis lignatilis, which is among the 21 identified indicator species for assessing conservation value of beech forests in Europe. A consistent group of Ascomycota species, including Biscogniauxia nummularia, Bisporella citrina, Diatrype disciformis, Kretzschmaria deusta, Nemania serpens, and Xylaria hypoxylon, was tightly associated with coarse woody debris in "Gran Sasso and Monti della Laga National Park" plots. The decay stage seemed to exert a major influence on both species richness and their spatial patterns, with coarse woody debris in the intermediate to late stages of decay being the richest in species. (471 words)

  6. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the unconformity during a phase of tectonic quiescence, and show a fining-upward depositional trend. This trend was generated by a progressive decrease in sediment supply stemming out from upstream migration of the knickpoints developed during the embanking of the axial system.

  7. Structural architecture and petrophysical properties of the Rocca di Neto extensional fault zone developed in the shallow marine sediments of the Crotone Basin (Southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio

    2017-04-01

    In this contribution we describe the architecture and petrophysical properties of the Rocca di Neto extensional fault zone in loose and poorly lithified sediments, located in the Crotone forearc basin (south Italy). To this end, we combined fieldwork with microstructural observations, grain size analysis, and in situ permeability measurements. The studied fault zone has an estimated maximum displacement of 80-90 m and separates early Pleistocene age (Gelasian) sands in the footwall from middle Pleistocene (Calabrian) silty clay in the hangingwall. The analysed outcrop consists of about 70 m section through the fault zone mostly developed in the footwall block. Fault zone consists of four different structural domains characterized by distinctive features: (1) <1 m-thick fault core (where the majority of the displacement is accommodated) in which bedding is transposed into foliation imparted by grain preferential orientation and some black gouges decorate the main slip surfaces; (2) zone of tectonic mixing characterized by a set of closely spaced and anastomosed deformation bands parallel to the main slip surface; (3) about 8 m-thick footwall damage zone characterized by synthetic and antithetic sets of deformation bands; (4) zone of background deformation with a few, widely-spaced conjugate minor faults and deformation bands. The boundary between the relatively undeformed sediments and the damage zone is not sharp and it is characterized by a progressive decrease in deformation intensity. The silty clay in the hangingwall damage zone is characterized by minor faults. Grain size and microstructural data indicate that particulate flow with little amount of cataclasis is the dominant deformation mechanism in both fault core rocks and deformation bands. Permeability of undeformed sediments is about 70000 mD, whereas the permeability in deformation bands ranges from 1000 to 18000 mD; within the fault core rocks permeability is reduced up to 3-4 orders of magnitude respect to the undeformed domains. Structural and petrophysical data suggest that the Rocca di Neto fault zone may compartmentalize the footwall block due to both juxtaposition of clay-rich lithology in the hangingwall and the development of low permeability fault core rocks.

  8. Non-Double-Couple Component Analysis of Induced Microearthquakes in the Val D'Agri Basin (Italy)

    NASA Astrophysics Data System (ADS)

    Roselli, P.; Improta, L.; Saccorotti, G.

    2017-12-01

    In recent years it has become accepted that earthquake source can attain significant Non-Double-Couple (NDC) components. Among the driving factors of deviation from normal double-couple (DC) mechanisms there is the opening/closing of fracture networks and the activation of pre-existing faults by pore fluid pressure perturbations. This observation makes the thorough analysis of source mechanism of key importance for the understanding of withdrawal/injection induced seismicity from geothermal and hydrocarbon reservoirs, as well as of water reservoir induced seismicity. In addition to the DC component, seismic moment tensor can be decomposed into isotropic (ISO) and compensated linear vector dipole (CLVD) components. In this study we performed a careful analysis of the seismic moment tensor of induced microseismicity recorded in the Val d'Agri (Southern Apennines, Italy) focusing our attention on the NDC component. The Val d'Agri is a Quaternary extensional basin that hosts the largest onshore European oil field and a water reservoir (Pertusillo Lake impoundment) characterized by severe seasonal level oscillations. Our input data-set includes swarm-type induced micro-seismicity recorded between 2005-2006 by a high-performance network and accurately localized by a reservoir-scale local earthquake tomography. We analyze two different seismicity clusters: (i) a swarm of 69 earthquakes with 0.3 ≤ ML ≤ 1.8 induced by a wastewater disposal well of the oilfield during the initial daily injection tests (10 days); (ii) 526 earthquakes with -0.2 ≤ ML ≤ 2.7 induced by seasonal volume changes of the artificial lake. We perform the seismic moment tensor inversion by using HybridMT code. After a very accurate signal-to-noise selection and hand-made picking of P-pulses, we obtain %DC, %ISO, %CLVD for each event. DC and NDC components are analyzed and compared with the spatio-temporal distribution of seismicity, the local stress field, the injection parameters and the water level in the impoundment. We find significant NDC components and abrupt temporal variations in the %DC and %ISO components that appear linked to the extremely variable parameters of the injection tests into the disposal well.

  9. Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: scenarios and impacts

    NASA Astrophysics Data System (ADS)

    Perini, Luisa; Calabrese, Lorenzo; Luciani, Paolo; Olivieri, Marco; Galassi, Gaia; Spada, Giorgio

    2017-12-01

    As a consequence of climate change and land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and urbanisation are particularly enhanced. We focus on the Emilia-Romagna (E-R) coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is ˜ 130 km long and is characterised by wide areas below mean sea level, in part made up of reclaimed wetlands. In this context, several morphodynamic factors make the shore and back shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise as a result of climate change are expected to enhance the shoreline instability, leading to further retreat. The consequent loss of beaches would impact the economy of the region, which is tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, which is crucial for the preservation of life and the environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) sea-level scenarios are merged with new high-resolution terrain models, current data for local subsidence and predictions of the flooding model in_CoastFlood in order to develop different scenarios for the impact of sea-level rise projected to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase in floodable areas as a result of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.

  10. Forest fires in Italy: An econometric analysis of major driving factors

    NASA Astrophysics Data System (ADS)

    Michetti, Melania; Pinar, Mehmet

    2013-04-01

    Despite the relevant fire risk to which Italy is subject from north to south, very few analysis focus on this area. This article investigates the causes of forest fires frequency and intensity in Italy during the first decade of the XXI century. The dynamical aspects of fire danger are explored through the use of panel data techniques which fully capture the impacts on forest fires of changes in both socio-economic and climatic conditions. Italy is treated as a unique region in a first model specification, while it is then split into 3 geographical areas (north, centre, and south) to capture locally specific aspects. Two different dependent variables are alternatively employed and a number of ad hoc tests are performed to corroborate the robustness of our estimates. Results highlight the importance of considering the fire situation separately for the northern, central, and southern parts of Italy. While the presence of railway networks positively affects fire risk, the impact of livestock depends on its specific composition. Favourable effects in fire reduction are represented by the increase in education levels (north and centre) and touristic flows (north and south), and by the containment of illegal activities (south). Weather patterns appear to be important determinants all over the Italian peninsula.

  11. Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling

    NASA Astrophysics Data System (ADS)

    Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil

    2017-12-01

    A new kinematic reconstruction that incorporates estimates of post-20 Ma shortening and extension in the Apennines, Alps, Dinarides, and Sicily Channel Rift Zone (SCRZ) reveals that the Adriatic microplate (Adria) rotated counterclockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Minimum and maximum amounts of rotation are derived by using, respectively, estimates of crustal extension along the SCRZ (minimum of 30 km) combined with crustal shortening in the Eastern Alps (minimum of 115 km) and a maximum amount (140 km) of convergence between Adria and Moesia across the southern Dinarides and Carpatho-Balkan orogens. When combined with Neogene convergence in the Western Alps, the best fit of available structural data constrains Adria to have moved 113 km to the NW (azimuth 325°) while rotating 5 ± 3° counterclockwise relative to Europe since 20 Ma. Amounts of plate convergence predicted by our new model exceed Neogene shortening estimates of several tens of kilometers in both the Apennines and Dinarides. We attribute this difference to crust-mantle decoupling (delamination) during rollback in the Apennines and to distributed deformation related to the northward motion of the Dacia Unit between the southern Dinarides and Europe (Moesia). Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenides slab pulling to the northeast, and crustal wedging in the Western Alps, which acted as a pivot and stopped farther northwestward motion of Adria relative to Europe.

  12. Trade-off between taxon diversity and functional diversity in European lake ecosystems.

    PubMed

    Grossmann, Lars; Beisser, Daniela; Bock, Christina; Chatzinotas, Antonis; Jensen, Manfred; Preisfeld, Angelika; Psenner, Roland; Rahmann, Sven; Wodniok, Sabina; Boenigk, Jens

    2016-12-01

    Inferring ecosystem functioning and ecosystem services through inspections of the species inventory is a major aspect of ecological field studies. Ecosystem functions are often stable despite considerable species turnover. Using metatranscriptome analyses, we analyse a thus-far unparalleled freshwater data set which comprises 21 mainland European freshwater lakes from the Sierra Nevada (Spain) to the Carpathian Mountains (Romania) and from northern Germany to the Apennines (Italy) and covers an altitudinal range from 38 m above sea level (a.s.l) to 3110 m a.s.l. The dominant taxa were Chlorophyta and streptophytic algae, Ciliophora, Bacillariophyta and Chrysophyta. Metatranscriptomics provided insights into differences in community composition and into functional diversity via the relative share of taxa to the overall read abundance of distinct functional genes on the ecosystem level. The dominant metabolic pathways in terms of the fraction of expressed sequences in the cDNA libraries were affiliated with primary metabolism, specifically oxidative phosphorylation, photosynthesis and the TCA cycle. Our analyses indicate that community composition is a good first proxy for the analysis of ecosystem functions. However, differential gene regulation modifies the relative importance of taxa in distinct pathways. Whereas taxon composition varies considerably between lakes, the relative importance of distinct metabolic pathways is much more stable, indicating that ecosystem functioning is buffered against shifts in community composition through a functional redundancy of taxa. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Whittaker, A. C.; Cowie, P. A.; Roberts, G. P.

    2008-09-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width depends on a number of parameters, including channel slope, and is not solely a function of drainage area as is commonly assumed. The present work represents the first attempt to investigate the consequences of dynamic, gradient-sensitive channel adjustment for drainage-basin evolution. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic perturbation, using, as a template, the topography of a well-documented catchment in the footwall of an active normal fault in the Apennines (Italy) that is known to be undergoing a transient response to tectonic forcing. We show that the observed transient response can be reproduced to first order with a simple detachment-limited fluvial incision law. Transient landscape is characterized by gentler gradients and a shorter response time when dynamic channel adjustment is allowed. The differences in predicted channel geometry between the static case (width dependent solely on upstream area) and dynamic case (width dependent on both drainage area and channel slope) lead to contrasting landscape morphologies when integrated at the scale of a whole catchment, particularly in presence of strong tilting and/or pronounced slip-rate acceleration. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the relative uplift field is nonuniform.

  14. The Evolution of Professional Nursing Culture in Italy

    PubMed Central

    Rocco, Gennaro; Affonso, Dyanne D.; Mayberry, Linda J.; Stievano, Alessandro; Alvaro, Rosaria; Sabatino, Laura

    2014-01-01

    We explored the perceptions of Italian nurses regarding their developing culture as a health profession. We sought to understand the ongoing evolution of the nursing profession and the changes that were central to it becoming an intellectual discipline on par with the other health professions in Italy. In 2010, the Regulatory Board of Nursing established a center of excellence to build evidence-based practice, advocate for interdisciplinary health care, and champion health profession reforms for nursing. In this study, focus groups—involving 66 nurse participants from various educational, clinical, and administrative backgrounds—were utilized to better ascertain how the profession has changed. Six themes, three of them metaphors—“vortex,” “leopard spots,” and “deductive jungle”—explain nurses’ experiences of professional change in Italy between 2001 and 2011 and the multiple dimensions that characterize their professional identity and autonomy. PMID:28462290

  15. Mt. Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image of Mt. Vesuvius Italy was acquired September 26, 2000, and covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. The image is centered at 40.8 degrees north latitude, 14.4 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  16. Mount Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  17. Angiostrongylus vasorum in wolves in Italy: prevalence and pathological findings.

    PubMed

    De Liberato, Claudio; Grifoni, Goffredo; Lorenzetti, Raniero; Meoli, Roberta; Cocumelli, Cristiano; Mastromattei, Antonio; Scholl, Francesco; Rombolà, Pasquale; Calderini, Pietro; Bruni, Gianpaolo; Eleni, Claudia

    2017-08-11

    Angiostrongylus vasorum is a nematode residing in the heart and pulmonary vessels of dogs and wild carnivores. In Europe the red fox is its reservoir, while only three records from wolves have been published. Angiostrongylus vasorum has a worldwide distribution, and many pieces of evidence demonstrate that it is spreading from endemic areas to new ones. In Italy, A. vasorum was reported with increasing frequency in dogs and foxes in the last decades, and now it is considered endemic throughout the country. Angiostrongylus vasorum can be asymptomatic or cause respiratory and circulatory disorders, at times causing severe disseminated infections. Between February 2012 and December 2016, 25 wolves found dead in central Italy were submitted to the Istituto Zooprofilattico del Lazio e della Toscana for post-mortem examination. Samples of lungs, heart, liver, spleen, kidneys, mediastinic lymph nodes and brain were collected from each animal for histological examination. When adult and larval nematodes were microscopically seen in lungs, the other organs were processed, and five histological sections for each organ were examined. To confirm parasite identification, lung samples were submitted to a PCR-sequencing protocol targeting the ITS2 region of A. vasorum. Seven wolves (28.0%) harboured nematode larvae in lung sections. In two of the positive wolves, adult nematodes were visible in pulmonary arteries, in four animals larvae were also detected in other organs. DNA sequencing reactions confirmed parasite identification as A. vasorum in all the cases. As a result of the high prevalence of A. vasorum reported in wolves in the present study, a focus of high circulation could be hypothesised in central Italy. Nevertheless, the similarly high prevalence in foxes originating from the same areas were reported in previous papers. Histopathological evidence highlights the pathogenic potential of A. vasorum in the wolf, especially in juvenile animals.

  18. Incidence of rheumatoid arthritis, psoriatic arthritis and polymyalgia rheumatica in an inland area of central Italy: results of the CAMPO-RHE study.

    PubMed

    De Socio, Antonia; Perrotta, Fabio Massimo; Grasso, Guido Maria; Lubrano, Ennio

    2018-01-01

    The aim of the CAMPO-RHE study was to determine the incidence of rheumatoid arthritis (RA), psoriatic arthritis (PsA) and polymyalgia rheumatica (PMR) in patients attending a rheumatologic outpatient's clinic of a new institution in Campobasso, Italy. Campobasso is a small town of approximately 50,000 inhabitants located in the inland territory of central Italy (Molise), and Public Health is managed from a single health authority. In Italy, all citizens are registered with a National Health System of General Practitioner (GP) Physicians. Between the 1 st of June 2014 and the 31 st of May 2016, all consecutive adult patients, sent by a GP, of Campobasso with any diagnosis of musculoskeletal symptoms/signs/complaints were evaluated in a single rheumatology outpatient clinic of our Academic Unit. The clinic represents the first and unique reference for GPs about rheumatic diseases in the territory. Subjects were classified using the 2010 EULAR criteria for RA, the CASPAR criteria for PsA and the 2012 ACR classification criteria for PMR. 1003 adult patients, sent by GPs, with articular or musculoskeletal complaints visited our clinic. Of these, 409 inhabitants of the municipality of Campobasso were evaluated for the study. During the 2-year study period we diagnosed 18, 19 and 12 new cases of RA, PsA and PMR respectively, with a new incident cases rate of 21.4, 22.59 and 27.43/100,000/year on the population at risk. The results of our study could contribute to better define the incidence of these rheumatic diseases classified with the new classification criteria.

  19. Seismic dynamics in advance and after the recent strong earthquakes in Italy and New Zealand

    NASA Astrophysics Data System (ADS)

    Nekrasova, A.; Kossobokov, V. G.

    2017-12-01

    We consider seismic events as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere and characterize earthquake series with the distribution of the control parameter, η = τ × 10B × (5-M) × L C of the Unified Scaling Law for Earthquakes, USLE (where τ is inter-event time, B is analogous to the Gutenberg-Richter b-value, and C is fractal dimension of seismic locus). A systematic analysis of earthquake series in Central Italy and New Zealand, 1993-2017, suggests the existence, in a long-term, of different rather steady levels of seismic activity characterized with near constant values of η, which, in mid-term, intermittently switch at times of transitions associated with the strong catastrophic events. On such a transition, seismic activity, in short-term, may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those. The results do not support the presence of universality in seismic energy release. The observed variability of seismic activity in advance and after strong (M6.0+) earthquakes in Italy and significant (M7.0+) earthquakes in New Zealand provides important constraints on modelling realistic earthquake sequences by geophysicists and can be used to improve local seismic hazard assessments including earthquake forecast/prediction methodologies. The transitions of seismic regime in Central Italy and New Zealand started in 2016 are still in progress and require special attention and geotechnical monitoring. It would be premature to make any kind of definitive conclusions on the level of seismic hazard which is evidently high at this particular moment of time in both regions. The study supported by the Russian Science Foundation Grant No.16-17-00093.

  20. A Human Deciduous Tooth and New 40Ar/39Ar Dating Results from the Middle Pleistocene Archaeological Site of Isernia La Pineta, Southern Italy

    PubMed Central

    Peretto, Carlo; Arnaud, Julie; Moggi-Cecchi, Jacopo; Manzi, Giorgio; Nomade, Sébastien; Pereira, Alison; Falguères, Christophe; Bahain, Jean-Jacques; Grimaud-Hervé, Dominique; Berto, Claudio; Sala, Benedetto; Lembo, Giuseppe; Muttillo, Brunella; Gallotti, Rosalia; Thun Hohenstein, Ursula; Vaccaro, Carmela; Coltorti, Mauro; Arzarello, Marta

    2015-01-01

    Isernia La Pineta (south-central Italy, Molise) is one of the most important archaeological localities of the Middle Pleistocene in Western Europe. It is an extensive open-air site with abundant lithic industry and faunal remains distributed across four stratified archaeosurfaces that have been found in two sectors of the excavation (3c, 3a, 3s10 in sect. I; 3a in sect. II). The prehistoric attendance was close to a wet environment, with a series of small waterfalls and lakes associated to calcareous tufa deposits. An isolated human deciduous incisor (labelled IS42) was discovered in 2014 within the archaeological level 3 coll (overlying layer 3a) that, according to new 40Ar/39Ar measurements, is dated to about 583–561 ka, i.e. to the end of marine isotope stage (MIS) 15. Thus, the tooth is currently the oldest human fossil specimen in Italy; it is an important addition to the scanty European fossil record of the Middle Pleistocene, being associated with a lithic assemblage of local raw materials (flint and limestone) characterized by the absence of handaxes and reduction strategies primarily aimed at the production of small/medium-sized flakes. The faunal assemblage is dominated by ungulates often bearing cut marks. Combining chronology with the archaeological evidence, Isernia La Pineta exhibits a delay in the appearance of handaxes with respect to other European Palaeolithic sites of the Middle Pleistocene. Interestingly, this observation matches the persistence of archaic morphological features shown by the human calvarium from the Middle Pleistocene site of Ceprano, not far from Isernia (south-central Italy, Latium). In this perspective, our analysis is aimed to evaluate morphological features occurring in IS42. PMID:26457581

  1. A Multi-parametric Climatological Approach to Study the 2016 Amatrice-Norcia (Central Italy) Earthquake Preparatory Phase

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; De Santis, Angelo; Marchetti, Dedalo; Cianchini, Gianfranco

    2017-10-01

    Based on observations prior to earthquakes, recent theoretical considerations suggest that some geophysical quantities reveal abnormal changes that anticipate moderate and strong earthquakes, within a defined spatial area (the so-called Dobrovolsky area) according to a lithosphere-atmosphere-ionosphere coupling model. One of the possible pre-earthquake effects could be the appearance of some climatological anomalies in the epicentral region, weeks/months before the major earthquakes. In this paper, the period of 2 months preceding the Amatrice-Norcia (Central Italy) earthquake sequence, that started on 24 August 2016 with an M6 earthquake and a few months later produced other two major shocks (i.e. an M5.9 on 26 October and then an M6.5 on 30 October), was analyzed in terms of skin temperature, total column water vapour and total column of ozone, compared with the past 37-year trend. The novelty of the method stands in the way the complete time series is reduced, where also the possible effect of global warming is properly removed. The simultaneous analysis showed the presence of persistent contemporary anomalies in all of the analysed parameters. To validate the technique, a confutation/confirmation analysis was undertaken where these parameters were successfully analyzed in the same months but considering a seismically "calm" year, when significant seismicity was not present. We also extended the analysis to all available years to construct a confusion matrix comparing the occurrence of climatological data anomalies with real seismicity. This work confirms the potentiality of multi parameters in anticipating the occurrence of large earthquakes in Central Italy, thus reinforcing the idea of considering such behaviour an effective tool for an integrated system of future earthquake prediction.

  2. Glucose tolerance status in 510 children and adolescents attending an obesity clinic in Central Italy.

    PubMed

    Brufani, Claudia; Ciampalini, Paolo; Grossi, Armando; Fiori, Rossana; Fintini, Danilo; Tozzi, Alberto; Cappa, Marco; Barbetti, Fabrizio

    2010-02-01

    Childhood obesity is epidemic in developed countries and is accompanied by an increase in the prevalence of type 2 diabetes (T2DM). Establish prevalence of glucose metabolism alterations in a large sample of overweight/obese children and adolescents from Central Italy. The study group included 510 overweight/obese subjects (3-18 yr). Oral glucose tolerance test (OGTT) was performed with glucose and insulin determination. Homeostatic model assessment of insulin resistance (HOMA-IR) and insulin sensitivity index (ISI) were derived from fasting and OGTT measurements. Beta-cell function was estimated by insulinogenic index. Fat mass was measured by dual-energy x-ray absorptiometry. Glucose metabolism alterations were detected in 12.4% of patients. Impaired glucose tolerance (IGT) was the most frequent alteration (11.2%), with a higher prevalence in adolescents than in children (14.8 vs. 4.1%, p < 0.001); silent T2DM was identified in two adolescents (0.4%). HOMA-IR and glucose-stimulated insulin levels were higher in patients with IGT than individuals with normal glucose tolerance (HOMA-IR = 4.4 +/- 2.5 vs. 3.4 +/- 2.3, p = 0.001). Fat mass percentage and insulinogenic index were not different between the two groups. In multivariate analysis, age, fasting glucose, and insulin resistance influenced independently plasma glucose at 120 min of OGTT. Individuals with combined impaired fasting glucose/IGT (IFG/IGT) and T2DM were older and had reduced plasma insulin values at OGTT when compared to patients with simple IGT. Glucose metabolism alterations are frequently found among children and adolescents with overweight/obesity from Central Italy. Age, fasting glucose, and insulin resistance are main predictors of IGT. We suggest the use of OGTT as a screening tool in obese European adolescents.

  3. Leishmania infantum, Dirofilaria spp. and other endoparasite infections in kennel dogs in central Italy

    PubMed Central

    Sauda, Federica; Malandrucco, Livia; Macrì, Gladia; Scarpulla, Manuela; De Liberato, Claudio; Terracciano, Giuliana; Fichi, Gianluca; Berrilli, Federica; Perrucci, Stefania

    2018-01-01

    Prevalence and risk factors of Leishmania infantum, Dirofilaria spp. and other potentially zoonotic or canine-specific endoparasite infections were assessed in 639 kennel dogs from central Italy. To this end, individual blood and fecal samples were examined using parasitological, immunological and molecular techniques. The presence of compatible clinical pictures, as well as age and gender were considered as putative risks factors. To evaluate risk factors, multivariable analysis with logistic regression and univariable analysis with a Chi square test and a Fischer’s exact test were performed. Overall, 52.6% of dogs (95% CI 48.6-56.5) were found positive, while 39.6% of dogs (95% CI 35.8-43.5) were infected by potentially zoonotic species. Leishmania infantum and Dirofilaria repens showed prevalences of 2.5% (95% CI 1.5-4.1) and 2.8% (95% CI 1.7-4.5), respectively. The prevalence of cardiorespiratory parasites was 7.8% (95% CI 5.9-10.3) and included the species Angiostrongylus vasorum, Eucoleus aerophilus, Eucoleus boehmi and D. immitis; the latter showed a prevalence of 0.2% (95% CI 0.001-1). Intestinal parasites were significantly prevalent (38.8%, 95% CI 35-42.7) and they consisted mainly of species of major zoonotic concern, including ancylostomatids, Toxocara canis, Giardia duodenalis, Dipylidium caninum, Taeniidae, Strongyloides stercoralis and Cryptosporidium parvum. Endoparasites were significantly prevalent in clinically suspected dogs. Leishmania infantum and cardiorespiratory nematodes were prevalent in older dogs, while intestinal parasites were prevalent in younger dogs. Results show high dog and public health risks in kennels in central Italy, and suggest the need for more effective control measures. PMID:29388550

  4. Crustal anisotropy along the North Anatolian Fault Zone from receiver functions

    NASA Astrophysics Data System (ADS)

    Licciardi, Andrea; Eken, Tuna; Taymaz, Tuncay; Piana Agostinetti, Nicola; Yolsal-Çevikbilen, Seda; Tilmann, Frederik

    2016-04-01

    The North Anatolian Fault Zone (NAFZ) that is considered to be one of the largest plate-bounding transform faults separates the Anatolian Plate to the south from the Eurasian Plate to the north. A proper estimation of the crustal anisotropy in the area is a key point to understand the present and past tectonic processes associated with the plate boundary as well as for assessing its strength and stability. In this work we used data from the North Anatolian Fault (NAF) passive seismic experiment in order to retrieve the anisotropic properties of the crust by means of the receiver function (RF) method. This approach provides robust constraints on the location at depth of anisotropic bodies compared to other seismological tools like S-waves splitting observations where anisotropic parameters are obtained through a path-integrated measurement process over depth. We computed RFs from teleseismic events, for 39 stations with a recording period of nearly 2 years, providing an excellent azimuthal coverage. The observed azimuthal variations in amplitudes and delay times on the Radial and Transverse RF indicate the presence of anisotropy in the crust. Isotropic and anisotropic effects on the RFs are analyzed separately after harmonic decomposition of the RF dataset (Bianchi et al. 2010). Pseudo 2D profiles are built to observe both the seismic isotropic structure and the depth-dependent lateral variations of crustal anisotropy in the area, including orientation of the symmetry axis. Preliminary results show that the isotropic structure is characterized by a complex crustal setting above a nearly flat Moho at a depth of ~40 km in the central portion of the studied area. Strong anisotropy is present in the upper crust along some portions of the NAFZ and the Ezinepazari-Sungurlu Fault (ESF), with a strong correlation between the orientation of the symmetry axis of anisotropy and the strike of the main geological structures. More complex patterns of anisotropy are present in the middle and lower crust as well as in the upper mantle. Bianchi, I., J. Park, N. Piana Agostinetti, and V. Levin (2010), Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy, J. Geophys. Res., 115, B12317, doi:10.1029/2009JB007061.

  5. Influence of Threshold for Bedrock Erosion on River Long Profile Development and Knickzone Retreat in Response to Tectonic Perturbation

    NASA Astrophysics Data System (ADS)

    Attal, M.; Hobley, D.; Cowie, P. A.; Whittaker, A. C.; Tucker, G. E.; Roberts, G. P.

    2008-12-01

    Prominent convexities in channel long profiles, or knickzones, are an expected feature of bedrock rivers responding to a change in the rate of base level fall driven by tectonic processes. In response to a change in relative uplift rate, the simple stream power model which is characterized by a slope exponent equal to unity predicts that knickzone retreat velocity is independent of uplift rate and that channel slope and uplift rate are linearly related along the reaches which have re-equilibrated with respect to the new uplift condition (i.e., downstream of the profile convexity). However, a threshold for erosion has been shown to introduce non- linearity between slope and uplift rate when associated with stochastic rainfall variability. We present field data regarding the height and retreat rates of knickzones in rivers upstream of active normal faults in the central Apennines, Italy, where excellent constraints exist on the temporal and spatial history of fault movement. The knickzones developed in response to an independently-constrained increase in fault throw rate 0.75 Ma. Channel characteristics and Shield stress values suggest that these rivers lie close to the detachment-limited end-member but the knickzone retreat velocity (calculated from the time since fault acceleration) has been found to scale systematically with the known fault throw rates, even after accounting for differences in drainage area. In addition, the relationship between measured channel slope and relative uplift rate is non-linear, suggesting that a threshold for erosion might be effective in this setting. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to quantify the effect of such a threshold on river long profile development and knickzone retreat in response to tectonic perturbation. In particular, we investigate the evolutions of 3 Italian catchments of different size characterized by contrasted degree of tectonic perturbation, using physically realistic threshold values based on sediment grain-size measurements along the studied rivers. We show that the threshold alone cannot account for field observations of the size, position and retreat rate of profile convexities and that other factors neglected by the simple stream power law (e.g. role of sediments) have to be invoked to explain the discrepancy between field observations and modeled topographies.

  6. A sagging along the eastern Chianti Mts., Italy

    NASA Astrophysics Data System (ADS)

    Coltorti, M.; Ravani, S.; Cornamusini, G.; Ielpi, A.; Verrazzani, F.

    2009-11-01

    A deep-seated gravitational slope deformation (DGSD) affects the eastern side of the Chianti Mts. Ridge. It develops in an N-S to NW-SE direction and is > 10 km wide and 3-4 km long. This area corresponds to the eastern side of a main antiform, characterised by east-verging folds and thrusts involving bedrock of the Mesozoic-Paleogene Tuscan Units, particularly sandstones containing interlayered highly fractured and deformed Ligurian rocks (shales and limestones with olistostromes). The foot of the slope is characterised by tilted Plio-Pleistocene deposits unconformably sealing the bedrock structures as folds, thrusts and faults. The most significant morphological features are a main escarpment, trenches, several secondary and counter-slope escarpments that together indicate large-scale gravitational phenomena. The main escarpment is responsible for the headward retreat of the slope, and is deeply segmented by numerous arcuate niches that reveal differential movements of single blocks. The DGSD is also dissected by SW-NE trending streams that often deepen inside the N-S trenches. Minor landslides due to local instability are also present. At the foot of the slope, the older continental Pliocene deposits of the Upper Valdarno Basin crop out. Although tilted by tectonic movements, the deposits have not been severely affected by gravitational deformations. This indicates that the movement is a typical sagging, a large landslide at an embryonic stage, affecting the upper part of the slope but not reaching the valley bottom. The deformations are absorbed in the rock mass which is also partially drained by stream incision that prevents high pore pressure. The occurrence of down-slope and down-movement facing escarpments and up-slope and up-movement facing counter-slope escarpments indicate a sagging characterised by a listric spoon-shaped geometry. The DGSD has a style similar to crustal extensional tectonics such as Morton and Black's crustal attenuation model. Although few chronological indications of movements are present, the fact that Late Pleistocene debris deposits, widespread in the northern and central Apennines, are not found at the contact between the escarpment and the trenches suggests a post-glacial activity for at least part of the movements. Recognizing embryonic-stage collapse is of primary importance in assessing geological hazard and risk because rapid evolution and collapse could follow.

  7. Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s

    NASA Astrophysics Data System (ADS)

    Leonelli, Giovanni; Coppola, Anna; Salvatore, Maria Cristina; Baroni, Carlo; Battipaglia, Giovanna; Gentilesca, Tiziana; Ripullone, Francesco; Borghetti, Marco; Conte, Emanuele; Tognetti, Roberto; Marchetti, Marco; Lombardi, Fabio; Brunetti, Michele; Maugeri, Maurizio; Pelfini, Manuela; Cherubini, Paolo; Provenzale, Antonello; Maggi, Valter

    2017-11-01

    A first assessment of the main climatic drivers that modulate the tree-ring width (RW) and maximum latewood density (MXD) along the Italian Peninsula and northeastern Sicily was performed using 27 forest sites, which include conifers (RW and MXD) and broadleaves (only RW). Tree-ring data were compared using the correlation analysis of the monthly and seasonal variables of temperature, precipitation and standardized precipitation index (SPI, used to characterize meteorological droughts) against each species-specific site chronology and against the highly sensitive to climate (HSTC) chronologies (based on selected indexed individual series). We find that climate signals in conifer MXD are stronger and more stable over time than those in conifer and broadleaf RW. In particular, conifer MXD variability is directly influenced by the late summer (August, September) temperature and is inversely influenced by the summer precipitation and droughts (SPI at a timescale of 3 months). The MXD sensitivity to August-September (AS) temperature and to summer drought is mainly driven by the latitudinal gradient of summer precipitation amounts, with sites in the northern Apennines showing stronger climate signals than sites in the south. Conifer RW is influenced by the temperature and drought of the previous summer, whereas broadleaf RW is more influenced by summer precipitation and drought of the current growing season. The reconstruction of the late summer temperatures for the Italian Peninsula for the past 300 years, based on the HSTC chronology of conifer MXD, shows a stable model performance that underlines periods of climatic cooling (and likely also wetter conditions) in 1699, 1740, 1814, 1914 and 1938, and follows well the variability of the instrumental record and of other tree-ring-based reconstructions in the region. Considering a 20-year low-pass-filtered series, the reconstructed temperature record consistently deviates < 1 °C from the instrumental record. This divergence may also be due to the precipitation patterns and drought stresses that influence the tree-ring MXD at our study sites. The reconstructed late summer temperature variability is also linked to summer drought conditions and it is valid for the west-east oriented region including Sardinia, Sicily, the Italian Peninsula and the western Balkan area along the Adriatic coast.

  8. Holocene re-colonisation, central-marginal distribution and habitat specialisation shape population genetic patterns within an Atlantic European grass species.

    PubMed

    Harter, D E V; Jentsch, A; Durka, W

    2015-05-01

    Corynephorus canescens (L.) P.Beauv. is an outbreeding, short-lived and wind-dispersed grass species, highly specialised on scattered and disturbance-dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post-glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance-driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation-by-distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re-colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re-)colonisation histories and range centre-margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre-periphery gradients. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  10. Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin.

    PubMed

    Di Lorenzo, Piera; Lancioni, Hovirag; Ceccobelli, Simone; Colli, Licia; Cardinali, Irene; Karsli, Taki; Capodiferro, Marco Rosario; Sahin, Emine; Ferretti, Luca; Ajmone Marsan, Paolo; Sarti, Francesca Maria; Lasagna, Emiliano; Panella, Francesco; Achilli, Alessandro

    2018-01-01

    Over the past 15 years, 300 out of 6000 breeds of all farm animal species identified by the Food and Agriculture Organization of the United Nations (FAO) have gone extinct. Among cattle, many Podolian breeds are seriously endangered in various European areas. Podolian cattle include a group of very ancient European breeds, phenotypically close to the aurochs ancestors (Bos primigenius). The aim of the present study was to assess the genetic diversity of Podolian breeds and to reconstruct their origin. The mitochondrial DNA (mtDNA) control-regions of 18 Podolian breeds have been phylogenetically assessed. Nine non-Podolian breeds have been also included for comparison. The overall analysis clearly highlights some peculiarities in the mtDNA gene pool of some Podolian breeds. In particular, a principal component analysis point to a genetic proximity between five breeds (Chianina, Marchigiana, Maremmana, Podolica Italiana and Romagnola) reared in Central Italy and the Turkish Grey. We here propose the suggestive hypothesis of a dual ancestral contribution to the present gene pool of Podolian breeds, one deriving from Eastern European cattle; the other arising from the arrival of Middle Eastern cattle into Central Italy through a different route, perhaps by sea, ferried by Etruscan boats. The historical migration of Podolian cattle from North Eastern Europe towards Italy has not cancelled the mtDNA footprints of this previous ancient migration.

  11. First evidence of resistance to pyrethroid insecticides in Italian Aedes albopictus populations 26 years after invasion.

    PubMed

    Pichler, Verena; Bellini, Romeo; Veronesi, Rodolfo; Arnoldi, Daniele; Rizzoli, Annapaola; Lia, Riccardo Paolo; Otranto, Domenico; Montarsi, Fabrizio; Carlin, Sara; Ballardini, Marco; Antognini, Elisa; Salvemini, Marco; Brianti, Emanuele; Gaglio, Gabriella; Manica, Mattia; Cobre, Pietro; Serini, Paola; Velo, Enkelejda; Vontas, John; Kioulos, Ilias; Pinto, Joao; Della Torre, Alessandra; Caputo, Beniamino

    2018-06-01

    Aedes albopictus has spread during the last few decades all over the world. This has increased significantly the risk of exotic arbovirus transmission (e.g. chikungunya, dengue, and Zika) also in temperate areas, as demonstrated by the Chikungunya 2007 and 2017 outbreaks in northeastern and central Italy. Insecticides are an important tool for limiting the circulation of these mosquito-borne viruses. The aim of the present study was to address the gap in current knowledge of pyrethroid insecticide resistance of European Ae. albopictus populations, focusing on populations from Italy, Albania and Greece. Bioassays for resistance to permethrin (0.75%), α-cypermethrin (0.05%) or deltamethrin (0.05%) were performed according to World Health Organization (WHO) protocols and showed reduced susceptibility (<90% mortality) of some Italian populations to permethrin and α-cypermethrin, but not to deltamethrin. This study reports the first evidence of resistance to pyrethroids in adult Italian Ae. albopictus populations. Results refer to the season preceding the Chikungunya 2017 outbreak in central Italy and highlight the need to increase efforts to monitor the spread of insecticide resistance and the need to develop strategies to limit the spread of insecticide resistance, particularly in areas where extensive treatments have been carried out to contain disease outbreaks. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Colonization by Legionella spp. of water networks in residential buildings of the Province of Pisa, Italy.

    PubMed

    Baggiani, A; Casini, B; Totaro, M; Aquino, F; Valentini, P; Bruni, B; Porretta, A; Casalini, F; Miccoli, M; Privitera, G

    2015-01-01

    Despite the increase of community acquired cases of legionellosis in Italy over the last years, the Italian guidelines do not give indications for prevention and control of Legionella in the hot water networks (or centralized conditioning systems) of residential buildings. We performed a survey on eight medium sized apartment buildings in the Pisa district to assess the prevalence of Legionella spp. in the water network and the respondance to drinking water requisites at the point of use, according to the Italian norms. For each building two hot water and three cold water samples (located at water entrance from the aqueduct network into the building pipework, at the exit from pressure autoclave, and at a remote tap) were collected. Legionella was detected in 20% of residential buildings, mostly in those with a central hot water production system. The study highlights a condition of potential risk for susceptible population subgroups and supports the need for measures of risk assessment and control.

  13. Seismoacoustic Coupled Signals From Earthquakes in Central Italy: Epicentral and Secondary Sources of Infrasound

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, Shahar; Assink, Jelle D.; Smets, Pieter S. M.; Evers, Läslo G.

    2018-01-01

    In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves. Epicentral seismic and infrasonic signals are detected at I26DE; however, a third type of signal, which arrives after the seismic wave train and before the epicentral infrasound signal, is also detected. This peculiar signal propagates across the array at acoustic wave speeds, but the celerity associated with it is 3 times the speed of sound. Atmosphere-independent backprojections and full 3-D ray tracing using atmospheric conditions of the European Centre for Medium-Range Weather Forecasts are used to demonstrate that this apparently fast-arriving infrasound signal originates from ground motions more than 400 km away from the epicenter. The location of the secondary infrasound patch coincides with the closest bounce point to I26DE as depicted by ray tracing backprojections.

  14. Cancer among farmers in central Italy.

    PubMed

    Forastiere, F; Quercia, A; Miceli, M; Settimi, L; Terenzoni, B; Rapiti, E; Faustini, A; Borgia, P; Cavariani, F; Perucci, C A

    1993-12-01

    This case-referent study evaluated cancer risks among farmers in central Italy. Cancer cases (N = 1674, 17 sites) were selected from all deceased men aged 35-80 years; a random sample of 480 decedents formed the reference series. Farmers had a decreased risk of lung and bladder cancer and melanoma and nonsignificant excess risks for stomach, rectal, kidney, and nonmelanoma skin cancer. Stomach and kidney cancer were significantly increased among the farmers with > 10 years' experience, and stomach, rectal, and pancreatic cancer were increased among licensed pesticide users with > 10 years' experience. Possible relationships emerged between specific crops and cancer: fruit and colon and bladder cancer, wheat and prostate cancer, olives and kidney cancer, and potato and kidney cancer. The results regarding stomach, pancreatic, lung, bladder, and prostate cancer and melanoma congrue with earlier results. The kidney cancer excess, the association of colon and bladder cancer with orchard farming, and the excess of rectal cancer among licensed farmers are new and unexpected findings.

  15. Identification and calibration of the structural model of historical masonry building damaged during the 2016 Italian earthquakes: The case study of Palazzo del Podestà in Montelupone

    NASA Astrophysics Data System (ADS)

    Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano

    2017-11-01

    The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.

  16. Geomorphological Evidence Bearing on the Paired Compressional-Extensional Fronts of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Alvarez, W.

    2001-12-01

    The close association of compressional folding and extensional normal faulting in the Northern Apennines has long attracted the attention of geologists. Elter et al.(1) showed that an extensional front has been following along, about 100 km behind a NE-migrating compressional front. This puzzling tectonic pattern has most commonly been explained by delamination and rollback, but the identity of the delaminating unit has been controversial. Little attention has been paid to the question whether the migration of the paired tectonic fronts and the generation of structures has been episodic or steady state. Since most or all of the Northern Apennines has emerged from the sea in Neogene time, the drainage pattern of the Peninsula may provide evidence bearing on this question. At the latitude of Gubbio, many short, straight, parallel rivers flow northeast from the main drainage divide to the Adriatic Sea, cutting through large anticlines between the extensional and compressional fronts. Alvarez (2) showed that this pattern arose from a process suggested by Mazzanti and Trevisan (3), in which incipient anticlines, additions to the coastal plain, and downstream increments of the rivers formed synchronously at the advancing shoreline. Deeper and deeper gorges cutting higher and higher anticlines southwest from the Adriatic coast show that the eastern third of the Northern Apennines formed in a roughly steady-state process. From the Tyrrhenian coast to the drainage divide, grabens that formed behind the extensional front have produced a trellis pattern in the three master streams (Arno, Ombrone, Tiber). In the steady-state hypothesis, many short, straight, parallel streams - the former headwaters of the Adriatic rivers - would have been disrupted by graben formation and progressively (from SW to NE) added to the trellis pattern. Close to the extensional front, this disruption would have occurred only in Quaternary time, and one would predict that the abandoned headwater tracts would be recognizable. A few candidates are currently under investigation, but the predicted patterns are difficult to detect, and there is little to suggest that the present drainage divide has migrated. This suggests that the steady-state migration of topographic features does not extend back beyond Late Miocene or Early Pliocene time. This is supported by the fact that the Monte Nerone-Monte Catria anticline, forming the main Umbria-Marche Ridge, about 15 km east of Gubbio, is far more structurally elevated than any feature for 100 km to the west. Departure from steady-state topographic evolution may have been driven at the surface by km-scale sea level drawdown during the Messinian salinity crisis or by 100-m-scale Quaternary sea-level oscillations. Or the driver may have been at depth, e.g., duplexing or out-of-sequence thrusting, or episodic delamination. On the other hand, the model of migrating paired fronts, which has guided Apennine research for 25 years, might be in need of major revision. (1) Boll. Geofis. Teor. Appl. 17, p. 3, 1975. (2) Basin Res. 11, p. 267, 1999. (3) Geog. Fis. Din. Quat. 1, p. 55, 1978.

  17. Apollo 15 at Hadley Base.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication highlights the mission of Apollo 15 and includes many detailed black and white and color photographs taken near the lunar Apennine Mountains and the mile-wide, meandering Hadley Rille. Some of the photographs are full page (9 by 12 inch) reproductions. (Author/PR)

  18. Bill Lowrie In The Apennines U Reading - The Pelagic Record of Geomagnetic Reversals

    NASA Astrophysics Data System (ADS)

    Alvarez, Walter

    Twenty five years ago, Bill Lowrie and I, along with Mike Arthur, Al Fischer, Gio- vanni Napoleone, Isabella Premoli Silva and Bill Roggenthen, published a set of five papers in the Geological Society of America Bulletin (March 1977), reporting a re- markable new source of information on the geomagnetic polarity time scale. The re- versal sequence was already known back to the Late Cretaceous on the basis of marine magnetic anomalies, but only as a sequence of longer and shorter polarity intervals, a kind of fingerprint with almost no age calibration. At Gubbio, in the Umbrian Apen- nines of Italy, we discovered that the polarity intervals are also recorded in pelagic limestones, deposited quietly at moderate oceanic depths at rates of order 10 m/Myr. and these limestones are literally made of fossils, notably the planktic foraminifera which are the best age correlation tool for the last 100 Myr. The reversal sequence was now datable. You can make a discovery like this either by looking for it, as Al Fischer did U hoping ° that such a record would be present and waiting until magnetometers improved enough to make it possible to measure these very weakly magnetic rocks U or by stumbling ° on it as Bill and I did. We went to the Apennines hoping to measure paleomagnetically a tectonic rotation of the Italian crust. Digital spinner magnetometers had just become available and Bill found that he could measure the remanence of the Apennine pelagic limestones I had been studying in the field. Tectonic rotation of the Italian crust turned out to be very difficult to detect, because interbed slip was a major complication. But we accidentally sampled both normal and reversed beds in the Scaglia rossa limestone on our first trip, and back in the lab we recognized that we had a polarity record in front of us. The microfossils made it a datable record, which raised great excitement among our colleagues at Lamont, where sea-floor magnetic reversals were the key to tectonic reconstructions. We dropped everything else and raced to measure the polar- ity stratigraphy of the Apennine limestones. When we found that Al Fischer and his friends were doing the same, we teamed up with them. Scientifically it was a wonderful project. The pelagic limestone sequence in the Apen- nines represents more than 100 Myr of Earth history, and we worked our way up and down that section over a number of years, publishing papers in which we gradually 1 dated the reversal sequence from the Oligocene back to the end of the Cretaceous Long Normal polarity interval. We had a little window of opportunity because deep- sea drilling cores of similar lithologies on the modern sea floor did not give usable results until the development of the hydraulic piston corer got past the problem of drilling vibrations resetting the magnetization in the soft deep-sea sediments. In con- trast, our hard limestones in the mountains gave excellent results, but only because of the exquisite care Bill took in measuring and cleaning these very weakly magnetic rocks. We felt slightly smug that with a dilapidated Fiat 850 and a converted-chainsaw drill we could get better results than scientists with a multi-million-dollar drilling ship. Even now I cannot hear a chain saw without a flood of memories of the agony of start- ing the thing, and the interesting Scottish words Bill used on occasions like that. In the field we developed high-precision stratigraphic measurement techniques, and returned year after year to fill in the gaps and find the exact position of reversals. It was a great personal and cultural experience as well. Bill and I drove and walked and measured and drilled all over Umbria and the Marche, a land of history, music, gentle beauty, and delicious food. In the evenings we walked in little historic cities like Assisi, Perugia, Spoleto and Gubbio, talking and arguing about history, science, and Mediaeval architecture. In those years Bill undertook my education in geophysics, which has benefitted me ever since. Perhaps it was an omen U on our first trip U when Bill and I stood by a balustrade in ° ° Assisi, looking down to the valley below. The Porziuncola U the basilica built over a ° ruined church that Saint Francis had restored U was precisely transfixed by a perfect ° rainbow. It was almost as if San Francesco were saying, "Welcome to Umbria! Here you will find wonderful things." and that is the way it turned out. 2

  19. Messinian post-evaporitic paleogeography of the Po Plain-Adriatic region by 3D numerical modeling: implications for the Central Mediterranean desiccation during the MSC

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Garcia-Castellanos, Daniel; Di Giulio, Andrea; Fantoni, Roberto; Ghielmi, Manlio; Sternai, Pietro; Toscani, Giovanni

    2017-04-01

    In the last decades the Messinian Salinity Crisis (MSC) has been the topic of a number of studies, in particular in onshore areas, as they offer a unique opportunity to analyze the controlling factors and the geological consequences of the estimated 1.5 km sea-level drop. During the MSC, the geometry of western and eastern sides of the Mediterranean basin was similar to the present day basin while, important changes took place in the central portion as a consequence of the (still ongoing) tectonic activity of the Apennine domain. Recent high-resolution 2D seismo-stratigraphic and 1D backstripping analysis by Eni E&P group described a step-wise sea-level lowering during evaporitic and post-evaporitic MSC phases in the Po Plain-Northern Adriatic foreland (PPAF), with a sea-level drop not exceeding 900 m. Thanks to a dense grid of 2D seismic profiles, integrated with ca. 200 well logs (confidential data, courtesy of ENI E&P), a 3D reconstruction of the entire northern PPAF basin geometry and the facies distribution during the Latest Messinian time has been carried out. In this study, we performed a 3D backstripping and lithospheric scale uplift calculations of the northern PPAF basin testing the 800-900m of sea-level draw down. The resulted restored Latest Messinian paleotopography (corresponding to the bottom Pliocene in the most of the study area) and related shoreline position, strongly fit with the recentmost continental/marine facies distribution maps. The latest Messinian morphology shows deep marine basins persisting during the entire MSC period, filled by clastic turbiditic sediments and a wide emerged area along the Southern Alps margin and Friulian-Venetian basin. A 3D reconstruction of the Latest Messinian surface shows peculiar river incisions along the Southern Alps margin; these V-shape canyons perfectly fit with the present day fluvial network, dating back the drainage origin at least at the Messinian acme. Moreover, if in a well-constrained marginal region (i.e PPAF) of the Mediterranean basin a lower sea-level drop is recorded, the heterogeneous Adriatic morphology controlled the connection/isolation with the rest of the Mediterranean water body, and previous models can still be locally valid. During Messinian time the central Mediterranean was characterized by the Adriatic basin made by an almost undeformed foreland margin to the east, by the Apennine chain and emerged/shallow carbonate platforms to the west. In this view the alternation of deep and shallow basins, the consequent basement vertical motions due to different sediment loading and the sea-level fall are all factors that played fundamental roles during MSC, possibly isolating marine portions that experienced different sea-level variation and facies deposition due to a local runoff/evaporation equilibrium.

  20. Frontal compression along the Apennines thrust system: The Emilia 2012 example from seismicity to crustal structure

    NASA Astrophysics Data System (ADS)

    Chiarabba, Claudio; De Gori, Pasquale; Improta, Luigi; Lucente, Francesco Pio; Moretti, Milena; Govoni, Aladino; Di Bona, Massimo; Margheriti, Lucia; Marchetti, Alessandro; Nardi, Anna

    2014-12-01

    The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50-60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.

  1. Project: Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The 12-day Apollo 15 mission, scheduled for launch on July 26 to carry out the fourth United States manned exploration of the Moon, will: Double the time and extend tenfold the range of lunar surface exploration as compared with earlier missions; Deploy the third in a network of automatic scientific stations; Conduct a new group of experiments in lunar orbit; and Return to Earth a variety of lunar rock and soil samples. Scientists expect the results will greatly increase man's knowledge both of the Moon's history and composition and of the evolution and dynamic interaction of the Sun-Earth system. This is so because the dry, airless, lifeless Moon still bears records of solar radiation and the early years of solar system history that have been erased from Earth. Observations of current lunar events also may increase understanding of similar processes on Earth, such as earthquakes. The Apollo 15 Lunar module will make its descent over the Apennine peaks, one of the highest mountain ranges on the Moon, to land near the rim of the canyon-like Hadley Rille. From this Hadley-Apennine lunar base, between the mountain range and the rille, Commander David R. Scott and Lunar Module Pilot James B. Irwin will explore several kilometers from the lunar module, driving an electric-powered lunar roving vehicle for the first time on the Moon. Scott and Irwin will leave the lunar module for three exploration periods to emplace scientific experiments on the lunar surface and to make detailed geologic investigations of formations in the Apennine foothills, along the Hadley Rille rim, and to other geologic structures. The three previous manned landings were made by Apollo 11 at Tranquillity Base, Apollo 12 in the Ocean of Storms and Apollo 14 at Fra Mauro.

  2. Early Childhood Trends around the World

    ERIC Educational Resources Information Center

    Neugebauer, Roger

    2007-01-01

    This article shares the views of the members of the World Forum community regarding early childhood education trends around the world. It summarizes trends from Eastern Europe, the Caucasus, Central Asia, Denmark, The Netherlands, Italy, Turkey, Nepal, Vietnam, Tajikistan, Hong Kong, Singapore, India, New Zealand, Jordan, Palestine, Egypt,…

  3. Olive flowering as an indicator of local climatic changes

    NASA Astrophysics Data System (ADS)

    Orlandi, F.; Ruga, L.; Romano, B.; Fornaciari, M.

    2005-07-01

    In recent years many studies on climate change and its impacts have been published. In this investigation the flowering of the olive tree (Olea europaea L.) in central Italy was related to climate and its usefulness as a bio-indicator for climatic change has been studied.

  4. Ecological niche modelling of potential West Nile virus vector mosquito species and their geographical association with equine epizootics in Italy.

    PubMed

    Mughini-Gras, Lapo; Mulatti, Paolo; Severini, Francesco; Boccolini, Daniela; Romi, Roberto; Bongiorno, Gioia; Khoury, Cristina; Bianchi, Riccardo; Montarsi, Fabrizio; Patregnani, Tommaso; Bonfanti, Lebana; Rezza, Giovanni; Capelli, Gioia; Busani, Luca

    2014-01-01

    In Italy, West Nile virus (WNV) equine outbreaks have occurred annually since 2008. Characterizing WNV vector habitat requirements allows for the identification of areas at risk of viral amplification and transmission. Maxent-based ecological niche models were developed using literature records of 13 potential WNV Italian vector mosquito species to predict their habitat suitability range and to investigate possible geographical associations with WNV equine outbreak occurrence in Italy from 2008 to 2010. The contribution of different environmental variables to the niche models was also assessed. Suitable habitats for Culex pipiens, Aedes albopictus, and Anopheles maculipennis were widely distributed; Culex modestus, Ochlerotatus geniculatus, Ochlerotatus caspius, Coquillettidia richiardii, Aedes vexans, and Anopheles plumbeus were concentrated in north-central Italy; Aedes cinereus, Culex theileri, Ochlerotatus dorsalis, and Culiseta longiareolata were restricted to coastal/southern areas. Elevation, temperature, and precipitation variables showed the highest predictive power. Host population and landscape variables provided minor contributions. WNV equine outbreaks had a significantly higher probability to occur in habitats suitable for Cx. modestus and Cx. pipiens, providing circumstantial evidence that the potential distribution of these two species coincides geographically with the observed distribution of the disease in equines.

  5. Geotourist itineraries along the Italian territory: examples of mapping the geoheritage in different geomorphological and historical contexts

    NASA Astrophysics Data System (ADS)

    Panizza, Valeria; Brandolini, Pierluigi; Laureti, Lamberto; Nesci, Olivia; Russo, Filippo; Savelli, Daniele

    2016-04-01

    In the framework of the studies dealing with geomorphosites mapping, many researches were carried out in the last years presenting both applied examples and proposals for tourist fruition. Researchers had to face many different challenges in transferring the knowledge about the geomorphological heritage on maps. The most relevant are those concerning the use of maps for tourist promotion, taking into account the requirements of clearness of representation of landforms and also the need of pointing out possible geomorphological hazards along tourist paths. Within the activity of the Working Group "Geomorphosites and Cultural Landscape" of AIGeo (Italian Association of Physical Geography and Geomorphology), some Italian itineraries, focused on the promotion of the geomorphological heritage by means of geotourist maps, are presented. They have the goal of: promoting landscape through its geomorphological and geological heritage; disseminating geoheritage knowledge focusing its relationships with cultural landscape and human history; assessing geomorphological hazards and possible risk situations The proposed itineraries are localised in different Italian regions and they concern: - the area around the remains of the Roman town of Ostra. The town is placed on the left side of the Misa River (Marche region, Italy), atop a stream terrace dating back to the uppermost Pleistocene-early Holocene. Detailed geomorphological field and remote-sensing mapping started in 2015. The surveying is aimed at focusing the geomorphological evolution as well as at assessing possible geomorphological hazard for both conservation and exploitation scopes. A geotourist trail is proposed with the aim of highlighting and integrating geomorphological and archaeological elements and information. - a geotourist trail along the coastal terraced slopes of Cinque Terre (Liguria, NW Italy): worldwide considered as one of the most outstanding examples of human integration with the natural landscape within the Mediterranean region. The Cinque Terre are has been recognized since 1997 as a World Heritage Site by UNESCO and are currently affected by high geomorphological risk. - the territory of the town of Bosa, north-western Sardinia (Italy). From a geological point of view the area is characterized by the outcropping of the Oligo-Miocene volcanic sequence related to the rotational tectonic. The geomorphological survey allowed the reconstruction of the Quaternary evolution and the assessment of the geomorphological heritage. The itinerary proposed wants to promote, by means of a geo-tourist map, the geomorphological heritage in its relationship with the rich cultural context and give all information for a correct and conscious fruition of the landscape. - the vacant railway tract Avellino-Rocchetta S. Antonio (Campania region, Italy): an inland area of the southern Italian Apennine. Here the great diversity of landforms give rise to a rich variety of landscapes, strictly linked with the long archaeological and cultural history, protected, in part, by the institution of regional Parks and other kind of protected areas. - abandoned or deactivated old mines in the Eastern Italian Alps, in order to promote their recovery for tourist or didactic purposes. The aim of the proposed itinerary is to organize its specific fruition as well as the preservation of their environmental and historic heritage.

  6. Radical Islamist Ideologies and the Long War: Implications for U.S. Strategic Planning and U.S. Central Command’s Operations

    DTIC Science & Technology

    2007-01-01

    conquered a swath of territory from Central Asia to Persia, across North Africa and then on to nearly all of the Iberian Peninsula and Southern Italy...the Iberian Peninsula in 1492, what Princeton Professor Bernard Lewis has termed “the House of Islam” (dar al-Islam)14 continued to expand its...Muslim community, with particular focus on the Arabian peninsula and Middle East region where the caliphate was seated. The anti-Western thrust of

  7. Detection of a chikungunya outbreak in Central Italy, August to September 2017.

    PubMed

    Venturi, Giulietta; Di Luca, Marco; Fortuna, Claudia; Remoli, Maria Elena; Riccardo, Flavia; Severini, Francesco; Toma, Luciano; Del Manso, Martina; Benedetti, Eleonora; Caporali, Maria Grazia; Amendola, Antonello; Fiorentini, Cristiano; De Liberato, Claudio; Giammattei, Roberto; Romi, Roberto; Pezzotti, Patrizio; Rezza, Giovanni; Rizzo, Caterina

    2017-09-01

    An autochthonous chikungunya outbreak is ongoing near Anzio, a coastal town in the province of Rome. The virus isolated from one patient and mosquitoes lacks the A226V mutation and belongs to an East Central South African strain. As of 20 September, 86 cases are laboratory-confirmed. The outbreak proximity to the capital, its late summer occurrence, and diagnostic delays, are favouring transmission. Vector control, enhanced surveillance and restricted blood donations are being implemented in affected areas.

  8. Compositional variation in the Hadley Apennine region

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Hawke, B. R.

    1982-01-01

    Orbital geochemical data in the Hadley Apennine region are related to typical rock compositions and used in determining the distribution of soils derived from the rock types found in this region. Orbital XRF Mg/Si and Al/Si intensities are the orbital data that are used primarily. These data are corrected for spurious interorbit variation using a modification of a previously developed method. The corrected values are than converted to % MgO and % Al2O3, respectively, from theoretical considerations, and as such are compared with similar concentrations for typical lunar rocks and soils of the Apollo 15 landing site. The relationship of the XRF values to Fe, Ti, and Th concentrations, derived from gamma-ray observations, is also considered. It is established that the orbital geochemistry data for this region are consistent with the presence of a mixture of ANT suite and Fra Mauro basalt components frequently dominated by a KREEP basalt component toward the west and by a mafic pyroclastic component toward the east.

  9. Lateral and Vertical Heterogeneity of Thorium in the Procellarum KREEP Terrane: As Reflected in the Ejecta Deposits of Post-Imbrium Craters

    NASA Astrophysics Data System (ADS)

    Gillis, J. J.; Jolliff, B. L.

    1999-01-01

    The Procellarum KREEP Terrane displays the highest concentrations of Th on the Moon. However, locations of elevated Th in this region appear to be random. As observed in the 5 deg per pixel equal-area Th data, and made more evident in the preliminary 2 deg data, Th is enhanced around the craters Aristillus, Aristarchus, Kepler, Mairan, the Apennine Bench formation, and the Fra Mauro region, while noticeably and unexpectedly lower in other locations (e.g., Archimedes, Copernicus, Eratosthenes, and Plato). We have examined the composition of the materials present in these regions with the goal of understanding the patchy nature to the distribution of Th and ultimately to decipher the geologic processes that have concentrated the Th. At present time, the published resolution of the Lunar Prospector Th gamma-ray data is low (5 deg per pixel), but this will soon be superceded by significantly higher-resolution data (2 deg per pixel). Even at this improved resolution, however, it is difficult to resolve the units that are the major source of Th. In an attempt to circumvent this problem, we employ the higher-resolution Clementine multispectral data for those regions mentioned above. We use the UV-VIS-derived compositional information and the spectral properties of craters, and their ejecta as drill holes through the mare-basalt surface to investigate the thickness and composition of underlying material. With this information we attempt to piece together the stratigraphy and geologic history of the Imbrium-Procellanim region. We processed the five-band multispectral data from the Clementine Mission (415, 750,900,950, and 1000nm) using ISIS software and calibration parameters developed by the USGS, Flagstaff, Arizona. Final image mosaics are in equal-area sinusoidal projection, and have a resolution of 250 m/pixel. Using the method of we produced maps of FeO and Ti02 composition. Here we examine the Th, FeO, and Ti02 composition and spectral properties of the craters discussed above and their ejecta, with the goal of describing the materials they excavate. One interpretation for the origin of the high-Th material is that subsurface KREEPy materials have been excavated by impact craters. The material excavated may be either volcanic KREEP (e,g., Apennine Bench Formation), KREEPy impact-melt breccia formed by the Imbrium impact (e.g., Fra Mauro Formation), or other KREEP-rich crustal material. Determining which type of material is responsible for the elevated Th and its extent is important to understanding the premare and possibly the prebasin stratigraphy of the Imbrium-Procellarum Region. Merging the 5 deg. Th data with the shaded relief map, we observe that the highest Th concentrations are not related to pre-Imbrium upper crustal materials. The Apennines, Alpes, and Caucasus Mountains represent the pre-Imbrian highlands material and do not express concentrations of Th, FeO, and TiO2 as high as the most Th-fich materials exposed within the Procellarum KREEP Terrane. We observe that, in general, these massifs contain 10-14 wt% FeO and 4-7 ppm Th. Determining whether the Th signal is from KREEP basalts or KREEPy impact-melt breccias cannot be done with the Clementine data because the two rock types are compositionally and mineralogically too similar (e.g., the Th-rich, mafic impact-melt breccias in the Apollo sample collection are dominated by a KREEP-basalt like component. Mapping-the distribution and sizes of craters and whether they display elevated Th concentrations or not, should reveal the depth and thickness of the KREEP-rich materials, and whether they are ubiquitous (i.e., impact-melt breccia) or more randomly distributed; this might be taken as an indicator of localized KREEP-basalt flows. Within the southeastern region of the Imbrium basin, there are two Th hot spots. The first is associated with the crater Aristillus, and the latter with the Apennine Bench Formation. Adjacent to these two hot spots are craters with a lower Th signature: Archimedes and Autolycus. We observe in the ejecta of Aristillus, a region of significantly lower FeO (10-14 wt%) relative to the surrounding mare basalt. The crater Autolycus, 50 km to the south, did not excavate similar low-FeO material. We suggest that the lower-FeO material in the ejecta of Aristillus corresponds to Th-rich material; the FeO content observed in Aristillus ejecta is comparable to that of KREEP basalt or mafic impact melt breccia (10-12 wt% FeO). We determine that this low FeO, Th-rich material is volcanic KREEP, as opposed to Imbrium impact melt, on the basis that the low-Fe material is exposed more prominently in ejecta in the northern portion of Aristillus. Our assumption is that if the layer underlying Aristillus was continuous, a more widespread and uniform low-Fe signature wouldbe observed in the ejecta deposit. Archimedes, 110 km southwest of Aristillus, impacted the northern portion of the Apennine Bench prior to the eruption of KREEP basalt. Archimedes rim material is not as enriched in Th as the Apennine Bench, and there are differences between the two in FeO concentration and in their continuum slope. Archimedes exhibits a much steeperor "redder" continuum slope than the Apennine Bench. This steepslope suggests the presence of glassy material. The glassy material is concentrated around an unnamed crater on the southern rim of Archimedes (4.5W, 28.2N) and along the northern rim of Archimedes. We suggest two possibilities, or a combination of the two, to explain the low-Th signal from Archimedes: (1) The Apennine Bench prior to KREEP basalt eruption was lower in Th (4-7 ppm, e.g., similar to the Apennine massifs) and KREEP basalts are absent in the rim of Archimedes; or (2) the glassy (possibly pyroclastic) material layering the rim of the Archimedes, dilutes any high-Th material present with low-Th material. (Additional information is contained in the original)

  10. Domestic Violence and Implications for Citizenship Teaching and Learning

    ERIC Educational Resources Information Center

    Chistolini, Sandra

    2013-01-01

    This comparative qualitative study was conducted in four countries: Cyprus (central scientific coordinator), Italy, Romania, Slovakia. Research priorities are domestic violence and children's rights. I present the results of the Italian portion of the study and report some of the themes drawn from testimonies (n = 58) from focus group interviews…

  11. The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy)

    NASA Astrophysics Data System (ADS)

    Pini, R.; Ravazzi, C.; Reimer, P. J.

    2010-11-01

    The sediments of Lake Fimon, N-Italy, contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland. We present here the detailed palynological record of the interval between Termination II and the Last Glacial Maximum. The age-depth model is obtained by radiocarbon dating in the uppermost part of the record. Downward, we correlated major forest expansion and contraction events to isotopic events in the Greenland Ice core records, via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites, and to pollen records from marine cores of the Iberian margin. Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages, with maximum offset of ±1700 years. Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation. This event is actually a two-step process which matches the two-step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite, respectively dated to 132.5 ± 2.5 and 129 ± 1.5 ka. At the interglacial decline mixed oak forests were replaced by oceanic mixed forests, the latter persisting further for 7 ka till the end of the Eemian succession. Warm-temperate woody species are still abundant at the Eemian end, corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial. After a stadial phase marked by moderate forest decline, a new expansion of warm broad-leaved forests, interrupted by minor events and followed by mixed oceanic forests, can be identified with the north-alpine Saint Germain I. The spread of beech during the oceanic phase is a valuable circumalpine marker. The subsequent stadial-interstadial succession, lacking the telocratic oceanic phase, is also consistent with the evidence at the north-alpine foreland. The Middle Würmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad-leaved species. A major Arboreal Pollen decrease is observed at modelled age of 38.7 ± 0.5 ka (larch expansion and last occurrence of lime), which has been related to Heinrich Event 4. The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland, pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation. This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations. Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains, thus allowing forests development at current sea-level altitudes.

  12. Sr Isotopes at the Onset of the Ice Ages at the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Fuchs, Rita; Lazar, Boaz; Angiolini, Lucia; Crippa, Gaia; Stein, Mordechai

    2017-04-01

    Sr isotopes can be used to constrain the marine Sr budget. The temporal variations in the 87Sr/86Sr ratios (radiogenic Sr) have been reconstructed over the past few decades based on marine macro and micro fossils data (e.g. brachiopods and foraminifera). It is used to constrain the sources and amounts of strontium that dictate the temporal variations in oceanic Sr throughout the Phanerozoic. On the other hand, the study of processes controlling the composition stable Sr isotopes (δ88/86Sr) is very new and only limited research was conducted on this topic during the past few years. Up to date, no δ88/86Sr data are available for considerable parts of Earth's history and the contribution of the potential Sr sources to the oceans is poorly constrained. Here, we set to examine the behavior of radiogenic and stable Sr isotopes in the marine environment of the northern Apennines (Italy) during the time interval of the late Pliocene to early-Middle Pleistocene - upon the onset of ice ages in the northern latitudes. We collected fossil mollusks from outcrops of the Arda and Stirone Rivers that are rich in bivalves, brachiopods, foraminifera (that were used for establishing the chronostratigraphy of the sections) and other genera. Ecological and sedimentological analysis of the section suggest a normal marine environment of depth range of several tens of meters that existed on the southern flanks of the large Po embayment. In order to evaluate the potential of the fossil assemblages in the Arda and Stirone sections to serve as reliable recorders of the marine δ88/86Sr of seawater during the desired period, we examined mineralogical and chemical properties of the fossils (e.g. distribution of trace elements like Sr and Mg in the skeletons, microstructures like secondary fillings of punctate shells in brachiopod) and measured the 87Sr/86Sr ratios. Among the species analyzed, Aequipecten opercularis (bivalve) and Glycymeris inflata (bivalve) have aragonite skeletons that show normal late Pliocene - early Pleistocene marine values of 87Sr/86Sr ratios (˜ 0.709). On the other hand, the calcite skeleton organisms from the same bed, Ostrea edulis (bivalve) and Terebratula scillae (brachiopod), show continental effect on the 87Sr/86Sr isotopes (values ranging from 0.7084 to 0.7089). It should be noted that these two groups of organisms have also different life styles and metabolic rates. Measuring the δ88/86Sr values on the fossils with "normal" marine radiogenic Sr composition and those with continental radiogenic Sr signal may provide additional constraints on the sources and processes that affected the geochemistry of these species and yield a reliable marine δ88/86Sr value for that period.

  13. Dating the beginning of the Roman viticultural model in the Western Mediterranean: The case study of Chianti (Central Italy).

    PubMed

    Aversano, Riccardo; Basile, Boris; Buonincontri, Mauro Paolo; Carucci, Francesca; Carputo, Domenico; Frusciante, Luigi; Di Pasquale, Gaetano

    2017-01-01

    Although domestication of the grapevine (Vitis vinifera L.) has been extensively documented, the history of genotype selection and evolution of vineyard management remain relatively neglected fields of study. The find of 454 waterlogged grapevine pips from a well-dated Etrusco-Roman site in the Chianti district (Tuscany, Central Italy) is an extraordinary chance to gain insights into the progress of viticulture occurring in a key historical period in one of the world's most famous wine regions. The molecular and geometrical analyses of grape seeds showed (a) the presence in the site of different grapevine individuals and (b) a sudden increase in pip size, occurring at around 200 BC, whic explainable by the selection and introduction of new varieties. In this period, the Etruscans settlers in Chianti were stimulated by northward-expanding Roman culture to use novel vineyard management practices. We hypothesize that one of the most important innovations may have been the introduction of pruning, inducing vine physiological conditions more favorable to pip growth. Such changes were the consequence of specific entrepreneurial choices made by the Romans in a period of economic investment in grape cultivation and wine making to satisfy the increased trade demand after the conquest of the Central-Western Mediterranean basin.

  14. Dating the beginning of the Roman viticultural model in the Western Mediterranean: The case study of Chianti (Central Italy)

    PubMed Central

    Carucci, Francesca; Carputo, Domenico; Frusciante, Luigi; Di Pasquale, Gaetano

    2017-01-01

    Although domestication of the grapevine (Vitis vinifera L.) has been extensively documented, the history of genotype selection and evolution of vineyard management remain relatively neglected fields of study. The find of 454 waterlogged grapevine pips from a well-dated Etrusco-Roman site in the Chianti district (Tuscany, Central Italy) is an extraordinary chance to gain insights into the progress of viticulture occurring in a key historical period in one of the world's most famous wine regions. The molecular and geometrical analyses of grape seeds showed (a) the presence in the site of different grapevine individuals and (b) a sudden increase in pip size, occurring at around 200 BC, whic explainable by the selection and introduction of new varieties. In this period, the Etruscans settlers in Chianti were stimulated by northward-expanding Roman culture to use novel vineyard management practices. We hypothesize that one of the most important innovations may have been the introduction of pruning, inducing vine physiological conditions more favorable to pip growth. Such changes were the consequence of specific entrepreneurial choices made by the Romans in a period of economic investment in grape cultivation and wine making to satisfy the increased trade demand after the conquest of the Central-Western Mediterranean basin. PMID:29140987

  15. Prevalence of prelingual deafness in Italy

    PubMed Central

    Bubbico, L; Rosano, A; Spagnolo, A

    2007-01-01

    Summary Neonatal hearing loss is the most frequent sensorial congenital defect in newborns. No data are available on worldwide prevalence of congenital deafness. World Health Organization (WHO) data indicate 1-4 cases per 1,000 individuals, with a considerable increase in developing countries. A prevalence exceeding 1 per 1,000 however, indicates a serious public health problem calling for urgent attention. Aim of the study was the evaluate the prevalence of prelingual deafness in the Italian population and determine the socio-demographic characteristics of the condition. Data were provided by the National Institute of Social Insurance (INPS) and the Italian Central Statistics Institute (ISTAT) and were collected in 18 out of the 20 Italian regions (98.2% of total population). All subjects recognized as deaf-mute by a special medical committee were included. According to law No. 509/1988, they had to present a mean bilateral sensorineural-hearing impairment, detected in neonatal age, which caused the damage in speech development and equal to 60 dB or more for 500-, 1,000- and 2,000-Hz frequency tones in the better ear. Prevalence rates were calculated according to region and age bracket using updated population data from census 2001. Statistical analyses were performed using the SPSS statistical software package. A total of 40,887 cases of prelingual profound sensorineural hearing loss ≥ 60 dB were detected in Italy in 2003, for a total prevalence rate of 0.72 per 1,000. The hearing impairment prevalence differs according to sex. The overall prevalence is 0.78 per 1,000 for males and 0.69 per 1,000 for females (p < 0.001). The hearing impairment prevalence differs according to region of residence (p < 0.001). The geographic distribution of prelingual deafness was found to be: North 15,644 cases (0.63 per 1,000), Central Italy 7,111 cases (0.64 per 1,000), South and Islands 18,132 (0.87 per 1,000). The prelingual hearing loss is highly prevalent in South Italy (Basilicata, Calabria and Sicily). For the southern regions of Italy, the rate observed in the 50-64 and > 64 age groups reached 1.27 and 1.15, respectively. This phenomenon may have been due, in part, to the epidemic incidence of maternal rubella which occurred in the 40’s and 50’s (in Italy, the rubella vaccination was only recommended starting from 1972), and, in part, to the habit of contracting consanguineous marriages. Data from the Vatican Archives on 520,492 consanguineous marriages, for which dispensation was requested in the period 1911-1964, indicate that in the years 1935-1939, in small villages in South Italy (Basilicata, Calabria, Sicily) consanguineous marriages accounted for over 40% of marriages. PMID:17601206

  16. Technological study of ancient ceramics produced in Casteldurante (central Italy) during the Renaissance

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Fermo, P.; Gilardoni, S.; Galli, A.

    In order to recover the ancient tradition concerning the materials used for the decoration, majolica shards produced during the Renaissance period in Casteldurante, a famous centre for ceramic production in Italy (Marche), have been examined. In the present study, pigments used for the decorations have been investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) and diffuse-reflectance UV-Vis spectroscopy. Ochre, lead antimonate yellow, copper-based pigment and smalt have been used as colourants to obtain respectively yellow-orange, yellow, green and blue decorations in accordance with what is reported by the ancient recipes.

  17. Recorded motions of the 6 April 2009 Mw 6.3 L'Aquila, Italy, earthquake and implications for building structural damage: Overview

    USGS Publications Warehouse

    Celebi, M.; Bazzurro, P.; Chiaraluce, L.; Clemente, P.; Decanini, L.; Desortis, A.; Ellsworth, W.; Gorini, A.; Kalkan, E.; Marcucci, S.; Milana, G.; Mollaioli, F.; Olivieri, M.; Paolucci, R.; Rinaldis, D.; Rovelli, A.; Sabetta, F.; Stephens, C.

    2010-01-01

    The normal-faulting earthquake of 6 April 2009 in the Abruzzo Region of central Italy caused heavy losses of life and substantial damage to centuriesold buildings of significant cultural importance and to modern reinforcedconcrete- framed buildings with hollow masonry infill walls. Although structural deficiencies were significant and widespread, the study of the characteristics of strong motion data from the heavily affected area indicated that the short duration of strong shaking may have spared many more damaged buildings from collapsing. It is recognized that, with this caveat of shortduration shaking, the infill walls may have played a very important role in preventing further deterioration or collapse of many buildings. It is concluded that better new or retrofit construction practices that include reinforcedconcrete shear walls may prove helpful in reducing risks in such seismic areas of Italy, other Mediterranean countries, and even in United States, where there are large inventories of deficient structures. ?? 2010, Earthquake Engineering Research Institute.

  18. Obtaining Reimbursement in France and Italy for New Diabetes Products

    PubMed Central

    Schaefer, Elmar; Sonsalla, Jessica

    2015-01-01

    Manufacturers launching next-generation or innovative medical devices in Europe face a very heterogeneous reimbursement landscape, with each country having its own pathways, timing, requirements and success factors. We selected 2 markets for a deeper look into the reimbursement landscape: France, representing a country with central decision making with defined processes, and Italy, which delegates reimbursement decisions to the regional level, resulting in a less transparent approach to reimbursement. Based on our experience in working on various new product launches and analyzing recent reimbursement decisions, we found that payers in both countries do not reward improved next-generation products with incremental reimbursement. Looking at innovations, we observe that manufacturers face a challenging and lengthy process to obtain reimbursement. In addition, requirements and key success factors differ by country: In France, comparative clinical evidence and budget impact very much drive reimbursement decisions in terms of pricing and restrictions, whereas in Italy, regional key opinion leader (KOL) support and additional local observational data are key. PMID:25550411

  19. Obtaining reimbursement in France and Italy for new diabetes products.

    PubMed

    Schaefer, Elmar; Schnell, Gerald; Sonsalla, Jessica

    2015-01-01

    Manufacturers launching next-generation or innovative medical devices in Europe face a very heterogeneous reimbursement landscape, with each country having its own pathways, timing, requirements and success factors. We selected 2 markets for a deeper look into the reimbursement landscape: France, representing a country with central decision making with defined processes, and Italy, which delegates reimbursement decisions to the regional level, resulting in a less transparent approach to reimbursement. Based on our experience in working on various new product launches and analyzing recent reimbursement decisions, we found that payers in both countries do not reward improved next-generation products with incremental reimbursement. Looking at innovations, we observe that manufacturers face a challenging and lengthy process to obtain reimbursement. In addition, requirements and key success factors differ by country: In France, comparative clinical evidence and budget impact very much drive reimbursement decisions in terms of pricing and restrictions, whereas in Italy, regional key opinion leader (KOL) support and additional local observational data are key. © 2015 Diabetes Technology Society.

  20. Boot of Italy taken during Expedition Six

    NASA Image and Video Library

    2003-02-25

    ISS006-E-33736 (25 February 2003) --- The boot of Italy crosses the image in this southwest-looking view taken by an Expedition Six crewmember onboard the International Space Station (ISS). The spine of Italy is highlighted with snow and the largely cloud-covered Mediterranean Sea is at the top. The Adriatic Sea transverses most of the bottom of the image and Sicily appears top left beyond the toe of the boot. The heel lies out of the left side of the image. Corsica and Sardinia appear right of center partly under cloud. The floor of the Po River valley, lower right, is obscured by haze. Experience gained from similar haze events, in which atmospheric pressure, humidity and visibility and atmospheric chemistry were known, suggests that the haze as industrial smog. Industrial haze from the urban region of the central and upper Po valley accumulates to visible concentrations under conditions of high atmospheric pressure and the surrounding mountains prevent easy dispersal. This view illustrates the markedly different color and texture of cloud versus industrial aerosol haze.

  1. Analysis and modeling of soil slips in the Emilia Romagna Apennine (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Montrasio, L.; Valentino, R.; Losi, G.

    2009-04-01

    On 10-11 April 2005 the Emilia Romagna Apennine was affected by an intense rainfall event that triggered dozens of soil slips in the Province of Reggio Emilia. These phenomena have been widely described in the scientific literature, referring to historical events occurred in many parts of the world. The particular danger of these phenomena is related to their speed of development, with the difficulty of foreseeing their location, but also with the high density of distribution of individual phenomena, whose downhill trajectories have a substantial probability of interfering with urbanized areas. During the event of April 2005 in the Emilia Romagna Apennine, these shallow landslides mainly occurred on slopes of cultivated lands, often provoking the interruption of roads, heavy damages to the farming activities and economic losses. On the basis of an inventory by aerial photograph interpretation, it was possible to locate 45 sites where soil slips occurred. In the present work the study area is described, considering both geological and climatic aspects. The inducing factors, which are relative to the territory morphology, and the outbreak factors of the triggering mechanism, which are relative to the rainfall conditions, are deeply analyzed. Once known geometrical features and soil characteristics of the slopes, for each site a physically based triggering model, that has recently developed by the Authors, has been applied by considering the local scale of the phenomenon. The model allows to take into account dynamically, in a simplified way, the connection between the stability condition of a slope, the characteristics of the soil and rainfall amounts, including also antecedent rainfalls. The model, in fact, is aimed to give an answer to the recent challenge represented by the dynamic use of real-time landslides early warning systems, the basis of which have to be the coupling between rainfall amounts, hydrological model and stability slope models. The triggering model is based on the limit equilibrium method and considers the hypothesis of infinite slope. The model takes into account the mechanical characteristics of the soil, in condition of partial saturation, and the outflow of underground water. The model allows to calculate the safety factor of a slope versus time on the basis of the previous rainfall amount. The paper contains also a detailed explanation of the choice of the model input data that have been used to carry out the procedure of back analysis for the 45 study sites. In particular, the slope angle has been evaluated for each site on the basis of the Digital Elevation Model (DEM) information and the thickness of the soil has been determined on the basis of field observations. Colluvial, regolithic and in general Quaternary deposits are the soils involved in the soil slips considered. On the basis of geological map information and according to the Unified Soil Classification System (USCS), the most common types of soil present in the sample sites resulted silty sand, silty clay and sandy silt. The physical properties of these soils, such as porosity and specific weight, and Mohr-Coulomb shear strength parameters, were assumed taking into account the average values of parameters as reported in the scientific literature for the same types of soils. Other specific model parameters that are directly linked with the type of soil, have been consequently assigned on the basis of previous works carried out by the Authors. Moreover, the parameter that describes the discharge capability of the soil, has been assumed as typical permeability value obtained through field measurements by other Authors, for similar kind of soils and conditions. The results obtained by the application of the model are accurately analyzed and discussed. For each analyzed site, it is shown how the model highlights the instability condition on the real date of the event and the stability condition for the remaining period, under an observation period of 3 years, thus confirming the capability of the model to grasp the triggering mechanism of the analyzed phenomena.

  2. Paths to Change: Bio-Economic Factors, Geographical Gradients and the Land-Use Structure of Italy.

    PubMed

    Masini, Emanuela; Barbati, Anna; Bencardino, Massimiliano; Carlucci, Margherita; Corona, Piermaria; Salvati, Luca

    2018-01-01

    This study introduces a bio-economic approach to evaluate the influence of local socioeconomic contexts on complex processes of landscape transformation (urbanization, withdrawal of farming with woodland creation and loss in crop mosaics) in a sustainable development perspective. Land-use and socioeconomic indicators (including shares of agriculture, industry and services in total product, per-worker value added, productivity by economic sector, distance from central cities, latitude and elevation) at the local district scale in Italy have been considered together in an exploratory approach based on multivariate statistics. The combined use of land-use and socioeconomic indicators was preferred to more traditional approaches based on single-variable analysis and allows identifying latent factors of landscape transformation at the local scale. Our approach sheds light in the intimate relationship between regional economic structures and land-use change in districts with varying socio-environmental attributes across Italy. Urban-rural divides, coastal-inland dichotomy and the elevation gradient were relevant factors shaping urbanization-driven landscape transformations at the country scale. Indicators of economic structure (and especially industrial production and per-worker productivity of industry and services) were also documented to influence greatly entity and direction of change in the use of land. Discontinuous and dispersed urbanization has been demonstrated to be spatially-decoupled from consolidated (continuous and compact) urbanization, expanding into undeveloped rural areas progressively far away from central cities and being spatially associated with forest land.

  3. Paths to Change: Bio-Economic Factors, Geographical Gradients and the Land-Use Structure of Italy

    NASA Astrophysics Data System (ADS)

    Masini, Emanuela; Barbati, Anna; Bencardino, Massimiliano; Carlucci, Margherita; Corona, Piermaria; Salvati, Luca

    2018-01-01

    This study introduces a bio-economic approach to evaluate the influence of local socioeconomic contexts on complex processes of landscape transformation (urbanization, withdrawal of farming with woodland creation and loss in crop mosaics) in a sustainable development perspective. Land-use and socioeconomic indicators (including shares of agriculture, industry and services in total product, per-worker value added, productivity by economic sector, distance from central cities, latitude and elevation) at the local district scale in Italy have been considered together in an exploratory approach based on multivariate statistics. The combined use of land-use and socioeconomic indicators was preferred to more traditional approaches based on single-variable analysis and allows identifying latent factors of landscape transformation at the local scale. Our approach sheds light in the intimate relationship between regional economic structures and land-use change in districts with varying socio-environmental attributes across Italy. Urban-rural divides, coastal-inland dichotomy and the elevation gradient were relevant factors shaping urbanization-driven landscape transformations at the country scale. Indicators of economic structure (and especially industrial production and per-worker productivity of industry and services) were also documented to influence greatly entity and direction of change in the use of land. Discontinuous and dispersed urbanization has been demonstrated to be spatially-decoupled from consolidated (continuous and compact) urbanization, expanding into undeveloped rural areas progressively far away from central cities and being spatially associated with forest land.

  4. A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation

    PubMed Central

    Matteucci, Federica; Ercole, Claudia; del Gallo, Maddalena

    2015-01-01

    Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo (“Val Vibrata”), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area. PMID:26388862

  5. Food waste in Central Europe - challenges and solutions

    NASA Astrophysics Data System (ADS)

    den Boer, Jan; Kobel, Przemysław; Dyjakon, Arkadiusz; Urbańska, Klaudia; Obersteiner, Gudrun; Hrad, Marlies; Schmied, Elisabeth; den Boer, Emilia

    2017-11-01

    Food waste is an important issue in the global economy. In the EU many activities aimed at this topic are carried out, however in Central Europe is still quite pristine. There is lack of reliable data on food waste quantities in this region, and not many preventive actions are taken. To improve this situation the STREFOWA (Strategies to Reduce and Manage Food Waste in Central Europe) was initiated. It is an international project (Austria, Czech Republic, Hungary, Italy, Poland), founded by the Interreg Central Europe programme, running from July 2016 to June 2019. Its main purpose is to provide solutions to prevent and manage food waste throughout the entire food supply chain. The results of STREFOWA will have positive economical, social and environmental impacts.

  6. Ethnobotanical remarks on Central and Southern Italy

    PubMed Central

    Guarrera, Paolo Maria; Lucia, Leporatti Maria

    2007-01-01

    Background The present paper is a brief survey on the ethnobotanical works published by the Authors since 1981, concerning the research carried out in some southern and central Italian regions. Before Roman domination these territories were first inhabited by local people, while the southern areas were colonized by the Greeks. These different cultural contributions left certain traces, both in the toponyms and in the vernacular names of the plants and, more generally, in the culture as a whole. Methods Field data were collected through open interviews, mainly of farmers, shepherds and elderly people, born or living in these areas for a long time. Voucher specimens of collected plants are preserved in the respective herbaria of the Authors and in the herbarium of "Roma Tre" University. Important contributions have been made by several students native to the areas under consideration. A comparative analysis with local specific ethnobotanical literature was carried out. Results The paper reports several examples concerning human and veterinary popular medicine and in addition some anti-parasitic, nutraceutic, dye and miscellaneous uses are also described. Moreover vernacular names and toponyms are cited. Eight regions of central and southern Italy (particularly Latium, Abruzzo, Marche and Basilicata) were investigated and the data obtained are presented in 32 papers. Most of the species of ethnobotanical interest have been listed in Latium (368 species), Marche (274) and Abruzzo (203). The paper also highlights particularly interesting aspects or uses not previously described in the specific ethnobotanical literature. Conclusion Phyto-therapy in central and southern Italy is nowadays practised by a few elderly people who resort to medicinal plants only for mild complaints (on the contrary food uses are still commonly practised). Nowadays therapeutic uses, unlike in the past, are less closely or not at all linked to ritual aspects. Several plants deserve to be taken into consideration not only from the anthropological or cultural point of view, but also for further phyto-chemical investigation. Our studies, as well as those of other authors, try to provide an original picture of the local ethno-biodiversity. PMID:17537240

  7. AniTomo - New Anisotropic Teleseismic Body-Wave Tomography Code to Unravel Structure of the Upper Mantle: Impact of Inversion Settings on Inferences of the Output Model

    NASA Astrophysics Data System (ADS)

    Munzarova, H.; Plomerova, J.; Kissling, E. H.

    2015-12-01

    Consideration of only isotropic wave propagation and neglecting anisotropy in tomography studies is a simplification obviously incongruous with current understanding of mantle-lithosphere plate dynamics. Both fossil anisotropy in the mantle lithosphere and anisotropy due to the present-day flow in the asthenosphere may significantly influence propagation of seismic waves. We present a novel code for anisotropic teleseismic tomography (AniTomo) that allows to invert relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. We have modified frequently-used isotropic teleseismic tomography code Telinv by assuming weak hexagonal anisotropy with symmetry axis oriented generally in 3D to be, together with heterogeneities, a source of the observed P-wave travel-time residuals. Careful testing of the new code with synthetics, concentrating on strengths and limitations of the inversion method, is a necessary step before AniTomo is applied to real datasets. We examine various aspects of anisotropic tomography and particularly influence of ray coverage on resolvability of individual model parameters and of initial models on the result. Synthetic models are designed to schematically represent heterogeneous and anisotropic structures in the upper mantle. Several synthetic tests mimicking a real tectonic setting, e.g. the lithosphere subduction in the Northern Apennines in Italy (Munzarova et al., G-Cubed, 2013), allow us to make quantitative assessments of the well-known trade-off between effects of seismic anisotropy and heterogeneities. Our results clearly document that significant distortions of imaged velocity heterogeneities may result from neglecting anisotropy.

  8. Comparison of radioactivity data measured in PM10 aerosol samples at two elevated stations in northern Italy during the Fukushima event.

    PubMed

    Tositti, Laura; Brattich, Erika; Cinelli, Giorgia; Previti, Alberto; Mostacci, Domiziano

    2012-12-01

    The follow-up of Fukushima radioactive plume resulting from the 11th March 2011 devastating tsunami is discussed for two Italian stations in the northern Apennines: Mt. Cimone (Modena) and Montecuccolino (Bologna). Radioactivity data collected at both stations are described, including comparison between local natural background of airborne particulate and artificial radioactivity referable to the arrival of the radioactive plume and its persistence and evolution. Analysis of back-trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. The Fukushima plume was first detected on 3rd April 2011 when high volume sampling revealed the presence of the artificial radionuclides (131)I, (137)Cs and (134)Cs. The highest activity concentrations of these nuclides were detected on 5th April 2011 at the Montecuccolino site. Fukushima radioactivity data at the two stations were usually comparable, suggesting a good vertical mixing of the plume; discrepancies were occasional and attributed to different occurrence of wet removal, typically characterized by a scattered spatial pattern. To understand the relevance to the local population of the extra dose due to the Fukushima plume, atmospheric activities of the related artificial nuclides were compared to those of the main natural radionuclides in ambient particulate, and found to be lower by over one order of magnitude. Radiation doses referable to Fukushima, maximized for a whole year occurrence at the highest activity level observed at our stations in the weeks affected by the Japanese plume, were estimated at 1.1 μSv/year. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Alien Insects in Italy: Comparing Patterns from the Regional to European Level

    PubMed Central

    Inghilesi, Alberto F.; Mazza, Giuseppe; Cervo, Rita; Gherardi, Francesca; Sposimo, Paolo; Tricarico, Elena; Zapparoli, Marzio

    2013-01-01

    The introduction of species outside their native range contributes to the loss of biodiversity, alters the structure and functioning of ecosystems, and damages economy and human health. Insects are one of the taxa with the highest frequency of introduction due to their high diversity, biological properties, and close association with human activities. Here, the allodiversity of Italian entomofauna was analyzed, with a focus on Tuscany (Central Italy). A list of alien insects in Tuscany is included. The status of the alien entomofauna in Italy was updated. The number of alien insects amounts to 122 in Tuscany and 923 in Italy. An introduction rate of 98 species per decade was estimated in Italy. In Tuscany, alien insects belong to 10 orders, mostly Coleoptera (38%), Hemiptera (Sternorrhyncha and Auchenorrhyncha) (23%), and Hymenoptera (13%). They have been most often introduced through vegetable items (ornamental plants or crops). Most species come from the Nearctic region (26%) and are both phytophagous (63%) and amphigonic (80%). Differences and similarities in introduction patterns and in insect abundances across orders among regional, national, and European scales, also considering worldwide abundances, are discussed. Finally, a paucity of information regarding the negative impacts of many species, except for economic pests, phytosanitary threats, and vectors of disease, is underlined. A deeper understanding of the alien insects' ecological impact might help designate policies aimed at preventing further introductions and control the invasive populations of already established species. PMID:24219427

  10. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area

    NASA Astrophysics Data System (ADS)

    Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.

    2009-12-01

    We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between <2800 and ca 2000 yrs BP. A total of 31 and 6 tephra layers were identified within the SUL2 and SUL1 units, respectively. However, only 28 tephra layers yielded fresh micro-pumices or glass shards suitable for chemical analyses using a microprobe wavelength dispersive spectrometer. Chronological and compositional constraints suggest that 27 ash layers probably derive from the Mt. Somma-Vesuvius Holocene volcanic activity, and one to the Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600-3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the "Pomici di Avellino" eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called "Protohistoric" or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600-4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian "Pomici di Mercato" (ca 9000 yrs BP) and "Pomici di Avellino" eruptions. Alternatively, since at present there is no evidence of a similar significant activity in the proximal area of this well-known volcano, a hitherto unknown origin of these tephras cannot be role out. The results of the present study provide new data that enrich our previous knowledge of the Holocene tephrostratigraphy and tephrochronology in central Italy, and a new model for the recent explosive activity of the Peninsular Italy volcanoes and the dispersal of the related pyroclastic deposits.

  11. Bio-Monitoring of Ozone by Young Students

    ERIC Educational Resources Information Center

    Lorenzini, Giacomo; Nali, Cristina

    2004-01-01

    An educational pilot project on the bio-monitoring of air quality was carried out in the Umbria Region of Central Italy. It involved about 1000 young students (ages 4 to 16) from 42 schools of 16 municipalities in active biomonitoring of tropospheric ozone with bio-indicator sensitive tobacco seedlings. Some 6500 raw biological readings were used…

  12. Steps to the Corporate Classroom: A Propositional Inventory

    ERIC Educational Resources Information Center

    Doughty, Howard A.

    2008-01-01

    The text for this article derives from Antonio Gramsci's Prison Notebooks, which contain the central elements of his extensive critique of education in Benito Mussolini's Italy. In prison from 1926 to 1937, he produced a remarkable amount of writing on many political and cultural subjects, all of which were scribbled out in student notebooks and…

  13. Diffusion and use of health technology assessment in policy making: what lessons for decentralised healthcare systems?

    PubMed

    Ciani, Oriana; Tarricone, Rosanna; Torbica, Aleksandra

    2012-12-01

    The Italian National Healthcare System (NHS) is one of the most decentralised systems since the devolution reform approved in 2001. HTA is spreading as an important tool for decision-making processes both at central and local levels. The aims of this study were to review the state of the health technology assessment (HTA) programmes in Italy - with a focus on regional and central initiatives - and to discuss consequences of a multi-level structure of HTA agencies in highly regionalised healthcare systems. Our method combined documentary review with interviews. We reviewed scientific literature about HTA's activities in decentralised systems, legislative and administrative documents from national as well as regional authorities. Semi-structured interviews were conducted with 18 key individuals associated with HTA both at the national and regional levels. Data on HTA programmes implemented or under development in nine regions were collected and analysed according to key principles for the improved conduct of health technology assessments for resource allocation decisions. HTA is in the early stage of development in Italy, although with great heterogeneity across regions. The National Agency for Health Services has certainly contributed to HTA diffusion through supporting and training activities. However, the multi-level structure of HTA in Italy has not yet provided full coordination and harmonisation of practices and outcomes across the country, with a consequent exacerbate inequality of access to services and technologies. There is probably need to rethink the multi-layer organizational framework of HTA in Italy by leveraging on current knowledge and efficient redistribution of activities across regions. We would advise for different jurisdictions playing different roles while achieving similar health outcomes for their patients, rather than jurisdictions aiming at doing exactly the same things resulting in unequal access to healthcare service provision. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The areal reduction factor: A new analytical expression for the Lazio Region in central Italy

    NASA Astrophysics Data System (ADS)

    Mineo, C.; Ridolfi, E.; Napolitano, F.; Russo, F.

    2018-05-01

    For the study and modeling of hydrological phenomena, both in urban and rural areas, a proper estimation of the areal reduction factor (ARF) is crucial. In this paper, we estimated the ARF from observed rainfall data as the ratio between the average rainfall occurring in a specific area and the point rainfall. Then, we compared the obtained ARF values with some of the most widespread empirical approaches in literature which are used when rainfall observations are not available. Results highlight that the literature formulations can lead to a substantial over- or underestimation of the ARF estimated from observed data. These findings can have severe consequences, especially in the design of hydraulic structures where empirical formulations are extensively applied. The aim of this paper is to present a new analytical relationship with an explicit dependence on the rainfall duration and area that can better represent the ARF-area trend over the area case of study. The analytical curve presented here can find an important application to estimate the ARF values for design purposes. The test study area is the Lazio Region (central Italy).

  15. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    PubMed Central

    Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.; Amoroso, S.; Aringoli, D.; Auciello, E.; Azzaro, R.; Baize, S.; Bello, S.; Benedetti, L.; Bertagnini, A.; Binda, G.; Bisson, M.; Blumetti, A.M.; Bonadeo, L.; Boncio, P.; Bornemann, P.; Branca, S.; Braun, T.; Brozzetti, F.; Brunori, C.A.; Burrato, P.; Caciagli, M.; Campobasso, C.; Carafa, M.; Cinti, F.R.; Cirillo, D.; Comerci, V.; Cucci, L.; De Ritis, R.; Deiana, G.; Del Carlo, P.; Del Rio, L.; Delorme, A.; Di Manna, P.; Di Naccio, D.; Falconi, L.; Falcucci, E.; Farabollini, P.; Faure Walker, J.P.; Ferrarini, F.; Ferrario, M.F.; Ferry, M.; Feuillet, N.; Fleury, J.; Fracassi, U.; Frigerio, C.; Galluzzo, F.; Gambillara, R.; Gaudiosi, G.; Goodall, H.; Gori, S.; Gregory, L.C.; Guerrieri, L.; Hailemikael, S.; Hollingsworth, J.; Iezzi, F.; Invernizzi, C.; Jablonská, D.; Jacques, E.; Jomard, H.; Kastelic, V.; Klinger, Y.; Lavecchia, G.; Leclerc, F.; Liberi, F.; Lisi, A.; Livio, F.; Lo Sardo, L.; Malet, J.P.; Mariucci, M.T.; Materazzi, M.; Maubant, L.; Mazzarini, F.; McCaffrey, K.J.W.; Michetti, A.M.; Mildon, Z.K.; Montone, P.; Moro, M.; Nave, R.; Odin, M.; Pace, B.; Paggi, S.; Pagliuca, N.; Pambianchi, G.; Pantosti, D.; Patera, A.; Pérouse, E.; Pezzo, G.; Piccardi, L.; Pierantoni, P.P.; Pignone, M.; Pinzi, S.; Pistolesi, E.; Point, J.; Pousse, L.; Pozzi, A.; Proposito, M.; Puglisi, C.; Puliti, I.; Ricci, T.; Ripamonti, L.; Rizza, M.; Roberts, G.P.; Roncoroni, M.; Sapia, V.; Saroli, M.; Sciarra, A.; Scotti, O.; Skupinski, G.; Smedile, A.; Soquet, A.; Tarabusi, G.; Tarquini, S.; Terrana, S.; Tesson, J.; Tondi, E.; Valentini, A.; Vallone, R.; Van der Woerd, J.; Vannoli, P.; Venuti, A.; Vittori, E.; Volatili, T.; Wedmore, L.N.J.; Wilkinson, M.; Zambrano, M.

    2018-01-01

    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting. PMID:29583143

  16. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    PubMed

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy.

    PubMed

    Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco

    2018-03-27

    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2 . The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.

  19. Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers of Tuscany (Central Italy)

    USGS Publications Warehouse

    Hupp, C.R.; Rinaldi, M.

    2007-01-01

    Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Field surveys were conducted along thirteen gauged reaches for species presence, fluvial landforms, and the type and amount of channel/riparian zone change. Inundation frequency of different geomorphic surfaces was determined, and vegetation data were analyzed using BDA (binary discriminate analysis) and DCA (detrended correspondence analysis) and related to hydrogeomorphology. Multivariate analyses revealed distinct quantitative vegetation patterns relative to six major fluvial geomorphic surfaces. DCA of the vegetation data also showed distinct associations of plants to processes of adjustment that are related to stage of channel evolution, and clearly separated plants along disturbance/landform/soil moisture gradients. Species richness increases from the channel bed to the terrace and on heterogeneous riparian areas, whereas species richness decreases from moderate to intense incision and from low to intense narrowing. ?? 2007 by Association of American Geographers.

  20. The future of terrestrial mammals in the Mediterranean basin under climate change

    PubMed Central

    Maiorano, Luigi; Falcucci, Alessandra; Zimmermann, Niklaus E.; Psomas, Achilleas; Pottier, Julien; Baisero, Daniele; Rondinini, Carlo; Guisan, Antoine; Boitani, Luigi

    2011-01-01

    The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition. PMID:21844047

Top