Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.
ERIC Educational Resources Information Center
Wetherby, Amy Miller; And Others
1981-01-01
The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)
Auditory system dysfunction in Alzheimer disease and its prodromal states: A review.
Swords, Gabriel M; Nguyen, Lydia T; Mudar, Raksha A; Llano, Daniel A
2018-07-01
Recent findings suggest that both peripheral and central auditory system dysfunction occur in the prodromal stages of Alzheimer Disease (AD), and therefore may represent early indicators of the disease. In addition, loss of auditory function itself leads to communication difficulties, social isolation and poor quality of life for both patients with AD and their caregivers. Developing a greater understanding of auditory dysfunction in early AD may shed light on the mechanisms of disease progression and carry diagnostic and therapeutic importance. Herein, we review the literature on hearing abilities in AD and its prodromal stages investigated through methods such as pure-tone audiometry, dichotic listening tasks, and evoked response potentials. We propose that screening for peripheral and central auditory dysfunction in at-risk populations is a low-cost and effective means to identify early AD pathology and provides an entry point for therapeutic interventions that enhance the quality of life of AD patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Learning Disability Assessed through Audiologic and Physiologic Measures: A Case Study.
ERIC Educational Resources Information Center
Greenblatt, Edward R.; And Others
1983-01-01
The report describes a child with central auditory dysfunction, the first reported case where brain-stem dysfunction on audiologic tests were associated with specific electrophysiologic changes in the brain-stem auditory-evoked responses. (Author/CL)
Central Processing Dysfunctions in Children: A Review of Research.
ERIC Educational Resources Information Center
Chalfant, James C.; Scheffelin, Margaret A.
Research on central processing dysfunctions in children is reviewed in three major areas. The first, dysfunctions in the analysis of sensory information, includes auditory, visual, and haptic processing. The second, dysfunction in the synthesis of sensory information, covers multiple stimulus integration and short-term memory. The third area of…
Screening and Assessment of Young Children.
ERIC Educational Resources Information Center
Friedlander, Bernard Z.
Most language development hazards in infancy and early childhood fall into the categories of auditory impairment, central integrative dysfunction, inadequate environmental support, and peripheral expressive impairment. Existing knowledge and techniques are inadequate to meet the screening and assessment problems of central integrative dysfunction,…
Auditory dysfunction associated with solvent exposure
2013-01-01
Background A number of studies have demonstrated that solvents may induce auditory dysfunction. However, there is still little knowledge regarding the main signs and symptoms of solvent-induced hearing loss (SIHL). The aim of this research was to investigate the association between solvent exposure and adverse effects on peripheral and central auditory functioning with a comprehensive audiological test battery. Methods Seventy-two solvent-exposed workers and 72 non-exposed workers were selected to participate in the study. The test battery comprised pure-tone audiometry (PTA), transient evoked otoacoustic emissions (TEOAE), Random Gap Detection (RGD) and Hearing-in-Noise test (HINT). Results Solvent-exposed subjects presented with poorer mean test results than non-exposed subjects. A bivariate and multivariate linear regression model analysis was performed. One model for each auditory outcome (PTA, TEOAE, RGD and HINT) was independently constructed. For all of the models solvent exposure was significantly associated with the auditory outcome. Age also appeared significantly associated with some auditory outcomes. Conclusions This study provides further evidence of the possible adverse effect of solvents on the peripheral and central auditory functioning. A discussion of these effects and the utility of selected hearing tests to assess SIHL is addressed. PMID:23324255
Ma, Xiaoran; McPherson, Bradley; Ma, Lian
2016-03-01
Objective Children with nonsyndromic cleft lip and/or palate often have a high prevalence of middle ear dysfunction. However, there are also indications that they may have a higher prevalence of (central) auditory processing disorder. This study used Fisher's Auditory Problems Checklist for caregivers to determine whether children with nonsyndromic cleft lip and/or palate have potentially more auditory processing difficulties compared with craniofacially normal children. Methods Caregivers of 147 school-aged children with nonsyndromic cleft lip and/or palate were recruited for the study. This group was divided into three subgroups: cleft lip, cleft palate, and cleft lip and palate. Caregivers of 60 craniofacially normal children were recruited as a control group. Hearing health tests were conducted to evaluate peripheral hearing. Caregivers of children who passed this assessment battery completed Fisher's Auditory Problems Checklist, which contains 25 questions related to behaviors linked to (central) auditory processing disorder. Results Children with cleft palate showed the lowest scores on the Fisher's Auditory Problems Checklist questionnaire, consistent with a higher index of suspicion for (central) auditory processing disorder. There was a significant difference in the manifestation of (central) auditory processing disorder-linked behaviors between the cleft palate and the control groups. The most common behaviors reported in the nonsyndromic cleft lip and/or palate group were short attention span and reduced learning motivation, along with hearing difficulties in noise. Conclusion A higher occurrence of (central) auditory processing disorder-linked behaviors were found in children with nonsyndromic cleft lip and/or palate, particularly cleft palate. Auditory processing abilities should not be ignored in children with nonsyndromic cleft lip and/or palate, and it is necessary to consider assessment tests for (central) auditory processing disorder when an auditory diagnosis is made for this population.
Castellanos, Marie-Josée; Fuente, Adrian
2016-12-09
Exposure to some chemicals in the workplace can lead to occupational chemical-induced hearing loss. Attention has mainly focused on the adverse auditory effects of solvents. However, other chemicals such as heavy metals have been also identified as ototoxic agents. The aim of this work was to review the current scientific knowledge about the adverse auditory effects of heavy metal exposure with and without co-exposure to noise in humans. PubMed and Medline were accessed to find suitable articles. A total of 49 articles met the inclusion criteria. Results from the review showed that no evidence about the ototoxic effects in humans of manganese is available. Contradictory results have been found for arsenic, lead and mercury as well as for the possible interaction between heavy metals and noise. All studies found in this review have found that exposure to cadmium and mixtures of heavy metals induce auditory dysfunction. Most of the studies investigating the adverse auditory effects of heavy metals in humans have investigated human populations exposed to lead. Some of these studies suggest peripheral and central auditory dysfunction induced by lead exposure. It is concluded that further evidence from human studies about the adverse auditory effects of heavy metal exposure is still required. Despite this issue, audiologists and other hearing health care professionals should be aware of the possible auditory effects of heavy metals.
Estradiol-dependent modulation of auditory processing and selectivity in songbirds
Maney, Donna; Pinaud, Raphael
2011-01-01
The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency. PMID:21146556
Sensitivity and specificity of auditory steady‐state response testing
Rabelo, Camila Maia; Schochat, Eliane
2011-01-01
INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442
Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.
Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile
2014-07-01
We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.
Speech Evoked Auditory Brainstem Response in Stuttering
Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad
2014-01-01
Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262
Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.
Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R
2015-01-01
More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.
Hederstierna, Christina; Hultcrantz, Malou; Rosenhall, Ulf
2009-06-01
Turner syndrome is a chromosomal aberration affecting 1:2000 newborn girls, in which all or part of one X chromosome is absent. This leads to ovarial dysgenesis and little or no endogenous estrogen production. These women have, among many other syndromal features, a high occurrence of ear and hearing problems, and neurocognitive dysfunctions, including reduced visual-spatial abilities; it is assumed that estrogen deficiency is at least partially responsible for these problems. In this, study 30 Turner women aged 40-67, with mild to moderate hearing loss, performed a battery of hearing tests aimed at localizing the lesion causing the sensorineural hearing impairment and assessing central auditory function, primarily sound localization. The results of TEOAE, ABR and speech recognition scores in noise were all indicative of cochlear dysfunction as the cause of the sensorineural impairment. Phase audiometry, a test for sound localization, showed mild disturbances in the Turner women compared to the reference group, suggesting that auditory-spatial dysfunction is another facet of the recognized neurocognitive phenotype in Turner women.
Baseline vestibular and auditory findings in a trial of post-concussive syndrome
Meehan, Anna; Searing, Elizabeth; Weaver, Lindell; Lewandowski, Andrew
2016-01-01
Previous studies have reported high rates of auditory and vestibular-balance deficits immediately following head injury. This study uses a comprehensive battery of assessments to characterize auditory and vestibular function in 71 U.S. military service members with chronic symptoms following mild traumatic brain injury that did not resolve with traditional interventions. The majority of the study population reported hearing loss (70%) and recent vestibular symptoms (83%). Central auditory deficits were most prevalent, with 58% of participants failing the SCAN3:A screening test and 45% showing abnormal responses on auditory steady-state response testing presented at a suprathreshold intensity. Only 17% of the participants had abnormal hearing (⟩25 dB hearing loss) based on the pure-tone average. Objective vestibular testing supported significant deficits in this population, regardless of whether the participant self-reported active symptoms. Composite score on the Sensory Organization Test was lower than expected from normative data (mean 69.6 ±vestibular tests, vestibulo-ocular reflex, central auditory dysfunction, mild traumatic brain injury, post-concussive symptoms, hearing15.6). High abnormality rates were found in funduscopy torsion (58%), oculomotor assessments (49%), ocular and cervical vestibular evoked myogenic potentials (46% and 33%, respectively), and monothermal calorics (40%). It is recommended that a full peripheral and central auditory, oculomotor, and vestibular-balance evaluation be completed on military service members who have sustained head trauma.
Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model.
Amanipour, Reza M; Frisina, Robert D; Cresoe, Samantha A; Parsons, Teresa J; Xiaoxia Zhu; Borlongan, Cesario V; Walton, Joseph P
2016-08-01
The auditory brainstem response (ABR) is an electrophysiological test that examines the functionality of the auditory nerve and brainstem. Traumatic brain injury (TBI) can be detected if prolonged peak latency is observed in ABR measurements, since latency measures the neural conduction time in the brainstem, and an increase in latency can be a sign of pathological lesion at the auditory brainstem level. The ABR is elicited by brief sounds that can be used to measure hearing sensitivity as well as temporal processing. Reduction in peak amplitudes and increases in latency are indicative of dysfunction in the auditory nerve and/or central auditory pathways. In this study we used sixteen young adult mice that were divided into two groups: sham and mild traumatic brain injury (mTBI), with ABR measurements obtained prior to, and at 2, 6, and 14 weeks after injury. Abnormal ABRs were observed for the nine TBI cases as early as two weeks after injury and the deficits lasted for fourteen weeks after injury. Results indicated a significant reduction in the Peak 1 (P1) and Peak 4 (P4) amplitudes to the first noise burst, as well as an increase in latency response for P1 and P4 following mTBI. These results are the first to demonstrate auditory sound processing deficits in a rodent model of mild TBI.
Zeng, Lingling; Yang, Yang; Hu, Yujuan; Sun, Yu; Du, Zhengde; Xie, Zhen; Zhou, Tao; Kong, Weijia
2014-01-01
Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.
Perspectives on the Pure-Tone Audiogram.
Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva
The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type, degree, and configuration of hearing loss; however, it provides the clinician with information regarding only hearing sensitivity, and no information about central auditory processing or the auditory processing of real-world signals (i.e., speech, music). The pure-tone audiogram offers limited insight into functional hearing and should be viewed only as a test of hearing sensitivity. Given the limitations of the pure-tone audiogram, a brief overview is provided of available behavioral tests and electrophysiological procedures that are sensitive to the function and integrity of the central auditory system, which provide better diagnostic and rehabilitative information to the clinician and patient. American Academy of Audiology
Acute cortical deafness in a child with MELAS syndrome.
Pittet, Marie P; Idan, Roni B; Kern, Ilse; Guinand, Nils; Van, Hélène Cao; Toso, Seema; Fluss, Joël
2016-05-01
Auditory impairment in mitochondrial disorders are usually due to peripheral sensorineural dysfunction. Central deafness is only rarely reported. We report here an 11-year-old boy with MELAS syndrome who presented with subacute deafness after waking up from sleep. Peripheral hearing loss was rapidly excluded. A brain MRI documented bilateral stroke-like lesions predominantly affecting the superior temporal lobe, including the primary auditory cortex, confirming the central nature of deafness. Slow recovery was observed in the following weeks. This case serves to illustrate the numerous challenges caused by MELAS and the unusual occurrence of acute cortical deafness, that to our knowledge has not be described so far in a child in this setting.
Neurotoxicity of trimethyltin in rat cochlear organotypic cultures
Yu, Jintao; Ding, Dalian; Sun, Hong; Salvi, Richard; Roth, Jerome A.
2015-01-01
Trimethyltin (TMT), which has a variety of applications in industry and agricultural is a neurotoxin that is known to affect the auditory system as well as central nervous system (CNS) of humans and experimental animals. However, the mechanisms underlying TMT-induced auditory dysfunction are poorly understood. To gain insights into the neurotoxic effect of TMT on the peripheral auditory system, we treated cochlear organotypic cultures with concentrations of TMT ranging from 5 to 100 μM for 24 h. Interestingly, TMT preferentially damaged auditory nerve fibers and spiral ganglion neurons in a dose-dependent manner, but had no noticeable effects on the sensory hair cells at the doses employed. TMT-induced damage to auditory neurons was associated with significant soma shrinkage, nuclear condensation and activation of caspase-3, biomarkers indicative of apoptotic cell death. Our findings show that TMT is exclusively neurotoxicity in rat cochlear organotypic culture and that TMT-induced auditory neuron death occurs through a caspase-mediated apoptotic pathway. PMID:25957118
Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju
2014-08-01
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.
Henshall, Katherine R; Sergejew, Alex A; McKay, Colette M; Rance, Gary; Shea, Tracey L; Hayden, Melissa J; Innes-Brown, Hamish; Copolov, David L
2012-05-01
Central auditory processing in schizophrenia patients with a history of auditory hallucinations has been reported to be impaired, and abnormalities of interhemispheric transfer have been implicated in these patients. This study examined interhemispheric functional connectivity between auditory cortical regions, using temporal information obtained from latency measures of the auditory N1 evoked potential. Interhemispheric Transfer Times (IHTTs) were compared across 3 subject groups: schizophrenia patients who had experienced auditory hallucinations, schizophrenia patients without a history of auditory hallucinations, and normal controls. Pure tones and single-syllable words were presented monaurally to each ear, while EEG was recorded continuously. IHTT was calculated for each stimulus type by comparing the latencies of the auditory N1 evoked potential recorded contralaterally and ipsilaterally to the ear of stimulation. The IHTTs for pure tones did not differ between groups. For word stimuli, the IHTT was significantly different across the 3 groups: the IHTT was close to zero in normal controls, was highest in the AH group, and was negative (shorter latencies ipsilaterally) in the nonAH group. Differences in IHTTs may be attributed to transcallosal dysfunction in the AH group, but altered or reversed cerebral lateralization in nonAH participants is also possible. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Pratt, Rosalie Rebollo, Ed.
Eighteen author-contributed papers are presented from a 1983 Ebeltoft, Denmark conference on clinical uses of music for disabled and chronically ill persons. The following authors and titles are represented: "Music Perception" (J. Davies); "Central Auditory Dysfunction: Implications for Music and the Handicapped" (C. DeFosse and R. Price);…
Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus.
Chen, Guang-Di; Stolzberg, Daniel; Lobarinas, Edward; Sun, Wei; Ding, Dalian; Salvi, Richard
2013-01-01
High doses of sodium salicylate (SS) have long been known to induce temporary hearing loss and tinnitus, effects attributed to cochlear dysfunction. However, our recent publications reviewed here show that SS can induce profound, permanent, and unexpected changes in the cochlea and central nervous system. Prolonged treatment with SS permanently decreased the cochlear compound action potential (CAP) amplitude in vivo. In vitro, high dose SS resulted in a permanent loss of spiral ganglion neurons and nerve fibers, but did not damage hair cells. Acute treatment with high-dose SS produced a frequency-dependent decrease in the amplitude of distortion product otoacoustic emissions and CAP. Losses were greatest at low and high frequencies, but least at the mid-frequencies (10-20 kHz), the mid-frequency band that corresponds to the tinnitus pitch measured behaviorally. In the auditory cortex, medial geniculate body and amygdala, high-dose SS enhanced sound-evoked neural responses at high stimulus levels, but it suppressed activity at low intensities and elevated response threshold. When SS was applied directly to the auditory cortex or amygdala, it only enhanced sound evoked activity, but did not elevate response threshold. Current source density analysis revealed enhanced current flow into the supragranular layer of auditory cortex following systemic SS treatment. Systemic SS treatment also altered tuning in auditory cortex and amygdala; low frequency and high frequency multiunit clusters up-shifted or down-shifted their characteristic frequency into the 10-20 kHz range thereby altering auditory cortex tonotopy and enhancing neural activity at mid-frequencies corresponding to the tinnitus pitch. These results suggest that SS-induced hyperactivity in auditory cortex originates in the central nervous system, that the amygdala potentiates these effects and that the SS-induced tonotopic shifts in auditory cortex, the putative neural correlate of tinnitus, arises from the interaction between the frequency-dependent losses in the cochlea and hyperactivity in the central nervous system. Copyright © 2012 Elsevier B.V. All rights reserved.
2017-09-01
to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we
Hypothyroid-associated central vestibular disease in 10 dogs: 1999-2005.
Higgins, Michael A; Rossmeisl, John H; Panciera, David L
2006-01-01
With the exception of myxedema coma, central nervous system signs are rare in hypothyroid dogs. Central vestibular dysfunction is a possible and reversible manifestation of hypothyroidism. Medical records of dogs with vestibular dysfunction and hypothyroidism were reviewed. Of 113 records identified, 10 dogs with at least 2 concurrent clinical neurologic abnormalities localizable to the central vestibular system were included. Retrospective, descriptive study. Median age at diagnosis was 7 years (range, 5-10 years). All dogs were referred for progressive neurologic disease. Lesions were localized to the myelencephalic region in 5 dogs and to the vestibulocerebellum in 5 dogs. Two dogs had evidence of multifocal intracranial disease. Non-neurologic physical abnormalities suggestive of hypothyroidism were absent in 7 of 10 dogs. Hypercholesterolemia was the only consistent clinicopathologic abnormality detected, and was present in 7 of 10 dogs. All dogs had total thyroxine (TT4) and free thyroxine (fT4) concentrations below reference ranges, and 9 of 10 had increased TSH concentrations. Intracranial imaging studies were normal in 5 of 8 dogs, and identified lesions consistent with infarctions in 3 of 8 dogs. Albuminocytologic dissociation was detected in 5 of 6 CSF analyses. Brainstem auditory-evoked responses disclosed prolonged wave V latencies in 3 of 4 dogs tested. No other causes of central vestibular dysfunction were identified during other diagnostic investigations. The median time from initiation of treatment to clinical improvement was 4 days. Vestibular signs resolved in 9 of 10 dogs within 4 weeks. Although the pathogenesis in dogs without evidence of infarction is unknown, central vestibular dysfunction appears to be a rare but reversible neurologic sequelae of hypothyroidism.
Gao, Fei; Wang, Guangbin; Ma, Wen; Ren, Fuxin; Li, Muwei; Dong, Yuling; Liu, Cheng; Liu, Bo; Bai, Xue; Zhao, Bin; Edden, Richard A.E.
2014-01-01
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 KHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2, and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm3 volumes centered on the left and right Heschl’s gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = −0.57, p = 0.02), while a similar trend was found in the control group (r = −0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis, and suggest a potential treatment target for presbycusis. PMID:25463460
Potentiation of Chemical Ototoxicity by Noise
Steyger, Peter S.
2010-01-01
High-intensity and/or prolonged exposure to noise causes temporary or permanent threshold shifts in auditory perception. Occupational exposure to solvents or administration of clinically important drugs, such as aminoglycoside antibiotics and cisplatin, also can induce permanent hearing loss. The mechanisms by which these ototoxic insults cause auditory dysfunction are still being unraveled, yet they share common sequelae, particularly generation of reactive oxygen species, that ultimately lead to hearing loss and deafness. Individuals are frequently exposed to ototoxic chemical contaminants (e.g., fuel) and noise simultaneously in a variety of work and recreational environments. Does simultaneous exposure to chemical ototoxins and noise potentiate auditory dysfunction? Exposure to solvent vapor in noisy environments potentiates the permanent threshold shifts induced by noise alone. Moderate noise levels potentiate both aminoglycoside- and cisplatin-induced ototoxicity in both rate of onset and in severity of auditory dysfunction. Thus, simultaneous exposure to chemical ototoxins and moderate levels of noise can potentiate auditory dysfunction. Preventing the ototoxic synergy of noise and chemical ototoxins requires removing exposure to ototoxins and/or attenuating noise exposure levels when chemical ototoxins are present. PMID:20523755
Patterns of language and auditory dysfunction in 6-year-old children with epilepsy.
Selassie, Gunilla Rejnö-Habte; Olsson, Ingrid; Jennische, Margareta
2009-01-01
In a previous study we reported difficulty with expressive language and visuoperceptual ability in preschool children with epilepsy and otherwise normal development. The present study analysed speech and language dysfunction for each individual in relation to epilepsy variables, ear preference, and intelligence in these children and described their auditory function. Twenty 6-year-old children with epilepsy (14 females, 6 males; mean age 6:5 y, range 6 y-6 y 11 mo) and 30 reference children without epilepsy (18 females, 12 males; mean age 6:5 y, range 6 y-6 y 11 mo) were assessed for language and auditory ability. Low scores for the children with epilepsy were analysed with respect to speech-language domains, type of epilepsy, site of epileptiform activity, intelligence, and language laterality. Auditory attention, perception, discrimination, and ear preference were measured with a dichotic listening test, and group comparisons were performed. Children with left-sided partial epilepsy had extensive language dysfunction. Most children with partial epilepsy had phonological dysfunction. Language dysfunction was also found in children with generalized and unclassified epilepsies. The children with epilepsy performed significantly worse than the reference children in auditory attention, perception of vowels and discrimination of consonants for the right ear and had more left ear advantage for vowels, indicating undeveloped language laterality.
Auditory and vestibular dysfunctions in systemic sclerosis: literature review.
Rabelo, Maysa Bastos; Corona, Ana Paula
2014-01-01
To describe the prevalence of auditory and vestibular dysfunction in individuals with systemic sclerosis (SS) and the hypotheses to explain these changes. We performed a systematic review without meta-analysis from PubMed, LILACS, Web of Science, SciELO and SCOPUS databases, using a combination of keywords "systemic sclerosis AND balance OR vestibular" and "systemic sclerosis AND hearing OR auditory." We included articles published in Portuguese, Spanish, or English until December 2011 and reviews, letters, and editorials were excluded. We found 254 articles, out of which 10 were selected. The study design was described, and the characteristics and frequency of the auditory and vestibular dysfunctions in these individuals were listed. Afterwards, we investigated the hypothesis built by the authors to explain the auditory and vestibular dysfunctions in SS. Hearing loss was the most common finding, with prevalence ranging from 20 to 77%, being bilateral sensorineural the most frequent type. It is hypothesized that the hearing impairment in SS is due to vascular changes in the cochlea. The prevalence of vestibular disorders ranged from 11 to 63%, and the most frequent findings were changes in caloric testing, positional nystagmus, impaired oculocephalic response, changes in clinical tests of sensory interaction, and benign paroxysmal positional vertigo. High prevalence of auditory and vestibular dysfunctions in patients with SS was observed. Conducting further research can assist in early identification of these abnormalities, provide resources for professionals who work with these patients, and contribute to improving the quality of life of these individuals.
Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.
2017-01-01
This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492
Adverse effects of pesticides on central auditory functions in tobacco growers.
França, Denise Maria Vaz Romano; Bender Moreira Lacerda, Adriana; Lobato, Diolen; Ribas, Angela; Ziliotto Dias, Karin; Leroux, Tony; Fuente, Adrian
2017-04-01
To investigate the effects of exposure to pesticides on the central auditory functions (CAF) of Brazilian tobacco growers. This was a cross-sectional study carried out between 2010 and 2012. Participants were evaluated with two behavioural procedures to investigate CAF, the random gap detection test (RGDT) and the dichotic digit test in Portuguese (DDT). A total of 22 growers exposed to pesticides (study group) and 21 subjects who were not exposed to pesticides (control group) were selected. No significant differences between groups were observed for pure-tone thresholds. A significant association between pesticide exposure and the results for RGDT and DDT was found. Significant differences between pesticide-exposed and nonexposed subjects were found for RGDT frequency average and DDT binaural average, when including age and hearing level as covariates. Age was significantly associated with RGDT frequency average, DDT left ear score, DDT binaural average and DDT right ear advantage. Hearing levels were not significantly associated with any of the test scores. The relative risk of failing the DDT and RGDT for the study group was 1.88 (95% CI: 1.10-3.20) and 1.74 (95% CI: 1.06-2.86), respectively, as compared with the control group. The results showed that tobacco growers exposed to pesticides exhibited signs of central auditory dysfunction characterised by decrements in temporal processing and binaural integration processes/abilities.
Temporal processing dysfunction in schizophrenia.
Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P
2008-07-01
Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.
Kantrowitz, Joshua T.; Epstein, Michael L.; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M.; Revheim, Nadine; Lehrfeld, Nayla P.; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C.
2016-01-01
Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time–frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908. Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated NMDAR agonist administration may enhance cortical plasticity in schizophrenia. PMID:27913408
TRIMETHYLTIN EFFECTS ON AUDITORY FUNCTION AND COCHLEAR MORPHOLOGY
TMT is neurotoxicant known to alter auditory function. he present study was designed to compare TNT-induced auditory dysfunction using behavioral, electrophysiological, and anatomical techniques. dult male long Evans hooded rats (n=9-l2/group) were acutely exposed to saline, 3, 5...
Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede
2016-02-01
To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.
Temporal resolution in individuals with neurological disorders
Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane
2015-01-01
OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561
Plyler, Erin; Harkrider, Ashley W
2013-01-01
A boy, aged 2 1/2 yr, experienced sudden deterioration of speech and language abilities. He saw multiple medical professionals across 2 yr. By almost 5 yr, his vocabulary diminished from 50 words to 4, and he was referred to our speech and hearing center. The purpose of this study was to heighten awareness of Landau-Kleffner syndrome (LKS) and emphasize the importance of an objective test battery that includes serial auditory-evoked potentials (AEPs) to audiologists who often are on the front lines of diagnosis and treatment delivery when faced with a child experiencing unexplained loss of the use of speech and language. Clinical report. Interview revealed a family history of seizure disorder. Normal social behaviors were observed. Acoustic reflexes and otoacoustic emissions were consistent with normal peripheral auditory function. The child could not complete behavioral audiometric testing or auditory processing tests, so serial AEPs were used to examine central nervous system function. Normal auditory brainstem responses, a replicable Na and absent Pa of the middle latency responses, and abnormal slow cortical potentials suggested dysfunction of auditory processing at the cortical level. The child was referred to a neurologist, who confirmed LKS. At age 7 1/2 yr, after 2 1/2 yr of antiepileptic medications, electroencephalographic (EEG) and audiometric measures normalized. Presently, the child communicates manually with limited use of oral information. Audiologists often are one of the first professionals to assess children with loss of speech and language of unknown origin. Objective, noninvasive, serial AEPs are a simple and valuable addition to the central audiometric test battery when evaluating a child with speech and language regression. The inclusion of these tests will markedly increase the chance for early and accurate referral, diagnosis, and monitoring of a child with LKS which is imperative for a positive prognosis. American Academy of Audiology.
Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de
2017-12-07
To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.
Kantrowitz, Joshua T; Epstein, Michael L; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M; Revheim, Nadine; Lehrfeld, Nayla P; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C
2016-12-01
Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated NMDAR agonist administration may enhance cortical plasticity in schizophrenia. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Werff, Kathy R. Vander
2016-01-01
This article reviews the auditory consequences of mild traumatic brain injury (mTBI) within the context of the International Classification of Functioning, Disability and Health (ICF). Because of growing awareness of mTBI as a public health concern and the diverse and heterogeneous nature of the individual consequences, it is important to provide audiologists and other health care providers with a better understanding of potential implications in the assessment of levels of function and disability for individual interdisciplinary remediation planning. In consideration of body structures and function, the mechanisms of injury that may result in peripheral or central auditory dysfunction in mTBI are reviewed, along with a broader scope of effects of injury to the brain. The activity limitations and participation restrictions that may affect assessment and management in the context of an individual's personal factors and their environment are considered. Finally, a review of management strategies for mTBI from an audiological perspective as part of a multidisciplinary team is included. PMID:27489400
Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory Regions
Cardin, Velia
2016-01-01
Hearing loss is a common feature in human aging. It has been argued that dysfunctions in central processing are important contributing factors to hearing loss during older age. Aging also has well documented consequences for neural structure and function, but it is not clear how these effects interact with those that arise as a consequence of hearing loss. This paper reviews the effects of aging and adult-onset hearing loss in the structure and function of cortical auditory regions. The evidence reviewed suggests that aging and hearing loss result in atrophy of cortical auditory regions and stronger engagement of networks involved in the detection of salient events, adaptive control and re-allocation of attention. These cortical mechanisms are engaged during listening in effortful conditions in normal hearing individuals. Therefore, as a consequence of aging and hearing loss, all listening becomes effortful and cognitive load is constantly high, reducing the amount of available cognitive resources. This constant effortful listening and reduced cognitive spare capacity could be what accelerates cognitive decline in older adults with hearing loss. PMID:27242405
Procedures for central auditory processing screening in schoolchildren.
Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella
2018-03-22
Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that allow the selection of as many hearing skills as possible, validated by comparison with the battery of tests used in the diagnosis. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
ERIC Educational Resources Information Center
Mokhemar, Mary Ann
This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…
Musical hallucination associated with hearing loss.
Sanchez, Tanit Ganz; Rocha, Savya Cybelle Milhomem; Knobel, Keila Alessandra Baraldi; Kii, Márcia Akemi; Santos, Rosa Maria Rodrigues dos; Pereira, Cristiana Borges
2011-01-01
In spite of the fact that musical hallucination have a significant impact on patients' lives, they have received very little attention of experts. Some researchers agree on a combination of peripheral and central dysfunctions as the mechanism that causes hallucination. The most accepted physiopathology of musical hallucination associated to hearing loss (caused by cochlear lesion, cochlear nerve lesion or by interruption of mesencephalon or pontine auditory information) is the disinhibition of auditory memory circuits due to sensory deprivation. Concerning the cortical area involved in musical hallucination, there is evidence that the excitatory mechanism of the superior temporal gyrus, as in epilepsies, is responsible for musical hallucination. In musical release hallucination there is also activation of the auditory association cortex. Finally, considering the laterality, functional studies with musical perception and imagery in normal individuals showed that songs with words cause bilateral temporal activation and melodies activate only the right lobe. The effect of hearing aids on the improvement of musical hallucination as a result of the hearing loss improvement is well documented. It happens because auditory hallucination may be influenced by the external acoustical environment. Neuroleptics, antidepressants and anticonvulsants have been used in the treatment of musical hallucination. Cases of improvement with the administration of carbamazepine, meclobemide and donepezil were reported, but the results obtained were not consistent.
Wyss, Christine; Hitz, Konrad; Hengartner, Michael P.; Theodoridou, Anastasia; Obermann, Caitriona; Uhl, Idun; Roser, Patrik; Grünblatt, Edna; Seifritz, Erich
2013-01-01
Besides the influence of dopaminergic neurotransmission on negative symptoms in schizophrenia, there is evidence that alterations of serotonin (5-HT) system functioning also play a crucial role in the pathophysiology of these disabling symptoms. From post mortem and genetic studies on patients with negative symptoms a 5-HT dysfunction is documented. In addition atypical neuroleptics and some antidepressants improve negative symptoms via serotonergic action. So far no research has been done to directly clarify the association between the serotonergic functioning and the extent of negative symptoms. Therefore, we examined the status of brain 5-HT level in negative symptoms in schizophrenia by means of the loudness dependence of auditory evoked potentials (LDAEP). The LDAEP provides a well established and non-invasive in vivo marker of the central 5-HT activity. We investigated 13 patients with schizophrenia with predominant negative symptoms treated with atypical neuroleptics and 13 healthy age and gender matched controls with a 32-channel EEG. The LDAEP of the N1/P2 component was evaluated by dipole source analysis and single electrode estimation at Cz. Psychopathological parameters, nicotine use and medication were assessed to control for additional influencing factors. Schizophrenic patients showed significantly higher LDAEP in both hemispheres than controls. Furthermore, the LDAEP in the right hemisphere in patients was related to higher scores in scales assessing negative symptoms. A relationship with positive symptoms was not found. These data might suggest a diminished central serotonergic neurotransmission in patients with predominant negative symptoms. PMID:23874705
Demopoulos, Carly; Hopkins, Joyce; Kopald, Brandon E; Paulson, Kim; Doyle, Lauren; Andrews, Whitney E; Lewine, Jeffrey David
2015-11-01
The primary aim of this study was to examine whether there is an association between magnetoencephalography-based (MEG) indices of basic cortical auditory processing and vocal affect recognition (VAR) ability in individuals with autism spectrum disorder (ASD). MEG data were collected from 25 children/adolescents with ASD and 12 control participants using a paired-tone paradigm to measure quality of auditory physiology, sensory gating, and rapid auditory processing. Group differences were examined in auditory processing and vocal affect recognition ability. The relationship between differences in auditory processing and vocal affect recognition deficits was examined in the ASD group. Replicating prior studies, participants with ASD showed longer M1n latencies and impaired rapid processing compared with control participants. These variables were significantly related to VAR, with the linear combination of auditory processing variables accounting for approximately 30% of the variability after controlling for age and language skills in participants with ASD. VAR deficits in ASD are typically interpreted as part of a core, higher order dysfunction of the "social brain"; however, these results suggest they also may reflect basic deficits in auditory processing that compromise the extraction of socially relevant cues from the auditory environment. As such, they also suggest that therapeutic targeting of sensory dysfunction in ASD may have additional positive implications for other functional deficits. (c) 2015 APA, all rights reserved).
Prins, John M; Brooks, Diane M; Thompson, Charles M; Lurie, Diana I
2010-12-01
Lead (Pb) exposure is a risk factor for neurological dysfunction. How Pb produces these behavioral deficits is unknown, but Pb exposure during development is associated with auditory temporal processing deficits in both humans and animals. Pb disrupts cellular energy metabolism and efficient energy production is crucial for auditory neurons to maintain high rates of synaptic activity. The voltage-dependent anion channel (VDAC) is involved in the regulation of mitochondrial physiology and is a critical component in controlling mitochondrial energy production. We have previously demonstrated that VDAC is an in vitro target for Pb, therefore, VDAC may represent a potential target for Pb in the auditory system. In order to determine whether Pb alters VDAC expression in central auditory neurons, CBA/CaJ mice (n=3-5/group) were exposed to 0.01mM, or 0.1mM Pb acetate during development via drinking water. At P21, immunohistochemistry reveals a significant decrease for VDAC in neurons of the Medial Nucleus of the Trapezoid Body. Western blot analysis confirms that Pb results in a significant decrease for VDAC. Decreases in VDAC expression could lead to an upregulation of other cellular energy producing systems as a compensatory mechanism, and a Pb-induced increase in brain type creatine kinase is observed in auditory regions of the brainstem. In addition, comparative proteomic analysis shows that several proteins of the glycolytic pathway, the phosphocreatine circuit, and oxidative phosphorylation are also upregulated in response to developmental Pb exposure. Thus, Pb-induced decreases in VDAC could have a significant effect on the function of auditory neurons. Copyright © 2010 Elsevier Inc. All rights reserved.
Dlouha, Olga; Novak, Alexej; Vokral, Jan
2007-06-01
The aim of this project is to use central auditory tests for diagnosis of central auditory processing disorder (CAPD) in children with specific language impairment (SLI), in order to confirm relationship between speech-language impairment and central auditory processing. We attempted to establish special dichotic binaural tests in Czech language modified for younger children. Tests are based on behavioral audiometry using dichotic listening (different auditory stimuli that presented to each ear simultaneously). The experimental tasks consisted of three auditory measures (test 1-3)-dichotic listening of two-syllable words presented like binaural interaction tests. Children with SLI are unable to create simple sentences from two words that are heard separately but simultaneously. Results in our group of 90 pre-school children (6-7 years old) confirmed integration deficit and problems with quality of short-term memory. Average rate of success of children with specific language impairment was 56% in test 1, 64% in test 2 and 63% in test 3. Results of control group: 92% in test 1, 93% in test 2 and 92% in test 3 (p<0.001). Our results indicate the relationship between disorders of speech-language perception and central auditory processing disorders.
ERIC Educational Resources Information Center
Tillery, Kim L.; Katz, Jack; Keller, Warren D.
2000-01-01
A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…
Rejnö-Habte Selassie, Gunilla; Hedström, Anders; Viggedal, Gerd; Jennische, Margareta; Kyllerman, Mårten
2010-07-01
We reviewed the medical history, EEG recordings, and developmental milestones of 19 children with speech and language dysfunction and focal epileptiform activity. Speech, language, and neuropsychological assessments and EEG recordings were performed at follow-up, and prognostic indicators were analyzed. Three patterns of language development were observed: late start and slow development, late start and deterioration/regression, and normal start and later regression/deterioration. No differences in test results among these groups were seen, indicating a spectrum of related conditions including Landau-Kleffner syndrome and epileptic language disorder. More than half of the participants had speech and language dysfunction at follow-up. IQ levels, working memory, and processing speed were also affected. Dysfunction of auditory perception in noise was found in more than half of the participants, and dysfunction of auditory attention in all. Dysfunction of communication, oral motor ability, and stuttering were noted in a few. Family history of seizures and abundant epileptiform activity indicated a worse prognosis. Copyright 2010 Elsevier Inc. All rights reserved.
Short- and long-latency auditory evoked potentials in individuals with vestibular dysfunction.
Santos Filha, Valdete Alves Valentins Dos; Bruckmann, Mirtes; Garcia, Michele Vargas
2018-01-01
Purpose Evaluate the auditory pathway at the brainstem and cortical levels in individuals with peripheral vestibular dysfunction. Methods The study sample was composed 19 individuals aged 20-80 years that presented exam results suggestive of Peripheral Vestibular Disorder (PVD) or Vestibular Dysfunction (VD). Participants underwent evaluation of the auditory pathway through Brainstem Auditory Evoked Potentials (BAEP) (short latency) and P1, N1, P2, N2, and P300 cortical potentials (long latency). Results Nine individuals presented diagnosis of VD and 10 participants were diagnosed with PVD. The overall average of the long latency potentials of the participants was within the normal range, whereas an increased mean was observed in the short latency of waves III and V of the left ear, as well as in the I - III interpeak interval of both ears. Association of the auditory potentials with VD and PVD showed statistically significant correlation only in the III - V interpeak interval of the right ear for short latency. Comparison between the long and short latencies in the groups showed differences between VD and PVD, but without statistical significance. Conclusion No statistically significant correlation was observed between VD/PVD and the auditory evoked potentials; however, for the long latency potentials, individuals with VD presented higher latency in P1, N1, P2, and N2, where as participants with PVD showed higher latency in P300. In the short latency potentials, there was an increase in the absolute latencies in the VD group and in the interpeak intervals in the PVD group.
Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale
2017-04-01
There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F
2004-03-01
Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.
Iliadou, Vasiliki Vivian; Chermak, Gail D; Bamiou, Doris-Eva
2015-04-01
According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, diagnosis of speech sound disorder (SSD) requires a determination that it is not the result of other congenital or acquired conditions, including hearing loss or neurological conditions that may present with similar symptomatology. To examine peripheral and central auditory function for the purpose of determining whether a peripheral or central auditory disorder was an underlying factor or contributed to the child's SSD. Central auditory processing disorder clinic pediatric case reports. Three clinical cases are reviewed of children with diagnosed SSD who were referred for audiological evaluation by their speech-language pathologists as a result of slower than expected progress in therapy. Audiological testing revealed auditory deficits involving peripheral auditory function or the central auditory nervous system. These cases demonstrate the importance of increasing awareness among professionals of the need to fully evaluate the auditory system to identify auditory deficits that could contribute to a patient's speech sound (phonological) disorder. Audiological assessment in cases of suspected SSD should not be limited to pure-tone audiometry given its limitations in revealing the full range of peripheral and central auditory deficits, deficits which can compromise treatment of SSD. American Academy of Audiology.
Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam
2011-01-01
To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.
Hearing impairment in the P23H-1 retinal degeneration rat model
Sotoca, Jorge V.; Alvarado, Juan C.; Fuentes-Santamaría, Verónica; Martinez-Galan, Juan R.; Caminos, Elena
2014-01-01
The transgenic P23H line 1 (P23H-1) rat expresses a variant of rhodopsin with a mutation that leads to loss of visual function. This rat strain is an experimental model usually employed to study photoreceptor degeneration. Although the mutated protein should not interfere with other sensory functions, observing severe loss of auditory reflexes in response to natural sounds led us to study auditory brain response (ABR) recording. Animals were separated into different hearing levels following the response to natural stimuli (hand clapping and kissing sounds). Of all the analyzed animals, 25.9% presented auditory loss before 50 days of age (P50) and 45% were totally deaf by P200. ABR recordings showed that all the rats had a higher hearing threshold than the control Sprague-Dawley (SD) rats, which was also higher than any other rat strains. The integrity of the central and peripheral auditory pathway was analyzed by histology and immunocytochemistry. In the cochlear nucleus (CN), statistical differences were found between SD and P23H-1 rats in VGluT1 distribution, but none were found when labeling all the CN synapses with anti-Syntaxin. This finding suggests anatomical and/or molecular abnormalities in the auditory downstream pathway. The inner ear of the hypoacusic P23H-1 rats showed several anatomical defects, including loss and disruption of hair cells and spiral ganglion neurons. All these results can explain, at least in part, how hearing impairment can occur in a high percentage of P23H-1 rats. P23H-1 rats may be considered an experimental model with visual and auditory dysfunctions in future research. PMID:25278831
The influence of (central) auditory processing disorder in speech sound disorders.
Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein
2016-01-01
Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Elliott, Karen L.; Kersigo, Jennifer; Pan, Ning; Jahan, Israt; Fritzsch, Bernd
2017-01-01
We investigate the importance of the degree of peripheral or central target differentiation for mouse auditory afferent navigation to the organ of Corti and auditory nuclei in three different mouse models: first, a mouse in which the differentiation of hair cells, but not central auditory nuclei neurons is compromised (Atoh1-cre; Atoh1f/f); second, a mouse in which hair cell defects are combined with a delayed defect in central auditory nuclei neurons (Pax2-cre; Atoh1f/f), and third, a mouse in which both hair cells and central auditory nuclei are absent (Atoh1−/−). Our results show that neither differentiated peripheral nor the central target cells of inner ear afferents are needed (hair cells, cochlear nucleus neurons) for segregation of vestibular and cochlear afferents within the hindbrain and some degree of base to apex segregation of cochlear afferents. These data suggest that inner ear spiral ganglion neuron processes may predominantly rely on temporally and spatially distinct molecular cues in the region of the targets rather than interaction with differentiated target cells for a crude topological organization. These developmental data imply that auditory neuron navigation properties may have evolved before auditory nuclei. PMID:28450830
An fMRI study of multimodal selective attention in schizophrenia
Mayer, Andrew R.; Hanlon, Faith M.; Teshiba, Terri M.; Klimaj, Stefan D.; Ling, Josef M.; Dodd, Andrew B.; Calhoun, Vince D.; Bustillo, Juan R.; Toulouse, Trent
2015-01-01
Background Studies have produced conflicting evidence regarding whether cognitive control deficits in patients with schizophrenia result from dysfunction within the cognitive control network (CCN; top-down) and/or unisensory cortex (bottom-up). Aims To investigate CCN and sensory cortex involvement during multisensory cognitive control in patients with schizophrenia. Method Patients with schizophrenia and healthy controls underwent functional magnetic resonance imaging while performing a multisensory Stroop task involving auditory and visual distracters. Results Patients with schizophrenia exhibited an overall pattern of response slowing, and these behavioural deficits were associated with a pattern of patient hyperactivation within auditory, sensorimotor and posterior parietal cortex. In contrast, there were no group differences in functional activation within prefrontal nodes of the CCN, with small effect sizes observed (incongruent–congruent trials). Patients with schizophrenia also failed to upregulate auditory cortex with concomitant increased attentional demands. Conclusions Results suggest a prominent role for dysfunction within auditory, sensorimotor and parietal areas relative to prefrontal CCN nodes during multisensory cognitive control. PMID:26382953
Auditory Brainstem Responses in Childhood Psychosis.
ERIC Educational Resources Information Center
Gillberg, Christopher; And Others
1983-01-01
Auditory brainstem responses (ABR) were compared in 24 autistic children, seven children with other childhood psychoses, and 31 normal children. One-third of the autistic Ss showed abnormal ABR indicating brainstem dysfunction and correlating with muscular hypotonia and severe language impairment. Ss with other psychoses and normal Ss showed…
Pauletti, C; Mannarelli, D; Locuratolo, N; Vanacore, N; De Lucia, M C; Fattapposta, F
2014-04-01
To investigate whether pre-attentive auditory discrimination is impaired in patients with essential tremor (ET) and to evaluate the role of age at onset in this function. Seventeen non-demented patients with ET and seventeen age- and sex-matched healthy controls underwent an EEG recording during a classical auditory MMN paradigm. MMN latency was significantly prolonged in patients with elderly-onset ET (>65 years) (p=0.046), while no differences emerged in either latency or amplitude between young-onset ET patients and controls. This study represents a tentative indication of a dysfunction of auditory automatic change detection in elderly-onset ET patients, pointing to a selective attentive deficit in this subgroup of ET patients. The delay in pre-attentive auditory discrimination, which affects elderly-onset ET patients alone, further supports the hypothesis that ET represents a heterogeneous family of diseases united by tremor; these diseases are characterized by cognitive differences that may range from a disturbance in a selective cognitive function, such as the automatic part of the orienting response, to more widespread and complex cognitive dysfunctions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Kamel, Terez Boshra; Abd Elmonaem, Mahmoud Tarek; Khalil, Lobna Hamed; Goda, Mona Hamdy; Sanyelbhaa, Hossam; Ramzy, Mourad Alfy
2016-10-01
Chronic lung disease (CLD) in children represents a heterogeneous group of many clinico-pathological entities with risk of adverse impact of chronic or intermittent hypoxia. So far, few researchers have investigated the cognitive function in these children, and the role of auditory P300 in the assessment of their cognitive function has not been investigated yet. This study was designed to assess the cognitive functions among schoolchildren with different chronic pulmonary diseases using both auditory P300 and Stanford-Binet test. This cross-sectional study included 40 school-aged children who were suffering from chronic chest troubles other than asthma and 30 healthy children of similar age, gender and socioeconomic state as a control group. All subjects were evaluated through clinical examination, radiological evaluation and spirometry. Audiological evaluation included (basic otological examination, pure-tone, speech audiometry and immittancemetry). Cognitive function was assessed by auditory P300 and psychological evaluation using Stanford-Binet test (4th edition). Children with chronic lung diseases had significantly lower anthropometric measures compared to healthy controls. They had statistically significant lower IQ scores and delayed P300 latencies denoting lower cognitive abilities. Cognitive dysfunction correlated to severity of disease. P300 latencies were prolonged among hypoxic patients. Cognitive deficits in children with different chronic lung diseases were best detected using both Stanford-Binet test and auditory P300. P300 is an easy objective tool. P300 is affected early with hypoxia and could alarm subtle cognitive dysfunction.
Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I
2018-01-17
In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.
Auditory Brainstem Responses in Autism: Brainstem Dysfunction or Peripheral Hearing Loss?
ERIC Educational Resources Information Center
Klin, Ami
1993-01-01
A review of 11 studies of auditory brainstem response (ABR) in individuals with autism concludes that the ABR data are only suggestive (rather than supportive) of brainstem involvement in autism. The presence of peripheral hearing impairment was observed in some of the autistic individuals. (Author/DB)
Kv1 channels and neural processing in vestibular calyx afferents.
Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J
2015-01-01
Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.
Jansson-Verkasalo, Eira; Eggers, Kurt; Järvenpää, Anu; Suominen, Kalervo; Van den Bergh, Bea; De Nil, Luc; Kujala, Teija
2014-09-01
Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are affected in children who stutter (CWS). Participants were 10 CWS, and 12 typically developing children with fluent speech (TDC). Event-related potentials (ERPs) for syllables and syllable changes [consonant, vowel, vowel-duration, frequency (F0), and intensity changes], critical in speech perception and language development of CWS were compared to those of TDC. There were no significant group differences in the amplitudes or latencies of the P1 or N2 responses elicited by the standard stimuli. However, the Mismatch Negativity (MMN) amplitude was significantly smaller in CWS than in TDC. For TDC all deviants of the linguistic multifeature paradigm elicited significant MMN amplitudes, comparable with the results found earlier with the same paradigm in 6-year-old children. In contrast, only the duration change elicited a significant MMN in CWS. The results showed that central auditory speech-sound processing was typical at the level of sound encoding in CWS. In contrast, central speech-sound discrimination, as indexed by the MMN for multiple sound features (both phonetic and prosodic), was atypical in the group of CWS. Findings were linked to existing conceptualizations on stuttering etiology. The reader will be able (a) to describe recent findings on central auditory speech-sound processing in individuals who stutter, (b) to describe the measurement of auditory reception and central auditory speech-sound discrimination, (c) to describe the findings of central auditory speech-sound discrimination, as indexed by the mismatch negativity (MMN), in children who stutter. Copyright © 2014 Elsevier Inc. All rights reserved.
Schoenberg, Mike R; Dawson, Kyra A; Duff, Kevin; Patton, Doyle; Scott, James G; Adams, Russell L
2006-10-01
The Rey Auditory Verbal Learning Test [RAVLT; Rey, A. (1941). L'examen psychologique dans les cas d'encéphalopathie traumatique. Archives de Psychologie, 28, 21] is a commonly used neuropsychological measure that assesses verbal learning and memory. Normative data have been compiled [Schmidt, M. (1996). Rey Auditory and Verbal Learning Test: A handbook. Los Angeles, CA: Western Psychological Services]. When assessing an individual suspected of neurological dysfunction, useful comparisons include the extent that the patient deviates from healthy peers and also how closely the subject's performance matches those with known brain injury. This study provides the means and S.D.'s of 392 individuals with documented neurological dysfunction [closed head TBI (n=68), neoplasms (n=57), stroke (n=47), Dementia of the Alzheimer's type (n=158), and presurgical epilepsy left seizure focus (n=28), presurgical epilepsy right seizure focus (n=34)] and 122 patients with no known neurological dysfunction and psychiatric complaints. Patients were stratified into three age groups, 16-35, 36-59, and 60-88. Data were provided for trials I-V, List B, immediate recall, 30-min delayed recall, and recognition. Classification characteristics of the RAVLT using [Schmidt, M. (1996). Rey Auditory and Verbal Learning Test: A handbook. Los Angeles, CA: Western Psychological Services] meta-norms found the RAVLT to best distinguish patients suspected of Alzheimer's disease from the psychiatric comparison group.
Arias, M; Gonzalo, I
2004-10-01
The Spanish neuroscientist Justo Gonzalo Rodriguez-Leal (Barcelona 1910, Madrid 1986) carried out different studies on cerebral functions, highlighting those made in patients with encephalic injuries suffered during the Spanish civil war. His book "Investigaciones sobre la nueva dinámica cerebral. La actividad cerebral en función de las condiciones de excitabilidad nerviosa", published in two volumes (the first one in 1945 and the second one five years later), gathers some of his fundamental contributions, among which the so-called central syndrome stands out. A dominant parietal lesion (central) equidistant from the visual, sensorial and auditory projection areas can lead to diverse perceptive dysfunctions, among them inversions in visual, tactile and acoustic perception. As the lesion becomes more peripheral, the resulting defect will be more unisensorial and crossed, while when it approaches the central region, the disorders will be bilateral and polysensorial. Justo Gonzalo explained all these phenomena later by a gradient system.
Estrogenic modulation of auditory processing: a vertebrate comparison
Caras, Melissa L.
2013-01-01
Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and may provide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances. PMID:23911849
Hearing loss and the central auditory system: Implications for hearing aids
NASA Astrophysics Data System (ADS)
Frisina, Robert D.
2003-04-01
Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.
ERIC Educational Resources Information Center
Wood, Frank; And Others
1991-01-01
Investigates the proposed left hemisphere dysfunction in dyslexia by reviewing four studies using regional cerebral blood flow (RCBF) and combined auditory evoked responses with positron emission tomography. Emphasizes methodological issues. Finds that dyslexics showed a positive correlation between Heschl's gyrus activation and phonemic…
Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia.
Ye, Zheng; Rüsseler, Jascha; Gerth, Ivonne; Münte, Thomas F
2017-07-25
Dyslexia is an impairment of reading and spelling that affects both children and adults even after many years of schooling. Dyslexic readers have deficits in the integration of auditory and visual inputs but the neural mechanisms of the deficits are still unclear. This fMRI study examined the neural processing of auditorily presented German numbers 0-9 and videos of lip movements of a German native speaker voicing numbers 0-9 in unimodal (auditory or visual) and bimodal (always congruent) conditions in dyslexic readers and their matched fluent readers. We confirmed results of previous studies that the superior temporal gyrus/sulcus plays a critical role in audiovisual speech integration: fluent readers showed greater superior temporal activations for combined audiovisual stimuli than auditory-/visual-only stimuli. Importantly, such an enhancement effect was absent in dyslexic readers. Moreover, the auditory network (bilateral superior temporal regions plus medial PFC) was dynamically modulated during audiovisual integration in fluent, but not in dyslexic readers. These results suggest that superior temporal dysfunction may underly poor audiovisual speech integration in readers with dyslexia. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.
Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C
2015-11-04
Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition and global functional outcome. This study evaluated neural substrates of impaired AER in schizophrenia using a combined event-related potential/resting-state fMRI approach. Patients showed impaired mismatch negativity response to emotionally relevant frequency modulated tones along with impaired functional connectivity between auditory and medial temporal (anterior insula) cortex. These deficits contributed in parallel to impaired AER and accounted for ∼50% of variance in AER performance. Overall, these findings demonstrate the importance of both auditory-level dysfunction and impaired auditory/insula connectivity in the pathophysiology of social cognitive dysfunction in schizophrenia. Copyright © 2015 the authors 0270-6474/15/3514910-13$15.00/0.
Pleban, Francis T; Oketope, Olutosin; Shrestha, Laxmi
2017-12-01
A review study was conducted to examine the adverse effects of styrene, styrene mixtures, or styrene and/or styrene mixtures and noise on the auditory system in humans employed in occupational settings. The search included peer-reviewed articles published in English language involving human volunteers spanning a 25-year period (1990-2015). Studies included peer review journals, case-control studies, and case reports. Animal studies were excluded. An initial search identified 40 studies. After screening for inclusion, 13 studies were retrieved for full journal detail examination and review. As a whole, the results range from no to mild associations between styrene exposure and auditory dysfunction, noting relatively small sample sizes. However, four studies investigating styrene with other organic solvent mixtures and noise suggested combined exposures to both styrene organic solvent mixtures may be more ototoxic than exposure to noise alone. There is little literature examining the effect of styrene on auditory functioning in humans. Nonetheless, findings suggest public health professionals and policy makers should be made aware of the future research needs pertaining to hearing impairment and ototoxicity from styrene. It is recommended that chronic styrene-exposed individuals be routinely evaluated with a comprehensive audiological test battery to detect early signs of auditory dysfunction.
At the interface of sensory and motor dysfunctions and Alzheimer's disease.
Albers, Mark W; Gilmore, Grover C; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A; Boxer, Adam L; Buchman, Aron S; Cruickshanks, Karen J; Devanand, Davangere P; Duffy, Charles J; Gall, Christine M; Gates, George A; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T; Lin, Frank R; McKee, Ann C; Morris, John C; Petersen, Ronald C; Silbert, Lisa C; Struble, Robert G; Trojanowski, John Q; Verghese, Joe; Wilson, Donald A; Xu, Shunbin; Zhang, Li I
2015-01-01
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer's disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled "Sensory and Motor Dysfunctions in Aging and AD." The scientific sessions of the workshop focused on age-related and neuropathologic changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the central nervous system are affected by AD pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H
2016-11-28
BACKGROUND The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. MATERIAL AND METHODS The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5-4.5 kHz sweeps. RESULTS The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. CONCLUSIONS The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.
Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H.
2016-01-01
Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation. PMID:27893698
Cortical Activation during Attention to Sound in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Funabiki, Yasuko; Murai, Toshiya; Toichi, Motomi
2012-01-01
Individuals with autism spectrum disorders (ASDs) can demonstrate hypersensitivity to sounds as well as a lack of awareness of them. Several functional imaging studies have suggested an abnormal response in the auditory cortex of such subjects, but it is not known whether these subjects have dysfunction in the auditory cortex or are simply not…
Sensory Correlations in Autism
ERIC Educational Resources Information Center
Kern, Janet K.; Trivedi, Madhukar H.; Grannemann, Bruce D.; Garver, Carolyn R.; Johnson, Danny G.; Andrews, Alonzo A.; Savla, Jayshree S.; Mehta, Jyutika A.; Schroeder, Jennifer L.
2007-01-01
This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different…
The Staggered Spondaic Word Test. A ten-minute look at the central nervous system through the ears.
Katz, J; Smith, P S
1991-01-01
We have described three major groupings that encompass most auditory processing difficulties. While the problems may be superimposed upon one another in any individual client, each diagnostic sign is closely associated with particular communication and learning disorders. In addition, these behaviors may be related back to the functional anatomy of the regions that are implicated by the SSW test. The auditory-decoding group is deficient in rapid analysis of speech. The vagueness of speech sound knowledge is thought to lead to auditory misunderstanding and confusion. In early life, this may be reflected in the child's articulation. Poor phonic skills that result from this deficit are thought to contribute to their limited reading and spelling abilities. The auditory tolerance-fading memory group is often thought to have severe auditory-processing problems because those in it are highly distracted by background sounds and have poor auditory memories. However, school performance is not far from grade level, and the resulting reading disabilities stem more from limited comprehension than from an inability to sound out the words. Distractibility and poor auditory memory could contribute to the apparent weakness in reading comprehension. Many of the characteristics of the auditory tolerance-fading memory group are similar to those of attention deficit disorder cases. Both groups are associated anatomically with the AC region. The auditory integration cases can be divided into two subgroups. In the first, the subjects exhibit the most severe reading and spelling problems of the three major categories. These individuals closely resemble the classical dyslexics. We presume that this disorder represents a major disruption in auditory-visual integration. The second subgroup has much less severe learning difficulties, which closely follow the pattern of dysfunction of the auditory tolerance-fading memory group. The excellent physiological procedures to which we have been exposed during this Windows on the Brain conference provide a glimpse of the exciting possibilities for studying brain function. However, in working with individuals who have cognitive impairments, the new technology should be validated by standard behavioral tests. In turn, the new techniques will provide those who use behavioral measures with new parameters and concepts to broaden our understanding. For the past quarter of a century, the SSW test has been compared with other behavioral, physiological, and anatomical procedures. Based on the information that has been assembled, we have been able to classify auditory processing disorders into three major categories.(ABSTRACT TRUNCATED AT 400 WORDS)
Maksimova, M Yu; Sermagambetova, Zh N; Skrylev, S I; Fedin, P A; Koshcheev, A Yu; Shchipakin, V L; Sinicyn, I A
To assess brain stem dysfunction in patients with hemodynamically significant stenosis of vertebral arteries (VA) using short latency brainstem auditory evoked potentials (BAEP). The study group included 50 patients (mean age 64±6 years) with hemodynamically significant extracranial VA stenosis. Patients with hemodynamically significant extracranial VA stenosis had BAEP abnormalities including the elongation of interpeak intervals I-V and peak V latency as well as the reduction of peak I amplitude. After transluminal balloon angioplasty with stenting of VA stenoses, there was a shortening of peak V latency compared to the preoperative period that reflected the improvement of brain stem conductive functions. Atherostenosis of vertebral arteries is characterized by the signs of brain stem dysfunction, predominantly in the pontomesencephal brain stem. After transluminal balloon angioplasty with stenting of VA, the improvement of brain stem conductive functions was observed.
ERIC Educational Resources Information Center
Emerson, Maria F.; And Others
1997-01-01
The SCAN: A Screening Test for Auditory Processing Disorders was administered to 14 elementary children with a history of otitis media and 14 typical children, to evaluate the validity of the test in identifying children with central auditory processing disorder. Another experiment found that test results differed based on the testing environment…
ERIC Educational Resources Information Center
Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea
2012-01-01
One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…
Kujala, Teija; Leminen, Miika
2017-12-01
In specific language impairment (SLI), there is a delay in the child's oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN) in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Copyright © 2017. Published by Elsevier Ltd.
Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory
2017-01-01
Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom sound perception and potentially serve as an objective measure of central neural pathology. PMID:28604786
Central Auditory Processing through the Looking Glass: A Critical Look at Diagnosis and Management.
ERIC Educational Resources Information Center
Young, Maxine L.
1985-01-01
The article examines the contributions of both audiologists and speech-language pathologists to the diagnosis and management of students with central auditory processing disorders and language impairments. (CL)
Electrophysiologic Assessment of Auditory Training Benefits in Older Adults
Anderson, Samira; Jenkins, Kimberly
2015-01-01
Older adults often exhibit speech perception deficits in difficult listening environments. At present, hearing aids or cochlear implants are the main options for therapeutic remediation; however, they only address audibility and do not compensate for central processing changes that may accompany aging and hearing loss or declines in cognitive function. It is unknown whether long-term hearing aid or cochlear implant use can restore changes in central encoding of temporal and spectral components of speech or improve cognitive function. Therefore, consideration should be given to auditory/cognitive training that targets auditory processing and cognitive declines, taking advantage of the plastic nature of the central auditory system. The demonstration of treatment efficacy is an important component of any training strategy. Electrophysiologic measures can be used to assess training-related benefits. This article will review the evidence for neuroplasticity in the auditory system and the use of evoked potentials to document treatment efficacy. PMID:27587912
Auditory processing deficits in individuals with primary open-angle glaucoma.
Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan
2012-01-01
The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.
Central Auditory Development: Evidence from CAEP Measurements in Children Fit with Cochlear Implants
ERIC Educational Resources Information Center
Dorman, Michael F.; Sharma, Anu; Gilley, Phillip; Martin, Kathryn; Roland, Peter
2007-01-01
In normal-hearing children the latency of the P1 component of the cortical evoked response to sound varies as a function of age and, thus, can be used as a biomarker for maturation of central auditory pathways. We assessed P1 latency in 245 congenitally deaf children fit with cochlear implants following various periods of auditory deprivation. If…
Behavioral Indications of Auditory Processing Disorders.
ERIC Educational Resources Information Center
Hartman, Kerry McGoldrick
1988-01-01
Identifies disruptive behaviors of children that may indicate central auditory processing disorders (CAPDs), perceptual handicaps of auditory discrimination or auditory memory not related to hearing ability. Outlines steps to modify the communication environment for CAPD children at home and in the classroom. (SV)
Central Auditory Processing Disorders: Is It a Meaningful Construct or a Twentieth Century Unicorn?
ERIC Educational Resources Information Center
Kamhi, Alan G.; Beasley, Daniel S.
1985-01-01
The article demonstrates how professional and theoretical perspectives (including psycholinguistics, behaviorist, and information processing perspectives) significantly influence the manner in which central auditory processing is viewed, assessed, and remediated. (Author/CL)
Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Turco, Domenico Del; Seidel, Kay; Dunnen, Wilfred den; Korf, Horst-Werner
2016-01-01
The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD-related cytoskeletal pathology in some of these brainstem nuclei points to a major and strategic role of the brainstem in the induction and brain spread of the AD-related cytoskeletal pathology.
Dysfunctional Noise Cancelling of the Rostral Anterior Cingulate Cortex in Tinnitus Patients
Song, Jae Jin; Vanneste, Sven; De Ridder, Dirk
2015-01-01
Background Peripheral auditory deafferentation and central compensation have been regarded as the main culprits of tinnitus generation. However, patient-to-patient discrepancy in the range of the percentage of daytime in which tinnitus is perceived (tinnitus awareness percentage, 0 – 100%), is not fully explicable only by peripheral deafferentation, considering that the deafferentation is a stable persisting phenomenon but tinnitus is intermittently perceived in most patients. Consequently, the involvement of a dysfunctional noise cancellation mechanism has recently been suggested with regard to the individual differences in reported tinnitus awareness. By correlating the tinnitus awareness percentage with resting-state source-localized electroencephalography findings, we may be able to retrieve the cortical area that is negatively correlated with tinnitus awareness percentage, and then the area may be regarded as the core of the noise cancelling system that is defective in patients with tinnitus. Methods and Findings Using resting-state cortical oscillation, we investigated 80 tinnitus patients by correlating the tinnitus awareness percentage with their source-localized cortical oscillatory activity and functional connectivity. The activity of bilateral rostral anterior cingulate cortices (ACCs), left dorsal- and pregenual ACCs for the delta band, bilateral rostral/pregenual/subgenual ACCs for the theta band, and left rostral/pregenual ACC for the beta 1 band displayed significantly negative correlations with tinnitus awareness percentage. Also, the connectivity between the left primary auditory cortex (A1) and the rostral ACC, as well as between the left A1 and the subgenual ACC for the beta 1 band, were negatively correlated with tinnitus awareness percentage. Conclusions These results may designate the role of the rostral ACC as the core of the descending noise cancellation system, and thus dysfunction of the rostral ACC may result in perception of tinnitus. The present study also opens a possibility of tinnitus modulation by neuromodulatory approaches targeting the rostral ACC. PMID:25875099
A selective impairment of perception of sound motion direction in peripheral space: A case study.
Thaler, Lore; Paciocco, Joseph; Daley, Mark; Lesniak, Gabriella D; Purcell, David W; Fraser, J Alexander; Dutton, Gordon N; Rossit, Stephanie; Goodale, Melvyn A; Culham, Jody C
2016-01-08
It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in both central (straight ahead), and right and left peripheral auditory space (50° to the left and right of straight ahead). Compared to control subjects, the patient was impaired in her perception of direction of auditory motion in peripheral auditory space, and the deficit was more pronounced on the right side. However, there was no impairment in her perception of the direction of auditory motion in central space. Furthermore, detection of motion and discrimination of static location were normal in both central and peripheral space. The patient also performed normally in a wide battery of non-spatial audiological tests. Our data are consistent with previous neuropsychological and neuroimaging results that link posterior temporal cortex and parietal cortex with the processing of auditory motion. Most importantly, however, our data break new ground by suggesting a division of auditory motion processing in terms of speed and direction and in terms of central and peripheral space. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study on the application of the time-compressed speech in children.
Padilha, Fernanda Yasmin Odila Maestri Miguel; Pinheiro, Maria Madalena Canina
2017-11-09
To analyze the performance of children without alteration of central auditory processing in the Time-compressed Speech Test. This is a descriptive, observational, cross-sectional study. Study participants were 22 children aged 7-11 years without central auditory processing disorders. The following instruments were used to assess whether these children presented central auditory processing disorders: Scale of Auditory Behaviors, simplified evaluation of central auditory processing, and Dichotic Test of Digits (binaural integration stage). The Time-compressed Speech Test was applied to the children without auditory changes. The participants presented better performance in the list of monosyllabic words than in the list of disyllabic words, but with no statistically significant difference. No influence on test performance was observed with respect to order of presentation of the lists and the variables gender and ear. Regarding age, difference in performance was observed only in the list of disyllabic words. The mean score of children in the Time-compressed Speech Test was lower than that of adults reported in the national literature. Difference in test performance was observed only with respect to the age variable for the list of disyllabic words. No difference was observed in the order of presentation of the lists or in the type of stimulus.
Auditory pathways: anatomy and physiology.
Pickles, James O
2015-01-01
This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.
Development of the auditory system
Litovsky, Ruth
2015-01-01
Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262
Timescale- and Sensory Modality-Dependency of the Central Tendency of Time Perception.
Murai, Yuki; Yotsumoto, Yuko
2016-01-01
When individuals are asked to reproduce intervals of stimuli that are intermixedly presented at various times, longer intervals are often underestimated and shorter intervals overestimated. This phenomenon may be attributed to the central tendency of time perception, and suggests that our brain optimally encodes a stimulus interval based on current stimulus input and prior knowledge of the distribution of stimulus intervals. Two distinct systems are thought to be recruited in the perception of sub- and supra-second intervals. Sub-second timing is subject to local sensory processing, whereas supra-second timing depends on more centralized mechanisms. To clarify the factors that influence time perception, the present study investigated how both sensory modality and timescale affect the central tendency. In Experiment 1, participants were asked to reproduce sub- or supra-second intervals, defined by visual or auditory stimuli. In the sub-second range, the magnitude of the central tendency was significantly larger for visual intervals compared to auditory intervals, while visual and auditory intervals exhibited a correlated and comparable central tendency in the supra-second range. In Experiment 2, the ability to discriminate sub-second intervals in the reproduction task was controlled across modalities by using an interval discrimination task. Even when the ability to discriminate intervals was controlled, visual intervals exhibited a larger central tendency than auditory intervals in the sub-second range. In addition, the magnitude of the central tendency for visual and auditory sub-second intervals was significantly correlated. These results suggest that a common modality-independent mechanism is responsible for the supra-second central tendency, and that both the modality-dependent and modality-independent components of the timing system contribute to the central tendency in the sub-second range.
Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia
Gaebler, Arnim Johannes; Mathiak, Klaus; Koten, Jan Willem; König, Andrea Anna; Koush, Yury; Weyer, David; Depner, Conny; Matentzoglu, Simeon; Edgar, James Christopher; Willmes, Klaus; Zvyagintsev, Mikhail
2015-01-01
Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia. PMID:25743635
From Central Pattern Generator to Sensory Template in the Evolution of Birdsong
ERIC Educational Resources Information Center
Konishi, Masakazu
2010-01-01
Central nervous networks, be they a part of the human brain or a group of neurons in a snail, may be designed to produce distinct patterns of movement. Central pattern generators can account for the development and production of normal vocal signals without auditory feedback in non-songbirds. Songbirds need auditory feedback to develop and…
The Development of Visual and Auditory Selective Attention Using the Central-Incidental Paradigm.
ERIC Educational Resources Information Center
Conroy, Robert L.; Weener, Paul
Analogous auditory and visual central-incidental learning tasks were administered to 24 students from each of the second, fourth, and sixth grades. The visual tasks served as another modification of Hagen's central-incidental learning paradigm, with the interpretation that focal attention processes continue to develop until the age of 12 or 13…
Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger
2012-01-01
Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916
Di Bonito, Maria; Studer, Michèle
2017-01-01
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways. PMID:28469562
The associations between multisensory temporal processing and symptoms of schizophrenia.
Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T
2017-01-01
Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
[Neurofibromatosis type 2 in childhood: a clinical characterization].
Hinojosa-Mateo, C M; Reche-Sainz, J A; Hernandez-Nunez, A; Ramos-Lopez, M; Arpa-Fernandez, A; Natera-de Benito, D
2017-02-01
Neurofibromatosis type 2 (NF2) is a dominantly inherited neuroectodermal syndrome that predispose to the development of tumors of the central and peripheral nervous system. Additional features include eye and skin abnormalities. A 12-year old male with diagnosis of MF2 according to Baser et al and presentation in childhood was included. A comprehensive bibliographic review of evolution of the diagnostic criteria for NF2 in children was performed. The pattern of presentation of NF2 in childhood differs from adulthood in many aspects. Ophthalmologic and skin manifestations, and not an auditory dysfunction, are the most common initial symptoms in prepuberal-onset NF2. The most frequent symptoms and signs at presentation are posterior subcapsular cataract, skin manifestations as NF2 plaques and/or peripheral nerve tumors, and neurological dysfunction related to isolated or multiple cranial nerve deficits (other than nerve VIII), brainstem masses or spinal masses. As sensitivity of diagnostic criteria in children is low, those prepuberal patients with congenital or early-onset cataracts and typical skin manifestations of NF2 should be systematically assessed.
Spatial localization deficits and auditory cortical dysfunction in schizophrenia
Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.
2014-01-01
Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608
Maricich, Stephen M.; Xia, Anping; Mathes, Erin L.; Wang, Vincent Y.; Oghalai, John S.; Fritzsch, Bernd; Zoghbi, Huda Y.
2009-01-01
Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2Cre and Hoxb1Cre) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knockout mice (Atoh1CKO) are behaviorally deaf, have diminished auditory brainstem evoked responses and disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1CKO mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 days of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons. PMID:19741118
Profiles of Types of Central Auditory Processing Disorders in Children with Learning Disabilities.
ERIC Educational Resources Information Center
Musiek, Frank E.; And Others
1985-01-01
The article profiles five cases of children (8-17 years old) with learning disabilities and auditory processing problems. Possible correlations between the presumed etiology and the unique audiological pattern on the central test battery are analyzed. (Author/CL)
Bellis, Teri James; Billiet, Cassie; Ross, Jody
2011-09-01
Cacace and McFarland (2005) have suggested that the addition of cross-modal analogs will improve the diagnostic specificity of (C)APD (central auditory processing disorder) by ensuring that deficits observed are due to the auditory nature of the stimulus and not to supra-modal or other confounds. Others (e.g., Musiek et al, 2005) have expressed concern about the use of such analogs in diagnosing (C)APD given the uncertainty as to the degree to which cross-modal measures truly are analogous and emphasize the nonmodularity of the CANs (central auditory nervous system) and its function, which precludes modality specificity of (C)APD. To date, no studies have examined the clinical utility of cross-modal (e.g., visual) analogs of central auditory tests in the differential diagnosis of (C)APD. This study investigated performance of children diagnosed with (C)APD, children diagnosed with ADHD (attention deficit hyperactivity disorder), and typically developing children on three diagnostic tests of central auditory function and their corresponding visual analogs. The study sought to determine whether deficits observed in the (C)APD group were restricted to the auditory modality and the degree to which the addition of visual analogs aids in the ability to differentiate among groups. An experimental repeated measures design was employed. Participants consisted of three groups of right-handed children (normal control, n=10; ADHD, n=10; (C)APD, n=7) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of disorders unrelated to their primary diagnosis. Participants in Groups 2 and 3 met current diagnostic criteria for ADHD and (C)APD. Visual analogs of three tests in common clinical use for the diagnosis of (C)APD were used (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; and Duration Patterns [Pinheiro and Musiek, 1985]). Participants underwent two 1 hr test sessions separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANCOVAs (analyses of covariance) were used to examine effects of group, modality, and laterality (Dichotic/Dichoptic Digits) or response condition (auditory and visual patterning). In addition, planned univariate ANCOVAs were used to examine effects of group on intratest comparison measures (REA, HLD [Humming-Labeling Differential]). Children with both ADHD and (C)APD performed more poorly overall than typically developing children on all tasks, with the (C)APD group exhibiting the poorest performance on the auditory and visual patterns tests but the ADHD and (C)APD group performing similarly on the Dichotic/Dichoptic Digits task. However, each of the auditory and visual intratest comparison measures, when taken individually, was able to distinguish the (C)APD group from both the normal control and ADHD groups, whose performance did not differ from one another. Results underscore the importance of intratest comparison measures in the interpretation of central auditory tests (American Speech-Language-Hearing Association [ASHA], 2005 ; American Academy of Audiology [AAA], 2010). Results also support the "non-modular" view of (C)APD in which cross-modal deficits would be predicted based on shared neuroanatomical substrates. Finally, this study demonstrates that auditory tests alone are sufficient to distinguish (C)APD from supra-modal disorders, with cross-modal analogs adding little if anything to the differential diagnostic process. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
Mills, David M.
2003-02-01
Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.
Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker
2012-11-01
Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.
Assessment of central auditory processing in a group of workers exposed to solvents.
Fuente, Adrian; McPherson, Bradley; Muñoz, Verónica; Pablo Espina, Juan
2006-12-01
Despite having normal hearing thresholds and speech recognition thresholds, results for central auditory tests were abnormal in a group of workers exposed to solvents. Workers exposed to solvents may have difficulties in everyday listening situations that are not related to a decrement in hearing thresholds. A central auditory processing disorder may underlie these difficulties. To study central auditory processing abilities in a group of workers occupationally exposed to a mix of organic solvents. Ten workers exposed to a mix of organic solvents and 10 matched non-exposed workers were studied. The test battery comprised pure-tone audiometry, tympanometry, acoustic reflex measurement, acoustic reflex decay, dichotic digit, pitch pattern sequence, masking level difference, filtered speech, random gap detection and hearing-in-noise tests. All the workers presented normal hearing thresholds and no signs of middle ear abnormalities. Workers exposed to solvents had lower results in comparison with the control group and previously reported normative data, in the majority of the tests.
Białuńska, Anita; Salvatore, Anthony P
2017-12-01
Although science findings and treatment approaches of a concussion have changed in recent years, there continue to be challenges in understanding the nature of the post-concussion behavior. There is growing a body of evidence that some deficits can be related to an impaired auditory processing. To assess auditory comprehension changes over time following sport-related concussion (SRC) in young athletes. A prospective, repeated measures mixed-design was used. A sample of concussed athletes ( n = 137) and the control group consisted of age-matched, non-concussed athletes ( n = 143) were administered Subtest VIII of the Computerized-Revised Token Test (C-RTT). The 88 concussed athletes selected for final analysis (neither previous history of brain injury, neurological, psychiatric problems, nor auditory deficits) were evaluated after injury during three sessions (PC1, PC2, and PC3); controls were tested once. Between- and within-group comparisons using RMANOVA were performed on the C-RTT Efficiency Score (ES). ES of the SRC athletes group improved over consecutive testing sessions ( F = 14.7, p < .001), while post-hoc analysis showed that PC1 results differed from PC2 and PC3 ( ts ≥ 4.0, ps < .001), but PC2 and PC3 C-RTT ES did not change statistically ( t = 0.6, p = .557). The SRC athletes demonstrated lower ES for all test session when compared to the control group ( ts > 2.0, Ps <.01). Dysfunctional auditory comprehension performance following a concussion improved over time, but after the second testing session improved performance slowed, especially in terms of its timing. Yet, not only auditory processing but also sensorimotor integration and/or motor execution can be compromised after a concussion.
Prentice, Jennifer R; Blackwell, Christopher S; Raoof, Naz; Bacon, Paul; Ray, Jaydip; Hickman, Simon J; Wilkinson, J Mark
2014-01-01
Case reports of patients with mal-functioning metal-on-metal hip replacement (MoMHR) prostheses suggest an association of elevated circulating metal levels with visual and auditory dysfunction. However, it is unknown if this is a cumulative exposure effect and the impact of prolonged low level exposure, relevant to the majority of patients with a well-functioning prosthesis, has not been studied. Twenty four male patients with a well-functioning MoMHR and an age and time since surgery matched group of 24 male patients with conventional total hip arthroplasty (THA) underwent clinical and electrophysiological assessment of their visual and auditory health at a mean of ten years after surgery. Median circulating cobalt and chromium concentrations were higher in patients after MoMHR versus those with THA (P<0.0001), but were within the Medicines and Healthcare Products Regulatory Agency (UK) investigation threshold. Subjective auditory tests including pure tone audiometric and speech discrimination findings were similar between groups (P>0.05). Objective assessments, including amplitude and signal-to-noise ratio of transient evoked and distortion product oto-acoustic emissions (TEOAE and DPOAE, respectively), were similar for all the frequencies tested (P>0.05). Auditory brainstem responses (ABR) and cortical evoked response audiometry (ACR) were also similar between groups (P>0.05). Ophthalmological evaluations, including self-reported visual function by visual functioning questionnaire, as well as binocular low contrast visual acuity and colour vision were similar between groups (P>0.05). Retinal nerve fibre layer thickness and macular volume measured by optical coherence tomography were also similar between groups (P>0.05). In the presence of moderately elevated metal levels associated with well-functioning implants, MoMHR exposure does not associate with clinically demonstrable visual or auditory dysfunction.
Sun, Hai-Ying; Hu, Yu-Juan; Zhao, Xue-Yan; Zhong, Yi; Zeng, Ling-Ling; Chen, Xu-Bo; Yuan, Jie; Wu, Jing; Sun, Yu; Kong, Wen; Kong, Wei-Jia
2015-07-01
Age-associated degeneration in the central auditory system, which is defined as central presbycusis, can impair sound localization and speech perception. Research has shown that oxidative stress plays a central role in the pathological process of central presbycusis. Thioredoxin 2 (Trx2), one member of thioredoxin family, plays a key role in regulating the homeostasis of cellular reactive oxygen species and anti-apoptosis. The purpose of this study was to explore the association between Trx2 and the phenotype of central presbycusis using a mimetic aging animal model induced by long-term exposure to d-galactose (d-Gal). We also explored changes in thioredoxin-interacting protein (TXNIP), apoptosis signal regulating kinase 1 (ASK1) and phosphorylated ASK1 (p-ASK1) expression, as well as the Trx2-TXNIP/Trx2-ASK1 binding complex in the auditory cortex of mimetic aging rats. Our results demonstrate that, compared with control groups, the levels of Trx2 and Trx2-ASK1 binding complex were significantly reduced, whereas TXNIP, ASK1 p-ASK1 expression, and Trx2-TXNIP binding complex were significantly increased in the auditory cortex of the mimetic aging groups. Our results indicated that changes in Trx2 and the TXNIP-Trx2-ASK1 signal pathway may participate in the pathogenesis of central presbycusis. © 2015 FEBS.
Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle
2016-01-06
Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.
Brainstem Correlates of Speech-in-Noise Perception in Children
Anderson, Samira; Skoe, Erika; Chandrasekaran, Bharath; Zecker, Steven; Kraus, Nina
2010-01-01
Children often have difficulty understanding speech in challenging listening environments. In the absence of peripheral hearing loss, these speech perception difficulties may arise from dysfunction at more central levels in the auditory system, including subcortical structures. We examined brainstem encoding of pitch in a speech syllable in 38 school-age children. In children with poor speech-in-noise perception, we find impaired encoding of the fundamental frequency and the second harmonic, two important cues for pitch perception. Pitch, an important factor in speaker identification, aids the listener in tracking a specific voice from a background of voices. These results suggest that the robustness of subcortical neural encoding of pitch features in time-varying signals is an important factor in determining success with speech perception in noise. PMID:20708671
Sharma, Anu; Campbell, Julia; Cardon, Garrett
2015-02-01
Cortical development is dependent on extrinsic stimulation. As such, sensory deprivation, as in congenital deafness, can dramatically alter functional connectivity and growth in the auditory system. Cochlear implants ameliorate deprivation-induced delays in maturation by directly stimulating the central nervous system, and thereby restoring auditory input. The scenario in which hearing is lost due to deafness and then reestablished via a cochlear implant provides a window into the development of the central auditory system. Converging evidence from electrophysiologic and brain imaging studies of deaf animals and children fitted with cochlear implants has allowed us to elucidate the details of the time course for auditory cortical maturation under conditions of deprivation. Here, we review how the P1 cortical auditory evoked potential (CAEP) provides useful insight into sensitive period cut-offs for development of the primary auditory cortex in deaf children fitted with cochlear implants. Additionally, we present new data on similar sensitive period dynamics in higher-order auditory cortices, as measured by the N1 CAEP in cochlear implant recipients. Furthermore, cortical re-organization, secondary to sensory deprivation, may take the form of compensatory cross-modal plasticity. We provide new case-study evidence that cross-modal re-organization, in which intact sensory modalities (i.e., vision and somatosensation) recruit cortical regions associated with deficient sensory modalities (i.e., auditory) in cochlear implanted children may influence their behavioral outcomes with the implant. Improvements in our understanding of developmental neuroplasticity in the auditory system should lead to harnessing central auditory plasticity for superior clinical technique. Copyright © 2014 Elsevier B.V. All rights reserved.
Deaf-Blind Perspectives Newsletter, 1999-2000.
ERIC Educational Resources Information Center
Reiman, John, Ed.; Malloy, Peggy, Ed.; Klumph, Randy, Ed.
1999-01-01
These three issues address topics relating to the education of children with deaf-blindness. The fall 1999 issue features the article, "Central Auditory Processing Disorders: An Overview of Assessment and Management Practices" (Mignon M. Schminky and Jane A. Baran), which discusses symptoms of Central Auditory Processing Disorder (CAPD),…
Association between central auditory processing mechanism and cardiac autonomic regulation
2014-01-01
Background This study was conducted to describe the association between central auditory processing mechanism and the cardiac autonomic regulation. Methods It was researched papers on the topic addressed in this study considering the following data bases: Medline, Pubmed, Lilacs, Scopus and Cochrane. The key words were: “auditory stimulation, heart rate, autonomic nervous system and P300”. Results The findings in the literature demonstrated that auditory stimulation influences the autonomic nervous system and has been used in conjunction with other methods. It is considered a promising step in the investigation of therapeutic procedures for rehabilitation and quality of life of several pathologies. Conclusion The association between auditory stimulation and the level of the cardiac autonomic nervous system has received significant contributions in relation to musical stimuli. PMID:24834128
Living and Working with a Central Auditory Processing Disorder (CAPD).
ERIC Educational Resources Information Center
Paton, Judith W.
This paper describes adult symptoms of Central Auditory Processing Disorder and provides strategies for dealing with this disability. Symptoms include talking or turning on the television louder than normal, interpreting words too literally, needing remarks repeated, having difficulty sounding out words, ignoring people, being unusually sensitive…
Developmental Trends in Recall of Central and Incidental Auditory
ERIC Educational Resources Information Center
Hallahan, Daniel P.; And Others
1974-01-01
An auditory recall task involving central and incidental stimuli designed to correspond to processes used in selective attention, was presented to elementary school students. Older children and girls performed better than younger children and boys, especially when animals were the relevant and food the irrelevant stimuli. (DP)
ERIC Educational Resources Information Center
Atcherson, Samuel R.; Richburg, Cynthia M.; Zraick, Richard I.; George, Cassandra M.
2013-01-01
Purpose: Eight English-language, student- or parent proxy-administered questionnaires for (central) auditory processing disorders, or (C)APD, were analyzed for readability. For student questionnaires, readability levels were checked against the approximate reading grade levels by intended administration age per the questionnaires' developers. For…
Paglialonga, Alessia; Barozzi, Stefania; Brambilla, Daniele; Soi, Daniela; Cesarani, Antonio; Spreafico, Emanuela; Tognola, Gabriella
2014-11-01
To assess if young subjects affected by Williams syndrome (WS) with normal middle ear functionality and normal hearing thresholds might have subtle auditory dysfunctions that could be detected by using clinically available measurements. Otoscopy, acoustic reflexes, tympanometry, pure-tone audiometry, and distortion product otoacoustic emissions (DPOAEs) were measured in a group of 13 WS subjects and in 13 age-matched, typically developing control subjects. Participants were required to have normal otoscopy, A-type tympanogram, normal acoustic reflex thresholds, and pure-tone thresholds≤15 dB HL at 0.5, 1, and 2 kHz bilaterally. To limit the possible influence of middle ear status on DPOAE recordings, we analyzed only data from ears with pure-tone thresholds≤15 dB HL across all octave frequencies in the range 0.25-8 kHz, middle ear pressure (MEP)>-50 daPa, static compliance (SC) in the range 0.3-1.2 cm3, and ear canal volume (ECV) in the range 0.2-2 ml, and we performed analysis of covariance to remove the possible effects of middle ear variables on DPOAEs. No differences in mean hearing thresholds, SC, ECV, and gradient were observed between the two groups, whereas significantly lower MEP values were found in WS subjects as well as significantly decreased DPOAEs up to 3.2 kHz after adjusting for differences in middle ear status. Results revealed that WS subjects with normal hearing thresholds (≤15 dB HL) and normal middle ear functionality (MEP>-50 daPa, SC in the range 0.3-1.2 cm3, ECV in the range 0.2-2 ml) might have subtle auditory dysfunctions that can be detected by using clinically available methods. Overall, this study points out the importance of using otoacoustic emissions as a complement to routine audiological examinations in individuals with WS to detect, before the onset of hearing loss, possible subtle auditory dysfunctions so that patients can be early identified, better monitored, and promptly treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D
2015-09-01
To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.
Park, M; Choi, J-S; Park, S M; Lee, J-Y; Jung, H Y; Sohn, B K; Kim, S N; Kim, D J; Kwon, J S
2016-01-01
Internet gaming disorder (IGD) leading to serious impairments in cognitive, psychological and social functions has gradually been increasing. However, very few studies conducted to date have addressed issues related to the event-related potential (ERP) patterns in IGD. Identifying the neurobiological characteristics of IGD is important to elucidate the pathophysiology of this condition. P300 is a useful ERP component for investigating electrophysiological features of the brain. The aims of the present study were to investigate differences between patients with IGD and healthy controls (HCs), with regard to the P300 component of the ERP during an auditory oddball task, and to examine the relationship of this component to the severity of IGD symptoms in identifying the relevant neurophysiological features of IGD. Twenty-six patients diagnosed with IGD and 23 age-, sex-, education- and intelligence quotient-matched HCs participated in this study. During an auditory oddball task, participants had to respond to the rare, deviant tones presented in a sequence of frequent, standard tones. The IGD group exhibited a significant reduction in response to deviant tones compared with the HC group in the P300 amplitudes at the midline centro-parietal electrode regions. We also found a negative correlation between the severity of IGD and P300 amplitudes. The reduced amplitude of the P300 component in an auditory oddball task may reflect dysfunction in auditory information processing and cognitive capabilities in IGD. These findings suggest that reduced P300 amplitudes may be candidate neurobiological marker for IGD. PMID:26812042
Park, M; Choi, J-S; Park, S M; Lee, J-Y; Jung, H Y; Sohn, B K; Kim, S N; Kim, D J; Kwon, J S
2016-01-26
Internet gaming disorder (IGD) leading to serious impairments in cognitive, psychological and social functions has gradually been increasing. However, very few studies conducted to date have addressed issues related to the event-related potential (ERP) patterns in IGD. Identifying the neurobiological characteristics of IGD is important to elucidate the pathophysiology of this condition. P300 is a useful ERP component for investigating electrophysiological features of the brain. The aims of the present study were to investigate differences between patients with IGD and healthy controls (HCs), with regard to the P300 component of the ERP during an auditory oddball task, and to examine the relationship of this component to the severity of IGD symptoms in identifying the relevant neurophysiological features of IGD. Twenty-six patients diagnosed with IGD and 23 age-, sex-, education- and intelligence quotient-matched HCs participated in this study. During an auditory oddball task, participants had to respond to the rare, deviant tones presented in a sequence of frequent, standard tones. The IGD group exhibited a significant reduction in response to deviant tones compared with the HC group in the P300 amplitudes at the midline centro-parietal electrode regions. We also found a negative correlation between the severity of IGD and P300 amplitudes. The reduced amplitude of the P300 component in an auditory oddball task may reflect dysfunction in auditory information processing and cognitive capabilities in IGD. These findings suggest that reduced P300 amplitudes may be candidate neurobiological marker for IGD.
Auditory evoked fields predict language ability and impairment in children.
Oram Cardy, Janis E; Flagg, Elissa J; Roberts, Wendy; Roberts, Timothy P L
2008-05-01
Recent evidence suggests that a subgroup of children with autism show similarities to children with Specific Language Impairment (SLI) in the pattern of their linguistic impairments, but the source of this overlap is unclear. We examined the ability of auditory evoked magnetic fields to predict language and other developmental abilities in children and adolescents. Following standardized assessment of language ability, nonverbal IQ, and autism-associated behaviors, 110 trails of a tone were binaurally presented to 45 7-18 year olds who had typical development, autism (with LI), Asperger Syndrome (i.e., without LI), or SLI. Using a 151-channel MEG system, latency of left hemisphere (LH) and right hemisphere (RH) auditory M50 and M100 peaks was recorded. RH M50 latency (and to a lesser extent, RH M100 latency) predicted overall oral language ability, accounting for 36% of the variance. Nonverbal IQ and autism behavior ratings were not predicted by any of the evoked fields. Latency of the RH M50 was the best predictor of clinical LI (i.e., irrespective of autism diagnosis), and demonstrated 82% accuracy in predicting Receptive LI; a cutoff of 84.6 ms achieved 92% specificity and 70% sensitivity in classifying children with and without Receptive LI. Auditory evoked responses appear to reflect language functioning and impairment rather than non-specific brain (dys)function (e.g., IQ, behavior). RH M50 latency proved to be a relatively useful indicator of impaired language comprehension, suggesting that delayed auditory perceptual processing in the RH may be a key neural dysfunction underlying the overlap between subgroups of children with autism and SLI.
Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.
ERIC Educational Resources Information Center
Gunnarson, Adele D.; And Others
1990-01-01
This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)
Evaluation protocol for amusia: Portuguese sample.
Peixoto, Maria Conceição; Martins, Jorge; Teixeira, Pedro; Alves, Marisa; Bastos, José; Ribeiro, Carlos
2012-12-01
Amusia is a disorder that affects the processing of music. Part of this processing happens in the primary auditory cortex. The study of this condition allows us to evaluate the central auditory pathways. To explore the diagnostic evaluation tests of amusia. The authors propose an evaluation protocol for patients with suspected amusia (after brain injury or complaints of poor musical perception), in parallel with the assessment of central auditory processing, already implemented in the department. The Montreal Evaluation of Battery of amusia was the basis for the selection of the tests. From this comprehensive battery of tests we selected some of the musical examples to evaluate different musical aspects, including memory and perception of music, ability concerning musical recognition and discrimination. In terms of memory there is a test for assessing delayed memory, adapted to the Portuguese culture. Prospective study. Although still experimental, with the possibility of adjustments in the assessment, we believe that this assessment, combined with the study of central auditory processing, will allow us to understand some central lesions, congenital or acquired hearing perception limitations.
Effect of conductive hearing loss on central auditory function.
Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher
It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: p<0.001). Individuals with CHL had significantly lower correct responses than individuals with normal hearing for both sides (p<0.001). No correlation was found between GIN performance and degree of hearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Echolocation: A Study of Auditory Functioning in Blind and Sighted Subjects.
ERIC Educational Resources Information Center
Arias, C.; And Others
1993-01-01
This study evaluated the peripheral and central auditory functioning (and thus the potential to perceive obstacles through reflected sound) of eight totally blind persons and eight sighted persons. The blind subjects were able to process auditory information faster than the control group. (Author/DB)
Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T
2018-01-01
Background Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Objective Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Methods Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. Results This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. Conclusions This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. PMID:29523503
ERIC Educational Resources Information Center
Billiet, Cassandra R.; Bellis, Teri James
2011-01-01
Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…
Noise Equally Degrades Central Auditory Processing in 2- and 4-Year-Old Children
ERIC Educational Resources Information Center
Niemitalo-Haapola, Elina; Haapala, Sini; Kujala, Teija; Raappana, Antti; Kujala, Tiia; Jansson-Verkasalo, Eira
2017-01-01
Purpose: The aim of this study was to investigate developmental and noise-induced changes in central auditory processing indexed by event-related potentials in typically developing children. Method: P1, N2, and N4 responses as well as mismatch negativities (MMNs) were recorded for standard syllables and consonants, frequency, intensity, vowel, and…
Crosscheck Principle in Pediatric Audiology Today: A 40-Year Perspective
2016-01-01
The crosscheck principle is just as important in pediatric audiology as it was when first described 40 years ago. That is, no auditory test result should be accepted and used in the diagnosis of hearing loss until it is confirmed or crosschecked by one or more independent measures. Exclusive reliance on only one or two tests, even objective auditory measures, may result in a auditory diagnosis that is not clear or perhaps incorrect. On the other hand, close and careful analysis of findings for a test battery consisting of objective procedures and behavioral tests whenever feasible usually leads to prompt and accurate diagnosis of auditory dysfunction. This paper provides a concise review of the crosscheck principle from its introduction to its clinical application today. The review concludes with a description of a modern test battery for pediatric hearing assessment that supplements traditional behavioral tests with a variety of independent objective procedures including aural immittance measures, otoacoustic emissions, and auditory evoked responses. PMID:27626077
Crosscheck Principle in Pediatric Audiology Today: A 40-Year Perspective.
Hall, James W
2016-09-01
The crosscheck principle is just as important in pediatric audiology as it was when first described 40 years ago. That is, no auditory test result should be accepted and used in the diagnosis of hearing loss until it is confirmed or crosschecked by one or more independent measures. Exclusive reliance on only one or two tests, even objective auditory measures, may result in a auditory diagnosis that is not clear or perhaps incorrect. On the other hand, close and careful analysis of findings for a test battery consisting of objective procedures and behavioral tests whenever feasible usually leads to prompt and accurate diagnosis of auditory dysfunction. This paper provides a concise review of the crosscheck principle from its introduction to its clinical application today. The review concludes with a description of a modern test battery for pediatric hearing assessment that supplements traditional behavioral tests with a variety of independent objective procedures including aural immittance measures, otoacoustic emissions, and auditory evoked responses.
Assessment and Management of Unusual Auditory Behavior in Infants and Toddlers.
ERIC Educational Resources Information Center
Kile, Jack E.; And Others
1994-01-01
This article describes assessment and management strategies for infants and toddlers with normal hearing or fluctuating conductive hearing loss, who are identified as having central auditory impairment and/or judged to have abnormal auditory behavior. Management strategies include audiologic, medical, and speech and language management. Three case…
Auditory Processing Disorders: An Overview. ERIC Digest.
ERIC Educational Resources Information Center
Ciocci, Sandra R.
This digest presents an overview of children with auditory processing disorders (APDs), children who can typically hear information but have difficulty attending to, storing, locating, retrieving, and/or clarifying that information to make it useful for academic and social purposes. The digest begins by describing central auditory processing and…
Central auditory processing and migraine: a controlled study.
Agessi, Larissa Mendonça; Villa, Thaís Rodrigues; Dias, Karin Ziliotto; Carvalho, Deusvenir de Souza; Pereira, Liliane Desgualdo
2014-11-08
This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of "The International Classification of Headache Disorders" (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p < .001) when compared with controls without headache, however no significant differences were found in the DDT test for the right ear (p = .362) and for the left ear (p = .190). Subjects with migraine performed worsened in auditory gap detection, in the discrimination of short and long duration. They also presented impairment in the physiological mechanism of temporal processing, especially in temporal resolution and temporal ordering when compared with controls. Migraine could be related to an impaired central auditory processing. Research Ethics Committee (CEP 0480.10) - UNIFESP.
Early physiological abnormalities after simian immunodeficiency virus infection.
Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S
1998-12-08
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.
Early physiological abnormalities after simian immunodeficiency virus infection
Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.
1998-01-01
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017
Tesche, Claudia D; Kodituwakku, Piyadasa W; Garcia, Christopher M; Houck, Jon M
2015-01-01
Children exposed to substantial amounts of alcohol in utero display a broad range of morphological and behavioral outcomes, which are collectively referred to as fetal alcohol spectrum disorders (FASDs). Common to all children on the spectrum are cognitive and behavioral problems that reflect central nervous system dysfunction. Little is known, however, about the potential effects of variables such as sex on alcohol-induced brain damage. The goal of the current research was to utilize magnetoencephalography (MEG) to examine the effect of sex on brain dynamics in adolescents and young adults with FASD during the performance of an auditory oddball task. The stimuli were short trains of 1 kHz "standard" tone bursts (80%) randomly interleaved with 1.5 kHz "target" tone bursts (10%) and "novel" digital sounds (10%). Participants made motor responses to the target tones. Results are reported for 44 individuals (18 males and 26 females) ages 12 through 22 years. Nine males and 13 females had a diagnosis of FASD and the remainder were typically-developing age- and sex-matched controls. The main finding was widespread sex-specific differential activation of the frontal, medial and temporal cortex in adolescents with FASD compared to typically developing controls. Significant differences in evoked-response and time-frequency measures of brain dynamics were observed for all stimulus types in the auditory cortex, inferior frontal sulcus and hippocampus. These results underscore the importance of considering the influence of sex when analyzing neurophysiological data in children with FASD.
Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity.
Guthrie, O'neil W; Xu, Helen; Wong, Brian A; McInturf, Shawn M; Reboulet, Jim E; Ortiz, Pedro A; Mattie, David R
2014-01-01
Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.
Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review
Jayakody, Dona M. P.; Friedland, Peter L.; Martins, Ralph N.; Sohrabi, Hamid R.
2018-01-01
Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that affects approximately one-third of the world's population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia. Here we review the current evidence for the age-related changes of the peripheral and central auditory system and the relationship between hearing loss and pathological cognitive decline and dementia. Furthermore, there is a paucity of evidence on the relationship between ARHL and established biomarkers of Alzheimer's disease, as the most common cause of dementia. Such studies are critical to be able to consider any causal relationship between dementia and ARHL. While this narrative review will examine the pathophysiological alterations in both the peripheral and central auditory system and its clinical implications, the question remains unanswered whether hearing loss causes cognitive impairment or vice versa. PMID:29556173
Applicability of central auditory processing disorder models.
Jutras, Benoît; Loubert, Monique; Dupuis, Jean-Luc; Marcoux, Caroline; Dumont, Véronique; Baril, Michèle
2007-12-01
Central auditory processing disorder ([C]APD) is a relatively recent construct that has given rise to 2 theoretical models: the Buffalo Model and the Bellis/Ferre Model. These models describe 4 and 5 (C)APD categories, respectively. The present study examines the applicability of these models to clinical practice. Neither of these models was based on data from peer-reviewed sources. This is a retrospective study that reviewed 178 records of children diagnosed with (C)APD, of which 48 were retained for analysis. More than 80% of the children could be classified into one of the Buffalo Model categories, while more than 90% remained unclassified under the Bellis/Ferre Model. This discrepancy can be explained by the fact that the classification of the Buffalo Model is based primarily on a single central auditory test (Staggered Spondaic Word), whereas the Bellis/Ferre Model classification uses a combination of auditory test results. The 2 models provide a conceptual framework for (C)APD, but they must be further refined to be fully applicable in clinical settings.
Prediction of 3- to 5-Month Outcomes from Signs of Acute Bilirubin Toxicity in Newborn Infants.
El Houchi, Salma Z; Iskander, Iman; Gamaleldin, Rasha; El Shenawy, Amira; Seoud, Iman; Abou-Youssef, Hazem; Wennberg, Richard P
2017-04-01
To evaluate the ability of the bilirubin-induced neurologic dysfunction (BIND) score to predict residual neurologic and auditory disability and to document the relationship of BIND score to total serum bilirubin (TSB) concentration. The BIND score (assessing mental status, muscle tone, and cry patterns) was obtained serially at 6- to 8-hour intervals in 220 near-term and full-term infants with severe hyperbilirubinemia. Neurologic and/or auditory outcomes at 3-5 months of age were correlated with the highest calculated BIND score. The BIND score was also correlated with TSB. Follow-up neurologic and auditory examinations were performed for 145/202 (72%) surviving infants. All infants with severe acute bilirubin encephalopathy (BIND scores 7-9) either died or suffered residual neurologic and auditory impairment. Of 24 cases with moderate encephalopathy (BIND 4-6), 15 (62.5%) resolved following aggressive intervention and were normal at follow-up. Three of 73 infants with mild encephalopathy (BIND scores 1-3) but severe jaundice (TSB ranging 33.5-38 mg/dL; 573-650 µmol/L) had residual neurologic and/or auditory impairment. A BIND score ≥4 had a specificity of 87.3% and a sensitivity of 97.4% for predicting poor neurologic outcomes (receiver operating characteristic analysis). BIND scores trended higher with severe hyperbilirubinemia (r 2 = 0.54, P < .005), but 5/39 (13%) infants with TSB ≥36.5 mg/dL (624 µmol/L) had BIND scores ≤3, and normal outcomes at 3-5 months. The BIND score can be used to evaluate the severity of acute bilirubin encephalopathy and predict residual neurologic and hearing dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.
Auditory Spatial Perception: Auditory Localization
2012-05-01
cochlear nucleus, TB – trapezoid body, SOC – superior olivary complex, LL – lateral lemniscus, IC – inferior colliculus. Adapted from Aharonson and...Figure 5. Auditory pathways in the central nervous system. LE – left ear, RE – right ear, AN – auditory nerve, CN – cochlear nucleus, TB...fibers leaving the left and right inner ear connect directly to the synaptic inputs of the cochlear nucleus (CN) on the same (ipsilateral) side of
Scholes, Kirsty E; Martin-Iverson, Mathew T
2010-03-01
Controversy exists as to the cause of disturbed prepulse inhibition (PPI) in patients with schizophrenia. This study aimed to clarify the nature of PPI in schizophrenia using improved methodology. Startle and PPI were measured in 44 patients with schizophrenia and 32 controls across a range of startling stimulus intensities under two conditions, one while participants were attending to the auditory stimuli (ATTEND condition) and one while participants completed a visual task in order to ensure they were ignoring the auditory stimuli (IGNORE condition). Patients showed reduced PPI of R(MAX) (reflex capacity) and increased PPI of Hillslope (reflex efficacy) only under the INGORE condition, and failed to show the same pattern of attentional modulation of the reflex parameters as controls. In conclusion, disturbed PPI in schizophrenia appears to result from deficits in selective attention, rather than from preattentive dysfunction.
Stekelenburg, Jeroen J; Vroomen, Jean
2012-01-01
In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.
Gröschel, Moritz; Götze, Romy; Müller, Susanne; Ernst, Arne; Basta, Dietmar
2016-01-01
This study investigated the effect of systemic salicylate on central auditory and non-auditory structures in mice. Since cochlear hair cells are known to be one major target of salicylate, cochlear effects were reduced by using kanamycin to remove or impair hair cells. Neuronal brain activity was measured using the non-invasive manganese-enhanced magnetic resonance imaging technique. For all brain structures investigated, calcium-related neuronal activity was increased following systemic application of a sodium salicylate solution: probably due to neuronal hyperactivity. In addition, it was shown that the central effect of salicylate was not limited to the auditory system. A general alteration of calcium-related activity was indicated by an increase in manganese accumulation in the preoptic area of the anterior hypothalamus, as well as in the amygdala. The present data suggest that salicylate-induced activity changes in the auditory system differ from those shown in studies of noise trauma. Since salicylate action is reversible, central pharmacological effects of salicylate compared to those of (permanent) noise-induced hearing impairment and tinnitus might induce different pathophysiologies. These should therefore, be treated as different causes with the same symptoms. PMID:27078034
dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile
2015-09-11
Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz, and middle latency auditory evoked potentials. Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the "both" type regarding the Na-Pa amplitude, while the control group had more "electrode effect" alterations, but these alterations were not significantly different when compared to controls. Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway.
ERIC Educational Resources Information Center
Flowers, Arthur; Crandell, Edwin W.
Three auditory perceptual processes (resistance to distortion, selective listening in the form of auditory dedifferentiation, and binaural synthesis) were evaluated by five assessment techniques: (1) low pass filtered speech, (2) accelerated speech, (3) competing messages, (4) accelerated plus competing messages, and (5) binaural synthesis.…
Auditory processing disorders, verbal disfluency, and learning difficulties: a case study.
Jutras, Benoît; Lagacé, Josée; Lavigne, Annik; Boissonneault, Andrée; Lavoie, Charlen
2007-01-01
This case study reports the findings of auditory behavioral and electrophysiological measures performed on a graduate student (identified as LN) presenting verbal disfluency and learning difficulties. Results of behavioral audiological testing documented the presence of auditory processing disorders, particularly temporal processing and binaural integration. Electrophysiological test results, including middle latency, late latency and cognitive potentials, revealed that LN's central auditory system processes acoustic stimuli differently to a reference group with normal hearing.
Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
Chambers, Anna R; Salazar, Juan J; Polley, Daniel B
2016-01-01
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.
Godfrey, Donald A; Chen, Kejian; O'Toole, Thomas R; Mustapha, Abdurrahman I A A
2017-07-01
Older adults generally experience difficulties with hearing. Age-related changes in the chemistry of central auditory regions, especially the chemistry underlying synaptic transmission between neurons, may be of particular relevance for hearing changes. In this study, we used quantitative microchemical methods to map concentrations of amino acids, including the major neurotransmitters of the brain, in all the major central auditory structures of young (6 months), middle-aged (22 months), and old (33 months old) Fischer 344 x Brown Norway rats. In addition, some amino acid measurements were made for vestibular nuclei, and activities of choline acetyltransferase, the enzyme for acetylcholine synthesis, were mapped in the superior olive and auditory cortex. In old, as compared to young, rats, glutamate concentrations were lower throughout central auditory regions. Aspartate and glycine concentrations were significantly lower in many and GABA and taurine concentrations in some cochlear nucleus and superior olive regions. Glutamine concentrations and choline acetyltransferase activities were higher in most auditory cortex layers of old rats as compared to young. Where there were differences between young and old rats, amino acid concentrations in middle-aged rats often lay between those in young and old rats, suggesting gradual changes during adult life. The results suggest that hearing deficits in older adults may relate to decreases in excitatory (glutamate) as well as inhibitory (glycine and GABA) neurotransmitter amino acid functions. Chemical changes measured in aged rats often differed from changes measured after manipulations that directly damage the cochlea, suggesting that chemical changes during aging may not all be secondary to cochlear damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology.
Caspary, Donald M; Llano, Daniel A
2017-06-01
Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABA A receptors (GABA A Rs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABA A Rs and slow synaptic inhibition via GABA B Rs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical dysrhythmia, predict tinnitus pathology (De Ridder et al., 2015). These unusual oscillations/rhythms reflect net increased tonic inhibition in a subset of thalamocortical projection neurons resulting in abnormal bursting. Hyperpolarizing de-inactivation of T-type Ca2+ channels switches thalamocortical projection neurons into burst mode. Thalamocortical dysrhythmia originating in sensory thalamus has been postulated to underpin neuropathies including tinnitus and chronic pain. Here we review the relationship between noise-induced tinnitus and altered inhibition in the MGB. Copyright © 2016 Elsevier B.V. All rights reserved.
Auditory Thalamic Circuits and GABAA Receptor Function: Putative Mechanisms in Tinnitus Pathology
Caspary, Donald M.; Llano, Daniel A
2016-01-01
Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABAARs and slow synaptic inhibition via GABABRs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical dysrhythmia, predicts tinnitus pathology (De Ridder et al., 2015). These unusual oscillations/rhythms reflect net increased tonic inhibition in a subset of thalamocortical projection neurons resulting in abnormal bursting. Hyperpolarizing deinactivation of t-type Ca2+ channels switches thalamocortical projection neurons into burst mode. Thalamocortical dysrhythmia originating in sensory thalamus has been postulated to underpin neuropathies including tinnitus and chronic pain. Here we review the relationship between noise-induced tinnitus and altered inhibition in the MGB. PMID:27553899
McKeehan, Nicholas
2017-01-01
Attention-deficit/hyperactivity disorder (ADHD) and anxiety-related disorders occur at rates 2–3 times higher in deaf compared with hearing children. Potential explanations for these elevated rates and the heterogeneity of behavioral disorders associated with deafness have usually focused on socio-environmental rather than biological effects. Children with the 22q11.2 deletion or duplication syndromes often display hearing loss and behavioral disorders, including ADHD and anxiety-related disorders. Here, we show that mouse mutants with either a gain or loss of function of the T-Box transcription factor gene, Tbx1, which lies within the 22q11.2 region and is responsible for most of the syndromic defects, exhibit inner ear defects and hyperactivity. Furthermore, we show that (1) inner ear dysfunction due to the tissue-specific loss of Tbx1 or Slc12a2, which encodes a sodium-potassium-chloride cotransporter and is also necessary for inner ear function, causes hyperactivity; (2) vestibular rather than auditory failure causes hyperactivity; and (3) the severity rather than the age of onset of vestibular dysfunction differentiates whether hyperactivity or anxiety co-occurs with inner ear dysfunction. Together, these findings highlight a biological link between inner ear dysfunction and behavioral disorders and how sensory abnormalities can contribute to the etiology of disorders traditionally considered of cerebral origin. SIGNIFICANCE STATEMENT This study examines the biological rather than socio-environmental reasons why hyperactivity and anxiety disorders occur at higher rates in deaf individuals. Using conditional genetic approaches in mice, the authors show that (1) inner ear dysfunction due to either Tbx1 or Slc12a2 mutations cause hyperactivity; (2) it is vestibular dysfunction, which frequently co-occurs with deafness but often remains undiagnosed, rather than auditory dysfunction that causes hyperactivity and anxiety-related symptoms; and (3) the severity of vestibular dysfunction can predict whether hyperactivity or anxiety coexist with inner ear dysfunction. These findings suggest a need to evaluate vestibular function in hearing impaired individuals, especially those who exhibit hyperactive and anxiety-related symptoms. PMID:28438970
Antoine, Michelle W; Vijayakumar, Sarath; McKeehan, Nicholas; Jones, Sherri M; Hébert, Jean M
2017-05-17
Attention-deficit/hyperactivity disorder (ADHD) and anxiety-related disorders occur at rates 2-3 times higher in deaf compared with hearing children. Potential explanations for these elevated rates and the heterogeneity of behavioral disorders associated with deafness have usually focused on socio-environmental rather than biological effects. Children with the 22q11.2 deletion or duplication syndromes often display hearing loss and behavioral disorders, including ADHD and anxiety-related disorders. Here, we show that mouse mutants with either a gain or loss of function of the T-Box transcription factor gene, Tbx1 , which lies within the 22q11.2 region and is responsible for most of the syndromic defects, exhibit inner ear defects and hyperactivity. Furthermore, we show that (1) inner ear dysfunction due to the tissue-specific loss of Tbx1 or Slc12a2 , which encodes a sodium-potassium-chloride cotransporter and is also necessary for inner ear function, causes hyperactivity; (2) vestibular rather than auditory failure causes hyperactivity; and (3) the severity rather than the age of onset of vestibular dysfunction differentiates whether hyperactivity or anxiety co-occurs with inner ear dysfunction. Together, these findings highlight a biological link between inner ear dysfunction and behavioral disorders and how sensory abnormalities can contribute to the etiology of disorders traditionally considered of cerebral origin. SIGNIFICANCE STATEMENT This study examines the biological rather than socio-environmental reasons why hyperactivity and anxiety disorders occur at higher rates in deaf individuals. Using conditional genetic approaches in mice, the authors show that (1) inner ear dysfunction due to either Tbx1 or Slc12a2 mutations cause hyperactivity; (2) it is vestibular dysfunction, which frequently co-occurs with deafness but often remains undiagnosed, rather than auditory dysfunction that causes hyperactivity and anxiety-related symptoms; and (3) the severity of vestibular dysfunction can predict whether hyperactivity or anxiety coexist with inner ear dysfunction. These findings suggest a need to evaluate vestibular function in hearing impaired individuals, especially those who exhibit hyperactive and anxiety-related symptoms. Copyright © 2017 the authors 0270-6474/17/375144-11$15.00/0.
2016-10-01
1 AWARD NUMBER: W81XWH-15-1-0490 TITLE: Diagnosing Contributions of Sensory and Cognitive Deficits to Hearing Dysfunction in Blast-Exposed/ TBI...3. DATES COVERED 15 Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Diagnosing Contributions of Sensory and Cognitive Deficits to...installed at WRNMMC, and is running finalized versions of both the auditory and visual selective attention tasks. Subject recruitment has started, and
Lindblad, Ann-Cathrine; Rosenhall, Ulf; Olofsson, Åke; Hagerman, Björn
2014-01-01
The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: - pure tone audiometry with Békésy technique, - transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; - psychoacoustical modulation transfer function, - forward masking, - speech recognition in noise, - tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group exposed to noise below risk levels, had dysfunctions almost identical to those of the more exposed Industry group.
Lindblad, Ann-Cathrine; Rosenhall, Ulf; Olofsson, Åke; Hagerman, Björn
2014-01-01
The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: − pure tone audiometry with Békésy technique, − transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; − psychoacoustical modulation transfer function, − forward masking, − speech recognition in noise, − tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group exposed to noise below risk levels, had dysfunctions almost identical to those of the more exposed Industry group. PMID:24827149
Central auditory processing and migraine: a controlled study
2014-01-01
Background This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Methods Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of “The International Classification of Headache Disorders” (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. Results The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p < .001) when compared with controls without headache, however no significant differences were found in the DDT test for the right ear (p = .362) and for the left ear (p = .190). Conclusions Subjects with migraine performed worsened in auditory gap detection, in the discrimination of short and long duration. They also presented impairment in the physiological mechanism of temporal processing, especially in temporal resolution and temporal ordering when compared with controls. Migraine could be related to an impaired central auditory processing. Clinical trial registration Research Ethics Committee (CEP 0480.10) – UNIFESP PMID:25380661
Visual and auditory accessory stimulus offset and the Simon effect.
Nishimura, Akio; Yokosawa, Kazuhiko
2010-10-01
We investigated the effect on the right and left responses of the disappearance of a task-irrelevant stimulus located on the right or left side. Participants pressed a right or left response key on the basis of the color of a centrally located visual target. Visual (Experiment 1) or auditory (Experiment 2) task-irrelevant accessory stimuli appeared or disappeared at locations to the right or left of the central target. In Experiment 1, responses were faster when onset or offset of the visual accessory stimulus was spatially congruent with the response. In Experiment 2, responses were again faster when onset of the auditory accessory stimulus and the response were on the same side. However, responses were slightly slower when offset of the auditory accessory stimulus and the response were on the same side than when they were on opposite sides. These findings indicate that transient change information is crucial for a visual Simon effect, whereas sustained stimulation from an ongoing stimulus also contributes to an auditory Simon effect.
Intrinsic network activity in tinnitus investigated using functional MRI
Leaver, Amber M.; Turesky, Ted K.; Seydell-Greenwald, Anna; Morgan, Susan; Kim, Hung J.; Rauschecker, Josef P.
2016-01-01
Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, we used two resting-state functional connectivity (RSFC) approaches to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl’s gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal and orbitofrontal cortex. Notably, patients’ reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. PMID:27091485
Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma
2003-02-28
The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects.
Dewey, Rebecca Susan; Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T
2018-03-09
Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Our Medical Research Council-funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. ©Rebecca Susan Dewey, Deborah A Hall, Hannah Guest, Garreth Prendergast, Christopher J Plack, Susan T Francis. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 09.03.2018.
Effects of Hatchery Rearing on the Structure and Function of Salmonid Mechanosensory Systems.
Brown, Andrew D; Sisneros, Joseph A; Jurasin, Tyler; Coffin, Allison B
2016-01-01
This paper reviews recent studies on the effects of hatchery rearing on the auditory and lateral line systems of salmonid fishes. Major conclusions are that (1) hatchery-reared juveniles exhibit abnormal lateral line morphology (relative to wild-origin conspecifics), suggesting that the hatchery environment affects lateral line structure, perhaps due to differences in the hydrodynamic conditions of hatcheries versus natural rearing environments, and (2) hatchery-reared salmonids have a high proportion of abnormal otoliths, a condition associated with reduced auditory sensitivity and suggestive of inner ear dysfunction.
Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss
ERIC Educational Resources Information Center
Koravand, Amineh; Jutras, Benoit
2013-01-01
Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…
Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia
Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia
2016-01-01
Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668
Cogné, Mélanie; Knebel, Jean-François; Klinger, Evelyne; Bindschaedler, Claire; Rapin, Pierre-André; Joseph, Pierre-Alain; Clarke, Stephanie
2018-01-01
Topographical disorientation is a frequent deficit among patients suffering from brain injury. Spatial navigation can be explored in this population using virtual reality environments, even in the presence of motor or sensory disorders. Furthermore, the positive or negative impact of specific stimuli can be investigated. We studied how auditory stimuli influence the performance of brain-injured patients in a navigational task, using the Virtual Action Planning-Supermarket (VAP-S) with the addition of contextual ("sonar effect" and "name of product") and non-contextual ("periodic randomised noises") auditory stimuli. The study included 22 patients with a first unilateral hemispheric brain lesion and 17 healthy age-matched control subjects. After a software familiarisation, all subjects were tested without auditory stimuli, with a sonar effect or periodic random sounds in a random order, and with the stimulus "name of product". Contextual auditory stimuli improved patient performance more than control group performance. Contextual stimuli benefited most patients with severe executive dysfunction or with severe unilateral neglect. These results indicate that contextual auditory stimuli are useful in the assessment of navigational abilities in brain-damaged patients and that they should be used in rehabilitation paradigms.
Kraus, Kari Suzanne; Canlon, Barbara
2012-06-01
Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma. Copyright © 2012 Elsevier B.V. All rights reserved.
Kurioka, Takaomi; Lee, Min Young; Heeringa, Amarins N.; Beyer, Lisa A.; Swiderski, Donald L.; Kanicki, Ariane C.; Kabara, Lisa L.; Dolan, David F.; Shore, Susan E.; Raphael, Yehoash
2016-01-01
In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus. However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and cochlear nucleus neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination. PMID:27403879
Turning down the noise: the benefit of musical training on the aging auditory brain.
Alain, Claude; Zendel, Benjamin Rich; Hutka, Stefanie; Bidelman, Gavin M
2014-02-01
Age-related decline in hearing abilities is a ubiquitous part of aging, and commonly impacts speech understanding, especially when there are competing sound sources. While such age effects are partially due to changes within the cochlea, difficulties typically exist beyond measurable hearing loss, suggesting that central brain processes, as opposed to simple peripheral mechanisms (e.g., hearing sensitivity), play a critical role in governing hearing abilities late into life. Current training regimens aimed to improve central auditory processing abilities have experienced limited success in promoting listening benefits. Interestingly, recent studies suggest that in young adults, musical training positively modifies neural mechanisms, providing robust, long-lasting improvements to hearing abilities as well as to non-auditory tasks that engage cognitive control. These results offer the encouraging possibility that musical training might be used to counteract age-related changes in auditory cognition commonly observed in older adults. Here, we reviewed studies that have examined the effects of age and musical experience on auditory cognition with an emphasis on auditory scene analysis. We infer that musical training may offer potential benefits to complex listening and might be utilized as a means to delay or even attenuate declines in auditory perception and cognition that often emerge later in life. Copyright © 2013 Elsevier B.V. All rights reserved.
Bellis, Teri James; Ross, Jody
2011-09-01
It has been suggested that, in order to validate a diagnosis of (C)APD (central auditory processing disorder), testing using direct cross-modal analogs should be performed to demonstrate that deficits exist solely or primarily in the auditory modality (McFarland and Cacace, 1995; Cacace and McFarland, 2005). This modality-specific viewpoint is controversial and not universally accepted (American Speech-Language-Hearing Association [ASHA], 2005; Musiek et al, 2005). Further, no such analogs have been developed to date, and neither the feasibility of such testing in normally functioning individuals nor the concurrent validity of cross-modal analogs has been established. The purpose of this study was to investigate the feasibility of cross-modal testing by examining the performance of normal adults and children on four tests of central auditory function and their corresponding visual analogs. In addition, this study investigated the degree to which concurrent validity of auditory and visual versions of these tests could be demonstrated. An experimental repeated measures design was employed. Participants consisted of two groups (adults, n=10; children, n=10) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of auditory/otologic, language, learning, neurologic, or related disorders. Visual analogs of four tests in common clinical use for the diagnosis of (C)APD were developed (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; Duration Patterns [Pinheiro and Musiek, 1985]; and the Random Gap Detection Test [RGDT; Keith, 2000]). Participants underwent two 1 hr test sessions separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANOVAs (analyses of variance) were used to examine effects of group, modality, and laterality (for the Dichotic/Dichoptic Digits tests) or response condition (for the auditory and visual Frequency Patterns and Duration Patterns tests). Pearson product-moment correlations were used to investigate relationships between auditory and visual performance. Adults performed significantly better than children on the Dichotic/Dichoptic Digits tests. Results also revealed a significant effect of modality, with auditory better than visual, and a significant modality×laterality interaction, with a right-ear advantage seen for the auditory task and a left-visual-field advantage seen for the visual task. For the Frequency Patterns test and its visual analog, results revealed a significant modality×response condition interaction, with humming better than labeling for the auditory version but the reversed effect for the visual version. For Duration Patterns testing, visual performance was significantly poorer than auditory performance. Due to poor test-retest reliability and ceiling effects for the auditory and visual gap-detection tasks, analyses could not be performed. No cross-modal correlations were observed for any test. Results demonstrated that cross-modal testing is at least feasible using easily accessible computer hardware and software. The lack of any cross-modal correlations suggests independent processing mechanisms for auditory and visual versions of each task. Examination of performance in individuals with central auditory and pan-sensory disorders is needed to determine the utility of cross-modal analogs in the differential diagnosis of (C)APD. American Academy of Audiology.
Sensorimotor Modulation of Mood and Depression: In Search of an Optimal Mode of Stimulation
Canbeyli, Resit
2013-01-01
Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research. PMID:23908624
Auditory processing deficits in bipolar disorder with and without a history of psychotic features.
Zenisek, RyAnna; Thaler, Nicholas S; Sutton, Griffin P; Ringdahl, Erik N; Snyder, Joel S; Allen, Daniel N
2015-11-01
Auditory perception deficits have been identified in schizophrenia (SZ) and linked to dysfunction in the auditory cortex. Given that psychotic symptoms, including auditory hallucinations, are also seen in bipolar disorder (BD), it may be that individuals with BD who also exhibit psychotic symptoms demonstrate a similar impairment in auditory perception. Fifty individuals with SZ, 30 individuals with bipolar I disorder with a history of psychosis (BD+), 28 individuals with bipolar I disorder with no history of psychotic features (BD-), and 29 normal controls (NC) were administered a tone discrimination task and an emotion recognition task. Mixed-model analyses of covariance with planned comparisons indicated that individuals with BD+ performed at a level that was intermediate between those with BD- and those with SZ on the more difficult condition of the tone discrimination task and on the auditory condition of the emotion recognition task. There were no differences between the BD+ and BD- groups on the visual or auditory-visual affect recognition conditions. Regression analyses indicated that performance on the tone discrimination task predicted performance on all conditions of the emotion recognition task. Auditory hallucinations in BD+ were not related to performance on either task. Our findings suggested that, although deficits in frequency discrimination and emotion recognition are more severe in SZ, these impairments extend to BD+. Although our results did not support the idea that auditory hallucinations may be related to these deficits, they indicated that basic auditory deficits may be a marker for psychosis, regardless of SZ or BD diagnosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J
2016-05-01
Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.
How Hearing Loss Impacts Communication. Tipsheet: Serving Students Who Are Hard of Hearing
ERIC Educational Resources Information Center
Atcherson, Samuel R.; Johnson, Marni I.
2009-01-01
Hearing, or auditory processing, involves the use of many hearing skills in a single or combined fashion. The sounds that humans hear can be characterized by their intensity (loudness), frequency (pitch), and timing. Impairment of any of the auditory structures from the visible ear to the central auditory nervous system within the brain can have a…
The impact of visual gaze direction on auditory object tracking.
Pomper, Ulrich; Chait, Maria
2017-07-05
Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.
Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.
Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R
1993-07-01
Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.
Evoked bioelectrical brain activity following exposure to ionizing radiation.
Loganovsky, K; Kuts, K
2017-12-01
The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.
A central factor in pure tone auditory fatigue.
DOT National Transportation Integrated Search
1963-09-01
A long accumulation of psychophysical and physiological evidence indicates that auditory fatigue has its locus of effect in the cochlea; transfer studies with negative or questionable results, and studies of cochlear chemistry and potentials with pos...
[Auditory event-related potentials in children with functional articulation disorders].
Gao, Yan; Zheng, Xi-Fu; Hong, Qi; Luo, Xiao-Xing; Jiang, Tao-Tao
2013-08-01
To investigate the central auditory processing function in children with functional articulation disorders (FAD), and possible causes of FAD. Twenty-seven children with FAD were selected as the case group and 50 age-matched normal children were selected as the control group. The two groups were compared with respect to the following factors: percentage of individuals with a positive history of language development disorder, and the form, peak latency and peak amplitude of mismatch negativity (MMN) on auditory event-related potentials. Compared with the control group, the case group had a significantly higher percentage of individuals with a positive history of language development disorder (70% vs 8%; P<0.01), a significantly prolonged peak latency of MMN (209 ± 31 ms vs 175 ± 32 ms; P<0.01), and an insignificantly lower peak amplitude of MMN (P>0.05). Prolonged central auditory processing may be one of the causes of FAD in children.
Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte
2018-04-12
The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.
Schrode, Katrina M.; Bee, Mark A.
2015-01-01
ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467
Central auditory neurons have composite receptive fields.
Kozlov, Andrei S; Gentner, Timothy Q
2016-02-02
High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.
Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma
2003-01-01
The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. PMID:12639334
A dynamic auditory-cognitive system supports speech-in-noise perception in older adults
Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina
2013-01-01
Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of the auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we use structural equation modeling to evaluate interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55 to 79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise. PMID:23541911
Zhong, Ziwei; Henry, Kenneth S.; Heinz, Michael G.
2014-01-01
People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. PMID:24315815
Characterizing the roles of alpha and theta oscillations in multisensory attention.
Keller, Arielle S; Payne, Lisa; Sekuler, Robert
2017-05-01
Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing the roles of alpha and theta oscillations in multisensory attention
Keller, Arielle S.; Payne, Lisa; Sekuler, Robert
2017-01-01
Cortical alpha oscillations (8–13 Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4–7 Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta’s association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. PMID:28259771
It Is Time to Rethink Central Auditory Processing Disorder Protocols for School-Aged Children.
DeBonis, David A
2015-06-01
The purpose of this article is to review the literature that pertains to ongoing concerns regarding the central auditory processing construct among school-aged children and to assess whether the degree of uncertainty surrounding central auditory processing disorder (CAPD) warrants a change in current protocols. Methodology on this topic included a review of relevant and recent literature through electronic search tools (e.g., ComDisDome, PsycINFO, Medline, and Cochrane databases); published texts; as well as published articles from the Journal of the American Academy of Audiology; the American Journal of Audiology; the Journal of Speech, Language, and Hearing Research; and Language, Speech, and Hearing Services in Schools. This review revealed strong support for the following: (a) Current testing of CAPD is highly influenced by nonauditory factors, including memory, attention, language, and executive function; (b) the lack of agreement regarding the performance criteria for diagnosis is concerning; (c) the contribution of auditory processing abilities to language, reading, and academic and listening abilities, as assessed by current measures, is not significant; and (d) the effectiveness of auditory interventions for improving communication abilities has not been established. Routine use of CAPD test protocols cannot be supported, and strong consideration should be given to redirecting focus on assessing overall listening abilities. Also, intervention needs to be contextualized and functional. A suggested protocol is provided for consideration. All of these issues warrant ongoing research.
Tobe, Russell H; Corcoran, Cheryl M; Breland, Melissa; MacKay-Brandt, Anna; Klim, Casimir; Colcombe, Stanley J; Leventhal, Bennett L; Javitt, Daniel C
2016-08-01
Impairment in social cognition, including emotion recognition, has been extensively studied in both Autism Spectrum Disorders (ASD) and Schizophrenia (SZ). However, the relative patterns of deficit between disorders have been studied to a lesser degree. Here, we applied a social cognition battery incorporating both auditory (AER) and visual (VER) emotion recognition measures to a group of 19 high-functioning individuals with ASD relative to 92 individuals with SZ, and 73 healthy control adult participants. We examined group differences and correlates of basic auditory processing and processing speed. Individuals with SZ were impaired in both AER and VER while ASD individuals were impaired in VER only. In contrast to SZ participants, those with ASD showed intact basic auditory function. Our finding of a dissociation between AER and VER deficits in ASD relative to Sz support modality-specific theories of emotion recognition dysfunction. Future studies should focus on visual system-specific contributions to social cognitive impairment in ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.
2011-01-01
A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…
Plasticity in neuromagnetic cortical responses suggests enhanced auditory object representation
2013-01-01
Background Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training. Young healthy volunteers participated in a five-day training program to identify two pre-voiced versions of the stop-consonant syllable ‘ba’, which is an unusual speech sound to English listeners. Magnetoencephalographic (MEG) brain responses were recorded during two pre-training and one post-training sessions. Underlying cortical sources were localized, and the temporal dynamics of auditory evoked responses were analyzed. Results After both passive listening and active training, the amplitude of the P2m wave with latency of 200 ms increased considerably. By this latency, the integration of stimulus features into an auditory object for further conscious perception is considered to be complete. Therefore the P2m changes were discussed in the light of auditory object representation. Moreover, P2m sources were localized in anterior auditory association cortex, which is part of the antero-ventral pathway for object identification. The amplitude of the earlier N1m wave, which is related to processing of sensory information, did not change over the time course of the study. Conclusion The P2m amplitude increase and its persistence over time constitute a neuroplastic change. The P2m gain likely reflects enhanced object representation after stimulus experience and training, which enables listeners to improve their ability for scrutinizing fine differences in pre-voicing time. Different trajectories of brain and behaviour changes suggest that the preceding effect of a P2m increase relates to brain processes, which are necessary precursors of perceptual learning. Cautious discussion is required when interpreting the finding of a P2 amplitude increase between recordings before and after training and learning. PMID:24314010
Degraded speech sound processing in a rat model of fragile X syndrome
Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Kilgard, Michael P.
2014-01-01
Fragile X syndrome is the most common inherited form of intellectual disability and the leading genetic cause of autism. Impaired phonological processing in fragile X syndrome interferes with the development of language skills. Although auditory cortex responses are known to be abnormal in fragile X syndrome, it is not clear how these differences impact speech sound processing. This study provides the first evidence that the cortical representation of speech sounds is impaired in Fmr1 knockout rats, despite normal speech discrimination behavior. Evoked potentials and spiking activity in response to speech sounds, noise burst trains, and tones were significantly degraded in primary auditory cortex, anterior auditory field and the ventral auditory field. Neurometric analysis of speech evoked activity using a pattern classifier confirmed that activity in these fields contains significantly less information about speech sound identity in Fmr1 knockout rats compared to control rats. Responses were normal in the posterior auditory field, which is associated with sound localization. The greatest impairment was observed in the ventral auditory field, which is related to emotional regulation. Dysfunction in the ventral auditory field may contribute to poor emotional regulation in fragile X syndrome and may help explain the observation that later auditory evoked responses are more disturbed in fragile X syndrome compared to earlier responses. Rodent models of fragile X syndrome are likely to prove useful for understanding the biological basis of fragile X syndrome and for testing candidate therapies. PMID:24713347
Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.
NASA Astrophysics Data System (ADS)
Hunter, Chyren
The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin in the ventral and lateral nuclei of the trapezoid body (MVPO and LVPO). Bilateral projections from the nucleus reticularis pontis oralis (RPOo), to the VLL were also identified as glycinergic. This projection may link motor output systems to ascending auditory input, generating the auditory behavioral responses seen with glycine antagonism in animal models of myoclonus and seizure.
Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults.
Giroud, Nathalie; Hirsiger, Sarah; Muri, Raphaela; Kegel, Andrea; Dillier, Norbert; Meyer, Martin
2018-01-01
To gain more insight into central hearing loss, we investigated the relationship between cortical thickness and surface area, speech-relevant resting state EEG power, and above-threshold auditory measures in older adults and younger controls. Twenty-three older adults and 13 younger controls were tested with an adaptive auditory test battery to measure not only traditional pure-tone thresholds, but also above individual thresholds of temporal and spectral processing. The participants' speech recognition in noise (SiN) was evaluated, and a T1-weighted MRI image obtained for each participant. We then determined the cortical thickness (CT) and mean cortical surface area (CSA) of auditory and higher speech-relevant regions of interest (ROIs) with FreeSurfer. Further, we obtained resting state EEG from all participants as well as data on the intrinsic theta and gamma power lateralization, the latter in accordance with predictions of the Asymmetric Sampling in Time hypothesis regarding speech processing (Poeppel, Speech Commun 41:245-255, 2003). Methodological steps involved the calculation of age-related differences in behavior, anatomy and EEG power lateralization, followed by multiple regressions with anatomical ROIs as predictors for auditory performance. We then determined anatomical regressors for theta and gamma lateralization, and further constructed all regressions to investigate age as a moderator variable. Behavioral results indicated that older adults performed worse in temporal and spectral auditory tasks, and in SiN, despite having normal peripheral hearing as signaled by the audiogram. These behavioral age-related distinctions were accompanied by lower CT in all ROIs, while CSA was not different between the two age groups. Age modulated the regressions specifically in right auditory areas, where a thicker cortex was associated with better auditory performance in older adults. Moreover, a thicker right supratemporal sulcus predicted more rightward theta lateralization, indicating the functional relevance of the right auditory areas in older adults. The question how age-related cortical thinning and intrinsic EEG architecture relates to central hearing loss has so far not been addressed. Here, we provide the first neuroanatomical and neurofunctional evidence that cortical thinning and lateralization of speech-relevant frequency band power relates to the extent of age-related central hearing loss in older adults. The results are discussed within the current frameworks of speech processing and aging.
Church, M W; Kaltenbach, J A
1997-05-01
Fetal alcohol syndrome (FAS) is characterized in part by mental impairment, as well as craniofacial and ocular anomalies. These conditions are traditionally associated with childhood hearing disorders, because they all have a common embryonic origin in malformations of the first and second branchial arches, and have similar critical periods of vulnerability to toxic insult. A review of human and animal research indicates that there are four types of hearing disorders associated with FAS. These are: (1) a developmental delay in auditory maturation, (2) sensorineural hearing loss, (3) intermittent conductive hearing loss due to recurrent serous otitis media, and (4) central hearing loss. The auditory and vestibular systems share the same peripheral apparatuses (the inner ear and eighth cranial nerve) and are embryologically and structurally similar. Consequently, vestibular disorders in FAS children might be expected. The evidence for vestibular dysfunction in FAS is ambiguous, however. Like other syndromes associated with craniofacial anomalies, hearing disorders, and mental impairment, FAS is also characterized by a high prevalence of speech and language pathology. Hearing disorders are a form of sensory deprivation. If present during early childhood, they can result in permanent hearing, language, and mental impairment. Early identification and intervention to treat hearing, language, and speech disorders could therefore result in improved outcome for the FAS child. Specific recommendations are made for intervention and future research.
Type II thyroplasty changes cortical activation in patients with spasmodic dysphonia.
Tateya, Ichiro; Omori, Koichi; Kojima, Hisayoshi; Naito, Yasushi; Hirano, Shigeru; Yamashita, Masaru; Ito, Juichi
2015-04-01
Spasmodic dysphonia (SD) is a complex neurological communication disorder characterized by a choked, strain-strangled vocal quality with voice stoppages in phonation. Its symptoms are exacerbated by situations where communication failures are anticipated, and reduced when talking with animals or small children. Symptoms are also reduced following selected forms of treatment. It is reasonable to assume that surgical alteration reducing symptoms would also alter brain activity, though demonstration of such a phenomenon has not been documented. The objective of this study is to reveal brain activity of SD patients before and after surgical treatment. We performed lateralization thyroplasties on three adductor SD patients and compared pre- and post-operative positron emission tomography recordings made during vocalization. Pre-operatively, cordal supplementary motor area (SMA), bilateral auditory association areas, and thalamus were activated while reading aloud. Such activity was not observed in normal subjects. Type II thyroplasty was performed according to Isshiki's method and the strained voice was significantly reduced or eliminated in all three patients. Post-operative PET showed normal brain activation pattern with a significant decrease in cordal SMA, bilateral auditory association areas and thalamus, and a significant increase in rostral SMA compared with pre-operative recordings. This is the first report showing that treatment to a peripheral organ, which reverses voice symptoms, also reverses dysfunctional patterns of the central nervous system in patients with SD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying
2015-01-01
Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli-pure tones and Mandarin lexical tones-were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm's standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents' and teachers' ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that aim to alleviate these dysfunctions.
Binaural speech processing in individuals with auditory neuropathy.
Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B
2012-12-13
Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Cecere, Roberto; Gross, Joachim; Thut, Gregor
2016-06-01
The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Auditory evoked potentials in children and adolescents with Down syndrome.
Gregory, Letícia; Rosa, Rafael F M; Zen, Paulo R G; Sleifer, Pricila
2018-01-01
Down syndrome, or trisomy 21, is the most common genetic alteration in humans. The syndrome presents with several features, including hearing loss and changes in the central nervous system, which may affect language development in children and lead to school difficulties. The present study aimed to investigate group differences in the central auditory system by long-latency auditory evoked potentials and cognitive potential. An assessment of 23 children and adolescents with Down syndrome was performed, and a control group composed of 43 children and adolescents without genetic and/or neurological changes was used for comparison. All children underwent evaluation with pure tone and vocal audiometry, acoustic immitance measures, long-latency auditory evoked potentials, and cognitive potential. Longer latencies of the waves were found in the Down syndrome group than the control group, without significant differences in amplitude, suggesting that individuals with Down syndrome have difficulty in discrimination and auditory memory. It is, therefore, important to stimulate and monitor these children in order to enable adequate development and improve their life quality. We also emphasize the importance of the application of auditory evoked potentials in clinical practice, in order to contribute to the early diagnosis of hearing alterations and the development of more research in this area. © 2017 Wiley Periodicals, Inc.
Schrode, Katrina M; Bee, Mark A
2015-03-01
Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.
Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia.
Gori, Simone; Seitz, Aaron R; Ronconi, Luca; Franceschini, Sandro; Facoetti, Andrea
2016-10-17
Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Reduced event-related current density in the anterior cingulate cortex in schizophrenia.
Mulert, C; Gallinat, J; Pascual-Marqui, R; Dorn, H; Frick, K; Schlattmann, P; Mientus, S; Herrmann, W M; Winterer, G
2001-04-01
There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus). Copyright 2001 Academic Press.
Zheng, Leilei; Chai, Hao; Yu, Shaohua; Xu, You; Chen, Wanzhen; Wang, Wei
2015-01-01
The exact mechanism behind auditory hallucinations in schizophrenia remains unknown. A corollary discharge dysfunction hypothesis has been put forward, but it requires further confirmation. Electroencephalography (EEG) of the Deutsch octave illusion might offer more insight, by demonstrating an abnormal cerebral activation similar to that under auditory hallucinations in schizophrenic patients. We invited 23 first-episode schizophrenic patients with auditory hallucinations and 23 healthy participants to listen to silence and two sound sequences, which consisted of alternating 400- and 800-Hz tones. EEG spectral power and coherence values of different frequency bands, including theta rhythm (3.5-7.5 Hz), were computed using 32 scalp electrodes. Task-related spectral power changes and task-related coherence differences were also calculated. Clinical characteristics of patients were rated using the Positive and Negative Syndrome Scale. After both sequences of octave illusion, the task-related theta power change values of frontal and temporal areas were significantly lower, and the task-related theta coherence difference values of intrahemispheric frontal-temporal areas were significantly higher in schizophrenic patients than in healthy participants. Moreover, the task-related power change values in both hemispheres were negatively correlated and the task-related coherence difference values in the right hemisphere were positively correlated with the hallucination score in schizophrenic patients. We only tested the Deutsch octave illusion in primary schizophrenic patients with acute first episode. Further studies might adopt other illusions or employ other forms of schizophrenia. Our results showed a lower activation but higher connection within frontal and temporal areas in schizophrenic patients under octave illusion. This suggests an oversynchronized but weak frontal area to exert an action to the ipsilateral temporal area, which supports the corollary discharge dysfunction hypothesis. © 2014 S. Karger AG, Basel.
Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile
2018-02-19
The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users.
Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile
2018-01-01
OBJECTIVE: The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. METHODS: Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. RESULTS: The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. CONCLUSIONS: Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users. PMID:29466495
A dynamic auditory-cognitive system supports speech-in-noise perception in older adults.
Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina
2013-06-01
Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of an auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we used structural equation modeling to evaluate the interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55-79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise. Copyright © 2013 Elsevier B.V. All rights reserved.
Influence of aging on human sound localization
Dobreva, Marina S.; O'Neill, William E.
2011-01-01
Errors in sound localization, associated with age-related changes in peripheral and central auditory function, can pose threats to self and others in a commonly encountered environment such as a busy traffic intersection. This study aimed to quantify the accuracy and precision (repeatability) of free-field human sound localization as a function of advancing age. Head-fixed young, middle-aged, and elderly listeners localized band-passed targets using visually guided manual laser pointing in a darkened room. Targets were presented in the frontal field by a robotically controlled loudspeaker assembly hidden behind a screen. Broadband targets (0.1–20 kHz) activated all auditory spatial channels, whereas low-pass and high-pass targets selectively isolated interaural time and intensity difference cues (ITDs and IIDs) for azimuth and high-frequency spectral cues for elevation. In addition, to assess the upper frequency limit of ITD utilization across age groups more thoroughly, narrowband targets were presented at 250-Hz intervals from 250 Hz up to ∼2 kHz. Young subjects generally showed horizontal overestimation (overshoot) and vertical underestimation (undershoot) of auditory target location, and this effect varied with frequency band. Accuracy and/or precision worsened in older individuals for broadband, high-pass, and low-pass targets, reflective of peripheral but also central auditory aging. In addition, compared with young adults, middle-aged, and elderly listeners showed pronounced horizontal localization deficiencies (imprecision) for narrowband targets within 1,250–1,575 Hz, congruent with age-related central decline in auditory temporal processing. Findings underscore the distinct neural processing of the auditory spatial cues in sound localization and their selective deterioration with advancing age. PMID:21368004
Visual-Auditory Integration during Speech Imitation in Autism
ERIC Educational Resources Information Center
Williams, Justin H. G.; Massaro, Dominic W.; Peel, Natalie J.; Bosseler, Alexis; Suddendorf, Thomas
2004-01-01
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional "mirror neuron" systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a "virtual" head (Baldi), delivered speech stimuli for…
[Perception and selectivity of sound duration in the central auditory midbrain].
Wang, Xin; Li, An-An; Wu, Fei-Jian
2010-08-25
Sound duration plays important role in acoustic communication. Information of acoustic signal is mainly encoded in the amplitude and frequency spectrum of different durations. Duration selective neurons exist in the central auditory system including inferior colliculus (IC) of frog, bat, mouse and chinchilla, etc., and they are important in signal recognition and feature detection. Two generally accepted models, which are "coincidence detector model" and "anti-coincidence detector model", have been raised to explain the mechanism of neural selective responses to sound durations based on the study of IC neurons in bats. Although they are different in details, they both emphasize the importance of synaptic integration of excitatory and inhibitory inputs, and are able to explain the responses of most duration-selective neurons. However, both of the hypotheses need to be improved since other sound parameters, such as spectral pattern, amplitude and repetition rate, could affect the duration selectivity of the neurons. The dynamic changes of sound parameters are believed to enable the animal to effectively perform recognition of behavior related acoustic signals. Under free field sound stimulation, we analyzed the neural responses in the IC and auditory cortex of mouse and bat to sounds with different duration, frequency and amplitude, using intracellular or extracellular recording techniques. Based on our work and previous studies, this article reviews the properties of duration selectivity in central auditory system and discusses the mechanisms of duration selectivity and the effect of other sound parameters on the duration coding of auditory neurons.
ERIC Educational Resources Information Center
Faronii-Butler, Kishasha O.
2013-01-01
This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…
Auditory processing and morphological anomalies in medial geniculate nucleus of Cntnap2 mutant mice.
Truong, Dongnhu T; Rendall, Amanda R; Castelluccio, Brian C; Eigsti, Inge-Marie; Fitch, R Holly
2015-12-01
Genetic epidemiological studies support a role for CNTNAP2 in developmental language disorders such as autism spectrum disorder, specific language impairment, and dyslexia. Atypical language development and function represent a core symptom of autism spectrum disorder (ASD), with evidence suggesting that aberrant auditory processing-including impaired spectrotemporal processing and enhanced pitch perception-may both contribute to an anomalous language phenotype. Investigation of gene-brain-behavior relationships in social and repetitive ASD symptomatology have benefited from experimentation on the Cntnap2 knockout (KO) mouse. However, auditory-processing behavior and effects on neural structures within the central auditory pathway have not been assessed in this model. Thus, this study examined whether auditory-processing abnormalities were associated with mutation of the Cntnap2 gene in mice. Cntnap2 KO mice were assessed on auditory-processing tasks including silent gap detection, embedded tone detection, and pitch discrimination. Cntnap2 knockout mice showed deficits in silent gap detection but a surprising superiority in pitch-related discrimination as compared with controls. Stereological analysis revealed a reduction in the number and density of neurons, as well as a shift in neuronal size distribution toward smaller neurons, in the medial geniculate nucleus of mutant mice. These findings are consistent with a central role for CNTNAP2 in the ontogeny and function of neural systems subserving auditory processing and suggest that developmental disruption of these neural systems could contribute to the atypical language phenotype seen in autism spectrum disorder. (c) 2015 APA, all rights reserved).
Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.
Loria, Tristan; de Grosbois, John; Tremblay, Luc
2016-09-01
At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.
Yoshimura, Yuko; Kikuchi, Mitsuru; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Takahashi, Tetsuya; Remijn, Gerard B; Oi, Manabu; Munesue, Toshio; Higashida, Haruhiro; Minabe, Yoshio
2016-01-01
The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD) in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD) is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G) subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD.
Diminished auditory sensory gating during active auditory verbal hallucinations.
Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia
2017-10-01
Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.
Acute auditory agnosia as the presenting hearing disorder in MELAS.
Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella
2008-12-01
MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.
Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M
2000-01-01
Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.
The Influence of Closeness Centrality on Lexical Processing
Goldstein, Rutherford; Vitevitch, Michael S.
2017-01-01
The present study examined how the network science measure known as closeness centrality (which measures the average distance between a node and all other nodes in the network) influences lexical processing. In the mental lexicon, a word such as CAN has high closeness centrality, because it is close to many other words in the lexicon. Whereas, a word such as CURE has low closeness centrality because it is far from other words in the lexicon. In an auditory lexical decision task (Experiment 1) participants responded more quickly to words with high closeness centrality. In Experiment 2 an auditory lexical decision task was again used, but with a wider range of stimulus characteristics. Although, there was no main effect of closeness centrality in Experiment 2, an interaction between closeness centrality and frequency of occurrence was observed on reaction times. The results are explained in terms of partial activation gradually strengthening over time word-forms that are centrally located in the phonological network. PMID:29018396
A corollary discharge maintains auditory sensitivity during sound production
NASA Astrophysics Data System (ADS)
Poulet, James F. A.; Hedwig, Berthold
2002-08-01
Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.
[Forensic application of brainstem auditory evoked potential in patients with brain concussion].
Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin
2008-12-01
To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (P<0.05). The abnormal rate of BAEP in the brainstem pathway for patients with brain concussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.
Auditory dysfunction in schizophrenia: integrating clinical and basic features
Javitt, Daniel C.; Sweet, Robert A.
2015-01-01
Schizophrenia is a complex neuropsychiatric disorder that is associated with persistent psychosocial disability in affected individuals. Although studies of schizophrenia have traditionally focused on deficits in higher-order processes such as working memory and executive function, there is an increasing realization that, in this disorder, deficits can be found throughout the cortex and are manifest even at the level of early sensory processing. These deficits are highly amenable to translational investigation and represent potential novel targets for clinical intervention. Deficits, moreover, have been linked to specific structural abnormalities in post-mortem auditory cortex tissue from individuals with schizophrenia, providing unique insights into underlying pathophysiological mechanisms. PMID:26289573
Habilitation of auditory and vestibular dysfunction.
Snapp, Hillary A; Schubert, Michael C
2012-04-01
Although unilateral hearing loss is often the initial sign of vestibular schwannoma (VS), the pathogenesis of the associated structures within the cerebellopontine angle can result in vestibular, facial, or vascular symptoms. Removal of a VS causes deficits in hearing, balance, and gaze stability. The resulting hearing loss eliminates the benefits of binaural listening that provide localization, loudness summation, and listening-in-noise ability. Reduced balance and gaze stability increase fall risk. This review discusses modern treatment options for auditory and vestibular rehabilitation including contralateral routing of signals (CROS), bilateral CROS, bone-anchored implants, tinnitus management, gaze and gait stability exercises. Copyright © 2012 Elsevier Inc. All rights reserved.
The Central Role of Recognition in Auditory Perception: A Neurobiological Model
ERIC Educational Resources Information Center
McLachlan, Neil; Wilson, Sarah
2010-01-01
The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, K.N.; Succop, P.A.; Berger, O.G.
This analysis examined the relationship between lead exposure as registered in whole blood (PbB) and the central auditory processing abilities and cognitive developmental status of the Cincinnati cohort (N = 259) at age 5 years. Although the effects were small, higher prenatal, neonatal, and postnatal PbB levels were associated with poorer central auditory processing abilities on the Filtered Word Subtest of the SCAN (a screening test for auditory processing disorders). Higher postnatal PbB levels were associated with poorer performance on all cognitive developmental subscales of the Kaufman Assessment Battery for Children (K-ABC). However, following adjustment for measures of the homemore » environment and maternal intelligence, few statistically or near statistically significant associations remained. Our findings are discussed in the context of the related issues of confounding and the detection of weak associations in high risk populations.« less
Díaz-Leines, Sergio; Peñaloza-López, Yolanda R; Serrano-Miranda, Tirzo A; Flores-Ávalos, Blanca; Vidal-Ixta, Martha T; Jiménez-Herrera, Blanca
2013-01-01
Hyperhomocysteinemia as a risk factor for hearing impairment, neuronal damage and cognitive impairment in elderly patients is controversial and is limited by the small number of studies. The aim of this work was determine if elderly patients detected with hyperhomocysteinemia have an increased risk of developing abnormalities in the central auditory processes as compared with a group of patients with appropriate homocysteine levels, and to define the behaviour of psychoacoustic tests and long latency potentials (P300) in these patients. This was a cross-sectional, comparative and analytical study. We formed a group of patients with hyperhomocysteinemia and a control group with normal levels of homocysteine. All patients underwent audiometry, tympanometry and a selection of psychoacoustic tests (dichotic digits, low-pass filtered words, speech in noise and masking level difference), auditory evoked brainstem potentials and P300. Patients with hyperhomocysteinemia had higher values in the test of masking level difference than did the control group (P=.049) and more protracted latency in P300 (P=.000). Hyperhomocysteinemia is a factor that alters the central auditory functions. Alterations in psychoacoustic tests and disturbances in electrophysiological tests suggest that the central portion of the auditory pathway is affected in patients with hyperhomocysteinemia. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.
Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit
2007-02-01
The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.
Synaptic transmission at the endbulb of Held deteriorates during age‐related hearing loss
Manis, Paul B.
2016-01-01
Key points Synaptic transmission at the endbulb of Held was assessed by whole‐cell patch clamp recordings from auditory neurons in mature (2–4 months) and aged (20–26 months) mice.Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age‐related hearing loss.The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential‐evoked calcium influx.These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. Abstract Age‐related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2–4 months) and old (20–26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA‐AM or decreasing calcium influx with ω‐agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA‐AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium‐dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing. PMID:27618790
Mohr, Robert A; Chang, Yiran; Bhandiwad, Ashwin A; Forlano, Paul M; Sisneros, Joseph A
2018-01-01
While the peripheral auditory system of fish has been well studied, less is known about how the fish's brain and central auditory system process complex social acoustic signals. The plainfin midshipman fish, Porichthys notatus, has become a good species for investigating the neural basis of acoustic communication because the production and reception of acoustic signals is paramount for this species' reproductive success. Nesting males produce long-duration advertisement calls that females detect and localize among the noise in the intertidal zone to successfully find mates and spawn. How female midshipman are able to discriminate male advertisement calls from environmental noise and other acoustic stimuli is unknown. Using the immediate early gene product cFos as a marker for neural activity, we quantified neural activation of the ascending auditory pathway in female midshipman exposed to conspecific advertisement calls, heterospecific white seabass calls, or ambient environment noise. We hypothesized that auditory hindbrain nuclei would be activated by general acoustic stimuli (ambient noise and other biotic acoustic stimuli) whereas auditory neurons in the midbrain and forebrain would be selectively activated by conspecific advertisement calls. We show that neural activation in two regions of the auditory hindbrain, i.e., the rostral intermediate division of the descending octaval nucleus and the ventral division of the secondary octaval nucleus, did not differ via cFos immunoreactive (cFos-ir) activity when exposed to different acoustic stimuli. In contrast, female midshipman exposed to conspecific advertisement calls showed greater cFos-ir in the nucleus centralis of the midbrain torus semicircularis compared to fish exposed only to ambient noise. No difference in cFos-ir was observed in the torus semicircularis of animals exposed to conspecific versus heterospecific calls. However, cFos-ir was greater in two forebrain structures that receive auditory input, i.e., the central posterior nucleus of the thalamus and the anterior tuberal hypothalamus, when exposed to conspecific calls versus either ambient noise or heterospecific calls. Our results suggest that higher-order neurons in the female midshipman midbrain torus semicircularis, thalamic central posterior nucleus, and hypothalamic anterior tuberal nucleus may be necessary for the discrimination of complex social acoustic signals. Furthermore, neurons in the central posterior and anterior tuberal nuclei are differentially activated by exposure to conspecific versus other acoustic stimuli. © 2018 S. Karger AG, Basel.
Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2.
Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin
2016-10-01
Introduction "Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action" (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result We used the independent t -test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level.
Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter
2014-08-13
Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.
The function of BDNF in the adult auditory system.
Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies
2014-01-01
The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Altered auditory function in rats exposed to hypergravic fields
NASA Technical Reports Server (NTRS)
Jones, T. A.; Hoffman, L.; Horowitz, J. M.
1982-01-01
The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.
Brainstem Auditory Evoked Potential in HIV-Positive Adults.
Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C
2015-10-20
To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.
Magical ideation and hyperacusis.
Dubal, Stéphanie; Viaud-Delmon, Isabelle
2008-01-01
The subjective experience conferred by auditory perception has rarely been addressed outside of the studies of auditory hallucinations. The aim of this study is to describe the phenomenology of auditory experiences in individuals who endorse magical beliefs, but do not report hallucinations. We examined the relationship between subjective auditory sensitivity and a 'psychotic-like' thinking style. Hyperacusis questionnaire scores were compared between 25 high scoring participants on Chapman's magical ideation (MI) scale, 25 high scoring participants on Chapman's physical anhedonia scale and 25 control participants, pre-selected from a large student pool (n=1289). The participants who obtained high scores on the MI scale rated their auditory sensitivity higher than the two other groups. Our results indicate that, in healthy subjects, subjective auditory sensitivity is associated with MI without the mediation by anxiety commonly observed in pathological cases. We propose that hyperacusis associated to high scores of MI may be a predispositional factor to deviant auditory experiences. The relative uncoupling of perception from auditory sensory input may result in a central hypersensitivity, which could play a role in triggering off the experience of auditory hallucinations.
Evaluation of auditory perception development in neonates by event-related potential technique.
Zhang, Qinfen; Li, Hongxin; Zheng, Aibin; Dong, Xuan; Tu, Wenjuan
2017-08-01
To investigate auditory perception development in neonates and correlate it with days after birth, left and right hemisphere development and sex using event-related potential (ERP) technique. Sixty full-term neonates, consisting of 32 males and 28 females, aged 2-28days were included in this study. An auditory oddball paradigm was used to elicit ERPs. N2 wave latencies and areas were recorded at different days after birth, to study on relationship between auditory perception and age, and comparison of left and right hemispheres, and males and females. Average wave forms of ERPs in neonates started from relatively irregular flat-bottomed troughs to relatively regular steep-sided ripples. A good linear relationship between ERPs and days after birth in neonates was observed. As days after birth increased, N2 latencies gradually and significantly shortened, and N2 areas gradually and significantly increased (both P<0.01). N2 areas in the central part of the brain were significantly greater, and N2 latencies in the central part were significantly shorter in the left hemisphere compared with the right, indicative of left hemisphere dominance (both P<0.05). N2 areas were greater and N2 latencies shorter in female neonates compared with males. The neonatal period is one of rapid auditory perception development. In the days following birth, the auditory perception ability of neonates gradually increases. This occurs predominantly in the left hemisphere, with auditory perception ability appearing to develop earlier in female neonates than in males. ERP can be used as an objective index used to evaluate auditory perception development in neonates. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes
ERIC Educational Resources Information Center
Getzmann, Stephan
2009-01-01
The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…
Reneman, L; Majoie, C B; Schmand, B; van den Brink, W; den Heeten, G J
2001-10-01
3,4-methylenedioxymethamphetamine (MDMA or "Ecstasy") is known to damage brain serotonin neurons in animals and possibly humans. Because serotonergic damage may adversely affect memory, we compared verbal memory function between MDMA users and MDMA-naïve control subjects and evaluated the relationship between verbal memory function and neuronal dysfunction in the MDMA users. An auditory verbal memory task (Rey Auditory Verbal Learning Test) was used to study eight abstinent MDMA users and seven control subjects. In addition 1H-MRS was used in different brain regions of all MDMA users to measure N-acetylaspartate/creatine (NAA/Cr) ratios, a marker for neuronal viability. The MDMA users recalled significantly fewer words than control subjects on delayed (p =.03) but not immediate recall (p =.08). In MDMA users, delayed memory function was strongly associated with NAA/Cr only in the prefrontal cortex (R(2) =.76, p =.01). Greater decrements in memory function predicted lower NAA/Cr levels-and by inference greater neuronal dysfunction-in the prefrontal cortex of MDMA users.
Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia.
Ebrahim, Seham; Ingham, Neil J; Lewis, Morag A; Rogers, Michael J C; Cui, Runjia; Kachar, Bechara; Pass, Johanna C; Steel, Karen P
2016-05-03
WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A centralized audio presentation manager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, A.L. III; Blattner, M.M.
1994-05-16
The centralized audio presentation manager addresses the problems which occur when multiple programs running simultaneously attempt to use the audio output of a computer system. Time dependence of sound means that certain auditory messages must be scheduled simultaneously, which can lead to perceptual problems due to psychoacoustic phenomena. Furthermore, the combination of speech and nonspeech audio is examined; each presents its own problems of perceptibility in an acoustic environment composed of multiple auditory streams. The centralized audio presentation manager receives abstract parameterized message requests from the currently running programs, and attempts to create and present a sonic representation in themore » most perceptible manner through the use of a theoretically and empirically designed rule set.« less
Electrophysiological Evidence for the Sources of the Masking Level Difference.
Fowler, Cynthia G
2017-08-16
The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.
Underlying Mechanisms of Tinnitus: Review and Clinical Implications
Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.
2016-01-01
Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858
Tarabichi, Osama; Kozin, Elliott D; Kanumuri, Vivek V; Barber, Samuel; Ghosh, Satra; Sitek, Kevin R; Reinshagen, Katherine; Herrmann, Barbara; Remenschneider, Aaron K; Lee, Daniel J
2018-03-01
Objective The radiologic evaluation of patients with hearing loss includes computed tomography and magnetic resonance imaging (MRI) to highlight temporal bone and cochlear nerve anatomy. The central auditory pathways are often not studied for routine clinical evaluation. Diffusion tensor imaging (DTI) is an emerging MRI-based modality that can reveal microstructural changes in white matter. In this systematic review, we summarize the value of DTI in the detection of structural changes of the central auditory pathways in patients with sensorineural hearing loss. Data Sources PubMed, Embase, and Cochrane. Review Methods We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement checklist for study design. All studies that included at least 1 sensorineural hearing loss patient with DTI outcome data were included. Results After inclusion and exclusion criteria were met, 20 articles were analyzed. Patients with bilateral hearing loss comprised 60.8% of all subjects. Patients with unilateral or progressive hearing loss and tinnitus made up the remaining studies. The auditory cortex and inferior colliculus (IC) were the most commonly studied regions using DTI, and most cases were found to have changes in diffusion metrics, such as fractional anisotropy, compared to normal hearing controls. Detectable changes in other auditory regions were reported, but there was a higher degree of variability. Conclusion White matter changes based on DTI metrics can be seen in patients with sensorineural hearing loss, but studies are few in number with modest sample sizes. Further standardization of DTI using a prospective study design with larger sample sizes is needed.
Using Auditory Steady State Responses to Outline the Functional Connectivity in the Tinnitus Brain
Schlee, Winfried; Weisz, Nathan; Bertrand, Olivier; Hartmann, Thomas; Elbert, Thomas
2008-01-01
Background Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. Methods and Findings Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. Conclusions To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus. PMID:19005566
Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis
Vielsmeier, Veronika; Kreuzer, Peter M.; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R. O.; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin
2016-01-01
Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments (“How would you rate your ability to understand speech?”; “How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?”). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role. PMID:28018209
Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis.
Vielsmeier, Veronika; Kreuzer, Peter M; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R O; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin
2016-01-01
Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments ("How would you rate your ability to understand speech?"; "How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?"). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role.
Human auditory evoked potentials. I - Evaluation of components
NASA Technical Reports Server (NTRS)
Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.
1974-01-01
Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.
Rieger, Kathryn; Rarra, Marie-Helene; Moor, Nicolas; Diaz Hernandez, Laura; Baenninger, Anja; Razavi, Nadja; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas
2018-03-01
Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.
Schizophrenia and the alpha7 nicotinic acetylcholine receptor.
Martin, Laura F; Freedman, Robert
2007-01-01
In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.
Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquière, Pol
2007-04-09
This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school children at high-family risk for dyslexia, compared to a group of well-matched low-risk control children. Based on family risk status and first grade literacy achievement children were categorized in groups and pre-school data were retrospectively reanalyzed. On average, children showing both increased family risk and literacy-impairment at the end of first grade, presented significant pre-school deficits in phonological awareness, rapid automatized naming, speech-in-noise perception and frequency modulation detection. The concurrent presence of these deficits before receiving any formal reading instruction, might suggest a causal relation with problematic literacy development. However, a closer inspection of the individual data indicates that the core of the literacy problem is situated at the level of higher-order phonological processing. Although auditory and speech perception problems are relatively over-represented in literacy-impaired subjects and might possibly aggravate the phonological and literacy problem, it is unlikely that they would be at the basis of these problems. At a neurobiological level, results are interpreted as evidence for dysfunctional processing along the auditory-to-articulation stream that is implied in phonological processing, in combination with a relatively intact or inconsistently impaired functioning of the auditory-to-meaning stream that subserves auditory processing and speech perception.
Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm.
Brzózka, M M; Rossner, M J; de Hoz, L
2016-09-01
Schizophrenia (SZ) is a severe mental disorder affecting about 1 % of the human population. Patients show severe deficits in cognitive processing often characterized by an improper filtering of environmental stimuli. Independent genome-wide association studies confirmed a number of risk variants for SZ including several associated with the gene encoding the transcription factor 4 (TCF4). TCF4 is widely expressed in the central nervous system of mice and humans and seems to be important for brain development. Transgenic mice overexpressing murine Tcf4 (Tcf4tg) in the adult brain display cognitive impairments and sensorimotor gating disturbances. To address the question of whether increased Tcf4 gene dosage may affect cognitive flexibility in an auditory associative task, we tested latent inhibition (LI) in female Tcf4tg mice. LI is a widely accepted translational endophenotype of SZ and results from a maladaptive delay in switching a response to a previously unconditioned stimulus when this becomes conditioned. Using an Audiobox, we pre-exposed Tcf4tg mice and their wild-type littermates to either a 3- or a 12-kHz tone before conditioning them to a 12-kHz tone. Tcf4tg animals pre-exposed to a 12-kHz tone showed significantly delayed conditioning when the previously unconditioned tone became associated with an air puff. These results support findings that associate TCF4 dysfunction with cognitive inflexibility and improper filtering of sensory stimuli observed in SZ patients.
Importance of a multidisciplinary approach and monitoring in fetal warfarin syndrome.
Silveira, Daniélle B; da Rosa, Ernani B; de Mattos, Vinicius F; Goetze, Thayse B; Sleifer, Pricila; Santa Maria, Fernanda D; Rosa, Rosana C M; Rosa, Rafael F M; Zen, Paulo R G
2015-06-01
Warfarin is a synthetic oral anticoagulant that crosses the placenta and can lead to a number of congenital abnormalities known as fetal warfarin syndrome. Our aim is to report on the follow-up from birth to age 8 years of a patient with fetal warfarin syndrome. He presented significant respiratory dysfunction, as well as dental and speech and language complications. The patient was the second child of a mother who took warfarin during pregnancy due to a metallic heart valve. The patient had respiratory dysfunction at birth. On physical examination, he had a hypoplastic nose, pectus excavatum, and clubbing of the fingers. Nasal fibrobronchoscopy showed upper airway obstruction due to narrowing of the nasal cavities. He underwent surgical correction with Max Pereira graft, zetaplasty, and osteotomies for the piriform aperture. At dental evaluation, he had caries and delayed eruption of the upper incisors. Speech and language assessment revealed high palate, mouth breathing, little nasal patency, and shortened upper lip. Auditory long latency and cognitive-related potential to auditory stimuli demonstrated functional changes in the cortical auditory pathways. We believe that the frequency of certain findings observed in our patient may be higher in fetal warfarin syndrome than is appreciated, since a significant number result in abortions, stillbirths, or children evaluated in the first year of life without a follow-up. Thus, a multidisciplinary approach and long-term monitoring of these patients may be necessary. © 2015 Wiley Periodicals, Inc.
Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David
2015-02-01
Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.
Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David
2014-01-01
Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028
A P300 event related potential technique for assessment of sexually oriented interest.
Vardi, Yoram; Volos, Michal; Sprecher, Elliot; Granovsky, Yelena; Gruenwald, Ilan; Yarnitsky, David
2006-12-01
Despite all of the modern, sophisticated tests that exist for diagnosing and assessing male and female sexual disorders, to our knowledge there is no objective psychophysiological test to evaluate sexual arousal and interest. We provide preliminary data showing a decrease in auditory P300 wave amplitude during exposure to sexually explicit video clips and a significant correlation between the auditory P300 amplitude decrease and self-reported scores of sexual arousal and interest in the clips. A total of 30 healthy subjects were exposed to several blocks of auditory stimuli administered using an oddball paradigm. Baseline auditory P300 amplitudes were obtained and auditory stimuli were then delivered while viewing visual clips with 3 types of content, including sport, scenery and sex. Auditory P300 amplitude significantly decreased during viewing clips of all contents. Viewing sexual content clips caused a maximal decrease in P300 amplitude (p <0.0001). In addition, a high correlation was found between the amplitude decrease and scores on the sexual arousal questionnaire regarding the viewed clips (r = 0.61, p <0.001). In addition, the P300 amplitude decrease was significantly related to the sexual interest score (r = 0.37, p = 0.042) but not to interest in clips of nonsexual content. The change in auditory P300 amplitude during exposure to visual stimuli with sexual context seems to be an objective measure of subject sexual interest. This method might be applied to assess therapeutic intervention and as a diagnostic tool for assessing disorders of impaired libido or psychogenic sexual dysfunction.
Newborn Auditory Brainstem Evoked Responses (ABRs): Prenatal and Contemporary Correlates.
ERIC Educational Resources Information Center
Murray, Ann D.
1988-01-01
Presented are a literature review and new data on correlates of newborn auditory brainstem evoked responses (ABRs). Concludes that disorders of the central components of the ABR may be more of prenatal than of postnatal origin. The I-V interval had low but reliable correlations with four of 11 Brazelton scale variables. (RH)
Maternal Drinking Problems and Children's Auditory, Intellectual, and Linguistic Functioning.
ERIC Educational Resources Information Center
Czarnecki, Donna M.; And Others
This study tested the hypothesis that maternal drinking early in pregnancy affects the development of the child's central auditory processing. A follow-up study of 167 children took place 6 years after their mothers participated in a survey concerning health and drinking practices during the early stages of pregnancy. Indications of problem…
Age-Related Hearing Loss: Quality of Care for Quality of Life
ERIC Educational Resources Information Center
Li-Korotky, Ha-Sheng
2012-01-01
Age-related hearing loss (ARHL), known as presbycusis, is characterized by progressive deterioration of auditory sensitivity, loss of the auditory sensory cells, and central processing functions associated with the aging process. ARHL is the third most prevalent chronic condition in older Americans, after hypertension and arthritis, and is a…
Auditory Habituation in the Fetus and Neonate: An fMEG Study
ERIC Educational Resources Information Center
Muenssinger, Jana; Matuz, Tamara; Schleger, Franziska; Kiefer-Schmidt, Isabelle; Goelz, Rangmar; Wacker-Gussmann, Annette; Birbaumer, Niels; Preissl, Hubert
2013-01-01
Habituation--the most basic form of learning--is used to evaluate central nervous system (CNS) maturation and to detect abnormalities in fetal brain development. In the current study, habituation, stimulus specificity and dishabituation of auditory evoked responses were measured in fetuses and newborns using fetal magnetoencephalography (fMEG). An…
Smit, Jasper V; Jahanshahi, Ali; Janssen, Marcus L F; Stokroos, Robert J; Temel, Yasin
2017-01-01
Recently it has been shown in animal studies that deep brain stimulation (DBS) of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. The auditory brainstem response (ABR) was measured in rats during high frequency stimulation (HFS) and low frequency stimulation (LFS) in the central nucleus of the inferior colliculus (CIC, n = 5) or dentate cerebellar nucleus (DCBN, n = 5). Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I-III, III-V, I-V) and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.
Tan, C; Cao, Y; Hu, P
1998-09-01
Inquire into the mechanism of inner ear pathological physiology in autoimmune sensorineural hearing loss (ASHL). With the auditory electric-physiological techniques and enzyme-histochemical method, the change of inner ear hearing function and enzyme activity were observed. These animals, which threshold of auditory nerve compound active potential (CAP) and cochlear microphonic potential(CM) heightening evidently, showed that the amplitude of endolymphatic potential(EP) (include-EP) bring down in various degrees, which was related to the change of the active of Na(+)-K(+)-ATPase and SDH in vascularis stria and endolymphatic sac. The abnormality of enzymes metabolism in inner ear tissues, which following autoimmune inflammation damage, is the pathological foundation of hearing dysfunction.
Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng
2014-01-01
Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067
Noise Equally Degrades Central Auditory Processing in 2- and 4-Year-Old Children.
Niemitalo-Haapola, Elina; Haapala, Sini; Kujala, Teija; Raappana, Antti; Kujala, Tiia; Jansson-Verkasalo, Eira
2017-08-16
The aim of this study was to investigate developmental and noise-induced changes in central auditory processing indexed by event-related potentials in typically developing children. P1, N2, and N4 responses as well as mismatch negativities (MMNs) were recorded for standard syllables and consonants, frequency, intensity, vowel, and vowel duration changes in silent and noisy conditions in the same 14 children at the ages of 2 and 4 years. The P1 and N2 latencies decreased and the N2, N4, and MMN amplitudes increased with development of the children. The amplitude changes were strongest at frontal electrodes. At both ages, background noise decreased the P1 amplitude, increased the N2 amplitude, and shortened the N4 latency. The noise-induced amplitude changes of P1, N2, and N4 were strongest frontally. Furthermore, background noise degraded the MMN. At both ages, MMN was significantly elicited only by the consonant change, and at the age of 4 years, also by the vowel duration change during noise. Developmental changes indexing maturation of central auditory processing were found from every response studied. Noise degraded sound encoding and echoic memory and impaired auditory discrimination at both ages. The older children were as vulnerable to the impact of noise as the younger children. https://doi.org/10.23641/asha.5233939.
Charitidi, K.; Frisina, R. D.; Vasilyeva, O. N.; Zhu, X.; Canlon, B.
2011-01-01
Estrogens are important in the development, maintenance and physiology of the CNS. Several studies have shown their effects on the processing of hearing in both males and females, and these effects, in part, are thought to result from regulation of the transcription of genes via their classical estrogen receptor (ER) pathway. In order to understand the spatiotemporal changes that occur with age, we have studied the expression of ERs in the central auditory pathway in prepubertal and aged CBA mice with immunohistochemistry. In prepubertal mice a clear dichotomy was noted between the expression of ERα and ERβ. ERβ-positive neurons were found in the metencephalon whereas the majority of ERα was found in mesencephalon, diencephalon or the telencephalon. In the aged animals a different pattern of ER expression was found in terms of location and overall intensity. These age-induced changes in the expression pattern were generally not uniform, suggesting that region-specific mechanisms regulate the ERs’ age-related expression. Neither the prepubertal nor the aged animals showed sex differences in any auditory structure. Our results demonstrate different age-dependent spatial and temporal changes in the pattern of expression of ERα and ERβ, suggesting that each ER type may be involved in distinct roles across the central auditory pathway in different periods of maturation. PMID:20736049
Role of N-Methyl-D-Aspartate Receptors in Action-Based Predictive Coding Deficits in Schizophrenia.
Kort, Naomi S; Ford, Judith M; Roach, Brian J; Gunduz-Bruce, Handan; Krystal, John H; Jaeger, Judith; Reinhart, Robert M G; Mathalon, Daniel H
2017-03-15
Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen's d = 1.14) and schizophrenia (Cohen's d = .85). Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Skouras, Stavros; Lohmann, Gabriele
2018-01-01
Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142
Alais, David; Cass, John
2010-06-23
An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.
Heeringa, A N; van Dijk, P
2014-06-01
Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Heinze, B; Swanepoel, D W; Hofmeyr, L M
2011-09-01
Disorders of the auditory and vestibular system are often associated with human immunodeficiency virus infection and acquired immunodeficiency syndrome. However, the extent and nature of these vestibular manifestations are unclear. To systematically review the current peer-reviewed literature on vestibular manifestations and pathology related to human immunodeficiency virus and acquired immunodeficiency syndrome. Systematic review of peer-reviewed articles related to vestibular findings in individuals with human immunodeficiency virus infection and acquired immunodeficiency syndrome. Several electronic databases were searched. We identified 442 records, reduced to 210 after excluding duplicates and reviews. These were reviewed for relevance to the scope of the study. We identified only 13 reports investigating vestibular functioning and pathology in individuals affected by human immunodeficiency virus and acquired immunodeficiency syndrome. This condition can affect both the peripheral and central vestibular system, irrespective of age and viral disease stage. Peripheral vestibular involvement may affect up to 50 per cent of patients, and central vestibular involvement may be even more prevalent. Post-mortem studies suggest direct involvement of the entire vestibular system, while opportunistic infections such as oto- and neurosyphilis and encephalitis cause secondary vestibular dysfunction resulting in vertigo, dizziness and imbalance. Patients with human immunodeficiency virus and acquired immunodeficiency syndrome should routinely be monitored for vestibular involvement, to minimise functional limitations of quality of life.
Verbal auditory agnosia in a patient with traumatic brain injury: A case report.
Kim, Jong Min; Woo, Seung Beom; Lee, Zeeihn; Heo, Sung Jae; Park, Donghwi
2018-03-01
Verbal auditory agnosia is the selective inability to recognize verbal sounds. Patients with this disorder lose the ability to understand language, write from dictation, and repeat words with reserved ability to identify nonverbal sounds. However, to the best of our knowledge, there was no report about verbal auditory agnosia in adult patient with traumatic brain injury. He was able to clearly distinguish between language and nonverbal sounds, and he did not have any difficulty in identifying the environmental sounds. However, he did not follow oral commands and could not repeat and dictate words. On the other hand, he had fluent and comprehensible speech, and was able to read and understand written words and sentences. Verbal auditory agnosia INTERVENTION:: He received speech therapy and cognitive rehabilitation during his hospitalization, and he practiced understanding of verbal language by providing written sentences together. Two months after hospitalization, he regained his ability to understand some verbal words. Six months after hospitalization, his ability to understand verbal language was improved to an understandable level when speaking slowly in front of his eyes, but his comprehension of verbal sound language was still word level, not sentence level. This case gives us the lesson that the evaluation of auditory functions as well as cognition and language functions important for accurate diagnosis and appropriate treatment, because the verbal auditory agnosia tends to be easily misdiagnosed as hearing impairment, cognitive dysfunction and sensory aphasia.
Audio-vocal system regulation in children with autism spectrum disorders.
Russo, Nicole; Larson, Charles; Kraus, Nina
2008-06-01
Do children with autism spectrum disorders (ASD) respond similarly to perturbations in auditory feedback as typically developing (TD) children? Presentation of pitch-shifted voice auditory feedback to vocalizing participants reveals a close coupling between the processing of auditory feedback and vocal motor control. This paradigm was used to test the hypothesis that abnormalities in the audio-vocal system would negatively impact ASD compensatory responses to perturbed auditory feedback. Voice fundamental frequency (F(0)) was measured while children produced an /a/ sound into a microphone. The voice signal was fed back to the subjects in real time through headphones. During production, the feedback was pitch shifted (-100 cents, 200 ms) at random intervals for 80 trials. Averaged voice F(0) responses to pitch-shifted stimuli were calculated and correlated with both mental and language abilities as tested via standardized tests. A subset of children with ASD produced larger responses to perturbed auditory feedback than TD children, while the other children with ASD produced significantly lower response magnitudes. Furthermore, robust relationships between language ability, response magnitude and time of peak magnitude were identified. Because auditory feedback helps to stabilize voice F(0) (a major acoustic cue of prosody) and individuals with ASD have problems with prosody, this study identified potential mechanisms of dysfunction in the audio-vocal system for voice pitch regulation in some children with ASD. Objectively quantifying this deficit may inform both the assessment of a subgroup of ASD children with prosody deficits, as well as remediation strategies that incorporate pitch training.
Surgical monitoring with auditory evoked potentials.
Lüders, H
1988-07-01
This comprehensive review of surgical monitoring with auditory evoked potentials (AEPs) includes a detailed discussion of techniques used for recording brainstem auditory evoked potentials, direct eight-nerve potentials, and electrocochleograms. The normal waveform of these different potentials is discussed, and the typical patterns of abnormalities seen with different insults to the peripheral or central auditory pathways are presented. The mechanisms most probably responsible for changes in AEPs during surgical procedures are analyzed. A critical analysis is made of what represents a significant change in AEPs. Also considered is the predictive value of intrasurgical changes of AEPs. Finally, attempts are made to determine whether AEPs monitoring can assist the surgeon in the prevention of postsurgical complications.
Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model
Diehl, Peter U.; Schaette, Roland
2015-01-01
Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system. PMID:26236277
Juckel, Georg; Roser, Patrik; Nadulski, Thomas; Stadelmann, Andreas M; Gallinat, Jürgen
2007-12-01
Reduced amplitudes of auditory evoked mismatch negativity (MMN) have often been found in schizophrenic patients, indicating deficient auditory information processing and working memory. Cannabis-induced psychotic states may resemble schizophrenia. Currently, there are discussions focusing on the close relationship between cannabis, the endocannabinoid and dopaminergic system, and the onset of schizophrenic psychosis. This study investigated the effects of cannabis on MMN amplitude in 22 healthy volunteers (age 28+/-6 years, 11 male) by comparing Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and standardized cannabis extract containing Delta(9)-THC and cannabidiol (CBD) in a prospective, double-blind, placebo-controlled cross-over design. The MMNs resulting from 1000 auditory stimuli were recorded by 32 channel EEG. The standard stimuli were 1000 Hz, 80 dB SPL, and 100 ms duration. The deviant stimuli differed in frequency (1500 Hz). Significantly greater MMN amplitude values at central electrodes were found under cannabis extract, but not under Delta(9)-THC. There were no significant differences between MMN amplitudes at frontal electrodes. MMN amplitudes at central electrodes were significantly correlated with 11-OH-THC concentration, the most important psychoactive metabolite of Delta(9)-THC. Since the main difference between Delta(9)-THC and standardized cannabis extract is CBD, which seems to have neuroprotective and anti-psychotic properties, it can be speculated whether the greater MMN amplitude that may imply higher cortical activation and cognitive performance is related to the positive effects of CBD. This effect may be relevant for auditory cortex activity in particular because only MMN amplitudes at the central, but not at the frontal electrodes were enhanced under cannabis.
Auditory function at 14 years of age of very-low-birthweight.
Davis, N M; Doyle, L W; Ford, G W; Keir, E; Michael, J; Rickards, A L; Kelly, E A; Callanan, C
2001-03-01
The aim of the study was to determine audiological function at 14 years of age of very-low-birthweight (VLBW < or = 1500 g) children compared with a cohort of normal birthweight (NBW > 2499 g) children. Participants were consecutive surviving preterm children of birthweight < 1000 g born between 1977 and 1982 (n=86) and of birthweight 1000 to 1500 g born between 1980 and 1982 (n=124) and randomly selected NBW children born between 1981 and 1982 (n=60). Audiometric tests included pure tone audiometry, tympanometry, stapedius muscle reflexes, and measures of central auditory processing. Psychometric tests included measures of IQ, academic achievement, and behaviour. There were no significant differences in rates of hearing impairment, abnormal tympanograms, figure-ground problems, or digit recall between VLBW children and NBW control children. VLBW children had higher rates of some central auditory processing problems, which in turn were associated with poorer intellectual, academic, and behavioural progress.
ERIC Educational Resources Information Center
Gorga, Michael P.; And Others
1989-01-01
Auditory brainstem responses (ABR) were measured in 535 children from 3 months to 3 years of age. Results suggested that changes in wave V latency with age are due to central (neural) factors and that age-appropriate norms should be used in evaluations of ABR latencies in children. (Author/DB)
Individualization of music-based rhythmic auditory cueing in Parkinson's disease.
Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen
2018-06-04
Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.
Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time
Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.
2016-01-01
Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and characterizing ERPs as vital signs, critical for subsequent evaluation of dysfunction in conditions like concussion and/or dementia. PMID:27242415
Hidden Hearing Injury: The Emerging Science and Military Relevance of Cochlear Synaptopathy.
Tepe, Victoria; Smalt, Christopher; Nelson, Jeremy; Quatieri, Thomas; Pitts, Kenneth
2017-09-01
The phenomenon recently described as "hidden hearing loss" was the subject of a meeting co-hosted by the Department of Defense Hearing Center of Excellence and MIT Lincoln Laboratory to consider the potential relevance of noise-related synaptopathic injury to military settings and performance, service-related injury scenarios, and military medical priorities. Participants included approximately 50 researchers and subject matter experts from academic, federal, and military laboratories. Here we present a synthesis of discussion topics and concerns, as well as specific research objectives identified to develop militarily relevant knowledge. We consider findings from studies to date that have demonstrated cochlear synaptopathy and neurodegenerative processes apparently linked to noise exposure in animal models. We explore the potential relevance of these findings to the prediction and prevention of military hearing injuries, and to comorbid injuries in the neurological domain. Noise-induced cochlear synaptopathic injury is not detected by conventional audiometric assessment of threshold sensitivity. Animal studies suggest there may be a generous window of opportunity for intervention to mitigate or prevent cochlear neurodegenerative processes, e.g., by administration of neurotrophins or antioxidants. However, it is not yet known if the mechanisms that underlie "hidden hearing loss" also occur in human beings or, if so, how to identify them early, and how and when to intervene. Neurological injuries resulting from noise exposures via the auditory system have potentially significant implications for military Service Member performance, long-term Veteran health, and noise exposure standards. Mediated via auditory pathways, such injuries have possible relationship to clinical impairments including speech perception, and may be a largely overlooked contributor to cognitive symptoms associated with other military service-related injuries such as blast exposure and brain trauma. The potential health and performance consequences of noise-induced cochlear synaptopathic injury are easily overlooked, especially if it is assumed that hearing threshold sensitivity loss is the major concern. There should be a renewed impetus to further characterize and model synaptopathic mechanisms of auditory injury; study its potential impact on human auditory function, cognition, and performance metrics of military relevance; and develop solutions for auditory protection (including noise dosimetry) and treatment if appropriate following noise or blast exposure in military scenarios. We identify specific problems, solution objectives, and research objectives. Recommended research calls for a multidisciplinary approach to address cochlear nerve synaptopathy, central (brain) dysfunction, noise exposure measurement and metrics, and clinical assessment. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
van Toorn, Ronald; Brink, Philip; Smith, Johan; Ackermann, Christelle; Solomons, Regan
2016-12-01
The clinical expression of bilirubin-induced neurological dysfunction varies according to severity and location of the disease. Definitions have been proposed to describe different bilirubin-induced neurological dysfunction subtypes. Our objective was to describe the severity and clinico-radiological-neurophysiological correlation in 30 consecutive children with bilirubin-induced neurological dysfunction seen over a period of 5 years. Thirty children exposed to acute neonatal bilirubin encephalopathy were included in the study. The mean peak total serum bilirubin level was 625 μmol/L (range 480-900 μmol/L). Acoustic brainstem responses were abnormal in 73% (n = 22). Pallidal hyperintensity was observed on magnetic resonance imaging in 20 children. Peak total serum bilirubin levels correlated with motor severity (P = .03). Children with severe motor impairment were likely to manifest severe auditory neuropathy (P < .01). We found that in a resource-constrained setting, classical kernicterus was the most common bilirubin-induced neurological dysfunction subtype, and the majority of children had abnormal acoustic brainstem responses and magnetic resonance imaging. © The Author(s) 2016.
Freedland, Robert L; Festa, Carmel; Sealy, Marita; McBean, Andrew; Elghazaly, Paul; Capan, Ariel; Brozycki, Lori; Nelson, Arthur J; Rothman, Jeffrey
2002-01-01
The purpose of this study was to examine the Functional Ambulation Performance Score (FAP; a quantitative gait measure) in persons with Parkinson's Disease (PD) using the auditory stimulation of a metronome (ASM). Participants (n = 16; 5F/11M; range 60--84 yrs.) had a primary diagnosis of PD and were all independent ambulators. Footfall data were collected while participants walked multiple times on an electronic walkway under the following conditions: 1) PRETEST: establishing baseline cadence, 2) ASM: metronome set to baseline cadence, 3) 10ASM: metronome set to 10% FAP scores increased between PRETEST and POSTTEST. PRE/POSTTEST comparisons also indicated decreases in cycle time and double support and increases in step length and step-extremity ratio (step length/leg length). The results confirm prior findings that auditory stimulation can be used to positively influence the gait of persons with PD and suggest beneficial effects of ASM as an adjunct to dopaminergic therapy to treat gait dysfunctions in PD.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763
Malformation of the eighth cranial nerve in children.
de Paula-Vernetta, Carlos; Muñoz-Fernández, Noelia; Mas-Estellés, Fernando; Guzmán-Calvete, Abel; Cavallé-Garrido, Laura; Morera-Pérez, Constantino
2016-01-01
Prevalence of congenital sensorineural hearing loss (SNHL) is approximately 1.5-6 in every 1,000 newborns. Dysfunction of the auditory nerve (auditory neuropathy) may be involved in up to 1%-10% of cases; hearing losses because of vestibulocochlear nerve (VCN) aplasia are less frequent. The objectives of this study were to describe clinical manifestations, hearing thresholds and aetiology of children with SNHL and VCN aplasia. We present 34 children (mean age 20 months) with auditory nerve malformation and profound HL taken from a sample of 385 children implanted in a 10-year period. We studied demographic characteristics, hearing, genetics, risk factors and associated malformations (Casselman's and Sennaroglu's classifications). Data were processed using a bivariate descriptive statistical analysis (P<.05). Of all the cases, 58.8% were bilateral (IIa/IIa and I/I were the most common). Of the unilateral cases, IIb was the most frequent. Auditory screening showed a sensitivity of 77.4%. A relationship among bilateral cases and systemic pathology was observed. We found a statistically significant difference when comparing hearing loss impairment and patients with different types of aplasia as defined by Casselman's classification. Computed tomography (CT) scan yielded a sensitivity of 46.3% and a specificity of 85.7%. However, magnetic resonance imaging (MRI) was the most sensitive imaging test. Ten percent of the children in a cochlear implant study had aplasia or hypoplasia of the auditory nerve. The degree of auditory loss was directly related to the different types of aplasia (Casselman's classification) Although CT scan and MRI are complementary, the MRI is the test of choice for detecting auditory nerve malformation. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Temporal lobe networks supporting the comprehension of spoken words.
Bonilha, Leonardo; Hillis, Argye E; Hickok, Gregory; den Ouden, Dirk B; Rorden, Chris; Fridriksson, Julius
2017-09-01
Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vocal Responses to Perturbations in Voice Auditory Feedback in Individuals with Parkinson's Disease
Liu, Hanjun; Wang, Emily Q.; Metman, Leo Verhagen; Larson, Charles R.
2012-01-01
Background One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD) is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. Methodology/Principal Findings Twelve individuals with Parkinson's disease and 13 age- and sex- matched healthy control subjects sustained a vowel sound (/α/) and received unexpected, brief (200 ms) perturbations in voice loudness (±3 or 6 dB) or pitch (±100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. Conclusions/Significance The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing. PMID:22448258
Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients.
Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, Damiaan
2014-01-01
Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain's early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs) during an oddball task. Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1, and P2 components locked to the onset of the tones. For misophonia patients, the N1 peak evoked by the oddball tones had smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones. The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients.
Incidental learning of sound categories is impaired in developmental dyslexia.
Gabay, Yafit; Holt, Lori L
2015-12-01
Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Incidental Learning of Sound Categories is Impaired in Developmental Dyslexia
Gabay, Yafit; Holt, Lori L.
2015-01-01
Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. PMID:26409017
Temporal Lobe Epilepsy and the Selective Reminding Test: The Conventional 30-Minute Delay Suffices
ERIC Educational Resources Information Center
Bell, Brian D.; Fine, Jason; Dow, Christian; Seidenberg, Michael; Hermann, Bruce P.
2005-01-01
Conventional memory assessment may fail to identify memory dysfunction characterized by intact recall for a relatively brief period but rapid forgetting thereafter. This study assessed learning and retention after 30-min and 24-hr delays on auditory and visual selective reminding tests (SRTs) in right (n=20) and left (n=22) temporal lobe epilepsy…
Current understanding of auditory neuropathy.
Boo, Nem-Yun
2008-12-01
Auditory neuropathy is defined by the presence of normal evoked otoacoustic emissions (OAE) and absent or abnormal auditory brainstem responses (ABR). The sites of lesion could be at the cochlear inner hair cells, spiral ganglion cells of the cochlea, synapse between the inner hair cells and auditory nerve, or the auditory nerve itself. Genetic, infectious or neonatal/perinatal insults are the 3 most commonly identified underlying causes. Children usually present with delay in speech and language development while adult patients present with hearing loss and disproportionately poor speech discrimination for the degree of hearing loss. Although cochlear implant is the treatment of choice, current evidence show that it benefits only those patients with endocochlear lesions, but not those with cochlear nerve deficiency or central nervous system disorders. As auditory neuropathy is a disorder with potential long-term impact on a child's development, early hearing screen using both OAE and ABR should be carried out on all newborns and infants to allow early detection and intervention.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Relationship between Auditory and Cognitive Abilities in Older Adults
Sheft, Stanley
2015-01-01
Objective The objective was to evaluate the association of peripheral and central hearing abilities with cognitive function in older adults. Methods Recruited from epidemiological studies of aging and cognition at the Rush Alzheimer’s Disease Center, participants were a community-dwelling cohort of older adults (range 63–98 years) without diagnosis of dementia. The cohort contained roughly equal numbers of Black (n=61) and White (n=63) subjects with groups similar in terms of age, gender, and years of education. Auditory abilities were measured with pure-tone audiometry, speech-in-noise perception, and discrimination thresholds for both static and dynamic spectral patterns. Cognitive performance was evaluated with a 12-test battery assessing episodic, semantic, and working memory, perceptual speed, and visuospatial abilities. Results Among the auditory measures, only the static and dynamic spectral-pattern discrimination thresholds were associated with cognitive performance in a regression model that included the demographic covariates race, age, gender, and years of education. Subsequent analysis indicated substantial shared variance among the covariates race and both measures of spectral-pattern discrimination in accounting for cognitive performance. Among cognitive measures, working memory and visuospatial abilities showed the strongest interrelationship to spectral-pattern discrimination performance. Conclusions For a cohort of older adults without diagnosis of dementia, neither hearing thresholds nor speech-in-noise ability showed significant association with a summary measure of global cognition. In contrast, the two auditory metrics of spectral-pattern discrimination ability significantly contributed to a regression model prediction of cognitive performance, demonstrating association of central auditory ability to cognitive status using auditory metrics that avoided the confounding effect of speech materials. PMID:26237423
ERIC Educational Resources Information Center
Murray, Hugh
Proposed is a study to evaluate the auditory systems of learning disabled (LD) students with a new audiological, diagnostic, stimulus apparatus which is capable of objectively measuring the interaction of the binaural aspects of hearing. The author points out problems with LD definitions that exclude neurological disorders. The detection of…
Peñaloza López, Yolanda Rebeca; Orozco Peña, Xóchitl Daisy; Pérez Ruiz, Santiago Jesús
2018-04-03
To evaluate the central auditory processing disorders in patients with multiple sclerosis, emphasizing auditory laterality by applying psychoacoustic tests and to identify their relationship with the Multiple Sclerosis Disability Scale (EDSS) functions. Depression scales (HADS), EDSS, and 9 psychoacoustic tests to study CAPD were applied to 26 individuals with multiple sclerosis and 26 controls. Correlation tests were performed between the EDSS and psychoacoustic tests. Seven out of 9 psychoacoustic tests were significantly different (P<.05); right or left (14/19 explorations) with respect to control. In dichotic digits there was a left-ear advantage compared to the usual predominance of RDD. There was significant correlation in five psychoacoustic tests and the specific functions of EDSS. The left-ear advantage detected and interpreted as an expression of deficient influences of the corpus callosum and attention in multiple sclerosis should be investigated. There was a correlation between psychoacoustic tests and specific EDSS functions. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Klinke, R; Kral, A; Heid, S; Tillein, J; Hartmann, R
1999-09-10
In congenitally deaf cats, the central auditory system is deprived of acoustic input because of degeneration of the organ of Corti before the onset of hearing. Primary auditory afferents survive and can be stimulated electrically. By means of an intracochlear implant and an accompanying sound processor, congenitally deaf kittens were exposed to sounds and conditioned to respond to tones. After months of exposure to meaningful stimuli, the cortical activity in chronically implanted cats produced field potentials of higher amplitudes, expanded in area, developed long latency responses indicative of intracortical information processing, and showed more synaptic efficacy than in naïve, unstimulated deaf cats. The activity established by auditory experience resembles activity in hearing animals.
Hoelzle, James B; Nelson, Nathaniel W; Smith, Clifford A
2011-03-01
Dimensional structures underlying the Wechsler Memory Scale-Fourth Edition (WMS-IV) and Wechsler Memory Scale-Third Edition (WMS-III) were compared to determine whether the revised measure has a more coherent and clinically relevant factor structure. Principal component analyses were conducted in normative samples reported in the respective technical manuals. Empirically supported procedures guided retention of dimensions. An invariant two-dimensional WMS-IV structure reflecting constructs of auditory learning/memory and visual attention/memory (C1 = .97; C2 = .96) is more theoretically coherent than the replicable, heterogeneous WMS-III dimension (C1 = .97). This research suggests that the WMS-IV may have greater utility in identifying lateralized memory dysfunction.
[Auditory processing evaluation in children born preterm].
Gallo, Júlia; Dias, Karin Ziliotto; Pereira, Liliane Desgualdo; Azevedo, Marisa Frasson de; Sousa, Elaine Colombo
2011-01-01
To verify the performance of children born preterm on auditory processing evaluation, and to correlate the data with behavioral hearing assessment carried out at 12 months of age, comparing the results to those of auditory processing evaluation of children born full-term. Participants were 30 children with ages between 4 and 7 years, who were divided into two groups: Group 1 (children born preterm), and Group 2 (children born full-term). The auditory processing results of Group 1 were correlated to data obtained from the behavioral auditory evaluation carried out at 12 months of age. The results were compared between groups. Subjects in Group 1 presented at least one risk indicator for hearing loss at birth. In the behavioral auditory assessment carried out at 12 months of age, 38% of the children in Group 1 were at risk for central auditory processing deficits, and 93.75% presented auditory processing deficits on the evaluation. Significant differences were found between the groups for the temporal order test, the PSI test with ipsilateral competitive message, and the speech-in-noise test. The delay in sound localization ability was associated to temporal processing deficits. Children born preterm have worse performance in auditory processing evaluation than children born full-term. Delay in sound localization at 12 months is associated to deficits on the physiological mechanism of temporal processing in the auditory processing evaluation carried out between 4 and 7 years.
Auditory priming improves neural synchronization in auditory-motor entrainment.
Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J
2018-05-22
Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions using rhythmic auditory stimulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Listening to Another Sense: Somatosensory Integration in the Auditory System
Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.
2014-01-01
Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698
Cameron, Sharon; Glyde, Helen; Dillon, Harvey; King, Alison; Gillies, Karin
2015-01-01
This article describes the development and evaluation of a national service to diagnose and remediate central auditory processing disorder (CAPD). Data were gathered from 38 participating Australian Hearing centers over an 18-month period from 666 individuals age 6, 0 (years, months) to 24, 8 (median 9, 0). A total of 408 clients were diagnosed with either a spatial processing disorder (n = 130), a verbal memory deficit (n = 174), or a binaural integration deficit (n = 104). A hierarchical test protocol was used so not all children were assessed on all tests in the battery. One hundred fifty clients decided to proceed with deficit-specific training (LiSN & Learn or Memory Booster) and/or be fitted with a frequency modulation system. Families were provided with communication strategies targeted to a child's specific listening difficulties and goals. Outcomes were measured using repeat assessment of the relevant diagnostic test, as well as the Client Oriented Scale of Improvement measure and Listening Inventories for Education teacher questionnaire. Group analyses revealed significant improvements postremediation for all training/management options. Individual posttraining performance and results of outcome measures also are discussed. PMID:27587910
Swanson, Randel L; Hampton, Stephen; Green-McKenzie, Judith; Diaz-Arrastia, Ramon; Grady, M Sean; Verma, Ragini; Biester, Rosette; Duda, Diana; Wolf, Ronald L; Smith, Douglas H
2018-03-20
From late 2016 through August 2017, US government personnel serving on diplomatic assignment in Havana, Cuba, reported neurological symptoms associated with exposure to auditory and sensory phenomena. To describe the neurological manifestations that followed exposure to an unknown energy source associated with auditory and sensory phenomena. Preliminary results from a retrospective case series of US government personnel in Havana, Cuba. Following reported exposure to auditory and sensory phenomena in their homes or hotel rooms, the individuals reported a similar constellation of neurological symptoms resembling brain injury. These individuals were referred to an academic brain injury center for multidisciplinary evaluation and treatment. Report of experiencing audible and sensory phenomena emanating from a distinct direction (directional phenomena) associated with an undetermined source, while serving on US government assignments in Havana, Cuba, since 2016. Descriptions of the exposures and symptoms were obtained from medical record review of multidisciplinary clinical interviews and examinations. Additional objective assessments included clinical tests of vestibular (dynamic and static balance, vestibulo-ocular reflex testing, caloric testing), oculomotor (measurement of convergence, saccadic, and smooth pursuit eye movements), cognitive (comprehensive neuropsychological battery), and audiometric (pure tone and speech audiometry) functioning. Neuroimaging was also obtained. Of 24 individuals with suspected exposure identified by the US Department of State, 21 completed multidisciplinary evaluation an average of 203 days after exposure. Persistent symptoms (>3 months after exposure) were reported by these individuals including cognitive (n = 17, 81%), balance (n = 15, 71%), visual (n = 18, 86%), and auditory (n = 15, 68%) dysfunction, sleep impairment (n = 18, 86%), and headaches (n = 16, 76%). Objective findings included cognitive (n = 16, 76%), vestibular (n = 17, 81%), and oculomotor (n = 15, 71%) abnormalities. Moderate to severe sensorineural hearing loss was identified in 3 individuals. Pharmacologic intervention was required for persistent sleep dysfunction (n = 15, 71%) and headache (n = 12, 57%). Fourteen individuals (67%) were held from work at the time of multidisciplinary evaluation. Of those, 7 began graduated return to work with restrictions in place, home exercise programs, and higher-level work-focused cognitive rehabilitation. In this preliminary report of a retrospective case series, persistent cognitive, vestibular, and oculomotor dysfunction, as well as sleep impairment and headaches, were observed among US government personnel in Havana, Cuba, associated with reports of directional audible and/or sensory phenomena of unclear origin. These individuals appeared to have sustained injury to widespread brain networks without an associated history of head trauma.
Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie
2015-10-30
Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The spiral ganglion: connecting the peripheral and central auditory systems
Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K
2011-01-01
In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. PMID:21530629
Richardson, Fiona M; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M; Leff, Alex P; Price, Cathy J
2011-12-01
A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using whole-brain statistics, we identified a region in the left posterior STS where gray matter density was positively correlated with forward digit span, backward digit span, and performance on a "spoonerisms" task that required both auditory STM and phoneme manipulation. Across tasks and participant groups, the correlation was highly significant even when variance related to reading and auditory nonword repetition was factored out. Although the dyslexics had poorer phonological skills, the effect of auditory STM capacity in the left STS was the same as in the cognitively normal group. We also illustrate that the anatomical location of this effect is in proximity to a lesion site recently associated with reduced auditory STM capacity in patients with stroke damage. This result, therefore, indicates that gray matter density in the posterior STS predicts auditory STM capacity in the healthy and damaged brain. In conclusion, we suggest that our present findings are consistent with the view that there is an overlap between the mechanisms that support language processing and auditory STM.
Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.
2014-01-01
Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742
Nieto-Diego, Javier; Malmierca, Manuel S.
2016-01-01
Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883
Lahav, Amir; Skoe, Erika
2014-01-01
The intrauterine environment allows the fetus to begin hearing low-frequency sounds in a protected fashion, ensuring initial optimal development of the peripheral and central auditory system. However, the auditory nursery provided by the womb vanishes once the preterm newborn enters the high-frequency (HF) noisy environment of the neonatal intensive care unit (NICU). The present article draws a concerning line between auditory system development and HF noise in the NICU, which we argue is not necessarily conducive to fostering this development. Overexposure to HF noise during critical periods disrupts the functional organization of auditory cortical circuits. As a result, we theorize that the ability to tune out noise and extract acoustic information in a noisy environment may be impaired, leading to increased risks for a variety of auditory, language, and attention disorders. Additionally, HF noise in the NICU often masks human speech sounds, further limiting quality exposure to linguistic stimuli. Understanding the impact of the sound environment on the developing auditory system is an important first step in meeting the developmental demands of preterm newborns undergoing intensive care.
Auditory Midbrain Implant: Research and Development Towards a Second Clinical Trial
Lim, Hubert H.; Lenarz, Thomas
2015-01-01
The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients, which is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. Modifications to the AMI array design, stimulation strategy, and surgical approach have been made that are expected to improve hearing performance in the patients implanted with a two-shank array in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. PMID:25613994
Forebrain pathway for auditory space processing in the barn owl.
Cohen, Y E; Miller, G L; Knudsen, E I
1998-02-01
The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.
Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia
2012-12-01
The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the CcO activity progressively with age despite compensatory increases of PGC-1α, NRF-1 and TFAM. Therefore, CcO may be a specific intramitochondrial site of age-related deterioration in the auditory cortex, and CcO subunit III might be a target in the development of presbycusis. Copyright © 2012 Elsevier B.V. All rights reserved.
Neural mechanisms of mismatch negativity dysfunction in schizophrenia.
Lee, M; Sehatpour, P; Hoptman, M J; Lakatos, P; Dias, E C; Kantrowitz, J T; Martinez, A M; Javitt, D C
2017-11-01
Schizophrenia is associated with cognitive deficits that reflect impaired cortical information processing. Mismatch negativity (MMN) indexes pre-attentive information processing dysfunction at the level of primary auditory cortex. This study investigates mechanisms underlying MMN impairments in schizophrenia using event-related potential, event-related spectral decomposition (ERSP) and resting state functional connectivity (rsfcMRI) approaches. For this study, MMN data to frequency, intensity and duration-deviants were analyzed from 69 schizophrenia patients and 38 healthy controls. rsfcMRI was obtained from a subsample of 38 patients and 23 controls. As expected, schizophrenia patients showed highly significant, large effect size (P=0.0004, d=1.0) deficits in MMN generation across deviant types. In ERSP analyses, responses to deviants occurred primarily the theta (4-7 Hz) frequency range consistent with distributed corticocortical processing, whereas responses to standards occurred primarily in alpha (8-12 Hz) range consistent with known frequencies of thalamocortical activation. Independent deficits in schizophrenia were observed in both the theta response to deviants (P=0.021) and the alpha-response to standards (P=0.003). At the single-trial level, differential patterns of response were observed for frequency vs duration/intensity deviants, along with At the network level, MMN deficits engaged canonical somatomotor, ventral attention and default networks, with a differential pattern of engagement across deviant types (P<0.0001). Findings indicate that deficits in thalamocortical, as well as corticocortical, connectivity contribute to auditory dysfunction in schizophrenia. In addition, differences in ERSP and rsfcMRI profiles across deviant types suggest potential differential engagement of underlying generator mechanisms.
Lalani, Sanam J; Duffield, Tyler C; Trontel, Haley G; Bigler, Erin D; Abildskov, Tracy J; Froehlich, Alyson; Prigge, Molly B D; Travers, Brittany G; Anderson, Jeffrey S; Zielinski, Brandon A; Alexander, Andrew; Lange, Nicholas; Lainhart, Janet E
2018-06-01
Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typically developing individuals on standardized measures of attention, even when controlling for IQ. The current study sought to examine within ASD whether anatomical correlates of attention performance differed between those with average to above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in comparison to typically developing controls (TDC). Using automated volumetric analyses, we examined regional volume of classic attention areas including the superior frontal gyrus, anterior cingulate cortex, and precuneus in ASD AIQ (n = 38) and LIQ (n = 18) individuals along with 30 TDC. Auditory attention performance was assessed using subtests of the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences in attention. The three groups did not differ significantly on any auditory attention-related brain volumes; however, trends toward significant size-attention function interactions were observed. Negative correlations were found between the volume of the precuneus and auditory attention performance for the AIQ ASD group, indicating larger volume related to poorer performance. Implications for general attention functioning and dysfunctional neural connectivity in ASD are discussed.
Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease?
Kotz, Sonja A; Gunter, Thomas C
2015-03-01
Neurodegenerative changes of the basal ganglia in idiopathic Parkinson's disease (IPD) lead to motor deficits as well as general cognitive decline. Given these impairments, the question arises as to whether motor and nonmotor deficits can be ameliorated similarly. We reason that a domain-general sensorimotor circuit involved in temporal processing may support the remediation of such deficits. Following findings that auditory cuing benefits gait kinematics, we explored whether reported language-processing deficits in IPD can also be remediated via auditory cuing. During continuous EEG measurement, an individual diagnosed with IPD heard two types of temporally predictable but metrically different auditory beat-based cues: a march, which metrically aligned with the speech accent structure, a waltz that did not metrically align, or no cue before listening to naturally spoken sentences that were either grammatically well formed or were semantically or syntactically incorrect. Results confirmed that only the cuing with a march led to improved computation of syntactic and semantic information. We infer that a marching rhythm may lead to a stronger engagement of the cerebello-thalamo-cortical circuit that compensates dysfunctional striato-cortical timing. Reinforcing temporal realignment, in turn, may lead to the timely processing of linguistic information embedded in the temporally variable speech signal. © 2014 New York Academy of Sciences.
Diminished N1 Auditory Evoked Potentials to Oddball Stimuli in Misophonia Patients
Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, Damiaan
2014-01-01
Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain’s early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs) during an oddball task. Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1, and P2 components locked to the onset of the tones. For misophonia patients, the N1 peak evoked by the oddball tones had smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones. The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients. PMID:24782731
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus((+)) and tinnitus((-)) groups and detected no evidence of tinnitus in tinnitus((-)) and control rats. In addition, the tinnitus((+)) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus((+)) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
Suga, Nobuo
2011-01-01
The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and non-lemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation -- comparable to repetitive tonal stimulation -- of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a “differential” gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning. PMID:22155273
Auditory neuroimaging with fMRI and PET.
Talavage, Thomas M; Gonzalez-Castillo, Javier; Scott, Sophie K
2014-01-01
For much of the past 30 years, investigations of auditory perception and language have been enhanced or even driven by the use of functional neuroimaging techniques that specialize in localization of central responses. Beginning with investigations using positron emission tomography (PET) and gradually shifting primarily to usage of functional magnetic resonance imaging (fMRI), auditory neuroimaging has greatly advanced our understanding of the organization and response properties of brain regions critical to the perception of and communication with the acoustic world in which we live. As the complexity of the questions being addressed has increased, the techniques, experiments and analyses applied have also become more nuanced and specialized. A brief review of the history of these investigations sets the stage for an overview and analysis of how these neuroimaging modalities are becoming ever more effective tools for understanding the auditory brain. We conclude with a brief discussion of open methodological issues as well as potential clinical applications for auditory neuroimaging. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.
Plasticity in the Human Speech Motor System Drives Changes in Speech Perception
Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.
2014-01-01
Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594
Temporal processing and long-latency auditory evoked potential in stutterers.
Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela
Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.
2014-08-01
Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather than the caudal-medial ICC using the AMI may improve or elicit different types of hearing capabilities.
Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.
2016-01-01
In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594
Eggermont, Jos J
2017-09-01
It is known that hearing loss induces plastic changes in the brain, causing loudness recruitment and hyperacusis, increased spontaneous firing rates and neural synchrony, reorganizations of the cortical tonotopic maps, and tinnitus. Much less in known about the central effects of exposure to sounds that cause a temporary hearing loss, affect the ribbon synapses in the inner hair cells, and cause a loss of high-threshold auditory nerve fibers. In contrast there is a wealth of information about central effects of long-duration sound exposures at levels ≤80 dB SPL that do not even cause a temporary hearing loss. The central effects for these moderate level exposures described in this review include changes in central gain, increased spontaneous firing rates and neural synchrony, and reorganization of the cortical tonotopic map. A putative mechanism is outlined, and the effect of the acoustic environment during the recovery process is illustrated. Parallels are drawn with hearing problems in humans with long-duration exposures to occupational noise but with clinical normal hearing. Copyright © 2016 Elsevier B.V. All rights reserved.
Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G; Hudec, Kristen L; Tarle, Stephanie J; Lea, Sarah E
2015-01-01
The episodic buffer component of working memory was examined in children with attention deficit/hyperactivity disorder (ADHD) and typically developing peers (TD). Thirty-two children (ADHD = 16, TD = 16) completed three versions of a phonological working memory task that varied with regard to stimulus presentation modality (auditory, visual, or dual auditory and visual), as well as a visuospatial task. Children with ADHD experienced the largest magnitude working memory deficits when phonological stimuli were presented via a unimodal, auditory format. Their performance improved during visual and dual modality conditions but remained significantly below the performance of children in the TD group. In contrast, the TD group did not exhibit performance differences between the auditory- and visual-phonological conditions but recalled significantly more stimuli during the dual-phonological condition. Furthermore, relative to TD children, children with ADHD recalled disproportionately fewer phonological stimuli as set sizes increased, regardless of presentation modality. Finally, an examination of working memory components indicated that the largest magnitude between-group difference was associated with the central executive. Collectively, these findings suggest that ADHD-related working memory deficits reflect a combination of impaired central executive and phonological storage/rehearsal processes, as well as an impaired ability to benefit from bound multimodal information processed by the episodic buffer.
Current Concepts in Ejaculatory Dysfunction
Wolters, Jeffrey P; Hellstrom, Wayne J. G
2006-01-01
Although erectile dysfunction has recently become the most well-known aspect of male sexual dysfunction, the most prevalent male sexual disorders are ejaculatory dysfunctions. Ejaculatory disorders are divided into 4 categories: premature ejaculation (PE), delayed ejaculation, retrograde ejaculation, and anejaculation/anorgasmia. Pharmacologic treatment for certain ejaculatory disorders exists, for example the off-label use of selective serotonin reuptake inhibitors for PE. Unfortunately, the other ejaculatory disorders are less studied and not as well understood. This review revisits the physiology of the normal ejaculatory response, specifically explores the mechanisms of anejaculation, and presents emerging data. The neurophysiology of the ejaculatory reflex is complex, making classification of the role of individual neurotransmitters extremely difficult. However, recent research has elucidated more about the role of serotonin and dopamine at the central level in the physiology of both arousal and orgasm. Other recent studies that look at differing pharmacokinetic profiles and binding affinities of the α1-antagonists serve as an indication of the centrally mediated role of ejaculation and orgasm. As our understanding of the interaction between central and peripheral modulations and regulation of the process of ejaculation increases, the probability of developing centrally acting pharmaceutical agents for the treatment of sexual dysfunction approaches reality. PMID:17215997
Carlile, Simon; Ciccarelli, Gregory; Cockburn, Jane; Diedesch, Anna C.; Finnegan, Megan K.; Hafter, Ervin; Henin, Simon; Kalluri, Sridhar; Kell, Alexander J. E.; Ozmeral, Erol J.; Roark, Casey L.
2017-01-01
Here we report the methods and output of a workshop examining possible futures of speech and hearing science out to 2030. Using a design thinking approach, a range of human-centered problems in communication were identified that could provide the motivation for a wide range of research. Nine main research programs were distilled and are summarized: (a) measuring brain and other physiological parameters, (b) auditory and multimodal displays of information, (c) auditory scene analysis, (d) enabling and understanding shared auditory virtual spaces, (e) holistic approaches to health management and hearing impairment, (f) universal access to evolving and individualized technologies, (g) biological intervention for hearing dysfunction, (h) understanding the psychosocial interactions with technology and other humans as mediated by technology, and (i) the impact of changing models of security and privacy. The design thinking approach attempted to link the judged level of importance of different research areas to the “end in mind” through empathy for the real-life problems embodied in the personas created during the workshop. PMID:29090640
Genetic Landscape of Auditory Dysfunction.
Bowl, Michael R; Brown, S D M
2018-05-02
Over the past 25 years, human and mouse genetics research together has identified several hundred genes essential for mammalian hearing, leading to a greater understanding of the molecular mechanisms underlying auditory function. However, from the number of still as yet uncloned human deafness loci and the findings of large-scale mouse mutant screens, it is clear we are still far from identifying all of the genes critical for auditory function. In particular, while we have made great progress in understanding the genetic bases of congenital and early-onset hearing loss, we have only just begun to elaborate upon the genetic landscape of age-related hearing loss. With an aging population and a growing literature suggesting links between age-related hearing loss and neuropsychiatric conditions, such as dementia and depression, understanding the genetics and subsequently the molecular mechanisms underlying this very prevalent condition is of paramount importance. Increased knowledge of genes and molecular pathways required for hearing will ultimately provide the foundation upon which novel therapeutic approaches can be built. Here we discuss the current status of deafness genetics research and the ongoing efforts being undertaken for discovery of novel genes essential for hearing.
Introduction to the AJA research forum on aging and hearing: mechanisms and effects.
Paglialonga, Alessia; Grandori, Ferdinando
2013-12-01
PURPOSE This Research Forum, "Aging and Hearing: Mechanisms and Effects," highlights 6 contributions presented at the 2nd International Conference on Adult Hearing Screening (AHS 2012), held in Cernobbio (Lake Como, Italy) in June 2012. Overall, the articles in this Research Forum give insight into the causes, mechanisms, and consequences of auditory dysfunctions in adults, with particular focus on their implications for screening, assessment, and intervention.
Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder
Sharma, Anu; Cardon, Garrett
2015-01-01
Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426
Auditory Neuroimaging with fMRI and PET
Talavage, Thomas M.; Gonzalez-Castillo, Javier; Scott, Sophie K.
2013-01-01
For much of the past 30 years, investigations of auditory perception and language have been enhanced or even driven by the use of functional neuroimaging techniques that specialize in localization of central responses. Beginning with investigations using positron emission tomography (PET) and gradually shifting primarily to usage of functional magnetic resonance imaging (fMRI), auditory neuroimaging has greatly advanced our understanding of the organization and response properties of brain regions critical to the perception of and communication with the acoustic world in which we live. As the complexity of the questions being addressed has increased, the techniques, experiments and analyses applied have also become more nuanced and specialized. A brief review of the history of these investigations sets the stage for an overview and analysis of how these neuroimaging modalities are becoming ever more effective tools for understanding the auditory brain. We conclude with a brief discussion of open methodological issues as well as potential clinical applications for auditory neuroimaging. PMID:24076424
The Potential Role of the cABR in Assessment and Management of Hearing Impairment
Anderson, Samira; Kraus, Nina
2013-01-01
Hearing aid technology has improved dramatically in the last decade, especially in the ability to adaptively respond to dynamic aspects of background noise. Despite these advancements, however, hearing aid users continue to report difficulty hearing in background noise and having trouble adjusting to amplified sound quality. These difficulties may arise in part from current approaches to hearing aid fittings, which largely focus on increased audibility and management of environmental noise. These approaches do not take into account the fact that sound is processed all along the auditory system from the cochlea to the auditory cortex. Older adults represent the largest group of hearing aid wearers; yet older adults are known to have deficits in temporal resolution in the central auditory system. Here we review evidence that supports the use of the auditory brainstem response to complex sounds (cABR) in the assessment of hearing-in-noise difficulties and auditory training efficacy in older adults. PMID:23431313
Neurologic manifestations in welders with pallidal MRI T1 hyperintensity.
Josephs, K A; Ahlskog, J E; Klos, K J; Kumar, N; Fealey, R D; Trenerry, M R; Cowl, C T
2005-06-28
Neurologic symptoms have been attributed to manganese fumes generated during welding. Increased T1 MRI signal in the basal ganglia is a biologic marker of manganese accumulation. Recent studies have associated welding and parkinsonism, but generally without MRI corroboration. To characterize the clinical and neuropsychological features of patients with MRI basal ganglia T1 hyperintensity, who were ultimately diagnosed with neurotoxicity from welding fumes. The medical records of welders referred to the Department of Neurology with neurologic problems and basal ganglia T1 hyperintensity were reviewed. All eight patients were male career welders with increased T1 basal ganglia signal on MRI of the brain. Several different clinical syndromes were recognized: a parkinsonian syndrome (three patients), a syndrome of multifocal myoclonus and limited cognitive impairment (two patients), a mixed syndrome with vestibular-auditory dysfunction (two patients), and minor subjective cognitive impairment, anxiety, and sleep apnea (one patient). Neuropsychometric testing suggested subcortical or frontal involvement. Inadequate ventilation or lack of personal respiratory protection during welding was a common theme. Welding without proper protection was associated with syndromes of parkinsonism, multifocal myoclonus, mild cognitive impairment, and vestibular-auditory dysfunction. The MRI T1 hyperintensity in the basal ganglia suggests that these may have been caused by manganese neurotoxicity.
Sikandaner, Hu Erxidan; Park, So Young; Kim, Min Jung; Park, Shi Nae; Yang, Dong Won
2017-02-15
Noise exposure has been well characterized as an environmental stressor, and is known to have auditory and non-auditory effects. Phosphodiesterase 5 (PDE5) inhibitors affect memory and hippocampus plasticity through various signaling cascades which are regulated by cGMP. In this study, we investigated the effects of sildenafil on memory deficiency, neuroprotection and oxidative stress in mice caused by chronic noise exposure. Mice were exposed to noise for 4h every day up to 14days at 110dB SPL of noise level. Sildenafil (15mg/kg) was orally administered 30min before noise exposure for 14days. Behavioral assessments were performed using novel object recognition (NOR) test and radial arm maze (RAM) test. Higher levels of memory dysfunction and oxidative stress were observed in noise alone-induced mice compared to control group. Interestingly, sildenafil administration increased memory performance, decreased oxidative stress, and increased neuroprotection in the hippocampus region of noise alone-induced mice likely through affecting memory related pathways such as cGMP/PKG/CREB and p25/CDK5, and induction of free radical scavengers such as SOD1, SOD2, SOD3, Prdx5, and catalase in the brain of stressed mice. Copyright © 2016. Published by Elsevier B.V.
Rominger, Christian; Bleier, Angelika; Fitz, Werner; Marksteiner, Josef; Fink, Andreas; Papousek, Ilona; Weiss, Elisabeth M
2016-07-01
Social cognitive impairments may represent a core feature of schizophrenia and above all are a strong predictor of positive psychotic symptoms. Previous studies could show that reduced inhibitory top-down control contributes to deficits in theory of mind abilities and is involved in the genesis of hallucinations. The current study aimed to investigate the relationship between auditory inhibition, affective theory of mind and the experience of hallucinations in patients with schizophrenia. In the present study, 20 in-patients with schizophrenia and 20 healthy controls completed a social cognition task (the Reading the Mind in the Eyes Test) and an inhibitory top-down Dichotic Listening Test. Schizophrenia patients with greater severity of hallucinations showed impaired affective theory of mind as well as impaired inhibitory top-down control. More dysfunctional top-down inhibition was associated with poorer affective theory of mind performance, and seemed to mediate the association between impairment to affective theory of mind and severity of hallucinations. The findings support the idea of impaired theory of mind as a trait marker of schizophrenia. In addition, dysfunctional top-down inhibition may give rise to hallucinations and may further impair affective theory of mind skills in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinno, Ryuta; Ohashi, Hideaki; Mori, Yukiko; Shiromaru, Azusa; Ono, Kenjiro
2018-03-01
A 28-year-old right-handed man noticed weakness in his legs, three days after an ephedrine overdose. Initial brain magnetic resonance imaging showed lesions in the parietal regions bilaterally. Computed tomography angiography showed segmental and multifocal vasoconstriction of the cerebral arteries. After treatment, clinical and radiological findings resolved, suggesting the patient had reversible cerebral vasoconstriction syndrome with posterior reversible encephalopathy syndrome. However, he had residual agraphia of the left hand. Language testing revealed no difficulties in oral expression, auditory comprehension, understanding of written language, or writing with the right hand. I-123 iodoamphetamine single-photon emission computed tomography showed residual dysfunction in the left superior parietal lobule. There were no apparent signs of other disconnection syndromes or neuroimaging abnormalities in the corpus callosum. We diagnosed left-hand agraphia due to left parietal dysfunction. Our case suggests that left superior parietal dysfunction without callosal lesions is a possible cause of left-hand agraphia. Neural mechanisms for writing with the right or left hand may be separable at the cortical level.
Cardon, Garrett; Campbell, Julia; Sharma, Anu
2013-01-01
The developing auditory cortex is highly plastic. As such, the cortex is both primed to mature normally and at risk for re-organizing abnormally, depending upon numerous factors that determine central maturation. From a clinical perspective, at least two major components of development can be manipulated: 1) input to the cortex and 2) the timing of cortical input. Children with sensorineural hearing loss (SNHL) and auditory neuropathy spectrum disorder (ANSD) have provided a model of early deprivation of sensory input to the cortex, and demonstrated the resulting plasticity and development that can occur upon introduction of stimulation. In this article, we review several fundamental principles of cortical development and plasticity and discuss the clinical applications in children with SNHL and ANSD who receive intervention with hearing aids and/or cochlear implants. PMID:22668761
Tinnitus. I: Auditory mechanisms: a model for tinnitus and hearing impairment.
Hazell, J W; Jastreboff, P J
1990-02-01
A model is proposed for tinnitus and sensorineural hearing loss involving cochlear pathology. As tinnitus is defined as a cortical perception of sound in the absence of an appropriate external stimulus it must result from a generator in the auditory system which undergoes extensive auditory processing before it is perceived. The concept of spatial nonlinearity in the cochlea is presented as a cause of tinnitus generation controlled by the efferents. Various clinical presentations of tinnitus and the way in which they respond to changes in the environment are discussed with respect to this control mechanism. The concept of auditory retraining as part of the habituation process, and interaction with the prefrontal cortex and limbic system is presented as a central model which emphasizes the importance of the emotional significance and meaning of tinnitus.
Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve.
Sekiya, Tetsuji; Holley, Matthew C; Kojima, Ken; Matsumoto, Masahiro; Helyer, Richard; Ito, Juichi
2007-04-01
Cell transplantation is a realistic potential therapy for replacement of auditory sensory neurons and could benefit patients with cochlear implants or acoustic neuropathies. The procedure involves many experimental variables, including the nature and conditioning of donor cells, surgical technique and degree of degeneration in the host tissue. It is essential to control these variables in order to develop cell transplantation techniques effectively. We have characterized a conditionally immortal, mouse cell line suitable for transplantation to the auditory nerve. Structural and physiological markers defined the cells as early auditory neuroblasts that lacked neuronal, voltage-gated sodium or calcium currents and had an undifferentiated morphology. When transplanted into the auditory nerves of rats in vivo, the cells migrated peripherally and centrally and aggregated to form coherent, ectopic 'ganglia'. After 7 days they expressed beta 3-tubulin and adopted a similar morphology to native spiral ganglion neurons. They also developed bipolar projections aligned with the host nerves. There was no evidence for uncontrolled proliferation in vivo and cells survived for at least 63 days. If cells were transplanted with the appropriate surgical technique then the auditory brainstem responses were preserved. We have shown that immortal cell lines can potentially be used in the mammalian ear, that it is possible to differentiate significant numbers of cells within the auditory nerve tract and that surgery and cell injection can be achieved with no damage to the cochlea and with minimal degradation of the auditory brainstem response.
Cardon, Garrett; Sharma, Anu
2013-01-01
Objective We examined cortical auditory development and behavioral outcomes in children with ANSD fitted with cochlear implants (CI). Design Cortical maturation, measured by P1 cortical auditory evoked potential (CAEP) latency, was regressed against scores on the Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS). Implantation age was also considered in relation to CAEP findings. Study Sample Cross-sectional and longitudinal samples of 24 and 11 children, respectively, with ANSD fitted with CIs. Result P1 CAEP responses were present in all children after implantation, though previous findings suggest that only 50-75% of ANSD children with hearing aids show CAEP responses. P1 CAEP latency was significantly correlated with participants' IT-MAIS scores. Furthermore, more children implanted before age two years showed normal P1 latencies, while those implanted later mainly showed delayed latencies. Longitudinal analysis revealed that most children showed normal or improved cortical maturation after implantation. Conclusion Cochlear implantation resulted in measureable cortical auditory development for all children with ANSD. Children fitted with CIs under age two years were more likely to show age-appropriate CAEP responses within 6 months after implantation, suggesting a possible sensitive period for cortical auditory development in ANSD. That CAEP responses were correlated with behavioral outcome highlights their clinical decision-making utility. PMID:23819618
Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording
Kirby, Alana E.
2010-01-01
Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242
Talking back: Development of the olivocochlear efferent system.
Frank, Michelle M; Goodrich, Lisa V
2018-06-26
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development. © 2018 Wiley Periodicals, Inc.
Koehler, Seth D.; Shore, Susan E.
2015-01-01
Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit. PMID:26289461
Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System
Anderson, Lucy A.
2016-01-01
High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621
Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk
2018-01-01
In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed” (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5–4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4–8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12–15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15–18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.
Cohen-Mimran, Ravit; Sapir, Shimon
2008-01-01
To assess the relationships between central auditory processing (CAP) of sinusoidally modulated speech-like and non-speech acoustic signals and reading skills in shallow (pointed) and deep (unpointed) Hebrew orthographies. Twenty unselected fifth-grade Hebrew speakers performed a rate change detection (RCD) task using the aforementioned acoustic signals. They also performed reading and general ability (IQ) tests. After controlling for general ability, RCD tasks contributed a significant unique variance to the decoding skills. In addition, there was a fairly strong correlation between the score on the RCD with the speech-like stimuli and the unpointed text reading score. CAP abilities may affect reading skills, depending on the nature of orthography (deep vs shallow), at least in the Hebrew language.
The Dynamic Range Paradox: A Central Auditory Model of Intensity Change Detection
Simpson, Andrew J.R.; Reiss, Joshua D.
2013-01-01
In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa. However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10) using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase towards long duration ramps (p<10−6). From the modeling, the following central adaptation parameters are derived; central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND constant of 5.5×10−5 sones per ms. Through our findings, we argue that loudness reflects peripheral neural coding, and the intensity JND reflects central neural coding. PMID:23536749
Fino, Peter C; Peterka, Robert J; Hullar, Timothy E; Murchison, Chad; Horak, Fay B; Chesnutt, James C; King, Laurie A
2017-02-23
Complaints of imbalance are common non-resolving signs in individuals with post-concussive syndrome. Yet, there is no consensus rehabilitation for non-resolving balance complaints following mild traumatic brain injury (mTBI). The heterogeneity of balance deficits and varied rates of recovery suggest varied etiologies and a need for interventions that address the underlying causes of poor balance function. Our central hypothesis is that most chronic balance deficits after mTBI result from impairments in central sensorimotor integration that may be helped by rehabilitation. Two studies are described to 1) characterize balance deficits in people with mTBI who have chronic, non-resolving balance deficits compared to healthy control subjects, and 2) determine the efficacy of an augmented vestibular rehabilitation program using auditory biofeedback to improve central sensorimotor integration, static and dynamic balance, and functional activity in patients with chronic mTBI. Two studies are described. Study 1 is a cross-sectional study to take place jointly at Oregon Health and Science University and the VA Portland Health Care System. The study participants will be individuals with non-resolving complaints of balance following mTBI and age- and gender-matched controls who meet all inclusion criteria. The primary outcome will be measures of central sensorimotor integration derived from a novel central sensorimotor integration test. Study 2 is a randomized controlled intervention to take place at Oregon Health & Science University. In this study, participants from Study 1 with mTBI and abnormal central sensorimotor integration will be randomized into two rehabilitation interventions. The interventions will be 6 weeks of vestibular rehabilitation 1) with or 2) without the use of an auditory biofeedback device. The primary outcome measure is the daily activity of the participants measured using an inertial sensor. The results of these two studies will improve our understanding of the nature of balance deficits in people with mTBI by providing quantitative metrics of central sensorimotor integration, balance, and vestibular and ocular motor function. Study 2 will examine the potential for augmented rehabilitation interventions to improve central sensorimotor integration. This trial is registered at clinicaltrials.gov ( NCT02748109 ).
Absence of auditory 'global interference' in autism.
Foxton, Jessica M; Stewart, Mary E; Barnard, Louise; Rodgers, Jacqui; Young, Allan H; O'Brien, Gregory; Griffiths, Timothy D
2003-12-01
There has been considerable recent interest in the cognitive style of individuals with Autism Spectrum Disorder (ASD). One theory, that of weak central coherence, concerns an inability to combine stimulus details into a coherent whole. Here we test this theory in the case of sound patterns, using a new definition of the details (local structure) and the coherent whole (global structure). Thirteen individuals with a diagnosis of autism or Asperger's syndrome and 15 control participants were administered auditory tests, where they were required to match local pitch direction changes between two auditory sequences. When the other local features of the sequence pairs were altered (the actual pitches and relative time points of pitch direction change), the control participants obtained lower scores compared with when these details were left unchanged. This can be attributed to interference from the global structure, defined as the combination of the local auditory details. In contrast, the participants with ASD did not obtain lower scores in the presence of such mismatches. This was attributed to the absence of interference from an auditory coherent whole. The results are consistent with the presence of abnormal interactions between local and global auditory perception in ASD.
Auditory access, language access, and implicit sequence learning in deaf children.
Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane
2018-05-01
Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.
Rodent Auditory Perception: Critical Band Limitations and Plasticity
King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.
2015-01-01
What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498
A behavioral framework to guide research on central auditory development and plasticity
Sanes, Dan H.; Woolley, Sarah M. N.
2011-01-01
The auditory CNS is influenced profoundly by sounds heard during development. Auditory deprivation and augmented sound exposure can each perturb the maturation of neural computations as well as their underlying synaptic properties. However, we have learned little about the emergence of perceptual skills in these same model systems, and especially how perception is influenced by early acoustic experience. Here, we argue that developmental studies must take greater advantage of behavioral benchmarks. We discuss quantitative measures of perceptual development, and suggest how they can play a much larger role in guiding experimental design. Most importantly, including behavioral measures will allow us to establish empirical connections among environment, neural development, and perception. PMID:22196328
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments. PMID:24069375
Sustained Perceptual Deficits from Transient Sensory Deprivation
Sanes, Dan H.
2015-01-01
Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms. PMID:26224865
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Lieshout, P.; Renier, W.; Eling, P.
1990-02-01
This case study concerns an 18-year-old bilingual girl who suffered a radiation lesion in the left (dominant) thalamic and temporal region when she was 4 years old. Language and memory assessment revealed deficits in auditory short-term memory, auditory word comprehension, nonword repetition, syntactic processing, word fluency, and confrontation naming tasks. Both languages (English and Dutch) were found to be affected in a similar manner, despite the fact that one language (English) was acquired before and the other (Dutch) after the period of lesion onset. Most of the deficits appear to be related to verbal (short-term) memory dysfunction. Several hypotheses ofmore » subcortical involvement in memory processes are discussed with reference to existing theories in this area.« less
Psychophysics and Neuronal Bases of Sound Localization in Humans
Ahveninen, Jyrki; Kopco, Norbert; Jääskeläinen, Iiro P.
2013-01-01
Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory “where” pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. PMID:23886698
Syllabic (~2-5 Hz) and fluctuation (~1-10 Hz) ranges in speech and auditory processing
Edwards, Erik; Chang, Edward F.
2013-01-01
Given recent interest in syllabic rates (~2-5 Hz) for speech processing, we review the perception of “fluctuation” range (~1-10 Hz) modulations during listening to speech and technical auditory stimuli (AM and FM tones and noises, and ripple sounds). We find evidence that the temporal modulation transfer function (TMTF) of human auditory perception is not simply low-pass in nature, but rather exhibits a peak in sensitivity in the syllabic range (~2-5 Hz). We also address human and animal neurophysiological evidence, and argue that this bandpass tuning arises at the thalamocortical level and is more associated with non-primary regions than primary regions of cortex. The bandpass rather than low-pass TMTF has implications for modeling auditory central physiology and speech processing: this implicates temporal contrast rather than simple temporal integration, with contrast enhancement for dynamic stimuli in the fluctuation range. PMID:24035819
Mulert, C; Juckel, G; Augustin, H; Hegerl, U
2002-10-01
The loudness dependency of the auditory evoked potentials (LDAEP) is used as an indicator of the central serotonergic system and predicts clinical response to serotonin agonists. So far, LDAEP has been typically investigated with dipole source analysis, because with this method the primary and secondary auditory cortex (with a high versus low serotonergic innervation) can be separated at least in parts. We have developed a new analysis procedure that uses an MRI probabilistic map of the primary auditory cortex in Talairach space and analyzed the current density in this region of interest with low resolution electromagnetic tomography (LORETA). LORETA is a tomographic localization method that calculates the current density distribution in Talairach space. In a group of patients with major depression (n=15), this new method can predict the response to an selective serotonin reuptake inhibitor (citalopram) at least to the same degree than the traditional dipole source analysis method (P=0.019 vs. P=0.028). The correlation of the improvement in the Hamilton Scale is significant with the LORETA-LDAEP-values (0.56; P=0.031) but not with the dipole source analysis LDAEP-values (0.43; P=0.11). The new tomographic LDAEP analysis is a promising tool in the analysis of the central serotonergic system.
Analysis of the relationship between cognitive skills and unilateral sensory hearing loss.
Calderón-Leyva, I; Díaz-Leines, S; Arch-Tirado, E; Lino-González, A L
2018-06-01
To analyse cognitive skills in patients with severe unilateral hearing loss versus those in subjects with normal hearing. 40 adults participated: 20 patients (10 women and 10 men) with severe unilateral hearing loss and 20 healthy subjects matched to the study group. Cognitive abilities were measured with the Spanish version of the Woodcock Johnson Battery-Revised; central auditory processing was assessed with monaural psychoacoustic tests. Box plots were drawn and t tests were performed for samples with a significance of P≤.05. A comparison of performances on the filtered word testing and time-compressed disyllabic word tests between patients and controls revealed a statistically significant difference (P≤.05) with greater variability among responses by hearing impaired subjects. This same group also showed a better cognitive performance on the numbers reversed, visual auditory learning, analysis synthesis, concept formation, and incomplete words tests. Patients with hearing loss performed more poorly than controls on the filtered word and time-compressed disyllabic word tests, but more competently on memory, reasoning, and auditory processing tasks. Complementary tests, such as those assessing central auditory processes and cognitive ability tests, are important and helpful for designing habilitation/rehabilitation and therapeutic strategies intended to optimise and stimulate cognitive skills in subjects with unilateral hearing impairment. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Holmes, Emma; Kitterick, Padraig T; Summerfield, A Quentin
2017-07-01
Restoring normal hearing requires knowledge of how peripheral and central auditory processes are affected by hearing loss. Previous research has focussed primarily on peripheral changes following sensorineural hearing loss, whereas consequences for central auditory processing have received less attention. We examined the ability of hearing-impaired children to direct auditory attention to a voice of interest (based on the talker's spatial location or gender) in the presence of a common form of background noise: the voices of competing talkers (i.e. during multi-talker, or "Cocktail Party" listening). We measured brain activity using electro-encephalography (EEG) when children prepared to direct attention to the spatial location or gender of an upcoming target talker who spoke in a mixture of three talkers. Compared to normally-hearing children, hearing-impaired children showed significantly less evidence of preparatory brain activity when required to direct spatial attention. This finding is consistent with the idea that hearing-impaired children have a reduced ability to prepare spatial attention for an upcoming talker. Moreover, preparatory brain activity was not restored when hearing-impaired children listened with their acoustic hearing aids. An implication of these findings is that steps to improve auditory attention alongside acoustic hearing aids may be required to improve the ability of hearing-impaired children to understand speech in the presence of competing talkers. Copyright © 2017 Elsevier B.V. All rights reserved.
Decoding sound level in the marmoset primary auditory cortex.
Sun, Wensheng; Marongelli, Ellisha N; Watkins, Paul V; Barbour, Dennis L
2017-10-01
Neurons that respond favorably to a particular sound level have been observed throughout the central auditory system, becoming steadily more common at higher processing areas. One theory about the role of these level-tuned or nonmonotonic neurons is the level-invariant encoding of sounds. To investigate this theory, we simulated various subpopulations of neurons by drawing from real primary auditory cortex (A1) neuron responses and surveyed their performance in forming different sound level representations. Pure nonmonotonic subpopulations did not provide the best level-invariant decoding; instead, mixtures of monotonic and nonmonotonic neurons provided the most accurate decoding. For level-fidelity decoding, the inclusion of nonmonotonic neurons slightly improved or did not change decoding accuracy until they constituted a high proportion. These results indicate that nonmonotonic neurons fill an encoding role complementary to, rather than alternate to, monotonic neurons. NEW & NOTEWORTHY Neurons with nonmonotonic rate-level functions are unique to the central auditory system. These level-tuned neurons have been proposed to account for invariant sound perception across sound levels. Through systematic simulations based on real neuron responses, this study shows that neuron populations perform sound encoding optimally when containing both monotonic and nonmonotonic neurons. The results indicate that instead of working independently, nonmonotonic neurons complement the function of monotonic neurons in different sound-encoding contexts. Copyright © 2017 the American Physiological Society.
Hoare, Derek J; Kowalkowski, Victoria L; Hall, Deborah A
2012-08-01
That auditory perceptual training may alleviate tinnitus draws on two observations: (1) tinnitus probably arises from altered activity within the central auditory system following hearing loss and (2) sound-based training can change central auditory activity. Training that provides sound enrichment across hearing loss frequencies has therefore been hypothesised to alleviate tinnitus. We tested this prediction with two randomised trials of frequency discrimination training involving a total of 70 participants with chronic subjective tinnitus. Participants trained on either (1) a pure-tone standard at a frequency within their region of normal hearing, (2) a pure-tone standard within the region of hearing loss or (3) a high-pass harmonic complex tone spanning a region of hearing loss. Analysis of the primary outcome measure revealed an overall reduction in self-reported tinnitus handicap after training that was maintained at a 1-month follow-up assessment, but there were no significant differences between groups. Secondary analyses also report the effects of different domains of tinnitus handicap on the psychoacoustical characteristics of the tinnitus percept (sensation level, bandwidth and pitch) and on duration of training. Our overall findings and conclusions cast doubt on the superiority of a purely acoustic mechanism to underpin tinnitus remediation. Rather, the nonspecific patterns of improvement are more suggestive that auditory perceptual training affects impact on a contributory mechanism such as selective attention or emotional state.
Cheyne, Susan M; Thompson, Claire J H; Phillips, Abigail C; Hill, Robyn M C; Limin, Suwido H
2008-01-01
We demonstrate that although auditory sampling is a useful tool, this method alone will not provide a truly accurate indication of population size, density and distribution of gibbons in an area. If auditory sampling alone is employed, we show that data collection must take place over a sufficient period to account for variation in calling patterns across seasons. The population of Hylobates albibarbis in the Sabangau catchment, Central Kalimantan, Indonesia, was surveyed from July to December 2005 using methods established previously. In addition, auditory sampling was complemented by detailed behavioural data on six habituated groups within the study area. Here we compare results from this study to those of a 1-month study conducted in 2004. The total population of the Sabangau catchment is estimated to be about in the tens of thousands, though numbers, distribution and density for the different forest subtypes vary considerably. We propose that future density surveys of gibbons must include data from all forest subtypes where gibbons are found and that extrapolating from one forest subtype is likely to yield inaccurate density and population estimates. We also propose that auditory census be carried out by using at least three listening posts (LP) in order to increase the area sampled and the chances of hearing groups. Our results suggest that the Sabangau catchment contains one of the largest remaining contiguous populations of Bornean agile gibbon.
Sanguebuche, Taissane Rodrigues; Peixe, Bruna Pias; Bruno, Rúbia Soares; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas
2018-01-01
Introduction The auditory system consists of sensory structures and central connections. The evaluation of the auditory pathway at a central level can be performed through behavioral and electrophysiological tests, because they are complementary to each other and provide important information about comprehension. Objective To correlate the findings of speech brainstem-evoked response audiometry with the behavioral tests Random Gap Detection Test and Masking Level Difference in adults with hearing loss. Methods All patients were submitted to a basic audiological evaluation, to the aforementioned behavioral tests, and to an electrophysiological assessment, by means of click-evoked and speech-evoked brainstem response audiometry. Results There were no statistically significant values among the electrophysiological test and the behavioral tests. However, there was a significant correlation between the V and A waves, as well as the D and F waves, of the speech-evoked brainstem response audiometry peaks. Such correlations are positive, indicating that the increase of a variable implies an increase in another and vice versa. Conclusion It was possible to correlate the findings of the speech-evoked brainstem response audiometry with those of the behavioral tests Random Gap Detection and Masking Level Difference. However, there was no statistically significant correlation between them. This shows that the electrophysiological evaluation does not depend uniquely on the behavioral skills of temporal resolution and selective attention. PMID:29379574
Neural plasticity expressed in central auditory structures with and without tinnitus
Roberts, Larry E.; Bosnyak, Daniel J.; Thompson, David C.
2012-01-01
Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To assess this assumption, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by electroencephalography (EEG) are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated (AM) sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR) and P2 transient response known to localize to primary and non-primary auditory cortex, respectively. P2 amplitude increased over training sessions equally in participants with tinnitus and in control subjects, suggesting normal remodeling of non-primary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls the phase delay between the 40-Hz response and stimulus waveforms reduced by about 10° over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects) did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not non-primary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected. PMID:22654738
Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani
2018-05-17
Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p<0.05). As revealed by large effect sizes (d>0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo
2017-10-01
Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.
Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S
2013-02-01
Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.
Task-specific reorganization of the auditory cortex in deaf humans
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-01
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964
Task-specific reorganization of the auditory cortex in deaf humans.
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-24
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Thornton, Ben; Cohen, Bruce; Copeland, William; Maria, Bernard L.
2015-01-01
Mitochondrial medicine provides a metabolic perspective on the pathology of conditions linked with inadequate oxidative phosphorylation. Dysfunction in the mitochondrial machinery can result in improper energy production, leading to cellular injury or even apoptosis. Clinical presentations are often subtle, so clinicians must have a high index of suspicion to make early diagnoses. Symptoms could include muscle weakness and pain, seizures, loss of motor control, decreased visual and auditory functions, metabolic acidosis, acute developmental regression, and immune system dysfunction. The 2013 Neurobiology of Disease in Children Symposium, held in conjunction with the 42nd Annual Meeting of the Child Neurology Society, aimed to (1) describe accepted clinical phenotypes of mitochondrial disease produced from various mitochondrial mutations, (2) discuss contemporary understanding of molecular mechanisms that contribute to disease pathology, (3) highlight the systemic effects produced by dysfunction within the mitochondrial machinery, and (4) introduce current strategies that are being translated from bench to bedside as potential therapeutics. PMID:24916430
Central auditory processing effects induced by solvent exposure.
Fuente, Adrian; McPherson, Bradley
2007-01-01
Various studies have demonstrated that organic solvent exposure may induce auditory damage. Studies conducted in workers occupationally exposed to solvents suggest, on the one hand, poorer hearing thresholds than in matched non-exposed workers, and on the other hand, central auditory damage due to solvent exposure. Taking into account the potential auditory damage induced by solvent exposure due to the neurotoxic properties of such substances, the present research aimed at studying the possible auditory processing disorder (APD), and possible hearing difficulties in daily life listening situations that solvent-exposed workers may acquire. Fifty workers exposed to a mixture of organic solvents (xylene, toluene, methyl ethyl ketone) and 50 non-exposed workers matched by age, gender and education were assessed. Only subjects with no history of ear infections, high blood pressure, kidney failure, metabolic and neurological diseases, or alcoholism were selected. The subjects had either normal hearing or sensorineural hearing loss, and normal tympanometric results. Hearing-in-noise (HINT), dichotic digit (DD), filtered speech (FS), pitch pattern sequence (PPS), and random gap detection (RGD) tests were carried out in the exposed and non-exposed groups. A self-report inventory of each subject's performance in daily life listening situations, the Amsterdam Inventory for Auditory Disability and Handicap, was also administered. Significant threshold differences between exposed and non-exposed workers were found at some of the hearing test frequencies, for both ears. However, exposed workers still presented normal hearing thresholds as a group (equal or better than 20 dB HL). Also, for the HINT, DD, PPS, FS and RGD tests, non-exposed workers obtained better results than exposed workers. Finally, solvent-exposed workers reported significantly more hearing complaints in daily life listening situations than non-exposed workers. It is concluded that subjects exposed to solvents may acquire an APD and thus the sole use of pure-tone audiometry is insufficient to assess hearing in solvent-exposed populations.
Samar, Vincent J.; Berger, Lauren
2017-01-01
Individuals deaf from early age often outperform hearing individuals in the visual periphery on attention-dependent dorsal stream tasks (e.g., spatial localization or movement detection), but sometimes show central visual attention deficits, usually on ventral stream object identification tasks. It has been proposed that early deafness adaptively redirects attentional resources from central to peripheral vision to monitor extrapersonal space in the absence of auditory cues, producing a more evenly distributed attention gradient across visual space. However, little direct evidence exists that peripheral advantages are functionally tied to central deficits, rather than determined by independent mechanisms, and previous studies using several attention tasks typically report peripheral advantages or central deficits, not both. To test the general altered attentional gradient proposal, we employed a novel divided attention paradigm that measured target localization performance along a gradient from parafoveal to peripheral locations, independent of concurrent central object identification performance in prelingually deaf and hearing groups who differed in access to auditory input. Deaf participants without cochlear implants (No-CI), with cochlear implants (CI), and hearing participants identified vehicles presented centrally, and concurrently reported the location of parafoveal (1.4°) and peripheral (13.3°) targets among distractors. No-CI participants but not CI participants showed a central identification accuracy deficit. However, all groups displayed equivalent target localization accuracy at peripheral and parafoveal locations and nearly parallel parafoveal-peripheral gradients. Furthermore, the No-CI group’s central identification deficit remained after statistically controlling peripheral performance; conversely, the parafoveal and peripheral group performance equivalencies remained after controlling central identification accuracy. These results suggest that, in the absence of auditory input, reduced central attentional capacity is not necessarily associated with enhanced peripheral attentional capacity or with flattening of a general attention gradient. Our findings converge with earlier studies suggesting that a general graded trade-off of attentional resources across the visual field does not adequately explain the complex task-dependent spatial distribution of deaf-hearing performance differences reported in the literature. Rather, growing evidence suggests that the spatial distribution of attention-mediated performance in deaf people is determined by sophisticated cross-modal plasticity mechanisms that recruit specific sensory and polymodal cortex to achieve specific compensatory processing goals. PMID:28559861
Neural plasticity and its initiating conditions in tinnitus.
Roberts, L E
2018-03-01
Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.
Localized Cell and Drug Delivery for Auditory Prostheses
Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.
2011-01-01
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323
Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt
2014-08-01
Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.
Evaluation of central auditory processing in children with Specific Language Impairment.
Włodarczyk, Elżbieta; Szkiełkowska, Agata; Piłka, Adam; Skarżyński, Henryk
2015-01-01
Specific Language Impairment (SLI) affects about 7-15 % of children of school age and according to the currently accepted diagnostic criteria, it is presumed that these children do not suffer from hearing impairment. The goal of this work was to assess anomalies of central auditory processes in a group of children diagnosed with specific language impairment. Material consisted of 200 children aged 7-10 years (100 children in the study group and 100 hundred in the control group). Selected psychoacoustic tests (Frequency Pattern Test - FPT, Duration Pattern Test - DPT, Dichotic Digit Test - DDT, Time Compressed Sentence Test - CST, Gap Detection Test - GDT) were performed in all children. Results were subject to statistical analysis. It was observed that mean results obtained in individual age groups in the study group are significantly lower than in the control group. Based on the conducted studies we may conclude that children with SLI suffer from disorders of some higher auditory functions, which substantiates the diagnosis of hearing disorders according to the AHSA (American Hearing and Speech Association) guidelines. Use of sound-based, not verbal tests, eliminates the probability that observed problems with perception involve only perception of speech, therefore do not signify central hearing disorders, but problems with understanding of speech. Lack of literature data on the significance of FPT, DPT, DDT, CST and GDT tests in children with specific language impairment precludes comparison of acquired results and makes them unique.
Tinnitus and hyperacusis: Contributions of paraflocculus, reticular formation and stress.
Chen, Yu-Chen; Chen, Guang-Di; Auerbach, Benjamin D; Manohar, Senthilvelan; Radziwon, Kelly; Salvi, Richard
2017-06-01
Tinnitus and hyperacusis are common and potentially serious hearing disorders associated with noise-, age- or drug-induced hearing loss. Accumulating evidence suggests that tinnitus and hyperacusis are linked to excessive neural activity in a distributed brain network that not only includes the central auditory pathway, but also brain regions involved in arousal, emotion, stress and motor control. Here we examine electrophysiological changes in two novel non-auditory areas implicated in tinnitus and hyperacusis: the caudal pontine reticular nucleus (PnC), involved in arousal, and the paraflocculus lobe of the cerebellum (PFL), implicated in head-eye coordination and gating tinnitus and we measure the changes in corticosterone stress hormone levels. Using the salicylate-induced model of tinnitus and hyperacusis, we found that long-latency (>10 ms) sound-evoked response components in both the brain regions were significantly enhanced after salicylate administration, while the short-latency responses were reduced, likely reflecting cochlear hearing loss. These results are consistent with the central gain model of tinnitus and hyperacusis, which proposes that these disorders arise from the amplification of neural activity in central auditory pathway plus other regions linked to arousal, emotion, tinnitus gating and motor control. Finally, we demonstrate that salicylate results in an increase in corticosterone level in a dose-dependent manner consistent with the notion that stress may interact with hearing loss in tinnitus and hyperacusis development. This increased stress response has the potential to have wide-ranging effects on the central nervous system and may therefore contribute to brain-wide changes in neural activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Auditory effects of aircraft noise on people living near an airport.
Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C
1997-01-01
Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.
Establishing the Response of Low Frequency Auditory Filters
NASA Technical Reports Server (NTRS)
Rafaelof, Menachem; Christian, Andrew; Shepherd, Kevin; Rizzi, Stephen; Stephenson, James
2017-01-01
The response of auditory filters is central to frequency selectivity of sound by the human auditory system. This is true especially for realistic complex sounds that are often encountered in many applications such as modeling the audibility of sound, voice recognition, noise cancelation, and the development of advanced hearing aid devices. The purpose of this study was to establish the response of low frequency (below 100Hz) auditory filters. Two experiments were designed and executed; the first was to measure subject's hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz), and the second was to measure the Psychophysical Tuning Curves (PTCs) at two signal frequencies (Fs= 40 and 63Hz). Experiment 1 involved 36 subjects while experiment 2 used 20 subjects selected from experiment 1. Both experiments were based on a 3-down 1-up 3AFC adaptive staircase test procedure using either a variable level narrow-band noise masker or a tone. A summary of the results includes masked threshold data in form of PTCs, the response of auditory filters, their distribution, and comparison with similar recently published data.
Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar
2011-01-01
We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I–III, III–V, and I–V (all t(50)> 7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid 1–42. Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children’s exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557
The Complex Pre-Execution Stage of Auditory Cognitive Control: ERPs Evidence from Stroop Tasks
Yu, Bo; Wang, Xunda; Ma, Lin; Li, Liang; Li, Haifeng
2015-01-01
Cognitive control has been extensively studied from Event-Related Potential (ERP) point of view in visual modality using Stroop paradigms. Little work has been done in auditory Stroop paradigms, and inconsistent conclusions have been reported, especially on the conflict detection stage of cognitive control. This study investigated the early ERP components in an auditory Stroop paradigm, during which participants were asked to identify the volume of spoken words and ignore the word meanings. A series of significant ERP components were revealed that distinguished incongruent and congruent trials: two declined negative polarity waves (the N1 and the N2) and three declined positive polarity wave (the P1, the P2 and the P3) over the fronto-central area for the incongruent trials. These early ERP components imply that both a perceptual stage and an identification stage exist in the auditory Stroop effect. A 3-stage cognitive control model was thus proposed for a more detailed description of the human cognitive control mechanism in the auditory Stroop tasks. PMID:26368570
Temporal Organization of Sound Information in Auditory Memory.
Song, Kun; Luo, Huan
2017-01-01
Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.
Hemodialysis Tunneled Catheter Noninfectious Complications
Miller, Lisa M.; MacRae, Jennifer M.; Kiaii, Mercedeh; Clark, Edward; Dipchand, Christine; Kappel, Joanne; Lok, Charmaine; Luscombe, Rick; Moist, Louise; Oliver, Matthew; Pike, Pamela; Hiremath, Swapnil
2016-01-01
Noninfectious hemodialysis catheter complications include catheter dysfunction, catheter-related thrombus, and central vein stenosis. The definitions, causes, and treatment strategies for catheter dysfunction are reviewed below. Catheter-related thrombus is a less common but serious complication of catheters, requiring catheter removal and systemic anticoagulation. In addition, the risk factors, clinical manifestation, and treatment options for central vein stenosis are outlined. PMID:28270922
Hearing after congenital deafness: central auditory plasticity and sensory deprivation.
Kral, A; Hartmann, R; Tillein, J; Heid, S; Klinke, R
2002-08-01
The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNA-type signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 microV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.
Visser, Eelke; Zwiers, Marcel P; Kan, Cornelis C; Hoekstra, Liesbeth; van Opstal, A John; Buitelaar, Jan K
2013-11-01
Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs.
Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas
2017-10-01
A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Selective Neuronal Activation by Cochlear Implant Stimulation in Auditory Cortex of Awake Primate
Johnson, Luke A.; Della Santina, Charles C.
2016-01-01
Despite the success of cochlear implants (CIs) in human populations, most users perform poorly in noisy environments and music and tonal language perception. How CI devices engage the brain at the single neuron level has remained largely unknown, in particular in the primate brain. By comparing neuronal responses with acoustic and CI stimulation in marmoset monkeys unilaterally implanted with a CI electrode array, we discovered that CI stimulation was surprisingly ineffective at activating many neurons in auditory cortex, particularly in the hemisphere ipsilateral to the CI. Further analyses revealed that the CI-nonresponsive neurons were narrowly tuned to frequency and sound level when probed with acoustic stimuli; such neurons likely play a role in perceptual behaviors requiring fine frequency and level discrimination, tasks that CI users find especially challenging. These findings suggest potential deficits in central auditory processing of CI stimulation and provide important insights into factors responsible for poor CI user performance in a wide range of perceptual tasks. SIGNIFICANCE STATEMENT The cochlear implant (CI) is the most successful neural prosthetic device to date and has restored hearing in hundreds of thousands of deaf individuals worldwide. However, despite its huge successes, CI users still face many perceptual limitations, and the brain mechanisms involved in hearing through CI devices remain poorly understood. By directly comparing single-neuron responses to acoustic and CI stimulation in auditory cortex of awake marmoset monkeys, we discovered that neurons unresponsive to CI stimulation were sharply tuned to frequency and sound level. Our results point out a major deficit in central auditory processing of CI stimulation and provide important insights into mechanisms underlying the poor CI user performance in a wide range of perceptual tasks. PMID:27927962
Auditory processing disorders and problems with hearing-aid fitting in old age.
Antonelli, A R
1978-01-01
The hearing handicap experienced by elderly subjects depends only partially on end-organ impairment. Not only the neural unit loss along the central auditory pathways contributes to decreased speech discrimination, but also learning processes are slowed down. Diotic listening in elderly people seems to fasten learning of discrimination in critical conditions, as in the case of sensitized speech. This fact, and the binaural gain through the binaural release from masking, stress the superiority, on theoretical grounds, of binaural over monaural hearing-aid fitting.
Central obesity is an independent predictor of erectile dysfunction in older men.
Riedner, Charles Edison; Rhoden, Ernani Luis; Ribeiro, Eduardo Porto; Fuchs, Sandra Costa
2006-10-01
There is a growing body of evidence in the literature correlating erectile dysfunction to obesity. We investigated the correlation of different anthropometric indexes of central obesity to erectile dysfunction. A cross-sectional study was performed including 256 consecutive men 40 years old or older. All men completed the International Index of Erectile Function, and were evaluated routinely with a clinical history, physical examination and blood analysis for fasting serum glucose, lipid profile and serum testosterone. Anthropometric measures included body mass index, waist circumference, sagittal abdominal diameter, maximal abdominal circumference, and waist-hip, waist-thigh, waist-height, sagittal abdominal diameter-thigh and sagittal abdominal diameter-height indexes. In men 40 to 60 years old the different anthropometric indexes of central obesity were not correlated with the presence of erectile dysfunction (p > 0.05). Men older than 60 years (41%, range 61 to 81) demonstrated an association among erectile dysfunction and waist-hip index (p = 0.04), waist-thigh index (p = 0.02), sagittal abdominal diameter (p = 0.03), sagittal abdominal diameter-height index (p = 0.02) and maximal abdominal circumference (p = 0.04). After logistic regression analysis an independent effect on the presence of erectile dysfunction was observed for waist-hip index (OR 8.56, 95% CI 1.44-50.73), sagittal abdominal diameter (OR 7.87, 95% CI 1.24-49.75), sagittal abdominal diameter-height index (OR 14.21, 95% CI 1.11-182.32), maximum abdominal circumference (OR 11.72, 95% CI 1.73-79.18) and waist circumference (OR 19.37, 95% CI 1.15-326.55). This study suggests that central obesity, assessed by several anthropometric indicators, is associated to the presence of erectile dysfunction in men older than 60 years. Sagittal abdominal diameter, sagittal abdominal diameter-height index, maximum abdominal circumference, waist circumference and waist-hip index were useful indicators to predict the presence of erectile dysfunction.
Heim, Sabine; Choudhury, Naseem; Benasich, April A
2016-05-01
Detecting and discriminating subtle and rapid sound changes in the speech environment is a fundamental prerequisite of language processing, and deficits in this ability have frequently been observed in individuals with language-learning impairments (LLI). One approach to studying associations between dysfunctional auditory dynamics and LLI, is to implement a training protocol tapping into this potential while quantifying pre- and post-intervention status. Event-related potentials (ERPs) are highly sensitive to the brain correlates of these dynamic changes and are therefore ideally suited for examining hypotheses regarding dysfunctional auditory processes. In this study, ERP measurements to rapid tone sequences (standard and deviant tone pairs) along with behavioral language testing were performed in 6- to 9-year-old LLI children (n = 21) before and after audiovisual training. A non-treatment group of children with typical language development (n = 12) was also assessed twice at a comparable time interval. The results indicated that the LLI group exhibited considerable gains on standardized measures of language. In terms of ERPs, we found evidence of changes in the LLI group specifically at the level of the P2 component, later than 250 ms after the onset of the second stimulus in the deviant tone pair. These changes suggested enhanced discrimination of deviant from standard tone sequences in widespread cortices, in LLI children after training.
Event-Related Potential Patterns Associated with Hyperarousal in Gulf War Illness Syndrome Groups
Tillman, Gail D.; Calley, Clifford S.; Green, Timothy A.; Buhl, Virginia I.; Biggs, Melanie M.; Spence, Jeffrey S.; Briggs, Richard W.; Haley, Robert W.; Hart, John; Kraut, Michael A.
2012-01-01
An exaggerated response to emotional stimuli is one of several symptoms widely reported by veterans of the 1991 Persian Gulf War. Many have attributed these symptoms to post-war stress; others have attributed the symptoms to deployment-related exposures and associated damage to cholinergic, dopaminergic, and white matter systems. We collected event-related potential (ERP) data from 20 veterans meeting Haley criteria for Gulf War Syndromes 1–3 and from 8 matched Gulf War veteran controls, who were deployed but not symptomatic, while they performed an auditory three-condition oddball task with gunshot and lion roar sounds as the distractor stimuli. Reports of hyperarousal from the ill veterans were significantly greater than those from the control veterans; different ERP profiles emerged to account for their hyperarousability. Syndromes 2 and 3, who have previously shown brainstem abnormalities, show significantly stronger auditory P1 amplitudes, purported to indicate compromised cholinergic inhibitory gating in the reticular activating system. Syndromes 1 and 2, who have previously shown basal ganglia dysfunction, show significantly weaker P3a response to distractor stimuli, purported to indicate dysfunction of the dopaminergic contribution to their ability to inhibit distraction by irrelevant stimuli. All three syndrome groups showed an attenuated P3b to target stimuli, which could be secondary to both cholinergic and dopaminergic contributions or disruption of white matter integrity. PMID:22691951
Randolph, John J; Randolph, Jennifer S; Wishart, Heather A
2017-02-01
Individuals with multiple sclerosis (MS) often report cognitive dysfunction, although neuropsychological evaluation findings may not correlate with subjective concerns. One factor that may explain this lack of correspondence is the controlled testing environment, which differs from busier settings where cognitive lapses are noted to occur. This study used a novel environmental manipulation to determine whether individuals with MS who report cognitive dysfunction are more vulnerable to the effects of auditory distraction during neuropsychological testing. Twenty-four individuals with clinically definite MS or clinically isolated syndrome were administered a cognitive battery during two counterbalanced auditory conditions: quiet/standard condition, and distraction condition with random office background noise. Participants were divided into high versus low cognitive complaint groups using a median split analysis of Perceived Deficits Questionnaire responses. Participants with more cognitive complaints showed a decrement in performance on the oral Symbol Digit Modalities Test during the distraction condition while those with fewer cognitive complaints demonstrated stable performance across conditions. These findings remained significant after controlling for education, premorbid intellect, fatigue, and depressed mood. These results suggest that individuals with MS with more cognitive complaints are vulnerable to environmental distraction, particularly regarding processing speed. Incorporating random environmental noise or other distraction conditions during selected measures may enhance the ecological validity of neuropsychological evaluation results in MS. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Visual-auditory integration during speech imitation in autism.
Williams, Justin H G; Massaro, Dominic W; Peel, Natalie J; Bosseler, Alexis; Suddendorf, Thomas
2004-01-01
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training.
Sensorimotor adaptation of speech in Parkinson's disease.
Mollaei, Fatemeh; Shiller, Douglas M; Gracco, Vincent L
2013-10-01
The basal ganglia are involved in establishing motor plans for a wide range of behaviors. Parkinson's disease (PD) is a manifestation of basal ganglia dysfunction associated with a deficit in sensorimotor integration and difficulty in acquiring new motor sequences, thereby affecting motor learning. Previous studies of sensorimotor integration and sensorimotor adaptation in PD have focused on limb movements using visual and force-field alterations. Here, we report the results from a sensorimotor adaptation experiment investigating the ability of PD patients to make speech motor adjustments to a constant and predictable auditory feedback manipulation. Participants produced speech while their auditory feedback was altered and maintained in a manner consistent with a change in tongue position. The degree of adaptation was associated with the severity of motor symptoms. The patients with PD exhibited adaptation to the induced sensory error; however, the degree of adaptation was reduced compared with healthy, age-matched control participants. The reduced capacity to adapt to a change in auditory feedback is consistent with reduced gain in the sensorimotor system for speech and with previous studies demonstrating limitations in the adaptation of limb movements after changes in visual feedback among patients with PD. © 2013 Movement Disorder Society.
Mismatch Negativity (MMN) as an Index of Cognitive Dysfunction
Näätänen, Risto; Sussman, Elyse S.; Salisbury, Dean; Shafer, Valerie L.
2014-01-01
Cognition is often affected in a variety of neuropsychiatric, neurological, and neurodevelopmental disorders. The neural discriminative response, reflected in mismatch negativity (MMN) and its magnetoencephalographic equivalent (MMNm), has been used as a tool to study a variety of disorders involving auditory cognition. MMN/MMNm is an involuntary brain response to auditory change or, more generally, to pattern regularity violation. For a number of disorders, MMN/MMNm amplitude to sound deviance has been shown to be attenuated or the peak-latency of the component prolonged compared to controls. This general finding suggests that while not serving as a specific marker to any particular disorder, MMN may be useful for understanding factors of cognition in various disorders, and has potential to serve as an indicator of risk. This review presents a brief history of the MMN, followed by a description of how MMN has been used to index auditory processing capability in a range of neuropsychiatric, neurological, and neurodevelopmental disorders. Finally, we suggest future directions for research to further enhance our understanding of the neural substrate of deviance detection that could lead to improvements in the use of MMN as a clinical tool. PMID:24838819
Aitkin, L M; Nelson, J E
1989-01-01
Two specialized features are described in the auditory system of Acrobates pygmaeus, a small gliding marsupial. Firstly, the ear canal includes a transverse disk of bone that partly occludes the canal near the eardrum. The resultant narrow-necked chamber above the eardrum appears to attenuate sound across a broad frequency range, except at 27-29 kHz at which a net gain of sound pressure occurs. Secondly, the lateral medulla is hypertrophied at the level of the cochlear nucleus, forming a massive lateral lobe comprised of multipolar cells and granule cells. This lobe has connections with the auditory nerve and the cerebellum. Speculations are advanced about the functions of these structures in gliding behaviour and predator avoidance.
Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.
Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R
1999-04-06
Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.
Listening to Filtered Music as a Treatment Option for Tinnitus: A Review
Wilson, E. Courtenay; Schlaug, Gottfried; Pantev, Christo
2010-01-01
TINNITUS IS THE PERCEPTION OF A SOUND IN THE absence of an external acoustic stimulus and it affects roughly 10-15% of the population. This review will discuss the different types of tinnitus and the current research on the underlying neural substrates of subjective tinnitus. Specific focus will be paid to the plasticity of the auditory cortex, the inputs from non-auditory centers in the central nervous system and how these are affected by tinnitus. We also will discuss several therapies that utilize music as a treatment for tinnitus and highlight a novel method that filters out the tinnitus frequency from the music, leveraging the plasticity in the auditory cortex as a means of reducing the impact of tinnitus. PMID:21170296
Zenner, Hans P; Pfister, Markus; Birbaumer, Niels
2006-12-01
Acquired centralized tinnitus (ACT) is the most frequent form of chronic tinnitus. The proposed ACT sensitization (ACTS) assumes a peripheral initiation of tinnitus whereby sensitizing signals from the auditory system establish new neuronal connections in the brain. Consequently, permanent neurophysiological malfunction within the information-processing modules results. Successful treatment has to target these malfunctioning information processing. We present in this study the neurophysiological and psychophysiological aspects of a recently suggested neurophysiological model, which may explain the symptoms caused by central cognitive tinnitus sensitization. Although conditioned reflexes, as a causal agent of chronic tinnitus, respond to extinction procedures, sensitization may initiate a vicious circle of overexcitation of the auditory system, resisting extinction and habituation. We used the literature database as indicated under "References" covering English and German works. For the ACTS model we extracted neurophysiological hypotheses of the auditory stimulus processing and the neuronal connections of the central auditory system with other brain regions to explain the malfunctions of auditory information processing. The model does not assume information-processing changes specific for tinnitus but treats the processing of tinnitus signals comparable with the processing of other external stimuli. The model uses the extensive knowledge available on sensitization of perception and memory processes and highlights the similarities of tinnitus with central neuropathic pain. Quality, validity, and comparability of the extracted data were evaluated by peer reviewing. Statistical techniques were not used. According to the tinnitus sensitization model, a tinnitus signal originates (as a type I-IV tinnitus) in the cochlea. In the brain, concerned with perception and cognition, the 1) conditioned associations, as postulated by the tinnitus model of Jastreboff, and the 2) unconditioned sensitized stimulus responses, as postulated in the present ACTS model, are actively connected with and attributed to the tinnitus signal. Attention to the tinnitus constitutes a typical undesired sensitized response. Some of the tinnitus-associated attributes may be called essential, unconditioned sensitization attributes. By a process called facilitation, the tinnitus' essential attributes are suggested to activate the tinnitus response. The result is an undesired increase in responsivity, such as an increase in attentional focus to the eliciting tinnitus stimulus. The mechanisms underlying sensitization are known as a specific nonassociative learning process producing a structural fixation of long-term facilitation at the synaptic level. This sensitization model may be important for the development of a sensitization-specific treatment if extinction procedures alone do not lead to satisfactory outcome. Inasmuch as this model considers sensitization as a nonassociative learning process based on cortical plasticity, it is reasonable to assume that this learning process can be altered by counteracting learning procedures. These counteracting learning procedures may consist of tinnitus-specific cognitive and behavioral procedures.
Peripheral Distribution of Thrombus Does Not Affect Outcomes After Surgical Pulmonary Embolectomy.
Pasrija, Chetan; Shah, Aakash; George, Praveen; Mohammed, Isa; Brigante, Francis A; Ghoreishi, Mehrdad; Jeudy, Jean; Taylor, Bradley S; Gammie, James S; Griffith, Bartley P; Kon, Zachary N
2018-04-04
Thrombus located distal to the main or primary pulmonary arteries has been previously viewed as a relative contraindication to surgical pulmonary embolectomy. We compared outcomes for surgical pulmonary embolectomy for submassive and massive pulmonary embolism (PE) in patients with central versus peripheral thrombus burden. All consecutive patients (2011-2016) undergoing surgical pulmonary embolectomy at a single center were retrospectively reviewed. Based on computed tomographic angiography of each patient, central PE was defined as any thrombus originating within the lateral pericardial borders (main or right/left pulmonary arteries). Peripheral PE was defined as thrombus exclusively beyond the lateral pericardial borders, involving the lobar pulmonary arteries or distal. The primary outcome was in-hospital and 90-day survival. 70 patients were identified: 52 (74%) with central PE and 18 (26%) with peripheral PE. Preoperative vital signs and right ventricular dysfunction were similar between the two groups. Compared to the central PE cohort, operative time was significantly longer in the peripheral PE group (191 vs. 210 minutes, p<0.005)). Median right ventricular dysfunction decreased from moderate dysfunction preoperatively to no dysfunction at discharge in both groups. Overall 90-day survival was 94%, with 100% survival in patients with submassive PE in both cohorts. This single center experience demonstrates excellent overall outcomes for surgical pulmonary embolectomy with resolution of right ventricular dysfunction, and comparable morbidity and mortality for central and peripheral PE. In an experienced center and when physiologically warranted, surgical pulmonary embolectomy for peripheral distribution of thrombus is both technically feasible and effective. Copyright © 2018. Published by Elsevier Inc.
Lacerda, Clara Fonseca; Silva, Luciana Oliveira e; de Tavares Canto, Roberto Sérgio; Cheik, Nadia Carla
2012-01-01
Summary Introduction: The aging process provokes structural modifications and functional to it greets, compromising the postural control and central processing. Studies have boarded the necessity to identify to the harmful factors of risk to aged the auditory health and security in stricken aged by auditory deficits and with alterations of balance. Objective: To evaluate the effect of auditory prosthesis in the quality of life, the balance and the fear of fall in aged with bilateral auditory loss. Method: Carried through clinical and experimental study with 56 aged ones with sensorineural auditory loss, submitted to the use of auditory prosthesis of individual sonorous amplification (AASI). The aged ones had answered to the questionnaires of quality of life Short Form Health Survey (SF-36), Falls Efficacy International Scale- (FES-I) and the test of Berg Balance Scale (BBS). After 4 months, the aged ones that they adapted to the use of the AASI had been reevaluated. Results: It had 50% of adaptation of the aged ones to the AASI. It was observed that the masculine sex had greater difficulty in adapting to the auditory device and that the variable age, degree of loss, presence of humming and vertigo had not intervened with the adaptation to auditory prosthesis. It had improvement of the quality of life in the dominance of the State General Health (EGS) and Functional Capacity (CF) and of the humming, as well as the increase of the auto-confidence after adaptation of auditory prosthesis. Conclusion: The use of auditory prosthesis provided the improvement of the domains of the quality of life, what it reflected consequently in one better auto-confidence and in the long run in the reduction of the fear of fall in aged with sensorineural auditory loss. PMID:25991930
Multisensory and Modality-Specific Influences on Adaptation to Optical Prisms
Calzolari, Elena; Albini, Federica; Bolognini, Nadia; Vallar, Giuseppe
2017-01-01
Visuo-motor adaptation to optical prisms displacing the visual scene (prism adaptation, PA) is a method used for investigating visuo-motor plasticity in healthy individuals and, in clinical settings, for the rehabilitation of unilateral spatial neglect. In the standard paradigm, the adaptation phase involves repeated pointings to visual targets, while wearing optical prisms displacing the visual scene laterally. Here we explored differences in PA, and its aftereffects (AEs), as related to the sensory modality of the target. Visual, auditory, and multisensory – audio-visual – targets in the adaptation phase were used, while participants wore prisms displacing the visual field rightward by 10°. Proprioceptive, visual, visual-proprioceptive, auditory-proprioceptive straight-ahead shifts were measured. Pointing to auditory and to audio-visual targets in the adaptation phase produces proprioceptive, visual-proprioceptive, and auditory-proprioceptive AEs, as the typical visual targets did. This finding reveals that cross-modal plasticity effects involve both the auditory and the visual modality, and their interactions (Experiment 1). Even a shortened PA phase, requiring only 24 pointings to visual and audio-visual targets (Experiment 2), is sufficient to bring about AEs, as compared to the standard 92-pointings procedure. Finally, pointings to auditory targets cause AEs, although PA with a reduced number of pointings (24) to auditory targets brings about smaller AEs, as compared to the 92-pointings procedure (Experiment 3). Together, results from the three experiments extend to the auditory modality the sensorimotor plasticity underlying the typical AEs produced by PA to visual targets. Importantly, PA to auditory targets appears characterized by less accurate pointings and error correction, suggesting that the auditory component of the PA process may be less central to the building up of the AEs, than the sensorimotor pointing activity per se. These findings highlight both the effectiveness of a reduced number of pointings for bringing about AEs, and the possibility of inducing PA with auditory targets, which may be used as a compensatory route in patients with visual deficits. PMID:29213233
Dias, Adriano; Cordeiro, Ricardo
2007-07-01
Noise is the most frequent type of occupational exposure and can lead to both auditory and extra-auditory dysfunction as well as increasing the risk of work accidents. The purpose of this study was to estimate the attributable fraction of work accidents related to occupational noise exposure in a medium-sized city in Southeast Brazil. In this hospital-based case-control study, including 600 cases and 822 controls, the odds ratio of work accidents (controlled for several covariables) was obtained classifying occupational noise exposure into four levels and determining the prevalence at each level. Based on these data, the calculated attributable fraction was 0.3041 (95%CI: 0.2341-0.3676), i.e., 30% of work accidents in the study area were statistically associated with occupational noise exposure. The authors discuss the causes of this association and the implications for the prevention of work accidents.
[Functional anatomy of the cochlear nerve and the central auditory system].
Simon, E; Perrot, X; Mertens, P
2009-04-01
The auditory pathways are a system of afferent fibers (through the cochlear nerve) and efferent fibers (through the vestibular nerve), which are not limited to a simple information transmitting system but create a veritable integration of the sound stimulus at the different levels, by analyzing its three fundamental elements: frequency (pitch), intensity, and spatial localization of the sound source. From the cochlea to the primary auditory cortex, the auditory fibers are organized anatomically in relation to the characteristic frequency of the sound signal that they transmit (tonotopy). Coding the intensity of the sound signal is based on temporal recruitment (the number of action potentials) and spatial recruitment (the number of inner hair cells recruited near the cell of the frequency that is characteristic of the stimulus). Because of binaural hearing, commissural pathways at each level of the auditory system and integration of the phase shift and the difference in intensity between signals coming from both ears, spatial localization of the sound source is possible. Finally, through the efferent fibers in the vestibular nerve, higher centers exercise control over the activity of the cochlea and adjust the peripheral hearing organ to external sound conditions, thus protecting the auditory system or increasing sensitivity by the attention given to the signal.
Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng
2017-07-07
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
NASA Astrophysics Data System (ADS)
Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.
2015-04-01
Objective. The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach. We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results. All eight stimulated AC subregions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance. We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders.
40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors.
Sivarao, Digavalli V; Chen, Ping; Senapati, Arun; Yang, Yili; Fernandes, Alda; Benitex, Yulia; Whiterock, Valerie; Li, Yu-Wen; Ahlijanian, Michael K
2016-08-01
Schizophrenia patients exhibit dysfunctional gamma oscillations in response to simple auditory stimuli or more complex cognitive tasks, a phenomenon explained by reduced NMDA transmission within inhibitory/excitatory cortical networks. Indeed, a simple steady-state auditory click stimulation paradigm at gamma frequency (~40 Hz) has been reproducibly shown to reduce entrainment as measured by electroencephalography (EEG) in patients. However, some investigators have reported increased phase locking factor (PLF) and power in response to 40 Hz auditory stimulus in patients. Interestingly, preclinical literature also reflects this contradiction. We investigated whether a graded deficiency in NMDA transmission can account for such disparate findings by administering subanesthetic ketamine (1-30 mg/kg, i.v.) or vehicle to conscious rats (n=12) and testing their EEG entrainment to 40 Hz click stimuli at various time points (~7-62 min after treatment). In separate cohorts, we examined in vivo NMDA channel occupancy and tissue exposure to contextualize ketamine effects. We report a robust inverse relationship between PLF and NMDA occupancy 7 min after dosing. Moreover, ketamine could produce inhibition or disinhibition of the 40 Hz response in a temporally dynamic manner. These results provide for the first time empirical data to understand how cortical NMDA transmission deficit may lead to opposite modulation of the auditory steady-state response (ASSR). Importantly, our findings posit that 40 Hz ASSR is a pharmacodynamic biomarker for cortical NMDA function that is also robustly translatable. Besides schizophrenia, such a functional biomarker may be of value to neuropsychiatric disorders like bipolar and autism spectrum where 40 Hz ASSR deficits have been documented.
Martí-Bonmatí, Luis; Lull, Juan José; García-Martí, Gracián; Aguilar, Eduardo J; Moratal-Pérez, David; Poyatos, Cecilio; Robles, Montserrat; Sanjuán, Julio
2007-08-01
To prospectively evaluate if functional magnetic resonance (MR) imaging abnormalities associated with auditory emotional stimuli coexist with focal brain reductions in schizophrenic patients with chronic auditory hallucinations. Institutional review board approval was obtained and all participants gave written informed consent. Twenty-one right-handed male patients with schizophrenia and persistent hallucinations (started to hear hallucinations at a mean age of 23 years +/- 10, with 15 years +/- 8 of mean illness duration) and 10 healthy paired participants (same ethnic group [white], age, and education level [secondary school]) were studied. Functional echo-planar T2*-weighted (after both emotional and neutral auditory stimulation) and morphometric three-dimensional gradient-recalled echo T1-weighted MR images were analyzed using Statistical Parametric Mapping (SPM2) software. Brain activation images were extracted by subtracting those with emotional from nonemotional words. Anatomic differences were explored by optimized voxel-based morphometry. The functional and morphometric MR images were overlaid to depict voxels statistically reported by both techniques. A coincidence map was generated by multiplying the emotional subtracted functional MR and volume decrement morphometric maps. Statistical analysis used the general linear model, Student t tests, random effects analyses, and analysis of covariance with a correction for multiple comparisons following the false discovery rate method. Large coinciding brain clusters (P < .005) were found in the left and right middle temporal and superior temporal gyri. Smaller coinciding clusters were found in the left posterior and right anterior cingular gyri, left inferior frontal gyrus, and middle occipital gyrus. The middle and superior temporal and the cingular gyri are closely related to the abnormal neural network involved in the auditory emotional dysfunction seen in schizophrenic patients.
22q11.2 Deletion Syndrome Is Associated With Impaired Auditory Steady-State Gamma Response
Pellegrino, Giovanni; Birknow, Michelle Rosgaard; Kjær, Trine Nørgaard; Baaré, William Frans Christiaan; Didriksen, Michael; Olsen, Line; Werge, Thomas; Mørup, Morten; Siebner, Hartwig Roman
2018-01-01
Abstract Background The 22q11.2 deletion syndrome confers a markedly increased risk for schizophrenia. 22q11.2 deletion carriers without manifest psychotic disorder offer the possibility to identify functional abnormalities that precede clinical onset. Since schizophrenia is associated with a reduced cortical gamma response to auditory stimulation at 40 Hz, we hypothesized that the 40 Hz auditory steady-state response (ASSR) may be attenuated in nonpsychotic individuals with a 22q11.2 deletion. Methods Eighteen young nonpsychotic 22q11.2 deletion carriers and a control group of 27 noncarriers with comparable age range (12–25 years) and sex ratio underwent 128-channel EEG. We recorded the cortical ASSR to a 40 Hz train of clicks, given either at a regular inter-stimulus interval of 25 ms or at irregular intervals jittered between 11 and 37 ms. Results Healthy noncarriers expressed a stable ASSR to regular but not in the irregular 40 Hz click stimulation. Both gamma power and inter-trial phase coherence of the ASSR were markedly reduced in the 22q11.2 deletion group. The ability to phase lock cortical gamma activity to regular auditory 40 Hz stimulation correlated with the individual expression of negative symptoms in deletion carriers (ρ = −0.487, P = .041). Conclusions Nonpsychotic 22q11.2 deletion carriers lack efficient phase locking of evoked gamma activity to regular 40 Hz auditory stimulation. This abnormality indicates a dysfunction of fast intracortical oscillatory processing in the gamma-band. Since ASSR was attenuated in nonpsychotic deletion carriers, ASSR deficiency may constitute a premorbid risk marker of schizophrenia. PMID:28521049
What Are Learning Disabilities?
... Dysgraphia. People with dysgraphia have problems with their handwriting. They may have problems forming letters, writing within ... disorder have trouble saying what they want to say correctly and consistently. 10 Central auditory processing disorder. ...
Central Auditory Processing of Temporal and Spectral-Variance Cues in Cochlear Implant Listeners
Pham, Carol Q.; Bremen, Peter; Shen, Weidong; Yang, Shi-Ming; Middlebrooks, John C.; Zeng, Fan-Gang; Mc Laughlin, Myles
2015-01-01
Cochlear implant (CI) listeners have difficulty understanding speech in complex listening environments. This deficit is thought to be largely due to peripheral encoding problems arising from current spread, which results in wide peripheral filters. In normal hearing (NH) listeners, central processing contributes to segregation of speech from competing sounds. We tested the hypothesis that basic central processing abilities are retained in post-lingually deaf CI listeners, but processing is hampered by degraded input from the periphery. In eight CI listeners, we measured auditory nerve compound action potentials to characterize peripheral filters. Then, we measured psychophysical detection thresholds in the presence of multi-electrode maskers placed either inside (peripheral masking) or outside (central masking) the peripheral filter. This was intended to distinguish peripheral from central contributions to signal detection. Introduction of temporal asynchrony between the signal and masker improved signal detection in both peripheral and central masking conditions for all CI listeners. Randomly varying components of the masker created spectral-variance cues, which seemed to benefit only two out of eight CI listeners. Contrastingly, the spectral-variance cues improved signal detection in all five NH listeners who listened to our CI simulation. Together these results indicate that widened peripheral filters significantly hamper central processing of spectral-variance cues but not of temporal cues in post-lingually deaf CI listeners. As indicated by two CI listeners in our study, however, post-lingually deaf CI listeners may retain some central processing abilities similar to NH listeners. PMID:26176553
Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly
Appler, Jessica M.; Goodrich, Lisa V.
2011-01-01
Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain. PMID:21232575
Hsiao, Chun-Jen; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wu, Chung-Hsin; Jen, Philip Hung-Sun
2016-08-17
Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.
Yi, Bin; Wu, Cong; Shi, Runjie; Han, Kun; Sheng, Haibin; Li, Bei; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao
2018-01-01
Hypothesis: We investigated whether salicylate induces tinnitus through alteration of the expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, tyrosine kinase receptor B (TrkB), cAMP-responsive element-binding protein (CREB), and phosphorylated CREB (p-CREB) in the auditory cortex (AC). Background: Salicylate medication is frequently used for long-term treatment in clinical settings, but it may cause reversible tinnitus. Salicylate-induced tinnitus is associated with changes related to central auditory neuroplasticity. Our previous studies revealed enhanced neural activity and ultrastructural synaptic changes in the central auditory system after long-term salicylate administration. However, the underlying mechanisms remained unclear. Methods: Salicylate-induced tinnitus-like behavior in rats was confirmed using gap prepulse inhibition of acoustic startle and prepulse inhibition testing, followed by comparison of the expression levels of BDNF, proBDNF, TrkB, CREB, and p-CREB. Synaptic ultrastructure was observed under a transmission electron microscope. Results: BDNF and p-CREB were upregulated along with ultrastructural changes at the synapses in the AC of rats treated chronically with salicylate (p < 0.05, compared with control group). These changes returned to normal after 14 days of recovery (p > 0.05). Conclusion: Long-term administration of salicylate increased BDNF expression and CREB activation, upregulated synaptic efficacy, and changed synaptic ultrastructure in the AC. There may be a relationship between these factors and the mechanism of tinnitus. PMID:29342042
Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons
Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.
2015-01-01
Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830
Loudness of steady sounds - A new theory
NASA Technical Reports Server (NTRS)
Howes, W. L.
1979-01-01
A new mathematical theory for calculating the loudness of steady sounds from power summation and frequency interaction, based on psychoacoustic and physiological information, assuems that loudness is a subjective measure of the electrical energy transmitted along the auditory nerve to the central nervous system. The auditory system consists of the mechanical part modeled by a bandpass filter with a transfer function dependent on the sound pressure, and the electrical part where the signal is transformed into a half-wave reproduction represented by the electrical power in impulsive discharges transmitted along neurons comprising the auditory nerve. In the electrical part the neurons are distributed among artificial parallel channels with frequency bandwidths equal to 'critical bandwidths for loudness', within which loudness is constant for constant sound pressure. The total energy transmitted to the central nervous system is the sum of the energy transmitted in all channels, and the loudness is proportional to the square root of the total filtered sound energy distributed over all channels. The theory explains many psychoacoustic phenomena such as audible beats resulting from closely spaced tones, interaction of sound stimuli which affect the same neurons affecting loudness, and of individually subliminal sounds becoming audible if they lie within the same critical band.
Putter-Katz, Hanna; Adi-Bensaid, Limor; Feldman, Irit; Hildesheimer, Minka
2008-01-01
Twenty children with central auditory processing disorders [(C)APD] were subjected to a structured intervention program of listening skills in quiet and in noise. Their performance was compared to that of a control group of 10 children with (C)APD with no special treatment. Pretests were conducted in quiet and in degraded listening conditions (speech noise and competing speech). The (C)APD management approach was integrative and included top-down and bottom-up strategies. It focused on environmental modifications, remediation techniques, and compensatory strategies. Training was conducted with monosyllabic and polysyllabic words, sentences and phrases in quiet and in noise. Comparisons of pre- and post-management measures indicated increase in speech recognition performance in background noise and competing speech for the treatment group. This improvement was exhibited for both ears. A significant difference between ears was found with the left ear showing improvement in both the short and the long versions of competing sentence tests and the right ear performing better in the long competing sentences only following intervention. No changes were documented for the control group. These findings add to a growing body of literature suggesting that interactive auditory training can improve listening skills.
Long lasting effects of chronic heavy cannabis abuse.
Nestoros, Joannis N; Vakonaki, Elena; Tzatzarakis, Manolis N; Alegakis, Athanasios; Skondras, Markos D; Tsatsakis, Aristidis M
2017-06-01
The purpose of this study was to evaluate the extent of short-term memory impairment and schizophrenia-like symptoms in heavy and systematic cannabis users and the association between the severity of abuse and the longevity of its persistent symptoms after refraining from such use. A complete psychiatric examination and a psychometric evaluation were performed in 48 solely cannabis users. Additionally, head hair samples were analyzed and the detected cannabinoids levels were correlated with the psychometric findings. A total of 33.3% (n = 16) of the total examined cannabis users were currently imprisoned. The years of abuse ranged from 1 to 35 years and the median daily dose was 5.84.4 gr and 4.84.0 gr for prisoners (n = 16) and non prisoners (n = 32), respectively. A total of 39.6% of the users experienced hallucinations (mostly auditory), 54.2% experienced delusions (mostly ideas of reference and persecution), 85.4% had organic brain dysfunction in a test addressing visual-motor functioning and visual perception skills, and all users (100%) were found to have organic brain dysfunction in a test of visual memory immediate recall. The cannabinoid metabolite levels in the hair samples were consistent with the reported history of substance abuse and total grams of consumption for the participants below 35 years old (p < .001). Statistically elevated cannabinoids levels were observed in users with auditory hallucinations compared to users without any hallucinations (p = .019). The existence of hallucinations, delusions, and organic brain dysfunction in heavy cannabis users seems to be associated with cannabinoid levels in hair. The continuation of persistent symptoms 3 months after the discontinuation of cannabis abuse, was a remarkable finding. We provide evidence that chronic and heavy cannabis abuse results in long-lasting brain dysfunction in all users and in long-lasting schizophrenia-like psychotic symptoms in more than half of all users. These findings suggest a reevaluation of the current classification of cannabis as a "soft narcotic" which erroneously, therefore, is typically considered harmless. (Am J Addict 2017;26:335-342). © 2017 American Academy of Addiction Psychiatry.
Neurophysiologic intraoperative monitoring of the vestibulocochlear nerve.
Simon, Mirela V
2011-12-01
Neurosurgical procedures involving the skull base and structures within can pose a significant risk of damage to the brain stem and cranial nerves. This can have life-threatening consequences and/or result in devastating neurologic deficits. Over the past decade, intraoperative neurophysiology has significantly evolved and currently offers a great tool for live monitoring of the integrity of nervous structures. Thus, dysfunction can be identified early and prompt modification of the surgical management or operating conditions, leads to avoidance of permanent structural damage.Along these lines, the vestibulocochlear nerve (CN VIII) and, to a greater extent, the auditory pathways as they pass through the brain stem are especially at risk during cerebelopontine angle (CPA), posterior/middle fossa, or brain stem surgery. CN VIII can be damaged by several mechanisms, from vascular compromise to mechanical injury by stretch, compression, dissection, and heat injury. Additionally, cochlea itself can be significantly damaged during temporal bone drilling, by noise, mechanical destruction, or infarction, and because of rupture, occlusion, or vasospasm of the internal auditory artery.CN VIII monitoring can be successfully achieved by live recording of the function of one of its parts, the cochlear or auditory nerve (AN), using the brain stem auditory evoked potentials (BAEPs), electrocochleography (ECochG), and compound nerve action potentials (CNAPs) of the cochlear nerve.This is a review of these techniques, their principle, applications, methodology, interpretation of the evoked responses, and their change from baseline, within the context of surgical and anesthesia environments, and finally the appropriate management of these changes.
Neurophysiological Studies of Auditory Verbal Hallucinations
Ford, Judith M.; Dierks, Thomas; Fisher, Derek J.; Herrmann, Christoph S.; Hubl, Daniela; Kindler, Jochen; Koenig, Thomas; Mathalon, Daniel H.; Spencer, Kevin M.; Strik, Werner; van Lutterveld, Remko
2012-01-01
We discuss 3 neurophysiological approaches to study auditory verbal hallucinations (AVH). First, we describe “state” (or symptom capture) studies where periods with and without hallucinations are compared “within” a patient. These studies take 2 forms: passive studies, where brain activity during these states is compared, and probe studies, where brain responses to sounds during these states are compared. EEG (electroencephalography) and MEG (magnetoencephalography) data point to frontal and temporal lobe activity, the latter resulting in competition with external sounds for auditory resources. Second, we discuss “trait” studies where EEG and MEG responses to sounds are recorded from patients who hallucinate and those who do not. They suggest a tendency to hallucinate is associated with competition for auditory processing resources. Third, we discuss studies addressing possible mechanisms of AVH, including spontaneous neural activity, abnormal self-monitoring, and dysfunctional interregional communication. While most studies show differences in EEG and MEG responses between patients and controls, far fewer show symptom relationships. We conclude that efforts to understand the pathophysiology of AVH using EEG and MEG have been hindered by poor anatomical resolution of the EEG and MEG measures, poor assessment of symptoms, poor understanding of the phenomenon, poor models of the phenomenon, decoupling of the symptoms from the neurophysiology due to medications and comorbidites, and the possibility that the schizophrenia diagnosis breeds truer than the symptoms it comprises. These problems are common to studies of other psychiatric symptoms and should be considered when attempting to understand the basic neural mechanisms responsible for them. PMID:22368236
Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne
2015-12-01
In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the AC a trend for an opposite effect could be determined. Unilateral intracochlear electrical stimulation seems to facilitate the homeostasis of the network activity, since it decreases the spontaneous activity that is usually elevated upon deafferentiation. The electrical stimulation per se seems to be responsible for the bilateral changes described above, rather than the particular nature of the electrical stimulation (e.g., rate). The normalization effects of electrical stimulation found in the present study are of particular importance in cochlear implant recipients with single-sided deafness.
Long latency auditory evoked potentials in children with cochlear implants: systematic review.
Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de
2013-11-25
The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.
The central role of recognition in auditory perception: a neurobiological model.
McLachlan, Neil; Wilson, Sarah
2010-01-01
The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior colliculus neurons and regulates the encoding of the echoic trace in the thalamus. Identification involves correlation of sequential spectral slices of the stimulus-driven neural activity with stored representations in association with multimodal memories, verbal lexicons, and contextual information. Identities are then consolidated in auditory short-term memory and bound with attribute information (usually pitch, loudness, and direction) that has been integrated according to the identities' spectral properties. Attention to, or recall of, a particular identity will excite a particular sequence in the identification hierarchies and so lead to modulation of thalamus and inferior colliculus neural spectrotemporal response fields. This operates as an adaptive filter for identities, or their attributes, and explains many puzzling human auditory behaviors, such as the cocktail party effect, selective attention, and continuity illusions.
Meas, Steven J.; Zhang, Chun-Li; Dabdoub, Alain
2018-01-01
Disabling hearing loss affects over 5% of the world’s population and impacts the lives of individuals from all age groups. Within the next three decades, the worldwide incidence of hearing impairment is expected to double. Since a leading cause of hearing loss is the degeneration of primary auditory neurons (PANs), the sensory neurons of the auditory system that receive input from mechanosensory hair cells in the cochlea, it may be possible to restore hearing by regenerating PANs. A direct reprogramming approach can be used to convert the resident spiral ganglion glial cells into induced neurons to restore hearing. This review summarizes recent advances in reprogramming glia in the CNS to suggest future steps for regenerating the peripheral auditory system. In the coming years, direct reprogramming of spiral ganglion glial cells has the potential to become one of the leading biological strategies to treat hearing impairment. PMID:29593497
Mulders, W.H.A.M.; Ding, D.; Salvi, R.; Robertson, D.
2011-01-01
Acoustic trauma caused by exposure to a very loud sound increases spontaneous activity in central auditory structures such as the inferior colliculus. This hyperactivity has been suggested as a neural substrate for tinnitus, a phantom hearing sensation. In previous studies we have described a tentative link between the frequency region of hearing impairment and the corresponding tonotopic regions in the inferior colliculus showing hyperactivity. In this study we further investigated the relationship between cochlear compound action potential threshold loss, cochlear outer and inner hair cell loss and central hyperactivity in inferior colliculus of guinea pigs. Two weeks after a 10 kHz pure tone acoustic trauma, a tight relationship was demonstrated between the frequency region of compound action potential threshold loss and frequency regions in the inferior colliculus showing hyperactivity. Extending the duration of the acoustic trauma from 1 to 2 h did not result in significant increases in final cochlear threshold loss, but did result in a further increase of spontaneous firing rates in the inferior colliculus. Interestingly, hair cell loss was not present in the frequency regions where elevated cochlear thresholds and central hyperactivity were measured, suggesting that subtle changes in hair cell or primary afferent neural function are sufficient for central hyperactivity to be triggered and maintained. PMID:21491427
Lee, Lennard YW; Akhtar, Mohammed Majid; Kirresh, Othman; Gibson, Terence
2012-01-01
Cogan's syndrome or non-syphilitic interstitial keratitis with vestibule-auditory dysfunction is a serious and under-recognised complication of rheumatoid arthritis. It is an autoimmune condition characterised by inflammatory infiltrates on the cornea and extensive vestibulocochlear damage. If left untreated, patients progress to develop profound hearing loss. We present a case that was incorrectly diagnosed and treated as conjunctivitis by several emergency departments prior to being correctly recognised as Cogan's syndrome. PMID:23242087
Seid, Awole; Gerensea, Hadgu; Tarko, Shambel; Zenebe, Yosef; Mezemir, Rahel
2017-03-15
The prevalence of erectile dysfunction among diabetic men varies between 35-90%. Although erectile dysfunction is widespread among men with diabetes, the condition often remains undiagnosed and demands appropriate assessment and prompt treatment. Erectile dysfunction can affect all aspects of a patient's life including physical, emotional, social, sexual, and relationships. The main aim of this study is to determine the prevalence and determinants of erectile dysfunction among diabetic patients attending hospitals in the Central and Northwest zone of Tigray, Ethiopia. A hospital based cross-sectional study was conducted on 249 male diabetic patients attending five hospitals in the Central and Northwestern Zone of Tigray, Ethiopia using systematic random sampling. The data was collected from January 1 - February 30, 2016 and was entered and analyzed using SPSS version 20. Correlation and multivariate logistic regression was employed to test associations between independent and outcome variables. The mean age of study participants was 43.39 years and the mean duration of diabetes diagnosis was 6.22 years. The overall prevalence of erectile dysfunction was 69.9%, with 32.9% suffering from mild, 31.7% moderate, and 5.2% severe erectile dysfunction. Multivariate logistic regression revealed that erective dysfunction was significantly predicted by old age (Adjusted Odds Ratio [AOR] =15.013, CI:3.212-70.166), longer duration of diabetes (AOR = 3.77, CI:1.291-11.051), and lower monthly income (AOR = 0.285, CI:0.132-0.615). No association was found with body mass index, co-morbidity, glycemic control, and alcohol consumption. The prevalence of erective dysfunction in this study population was very high. Age, income, and duration of diabetes were the independent predictors of erectile dysfunction. Nearly all of the patients in the sample (97%) had not been screened or treated for erectile dysfunction. Assessment and management of erectile dysfunction in the diabetic clinic should be part of routine medical care during follow-up visits with diabetic patients. Healthcare providers should put an emphasis on screening and treating older patients and those who had a diabetes diagnosis for a longer duration.
Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study.
Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong
2015-01-01
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190-210 ms, for 1 kHz stimuli from 170-200 ms, for 2.5 kHz stimuli from 140-200 ms, 5 kHz stimuli from 100-200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300-340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.
Non-visual spatial tasks reveal increased interactions with stance postural control.
Woollacott, Marjorie; Vander Velde, Timothy
2008-05-07
The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.
Visser, Eelke; Zwiers, Marcel P.; Kan, Cornelis C.; Hoekstra, Liesbeth; van Opstal, A. John; Buitelaar, Jan K.
2013-01-01
Background Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. Methods We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Results Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. Limitations The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Conclusion Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs. PMID:24148845
Chen, Xubo; Zhao, Xueyan; Cai, Hua; Sun, Haiying; Hu, Yujuan; Huang, Xiang; Kong, Wen; Kong, Weijia
2017-08-01
Age-related dysfunction of the central auditory system, known as central presbycusis, is characterized by defects in speech perception and sound localization. It is important to determine the pathogenesis of central presbycusis in order to explore a feasible and effective intervention method. Recent work has provided fascinating insight into the beneficial function of H 2 S on oxidative stress and stress-related disease. In this study, we investigated the pathogenesis of central presbycusis and tried to explore the mechanism of H 2 S action on different aspects of aging by utilizing a mimetic aging rat and senescent cellular model. Our results indicate that NaHS decreased oxidative stress and apoptosis levels in an aging model via CaMKKβ and PI3K/AKT signaling pathways. Moreover, we found that NaHS restored the decreased activity of antioxidants such as GSH, SOD and CAT in the aging model in vivo and in vitro by regulating CaMKKβ and PI3K/AKT. Mitochondria function was preserved by NaHS, as indicated by the following: DNA POLG and OGG-1, the base excision repair enzymes in mitochondrial, were upregulated; OXPHOS activity was downregulated; mitochondrial membrane potential was restored; ATP production was increased; and mtDNA damage, indicated by the common deletion (CD), declined. These effects were also achieved by activating CaMKKβ/AMPK and PI3K/AKT signaling pathways. Lastly, protein homeostasis, indicated by HSP90 alpha, was strengthened by NaHS via CaMKKβ and PI3K/AKT. Our findings demonstrate that the ability to resist oxidative stress and mitochondria function are both decreased as aging developed; however, NaHS, a novel free radical scavenger and mitochondrial protective agent, precludes the process of oxidative damage by activating CaMKKβ and PI3K/AKT. This study might provide a therapeutic target for aging and age-related disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Assessment of cortical auditory evoked potentials in children with specific language impairment.
Włodarczyk, Elżbieta; Szkiełkowska, Agata; Pilka, Adam; Skarżyński, Henryk
2018-02-28
The proper course of speech development heavily influences the cognitive and personal development of children. It is a condition for achieving preschool and school successes - it facilitates socializing and expressing feelings and needs. Impairment of language and its development in children represents a major diagnostic and therapeutic challenge for physicians and therapists. Early diagnosis of coexisting deficits and starting the therapy influence the therapeutic success. One of the basic diagnostic tests for children suffering from specific language impairment (SLI) is audiometry, thus far referred to as a hearing test. Auditory processing is just as important as a proper hearing threshold. Therefore, diagnosis of central auditory disorder may be a valuable supplementation of diagnosis of language impairment. Early diagnosis and implementation of appropriate treatment may contribute to an effective language therapy.
The Association between Central Adiposity and Autonomic Dysfunction in Obesity
Fidan-Yaylali, Güzin; Yaylali, Yalin Tolga; Erdogan, Çağdaş; Can, Beray; Senol, Hande; Gedik-Topçu, Bengi; Topsakal, Senay
2016-01-01
Objective To determine the relationship between central adiposity parameters and autonomic nervous system (ANS) dysfunction. Subjects and Methods The study included 114 obese individuals without any cardiovascular risk factors. Weight (in kg), height (in m), and waist circumference (WC; in cm) were measured and body mass index was calculated. Echocardiographic examination was performed to measure left ventricular mass and epicardial fat thickness (EFT). All the participants underwent an exercise test and electrophysiological evaluation using electromyography. Heart rate recovery (HRR) at 1-5 min, R-R interval variation at rest and during hyperventilation, and sympathetic skin response were measured. Pearson's correlation analysis was used. Multiple linear regression analysis was used to identify the factors associated with autonomic dysfunction. Results The HRR at 1-5 min was negatively correlated with WC and age (WC-HRR1: r = −0.32; WC-HRR2: r = −0.31; WC-HRR3: r = −0.26; WC-HRR4: r = −0.23; WC-HRR5: r = −0.21; age-HRR2: r = −0.32; age-HRR3: r = −0.28; age-HRR4: r = −0.41; age-HRR5: r = −0.42). Age was the only independent predictor of reduced HRR at 1-5 min. In addition, WC predicted a reduced HRR at 3 min. There were no significant associations between central obesity and electrophysiological parameters. EFT was not associated with ANS dysfunction. Conclusion In this study, central adiposity and aging were associated with ANS dysfunction in obese individuals. The WC could be a marker of ANS dysfunction in obese individuals without any cardiovascular risk factors. The HRR assessment at a later decay phase could be more valuable for evaluating ANS function than during early recovery. PMID:27194294
Discrepant visual speech facilitates covert selective listening in "cocktail party" conditions.
Williams, Jason A
2012-06-01
The presence of congruent visual speech information facilitates the identification of auditory speech, while the addition of incongruent visual speech information often impairs accuracy. This latter arrangement occurs naturally when one is being directly addressed in conversation but listens to a different speaker. Under these conditions, performance may diminish since: (a) one is bereft of the facilitative effects of the corresponding lip motion and (b) one becomes subject to visual distortion by incongruent visual speech; by contrast, speech intelligibility may be improved due to (c) bimodal localization of the central unattended stimulus. Participants were exposed to centrally presented visual and auditory speech while attending to a peripheral speech stream. In some trials, the lip movements of the central visual stimulus matched the unattended speech stream; in others, the lip movements matched the attended peripheral speech. Accuracy for the peripheral stimulus was nearly one standard deviation greater with incongruent visual information, compared to the congruent condition which provided bimodal pattern recognition cues. Likely, the bimodal localization of the central stimulus further differentiated the stimuli and thus facilitated intelligibility. Results are discussed with regard to similar findings in an investigation of the ventriloquist effect, and the relative strength of localization and speech cues in covert listening.
Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.
2008-01-01
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371
Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar
2011-06-01
We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing
Aboitiz, Francisco
2018-01-01
In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication. PMID:29636657
NASA Astrophysics Data System (ADS)
Leek, Marjorie R.; Neff, Donna L.
2004-05-01
Charles Watson's studies of informational masking and the effects of stimulus uncertainty on auditory perception have had a profound impact on auditory research. His series of seminal studies in the mid-1970s on the detection and discrimination of target sounds in sequences of brief tones with uncertain properties addresses the fundamental problem of extracting target signals from background sounds. As conceptualized by Chuck and others, informational masking results from more central (even ``cogneetive'') processes as a consequence of stimulus uncertainty, and can be distinguished from ``energetic'' masking, which primarily arises from the auditory periphery. Informational masking techniques are now in common use to study the detection, discrimination, and recognition of complex sounds, the capacity of auditory memory and aspects of auditory selective attention, the often large effects of training to reduce detrimental effects of uncertainty, and the perceptual segregation of target sounds from irrelevant context sounds. This paper will present an overview of past and current research on informational masking, and show how Chuck's work has been expanded in several directions by other scientists to include the effects of informational masking on speech perception and on perception by listeners with hearing impairment. [Work supported by NIDCD.
Emotional context enhances auditory novelty processing in superior temporal gyrus.
Domínguez-Borràs, Judith; Trautmann, Sina-Alexa; Erhard, Peter; Fehr, Thorsten; Herrmann, Manfred; Escera, Carles
2009-07-01
Visualizing emotionally loaded pictures intensifies peripheral reflexes toward sudden auditory stimuli, suggesting that the emotional context may potentiate responses elicited by novel events in the acoustic environment. However, psychophysiological results have reported that attentional resources available to sounds become depleted, as attention allocation to emotional pictures increases. These findings have raised the challenging question of whether an emotional context actually enhances or attenuates auditory novelty processing at a central level in the brain. To solve this issue, we used functional magnetic resonance imaging to first identify brain activations induced by novel sounds (NOV) when participants made a color decision on visual stimuli containing both negative (NEG) and neutral (NEU) facial expressions. We then measured modulation of these auditory responses by the emotional load of the task. Contrary to what was assumed, activation induced by NOV in superior temporal gyrus (STG) was enhanced when subjects responded to faces with a NEG emotional expression compared with NEU ones. Accordingly, NOV yielded stronger behavioral disruption on subjects' performance in the NEG context. These results demonstrate that the emotional context modulates the excitability of auditory and possibly multimodal novelty cerebral regions, enhancing acoustic novelty processing in a potentially harming environment.
Arshad, Q; Roberts, R E; Ahmad, H; Lobo, R; Patel, M; Ham, T; Sharp, D J; Seemungal, B M
2017-04-01
We hypothesised that chronic vestibular symptoms (CVS) of imbalance and dizziness post-traumatic head injury (THI) may relate to: (i) the occurrence of multiple simultaneous vestibular diagnoses including both peripheral and central vestibular dysfunction in individual patients increasing the chance of missed diagnoses and suboptimal treatment; (ii) an impaired response to vestibular rehabilitation since the central mechanisms that mediate rehabilitation related brain plasticity may themselves be disrupted. We report the results of a retrospective analysis of both the comprehensive clinical and vestibular laboratory testing of 20 consecutive THI patients with prominent and persisting vestibular symptoms still present at least 6months post THI. Individual THI patients typically had multiple vestibular diagnoses and unique to this group of vestibular patients, often displayed both peripheral and central vestibular dysfunction. Despite expert neuro-otological management, at two years 20% of patients still had persisting vestibular symptoms. In summary, chronic vestibular dysfunction in THI could relate to: (i) the presence of multiple vestibular diagnoses, increasing the risk of 'missed' vestibular diagnoses leading to persisting symptoms; (ii) the impact of brain trauma which may impair brain plasticity mediated repair mechanisms. Apart from alerting physicians to the potential for multiple vestibular diagnoses in THI, future work to identify the specific deficits in brain function mediating poor recovery from post-THI vestibular dysfunction could provide the rationale for developing new therapy for head injury patients whose vestibular symptoms are resistant to treatment. Copyright © 2017. Published by Elsevier B.V.
Ackermann; Mathiak
1999-11-01
Pure word deafness (auditory verbal agnosia) is characterized by an impairment of auditory comprehension, repetition of verbal material and writing to dictation whereas spontaneous speech production and reading largely remain unaffected. Sometimes, this syndrome is preceded by complete deafness (cortical deafness) of varying duration. Perception of vowels and suprasegmental features of verbal utterances (e.g., intonation contours) seems to be less disrupted than the processing of consonants and, therefore, might mediate residual auditory functions. Often, lip reading and/or slowing of speaking rate allow within some limits to compensate for speech comprehension deficits. Apart from a few exceptions, the available reports of pure word deafness documented a bilateral temporal lesion. In these instances, as a rule, identification of nonverbal (environmental) sounds, perception of music, temporal resolution of sequential auditory cues and/or spatial localization of acoustic events were compromised as well. The observed variable constellation of auditory signs and symptoms in central hearing disorders following bilateral temporal disorders, most probably, reflects the multitude of functional maps at the level of the auditory cortices subserving, as documented in a variety of non-human species, the encoding of specific stimulus parameters each. Thus, verbal/nonverbal auditory agnosia may be considered a paradigm of distorted "auditory scene analysis" (Bregman 1990) affecting both primitive and schema-based perceptual processes. It cannot be excluded, however, that disconnection of the Wernicke-area from auditory input (Geschwind 1965) and/or an impairment of suggested "phonetic module" (Liberman 1996) contribute to the observed deficits as well. Conceivably, these latter mechanisms underly the rare cases of pure word deafness following a lesion restricted to the dominant hemisphere. Only few instances of a rather isolated disruption of the discrimination/identification of nonverbal sound sources, in the presence of uncompromised speech comprehension, have been reported so far (nonverbal auditory agnosia). As a rule, unilateral right-sided damage has been found to be the relevant lesion.
Zhang-Hooks, Ying-Xin; Roos, Hannah
2017-01-01
Hearing loss leads to a host of cellular and synaptic changes in auditory brain areas that are thought to give rise to auditory perception deficits such as temporal processing impairments, hyperacusis, and tinnitus. However, little is known about possible changes in synaptic circuit connectivity that may underlie these hearing deficits. Here, we show that mild hearing loss as a result of brief noise exposure leads to a pronounced reorganization of local excitatory and inhibitory circuits in the mouse inferior colliculus. The exact nature of these reorganizations correlated with the presence or absence of the animals' impairments in detecting brief sound gaps, a commonly used behavioral sign for tinnitus in animal models. Mice with gap detection deficits (GDDs) showed a shift in the balance of synaptic excitation and inhibition that was present in both glutamatergic and GABAergic neurons, whereas mice without GDDs showed stable excitation–inhibition balances. Acoustic enrichment (AE) with moderate intensity, pulsed white noise immediately after noise trauma prevented both circuit reorganization and GDDs, raising the possibility of using AE immediately after cochlear damage to prevent or alleviate the emergence of central auditory processing deficits. SIGNIFICANCE STATEMENT Noise overexposure is a major cause of central auditory processing disorders, including tinnitus, yet the changes in synaptic connectivity underlying these disorders remain poorly understood. Here, we find that brief noise overexposure leads to distinct reorganizations of excitatory and inhibitory synaptic inputs onto glutamatergic and GABAergic neurons and that the nature of these reorganizations correlates with animals' impairments in detecting brief sound gaps, which is often considered a sign of tinnitus. Acoustic enrichment immediately after noise trauma prevents circuit reorganizations and gap detection deficits, highlighting the potential for using sound therapy soon after cochlear damage to prevent the development of central processing deficits. PMID:28583912
The vestibulocochlear nerve (VIII).
Benoudiba, F; Toulgoat, F; Sarrazin, J-L
2013-10-01
The vestibulocochlear nerve (8th cranial nerve) is a sensory nerve. It is made up of two nerves, the cochlear, which transmits sound and the vestibular which controls balance. It is an intracranial nerve which runs from the sensory receptors in the internal ear to the brain stem nuclei and finally to the auditory areas: the post-central gyrus and superior temporal auditory cortex. The most common lesions responsible for damage to VIII are vestibular Schwannomas. This report reviews the anatomy and various investigations of the nerve. Copyright © 2013. Published by Elsevier Masson SAS.
Frontal P300 decrement and executive dysfunction in adolescents with conduct problems.
Kim, M S; Kim, J J; Kwon, J S
2001-01-01
This study investigated the cognitive and cerebral function of adolescents with conduct problems by neuropsychological battery (STIM) and event-related potential (ERP). Eighteen adolescents with conduct disorder, and 18 age-matched normal subjects were included. Such cognitive functions as attention, memory, executive function and problem solving were evaluated using subtests of STIM. ERP was measured using an auditory oddball paradigm. The conduct group showed a significantly lower hit rate on the Wisconsin Card Sorting Test (WCST) than the control group. In addition, the conduct group showed reduced P300 amplitude at Fz and Cz, and prolonged P300 latency at Fz, and there was a significant correlation between P300 amplitude and Stroop test performance. These results indicate that adolescents with conduct problems have impairments of executive function and inhibition, and that these impairments are associated with frontal dysfunction.
Tsaneva, L
1993-01-01
The results from the investigation of the threshold of discomfort in 385 operators from firm "Kremikovtsi" are discussed. The most expressed changes are found in operators with increased tonal auditory threshold up to 45 and above 50 dB, in high confidential probability. The observed changes in the threshold of discomfort are classified into 3 groups: 1). Raised tonal auditory threshold (up to 30 dB) without decrease in the threshold of discomfort; 2). Decreased threshold of discomfort (with about 15-20 dB) in raised tonal auditory threshold (up to 45 dB); 3). Decreased threshold of discomfort on the background of raised (above 50 dB) tonal auditory threshold. On 4 figures are represented audiograms, illustrating the state of tonal auditory threshold, the field of hearing and the threshold of discomfort. The field of hearing of the operators from the III and IV groups is narrowed, and in the latter also deformed. The explanation of this pathophysiological phenomenon is related to the increased effect of the sound irritation and the presence of recruitment phenomenon with possible engagement of the central end of the auditory analyser. It is underlined, that the threshold of discomfort is sensitive index for the state of the individual norms of each operator for the speech-sound-noise discomfort.(ABSTRACT TRUNCATED AT 250 WORDS)
Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio
2017-01-01
Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729
Large-Scale Analysis of Auditory Segregation Behavior Crowdsourced via a Smartphone App.
Teki, Sundeep; Kumar, Sukhbinder; Griffiths, Timothy D
2016-01-01
The human auditory system is adept at detecting sound sources of interest from a complex mixture of several other simultaneous sounds. The ability to selectively attend to the speech of one speaker whilst ignoring other speakers and background noise is of vital biological significance-the capacity to make sense of complex 'auditory scenes' is significantly impaired in aging populations as well as those with hearing loss. We investigated this problem by designing a synthetic signal, termed the 'stochastic figure-ground' stimulus that captures essential aspects of complex sounds in the natural environment. Previously, we showed that under controlled laboratory conditions, young listeners sampled from the university subject pool (n = 10) performed very well in detecting targets embedded in the stochastic figure-ground signal. Here, we presented a modified version of this cocktail party paradigm as a 'game' featured in a smartphone app (The Great Brain Experiment) and obtained data from a large population with diverse demographical patterns (n = 5148). Despite differences in paradigms and experimental settings, the observed target-detection performance by users of the app was robust and consistent with our previous results from the psychophysical study. Our results highlight the potential use of smartphone apps in capturing robust large-scale auditory behavioral data from normal healthy volunteers, which can also be extended to study auditory deficits in clinical populations with hearing impairments and central auditory disorders.
On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms
2017-01-01
Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example. PMID:28002080
Pasman, J W; Rotteveel, J J; de Graaf, R; Stegeman, D F; Visco, Y M
1992-12-01
Recent studies on the maturation of auditory brainstem evoked responses (ABRs) present conflicting results, whereas only sparse reports exist with respect to the maturation of middle latency auditory evoked responses (MLRs) and auditory cortical evoked responses (ACRs). The present study reports the effect of preterm birth on the maturation of auditory evoked responses in low risk preterm infants (27-34 weeks conceptional age). The ABRs indicate a consistent trend towards longer latencies for all individual ABR components and towards longer interpeak latencies in preterm infants. The MLR shows longer latencies for early component P0 in preterm infants. The ACRs show a remarkable difference between preterm and term infants. At 40 weeks CA the latencies of ACR components Na and P2 are significantly longer in term infants, whereas at 52 weeks CA the latencies of the same ACR components are shorter in term infants. The results support the hypothesis that retarded myelination of the central auditory pathway is partially responsible for differences found between preterm infants and term infants with respect to late ABR components and early MLR component P0. Furthermore, mild conductive hearing loss in preterm infants may also play its role. A more complex mechanism is implicated to account for the findings noted with respect to MLR component Na and ACR components Na and P2.
Nambu, Isao; Ebisawa, Masashi; Kogure, Masumi; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro
2013-01-01
The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue, auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-performance and loudspeaker-less portable BCI system. PMID:23437338
Auditory Signal Processing in Communication: Perception and Performance of Vocal Sounds
Prather, Jonathan F.
2013-01-01
Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. PMID:23827717
At the interface of sensory and motor dysfunctions and Alzheimer’s Disease
Albers, Mark W.; Gilmore, Grover C.; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A.; Boxer, Adam L.; Buchman, Aron S.; Cruickshanks, Karen J.; Devanand, Davangere P.; Duffy, Charles J.; Gall, Christine M.; Gates, George A.; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T.; Lin, Frank R.; McKee, Ann C.; Morris, John C.; Petersen, Ronald C.; Silbert, Lisa C.; Struble, Robert G.; Trojanowski, John Q.; Verghese, Joe; Wilson, Donald A.; Xu, Shunbin; Zhang, Li I.
2014-01-01
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer’s disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled “Sensory and Motor Dysfunctions in Aging and Alzheimer’s Disease”. The scientific sessions of the workshop focused on age-related and neuropathological changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the CNS are affected by Alzheimer pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. PMID:25022540
Scheperle, Rachel A; Abbas, Paul J
2015-01-01
The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.
Autonomic dysfunction in pediatric patients with headache: migraine versus tension-type headache.
Rabner, Jonathan; Caruso, Alessandra; Zurakowski, David; Lazdowsky, Lori; LeBel, Alyssa
2016-12-01
To examine symptoms indicating central nervous system (CNS) autonomic dysfunction in pediatric patients with migraine and tension-type headache. A retrospective chart review assessed six symptoms (i.e. constipation, insomnia, dizziness, blurry vision, abnormal blood pressure, and cold and clammy palms and soles) indicating central nervous system (CNS) autonomic dysfunction in 231 patients, ages 5-18 years, diagnosed with migraine, tension-type headache (TTH), or Idiopathic Scoliosis (IS). Higher frequencies of "insomnia," "dizziness," and "cold and clammy palms and soles" were found for both migraine and TTH patients compared to the IS control group (P < 0.001). Frequencies of all six symptoms were greater in TTH than migraine patients with "cold and clammy palms and soles" reaching significance (P < 0.001). The need for prospective research investigating autonomic dysfunction in pediatric headache patients is discussed.
Ohara, Nobumasa; Yoneoka, Yuichiro; Seki, Yasuhiro; Akiyama, Katsuhiko; Arita, Masataka; Ohashi, Kazumasa; Suzuki, Kazuo; Takada, Toshinori
2017-08-24
Pituitary tumor apoplexy is a rare clinical syndrome caused by acute hemorrhage or infarction in a preexisting pituitary adenoma. It typically manifests as an acute episode of headache, visual disturbance, mental status changes, cranial nerve palsy, and endocrine pituitary dysfunction. However, not all patients present with classical symptoms, so it is pertinent to appreciate the clinical spectrum of pituitary tumor apoplexy presentation. We report an unusual case of a patient with pituitary tumor apoplexy who presented with periorbital edema associated with hypopituitarism. An 83-year-old Japanese man developed acute anterior hypopituitarism; he showed anorexia, fatigue, lethargy, severe bilateral periorbital edema, and mild cardiac dysfunction in the absence of headache, visual disturbance, altered mental status, and cranial nerve palsy. Magnetic resonance imaging showed a 2.5-cm pituitary tumor containing a mixed pattern of solid and liquid components indicating pituitary tumor apoplexy due to hemorrhage in a preexisting pituitary adenoma. Replacement therapy with oral hydrocortisone and levothyroxine relieved his symptoms of central adrenal insufficiency, central hypothyroidism, periorbital edema, and cardiac dysfunction. Common causes of periorbital edema include infections, inflammation, trauma, allergy, kidney or cardiac dysfunction, and endocrine disorders such as primary hypothyroidism. In the present case, the patient's acute central hypothyroidism was probably involved in the development of both periorbital edema and cardiac dysfunction. The present case highlights the need for physicians to consider periorbital edema as an unusual predominant manifestation of pituitary tumor apoplexy.
Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.
Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora
2018-03-01
Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon
2002-11-30
Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.
Skjönsberg, Asa; Herrlin, Petra; Duan, Maoli; Johnson, Ann-Christin; Ulfendahl, Mats
2005-01-01
A new strain of waltzing guinea pigs arose spontaneously in a guinea pig breeding facility in Germany in 1996. In addition to obvious vestibular dysfunction, the waltzing animals appear deaf already at birth. Histological analysis revealed that the waltzers lack an open scala media due to the collapse of Reissner's membrane onto the surface of the hearing organ. Subsequent breeding has shown that this strain has a recessive mode of inheritance. The homozygotes are deaf and display a waltzing behaviour throughout their lives while the heterozygotes show no significant signs of inner ear injury despite being carriers of this specific mutated gene of hearing impairment. However, the heterozygous animals offer the opportunity to study how hereditary factors interact with auditory stress. In the present study, the susceptibility of the carriers to noise was investigated. Auditory brainstem responses were obtained prior to and after noise exposure (4 kHz, 110 dB, 6 h). The carriers were significantly less affected by the noise as compared to control animals. This difference was still significant at 4 weeks following noise exposure. It is suggested that the heterozygous animals have an endogenous resistance to auditory stress. Copyright (c) 2005 S. Karger AG, Basel.
Forlano, Paul M.; Kim, Spencer D.; Krzyminska, Zuzanna M.; Sisneros, Joseph A.
2014-01-01
Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory endorgan, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator which appears to largely originate from local TH-ir neurons but may include diencephalic projections as well. This study provides strong evidence for catecholamines as important neuromodulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This first demonstration of TH-ir terminals in the main endorgan of hearing in a non-mammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition. PMID:24715479
Zheng, Hong; Mayhan, William G; Patel, Kaushik P
2011-11-01
Erectile dysfunction is a serious and common complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for the penile erection. The goal of the present study was to determine the impact of exercise training (ExT) on the centrally mediated erectile dysfunction in streptozotocin (STZ)-induced type I diabetic (T1D) rats. Male Sprague-Dawley rats were injected with STZ to induce diabetes mellitus. Three weeks after STZ or vehicle injections, rats were assigned to either ExT (treadmill running for 3-4 weeks) or sedentary groups to produce four experimental groups: control + sedentary, T1D + sedentary, control + ExT, and T1D + ExT. After 3-4 weeks ExT, central N-methyl-D-aspartic acid (NMDA) or sodium nitroprusside (SNP)-induced penile erectile responses were measured. Neuronal nitric oxide synthase (nNOS) expression in the paraventricular nucleus (PVN) of the hypothalamus was measured by using histochemistry, real time polymerase chain reaction (PCR) and Western blot approaches. In rats with T1D, ExT significantly improved the blunted erectile response, and the intracavernous pressure changes to NMDA (50 ng) microinjection within the PVN (T1D + ExT: 3.0 ± 0.6 penile erection/rat; T1D + sedentary: 0.5 ± 0.3 penile erection/rat within 20 minutes, P < 0.05). ExT improved erectile dysfunction induced by central administration of exogenous nitric oxide (NO) donor, SNP in T1D rats. Other behavior responses including yawning and stretching, induced by central NMDA and SNP microinjection were also significantly increased in T1D rats after ExT. Furthermore, we found that ExT restored the nNOS mRNA and protein expression in the PVN in T1D rats. These results suggest that ExT may have beneficial effects on the erectile dysfunction in diabetes through improvement of NO bioavailability within the PVN. Thus, ExT may be used as therapeutic modality to up-regulate nNOS within the PVN and improve the central component of the erectile dysfunction in diabetes mellitus. © 2011 International Society for Sexual Medicine.
Long-term exposure to noise impairs cortical sound processing and attention control.
Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto
2004-11-01
Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.
Impact of Aging and Cognition on Hearing Assistive Technology Use
Jorgensen, Lindsey E.; Messersmith, Jessica J.
2015-01-01
Many factors go into appropriate recommendation and use of hearing assistive technology (HAT). The aging auditory system presents with its own complications and intricacies; there are many types of age-related hearing loss, and it is possible that the underlying cause of hearing loss can significantly impact the recommendations and performance with HATs. The audiologist should take into consideration peripheral and central auditory function when selecting HATs for the aging adult population as well as when selecting appropriate types of technology including personal sound amplification products, hearing aids, cochlear implants, and other assistive technology. The cognitive ability of the patient plays a central role in the recommendations of HAT. It is possible that the use of HATs could mitigate some of the effects of cognitive decline and thus should be considered as early as possible. Assessment of ability and appropriate recommendations are crucial to consistent use of HAT devices. PMID:27516716
Auditory temporal processing in healthy aging: a magnetoencephalographic study
Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd
2009-01-01
Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410
The Role of the Auditory Brainstem in Processing Musically Relevant Pitch
Bidelman, Gavin M.
2013-01-01
Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294
Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study
Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong
2015-01-01
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies. PMID:26384256
Amblyaudia: Review of Pathophysiology, Clinical Presentation, and Treatment of a New Diagnosis.
Kaplan, Alyson B; Kozin, Elliott D; Remenschneider, Aaron; Eftekhari, Kian; Jung, David H; Polley, Daniel B; Lee, Daniel J
2016-02-01
Similar to amblyopia in the visual system, "amblyaudia" is a term used to describe persistent hearing difficulty experienced by individuals with a history of asymmetric hearing loss (AHL) during a critical window of brain development. Few clinical reports have described this phenomenon and its consequent effects on central auditory processing. We aim to (1) define the concept of amblyaudia and (2) review contemporary research on its pathophysiology and emerging clinical relevance. PubMed, Embase, and Cochrane databases. A systematic literature search was performed with combinations of search terms: "amblyaudia," "conductive hearing loss," "sensorineural hearing loss," "asymmetric," "pediatric," "auditory deprivation," and "auditory development." Relevant articles were considered for inclusion, including basic and clinical studies, case series, and major reviews. During critical periods of infant brain development, imbalanced auditory input associated with AHL may lead to abnormalities in binaural processing. Patients with amblyaudia can demonstrate long-term deficits in auditory perception even with correction or resolution of AHL. The greatest impact is in sound localization and hearing in noisy environments, both of which rely on bilateral auditory cues. Diagnosis and quantification of amblyaudia remain controversial and poorly defined. Prevention of amblyaudia may be possible through early identification and timely management of reversible causes of AHL. Otolaryngologists, audiologists, and pediatricians should be aware of emerging data supporting amblyaudia as a diagnostic entity and be cognizant of the potential for lasting consequences of AHL. Prevention of long-term auditory deficits may be possible through rapid identification and correction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo
2017-07-01
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Sex differences in the representation of call stimuli in a songbird secondary auditory area
Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine
2015-01-01
Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918
Sex differences in the representation of call stimuli in a songbird secondary auditory area.
Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine
2015-01-01
Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.
Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua
2015-01-01
Background: Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Methods: Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. Results: DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Conclusion: Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH. PMID:26612293
Cognitive effects of rhythmic auditory stimulation in Parkinson's disease: A P300 study.
Lei, Juan; Conradi, Nadine; Abel, Cornelius; Frisch, Stefan; Brodski-Guerniero, Alla; Hildner, Marcel; Kell, Christian A; Kaiser, Jochen; Schmidt-Kassow, Maren
2018-05-16
Rhythmic auditory stimulation (RAS) may compensate dysfunctions of the basal ganglia (BG), involved with intrinsic evaluation of temporal intervals and action initiation or continuation. In the cognitive domain, RAS containing periodically presented tones facilitates young healthy participants' attention allocation to anticipated time points, indicated by better performance and larger P300 amplitudes to periodic compared to random stimuli. Additionally, active auditory-motor synchronization (AMS) leads to a more precise temporal encoding of stimuli via embodied timing encoding than stimulus presentation adapted to the participants' actual movements. Here we investigated the effect of RAS and AMS in Parkinson's disease (PD). 23 PD patients and 23 healthy age-matched controls underwent an auditory oddball task. We manipulated the timing (periodic/random/adaptive) and setting (pedaling/sitting still) of stimulation. While patients elicited a general timing effect, i.e., larger P300 amplitudes for periodic versus random tones for both, sitting and pedaling conditions, controls showed a timing effect only for the sitting but not for the pedaling condition. However, a correlation between P300 amplitudes and motor variability in the periodic pedaling condition was obtained in control participants only. We conclude that RAS facilitates attentional processing of temporally predictable external events in PD patients as well as healthy controls, but embodied timing encoding via body movement does not affect stimulus processing due to BG impairment in patients. Moreover, even with intact embodied timing encoding, such as healthy elderly, the effect of AMS depends on the degree of movement synchronization performance, which is very low in the current study. Copyright © 2018 Elsevier B.V. All rights reserved.
Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W
2014-01-01
Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.
Kleiman, Robin J; Chapin, Douglas S; Christoffersen, Curt; Freeman, Jody; Fonseca, Kari R; Geoghegan, Kieran F; Grimwood, Sarah; Guanowsky, Victor; Hajós, Mihály; Harms, John F; Helal, Christopher J; Hoffmann, William E; Kocan, Geralyn P; Majchrzak, Mark J; McGinnis, Dina; McLean, Stafford; Menniti, Frank S; Nelson, Fredrick; Roof, Robin; Schmidt, Anne W; Seymour, Patricia A; Stephenson, Diane T; Tingley, Francis David; Vanase-Frawley, Michelle; Verhoest, Patrick R; Schmidt, Christopher J
2012-05-01
Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.
Nuttall, Helen E.; Moore, David R.; Barry, Johanna G.; Krumbholz, Katrin
2015-01-01
The speech-evoked auditory brain stem response (speech ABR) is widely considered to provide an index of the quality of neural temporal encoding in the central auditory pathway. The aim of the present study was to evaluate the extent to which the speech ABR is shaped by spectral processing in the cochlea. High-pass noise masking was used to record speech ABRs from delimited octave-wide frequency bands between 0.5 and 8 kHz in normal-hearing young adults. The latency of the frequency-delimited responses decreased from the lowest to the highest frequency band by up to 3.6 ms. The observed frequency-latency function was compatible with model predictions based on wave V of the click ABR. The frequency-delimited speech ABR amplitude was largest in the 2- to 4-kHz frequency band and decreased toward both higher and lower frequency bands despite the predominance of low-frequency energy in the speech stimulus. We argue that the frequency dependence of speech ABR latency and amplitude results from the decrease in cochlear filter width with decreasing frequency. The results suggest that the amplitude and latency of the speech ABR may reflect interindividual differences in cochlear, as well as central, processing. The high-pass noise-masking technique provides a useful tool for differentiating between peripheral and central effects on the speech ABR. It can be used for further elucidating the neural basis of the perceptual speech deficits that have been associated with individual differences in speech ABR characteristics. PMID:25787954
Saunders, Gabrielle H; Echt, Katharina V
2012-01-01
Combat exposures to blast can result in both peripheral damage to the ears and eyes and central damage to the auditory and visual processing areas in the brain. The functional effects of the latter include visual, auditory, and cognitive processing difficulties that manifest as deficits in attention, memory, and problem solving--symptoms similar to those seen in individuals with visual and auditory processing disorders. Coexisting damage to the auditory and visual system is referred to as dual sensory impairment (DSI). The number of Operation Iraqi Freedom/Operation Enduring Freedom Veterans with DSI is vast; yet currently no established models or guidelines exist for assessment, rehabilitation, or service-delivery practice. In this article, we review the current state of knowledge regarding blast exposure and DSI and outline the many unknowns in this area. Further, we propose a model for clinical assessment and rehabilitation of blast-related DSI that includes development of a coordinated team-based approach to target activity limitations and participation restrictions in order to enhance reintegration, recovery, and quality of life.
Audiological and electrophysiological assessment of professional pop/rock musicians.
Samelli, Alessandra G; Matas, Carla G; Carvallo, Renata M M; Gomes, Raquel F; de Beija, Carolina S; Magliaro, Fernanda C L; Rabelo, Camila M
2012-01-01
In the present study, we evaluated peripheral and central auditory pathways in professional musicians (with and without hearing loss) compared to non-musicians. The goal was to verify if music exposure could affect auditory pathways as a whole. This is a prospective study that compared the results obtained between three groups (musicians with and without hearing loss and non-musicians). Thirty-two male individuals participated and they were assessed by: Immittance measurements, pure-tone air conduction thresholds at all frequencies from 0.25 to 20 kHz, Transient Evoked Otoacoustic Emissions, Auditory Brainstem Response (ABR), and Cognitive Potential. The musicians showed worse hearing thresholds in both conventional and high frequency audiometry when compared to the non-musicians; the mean amplitude of Transient Evoked Otoacoustic Emissions was smaller in the musicians group, but the mean latencies of Auditory Brainstem Response and Cognitive Potential were diminished in the musicians when compared to the non-musicians. Our findings suggest that the population of musicians is at risk for developing music-induced hearing loss. However, the electrophysiological evaluation showed that latency waves of ABR and P300 were diminished in musicians, which may suggest that the auditory training to which these musicians are exposed acts as a facilitator of the acoustic signal transmission to the cortex.
Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology
NASA Astrophysics Data System (ADS)
Olsen, Kirk N.
Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.
Getzmann, Stephan; Näätänen, Risto
2015-11-01
With age the ability to understand speech in multitalker environments usually deteriorates. The central auditory system has to perceptually segregate and group the acoustic input into sequences of distinct auditory objects. The present study used electrophysiological measures to study effects of age on auditory stream segregation in a multitalker scenario. Younger and older adults were presented with streams of short speech stimuli. When a single target stream was presented, the occurrence of a rare (deviant) syllable among a frequent (standard) syllable elicited the mismatch negativity (MMN), an electrophysiological correlate of automatic deviance detection. The presence of a second, concurrent stream consisting of the deviant syllable of the target stream reduced the MMN amplitude, especially when located nearby the target stream. The decrease in MMN amplitude indicates that the rare syllable of the target stream was less perceived as deviant, suggesting reduced stream segregation with decreasing stream distance. Moreover, the presence of a concurrent stream increased the MMN peak latency of the older group but not that of the younger group. The results provide neurophysiological evidence for the effects of concurrent speech on auditory processing in older adults, suggesting that older adults need more time for stream segregation in the presence of concurrent speech. Copyright © 2015 Elsevier Inc. All rights reserved.
Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.
Thakur, L; Anand, J P; Banerjee, P K
2004-10-01
The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.
Developmental changes in distinguishing concurrent auditory objects.
Alain, Claude; Theunissen, Eef L; Chevalier, Hélène; Batty, Magali; Taylor, Margot J
2003-04-01
Children have considerable difficulties in identifying speech in noise. In the present study, we examined age-related differences in central auditory functions that are crucial for parsing co-occurring auditory events using behavioral and event-related brain potential measures. Seventeen pre-adolescent children and 17 adults were presented with complex sounds containing multiple harmonics, one of which could be 'mistuned' so that it was no longer an integer multiple of the fundamental. Both children and adults were more likely to report hearing the mistuned harmonic as a separate sound with an increase in mistuning. However, children were less sensitive in detecting mistuning across all levels as revealed by lower d' scores than adults. The perception of two concurrent auditory events was accompanied by a negative wave that peaked at about 160 ms after sound onset. In both age groups, the negative wave, referred to as the 'object-related negativity' (ORN), increased in amplitude with mistuning. The ORN was larger in children than in adults despite a lower d' score. Together, the behavioral and electrophysiological results suggest that concurrent sound segregation is probably adult-like in pre-adolescent children, but that children are inefficient in processing the information following the detection of mistuning. These findings also suggest that processes involved in distinguishing concurrent auditory objects continue to mature during adolescence.
NASA Astrophysics Data System (ADS)
Ramirez, Joshua; Mann, Virginia
2005-08-01
Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.
Korn, Sabine
2014-01-01
Noise-induced hearing loss (NIHL) and resulting comorbidities like subjective tinnitus are common diseases in modern societies. A substance shown to be effective against NIHL in an animal model is the Ginkgo biloba extract EGb 761. Further effects of the extract on the cellular and systemic levels of the nervous system make it a promising candidate not only for protection against NIHL but also for its secondary comorbidities like tinnitus. Following an earlier study we here tested the potential effectiveness of prophylactic EGb 761 treatment against NIHL and tinnitus development in the Mongolian gerbil. We monitored the effects of EGb 761 and noise trauma-induced changes on signal processing within the auditory system by means of behavioral and electrophysiological approaches. We found significantly reduced NIHL and tinnitus development upon EGb 761 application, compared to vehicle treated animals. These protective effects of EGb 761 were correlated with changes in auditory processing, both at peripheral and central levels. We propose a model with two main effects of EGb 761 on auditory processing, first, an increase of auditory brainstem activity leading to an increased thalamic input to the primary auditory cortex (AI) and second, an asymmetric effect on lateral inhibition in AI. PMID:25028612
van Zuijen, Titia L; Plakas, Anna; Maassen, Ben A M; Been, Pieter; Maurits, Natasha M; Krikhaar, Evelien; van Driel, Joram; van der Leij, Aryan
2012-10-18
Dyslexia is heritable and associated with auditory processing deficits. We investigate whether temporal auditory processing is compromised in young children at-risk for dyslexia and whether it is associated with later language and reading skills. We recorded EEG from 17 months-old children with or without familial risk for dyslexia to investigate whether their auditory system was able to detect a temporal change in a tone pattern. The children were followed longitudinally and performed an intelligence- and language development test at ages 4 and 4.5 years. Literacy related skills were measured at the beginning of second grade, and word- and pseudo-word reading fluency were measured at the end of second grade. The EEG responses showed that control children could detect the temporal change as indicated by a mismatch response (MMR). The MMR was not observed in at-risk children. Furthermore, the fronto-central MMR amplitude correlated with preliterate language comprehension and with later word reading fluency, but not with phonological awareness. We conclude that temporal auditory processing differentiates young children at risk for dyslexia from controls and is a precursor of preliterate language comprehension and reading fluency. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Human Time-Frequency Acuity Beats the Fourier Uncertainty Principle
NASA Astrophysics Data System (ADS)
Oppenheim, Jacob N.; Magnasco, Marcelo O.
2013-01-01
The time-frequency uncertainty principle states that the product of the temporal and frequency extents of a signal cannot be smaller than 1/(4π). We study human ability to simultaneously judge the frequency and the timing of a sound. Our subjects often exceeded the uncertainty limit, sometimes by more than tenfold, mostly through remarkable timing acuity. Our results establish a lower bound for the nonlinearity and complexity of the algorithms employed by our brains in parsing transient sounds, rule out simple “linear filter” models of early auditory processing, and highlight timing acuity as a central feature in auditory object processing.
A predictive coding account of MMN reduction in schizophrenia.
Wacongne, Catherine
2016-04-01
The mismatch negativity (MMN) is thought to be an index of the automatic activation of a specialized network for active prediction and deviance detection in the auditory cortex. It is consistently reduced in schizophrenic patients and has received a lot of interest as a clinical and translational tool. The main neuronal hypothesis regarding the mechanisms leading to a reduced MMN in schizophrenic patients is a dysfunction of NMDA receptors (NMDA-R). However, this hypothesis has never been implemented in a neuronal model. In this paper, we examine the consequences of NMDA-R dysfunction in a neuronal model of MMN based on predictive coding principle. I also investigate how predictive processes may interact with synaptic adaptation in MMN generations and examine the consequences of this interaction for the use of MMN paradigms in schizophrenia research. Copyright © 2015 Elsevier B.V. All rights reserved.
The Dysfunctions of Bureaucratic Structure.
ERIC Educational Resources Information Center
Duttweiler, Patricia Cloud
1988-01-01
Numerous dysfunctions result from bureaucratic school organization, including an overemphasis on specialized tasks, routine operating rules, and formal procedures for managing teaching and learning. Such schools are characterized by numerous regulations; formal communications; centralized decision making; and sharp distinctions among…
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Gravitational Study of the Central Nervous System
NASA Technical Reports Server (NTRS)
Horowitz, J. M.
1983-01-01
A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.
It's about time: revisiting temporal processing deficits in dyslexia.
Casini, Laurence; Pech-Georgel, Catherine; Ziegler, Johannes C
2018-03-01
Temporal processing in French children with dyslexia was evaluated in three tasks: a word identification task requiring implicit temporal processing, and two explicit temporal bisection tasks, one in the auditory and one in the visual modality. Normally developing children matched on chronological age and reading level served as a control group. Children with dyslexia exhibited robust deficits in temporal tasks whether they were explicit or implicit and whether they involved the auditory or the visual modality. First, they presented larger perceptual variability when performing temporal tasks, whereas they showed no such difficulties when performing the same task on a non-temporal dimension (intensity). This dissociation suggests that their difficulties were specific to temporal processing and could not be attributed to lapses of attention, reduced alertness, faulty anchoring, or overall noisy processing. In the framework of cognitive models of time perception, these data point to a dysfunction of the 'internal clock' of dyslexic children. These results are broadly compatible with the recent temporal sampling theory of dyslexia. © 2017 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Beevers, Christopher G.; Strong, David R.; Meyer, Bjorn; Pilkonis, Paul A.; Miller, Ivan R.
2007-01-01
Despite a central role for dysfunctional attitudes in cognitive theories of depression and the widespread use of the Dysfunctional Attitude Scale, form A (DAS-A; A. Weissman, 1979), the psychometric development of the DAS-A has been relatively limited. The authors used nonparametric item response theory methods to examine the DAS-A items and…
Gordon, K A; Papsin, B C; Harrison, R V
2007-08-01
The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.
Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten
2017-01-01
In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652