NASA Technical Reports Server (NTRS)
Querry, R. G.; Smith, S. A.; Stromstad, M.; Ide, K.; Raven, P. B.; Secher, N. H.
2001-01-01
This investigation was designed to determine central command's role on carotid baroreflex (CBR) resetting during exercise. Nine volunteer subjects performed static and rhythmic handgrip exercise at 30 and 40% maximal voluntary contraction (MVC), respectively, before and after partial axillary neural blockade. Stimulus-response curves were developed using the neck pressure-neck suction technique and a rapid pulse train protocol (+40 to -80 Torr). Regional anesthesia resulted in a significant reduction in MVC. Heart rate (HR) and ratings of perceived exertion (RPE) were used as indexes of central command and were elevated during exercise at control force intensity after induced muscle weakness. The CBR function curves were reset vertically with a minimal lateral shift during control exercise and exhibited a further parallel resetting during exercise with neural blockade. The operating point was progressively reset to coincide with the centering point of the CBR curve. These data suggest that central command was a primary mechanism in the resetting of the CBR during exercise. However, it appeared that central command modulated the carotid-cardiac reflex proportionately more than the carotid-vasomotor reflex.
Baroreflex regulation of blood pressure during dynamic exercise
NASA Technical Reports Server (NTRS)
Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex. In addition, if, as we have proposed, the cardiopulmonary baroreceptors primarily monitors and reflexly regulates cardiac filling volume, it would seem from the data of Mack et al. and Potts et al. that the cardiopulmonary baroreceptor is also reset at the beginning of exercise. Therefore, investigations of the neural mechanisms of regulation involving Central Command and cardiopulmonary afferents, similar to those being undertaken for the arterial baroreflex, need to be established.
Command in Air War: Centralized vs. Decentralized Control of Combat Airpower
2005-05-19
centralized control of these missions, requiring a full day for scheduling a target, was ineffective at supporting the D-day invasion and even proved...dangerous to friendly troops. Americans developed a method of scheduling a steady stream of...controller took over this function. Thus, although the aircraft were still scheduled and routed by a centralized �Combined Operations Center,� they
5. Command center doors at command center entry, building 501, ...
5. Command center doors at command center entry, building 501, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
1969-11-19
AS12-47-6918 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, took this photograph of three of the components of the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon during the first Apollo 12 extravehicular activity (EVA). The Passive Seismic Experiment (PSE) is in the center foreground. The largest object is the Central Station; and the white object on legs is the Suprathermal Ion Detector Experiment (SIDE). A portion of the shadow of astronaut Charles Conrad Jr., commander, can be seen at the left center edge of the picture. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the Lunar Module (LM) to explore the moon.
Partial view of the deployed Apollo Lunar Surface Experiments Package
1972-04-21
AS16-113-18347 (21 April 1972) --- A partial view of the Apollo 16 Apollo Lunar Surface Experiments Package (ALSEP) in deployed configuration on the lunar surface as photographed during the mission's first extravehicular activity (EVA), on April 21, 1972. The Passive Seismic Experiment (PSE) is in the foreground center; Central Station (C/S) is in center background, with the Radioisotope Thermoelectric Generator (RTG) to the left. One of the anchor flags for the Active Seismic Experiment (ASE) is at right. While astronauts John W. Young, commander; and Charles M. Duke Jr., lunar module pilot; descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.
Asahara, Ryota; Endo, Kana; Liang, Nan; Matsukawa, Kanji
2018-05-31
We have reported using near-infrared spectroscopy that an increase in prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) at the start of cycling exercise has relation to central command, defined as a feedforward signal descending from higher brain centers. The final output of central command evokes the exercise effort-dependent cardiovascular responses. If the prefrontal cortex may output the final signal of central command toward the autonomic nervous system, the prefrontal oxygenation should increase depending on exercise effort. To test the hypothesis, we investigated the effects of exercise intensity and muscle mass on prefrontal oxygenation in 13 subjects. The subjects performed one- or two-legged cycling at various relative intensities for 1 min. The prefrontal Oxy-Hb and cardiovascular variables were simultaneously measured during exercise. The increase in cardiac output and the decrease in total peripheral resistance at the start of one- and two-legged cycling were augmented in proportion to exercise intensity and muscle mass recruitment. The prefrontal Oxy-Hb increased at the start of voluntary cycling, while such increase was not developed during passive cycling. Mental imagery of cycling also increased the prefrontal Oxy-Hb, concomitantly with peripheral muscle vasodilatation. However, the increase in prefrontal Oxy-Hb at the start of voluntary cycling seemed independent of exercise intensity and muscle mass recruitment. It is likely that the increased prefrontal activity at the start of cycling exercise is not representative of the final output signal of central command itself toward the autonomic nervous system but may trigger neuronal activity in the caudal brain responsible for the generation of central command.
Interagency Evaluation of the Section 1206 Global Train and Equip Program
2009-08-31
Capabilities, Joint Staff, U.S. Africa Command, U.S. Central Command, U.S Joint Forces Command, U.S. Pacific Command, U.S. Southern Command, U.S. Special...Intensity Conflict & Interdependent Capabilities; Commanders of U.S. Africa Command, U.S. Central Command, U.S. Joint Forces Command, U.S. Pacific... Central Command, commented that coordinating the Section 1206 project proposal with the partner nation prior to submission would inflate the
13. SAC command center, weather center, underground structure, building 501, ...
13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Army Airspace Command and Control (A2C2): Action Plan for Issue Resolution
1993-09-01
INFO Information INTEL Intelligence IPR In-Process Review IVIS Inter-Vehicular Information System JACC Joint Airspace Control Center JAOC Joint Air...base, centralized such as intelligence at Fort Huachuca and combat service support at Fort Lee , or a combination of both. It is no longer efficient to...Regiment (ATS) Ft. Bragg, NC 28307 ATTN: AFZF-ATS-C (LTC Ledbetter ) (919) 396-8899/7649 Bldg 87009, 16th Street Ft. Hood, TX 76544 Commander, 1st
DOT National Transportation Integrated Search
1976-08-01
This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...
2010-12-03
with the CDC’s Central America and Panama Center, the U.S. Army Public Health Command Region–South (PHCR-South) provided laboratory tech- nical...Introduction and background Th e central focus of disease surveillance systems is the early identifi cation of infectious disease outbreaks in...been leveraged by AFHSC- GEIS for the purpose of disease surveillance and response through a growing network of centrally funded partners (Figure 1
7. General view of command center, building 501, looking west ...
7. General view of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
6. General view of command center, building 501, looking east ...
6. General view of command center, building 501, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
11. SAC command center, main operations area, underground structure, building ...
11. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
4. Sac shield at entry of command center, building 501, ...
4. Sac shield at entry of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
9. SAC command center, main operations area, underground structure, building ...
9. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
10. SAC command center, main operations area, underground structure, building ...
10. SAC command center, main operations area, underground structure, building 501, circa 1980 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
12. SAC command center, main operations area, underground structure, building ...
12. SAC command center, main operations area, underground structure, building 501, circa 1960 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Apollo 14 Mission image - View of the ALSEP Station
1971-02-05
AS14-67-9361 (5 Feb. 1971) --- A close-up view of two components of the Apollo lunar surface experiments package (ALSEP) which the Apollo 14 astronauts deployed on the moon during their first extravehicular activity (EVA). In the center background is the ALSEP's central station (CS); and in the foreground is the mortar package assembly of the ALSEP's active seismic experiment (ASE). The modularized equipment transporter (MET) can be seen in the right background. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
8. SAC command center underground structure, building 501, basement entry, ...
8. SAC command center underground structure, building 501, basement entry, machine room, April 11, 1955 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Apollo 11 Command/Service modules photographed from Lunar Module in orbit
1969-07-20
AS11-37-5445 (20 July 1969) --- The Apollo 11 Command and Service Modules (CSM) are photographed from the Lunar Module (LM) in lunar orbit during the Apollo 11 lunar landing mission. The lunar surface below is in the north central Sea of Fertility. The coordinates of the center of the picture are 51 degrees east longitude and 1 degree north latitude. About half of the crater Taruntius G is visible in the lower left corner of the picture. Part of Taruntius H can be seen at lower right.
SAC Headquarters Underground Command Center Cutaway Axonometric Offutt ...
SAC Headquarters Underground Command Center - Cutaway Axonometric - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
For NASA's Resource Prospector (RP) Lunar Rover Mission, we are moving away from a control center concept, to a fully distributed operation utilizing control nodes, with decision support from anywhere via mobile devices. This operations concept will utilize distributed information systems, notifications, mobile data access, and optimized mobile data display for off-console decision support. We see this concept of operations as a step in the evolution of mission operations from a central control center concept to a mission operations anywhere concept. The RP example is part of a trend, in which mission expertise for design, development and operations is distributed across countries and across the globe. Future spacecraft operations will be most cost efficient and flexible by following this distributed expertise, enabling operations from anywhere. For the RP mission we arrived at the decision to utilize a fully distributed operations team, where everyone operates from their home institution, based on evaluating the following factors: the requirement for physical proximity for near-real time command and control decisions; the cost of distributed control nodes vs. a centralized control center; the impact on training and mission preparation of flying the team to a central location. Physical proximity for operational decisions is seldom required, though certain categories of decisions, such as launch abort, or close coordination for mission or safety-critical near-real-time command and control decisions may benefit from co-location. The cost of facilities and operational infrastructure has not been found to be a driving factor for location in our studies. Mission training and preparation benefit from having all operators train and operate from home institutions.
2005-10-04
KENNEDY SPACE CENTER, FLA. - In the NASA Kennedy Space Center Training Auditorium, Center Director Jim Kennedy talks to employees at the kickoff of the 2005 Combined Federal Campaign at the center. Guest speakers included Janet Bryant, executive director and CEO of the American Red Cross, Brevard County Chapter; Major Jack Owens, commanding officer of the Salvation Army, North/Central Brevard; and Rob Rains, president of United Way of Brevard. The campaign seeks voluntary donations from Federal civilian, postal and military workers during the campaign season to support eligible nonprofit organizations that provide health and human service benefits throughout the world.
The relevance of central command for the neural cardiovascular control of exercise.
Williamson, J W
2010-11-01
This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedforward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise.
The relevance of central command for the neural cardiovascular control of exercise
Williamson, J W
2010-01-01
This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedfoward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise. PMID:20696787
2015-12-01
Sherman Kent Center, Central Intelligence Agency 3, no. 2 (October 2004), https://www.cia.gov/ library /kent-center-occasional-papers/vol3no2.htm...Naval Intelligence (Norfolk, VA: Naval Warfare Development Command, 2008), http://www.nwdc.navy.mil/content/ Library /Documents/NDPs/ ndp2/ndp20007.htm...Fathali M. Moghaddam, “ Multiculturalism and Intergroup Relations,” American Psychological Association, November 2011, 95. 114 Matherly, The Red Teaming
61. SAC control center command post construction, March 2, 1956, ...
61. SAC control center command post construction, March 2, 1956, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2017-04-28
Regional Air Component Commander (the Leader) 5 CC-DC- DE Solution to A2/AD – Distributed Theater Air Control System (the System) 9 CC-DC- DE ... Control , Decentralized Execution” to a new framework of “Centralized Command, Distributed Control , and Decentralized Execution” (CC-DC- DE ).4 5 This...USAF C2 challenges in A2/AD environments describes a three-part Centralized Command, Distributed Control , and Decentralized Execution (CC-DC- DE
Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Ishida, Tomoko; Idesako, Mitsuhiro; Liang, Nan
2014-05-15
Our laboratory has suggested that central command provides selective inhibition of the cardiomotor component of aortic baroreflex at the start of exercise, preserving carotid sinus baroreflex. It is postulated that central command may modify the signal transduction of aortic baroreceptors, so as to decrease aortic baroreceptor input to the cardiovascular centers, and, thereby, can cause the selective inhibition of aortic baroreflex. To test the hypothesis, we directly analyzed the responses in multifiber aortic nerve activity (AoNA) and carotid sinus nerve activity (CsNA) during spontaneous motor activity in decerebrate, paralyzed cats. The increases of 62-104% in mean AoNA and CsNA were found during spontaneous motor activity, in proportion to a rise of 35 ± 3 mmHg (means ± SE) in mean arterial blood pressure (MAP), and had an attenuating tendency by restraining heart rate (HR) at the lower intrinsic frequency of 154 ± 6 beats/min. Brief occlusion of the abdominal aorta was conducted before and during spontaneous motor activity to produce a mechanically evoked increase in MAP and, thereby, to examine the stimulus-response relationship of arterial baroreceptors. Although the sensitivity of the MAP-HR baroreflex curve was markedly blunted during spontaneous motor activity, the stimulus-response relationships of AoNA and CsNA were not influenced by spontaneous motor activity, irrespective of the absence or presence of the HR restraint. Thus, it is concluded that aortic and carotid sinus baroreceptors can code beat-by-beat blood pressure during spontaneous motor activity in decerebrate cats and that central command is unlikely to modulate the signal transduction of arterial baroreceptors. Copyright © 2014 the American Physiological Society.
2003-05-01
medical supply blocks. Two available botulism antitoxins—the Centers for Disease Control and Prevention (CDC) trivalent equine antitoxin for serotypes...4th Ed. Fort Detrick, MD. U.S. Army Medical Research Institute of Infectious Diseases ; 2001: 9-12. 3. Sidell, FR, Franz, David R. Overview: Defense...Diagnosis and Treatment of Diseases of Tactical Importance to U.S. Central Command. Aberdeen Proving Ground, MD: U.S. Army Center for Health Promotion and
2005-03-01
execute these dangerous and uncertain missions. iv In my recent travels in the U.S. Central Command area of operations I had the great fortune of meeting...jfcom.mil 1Joint Center for Operational Analysis and Lessons Learned (JCOA-LL) Bulletin “That others may live…to return with honor” The old Chinese ...information has to travel to meet GCC staff requirements increases the difficulty in handling and maintaining situational awareness on PR events
How are tonic and phasic cardiovascular changes related to central motor command?
Jennings, J R; van der Molen, M W; Brock, K; Somsen, R J
1993-07-01
We examined the influence of central motor command on heart rate, respiration, and peripheral vascular activity. Central command was enhanced or reduced using tendon vibration. Muscle tension was held constant permitting the examination of variation in central command. Experiment 1 demonstrated in 13 college-aged males an enhancement of heart rate and vascular responses to an isometric, extensor contraction when vibration of the flexor tendon was added. Experiment 2 asked whether changes in central command interacted with phasic cardiovascular changes such as stimulus-linked anticipatory cardiac deceleration. Twenty college-aged males performed either an isometric flexor or extensor contraction with or without flexor tendon vibration. As expected, vibration enhanced cardiovascular change with extensor contraction more than with flexor contraction. Relative to control contractions, however, the flexor change was not an absolute decrease in cardiovascular change. More importantly, tendon vibration failed to alter phasic cardiovascular changes. Force and central commands for force induce cardiovascular change, but this change seems independent of phasic changes induced by the anticipation and processing of environmental stimuli.
85. Command HQ. SAC control center (MOD) new work cross ...
85. Command HQ. SAC control center (MOD) new work cross section, drawing number AW-30-02-07, dated 7 February, 1962 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Detonation command and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Jonathan Lee; Seitz, Gerald J.; Echave, John A.
The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.
Detonation command and control
Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves
2015-11-10
The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.
Detonation command and control
Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves
2016-05-31
The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link there between. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.
... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...
2005-10-04
KENNEDY SPACE CENTER, FLA. - In the NASA Kennedy Space Center Training Auditorium, Major Jack Owens talks to employees during the kickoff presentation for the Combined Federal Campaign at the center. Owens is commanding officer of the Salvation Army in North and Central Brevard County in Florida. Other speakers included Janet Bryant, executive director and CEO of the American Red Cross, Brevard County Chapter and Rob Rains, president of United Way of Brevard. The campaign seeks voluntary donations from Federal civilian, postal and military workers during the campaign season to support eligible nonprofit organizations that provide health and human service benefits throughout the world.
Configuration management and automatic control of an augmentor wing aircraft with vectored thrust
NASA Technical Reports Server (NTRS)
Cicolani, L. S.; Sridhar, B.; Meyer, G.
1979-01-01
An advanced structure for automatic flight control logic for powered-lift aircraft operating in terminal areas is under investigation at Ames Research Center. This structure is based on acceleration control; acceleration commands are constructed as the sum of acceleration on the reference trajectory and a corrective feedback acceleration to regulate path tracking errors. The central element of the structure, termed a Trimmap, uses a model of the aircraft aerodynamic and engine forces to calculate the control settings required to generate the acceleration commands. This report describes the design criteria for the Trimmap and derives a Trimmap for Ames experimental augmentor wing jet STOL research aircraft.
2001-02-20
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located.
1976-03-01
DB DC DCT DDB DET DF DFS DML DMS DMSP DOD DS DSARC DT EDB EDS EG ESSA ETAC EWO Control and Reporting Post Cathode Ray Tube...National and Aviation Meteorological Facsimile Network NC - Network Control NCA - National Command Authority NCAR - National Center for Atmospheric
2010-07-26
kit/OEF.asp (accessed March 6, 2011). 19 U.S. Central Command. "US CENTCOM Leadership: General James N. Mattis , Commander,‖ http... Mattis , USMC Commander, USCENTCOM 0 2 Cmdr, Task Force 58 Cmdr, USJFCOM Admiral James G. Stavridis, USN Commander, USEUCOM 1 2 Plans Officer, JCS...U.S. Central Command. "US CENTCOM Leadership." General James N. Mattis . https://slsp.http://www.centcom.mil/en/about-centcom/leadership
Autonomic responses to exercise: where is central command?
Williamson, J W
2015-03-01
A central command is thought to involve a signal arising in a central area of the brain eliciting a parallel activation of the autonomic nervous system and skeletal muscle contraction during exercise. Although much of the neural circuitry involved in autonomic control has been identified, defining the specific higher brain region(s) serving in a central command capacity has proven more challenging. Investigators have been faced with redundancies in regulatory systems, feedback mechanisms and the complexities ofhuman neural connectivity. Several studies have attempted to address these issues and provide more definitive neuroanatomical information. However, none have clearly answered the question, "where is central command?" Copyright © 2014 Elsevier B.V. All rights reserved.
Literature review on medical incident command.
Rimstad, Rune; Braut, Geir Sverre
2015-04-01
It is not known what constitutes the optimal emergency management system, nor is there a consensus on how effectiveness and efficiency in emergency response should be measured or evaluated. Literature on the role and tasks of commanders in the prehospital emergency services in the setting of mass-casualty incidents has not been summarized and published. This comprehensive literature review addresses some of the needs for future research in emergency management through three research questions: (1) What are the basic assumptions underlying incident command systems (ICSs)? (2) What are the tasks of ambulance and medical commanders in the field? And (3) How can field commanders' performances be measured and assessed? A systematic literature search in MEDLINE, PubMed, PsycINFO, Embase, Cochrane Central Register of Controlled Trials, Cochrane Library, ISI Web of Science, Scopus, International Security & Counter Terrorism Reference Center, Current Controlled Trials, and PROSPERO covering January 1, 1990 through March 1, 2014 was conducted. Reference lists of included literature were hand searched. Included papers were analyzed using Framework synthesis. The literature search identified 6,049 unique records, of which, 76 articles and books where included in qualitative synthesis. Most ICSs are described commonly as hierarchical, bureaucratic, and based on military principles. These assumptions are contested strongly, as is the applicability of such systems. Linking of the chains of command in cooperating agencies is a basic difficulty. Incident command systems are flexible in the sense that the organization may be expanded as needed. Commanders may command by direction, by planning, or by influence. Commanders' tasks may be summarized as: conducting scene assessment, developing an action plan, distributing resources, monitoring operations, and making decisions. There is considerable variation between authors in nomenclature and what tasks are included or highlighted. There are no widely acknowledged measurement tools of commanders' performances, though several performance indicators have been suggested. The competence and experience of the commanders, upon which an efficient ICS has to rely, cannot be compensated significantly by plans and procedures, or even by guidance from superior organizational elements such as coordination centers. This study finds that neither a certain system or structure, or a specific set of plans, are better than others, nor can it conclude what system prerequisites are necessary or sufficient for efficient incident management. Commanders need to be sure about their authority, responsibility, and the functional demands posed upon them.
77 FR 4025 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
...; System of Records AGENCY: U.S. Central Command, DoD. ACTION: Notice to Amend a System of Records. SUMMARY: The U.S. Central Command is amending a system of records notice in its existing inventory of record... INFORMATION: The U.S. Central Command systems of records notices subject to the Privacy Act of 1974 (5 U.S.C...
President Nixon - Welcome - Apollo XI Astronauts - USS Hornet
1969-07-24
S69-21365 (24 July 1969) --- United States President Richard M. Nixon was in the central Pacific recovery area to welcome the Apollo 11 astronauts aboard the USS Hornet, prime recovery ship for the historic Apollo 11 lunar landing mission. Already confined to the Mobile Quarantine Facility (MQF) are (left to right) Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 splashed down at 11:49 a.m. (CDT), July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. The three crewmen will remain in the MQF until they arrive at the Manned Spacecraft Center's (MSC) Lunar Receiving Laboratory (LRL). While astronauts Armstrong and Aldrin descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA
Operating and Support Costing Guide: Army Weapon Systems
1974-12-23
First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander
Reorganizing Geographic Combatant Command Headquarters for Joint Force 2020
2013-05-01
Corps General James N. Mattis , U.S. Central Command Commander, before the House Armed Services Committee on March 7, 2012, about the posture of U.S...Prentice Hall, 2002. Legal Organization of Defense. http://www.ndu.edu/library/pbrc/36L52.pdf (accessed January 21, 2013). 99 Mattis , James N...Statement of U.S. Marine Corps General James N. Mattis , U.S. Central Command Commander, before the House Armed Services Committee on March 7, 2012
Nakamura, Yoshiko; Nakamura, Kazuhiro
2018-05-01
Energy homeostasis of mammals is maintained by balancing energy expenditure within the body and energy intake through feeding. Several lines of evidence indicate that brown adipose tissue (BAT), a sympathetically activated thermogenic organ, turns excess energy into heat to maintain the energy balance in rodents and humans, in addition to its thermoregulatory role for the defense of body core temperature in cold environments. Elucidating the central circuit mechanism controlling BAT thermogenesis dependent on nutritional conditions and food availability in relation to energy homeostasis is essential to understand the etiology of symptoms caused by energy imbalance, such as obesity. The central thermogenic command outflow to BAT descends through an excitatory neural pathway mediated by hypothalamic, medullary and spinal sites. This sympathoexcitatory thermogenic drive is controlled by tonic GABAergic inhibitory signaling from the thermoregulatory center in the preoptic area, whose tone is altered by body core and cutaneous thermosensory inputs. This circuit controlling BAT thermogenesis for cold defense also functions for the development of fever and psychological stress-induced hyperthermia, indicating its important role in the defense from a variety of environmental stressors. When food is unavailable, hunger-driven neural signaling from the hypothalamus activates GABAergic neurons in the medullary reticular formation, which then block the sympathoexcitatory thermogenic outflow to BAT to reduce energy expenditure and simultaneously command the masticatory motor system to promote food intake-effectively commanding responses to survive starvation. This article reviews the central mechanism controlling BAT thermogenesis in relation to the regulation of energy and thermal homeostasis dependent on food availability.
Erythropoietin-Mediated Regulation of Central Respiratory Command.
Seaborn, Tommy; Caravagna, Céline
2017-01-01
Erythropoietin (Epo) is a cytokine expressed throughout the body, including in the central nervous system where it can act as a breathing modulator in the central respiratory network. In vitro, Epo allows maintaining the activity of respiratory neurons during acute hypoxia, resulting in inhibition of the hypoxia-induced rhythm depression. In vivo, Epo action on the central respiratory command results in enhancement of the acute hypoxic ventilatory response, allowing a better oxygenation of the body by improvement of gases exchanges in the lungs. Importantly, this effect of Epo is age-dependent, being observed at adulthood and at both early and late postnatal ages, but not at middle postnatal ages, when an important setup of the central respiratory command occurs. Epo regulation of the central respiratory command involves at least two intracellular signaling pathways, PI3K-Akt and MEK-ERK pathways. However, the exact mechanism underlying the action of Epo on the central respiratory control remains to be deciphered, as well as the exact cell types and nuclei involved in this control. Epo-mediated effect on the central respiratory command is regulated by several factors, including hypoxia, sex hormones, and an endogen antagonist. Although more knowledge is needed before reaching the clinical trial step, Epo seems to be a promising therapeutic treatment, notably against newborn breathing disorders. © 2017 Elsevier Inc. All rights reserved.
2005-10-04
KENNEDY SPACE CENTER, FLA. - In the NASA Kennedy Space Center Training Auditorium, President of United Way in Brevard Rob Rains (left) and Center Director Jim Kennedy (right) recognize James Hall (center) who submitted the winning theme for the center’s 2005 Combined Federal Campaign, “Launching Dreams of Those in Need.” The occasion was the kickoff of the campaign at the center. Guest speakers included Janet Bryant, executive director and CEO of the American Red Cross, Brevard County Chapter; Major Jack Owens, commanding officer of the Salvation Army, North/Central Brevard; and Rob Rains, president of United Way of Brevard. The campaign seeks voluntary donations from Federal civilian, postal and military workers during the campaign season to support eligible nonprofit organizations that provide health and human service benefits throughout the world.
2. Detail of panel in generator room, building 501, looking ...
2. Detail of panel in generator room, building 501, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
14. Machine room, building 501, underground structure, May 11, 1956, ...
14. Machine room, building 501, underground structure, May 11, 1956, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
3. Underground blast doors, BC corridor, at entry to building ...
3. Underground blast doors, BC corridor, at entry to building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
38 CFR 1.515 - To commanding officers of State soldiers' homes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false To commanding officers of... Records § 1.515 To commanding officers of State soldiers' homes. When a request is received in a Department of Veterans Affairs regional office, center, or medical center from the commanding officer of a...
38 CFR 1.523 - To commanding officers of State soldiers' homes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false To commanding officers of... Records § 1.523 To commanding officers of State soldiers' homes. When a request is received in a Department of Veterans Affairs regional office, center, or medical center from the commanding officer of a...
38 CFR 1.515 - To commanding officers of State soldiers' homes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false To commanding officers of... Records § 1.515 To commanding officers of State soldiers' homes. When a request is received in a Department of Veterans Affairs regional office, center, or medical center from the commanding officer of a...
Koba, Satoshi; Hisatome, Ichiro; Watanabe, Tatsuo
2014-09-01
Sympathoexcitation elicited by central command, a parallel activation of the motor and autonomic neural circuits in the brain, has been shown to become exaggerated in chronic heart failure (CHF). The present study tested the hypotheses that oxidative stress in the medulla in CHF plays a role in exaggerating central command-elicited sympathoexcitation, and that exercise training in CHF suppresses central command-elicited sympathoexcitation through its antioxidant effects in the medulla. In decerebrate rats, central command was activated by electrically stimulating the mesencephalic locomotor region (MLR) after neuromuscular blockade. The MLR stimulation at a current intensity greater than locomotion threshold in rats with CHF after myocardial infarction (MI) evoked larger (P < 0.05) increases in renal sympathetic nerve activity and arterial pressure than in sham-operated healthy rats (Sham) and rats with CHF that had completed longterm (8–12 weeks) exercise training (MI + TR). In the Sham and MI + TR rats, bilateral microinjection of a superoxide dismutase (SOD) mimetic Tempol into the rostral ventrolateral medulla (RVLM) had no effects on MLR stimulation-elicited responses. By contrast, in MI rats, Tempol treatment significantly reduced MLR stimulation-elicited responses. In a subset of MI rats, treatment with Tiron, another SOD mimetic, within the RVLM also reduced responses. Superoxide generation in the RVLM, as evaluated by dihydroethidium staining, was enhanced in MI rats compared with that in Sham and MI + TR rats. Collectively, these results support the study hypotheses. We suggest that oxidative stress in the medulla in CHF mediates central command dysfunction, and that exercise training in CHF is capable of normalizing central command dysfunction through its antioxidant effects in the medulla.
Caravagna, Céline; Soliz, Jorge
2015-01-15
Erythropoietin stimulation modulates the central respiratory command in newborn mice. Specifically, the central respiratory depression induced by hypoxia is attenuated by acute (1h) or abolished by chronic erythropoietin stimulation. However, the underlying mechanisms remain unknown. As MEK and PI3K pathways are commonly involved in Epo-mediated effects of neuroprotection and erythropoiesis, we investigated here the implication of PI3K and MEK1/2 in the Epo-mediated regulation of the central respiratory command. To this end, in vitro brainstem-spinal cord preparations from 3 days old transgenic (Tg21; constitutively overexpressing erythropoietin in the brain specifically) and control mice were used. Our results show that blockade of PI3K or MEK1/2 stimulates normoxic bursts frequency in Tg21 preparations and abolish hypoxia-induced frequency depression in control preparations. These results show that MEK1/2 and PI3K pathways are involved in the Epo-mediated regulation of the central respiratory command. Moreover, this is the first demonstration that MEK1/2 and PI3K are involved in the brainstem central respiratory command. Copyright © 2014 Elsevier B.V. All rights reserved.
Apparatus and method for data communication in an energy distribution network
Hussain, Mohsin; LaPorte, Brock; Uebel, Udo; Zia, Aftab
2014-07-08
A system for communicating information on an energy distribution network is disclosed. In one embodiment, the system includes a local supervisor on a communication network, wherein the local supervisor can collect data from one or more energy generation/monitoring devices. The system also includes a command center on the communication network, wherein the command center can generate one or more commands for controlling the one or more energy generation devices. The local supervisor can periodically transmit a data signal indicative of the data to the command center via a first channel of the communication network at a first interval. The local supervisor can also periodically transmit a request for a command to the command center via a second channel of the communication network at a second interval shorter than the first interval. This channel configuration provides effective data communication without a significant increase in the use of network resources.
Effect of Electromagnetic Stirring on Weld Pools.
1983-10-01
R136 71S EFFECT OF ELECTROMAGNET1C STIRRING ON WELD POOL5(U) i/lD DAVID W TAYLOR NAVAL SH-IP RE5ERRCH AND DEVELOPMENT CENTER ANN. R DENRLE ET RL...COMMANDER TECHNICAL DIRECTOR 01 OFFICER-IN-CHARGE OFFICER-IN-CHARGE CARDEROCK ANNAPOLIS 06 04 SYSTEMS DEVELOPMENT DEPARTMENT 11 SHIP PERFORMANCE AVIATION AND...SHIP ACOUSTICS PROPULSION AND DEPARTMENT AUXILIARY SYSTEMS DEPARTMENT 19 27 SHIP MATERIALS CENTRAL ENGINEERING INSTRUMENTATION DEPARTMENT DEPARTMENT28
Disaster Preparedness: Anticipating the Worst Case Scenario Issue Paper Volume 05-05, March 2005
2005-03-01
PROFESSOR B.E GRIFFARD, COL (RET.) ART BRAD4sAW; AND DR. KENT HUGnES BUTTs "Volcanic arcs and oceanic trenches partly encircling the Pacific Basin ...2004 Tsunami, triggered by a magnitude 9.0 earth- assists international organizations and other northern Sumatra . countries in sizing appropriate...Kathmandu, the United States Central Command, and the United States Army War College Center for Strategic Leadership. The conference focused on
Lessons learned in command environment development
NASA Astrophysics Data System (ADS)
Wallace, Daniel F.; Collie, Brad E.
2000-11-01
As we consider the issues associated with the development of an Integrated Command Environment (ICE), we must obviously consider the rich history in the development of control rooms, operations centers, information centers, dispatch offices, and other command and control environments. This paper considers the historical perspective of control environments from the industrial revolution through the information revolution, and examines the historical influences and the implications that that has for us today. Environments to be considered are military command and control spaces, emergency response centers, medical response centers, nuclear reactor control rooms, and operations centers. Historical 'lessons learned' from the development and evolution of these environments will be examined to determine valuable models to use, and those to be avoided. What are the pitfalls? What are the assumptions that drive the environment design? Three case histories will be presented, examining (1) the control room of the Three Mile Island power plant, (2) the redesign of the US Naval Space Command operations center, and (3) a testbed for an ICE aboard a naval surface combatant.
Reliability Analysis and Standardization of Spacecraft Command Generation Processes
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Grenander, Sven; Evensen, Ken
2011-01-01
center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.
Rice University observations of the galactic center
NASA Technical Reports Server (NTRS)
Meegan, C. A.
1978-01-01
The most sensitive of the four balloon fight observations of the galactic center made by Rice University was conducted in 1974 from Rio Cuarto, Argentina at a float altitude of 4 mbar. The count rate spectrum of the observed background and the energy spectrum of the galactic center region are discussed. The detector used consists of a 6 inch Nal(T 1ambda) central detector collimated to approximately 15 deg FWHM by a Nal(T lamdba) anticoincidence shield. The shield in at least two interaction mean free paths thick at all gamma ray energies. The instrumental resolution is approximately 11% FWHM at 662 keV. Pulses from the central detector are analyzed by two 256 channel PHA's covering the energy range approximately 20 keV to approximately 12 MeV. The detector is equatorially mounted and pointed by command from the ground. Observations are made by measuring source and background alternately for 10 minute periods. Background is measured by rotating the detector 180 deg about the azimuthal axis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...
SOUTH ELEVATION OF BATTERY COMMAND CENTER WITH GRADUATED MEASURING POLE. ...
SOUTH ELEVATION OF BATTERY COMMAND CENTER WITH GRADUATED MEASURING POLE. THE ENTRY STAIRWAY IS IN THE FOREGROUND. THE ABOVE-GROUND SECTION OF THE STRUCTURE IS ON THE RIGHT, UNDERGROUND PORTION ON THE LEFT. VIEW FACING NORTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI
Naval War College Review. Volume 59, Number 1, Winter 2006
2006-01-01
and for two hours Lieutenant Barik has been Operations Watch Officer (OWO) in the Battle Management Center (BatCen) aboard USS Florida (SSGN 728).27 The...ship is at communications depth on a moonless night. Barik is reviewing the new “launch baskets” for the updated standing U.S. Central Command...strait. Barik would soon hear the signal that means the SEALs are safe. This signal, a brief burst of noise designed to mimic natural biological sounds
2007-01-01
gency Management Association ( NEMA ) to explore application of the Emergency Management Assistance Compact (EMAC) model to the task of identifying...organizations combined—are the norm . The challenge for government and the private sector is to ensure that donated goods and services from the latter...Association ( NEMA ). EOC – Emergency Operations Center – the central command and control facility responsible for carrying out emergency preparedness and
Short-Time Mass Variation in Natural Atmospheric Dust.
1979-11-01
many years. When the Krakatoa volcano in the South Pacific erupted in 1883, ejecting tons of dust into the high atmosphere, people from many parts of the...Flight Center, AL 35812 Commander Naval Ocean Systems Center (Code 4473) Commander ATTN: Technical Library US Army Missile R&D Command San Diego, CA...PO Box 67 ATTN: DRDMI-TBD APO San Francisco, CA 96555 US Army Missile R&D Command Redstone Arsenal, AL 35809 Director NOAA/ERL/APCL R31 Commander RB3
Mobile Sensor Technologies Being Developed
NASA Technical Reports Server (NTRS)
Greer, Lawrence C.; Oberle, Lawrence G.
2003-01-01
The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a central command location. Web-based control and interrogation of similar mobile sensor platforms have also been demonstrated. Expected applications of this technology include robotic planetary exploration, astronaut-to-equipment communication, and remote aerospace engine inspections.
15. View looking up Dramp from middle floor level showing ...
15. View looking up D-ramp from middle floor level showing lighting conduits and manometer panel on wall of decontamination area. Building 501, October 2, 1956 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
1990-03-30
This is our final report on the Audit of the Intelligence Center, Pacific, for your information and use. The audit was made from January to August...1989 at the request of the Commander, Intelligence Center, Pacific (IPAC). The objectives of the audit were to determine whether the resources provided...corrective actions. During the audit , there was a scheduled change of command at IPAC. The former and present Commanders, IPAC, and the Director for
72. SAC control center underground structure lower floor plan, drawing ...
72. SAC control center underground structure lower floor plan, drawing number 32-02-03, dated 1 February 1955 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
70. SAC command post construction, building 500, undated Offutt ...
70. SAC command post construction, building 500, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2005-10-14
of the decision-support systems that underlie and are key to these strategies. Cal Poly’s Collaborative Agent Design (CAD) Research Center is the...architect and lead developer of one of the first such systems: IMMACCS (Integrated Marine Multi- Agent Command and Control System), with JPL, SPAWAR...presented later in this document. An overview of accomplishments to date on the project follows: " Research carried out by the CADRC (Cooperative Agent
Conference room 211, adjacent to commander's quarters, with vault door ...
Conference room 211, adjacent to commander's quarters, with vault door at right. Projection area at center is equipped with automatic security drapes. Projection room uses a 45 degree mirror to reflect the image onto the frosted glass screen. Door on far left leads to display area senior battle staff viewing bridge, and the commander's quarters - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA
Vertical and Horizontal Forces: A Framework for Understanding Airpower Command and Control
2014-05-22
failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ...ABSTRACT The Air Force has long maintained the tenet of “centralized control , decentralized execution.” Changes in the contextual environment and...help commanders understand how command and control (C2) systems work best today. The proposed cognitive framework moves beyond centralization
1994-04-01
that the peripheral vasoconstriction resulting from cold exposure leads to an increase in central venous return, increased central venous pressure, and...AD-A279 775 -; lilli IIIIIII lIII 11lU~lMuli/II I IIIll 1993 COMMAND HISTORY Compiled by R. E. Gadolin and K. S. Mayer DTIC SL ELECTE MAYSI11941) v F...distribution unlimited. NAVAL AEROSPACE MEDICAL RESEARCH LABORATORY 51 HOVEY ROAD, PENSACOLA, FLORIDA 32508-1046 1993 COMMAND HISTORY Compiled by R.E. Gadolin
Caravagna, Céline; Kinkead, Richard; Soliz, Jorge
2014-08-15
Previous studies indicated that erythropoietin modulates central respiratory command in mice. Specifically, a one-hour incubation of the brainstems with erythropoietin attenuates hypoxia-induced central respiratory depression. Here, using transgenic mice constitutively overexpressing erythropoietin specifically in the brain (Tg21), we investigated the effect of chronic erythropoietin stimulation on central respiratory command activity during post-natal development. In vitro brainstem-spinal cord preparations from mice at 0 (P0) or 3 days of age (P3) were used to record the fictive inspiratory activity from the C4 ventral root. Our results show that erythropoietin already stimulates the hypoxic burst frequency at P0, and at P3, erythropoietin effectively stimulates the hypoxic burst frequency and amplitude. Because the maturation of the central respiratory command in mice is characterized by a decrease in the burst frequency with age, our results also suggest that erythropoietin accelerates the maturation of the newborn respiratory network and its response to hypoxia. Copyright © 2014 Elsevier B.V. All rights reserved.
71. SAC command post construction, building 500, January 20, 1987 ...
71. SAC command post construction, building 500, January 20, 1987 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
66. SAC command post lobby, building 500, undated, looking southeast ...
66. SAC command post lobby, building 500, undated, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
63. Aerial view of SAC command post construction, looking west ...
63. Aerial view of SAC command post construction, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
69. Vice President Ford entering SAC command post, February, 1974 ...
69. Vice President Ford entering SAC command post, February, 1974 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Matsukawa, Kanji
2012-01-01
Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.
67. Aerial view of SAC command post, building 500, looking ...
67. Aerial view of SAC command post, building 500, looking northeast, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
64. SAC command post lobby, building 500, November 8, 1956, ...
64. SAC command post lobby, building 500, November 8, 1956, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
62. Aerial view of SAC command post, building 500, looking ...
62. Aerial view of SAC command post, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
77 FR 59596 - Procurement List; Proposed Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... within the authority of Naval Supply Systems Command (NAVSUP) Fleet Logistics Center in Jacksonville, FL, as aggregated by the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...
Ooue, Anna; Sato, Kohei; Hirasawa, Ai; Sadamoto, Tomoko
2012-11-07
The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB) and without (EX) vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE) in overall and exercising muscle were measured. The cross-sectional area (CSAvein) and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein) was calculated using both variables. Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P <0.05). Increases in heart rate and mean arterial pressure during exercise at EX + VIB were also lower than those at EX (P <0.05). CSAvein in the resting limb at EX decreased during exercise from baseline (P <0.05), but CSAvein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P <0.05). However, BFvein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. Diminished central command induced by tendon vibration may attenuate the superficial venous vessel response of the resting limb during sustained static arm exercise.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... Engineering Command, Edgewood Chemical Biological Center (ECBC) AGENCY: Office of the Deputy Under Secretary... the Army, Army Research, Development and Engineering Command, Edgewood Chemical Biological Center... Biological Chemical Center, (RDCB-DPC-W), 5183 Blackhawk Road, Building 3330, Room 264, Aberdeen Proving...
46. SAC Commander in Chief entry, second floor, Awing, building ...
46. SAC Commander in Chief entry, second floor, A-wing, building 500, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
47. SAC Commander in Chief office, second floor, Awing, building ...
47. SAC Commander in Chief office, second floor, A-wing, building 500, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
68. Aerial view of SAC command post, building 500, looking ...
68. Aerial view of SAC command post, building 500, looking northeast, spring, 1957 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
NASA Technical Reports Server (NTRS)
Cornelius, Randy; Frank, Jeremy; Garner, Larry; Haddock, Angie; Stetson, Howard; Wang, Lui
2015-01-01
The Autonomous Mission Operations project is investigating crew autonomy capabilities and tools for deep space missions. Team members at Ames Research Center, Johnson Space Center and Marshall Space Flight Center are using their experience with ISS Payload operations and TIMELINER to: move earth based command and control assets to on-board for crew access; safely merge core and payload command procedures; give the crew single action intelligent operations; and investigate crew interface requirements.
Close up view of the Commander's Seat on the Flight ...
Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
48. SAC Deputy Commander in Chief office, second floor, Awing, ...
48. SAC Deputy Commander in Chief office, second floor, A-wing, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL ...
ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL DETAILS. DATED 03/15/1971 - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM
2003-08-05
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) look at tiles recovered. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (center), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.
Employment of a Dual Status Commander in a Multi-State Disaster Operation
2016-06-10
propagates parallel commands among affected states without a singular organization to synchronize and prioritize efforts. Thus, the central research ...without a singular organization to synchronize and prioritize efforts. Thus, the central research question is: How can laws be changed to support the...1 The Research Question
The influence of central command on baroreflex resetting during exercise
NASA Technical Reports Server (NTRS)
Raven, Peter B.; Fadel, Paul J.; Smith, Scott A.
2002-01-01
The arterial baroreflex functions as a negative feedback system regulating blood pressure around an established operating point. Paradoxically, a parallel increase in heart rate and blood pressure manifests during exercise. Experimental evidence suggests these events are caused, in part, by a rapid resetting of the baroreflex by central command.
Terminal Information Processing System (TIPS) Consolidated CAB Display (CCD) Comparative Analysis.
1982-04-01
Barometric pressure 3. Center field wind speed, direction and gusts 4. Runway visual range 5. Low-level wind shear 6. Vortex advisory 7. Runway equipment...PASSWORD Command (standard user) u. PAUSE Command (standard user) v. PMSG Command (standard user) w. PPD Command (standard user) x. PURGE Command (standard
Maritime Homeland Command Control: Teaching an Old Dog New Tricks
2002-02-04
Security, Command and Control, Navy, Coast Guard, Customs Service, Centralized Control, Decentralized Execution, Organization by Objectives 15.Abstract...primarily responsible for the maritime homeland, the Navy, the Coast guard, the Customs Service, should provide resources and command capabilities to a...Coast Guard, the Customs Service, should provide resources and command capabilities to a unified command and control structure. Coast Guard forces and
In Situ Wetland Restoration Demonstration
2014-07-01
Program (ESTCP) has funded the Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) and its DoD partners: U.S. Army Public Health ...Command Engineering Service Center [NAVFAC ESC]) and its DoD partners U.S. Army Public Health Command, Naval Facilities Engineering Command Atlantic...made that unacceptable risks to human health or the environment may be present in portions of the Canal Creek system. Innovative technologies
Obama Kennedy Space Center Visit
2010-04-14
Gen. C. Robert Kehler, Commander, Air Force Space Command, left, NASA Deputy Administrator Lori Garver, 2nd from left, NASA Kennedy Space Center Director Bob Cabana, and Col. Burke E. Wilson is the Commander, 45th Space Wing, right, welcome the arrival of Air Force One and President Barack Obama to the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)
Tools virtualization for command and control systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-10-01
Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.
2016-03-23
cleaned so that they are free of dust, dirt, lint and human waste, and trash.” However, the contract did not explicitly state that the facilities...be free of mold/mildew. ACC–RI and ARCENT should review and modify the basic life support services contract, as necessary, to include measures...Responsibility, “The Sand Book,” July 18, 2014. 16 Unified Facility Criteria 1-202-01, “Host Nation Facilities in Support of Military Operations,” September 1
49. COMMAND INFORMATION CENTER (CIC) AFT LOOKING FORWARD PORT ...
49. COMMAND INFORMATION CENTER (CIC) - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING VARIOUS TYPES OF RADAR UNITS, PLOT TABLES AND PLOTTING BOARDS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
Defense.gov Special Report: Travels With Hagel
Thanks Warriors, Staff at Medical Center Defense Secretary Chuck Hagel made his first official visit to Brooke Army Medical Center Wednesday. Hagel was welcomed by BAMC Commander Col. Kyle Campbell and Command Sgt. Maj. Mark Pumphrey at San Antonio Military Medical Center followed by a meet-and-greet with
Estrogen attenuates the cardiovascular and ventilatory responses to central command in cats.
Hayes, Shawn G; Moya Del Pino, Nicolas B; Kaufman, Marc P
2002-04-01
Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.
Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko
2012-08-15
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.
1998-02-05
KENNEDY SPACE CENTER, FLA. -- Technicians gather around the STS-90 Neurolab payload during weight and center-of-gravity measurements in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
Overview of Climate Confluence Security Issues
NASA Astrophysics Data System (ADS)
Reisman, J. P.
2011-12-01
Presentation will focus on an overview of the security perspectives based on the confluence considerations including energy, economics and climate change. This will include perspectives from reports generated by the Quadrennial Defense Review, Joint Forces Command, the Center for Strategic International Studies, MIT, the Inter-agency Climate Change Adaptation Task Force, the Central Intelligence Agency, the Center for Naval Analysis, and other relevant reports. The presentation will highlight the connections between resource issues and climate change which can be interpreted into security concerns. General discussion of global issues, contextual review of AR4 WGII may be included and any other report updates as applicable. The purpose of this presentation is to give a rounded view of the general qualitative and quantitative perspectives regarding climate related security considerations.
Friction in Command and Control: Sources of Conflict in Military Doctrine
2011-06-01
Colonel Michael W. Kometer (Date) ____________________________________ Dr. S . Michael Pavelec (Date...central belief s . This chapter will attempt to clarify these terms. Unity of Command Martin Van Creveld defines command ―as a function that has to...execution.17 Control The semantic demarcation between Air Force and Marine command and control doctrine s comes with the different approaches to
Mission Command In A Communications Denied Environment
2017-02-16
AIR WAR COLLEGE AIR UNIVERSITY MISSION COMMAND IN A COMMUNICATIONS DENIED ENVIRONMENT by Ramon Ahrens, Lieutenant Colonel, GAF A...centralized execution. Mission Command is particularly helpful in communication denied environments . This paper shows the advantages in situations where...Mission Command needs to be practiced and executed in peacetime for it to work during real world operations. The United States armed forces are
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...
1993-01-01
liaison officers at the other’s equivalent major schools-armor, aviation, air defense, field artillery, engineer , infantry, signal, ordnance... Engineer Center and Fort Belvoir, the Infantry Center and Fort Benning, the Air Defense Center and Fort Bliss, the Transportation Center and Fort...administered by the commander of the Araor Center and Fort Knox. TRADOC had 16 Army branch schools. Eight schools--the Air Defense, Armor, Engineer , Field
STS-108 and Expedition 4 crews visit Mobile Command Center at CCAFS
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-108 crew visit the Mobile Command Center at Cape Canaveral Air Force Station. From left are Pilot Mark E. Kelly, Mission Specialist Daniel M. Tani; Commander Dominic L. Gorie and Mission Specialist Linda A. Godwin; and Expedition 4 Commander Onufrienko and Daniel W. Bursch and Carl E. Walz. Crew members are at KSC for Terminal Countdown Demonstration Test activities that include a simulated launch countdown, and emergency exit training from the orbiter and launch pad. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.
Urban Warfare at the Operational Level: Identifying Centers of Gravity and Key Nodes
1999-04-01
less than the major urban centers, making their lot even worse. Consider these other statistics and the implications they can have for US national...Command and Staff College coursebook ; Maxwell AFB, AL: Department of War Theory and Campaign Studies, Air Command and Staff College, Sep 1998), 288. 24...College coursebook ; Maxwell AFB, AL: Department of War Theory and Campaign Studies, Air Command and Staff College, Sep 1998) World Resources
Design and experimental validation of a simple controller for a multi-segment magnetic crawler robot
NASA Astrophysics Data System (ADS)
Kelley, Leah; Ostovari, Saam; Burmeister, Aaron B.; Talke, Kurt A.; Pezeshkian, Narek; Rahimi, Amin; Hart, Abraham B.; Nguyen, Hoa G.
2015-05-01
A novel, multi-segmented magnetic crawler robot has been designed for ship hull inspection. In its simplest version, passive linkages that provide two degrees of relative motion connect front and rear driving modules, so the robot can twist and turn. This permits its navigation over surface discontinuities while maintaining its adhesion to the hull. During operation, the magnetic crawler receives forward and turning velocity commands from either a tele-operator or high-level, autonomous control computer. A low-level, embedded microcomputer handles the commands to the driving motors. This paper presents the development of a simple, low-level, leader-follower controller that permits the rear module to follow the front module. The kinematics and dynamics of the two-module magnetic crawler robot are described. The robot's geometry, kinematic constraints and the user-commanded velocities are used to calculate the desired instantaneous center of rotation and the corresponding central-linkage angle necessary for the back module to follow the front module when turning. The commands to the rear driving motors are determined by applying PID control on the error between the desired and measured linkage angle position. The controller is designed and tested using Matlab Simulink. It is then implemented and tested on an early two-module magnetic crawler prototype robot. Results of the simulations and experimental validation of the controller design are presented.
Health Hazard Assessment and Toxicity Clearances in the Army Acquisition Process
NASA Technical Reports Server (NTRS)
Macko, Joseph A., Jr.
2000-01-01
The United States Army Materiel Command, Army Acquisition Pollution Prevention Support Office (AAPPSO) is responsible for creating and managing the U.S. Army Wide Acquisition Pollution Prevention Program. They have established Integrated Process Teams (IPTs) within each of the Major Subordinate Commands of the Army Materiel Command. AAPPSO provides centralized integration, coordination, and oversight of the Army Acquisition Pollution Prevention Program (AAPPP) , and the IPTs provide the decentralized execution of the AAPPSO program. AAPPSO issues policy and guidance, provides resources and prioritizes P2 efforts. It is the policy of the (AAPPP) to require United States Army Surgeon General approval of all materials or substances that will be used as an alternative to existing hazardous materials, toxic materials and substances, and ozone-depleting substances. The Army has a formal process established to address this effort. Army Regulation 40-10 requires a Health Hazard Assessment (HHA) during the Acquisition milestones of a new Army system. Army Regulation 40-5 addresses the Toxicity Clearance (TC) process to evaluate new chemicals and materials prior to acceptance as an alternative. U.S. Army Center for Health Promotion and Preventive Medicine is the Army's matrixed medical health organization that performs the HHA and TC mission.
77 FR 70738 - Procurement List Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
...: C-List for 100% of the requirement of the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL, as aggregated by the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL. The Committee for Purchase From People Who Are Blind or Severely Disabled...
Nonsomatotopic organization of the higher motor centers in octopus.
Zullo, Letizia; Sumbre, German; Agnisola, Claudio; Flash, Tamar; Hochner, Binyamin
2009-10-13
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.
Astronaut John Young ingresses Apollo spacecraft command module in training
1968-07-05
S68-40875 (5 July 1968) --- Astronaut John W. Young, Apollo 7 backup command module pilot, ingresses Apollo Spacecraft 101 Command Module during simulated altitude runs at the Kennedy Space Center's Pad 34.
2008-04-01
what A Goldwater- Nichols accomplished for the U.S. Military, improve responsiveness, improve command relationships , and educate our interagency...See Appendix A] further refined command relationships within the military and centralized control of the services. While military command... relationships improved with these reforms, command and control issues within the services remained. Operation Eagle Claw, the failed Iranian hostage rescue
Preliminary Assessment of Primary Flight Display Symbology for Electro- Optic Head-Down Displays
1991-06-01
information :elated to pitch and power; the vertica! line provides information related to bank and heading. As a result of this geometrica ...steering bar are centered over the aircraft symbol. -n -1-- If the bars are centered, the aircraft is either correcting properly or is flying the desired...a•Isd bas,:ý muve to provide a new pitch command. Roll theading correction ) commands are seen as unbalanced line width, the low command bar side
DOT National Transportation Integrated Search
1977-06-01
This report summarizes the findings of a benefit analysis study of the present and proposed Air Traffic Control Systems Command Center automation systems. The benefits analyzed were those associated with Fuel Advisory Departure and Quota Flow procedu...
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell
NASA Technical Reports Server (NTRS)
2001-01-01
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
A Theory of Rate-Dependent Plasticity
1984-05-01
crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner...Info Center Bldg. 2925, Box 22 Fort Ord, CA 93941 55 DISTRIBUTION LIST No. of Copies Organization 1 Commander Naval Sea Systems Command...Washington, DC 20360 Commander Naval Sea Systems Command ( SEA -62R41) ATTN: L. Pasiuk Washington, DC 20360 Commander Naval
Four Apollo astronauts with Command and Service Module at ASVC prior to grand opening
NASA Technical Reports Server (NTRS)
1997-01-01
Some of the former Apollo program astronauts admire an Apollo Command and Service Module during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. The astronauts are (from left): Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young;. Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr.; Apollo 17 Commander Eugene A. Cernan; and Apollo 10 Commander Thomas P. Stafford. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.
[Mass maritime casualty incidents in German waters: structures and resources].
Castan, J; Paschen, H-R; Wirtz, S; Dörges, V; Wenderoth, S; Peters, J; Blunk, Y; Bielstein, A; Kerner, T
2012-07-01
The Central Command for Maritime Emergencies was founded in Germany in 2003 triggered by the fire on board of the cargo ship "Pallas" in 1998. Its mission is to coordinate and direct measures at or above state level in maritime emergency situations in the North Sea and the Baltic Sea. A special task in this case is to provide firefighting and medical care. To face these challenges at sea emergency doctors and firemen have been specially trained. This form of organization provides a concept to counter mass casualty incidents and peril situations at sea. Since the foundation of the Central Command for Maritime Emergencies there have been 5 operations for firefighting units and 4 for medical response teams. Assignments and structure of the Central Command for Maritime Emergencies are unique in Europe.
M1A2 Adjunct Analysis (POSNOV Volume)
1989-12-01
MD 20814-2797 Director 2 U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CS, AMXSY-GA Aberden Proving Grounds , MD 21005-5071 U.S. Army...Leonard Wood, MO Commander U.S. Army Ordnance Center & School ATTN: ATSL-CD-CS Aberdeen Proving Ground , MD 21005 Commander 2 U.S. Army Soldier Support...NJ Commander U.S. Army Test and Evaluation Command ATrN: AMSTE-CM-R Aberdeen Proving Ground , MD 21005 Commander U.S. Army Tank Automotive Command
76 FR 22680 - Procurement List; Proposed Addition
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... (41 U.S.C. 46- 48c) in connection with the service proposed for addition to the Procurement List... Type/Location: Contact Center Service. Human Resources Command Contact Center, Fort Knox, KY. NPAs...). Contracting Activity: Department of the Army, Human Resource Command, Fort Knox, KY. Barry S. Lineback...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Correction AGENCY: Office... employees at the Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC). Within that notice the descriptors for levels IV and V are incorrect under factor...
NASA Technical Reports Server (NTRS)
Mcmurran, W. R. (Editor)
1973-01-01
A history is presented of the major electronic tracking, optical, telemetry, and command systems used at ETR in support of Apollo-Saturn and its forerunner vehicles launched under the jurisdiction of the Kennedy Space Center and its forerunner organizations.
Director, Operational Test and Evaluation FY 2015 Annual Report
2016-01-01
review. For example, where a wind turbine project was found to have the potential to seriously degrade radar cross section testing at the Naval Air...Assessment Plan U.S. Special Operations Command Tempest Wind 2015 Assessment Plan U.S. Transportation Command Turbo Challenge 2015 Final Assessment...U.S. Air Forces Central Command 2015 May 2015 U.S. Special Operations Command-Pacific Tempest Wind 2014 May 2015 North American Aerospace Defense
From the Red Ball Express to the Objective Force: A Quest for Logistics Transformation
2007-03-30
not support. In order to streamline materiel management to the force, Army Sustainment Command developed their Distribution Management Center...material management mission and the establishment and transfer of efforts to the Distribution Management Center, the Army Sustainment Command...attempt to bridge the capability gap. As the Distribution Management Center stands up at Rock Island Arsenal, they will assume responsibility for each
2005-06-01
cognitive task analysis , organizational information dissemination and interaction, systems engineering, collaboration and communications processes, decision-making processes, and data collection and organization. By blending these diverse disciplines command centers can be designed to support decision-making, cognitive analysis, information technology, and the human factors engineering aspects of Command and Control (C2). This model can then be used as a baseline when dealing with work in areas of business processes, workflow engineering, information management,
Cost efficient command management
NASA Technical Reports Server (NTRS)
Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom
1996-01-01
The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.
Major technological innovations introduced in the large antennas of the Deep Space Network
NASA Technical Reports Server (NTRS)
Imbriale, W. A.
2002-01-01
The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.
Securing Ground Data System Applications for Space Operations
NASA Technical Reports Server (NTRS)
Pajevski, Michael J.; Tso, Kam S.; Johnson, Bryan
2014-01-01
The increasing prevalence and sophistication of cyber attacks has prompted the Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The CAM software provides centralized services and software components used by GDS subsystems to meet access control requirements and ensure data integrity, confidentiality, and availability. In this paper we describe the CAM software; examples of its integration with spacecraft commanding software applications and an information management service; and measurements of its performance and reliability.
NASA Astrophysics Data System (ADS)
Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng
2018-01-01
We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.
Neural control hierarchy of the heart has not evolved to deal with myocardial ischemia.
Kember, G; Armour, J A; Zamir, M
2013-08-01
The consequences of myocardial ischemia are examined from the standpoint of the neural control system of the heart, a hierarchy of three neuronal centers residing in central command, intrathoracic ganglia, and intrinsic cardiac ganglia. The basis of the investigation is the premise that while this hierarchical control system has evolved to deal with "normal" physiological circumstances, its response in the event of myocardial ischemia is unpredictable because the singular circumstances of this event are as yet not part of its evolutionary repertoire. The results indicate that the harmonious relationship between the three levels of control breaks down, because of a conflict between the priorities that they have evolved to deal with. Essentially, while the main priority in central command is blood demand, the priority at the intrathoracic and cardiac levels is heart rate. As a result of this breakdown, heart rate becomes less predictable and therefore less reliable as a diagnostic guide as to the traumatic state of the heart, which it is commonly used as such following an ischemic event. On the basis of these results it is proposed that under the singular conditions of myocardial ischemia a determination of neural control indexes in addition to cardiovascular indexes has the potential of enhancing clinical outcome.
1991-05-01
Marine Corps Tiaining Systems (CBESS) memorization training Inteligence Center, Dam Neck Threat memorization training Commander Tactical Wings, Atlantic...News Shipbuilding Technical training AEGIS Training Center, Dare Artificial Intelligence (Al) Tools Computerized firm-end analysis tools NETSCPAC...Technology Department and provides computational and electronic mail support for research in areas of artificial intelligence, computer-assisted instruction
46 CFR 161.010-4 - Procedure for approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to the Commanding Officer, USCG Marine Safety Center, 1900 Half Street, SW., Suite 1000, Room 525, Washington, DC 20024, or transmitted by mail to: Commanding Officer, U.S. Coast Guard Marine Safety Center... and tests must be performed by an independent laboratory which meets the requirements of § 159.010-3...
2003-04-09
KENNEDY SPACE CENTER, FLA. -- Eric Baker, a United Space Alliance project engineer at Kennedy Space Center, (right) works at the Lufkin Command Center to track hazardous tank finds. KSC workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.
Measuring Command Post Operations in a Decisive Action Training Environment
2017-05-01
Research Report 2001 Measuring Command Post Operations in a Decisive Action Training Environment Michelle N...September 2014 - September 2015 4. TITLE AND SUBTITLE Measuring Command Post Operations in a Decisive Action Training Environment 5a...Readiness Training Center Warrior Leadership Council, we explored whether a guide on Command Post (CP) Operations could improve performance during
View of Apollo 14 crewmen in Command Module simulation training
1970-07-15
S70-45580 (July 1970) --- The members of the prime crew of the Apollo 14 lunar landing mission participate in Command Module (CM) simulation training at the Kennedy Space Center (KSC). Left to right are astronauts Edgar D. Mitchell, lunar module pilot; Stuart A. Roosa, command module pilot; and Alan B. Shepard Jr., commander.
Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana
2016-11-01
When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.
System and method for transferring telemetry data between a ground station and a control center
NASA Technical Reports Server (NTRS)
Ray, Timothy J. (Inventor); Ly, Vuong T. (Inventor)
2012-01-01
Disclosed herein are systems, computer-implemented methods, and tangible computer-readable media for coordinating communications between a ground station, a control center, and a spacecraft. The method receives a call to a simple, unified application programmer interface implementing communications protocols related to outer space, when instruction relates to receiving a command at the control center for the ground station generate an abstract message by agreeing upon a format for each type of abstract message with the ground station and using a set of message definitions to configure the command in the agreed upon format, encode the abstract message to generate an encoded message, and transfer the encoded message to the ground station, and perform similar actions when the instruction relates to receiving a second command as a second encoded message at the ground station from the control center and when the determined instruction type relates to transmitting information to the control center.
2011-07-07
NASA Chief, Astronaut Office, Johnson Space Center Peggy Whitson, center, STS-135 Astronauts, Rex Walheim, left, and Commander Chris Ferguson are seen as the entire crew plays a traditional card game at the NASA Kennedy Space Center Operations and Checkout Building prior to them leaving for the launch pad, on Friday, July 8, 2011 in Cape Canaveral, Fla. The point of the game is that the commander must use up all his or her bad luck before launch, so the crew can only leave for the pad after the commander loses. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Jerry Ross)
Resilient Multi-Domain Command and Control: Enabling Solutions for 2025 with Virtual Reality
2017-04-16
AIR WAR COLLEGE AIR UNIVERSITY RESILIENT MULTI-DOMAIN COMMAND AND CONTROL : ENABLING SOLUTIONS FOR 2025 WITH VIRTUAL REALITY by...monolithic, command and control (C2) sites, such as the theater Air Operation Centers (AOC), at risk. The Multi-Domain Command and Control (MDC2...Air Force respond to the these threats, considering the use of new and existing weapons and concepts, to ensure our ability to command, control and
32 CFR 542.6 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY EDUCATION SCHOOLS AND COLLEGES § 542.6 Responsibilities. (a) The Commanding General, US Army Military Personnel Center, 200 Stovall... announcing policy changes. (b) The Commanding General, US Army Training and Doctrine Command, Ft. Monroe, VA...
Application of an integrated flight/propulsion control design methodology to a STOVL aircraft
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.
1991-01-01
Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.
Surveillance of Disease and Nonbattle Injuries During US Army Operations in Afghanistan and Iraq.
Hauret, Keith G; Pacha, Laura; Taylor, Bonnie J; Jones, Bruce H
2016-01-01
Disease and nonbattle injury (DNBI) are the leading causes of morbidity during wars and military operations. However, adequate medical data were never before available to service public health centers to conduct DNBI surveillance during deployments. This article describes the process, results and lessons learned from centralized DNBI surveillance by the US Army Center for Health Promotion and Preventive Medicine, predecessor of the US Army Public Health Command, during operations in Afghanistan and Iraq (2001-2013).The surveillance relied primarily on medical evacuation records and in-theater hospitalization records. Medical evacuation rates (per 1,000 person-years) for DNBI were higher (Afghanistan: 56.7; Iraq: 40.2) than battle injury rates (Afghanistan: 12.0; Iraq: 7.7). In Afghanistan and Iraq, respectively, the leading diagnostic categories for medical evacuations were nonbattle injury (31% and 34%), battle injury (20% and 16%), and behavioral health (12% and 10%). Leading causes of medically evacuated nonbattle injuries were sports/physical training (22% and 24%), falls (23% and 26%) and military vehicle accidents (8% and 11%). This surveillance demonstrated the feasibility, utility, and benefits of centralized DNBI surveillance during military operations.
ASTP Apollo Command Module nears touchdown in Central Pacific
1975-07-24
S75-29719 (24 July 1975) --- The ASTP Apollo Command Module, with astronauts Thomas P. Stafford, Vance D. Brand and Donald K. Slayton aboard, nears a touchdown in the Central Pacific Ocean to conclude the historic joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. The spacecraft splashed down in the Hawaiian Islands area at 4:18 p.m. (CDT), July 24, 1975.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the lines at or near... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... fishing gear consisting of a float and one or more lines suspended therefrom. A hook or hooks are on the... live fish on board a vessel. Center means one of the five NMFS Fisheries Science Centers. Charter boat... carry six or fewer passengers for hire. Coast Guard Commander means one of the commanding officers of...
AirLand Battle and Tactical Command and Control Automation,
1987-01-07
Army Tactical Command and Control System (ATCCS) are the primary subjects of the last period. The precepts of AirLand Battle doctrine are examined to...AirLand Battle and the Army Tactical Command and Control System (ATCCS) are thE primary subjects of the last period. The precepts of AirLand Battle...centralized control is identified. AirLand Battle and the Army Tactical Command and Control System (ATCCS) are the primary subjects of the last
Apollo 11 Mission image - CSM over the Sea of Tranquility
1969-07-20
AS11-37-5448 (July 1969) --- The Apollo 11 Command and Service Modules (CSM) (tiny dot near quarter sized crater, center), with astronaut Michael Collins, command module pilot, aboard. The view overlooking the western Sea of Tranquility was photographed from the Lunar Module (LM). Astronauts Neil A. Armstrong, commander, and Edwin E. Aldrin Jr., lunar module pilot, manned the LM and made their historic lunar landing on July 20, 1969. Coordinates of the center of the terrain in the photograph are 18.5 degrees longitude and .5 degrees north latitude.
1971-08-01
This August 1971 interior photograph of Skylab's Multiple Docking Adapter (MDA) flight article, undergoing outfitting at the Martin-Marietta Corporation's Space Center facility in Denver, Colorado, shows the forward cone area and docking tunnel (center) that attached to the Apollo Command Module. Designed and manufactured by the Marshall Space Flight Center, the MDA housed the control units for the Apollo Telescope Mount, Earth Resources Experiment Package, and Zero-Gravity Materials Processing Facility and provided a docking port for the Apollo Command Module.
Probability Formulas for Describing Fragment Size Distributions
1981-06-01
L)RCDMD-ST 5001 EisenhowerAvenue Alexandria,VA 22333 Commander US Amy MaterielDevelopment G ReadinessCommand ATTN: DRCDL 5001EisenhowerAvenue...Sieling Natick,MA 01762 CoWander US Amy Tank Automotive DevelopmentCommand ATTN: DRDTA-UL Warren,MI 48090 1 1 1 1 1 Organization Commander US Army...ATTN: D.R. Garrison 3 A. Wilner Bethesda,MD 20084 Commander 1 NavalSurfaceWeaponsCenter ATTN: Code TEB, D. W. Colberts ~n Mr. S. Hock Code TX, Dr. W.G
2003-04-09
KENNEDY SPACE CENTER, FLA. -- NASA Kennedy Space Center engineer Lamar Russell, who is serving as team lead for debris siting reports outside of Texas, points out to his Lufkin Command Center team a location targeted for a grid search. Kennedy Space Center workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.
Expedition 11 and Expedition 12 commander and Spaceflight participant in Zvezda
2005-10-08
ISS011-E-14192 (8 October 2005) --- Russian Federal Space Agency cosmonaut Sergei K. Krikalev (right), Expedition 11 commander; astronaut William S. McArthur Jr. (center), Expedition 12 commander and NASA science officer; and U. S. Spaceflight Participant Gregory Olsen are pictured in the Destiny laboratory of the international space station following the ceremony of Changing-of-Command from Expedition 11 to Expedition 12.
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott, Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Here, Apollo 11 Commander Neil Armstrong speaks to the invited guests. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
2003-04-09
KENNEDY SPACE CENTER, FLA. -- Jeff Angermeier, assigned to lead the ground operations at the Lufkin Command Center, points out a town near the Columbia debris field. KSC workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.
2003-10-30
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
1968-07-31
Ground breaking ceremony for the Alabama Space Science Center, later renamed the U.S. Space and Rocket Center. Shown in this picture, left to right, are Edward O. Buckbee, Space Center Director; Jack Giles, Alabama State Senator of Huntsville; Dr. Wernher on Braun, Marshall Space Flight Center (MSFC) Director; Martin Darity, head of the Alabama Publicity Bureau (representing Governor Albert Brewer); James Allen, former Lieutenant governor, chairman of the Alabama Space Science Exhibit Commission; Major General Charles Eifler, commanding general of the Army Ordnance Missile Command; and Huntsville Mayor Glenrn Hearn. (Courtesy of Huntsville/Madison County Public Library)
View of Mission Control Center during Apollo 13 splashdown
1970-04-17
S70-35148 (17 April 1970) --- Staff members from NASA Headquarters (NASA HQ), Manned Spacecraft Center (MSC), and Dr. Thomas Paine (center of frame) applaud the successful splashdown of the Apollo 13 mission while Dr. George Low smokes a cigar (right), in the MSC Mission Control Center (MCC), located in Building 30. Apollo 13 crewmembers, astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot, splashed down at 12:07:44 p.m. (CST), April 17, 1970, in the south Pacific Ocean.
Common command-and-control user interface for current force UGS
NASA Astrophysics Data System (ADS)
Stolovy, Gary H.
2009-05-01
The Current Force Unattended Ground Sensors (UGS) comprise the OmniSense, Scorpion, and Silent Watch systems. As deployed by U.S. Army Central Command in 2006, sensor reports from the three systems were integrated into a common Graphical User Interface (GUI), with three separate vendor-specific applications for Command-and-Control (C2) functions. This paper describes the requirements, system architecture, implementation, and testing of an upgrade to the Processing, Exploitation, and Dissemination back-end server to incorporate common remote Command-and-Control capabilities.
Automated Power Systems Management (APSM)
NASA Technical Reports Server (NTRS)
Bridgeforth, A. O.
1981-01-01
A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.
Naval Meteorology and Oceanography Command exhibit entrance
NASA Technical Reports Server (NTRS)
2000-01-01
StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.
1971-12-01
This interior photograph of Skylab's multiple docking adapter (MDA) flight article, then undergoing outfitting at the Martin Marietta Corporation's Space Center facility in Denver, Colorado, shows the forward cone area and docking turnel (center) that attached to the Apollo Command Module. Designed and manufactured by the Marshall Space Flight Center, the MDA housed the control units for the Apollo Telescope Mount (ATM), Earth Resources Experiment Package (EREP), and Zero-Gravity Materials Processing Facility and provided a docking port for the Apollo Command Module.
Apollo 16 astronauts in Apollo Command Module Mission Simulator
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).
Command and Control: An Introduction
1989-03-01
34 [Ref. 13:p. 31) F. SUMMARY With an understanding of the architecture of generic command and control sytems , it is now time to examine the 146 methods...Center ABM Antiballistic Missile ACCS Army Command and Control System ACE Aviation Combat Element ADP Automatic Data Processing AFB Air Force Base AFM Air
Ada and the rapid development lifecycle
NASA Technical Reports Server (NTRS)
Deforrest, Lloyd; Gref, Lynn
1991-01-01
JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies.
STS-112 crew during TCDT activities with M-113 carrier
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, Fla. - STS-112 Commander Jeffrey Ashby drives the M-113 armored personnel carrier during Terminal Countdown Demonstration Test activities. At the far left is Mission Specialist Sandra Magnus. The TCDT also includes a simulated launch countdown. The mission aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.
1990 Command History for Naval Health Research Center San Diego, California.
1992-03-01
prevention and cessation programs for Navy-wide dissemination. Commands were surveyed about the tobacco use programs and activities they had conducted...commands provided some type of educational materials or programs related to the cessation of tobacco use; the most common activities were placing...useful" in helping to curb tobacco use. Only half of all commands offered some type of psychological or behavioral tobacco use cessation program. As
Ebbeling, Laura G; Goralnick, Eric; Bivens, Matthew J; Femino, Meg; Berube, Claire G; Sears, Bryan; Sanchez, Leon D
2016-01-01
Disaster exercises often simulate rare, worst-case scenario events that range from mass casualty incidents to severe weather events. In actuality, situations such as information system downtimes and physical plant failures may affect hospital continuity of operations far more significantly. The objective of this study is to evaluate disaster drills at two academic and one community hospital to compare the frequency of planned drills versus real-world events that led to emergency management command center activation. Emergency management exercise and command center activation data from January 1, 2013 to October 1, 2015 were collected from a database. The activations and drills were categorized according to the nature of the event. Frequency of each type of event was compared to determine if the drills were representative of actual activations. From 2013 to 2015, there were a total of 136 command center activations and 126 drills at the three hospital sites. The most common reasons for command center activations included severe weather (25 percent, n = 34), maintenance failure (19.9 percent, n = 27), and planned mass gathering events (16.9 percent, n = 23). The most frequent drills were process tests (32.5 percent, n = 41), hazardous material-related events (22.2 percent, n = 28), and in-house fires (15.10 percent, n = 19). Further study of the reasons behind why hospitals activate emergency management plans may inform better preparedness drills. There is no clear methodology used among all hospitals to create drills and their descriptions are often vague. There is an opportunity to better design drills to address specific purposes and events.
Innovation for integrated command environments
NASA Astrophysics Data System (ADS)
Perry, Amie A.; McKneely, Jennifer A.
2000-11-01
Command environments have rarely been able to easily accommodate rapid changes in technology and mission. Yet, command personnel, by their selection criteria, experience, and very nature, tend to be extremely adaptive and flexible, and able to learn new missions and address new challenges fairly easily. Instead, the hardware and software components of the systems do no provide the needed flexibility and scalability for command personnel. How do we solve this problem? In order to even dream of keeping pace with a rapidly changing world, we must begin to think differently about the command environment and its systems. What is the correct definition of the integrated command environment system? What types of tasks must be performed in this environment, and how might they change in the next five to twenty-five years? How should the command environment be developed, maintained, and evolved to provide needed flexibility and scalability? The issues and concepts to be considered as new Integrated Command/Control Environments (ICEs) are designed following a human-centered process. A futuristic model, the Dream Integrated Command Environment (DICE) will be described which demonstrates specific ICE innovations. The major paradigm shift required to be able to think differently about this problem is to center the DICE around the command personnel from its inception. Conference participants may not agree with every concept or idea presented, but will hopefully come away with a clear understanding that to radically improve future systems, designers must focus on the end users.
The Naval Oceanography Operations Command (NOOC) - Naval Oceanography
Oceanography Ice You are here: Home ⺠NOOC NOOC Logo NOOC FWC Norfolk Logo FWC-N FWC-SD Logo FWC-SD JTWC Logo JTWC NOAC-Yokosuka NOAC-Y Info The Naval Oceanography Operations Command (NOOC) The NOOC advises Navy Center - Pearl Harbor and the Naval Oceanography Antisubmarine Warfare Center - Yokosuka. The Fleet
Development of the Special Operations Combat Management System
1999-08-01
Distribution Unlimited Prepared for U. S. Army Soldier and Biological Chemical Command Soldier Systems Center Natick, Massachusetts 01760-5020 19990826 022...Army Soldier and Biological Chemical Command, Soldier Systems Center, ATTN: AMSSB-RSS-D(N) (H. Girolamo), Natick, MA 01760-5020 14. ABSTRACT The...system design, integration and test. American Megatrends Inc. provided the motherboard circuit design, layout and production. Tactical Technologies Inc
2011-01-29
CAPE CANAVERAL, Fla. -- Command module pilot of Apollo 9 and commander of Apollo 15 David Scott talks to attendees of the Apollo 14 Anniversary Soirée at the Kennedy Space Center Visitor Complex's Saturn V Center. The celebration was hosted by the Astronaut Scholarship Foundation. Apollo 14 landed on the lunar surface 40 years ago on Feb. 5, 1971. Photo credit: NASA/Kim Shiflett
2011-01-29
CAPE CANAVERAL, Fla. -- Command module pilot of Apollo 9 and commander of Apollo 15 David Scott talks to attendees of the Apollo 14 Anniversary Soirée at the Kennedy Space Center Visitor Complex's Saturn V Center. The celebration was hosted by the Astronaut Scholarship Foundation. Apollo 14 landed on the lunar surface 40 years ago on Feb. 5, 1971. Photo credit: NASA/Kim Shiflett
Delta 181 Sensor Module Command Center
1989-09-01
Irot a rtiission perspectixc, operariort of lIte coltiiand center \\\\as, tight Iv coupled to corntrol cot11IrplX Operarll oIr 1lrefrc. bef’ore \\N e...8217, plantnin, It liTe latest alerts, accessed b\\ tile (olosnk cornt- putter displayv program, ss crc placedi ott all telretr\\ data displa\\ 5. 3.3.3 1health...ePackeizer Command echo Detected ,, ,/’ vRF Gomr, nad Center AF! CN Joophbick po~nts rpback Aoonops I Test loopback pairt Fig. 3-3 Major loopback
41. Stratcom History Museum, building 500, looking northeast Offutt ...
41. Stratcom History Museum, building 500, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2003-08-05
KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) visits the Columbia Debris Hangar . Chairing the task group are Richard O. Covey (third from right), former Space Shuttle commander, and Thomas P. Stafford (fourth from right), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.
2005-03-29
Brig. Gen. Curtis Bedke, commander of the Air Force Flight Test Center at Edwards Air Force Base, received some first-hand insight on how to fly a Space Shuttle approach and landing, courtesy of NASA astronaut and STS-114 mission commander Eileen Collins. The series of proficiency flights in NASA's modified Grumman Gulfstream-II Shuttle Training Aircraft were in preparation for the STS-114 mission with the shuttle Discovery. Although NASA's Kennedy Space Center in Florida is the primary landing site for Space Shuttle missions, flight crews also practice the shuttle's steep approach and landing at Edwards in case weather or other situations preclude a landing at the Florida site and force a diversion to Edwards AFB.
Temperature and Concentration Profiles in Hydrogen-Nitrous Oxide Flames.
1986-07-01
SECumvY CLASSIFICATION CF TIS PAGOE(hn Date. 3.,OCO 20. Abstract (Cont’d): est for flame modeler UNCLASSIFIED * SECURITY CL ASSIrIC ATION Or THIS P...Commander Naval Surface Weapons Center Commander ATTN: R. Bernecker, R-13 US Army Tank Automotive G.B. Wilmot , R-16 Command Silver Spring, MD 20902
Semantic definitions of space flight control center languages using the hierarchical graph technique
NASA Technical Reports Server (NTRS)
Zaghloul, M. E.; Truszkowski, W.
1981-01-01
In this paper a method is described by which the semantic definitions of the Goddard Space Flight Control Center Command Languages can be specified. The semantic modeling facility used is an extension of the hierarchical graph technique, which has a major benefit of supporting a variety of data structures and a variety of control structures. It is particularly suited for the semantic descriptions of such types of languages where the detailed separation between the underlying operating system and the command language system is system dependent. These definitions were used in the definition of the Systems Test and Operation Language (STOL) of the Goddard Space Flight Center which is a command language that provides means for the user to communicate with payloads, application programs, and other ground system elements.
Visualization Center Dedicated
2003-10-17
The dedication ceremony of the University of Southern Mississippi Center of Higher Learning (CHL) High-Performance Visualization Center at SSC was held Oct. 17. The center's RAVE II 3-D visualization system, available to both on- and off-site scientists, turns data into a fully immersive environment for the user. Cutting the ribbon are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; Jim Meredith, former director of the CHL; USM President Dr. Shelby Thames; Lt. Gov. Amy Tuck; Dr. Peter Ranelli, director of the CHL; Dewey Herring, chairman of the policy board for the CHL; and former Sen. Cecil Burge.
Visualization Center Dedicated
NASA Technical Reports Server (NTRS)
2003-01-01
The dedication ceremony of the University of Southern Mississippi Center of Higher Learning (CHL) High-Performance Visualization Center at SSC was held Oct. 17. The center's RAVE II 3-D visualization system, available to both on- and off-site scientists, turns data into a fully immersive environment for the user. Cutting the ribbon are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; Jim Meredith, former director of the CHL; USM President Dr. Shelby Thames; Lt. Gov. Amy Tuck; Dr. Peter Ranelli, director of the CHL; Dewey Herring, chairman of the policy board for the CHL; and former Sen. Cecil Burge.
59. SAC Plaque, front lawn, building 500, looking east ...
59. SAC Plaque, front lawn, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
42. Auditorium, Stratcom History Museum, building 500, looking northeast ...
42. Auditorium, Stratcom History Museum, building 500, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
40. Theater entrance and guard station, Jwing, looking southeast ...
40. Theater entrance and guard station, J-wing, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
16. Detail of southeast corner of Gwing, looking northwest ...
16. Detail of southeast corner of G-wing, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
39. Turnstile Gates and guard station, Cwing, looking northwest ...
39. Turnstile Gates and guard station, C-wing, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2003-01-01
currently available to terrorists, in- surgents, and other criminals are enormous. These groups have ex- ploited and developed local, regional, and global ...Institute, a federally funded research and development center supported by the Office of the Secretary of Defense, the Joint Staff, the unified commands...research and development center sponsored by the Office of the Secretary of Defense, the Joint Staff, the unified commands, and the defense agencies
Obama Kennedy Space Center Visit
2010-04-14
NASA Kennedy Space Center Director bob Cabana shakes hands with President Barack Obama as he and Gen. C. Robert Kehler, Commander, Air Force Space Command, left, welcome the President to Kennedy in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)
Tactical Unmanned Ground Vehicle Related Research References (BTA Study)
1993-03-01
draw bar pull - 4,297 lbs; Engine - 65 hp air cooled diesel engine ; dual electrical motors, hydrostatic drive; Observation - three closed-circuit...8217 Munitions and Chemical Command. Commander, U. S. Army Chemical Research, Development, and Engineering Center. 40..... "Unmanned Air Vehicles Payloads...8217 Larry Brantley Advanced Systems Concepts Office Research, Development, and Engineering Center MARCH 1993 edetone qArs nal, Alabama 35898-5000
Six Apollo astronauts in front of Saturn V at ASVC prior to grand opening
NASA Technical Reports Server (NTRS)
1997-01-01
Some of the former Apollo program astronauts pose in front of an Apollo Command and Service Module during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. The astronauts are (from left): Apollo 14 Lunar Module Pilot Edgar D. Mitchell; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr.; Apollo 10 Commander Thomas P. Stafford; Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; and Apollo 9 Lunar Module Pilot Russell L. Schweikart. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.
Ask the Librarian - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS 39529 Fleet Forces Command | navy.com | Freedom
5. View of front walkway to building 500 looking east ...
5. View of front walkway to building 500 looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Highly automated on-orbit operations of the NuSTAR telescope
NASA Astrophysics Data System (ADS)
Roberts, Bryce; Bester, Manfred; Dumlao, Renee; Eckert, Marty; Johnson, Sam; Lewis, Mark; McDonald, John; Pease, Deron; Picard, Greg; Thorsness, Jeremy
2014-08-01
UC Berkeley's Space Sciences Laboratory (SSL) currently operates a fleet of seven NASA satellites, which conduct research in the fields of space physics and astronomy. The newest addition to this fleet is a high-energy X-ray telescope called the Nuclear Spectroscopic Telescope Array (NuSTAR). Since 2012, SSL has conducted on-orbit operations for NuSTAR on behalf of the lead institution, principle investigator, and Science Operations Center at the California Institute of Technology. NuSTAR operations benefit from a truly multi-mission ground system architecture design focused on automation and autonomy that has been honed by over a decade of continual improvement and ground network expansion. This architecture has made flight operations possible with nominal 40 hours per week staffing, while not compromising mission safety. The remote NuSTAR Science Operation Center (SOC) and Mission Operations Center (MOC) are joined by a two-way electronic interface that allows the SOC to submit automatically validated telescope pointing requests, and also to receive raw data products that are automatically produced after downlink. Command loads are built and uploaded weekly, and a web-based timeline allows both the SOC and MOC to monitor the state of currently scheduled spacecraft activities. Network routing and the command and control system are fully automated by MOC's central scheduling system. A closed-loop data accounting system automatically detects and retransmits data gaps. All passes are monitored by two independent paging systems, which alert staff of pass support problems or anomalous telemetry. NuSTAR mission operations now require less than one attended pass support per workday.
DSC (Differential Scanning Calorimeter) Stability Test for Liquid Propellants: A Preliminary Report.
1987-09-01
AL 35898 1 Commander Commander Naval Air Systems Command US Army Missile and Space ATTN: J. Ramnarace, Intelligence Center AIR-54111C ATTN: AMSMI-YDL...uSE. .3o BUSIN S RE L MAIL FIRST CLASS PERMIT NO 12062 WASHINGTON,OCI 0IRTPOSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY Director US Army Ballistic
Electrical Conductivity Measurements of Hydroxylammonium Nitrate: Design Considerations
1986-04-01
aqueous NaNO3 i• shown as well to indicate the similarity of this conductivity data with that cf HAN. The solubility of NaNO 3 in H120 is much less than... Wilmot , R-16 Commander Silver Spring, MD 20910 US Army Tank Automotive Command 1 Commander ATTN: AMSTA-TSL Naval Weapons Center Warren, MI 48397-5000
An Architecture to Promote the Commercialization of Space Mission Command and Control
NASA Technical Reports Server (NTRS)
Jones, Michael K.
1996-01-01
This paper describes a command and control architecture that encompasses space mission operations centers, ground terminals, and spacecraft. This architecture is intended to promote the growth of a lucrative space mission operations command and control market through a set of open standards used by both gevernment and profit-making space mission operators.
2000-01-01
1 Colonel Dave Gillett , “Operation Allied Force After-Action,” lecture presented at...Force Commander, Rear Admiral Leigh Noyes, Carrier Forces Commander, and Rear Admiral John McCain, Shore-Based Aircraft Commander. The sole Marine...17 John Miller Jr. Guadalcanal: The First Offensive (Washington D.C.: Center of
The advantages and disadvantages of centralized control of air power at operational level
NASA Astrophysics Data System (ADS)
Arisoy, Uǧur
2014-05-01
People do not want to see and hear a war. In today's world, if war is inevitable, the use of air power is seen as the preferable means of conducting operations instead of financially burdensome land battles which are more likely to cause heavy loss of life. The use of Air Power has gained importance in NATO operations in the Post-Cold War era. For example, air power has undertaken a decisive role from the beginning to the end of the operation in Libya. From this point of view, the most important issue to consider is how to direct air power more effectively at operational level. NATO's Core JFAC (Joint Force Air Command) was established in 2012 to control joint air power at operational level from a single center. US had experienced JFAC aproach in the Operation Desert Storm in 1991. UK, France, Germany, Italy and Spain are also directing their air power from their JFAC structures. Joint air power can be directed from a single center at operational level by means of JFAC. JFAC aproach provides complex planning progress of Air Power to be controled faster in a single center. An Air Power with a large number of aircrafts, long range missiles of cutting-edge technology may have difficulties in achieving results unless directed effectively. In this article, directing air power more effectively at operational level has been studied in the framework of directing air power from a single center carried out by SWOT analysis technique. "Directing Air Power at operational level from a single center similar to JFAC-like structure" is compared with "Directing Air Power at operational level from two centers similar to AC (Air Command) + CAOC (Combined Air Operations Center) structure" As a result of this study, it is assessed that directing air power at operational level from a single center would bring effectiveness to the air campaign. The study examines directing air power at operational level. Developments at political, strategic and tactical levels have been ignored.
Space Weather Forecasting at the Joint Space Operations Center (JSpOC)
NASA Astrophysics Data System (ADS)
Nava, O.
2012-12-01
The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.
ASTRONAUT BEAN, ALAN L - SIMULATION - BLDG. 35 - COMMAND MODULE TRAINER - JSC
1975-02-20
S75-21720 (14 Feb. 1975) --- Astronaut Alan L. Bean (foreground) and cosmonaut Aleksey A. Leonov participate in Apollo-Soyuz Test Project joint crew training in Building 35 at NASA's Johnson Space Center. They are in the Apollo Command Module trainer. The training session simulated activities on the first day in Earth orbit. Bean is the commander of the American ASTP backup crew. Leonov is the commander of the Soviet ASTP first (prime) crew.
23. View of Jwing left, at Mercury Avenue, looking west ...
23. View of J-wing left, at Mercury Avenue, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
38. Cafeteria, Dwing, building 500, looking northeast from southwest corner ...
38. Cafeteria, D-wing, building 500, looking northeast from southwest corner - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
24. Courtyard between Cwing left and Jwing dock, looking west ...
24. Courtyard between C-wing left and J-wing dock, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
26. Inbound gates to building 500, looking east from Minuteman ...
26. Inbound gates to building 500, looking east from Minuteman Circle - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
34. Roof vent detail from roof of Bwing, looking west ...
34. Roof vent detail from roof of B-wing, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
20. Threequarter detail of main entrance to Hwing, looking southwest ...
20. Three-quarter detail of main entrance to H-wing, looking southwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
21. Threequarter view of northeast corner of Hwing, looking southwest ...
21. Three-quarter view of northeast corner of H-wing, looking southwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
14. Main entrance to Gwing from Apollo Drive, looking north ...
14. Main entrance to G-wing from Apollo Drive, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
28. Ventilation Building located on front lawn of building 500, ...
28. Ventilation Building located on front lawn of building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
7. Front facade of main entrance, Awing, Minuteman circle looking ...
7. Front facade of main entrance, A-wing, Minuteman circle looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
13. South elevation of Gwing, looking north from employee parking ...
13. South elevation of G-wing, looking north from employee parking lot - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2. Front (west) elevation of building 500 looking southeast from ...
2. Front (west) elevation of building 500 looking southeast from SAC Boulevard - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
3. Threequarter view of building 500 looking southeast from SAC ...
3. Three-quarter view of building 500 looking southeast from SAC Boulevard - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
18. Threequarter view of southeast corner of Hwing, looking northwest ...
18. Three-quarter view of southeast corner of H-wing, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
58. Corridor, building 500 to building 515, basement level, looking ...
58. Corridor, building 500 to building 515, basement level, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
1. Front (west) elevation of building 500 looking east from ...
1. Front (west) elevation of building 500 looking east from SAC Boulevard - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
29. Ventilation Building located on front lawn of building 500, ...
29. Ventilation Building located on front lawn of building 500, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
32 CFR Appendix B to Part 623 - Approving Authority Addresses/Telephone Numbers *
Code of Federal Regulations, 2013 CFR
2013-07-01
...; B-17. Commander, US Army Communications Security, Logistics Agency, ATTN: SELCL-NICP-IM, Fort..., Redstone Arsenal, AL 35809; B-24. Commander, US Army Security Assistance Center, ATTN: DRSAC, 5001...
32 CFR Appendix B to Part 623 - Approving Authority Addresses/Telephone Numbers *
Code of Federal Regulations, 2014 CFR
2014-07-01
...; B-17. Commander, US Army Communications Security, Logistics Agency, ATTN: SELCL-NICP-IM, Fort..., Redstone Arsenal, AL 35809; B-24. Commander, US Army Security Assistance Center, ATTN: DRSAC, 5001...
32 CFR Appendix B to Part 623 - Approving Authority Addresses/Telephone Numbers *
Code of Federal Regulations, 2010 CFR
2010-07-01
...; B-17. Commander, US Army Communications Security, Logistics Agency, ATTN: SELCL-NICP-IM, Fort..., Redstone Arsenal, AL 35809; B-24. Commander, US Army Security Assistance Center, ATTN: DRSAC, 5001...
32 CFR Appendix B to Part 623 - Approving Authority Addresses/Telephone Numbers *
Code of Federal Regulations, 2012 CFR
2012-07-01
...; B-17. Commander, US Army Communications Security, Logistics Agency, ATTN: SELCL-NICP-IM, Fort..., Redstone Arsenal, AL 35809; B-24. Commander, US Army Security Assistance Center, ATTN: DRSAC, 5001...
32 CFR Appendix B to Part 623 - Approving Authority Addresses/Telephone Numbers *
Code of Federal Regulations, 2011 CFR
2011-07-01
...; B-17. Commander, US Army Communications Security, Logistics Agency, ATTN: SELCL-NICP-IM, Fort..., Redstone Arsenal, AL 35809; B-24. Commander, US Army Security Assistance Center, ATTN: DRSAC, 5001...
2003-08-05
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) inspect some of the debris. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (fourth from left), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.
The Next Generation of Ground Operations Command and Control; Scripting in C no. and Visual Basic
NASA Technical Reports Server (NTRS)
Ritter, George; Pedoto, Ramon
2010-01-01
Scripting languages have become a common method for implementing command and control solutions in space ground operations. The Systems Test and Operations Language (STOL), the Huntsville Operations Support Center (HOSC) Scripting Language Processor (SLP), and the Spacecraft Control Language (SCL) offer script-commands that wrap tedious operations tasks into single calls. Since script-commands are interpreted, they also offer a certain amount of hands-on control that is highly valued in space ground operations. Although compiled programs seem to be unsuited for interactive user control and are more complex to develop, Marshall Space flight Center (MSFC) has developed a product called the Enhanced and Redesign Scripting (ERS) that makes use of the graphical and logical richness of a programming language while offering the hands-on and ease of control of a scripting language. ERS is currently used by the International Space Station (ISS) Payload Operations Integration Center (POIC) Cadre team members. ERS integrates spacecraft command mnemonics, telemetry measurements, and command and telemetry control procedures into a standard programming language, while making use of Microsoft's Visual Studio for developing Visual Basic (VB) or C# ground operations procedures. ERS also allows for script-style user control during procedure execution using a robust graphical user input and output feature. The availability of VB and C# programmers, and the richness of the languages and their development environment, has allowed ERS to lower our "script" development time and maintenance costs at the Marshall POIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, L.W.; Hunt, S.T.; Savage, S.F.
1992-04-01
The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less
Wide angle view of Mission Control Center during Apollo 14 transmission
1971-01-31
S71-17122 (31 Jan. 1971) --- A wide angle overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center at the Manned spacecraft Center. This view was photographed during the first color television transmission from the Apollo 14 Command Module. Projected on the large screen at the right front of the MOCR is a view of the Apollo 14 Lunar Module, still attached to the Saturn IVB stage. The Command and Service Modules were approaching the LM/S-IVB during transposition and docking maneuvers.
1999-07-19
KENNEDY SPACE CENTER, FLA. -- At the Apollo/Saturn V Center, country music recording artist Teresa performs a song, "Brave New Girls," written for astronaut Catherine "Cady" Coleman, mission specialist on STS-93. She entertains participants and attendees of a women's forum held in the center. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Liftoff is scheduled for July 20 at 12:36 a.m. EDT
The Challenges of Adopting a Culture of Mission Command in the US Army
2015-05-23
NUMBER 6. AUTHOR(S) LTC(P) James W. Wright 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...the development and implementation of high- end information technology creates a paradox for mission command. 15. SUBJECT TERMS Mission command...centralized control and less risk. Likewise, the development and implementation of high- end information technology creates a paradox for mission
NARDAC (Naval Regional Data Automation Command) Operations: A Case Study.
1984-09-01
Long Beach, 1974 Sutmitted in partial fulfillment of the requirements for the degree of MASTER CF SCIENCI IN INFORMATION SYSTIES from the NAVAL...various pirts of the material Command. Therefore, it is appropriate to Zonsider centralizing the execution of these functions in NAVMAT. An...the Nance Committee recommended that the new ADP command be located under Chief of Naval Material (CNM) with a residual staff located under OP-094 to
2006-04-01
Banking Mr. Robert Luby, IBM Dr. Robert Lucky, Telcordia Technologies Mr. William Lynn, Raytheon Mr. Dave Oliver, EADS North America GOVERNMENT...MAY 2005 Central Command (CENTCOM) COL Peter Zielinski CENTCOM Office of Force Transformation (OFT) Review of COCOM Experimentation COL Richard...for Defense Analyses Mr. Patrick McCarthy, U.S. Joint Forces Command Mr. Stephen Moore, U.S. Joint Forces Command MAY 10, 2005 COL Peter Zielinski
2011-01-29
CAPE CANAVERAL, Fla. -- Lunar module pilot of Apollo 10 and commander of Apollo 17 Gene Cernan talks to attendees of the Apollo 14 Anniversary Soirée at the Kennedy Space Center Visitor Complex's Saturn V Center. The celebration was hosted by the Astronaut Scholarship Foundation. Apollo 14 landed on the lunar surface 40 years ago on Feb. 5, 1971. Cernan was the backup commander for the Apollo 14 mission. Photo credit: NASA/Kim Shiflett
Roadside-based communication system and method
NASA Technical Reports Server (NTRS)
Bachelder, Aaron D. (Inventor)
2007-01-01
A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.
Analysis of good practice of public health Emergency Operations Centers.
Xu, Min; Li, Shi-Xue
2015-08-01
To study the public health Emergency Operations Centers (EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Command Center in Chinese National Health and Family Planning Commission. Literature review was conducted to explore the EOCs of selected countries. The study focused on EOC function, organizational structure, human resources and information management. The selected EOCs had the basic EOC functions of coordinating and commanding as well as the public health related functions such as monitoring the situation, risk assessment, and epidemiological briefings. The organizational structures of the EOCs were standardized, scalable and flexible. Incident Command System was the widely applied organizational structure with a strong preference. The EOCs were managed by a unit of emergency management during routine time and surge staff were engaged upon emergencies. The selected EOCs had clear information management framework including information collection, assessment and dissemination. The performance of National Health Emergency Response Command Center can be improved by learning from the good practice of the selected EOCs, including setting clear functions, standardizing the organizational structure, enhancing the human resource capacity and strengthening information management. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
2003-08-07
KENNEDY SPACE CENTER, FLA. - The news media capture the words and images of the Return To Flight Task Group (RTFTG) which held its first public meeting at the Debus Center, KSC Visitor Complex. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board.
32. View from roof of Hwing, with Ewing on left, ...
32. View from roof of H-wing, with E-wing on left, looking southwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
50. Representative office, room 2024, second floor, Dwing, building 500, ...
50. Representative office, room 2024, second floor, D-wing, building 500, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
55. Room BF9, paper shredding facility, basement level, building 500, ...
55. Room BF-9, paper shredding facility, basement level, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
57. Entry door (open), BE16, basement level, building 500, looking ...
57. Entry door (open), BE-16, basement level, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
49. SAC Chief of Staff office, second floor, Awing, building ...
49. SAC Chief of Staff office, second floor, A-wing, building 500, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
33. View from roof of Hwing, with Gwing in background, ...
33. View from roof of H-wing, with G-wing in background, looking southwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
36. Waiting area at main entry to building 500, Awing, ...
36. Waiting area at main entry to building 500, A-wing, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
60. SAC emblem on side of missile, front lawn, building ...
60. SAC emblem on side of missile, front lawn, building 500, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
54. Room BF14, IDA room, basement level, building 500, looking ...
54. Room BF-14, IDA room, basement level, building 500, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
44. Dwing hallway, building 500, looking east from entry to ...
44. D-wing hallway, building 500, looking east from entry to SAC Control offices - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
8. Drainage ditch from the corner of Apollo Drive and ...
8. Drainage ditch from the corner of Apollo Drive and SAC Boulevard looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
56. Entry door (closed), BB16, basement level, building 500, looking ...
56. Entry door (closed), BB-16, basement level, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
22. Threequarter view of rear of Jwing, looking southwest from ...
22. Three-quarter view of rear of J-wing, looking southwest from Mercury Boulevard - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
17. View of Mercury Avenue from Apollo Drive, looking north ...
17. View of Mercury Avenue from Apollo Drive, looking north at E-wing - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
6. Threequarter view of Awing, building 500, from Minuteman Circle ...
6. Three-quarter view of A-wing, building 500, from Minuteman Circle looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2008-06-13
Mobility Division AMLO Air Mobility Liaison Officer AMR Air Movement Request AO Area of Operations AOC Air and Space Operations Center BAE...those forces and by doctrine can only advise the AOC Director. Adding to this confused chain of command, the Air Mobility Liaison Officers ( AMLO ...there is not a commander of airlift forces and the AMLO typically answers to Air Mobility Command’s (AMC) 18th Air Force Commander when deployed to
Situational Awareness During Mass-Casualty Events: Command and Control
Demchak, Barry; Chan, Theordore C.; Griswold, William G.; Lenert, Leslie
2006-01-01
In existing Incident Command systems1, situational awareness is achieved manually through paper tracking systems. Such systems often produce high latencies and incomplete data, resulting in inefficient and ineffective resource deployment. The WIISARD2 system collects much more data than a paper-based system, dramatically reducing latency while increasing the kinds and quality of information available to Incident Commanders. The WIISARD Command Center solves the problem of data overload and uncertainty through the careful use of limited screen area and novel visualization techniques. PMID:17238524
1980-10-01
OH 45433 Director Commandant Office of Missile Electronic Warfare US Army Field Artillery School ATTN: DELEW-M-STO (Dr. Steven Kovel) ATTN: ATSF- CF -R...Commander Commandant US Army White Sands Missile Range US Army Field Artillery School ATTN: STEWS-PT-AL (Laurel B. Saunders) ATTN: ATSF- CF -R White Sands...Commander Defense Communications Agency US Army INSCOM/Quest Research Corporation Technical Library Center ATTN: Mr. Donald Wilmot Code 222 6845 Elm Street
Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro
2016-10-01
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade. Copyright © 2016 the American Physiological Society.
1998-02-05
KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload is lowered into its payload canister in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1998-02-05
KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload is lowered into its payload canister in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
STS-112 crew during TCDT activities with M-113 carrier
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-112 Commander Jeffrey Ashby is ready for his practice run driving the M-113 armored personnel carrier. Ashby and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which include emergency egress training and driving the M-113. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.
2012-12-09
In Baikonur, Kazakhstan, Expedition 34/35 backup crewmembers Luca Parmitano of the European Space Agency (left), Fyodor Yurchikhin (center) and Karen Nyberg of NASA (right) enjoy a meal in a Kazakh yurt Dec. 9, 2012 during a traditional tour of the city. A yurt is a portable, wood-framed dwelling structure that was traditionally used by nomads in the steppes of Central Asia but which is still used for ceremonial celebrations. Prime crewmembers Flight Engineer Tom Marshburn of NASA, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 from the Baikonur Cosmodrome in their Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. Photo Credit: NASA/Victor Zelentsov
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III
1996-01-01
Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.
SSC marks anniversary of Hurricane Katrina
NASA Technical Reports Server (NTRS)
2006-01-01
At the Hurricane Katrina observance held Aug. 29 in the StenniSphere auditorium, Stennis Space Center Deputy Director David Throckmorton (left) and RAdm. Timothy McGee, Commander, Naval Meteorology and Oceanography Command, unveil a plaque dedicated to SSC employees.
SSC marks anniversary of Hurricane Katrina
2006-08-29
At the Hurricane Katrina observance held Aug. 29 in the StenniSphere auditorium, Stennis Space Center Deputy Director David Throckmorton (left) and RAdm. Timothy McGee, Commander, Naval Meteorology and Oceanography Command, unveil a plaque dedicated to SSC employees.
53. Intersection of H (right) and D (left) corridor, second ...
53. Intersection of H (right) and D (left) corridor, second floor, building 500, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
43. Main entry to SAC Control offices, second floor, Awing, ...
43. Main entry to SAC Control offices, second floor, A-wing, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
10. Threequarter view of southwest corner of building 500 and ...
10. Three-quarter view of southwest corner of building 500 and G-wing, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
65. SAC Minuteman Missile "shell", mounted for permanent display in ...
65. SAC Minuteman Missile "shell", mounted for permanent display in front lawn, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
27. Threequarter view of building 500, and Awing, looking southeast ...
27. Three-quarter view of building 500, and A-wing, looking southeast from Minuteman Circle - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
37. Hall of Dwing looking to cafeteria doors at end, ...
37. Hall of D-wing looking to cafeteria doors at end, from A-wing, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
4. View of drainage ditch and front walkway to building ...
4. View of drainage ditch and front walkway to building 500 looking east from SAC Boulevard - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
30. View from roof of Fwing of front entry to ...
30. View from roof of F-wing of front entry to building 500, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2012-10-15
ALABAMA GOV. ROBERT BENTLEY, RIGHT, CONGRATULATES MARSHALL CENTER DIRECTOR PATRICK SCHEUERMANN, LEFT, AND U.S. ARMY MAJ. GEN. LYNN COLLYAR, COMMANDING GENERAL OF THE U.S. ARMY AVIATION & MISSILE COMMAND, FOR A SUCCESSFUL 50 YEARS OF MISSION SUCCESS AND COLLABORATION IN THE HUNTSVILLE COMMUNITY
2003-08-05
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach answers questions from the Stafford-Covey Return to Flight Task Group (SCTG). Chairing the task group are Richard O. Covey (fifth from left), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.
2003-08-05
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to members of the Stafford-Covey Return to Flight Task Group (SCTG) about reconstruction efforts. Chairing the task group are Richard O. Covey (second from right), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Here, Apollo 11 Commander Neil Armstrong speaks to the invited guests. In the background is a model of the Lunar Module, part of the lander portion of the Apollo spacecraft. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
Engle, Cernan, Young, and Stafford under Saturn V at ASVC prior to grand opening
NASA Technical Reports Server (NTRS)
1997-01-01
Some of the former Apollo program astronauts recall the past as they tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Standing underneath the KSC Apollo/Saturn V inside the building are (from left): Apollo 14 Back-up Lunar Module Pilot Joe H. Engle; Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; and Apollo 10 Commander Thomas P. Stafford. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.
1983-06-06
Command, Control, Communications, and Intelligence presented by the Armed Forced Communications Electronics Association and the perusal of many ...A great deal was also learned from the knowledgeable and helpful USAWC faculty and SSI staff as well as the curriculum which provided many insights to...actually an _ umbrella-label covering many disciplines. Thus, after a definition of Al, descriptions of a selection of its subfields will follow to set the
Developing Senior Navy Leaders: Requirements for Flag Officer Expertise Today and in the Future
2008-01-01
who reach flag ranks have already passed numerous tests of their leadership skills, so there is little differentiation in either the demand for or...NooN) Master Chief Petty Officer (MCPON) Director of Test and Evaluation Technology Requirements (N091) Surgeon General of the Navy (N093) Chief of Navy...Operations Fleet Forces Command Naval Reserve Forces Operational Test and Evaluation Forces Naval Special Warfare Command U.S. Naval Forces Central Command
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott (right) and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
Mission Command in the Information Age: Leadership Traits for the Operational Commander
2013-05-20
during events like casual conversations, informal briefings, operational exercises, and unit gatherings. 52 By consciously and actively engaging in...same time enabling a greater centralized control over a larger number of forces. 61 The dawning of the Information Age has seen a quantum leap in
STS-66 Official pre-flight crew portrait
NASA Technical Reports Server (NTRS)
1994-01-01
The STS-66 Official crew portrait includes the following: Donald R. McMonagle (front right) is mission commander, and Curtis L. Brown (front center) is pilot. Other crewmembers include Ellen S. Ochoa, payload commander; Scott E. Parazynski (rear left), and Joseph R. Tanner (rear center), mission specialists, along with ESA astronaut Jean-Francois Clevoy (front left), mission specialist. Clervoy, Parazynski and Tanner, members of the 1992 astronaut class, are making their initial flights in space.
Naval Meteorology and Oceanography Command exhibit
NASA Technical Reports Server (NTRS)
2000-01-01
Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.
Person or Platform: A New Look at Selecting the Air and Missile Defense Commander
2016-05-13
29 Christopher Moran, Lieutenant Commander, USN and Ryan Heilmann, Lieutenant, USN, “The Elephant in the Room: E-2D and Distributed...Lethality,” Center for International Maritime Security (blog), February 25, 2016, http://cimsec.org/the- elephant -in-the-room-e-2d-and-distributed...Ryan Heilmann, Lieutenant, USN. “The Elephant in the Room: E-2D and Distributed Lethality.” Center for International Maritime Security (blog
Center of Gravity within the Ill-Structured Problem
2012-05-04
NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Chad Livingston...Simon, Decision Making and Problem Solving 28 Cardon and Leonard, Unleashing Design, Planning and the Art of Battle Command, 2 11 complex, ill...Command. "Commander’s Appreciation and Campaign Design." Fort Monroe, VA, January 2008. Edward Cardon and Steve Leonard. "Unleashing Design, Planning
Command Disaggregation Attack and Mitigation in Industrial Internet of Things
Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan
2017-01-01
A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework. PMID:29065461
Command Disaggregation Attack and Mitigation in Industrial Internet of Things.
Xun, Peng; Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan
2017-10-21
A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework.
45. SAC conference room 2A8, second floor, Dwing, building 500, ...
45. SAC conference room 2A8, second floor, D-wing, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
52. 2E corridor, from intersection of 2F corridor, second floor, ...
52. 2E corridor, from intersection of 2F corridor, second floor, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
11. Threequarter view of southwest corner of building 500 and ...
11. Three-quarter view of southwest corner of building 500 and G-wing, looking northeast, from Apollo Drive - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
19. View of main entrance and front (east) facade of ...
19. View of main entrance and front (east) facade of H-wing from Comstat Drive, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
73. New addition building 500 floor plan, drawing number AW600201, ...
73. New addition building 500 floor plan, drawing number AW-60-02-01, dated 26 January, 1970 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
15. Threequarter view of Gwing from intersection of Apollo Drive ...
15. Three-quarter view of G-wing from intersection of Apollo Drive and Mercury Avenue, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
STS-75 Mission Commander Andrew M. Allen in White Room
NASA Technical Reports Server (NTRS)
1996-01-01
STS-75 Mission Commander Andrew M. Allen (center) prepares to enter the Space Shuttle Columbia at Launch Pad 39B with assistance from white room closeout crew members Paul Arnold (left), Dave Law and Bob Saulnier.
Country western singer Teresa entertains at the Apollo/Saturn V Center
NASA Technical Reports Server (NTRS)
1999-01-01
At the Apollo/Saturn V Center, country music recording artist Teresa performs a song, 'Brave New Girls,' written for astronaut Catherine 'Cady' Coleman, mission specialist on STS-93. She entertains participants and attendees of a women's forum held in the center. The attendees are planning to view the launch of STS- 93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Liftoff is scheduled for July 20 at 12:36 a.m. EDT.
Matsukawa, Kanji; Ishii, Kei; Idesako, Mitsuhiro; Ishida, Tomoko; Endo, Kana; Liang, Nan
2013-12-01
Our laboratory has recently demonstrated that central command provides selective inhibition of the cardiomotor component of aortic (AOR) baroreflex during exercise, preserving carotid sinus (CS) baroreflex. To further explore the differential effects of central command on the arterial baroreflexes, we surgically separated the AOR and CS baroreflex systems, to identify the input-output relationship of each baroreflex system using brief occlusion of the abdominal aorta in decerebrate cats. Baroreflex sensitivity for heart rate (HR) was estimated from the baroreflex ratio between the pressor and bradycardia responses during aortic occlusion and from the slope of the baroreflex curve between the changes in mean arterial blood pressure (ΔMAP) and ΔHR. Spontaneous motor activity accompanied the abrupt increases in HR and MAP. When aortic occlusion was given at the onset of spontaneous motor activity, the baroreflex ratio was blunted to 11-25% of the preexercise value in either intact or AOR baroreflex. The slope of the ΔMAP-ΔHR curve was similarly attenuated at the onset of spontaneous motor activity to 11-18% of the slope during the preexercise period. In contrast, in the CS baroreflex, the baroreflex ratio and curve slope were not significantly (P>0.05) altered by spontaneous motor activity. An upward shift of the baroreflex curve appeared at the onset of spontaneous motor activity, irrespective of the intact, AOR, and CS baroreflex conditions. Taken together, it is concluded that central command provides selective inhibition for the cardiomotor limb of the aortic baroreflex at the onset of exercise, which in turn contributes to an instantaneous increase in HR. © 2013.
Role of central command in carotid baroreflex resetting in humans during static exercise
NASA Technical Reports Server (NTRS)
Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.
2002-01-01
The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.
ASTRAL Model. Volume 2: Software Implementation
1979-01-01
Commander Fleet Air, Mediterranean Commander, Antisubmarine War Force U.S. Sixth Fleet Commanding Officer FPO New York 09521 1 Fleet Weather Central...Technology, Inc. I Attn: Dr. S. C. Daubin Route 2 North Stonington, Connecticut 06359 Attn: S. Elam 1 I *--4-- I I Ocean Data Systems, Inc. TRACOR, Inc...APPLICATIONS, INC. 8400 Westpark Drive, McLean, Virginia 22101 Telephone 703/821-4300 S 29082-21227 ’Id _9 0 8i•i•F:• • I U CONTENTS Page 1 1 INTRODUCTION
DPM, Payload Commander Kathy Thornton and Commander Ken Bowersox in Spacelab
1995-11-05
STS073-229-014 (20 October - 5 November 1995) --- Astronauts Kathryn C. Thornton, STS-73 payload commander, and Kenneth D. Bowersox, mission commander, observe a liquid drop's activity at the Drop Physics Module (DPM) in the science module aboard the Earth-orbiting Space Shuttle Columbia. The drop is partially visible at the center of the left edge of the frame. The two were joined by three other NASA astronauts and two guest researchers for almost 16-days of in-orbit research in support of the U.S. Microgravity Laboratory (USML-2) mission.
MM&T: Precision Machining of Optical Components.
1981-02-01
Center, Naval Weapons Center, Naval Research Laboratory, Naval Air Systems Command, Office of Naval Research, E/O & Night Vision Labs , MICOM, AVRADCOM...Air Force/RDQT lI), Air Force Systens Command, Wright Patterson Mat’l Lab ., I)APPA, TARCOM, ARRADCOM, TSARCOM, Fort Monmouth. 1-- form A-541 I II II I I...sinfle tecnnical iin is ire 1)iill Mulractcrl light Kn njhc r orde us and spatial Oral : reuvtics )etween regularly spaced toot rnaiarks and t-nc rat
12. Threequarter view of southwest corner of building 500, Gwing, ...
12. Three-quarter view of southwest corner of building 500, G-wing, and loading dock looking northeast, from Apollo Drive - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2004-10-08
From left to right, Russian Space Forces cosmonaut Yuri Shargin, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov, Expedition 10 backup Soyuz Commander Valery Tokarev and backup Expedition Commander Bill McArthur speak with officials from behind glass after having conducted a final inspection of their Soyuz TMA-5 spacecraft on Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)
General Crook and Counterinsurgency Warfare
2001-06-01
the Yellowstone River was declared as “unceded Indian Territory” where the Sioux and Cheyenne could reside, but the white settlers were excluded.3...the Yellowstone and Tongue Rivers. The designated column commanders Crook, Terry, and Gibbon were to move their columns towards the center of the area...brutal winter months on the northern plains. Crook reorganized his command at Fort Fetterman. First he renamed his command the Big Horn and Yellowstone
Computer Center Reference Manual. Volume 1
1990-09-30
Unlimited o- 0 0 91o1 UNCLASSI FI ED SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la . REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE...with connection to INTERNET ) (host tables allow transfer to some other networks) OASYS - the DTRC Office Automation System The following can be reached...and buffers, two windows, and some word processing commands. Advanced editing commands are entered through the use of a command line. EVE las its own
Apollo 9 prime crew participate in water egress training
1968-11-01
S68-54859 (November 1968) --- The prime crew of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission participates in water egress training in a tank in Building 260 at the Manned Spacecraft Center. Egressing the Apollo command module boilerplate is astronaut James A. McDivitt, commander. In life raft are astronauts David R. Scott (background), command module pilot; and Russell L. Schweickart, lunar module pilot.
XTCE (XML Telemetric and Command Exchange) Standard Making It Work at NASA. Can It Work For You?
NASA Technical Reports Server (NTRS)
Munoz-Fernandez, Michela; Smith, Danford S.; Rice, James K.; Jones, Ronald A.
2017-01-01
The XML Telemetric and Command Exchange (XTCE) standard is intended as a way to describe telemetry and command databases to be exchanged across centers and space agencies. XTCE usage has the potential to lead to consolidation of the Mission Operations Center (MOC) Monitor and Control displays for mission cross-support, reducing equipment and configuration costs, as well as a decrease in the turnaround time for telemetry and command modifications during all the mission phases. The adoption of XTCE will reduce software maintenance costs by reducing the variation between our existing mission dictionaries. The main objective of this poster is to show how powerful XTCE is in terms of interoperability across centers and missions. We will provide results for a use case where two centers can use their local tools to process and display the same mission telemetry in their MOC independently of one another. In our use case we have first quantified the ability for XTCE to capture the telemetry definitions of the mission by use of our suite of support tools (Conversion, Validation, and Compliance measurement). The next step was to show processing and monitoring of the same telemetry in two mission centers. Once the database was converted to XTCE using our tool, the XTCE file became our primary database and was shared among the various tool chains through their XTCE importers and ultimately configured to ingest the telemetry stream and display or capture the telemetered information in similar ways.Summary results include the ability to take a real mission database and real mission telemetry and display them on various tools from two centers, as well as using commercially free COTS.
Marshall Space Flight Center Telescience Resource Kit
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.
Cernan, Stafford, and Young talk at ASVC prior to grand opening
NASA Technical Reports Server (NTRS)
1997-01-01
Some of the former Apollo program astronauts tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Discussing old times are (from left) Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 10 Commander Thomas P. Stafford and Apollo 16 Commander John W. Young. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/ Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.
9. Threequarter view of building 500 looking northeast from the ...
9. Three-quarter view of building 500 looking northeast from the corner of Apollo Drive and SAC Boulevard at the outbound gate - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
31. View from roof of courtyard from Hwing, with Dwing ...
31. View from roof of courtyard from H-wing, with D-wing on left, and C-wing on right, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
1987-02-01
apply here. The primary negative effect of the inclusion of test ports into the package is to increase its size and complexity. In summary, the...FORCE SYSTEMS COMMAND APPROVED FOR PUBLIC RELEMSE DISTRIBUTION UNLIMITED .i ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force...ORGANIZATION b. OPFICE SYMBOL 7&. NAME OP MONITORING OAGANIZATION 10I11110111blep Rome Air Development Center EEMA 4116 A00101163 (City. Sfte *Ad ZIP C4,40
Apollo 12 Mission image - High oblique view of Craters 285,287 and Tsiolkovski
1969-11-19
AS12-47-6870 (November 1969) --- An Apollo 12 high-oblique view of the crater Tsiolkovsky (in center of horizon) on the lunar farside, as photographed from lunar orbit. The crew men of the Apollo 12 lunar landing mission were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot. Tsiolkovsky is centered at 128.5 degrees east longitude and 20.5 degrees south latitude. This view is looking south.
Agility through Automated Negotiation for C2 Services
2014-06-01
using this e-contract negotiation methodology in a C2 context in Brazil. We have modeled the operations of the Rio de Janeiro Command Center that will be...methodology in a C2 context in Brazil. We have modeled the operations of the Rio de Janeiro Command Center that will be in place for the World Cup (2014...through e-contracts. The scenario chosen to demonstrate this methodology is a security incident in Rio de Janeiro , host city of the next World Cup (2014
2011-09-16
CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann
2011-09-16
CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann
2011-09-16
CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann
2011-09-16
CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann
Report to the Commission to Assess United States National Security Space Management and Organization
2001-01-11
including the Vice Chairman, Joint Chiefs of Staff, the Chief of Staff of the Air Force and, in a three-day session in Colorado Springs, Colorado , the...Naval Space Command serves as the Alternate Space Command Center to U.S. Space Command’s primary center located at Cheyenne Mountain, Colorado . It is...Fogleman, United States Air Force (Retired) General Fogleman is president and chief operating officer of the B Bar J Cattle and Consulting Company, Durango
CrossTalk. The Journal of Defense Software Engineering. Volume 16, Number 11, November 2003
2003-11-01
memory area, and stack pointer. These systems are classified as preemptive or nonpreemptive depending on whether they can preempt an existing task or not...of charge. The Software Technology Support Center was established at Ogden Air Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air...device. A script file could be a list of commands for a command interpreter such as a batch file [15]. A communications port consists of a queue to hold
2003-11-01
Command Historian , and the personnel from the Center for Army Lessons Learned (CALL) for their assistance in gaining access to the many documents that...after the Network Centric Warfare Case Study operations. The Center for Army Lessons Learned (CALL), the V Corps Command Historian , and other... Historian , Dr. Charles Kirkpatrick, in Heidelberg, Germany, assisted in this effort. Nu- merous documents were collected, both unclassified and classified
Air Intelligence and the Search for the Center of Gravity
1988-04-01
co inAIR INTELLIGENCE AND THE 0) ~ SEARCH FOR THE CENTER OF GRAVITY F LT COL CHARLES N. CULBERTSON 1988 - .- ,------.--.- Non VL AIR UNIVERSITY RLlo...During the 1930’s the future air commanders in the Air Corps’ primary doctrinal think tank, The Air Corps Tactical School, at Maxwell Field, took this...conversation with Speer after the war General Ira Eaker, the former commander of the 6th Air Force (8 AF was the AAF’s primary strategic striking arm in
Apollo 16 astronauts in Apollo Command Module Mission Simulator
1972-03-14
S72-31047 (March 1972) --- Astronaut Thomas K. Mattingly II (right foreground), command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in Building 5 at the Manned Spacecraft Center (MSC). Mattingly is scheduled to perform EVA during the Apollo 16 journey home from the moon. Astronaut John W. Young, commander, can be seen in the left background. In the right background is astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator. While Mattingly remains with the Apollo 16 Command and Service Modules (CSM) in lunar orbit, Young and Duke will descend in the Lunar Module (LM) to the moon's Descartes landing site.
Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.
1996-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.
Network command processing system overview
NASA Technical Reports Server (NTRS)
Nam, Yon-Woo; Murphy, Lisa D.
1993-01-01
The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.
RAPID: Collaborative Commanding and Monitoring of Lunar Assets
NASA Technical Reports Server (NTRS)
Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark;
2011-01-01
RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.
Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight
NASA Technical Reports Server (NTRS)
1996-01-01
STS-72 TRAINING VIEW --- Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight aboard the Space Shuttle Endeavour. The two are on the flight deck of the Johnson Space Center's (JSC) fixed base Shuttle Mission Simulator (SMS). Duffy, mission commander, and Scott, mission specialist, will be joined for the winter flight by three other NASA astronauts and an international mission specialist representing NASDA.
1997-12-12
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-12-12
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-12-12
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1998-03-09
KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload and four Getaway Specials (GAS) await payload bay door closure in the orbiter Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-11-11
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1998-02-05
KENNEDY SPACE CENTER, FLA. -- A technician looks at the STS-90 Neurolab payload as it is moved from its test stand in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-12-12
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-11-11
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-11-11
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
Optical Navigation for the Orion Vehicle
NASA Technical Reports Server (NTRS)
Crain, Timothy; Getchius, Joel; D'Souza, Christopher
2008-01-01
The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. One of the design requirements levied on the Orion vehicle is the ability to return to the vehicle and crew to Earth in the case of loss of communications and command with the Mission Control Center. Central to fulfilling this requirement, is the ability of Orion to navigate autonomously. In low-Earth orbit, this may be solved with the use of GPS, but in cis-lunar and lunar orbit this requires optical navigation. This paper documents the preliminary analyses performed by members of the Orion Orbit GN&C System team.
51. BF corridor, (example of older building meeting with new ...
51. BF corridor, (example of older building meeting with new building addition) from outside room BF-6, basement level, building 500, looking south - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Code of Federal Regulations, 2010 CFR
2010-07-01
... Authority of Commanders § 643.113 Banks. (a) The establishment of banks, branch banks, and banking... banking facility is self-sustaining and notifies the Commander, U.S. Army Finance and Accounting Center. (c) Banking facilities which are not self-sustaining will be furnished space, utilities and custodial...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Demonstration Project, Department of the Army, Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Notice #0;#0;Federal Register / Vol. 76 , No. 13... the Army, Army Research, Development and Engineering Command, Armament Research, Development and...
Dynamic neural networking as a basis for plasticity in the control of heart rate.
Kember, G; Armour, J A; Zamir, M
2013-01-21
A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.
2003-08-05
KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) inspects debris in the Columbia Debris Hangar. At right is the model of the left wing that has been used during recovery operations. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (third from right, foreground), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.
Five Apollo astronauts with Lunar Module at ASVC prior to grand opening
NASA Technical Reports Server (NTRS)
1997-01-01
Some of the former Apollo program astronauts observe a Lunar Module and Moon mockup during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Some of the visiting astonauts were (from left): Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 9 Lunar Module Pilot Russell L. Schweikart; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; Apollo 10 Commander Thomas P. Stafford; and Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Expedition 22 Change of Command in the U.S. Laboratory
2010-03-17
ISS022-E-100363 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured are NASA astronauts Jeffrey Williams (right, holding microphone), Expedition 22 commander; and T.J. Creamer (center background), Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov (left), Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev (bottom), Expedition 22 flight engineer; along with Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi (mostly out of frame at right), Expedition 22/23 flight engineer.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Jim Lovell acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Lovell piloted Gemini 7, commanded Gemini 12, orbited the Moon on Apollo 8 and commanded the aborted Apollo 13 moon flight. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
Development of human locomotion.
Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka
2012-10-01
Neural control of locomotion in human adults involves the generation of a small set of basic patterned commands directed to the leg muscles. The commands are generated sequentially in time during each step by neural networks located in the spinal cord, called Central Pattern Generators. This review outlines recent advances in understanding how motor commands are expressed at different stages of human development. Similar commands are found in several other vertebrates, indicating that locomotion development follows common principles of organization of the control networks. Movements show a high degree of flexibility at all stages of development, which is instrumental for learning and exploration of variable interactions with the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ishii, Kei; Matsukawa, Kanji; Asahara, Ryota; Liang, Nan; Endo, Kana; Idesako, Mitsuhiro; Michioka, Kensuke; Sasaki, Yu; Hamada, Hironobu; Yamashita, Kaori; Watanabe, Tae; Kataoka, Tsuyoshi; Takahashi, Makoto
2017-04-01
This study aimed to examine whether central command increases oxygenation in non-contracting arm muscles during contralateral one-armed cranking and whether the oxygenation response caused by central command differs among skeletal muscles of the non-exercising upper limb. In 13 male subjects, the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of the non-contracting arm muscles [the anterior deltoid, triceps brachii, biceps brachii, and extensor carpi radialis (ECR)] were measured during voluntary one-armed cranking (intensity, 35-40% of maximal voluntary effort) and mental imagery of the one-armed exercise for 1 min. Voluntary one-armed cranking increased ( P < 0.05) the Oxy-Hb of the triceps, biceps, and ECR muscles to the same extent (15 ± 4% of the baseline level, 17 ± 5%, and 16 ± 4%, respectively). The greatest increase in the Oxy-Hb was observed in the deltoid muscle. Intravenous injection of atropine (10-15 μ g/kg) and/or propranolol (0.1 mg/kg) revealed that the increased Oxy-Hb of the arm muscles consisted of the rapid atropine-sensitive and delayed propranolol-sensitive components. Mental imagery of the exercise increased the Oxy-Hb of the arm muscles. Motor-driven passive one-armed cranking had little influence on the Oxy-Hb of the arm muscles. It is likely that central command plays a role in the initial increase in oxygenation in the non-contracting arm muscles via sympathetic cholinergic vasodilatation at the early period of one-armed cranking. The centrally induced increase in oxygenation may not be different among the distal arm muscles but may augment in the deltoid muscle. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott, Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Here, Apollo 16 Lunar Module Pilot Charlie Duke welcomes the invited guests and introduces the guests of honor. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Here, Al Worden with microphone in hand, speaks to the invited guests. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Here, Gerry Griffin, Apollo 15 flight director, speaks to the invited guests. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
Cernan, Stafford, and Young talk at ASVC prior to grand opening
NASA Technical Reports Server (NTRS)
1997-01-01
Some of the former Apollo program astronauts tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Discussing old times beneath the KSC Apollo/Saturn V rocket inside the building are (from left) Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 10 Commander Thomas P. Stafford and Apollo 16 Commander John W. Young. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/ Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Robert Crippen smiles at the warm greeting he is receiving when introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Crippen piloted the first Space Shuttle flight in 1981 and commanded three other Shuttle missions in the next 3-1/2 years. In the early 1990s he served as director of NASA’s Kennedy Space Center. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, astronaut John Young is warmly greeted as he is introduced as a previous inductee. Co-holder of a record for the most space flights, six, he flew on Gemini 3 and 10, orbited the Moon on Apollo 10, walked on the Moon on Apollo 16, and commanded two space shuttle missions, STS-1 and STS-9. Young currently serves as associate director, technical, at Johnson Space Center. The induction ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
STS-26 Commander Hauck in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing comunications kit assembly headset, checks control panel data while seated in the commanders seat on forward flight deck. A flight data file (FDF) notebook rests on his lap. A portable computer (laptop) is positioned on the center console. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
1980-09-01
1969 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE... Science and Engineering 3 ABSTRACT A continuation of experiments initiated by Commander Calvin G. Miller, USN, on the effect of flow rate, flow geometry and...Salvage Department INaval Coastal Systems Center Panama City, Florida 32401 6. Commander, Naval Sea Systems Command 2 Supervisor of Diving (Code GOC
2007-10-01
Division Dave Mabee , Senior Procurement Analyst, Office of the Deputy Assistant Secretary of the Army, Policy and Procurement Jill Stiglich, Lieutenant...U.S. Army, Commanding General, U.S. Army Materiel Command Grazioplene, James , Vice President, KBR Grover, Jeffrey, Lieutenant Colonel, U.S. Army...Management and Chief Acquisition Officer, FEMA Loehrl, James , Director of the Acquisition Center and PARC, U.S. Army Sustainment Command Urgent Reform
Maintainability Engineering Design Notebook, Revision 2, and Cost of Maintainability
1975-01-01
coordi- nation efforts with other majur commands such as .he.Air Force Logistics Com- mand, Air Training Command, and the operating command. The...AND ADDRESS IS. REPORT DATE Rome Air Development Center (RERS) January 1975 Griffiss Air Force Base, New York 13441 13. NUMRER OF PAGES t I...of Air Force ground electronic Systems DO . 1AN 1473 EDITION OF I NOV MUSS ORSOLETE UNCLASSIFIED N SECURITY CLASOIFICATISN4 OF THIS PAGE (t- D.I
An intelligent automated command and control system for spacecraft mission operations
NASA Technical Reports Server (NTRS)
Stoffel, A. William
1994-01-01
The Intelligent Command and Control (ICC) System research project is intended to provide the technology base necessary for producing an intelligent automated command and control (C&C) system capable of performing all the ground control C&C functions currently performed by Mission Operations Center (MOC) project Flight Operations Team (FOT). The ICC research accomplishments to date, details of the ICC, and the planned outcome of the ICC research, mentioned above, are discussed in detail.
Battlespace Representation for Air, Space, and Cyber
2012-07-17
they were cardboard models of targets carried in the bombers to allow bombardiers to see how the target would look with current shadows. See Figure ...1 for an example. Command and control has changed as well as targeting. Figure 2 illustrates a WW II-era command center built in tunnels near...invariants that can be used to shape or guide designs. Figure 1. A cardboard model used by bombers. Command and control has changed as well as
Autonomous Command Operation of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.
Simulations- ASTP Command Module
1975-02-11
S75-21599 (12 Feb. 1975) --- Six Apollo-Soyuz Test Project crewmen participate in joint crew training in Building 35 at the Johnson Space Center. They are (wearing flight suits), left to right, astronaut Thomas P. Stafford, commander of the American ASTP prime crew; astronaut Donald K. Slayton, docking module pilot on Stafford?s crew; cosmonaut Valeriy N. Kubasov, engineer on the Soviet ASTP first (prime) crew; astronaut Vance D. Brand, command module pilot on Stafford?s crew; cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP first (prime) crew; and cosmonaut Vladimir A. Dzhanibekov, commander of the Soviet ASTP third (backup) crew. Brand is seated next to the hatch of the Apollo Command Module trainer. This picture was taken during a ?walk-through? of the first day?s activities in Earth orbit. The other men are interpreters and training personnel.
Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies
NASA Astrophysics Data System (ADS)
Normann, Richard A.; Fernandez, Eduardo
2016-12-01
This paper briefly describes some of the recent progress in the development of penetrating microelectrode arrays and highlights the use of two of these devices, Utah electrode arrays and Utah slanted electrode arrays, in two therapeutic interventions: recording volitional skeletal motor commands from the central nervous system, and recording motor commands and evoking somatosensory percepts in the peripheral nervous system (PNS). The paper also briefly explores other potential sites for microelectrode array interventions that could be profitably pursued and that could have important consequences in enhancing the quality of life of patients that has been compromised by disorders of the central and PNSs.
Component Control System for a Vehicle
NASA Technical Reports Server (NTRS)
Lee, Chunhao J. (Inventor); Fraser-Chanpong, Nathan (Inventor); Vitale, Robert L. (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Dawson, Andrew D. (Inventor); Guo, Raymond (Inventor); Waligora, Thomas M. (Inventor); Spain, Ivan (Inventor); Bluethmann, William J. (Inventor); Reed, Ryan M. (Inventor)
2016-01-01
A vehicle includes a chassis, a modular component, and a central operating system. The modular component is supported by the chassis. The central operating system includes a component control system, a primary master controller, and a secondary master controller. The component control system is configured for controlling the modular component. The primary and secondary master controllers are in operative communication with the component control system. The primary and secondary master controllers are configured to simultaneously transmit commands to the component control system. The component control system is configured to accept commands from the secondary master controller only when a fault occurs in the primary master controller.
The equilibrium point hypothesis and its application to speech motor control.
Perrier, P; Ostry, D J; Laboissière, R
1996-04-01
In this paper, we address a number of issues in speech research in the context of the equilibrium point hypothesis of motor control. The hypothesis suggests that movements arise from shifts in the equilibrium position of the limb or the speech articulator. The equilibrium is a consequence of the interaction of central neural commands, reflex mechanisms, muscle properties, and external loads, but it is under the control of central neural commands. These commands act to shift the equilibrium via centrally specified signals acting at the level of the motoneurone (MN) pool. In the context of a model of sagittal plane jaw and hyoid motion based on the lambda version of the equilibrium point hypothesis, we consider the implications of this hypothesis for the notion of articulatory targets. We suggest that simple linear control signals may underlie smooth articulatory trajectories. We explore as well the phenomenon of intraarticulator coarticulation in jaw movement. We suggest that even when no account is taken of upcoming context, that apparent anticipatory changes in movement amplitude and duration may arise due to dynamics. We also present a number of simulations that show in different ways how variability in measured kinematics can arise in spite of constant magnitude speech control signals.
Apollo Spacecraft 020 Command Module readied for mating with Service Module
1967-12-06
S68-17301 (6 Dec. 1967) --- Apollo Spacecraft 020 Command Module is hoisted into position for mating with Service Module in the Kennedy Space Center's Manned Spacecraft Operations Building. Spacecraft 020 will be flown on the Apollo 6 (Spacecraft 020/Saturn 502) unmanned, Earth-orbital space mission.
John A. Lejeune, The Marine Corps’ Greatest Strategic Leader
2008-03-25
ranks, such as Brigadier General Smedley Butler, who would have been happy with a Commandant who focused on these traditional missions of the Corps...World War II,” in Command Decisions, ed. Kent Roberts Greenfield (Washington D.C.: Center of Military History United States Army, 1960), 14. 13
46 CFR 154.22 - Foreign flag vessel: Certificate of Compliance endorsement application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requesting an endorsement for the carriage of ethylene oxide, a classification society certification that the... Commanding Officer, Marine Safety Center the plans, calculations, and information under § 154.15(b). [CGD 77... foreign flag vessel, whose flag administration issues IMO Certificates, must submit to the Commanding...
Apollo 8 prime crew stand beside gondola for centrifuge training
NASA Technical Reports Server (NTRS)
1968-01-01
The Apollo 8 prime crew stands beside the gondola in bldg 29 after suiting up for centrifuge training in the Manned Spacecraft Center's (MSC) Flight Acceleration Facility. Left to right, are Astronauts William A. Anders, lunar module pilot; James A. Lovell Jr.,command module pilot; and Frank Borman, commander.
Crew Training - Apollo 9 - KSC
1969-02-17
S69-19983 (17 Feb. 1969) --- The Apollo 9 crew is shown suited up for a simulated flight in the Apollo Mission Simulator at the Kennedy Space Center (KSC). Left to right are astronauts James A. McDivitt, commander; David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot.
Site management of health issues in the 2001 World Trade Center disaster.
Bradt, David A
2003-06-01
The terrorist destruction of the World Trade Center led to the greatest loss of life from a criminal incident in the history of the United States. There were 2,801 persons killed or missing at the disaster site, including 147 dead on two hijacked aircraft. Hundreds of buildings sustained direct damage or contamination. Forty different agencies responded with command and control exercised by an incident command system as well as an emergency operations center. Dozens of hazards complicated relief and recovery efforts. Five victims were rescued from the rubble. Up to 1,000 personnel worked daily at the World Trade Center disaster site. These workers collectively made an average of 270 daily presentations to health care providers in the first month post-disaster. Of presentations for clinical symptoms, leading clinical diagnoses were ocular injuries, headaches, and lung injuries. Mechanical injury accounted for 39% of clinical presentations and appeared preventable by personal protective equipment. Limitations emerged in the site application of emergency triage and clinical care. Notable assets in the site management of health issues include action plans from the incident command system, geographic information system products, wireless application technology, technical consensus among health and safety authorities, and workers' respite care.
CONSTELLATION Images from other centers - February 2010
2010-02-09
JSC2010-E-020620 (9 Feb. 2010) --- NASA astronauts Steve Lindsey (center), STS-133 commander; Eric Boe, pilot; and Nicole Stott, mission specialist, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.
CONSTELLATION Images from other centers - February 2010
2010-02-09
JSC2010-E-020617 (9 Feb. 2010) --- NASA astronauts Steve Lindsey (center), STS-133 commander; Eric Boe, pilot; and Nicole Stott, mission specialist, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.
An integrated command control and communications center for first responders
NASA Astrophysics Data System (ADS)
Messner, Richard A.; Hludik, Frank; Vidacic, Dragan; Melnyk, Pavlo
2005-05-01
First responders to a major incident include many different agencies. These may include law enforcement officers, multiple fire departments, paramedics, HAZMAT response teams, and possibly even federal personnel such as FBI and FEMA. Often times multiple jurisdictions respond to the incident which causes interoperability issues with respect to communication and dissemination of time critical information. Accurate information from all responding sources needs to be rapidly collected and made available to the current on site responders as well as the follow-on responders who may just be arriving on scene. The creation of a common central database with a simple easy to use interface that is dynamically updated in real time would allow prompt and efficient information distribution between different jurisdictions. Such a system is paramount to the success of any response to a major incident. First responders typically arrive in mobile vehicles that are equipped with communications equipment. Although the first responders may make reports back to their specific home based command centers, the details of those reports are not typically available to other first responders who are not a part of that agencies infrastructure. Furthermore, the collection of information often occurs outside of the first responder vehicle and the details of the scene are normally either radioed from the field or written down and then disseminated after significant delay. Since first responders are not usually on the same communications channels, and the fact that there is normally a considerable amount of confusion during the first few hours on scene, it would be beneficial if there were a centralized location for the repository of time critical information which could be accessed by all the first responders in a common fashion without having to redesign or add significantly to each first responders hardware/software systems. Each first responder would then be able to provide information regarding their particular situation and such information could be accessed by all responding personnel. This will require the transmission of information provided by the first responder to a common central database system. In order to fully investigate the use of technology, it is advantageous to build a test bed in order to evaluate the proper hardware/software necessary, and explore the envisioned scenarios of operation before deployment of an actual system. This paper describes an ongoing effort at the University of New Hampshire to address these emergency responder needs.
2017-03-17
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on Exploration Mission 1.
1999-07-19
KENNEDY SPACE CENTER, FLA. -- After her performance at the Apollo/Saturn V Center, country western recording artist Teresa gets a congratulatory hug from NASA Administrator Daniel Goldin. Teresa performed a song, "Brave New Girls," written for astronaut Catherine "Cady" Coleman, mission specialist on STS-93. She entertained participants and attendees of a women's forum held in the center earlier in the day. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Liftoff is scheduled for July 20 at 12:36 a.m. EDT
Overall view of Mission Control Center during Apollo 14
1971-01-31
S71-16879 (31 Jan. 1971) --- Overall view of activity in the Mission Operations Control Room in the Mission Control Center during the Apollo 14 transposition and docking maneuvers. The Apollo 14 Lunar Module, still attached to the Saturn IVB stage, can be seen on the large television monitor. Due to difficulty with the docking mechanism six attempts were made before a successful "hard dock" of the Command Module with the Lunar Module was accomplished. Aboard the Command Module were astronauts Alan B. Shepard Jr., Stuart A. Roosa, and Edgar D. Mitchell.
STS-75 Payload Commander Franklin R. Chang-Diaz suits up
NASA Technical Reports Server (NTRS)
1996-01-01
STS-75 Payload Commander Franklin R. Chang-Diaz (center) chats with Johnson Space Center officials Olan Bertrand (left) and David Leestma (right) during suitup activities in the Operations and Checkout Building. Born in Costa Rica, Chang-Diaz joined NASA in 1980. He has already completed four spaceflights and logged more than 656 hours on-orbit. He and six fellow crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half-hour launch window opening at 3:18 p.m. EST.
The new Mobile Command Center at KSC is important addition to emergency preparedness
NASA Technical Reports Server (NTRS)
2000-01-01
This new specially equipped vehicle serves as a mobile command center for emergency preparedness staff and other support personnel when needed at KSC or Cape Canaveral Air Force Station. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or CCAFS.
ASTRONAUT GROUP - GT-6 AND GT-7 CREWS - WELCOME
1965-12-19
S65-66728 (19 Dec. 1965) --- This happy round of handshakes took place in the Manned Spacecraft Operations Building crew quarters, Merritt Island, as the Gemini-6 crew (left) welcomed the Gemini-7 crew back to the Kennedy Space Center. Left to right, are astronauts Walter M. Schirra Jr., Gemini-6 command pilot; Thomas P. Stafford, Gemini-6 pilot; Frank Borman, Gemini-7 command pilot; James A. Lovell Jr., Gemini-7 pilot; and Donald K. Slayton (partially hidden behind Lovell), assistant director for Flight Crew Operations, Manned Spacecraft Center, Houston. Photo credit: NASA
2012-06-19
(19 June 2012) --- Expedition 32/33 backup crew members Tom Marshburn of NASA (left), Soyuz Commander Roman Romanenko (center) and Chris Hadfield of the Canadian Space Agency walked to a Soyuz simulator as they prepared for their final Soyuz qualification test June 19, 2012 at the Gagarin Cosmonaut Training Center in Star City, Russia. Expedition 32 Soyuz Commander Yuri Malenchenko and Flight Engineers Suni Williams and Aki Hoshide practiced similar scenarios nearby in advance of their final approval for launch to the International Space Station, scheduled for July 15, 2012. Photo credit: NASA
The new Mobile Command Center at KSC is important addition to emergency preparedness
NASA Technical Reports Server (NTRS)
2000-01-01
This camper-equipped truck known as '''Old Blue''' served as mobile field command center for the Emergency Preparedness team at KSC. It has been replaced with a larger vehicle that includes a conference room, computer work stations, mobile telephones and a fax machine, plus its own onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.
2011-05-01
communications and on computer networks—its Global Information Grid—which are potentially jeopardized by the millions of denial-of-service attacks, hacking ...Director,a National Security Agency Chief of Staff Joint Operations Center Defense Information Systems Agency Command Center J1 J2 J3 J4 J5 J6 J7 J8...DC Joint Staff • J39, Operations, Pentagon, Washington, DC • J5 , Strategic Plans and Policy, Pentagon, Washington, DC U.S. Strategic Command • J882
2000-06-01
knew nothing of the BW/CW work done on the base in the 40’ s and 50’ s . 461 History of the Armament Development and Test Center, Appendix B, 1 July 1970...technical report has been reviewed and is approved for publication. FOR THE DIRECTOR ALBERT S . TORdGIAN, Lt Col, US Deputy Chief, Deployment and Su...Office of History , Air Force Materiel Command Air Force Systems Command Air Force Special Weapons Center Air Force Weapons Laboratory Air Materiel
1990-06-01
SMCAR-CCB-TL AMXSY-MP, H. Cohen Watervliet, NY 12189-4050 1 Cdr, USATECOM ATTN: AMSTE- TD Commander 3 Cdr, CRDEC, AMCCOM US Army Armament, Munitions ATIN...Laboratory Command Armament RD&E Center ATTN: SLCTO (Marcos Sola) US Army AMCCOM 2800 Powder Mill Road ATTN: SMCAR- TDS (Vic Lindner) Adelphi, MD 20783-1145...ASQNC-ELC-1-T, Myer Center US Army AMCCOM Fort Monmouth, NJ 07703-5000 ATTN: SMCAR- TD (Jim Killen) Picatinny Arsenal, NJ 07806-5000 14 DISTRIBUTION
Entrepreneurial and Vocational Education and Training: Lessons from Eastern and Central Europe
ERIC Educational Resources Information Center
Mitra, Jay; Matlay, Harry
2004-01-01
The social, economic and political systems of former communist countries have faced considerable changes since the late 1980s. Most countries in Eastern and Central Europe have undergone their own individual brand of transition from a centrally planned, command system to a more or less liberalized, Western-style market economy. Many observers…
Apollo 12 crewmen participate in water egress training
NASA Technical Reports Server (NTRS)
1969-01-01
The three prime crewmen of the Apollo 12 lunar landing mission participate in water egress training in the Gulf of Mexico. They have just egressed the Apollo Command Module trainer. The man standing at left is a Manned Spacecraft Center (MSC) swimmer. The crewmen await life raft for helicopter pickup. All four persons are wearing biological isoloation garments. Participating in the training exercise were Astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot.
APOLLO 17 PRELAUNCH ASTRONAUT TRAINING
NASA Technical Reports Server (NTRS)
1972-01-01
Apollo 17 Mission Commander Eugene A. Cernan, a Navy Captain, and Lunar Module Pilot Dr. Harrison H. [Jack] Schmitt, civilian scientist-astronaut, at right, familiarize themselves with equipment used in the Lunar Module in which the pair will descent to the lunar surface during December. Cernan and Dr. Schmitt are undergoing prelaunch training in the Lunar Module Simulator at the Flight Crew Training Building at the Kennedy Space Center. Navy Commander Ronald E. Evans, Command Module Pilot, will accompany Cernan and Dr. Schmitt on the mission.
The School of Hard Knocks: The Development of Close Air Support in Burma during the Second World War
2015-05-23
Group CAOC Combined Air Operations Center CAS Close Air Support CBI China-Burma-India EAC Eastern Air Command FM Field Manual JP Joint...Command ( EAC ) solved problems identified by the American Volunteer Group (AVG) in 1942. EAC’s doctrine, procedures, and techniques laid the foundation for...named the Eastern Air Command ( EAC ), and oversaw the air-land cooperation during the Allied counter-offensive into Burma throughout 1943 and 1944.8 The
2004-06-01
CAPABILITY SETS..............................................................................11 Figure 6. T3 DESIGN ...Radio System (JTRS) in 2008 and beyond. JTRS is being designed to provide a flexible new approach to meet diverse warfighter communications needs...Command and Control On-the-Move Network, Digital Over the Horizon Relay (CoNDOR) The CoNDOR Capability Set is an Architectural Approach designed to
1984-02-01
and is approved for publication. APPROVED: ’"" " Project Engineer APPROVED:k 1 4 RAYMOND P. URTZ, JR. Acting Technical Director Command and Control ...Technical Director Command and Control Division FOR THE COMMANDER: JOHN A. RITZ Acting Chief, Plans Office If your address has changed or if you wish to be...179 55812203 Denver CO 80201 55812203 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Rome Air Development Center (COEE) February 1984 Griffiss
Expedition 38 Crewmembers during Transfer of Command Ceremony
2014-03-09
ISS038-E-068899 (9 March 2014) --- The new commander of the current crew on the International Space Station (Expedition 39) and the Expedition 38/39 flight engineers exchange handshakes inside the Kibo laboratory. Their celebration may very well be a follow-up gesture following the transfer of command ceremony and a symbolic farewell to the Expedition 38 crew members (out of frame) who are on the eve of their departure from the orbital outpost. Expedition 39 Commander Koichi Wakata (center) of the Japanese Aerospace Exploration Agency (JAXA) is joined here by Flight Engineers Rick Mastracchio (right) of NASA and cosmonaut Mikhail Tyurin of the Russian Federal Space Agency (Roscosmos).
Application Of Optical Techniques To Command, Control, And Communications (C3) Systems
NASA Astrophysics Data System (ADS)
Weinberg, M.; Steensma, P. D.
1981-02-01
This paper identifies and discusses specific applications of the optical transmission technology to various Command Control and Communications (C3) systems. Candidate C3 systems will first be identified and discussed briefly. These will include: 407L/485L Tactical Air Defense Systems (USAF) TAOC-85 Tactical Air Operations Central (USMC) SACDIN Strategic Air Command Digital Integrated Network (USAF) MX-C3 Missile "X" Command Control Communications Network The first tr are classified as tactical C3 systems while the latter two are classified as strategic C systems. Potential optical applications will be identified along with the benefits derived. Each application will be discussed with key parameters, cost performance benefits, potential problem areas, time frame for development identified.
Intelligent tutoring in the spacecraft command/control environment
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.
1988-01-01
The spacecraft command/control environment is becoming increasingly complex. As we enter the era of Space Station and the era of more highly automated systems, it is evident that the critical roles played by operations personnel in supervising the many required control center system components is becoming more cognitively demanding. In addition, the changing and emerging roles in the operations picture have far-reaching effects on the achievement of mission objectives. Thus highly trained and competent operations personnel are mandatory for success. Keeping pace with these developments has been computer-aided instruction utilizing various artificial intelligence technologies. The impacts of this growing capability on the stringent requirements for efficient and effective control center operations personnel is an area of much concentrated study. Some of the research and development of automated tutoring systems for the spacecraft command/control environment is addressed.
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Seen here are Apollo 15 astronaut backup support crew members, Jack Schmitt (left), Vance Brand and Dick Gordon; Al Worden and Dave Scott. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Seen here are Al Worden (right), and Apollo 15 astronaut backup support crew members, Dick Gordon, Vance Brand and Jack Schmitt. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
2011-07-25
CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Here, sharing a light moment are from left, Apollo 15 astronaut support crew members, Joe Allen, Jack Schmitt and Vance Brand. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett
CONSTELLATION Images from other centers - February 2010
2010-02-09
JSC2010-E-020618 (9 Feb. 2010) --- NASA astronauts Steve Lindsey (right), STS-133 commander; Eric Boe (center), pilot; and Alvin Drew, mission specialist, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.
46 CFR 50.10-23 - Marine Safety Center.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping... Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety Center refers to the Commanding Officer, U.S. Coast Guard Marine Safety Center, 1900 Half Street, SW., Suite...
NASA Astrophysics Data System (ADS)
Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao
2007-11-01
This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Vance Brand is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Brand was Command Module Pilot on the 1975 Apollo- Soyuz Test Project, the first linkup in orbit between spaceships of the United States and Soviet Union, and he later commanded three Space Shuttle missions. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Vance Brand is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Brand was Command Module Pilot on the 1975 Apollo-Soyuz Test Project, the first linkup in orbit between spaceships of the United States and Soviet Union, and he later commanded three Space Shuttle missions. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2014-05-02
Interagency Coordination Centers (JIACs), Interagency Task Forces ( IATFs ) are found within GCCs and subordinate military units in an attempt to bridge...Interagency Tasks Forces ( IATFs ) that exist at each Geographic Combatant Command (GCC). Rather, this chapter serves to highlight the Civil Military
77 FR 4026 - Intent To Grant an Exclusive License of U.S. Government-Owned Invention
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
... Application No. PCT/US2009/060852 entitled ``Method and Device for Detection of Bioavailable Drug... of Tennessee with its principal place of business at UT Conference Center, Suite 211, 600 Henley Street, Knoxville, TN 37996-4122. ADDRESSES: Commander, U.S. Army Medical Research and Materiel Command...
2011-11-20
ISS029-E-043204 (20 Nov. 2011) --- In the Unity node, Expedition 29 crew members add the Expedition 29 patch to the growing collection of insignias representing crews who have worked on the International Space Station. Pictured are NASA astronaut Mike Fossum (center), commander; Japan Aerospace Exploration Agency astronaut Satoshi Furukawa (left) and Russian cosmonaut Sergei Volkov, both flight engineers.
2003-08-06
KENNEDY SPACE CENTER, FLA. - Martin Wilson, with United Space Alliance, describes an orbiter’s Thermal Protection System for members of the Stafford-Covey Return to Flight Task Group (SCTG). Handling some of the blanket insulation are Dr. Kathryn Clark and Joe Engle. Third from left is Richard Covey, former Space Shuttle commander, who is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Gene Cernan waves to guests as he is introduced as a previous inductee. He walked in space on Gemini 9, orbited the Moon on Apollo 10 and walked on the Moon as commander of Apollo 17. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
How Can We Best Achieve Contracting Unity of Effort in the CENTCOM Area of Responsibility?
2013-12-01
3 2. Literature Review ................................................................................3 3. Interview Design and...2010, JCC-I/A was re- designated as the Central Command Joint Theater Support Contracting Command (C-JTSCC). Although the military has used...provision of integrated contracted support and management of contractor personnel providing that support to the joint force in a designated operational
Expedition 16 Soyuz TMA-11 Lands
2008-04-18
A Russian search and rescue helicopter flies over the burning Kazakh steppe after Expedition 16 Commander Peggy Whitson, Flight Engineer and Soyuz Commander Yuri Malenchenko and South Korean spaceflight participant So-yeon Yi landed their Soyuz TMA-11 spacecraft, Friday, April 19, 2008, in central Kazakhstan to complete 192 days in space for Whitson and Malenchenko and 11 days in orbit for Yi. Photo Credit: (NASA/Reuters/Pool)
2003-10-13
October 13, 2003. Baikonur Cosmodrome, Kazakhstan. Expedition 8 Soyuz Commander Alexander Kaleri (left) and Expedition 8 Commander and NASA Science Officer Mike Foale visit the launch pad at the Baikonur Cosmodrome in Kazakhstan Oct. 13, 2003. Foale, Kaleri and European Space Agency Astronaut Pedro Duque of Spain will be launched from the Central Asian launch pad to the International Space Station on Oct. 18. Photo Credit"NASA/Bill Ingalls"
Integrated flight/propulsion control system design based on a centralized approach
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.
1989-01-01
An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.
Swamp Works- Multiple Projects
NASA Technical Reports Server (NTRS)
Carelli, Jonathan M.
2013-01-01
My Surface Systems internship over the summer 2013 session covered a broad range of projects that ranged multiple aspects and fields of engineering and technology. This internship included a project to create a command center for a 120 ton regolith bin, a design and build for a blast shield to add further protection for the Surface Systems engineers, a design for a portable four monitor hyper wall that can extend as large as needed, research and programming a nano drill for a next generation robot, and social media tasks including the making of videos, posting to social networking websites and implementation of a new weekly outreach program to help spread the word about the Swamp Works laboratory. The objectives for the command center were to create a central computer controlled area for the still in production lunar regolith bin. It needed to be easy to use and the operating systems had to be Linux. The objectives for the hyper wall were to build a mobile transport of monitors that could potentially attach to one another. It needed to be light but sturdy, and have the ability to last. The objectives for the blast shield included a robust design that could withstand a small equipment malfunction, while also being convenient for use. The objectives for the nano-drill included the research and implementation of programming for vertical and horizontal movement. The hyper wall and blasts shield project were designed by me in the Pro/Engineer/Creo2 software. Each project required a meeting with the Swamp Works engineers and was declared successful.
Evaluation of the lambda model for human postural control during ankle strategy.
Micheau, Philippe; Kron, Aymeric; Bourassa, Paul
2003-09-01
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.
NASA Astrophysics Data System (ADS)
de Coligny, M.
Optimized control strategies are developed for industrial installations where many variables of energy supply and storage are involved, with a particular focus on characteristics of a solar central tower power plant. It is shown that optimal regulation resides in controlling all disturbances which occur in a limited domain of the entire system, using robust control schemes. Choosing a command is then dependent on defining precise operational limits as constraints on the machines' performances. Attention is given to the development of variational principles used for the elements of the command logic. Particular consideration is given to a limited supply in storage in spatial and temporal terms. Commands for alterations in functions are then available on-line, and discontinuities are not a feature of the control system. The strategy is applied to the case of a field of heliostats and a central tower themal receiver showing that management is possible on the basis of a sliding horizon.
Seismometer reading from impact made by Lunar Module ascent stage
1969-11-20
S69-59547 (20 Nov. 1969) --- The seismometer reading from the impact made by the Lunar Module ascent stage when it struck the lunar surface. The impact was registered by the Passive Seismic Experiment Package which was deployed on the moon by the Apollo 12 astronauts. PSEP, which is a component of the Apollo Lunar Surface Experiments Package, will detect surface tilt produced by tidal deformations, moonquakes, and meteorite impacts. The LM's ascent stage was jettisoned and sent journeying toward impact on the moon after astronauts Charles Conrad Jr. and Alan L. Bean returned to lunar orbit and rejoined astronaut Richard F. Gordon Jr. in the Command and Service Modules. Information from the PSEP is transmitted to Earth through the ALSEP's central station and monitored by equipment at the Manned Spacecraft Center.
1997-11-11
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-11-12
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is installed in the Spacelab module by Boeing technicians in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-11-11
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-11-12
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is installed in the Spacelab module by Boeing technicians in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
1997-11-12
The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is installed in the Spacelab module by Boeing technicians in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
Astronaut John Young stands at ALSEP deployment site during first EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands at the Apollo Lunar Surface Experiments Package (ALSEP) deployment site during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. The components of the ALSEP are in the background. The lunar surface drill is just behind and to the right of Young. The drill's rack and bore stems are to the left. The three sensor Lunar Surface Magnetometer is beyond the rack. The dark object in the right background is the Radioisotope Thermoelectric Generator (RTG). Between the RTG and the drill is the Heat Flow Experiment. A part of the Central Station is at the right center edge of the picture. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile Center...
2011-03-24
CHARLES BOLDEN NASA ADMINISTRATOR TOURING AND SPEAKING AT THE US. SPACE AND ROCKET CENTER, HUNTSVILLE, ALABAMA. ACCOMPANYING ADMINISTRATOR BOLDEN ARE DR. DEBORAH BARNHART, CEO OF THE USSARC, ROBERT LIGHTFOOT, CENTER DIRECTOR OF MARSHALL SPACE FLIGHT CENTER AND RETIRED NASA ASTRONAUT ROBERT LEE “HOOT” GIBSON, ADMINISTRATOR BOLDEN’S FIRST SPACE FLIGHT COMMANDER.
2011-02-16
New Armed Forces Reserve Center & 63rd Regional Support Command Headquarters, Moffett Field, CA ribbon cutting ceremonies and dedication of the United States Armed Forces Center is memorialized in honor of Sgt James Wilkowski.
2011-02-16
New Armed Forces Reserve Center & 63rd Regional Support Command Headquarters, Moffett Field, CA ribbon cutting ceremonies and dedication of the United States Armed Forces Center is memorialized in honor of Sgt James Wilkowski.
2011-02-16
New Armed Forces Reserve Center & 63rd Regional Support Command Headquarters, Moffett Field, CA ribbon cutting ceremonies and dedication of the United States Armed Forces Center is memorialized in honor of Sgt James Wilkowski.
2011-02-16
New Armed Forces Reserve Center & 63rd Regional Support Command Headquarters, Moffett Field, CA ribbon cutting ceremonies and dedication of the United States Armed Forces Center is memorialized in honor of Sgt James Wilkowski.
2011-02-16
New Armed Forces Reserve Center & 63rd Regional Support Command Headquarters, Moffett Field, CA ribbon cutting ceremonies and dedication of the United States Armed Forces Center is memorialized in honor of Sgt James Wilkowski.
2011-02-16
New Armed Forces Reserve Center & 63rd Regional Support Command Headquarters, Moffett Field, CA ribbon cutting ceremonies and dedication of the United States Armed Forces Center is memorialized in honor of Sgt James Wilkowski.
2011-02-16
New Armed Forces Reserve Center & 63rd Regional Support Command Headquarters, Moffett Field, CA ribbon cutting ceremonies and dedication of the United States Armed Forces Center is memorialized in honor of Sgt James Wilkowski.
Close up view of the center console on the flight ...
Close up view of the center console on the flight deck of the Orbiter Discovery showing the console's instrumentation and controls. The commanders station is located to the left in this view and the pilot's station is to the right in the view. The handle and lever located on the right side of the center console and towards its front is one of a pair, the commander has one on the left of his seat in his station, of Speed Brake/Thrust Controllers. These are dual purpose controllers. During ascent the controller can be use to throttle the main engines and during entry the controllers can be used to control aerodynamic drag by opening or closing the orbiter's speed brake. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Solar corona photographed from Apollo 15 one minute prior to sunrise
1971-07-31
AS15-98-13311 (31 July 1971) --- The solar corona, as photographed from the Apollo 15 spacecraft about one minute prior to sunrise on July 31, 1971, is seen just beyond the lunar horizon. The bright object on the opposite of the frame is the planet Mercury. The bright star near the frame center is Regulus, and the lesser stars form the head of the constellation Leo. Mercury is approximately 28 degrees from the center of the sun. The solar coronal streamers, therefore, appear to extend about eight degrees from the sun's center. This solar corona photograph was the second in a series of seven. Three such series were obtained by astronaut Alfred M. Worden, command module pilot, during the solo part of his lunar orbital flight. They represent man's first view of this part of the sun's light. While astronauts David R. Scott, commander, and James B. Irwin, lunar module pilot, descended in the Lunar Module (LM) "Falcon" to explore the Hadley-Apennine area of the moon, astronaut Worden remained with the Command and Service Modules (CSM) in lunar orbit.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Inside the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex, the Bethune-Cookman Choir performs prior to the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
Expedition One crew in Russian with Service Module
2000-07-14
Photographic documentation of Expedition One crew in Russia with Service Module. Views include: The three crew members for ISS Expedition One train with computers on the trainer / mockup for the Zvezda Service Module. From the left are cosmonauts Yuri Gidzenko, Soyuz commander; and Sergei Krikalev, flight engineer; and astronaut William Shepherd, mission commander. The session took place at the Gagarin Cosmonaut Training Center in Russia (18628). View looking toward the hatch inside the Zvezda Service Module trainer / mockup at the Gagarin Cosmonaut Training Center in Russia (18629). A wide shot of the Zvezda Service Module trainer / mockup, with the transfer compartment in the foreground (18630). Side view of the Zvezda Service Module (18631). An interior shot of the Zarya / Functional Cargo Bay (FGB) trainer / mockup (18632). Astronaut Scott Kelly, director of operations - Russia, walks through a full scale trainer / mockup for the Zvezda Service Module at the Gagarin Cosmonaut Training Center in Russia (18633). Astronaut William Shepherd (right) mission commander for ISS Expedition One, and Sergei Krikalev, flight engineer, participate in a training session in a trainer / mockup of the Zvezda Service Module (18634).
SOA approach to battle command: simulation interoperability
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.
2010-04-01
NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.
Applications of Modeling and Simulation for Flight Hardware Processing at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Marshall, Jennifer L.
2010-01-01
The Boeing Design Visualization Group (DVG) is responsible for the creation of highly-detailed representations of both on-site facilities and flight hardware using computer-aided design (CAD) software, with a focus on the ground support equipment (GSE) used to process and prepare the hardware for space. Throughout my ten weeks at this center, I have had the opportunity to work on several projects: the modification of the Multi-Payload Processing Facility (MPPF) High Bay, weekly mapping of the Space Station Processing Facility (SSPF) floor layout, kinematics applications for the Orion Command Module (CM) hatches, and the design modification of the Ares I Upper Stage hatch for maintenance purposes. The main goal of each of these projects was to generate an authentic simulation or representation using DELMIA V5 software. This allowed for evaluation of facility layouts, support equipment placement, and greater process understanding once it was used to demonstrate future processes to customers and other partners. As such, I have had the opportunity to contribute to a skilled team working on diverse projects with a central goal of providing essential planning resources for future center operations.
A spacecraft computer repairable via command.
NASA Technical Reports Server (NTRS)
Fimmel, R. O.; Baker, T. E.
1971-01-01
The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.
STS-98 Commander Cockrell talks with Leinbach and Bridges at SLF
NASA Technical Reports Server (NTRS)
2001-01-01
STS-98 Mission Commander Kenneth Cockrell (center) talks with Launch Director Michael Leinbach (red and white jacket) and Center Director Roy Bridges (right) at the Shuttle Landing Facility after the crew's arrival Sunday to complete preparations for launch. Behind him are, from left to right, Mission Specialist Thomas Jones; Tom Kwiatkowski, NASA, Johnson Space Center (JSC); and Robert Hanley, United Space Alliance, JSC. The crew also includes Pilot Mark Polansky and Mission Specialists Marsha Ivins and Robert Curbeam. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Feb. 7 at 6:11 p.m. EST.
PRELAUNCH - (SUITING-UP) APOLLO 15 - KSC
1971-07-26
S71-41408 (26 July 1971) --- The three Apollo 15 astronauts go through suiting up operations in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building (MSOB) during the Apollo 15 prelaunch countdown. They are David R. Scott (foreground), commander; Alfred M. Worden (center), command module pilot; and James B. Irwin (background), lunar module pilot. Minutes later the crew rode a special transport van over to Pad A, Launch Complex 39, where their spacecraft awaited them. With the crew was Dr. Donald (Deke) K. Slayton (wearing dark blue sport shirt), director of Flight Crew Operations, Manned Spacecraft Center (MSC). The Apollo 15 space vehicle was launched at 9:34:00:79 a.m. (EDT), July 26, 1971, on a lunar landing mission.
Pneumatic vacuum tube message center, basement room 23, looking southeast ...
Pneumatic vacuum tube message center, basement room 23, looking southeast toward doorway and corridor. Note soundproof walls, pedestal flooring, and cable tray suspended from the ceiling - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA
Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
1983-12-07
S82-28952 (1 April 1982) --- Crew members from STS-2 and STS-4 meet with the recently returned STS-3 astronauts for a debriefing session at the Johnson Space Center. Taking notes at bottom left foreground is astronaut John W. Young, STS-1 commander and chief of the Astronaut Office at JSC. Clockwise around the table, beginning with Young, are George W. S. Abbey, JSC Director of Flight Operations; and astronauts Joe E. Engle, STS-2 commander; Henry W. Hartsfield Jr., STS-4 pilot; C. Gordon Fullerton, STS-3 pilot; Jack R. Lousma, STS-3 commander; Thomas K. (Ken) Mattingly, STS-4 commander; and Richard H. Truly, STS-2 pilot. Photo credit: NASA
International Space Station Payload Operations Integration Center (POIC) Overview
NASA Technical Reports Server (NTRS)
Ijames, Gayleen N.
2012-01-01
Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).
The new Mobile Command Center at KSC is important addition to emergency preparedness
NASA Technical Reports Server (NTRS)
2000-01-01
Charles Street, Roger Scheidt and Robert ZiBerna, the Emergency Preparedness team at KSC, sit in the conference room inside the Mobile Command Center, a specially equipped vehicle. Nicknamed '''The Brute,''' it also features computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.
The new Mobile Command Center at KSC is important addition to emergency preparedness
NASA Technical Reports Server (NTRS)
2000-01-01
Robert ZiBerna, Roger Scheidt and Charles Street, the Emergency Preparedness team at KSC, practice for an emergency scenario inside the Mobile Command Center, a specially equipped vehicle. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.
Marine Science Building Dedicated
2003-10-17
Officials cut the ribbon during dedication ceremonies of the George A. Knauer Marine Science Building on Oct. 17 at NASA Stennis Space Center (SSC). The $2.75 million facility, the first building at the test site funded by the state of Mississippi, houses six science labs, classrooms and office space for 40 faculty and staff. Pictured are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; SSC Assistant Director David Throckmorton; Dr. George A. Knauer, founder of the Center of Marine Science at the University of Southern Mississippi (USM); Lt. Gov. Amy Tuck; and USM President Dr. Shelby Thames.
Apollo experience report: Postflight testing of command modules
NASA Technical Reports Server (NTRS)
Hamilton, D. T.
1973-01-01
Various phases of the postflight testing of the command modules used in the Apollo Program are presented. The specific tasks to be accomplished by the task force recovery teams, the National Aeronautics and Space Administration Lyndon B. Johnson Space Center, (formerly the Manned Spacecraft Center) and the cognizant contractors/subcontractors are outlined. The means and methods used in postflight testing and how such activities evolved during the Apollo Program and were tailored to meet specific test requirements are described. Action taken to resolve or minimize problems or anomalies discovered during the flight, the postflight test phase, or mission evaluation is discussed.
Marine Science Building Dedicated
NASA Technical Reports Server (NTRS)
2003-01-01
Officials cut the ribbon during dedication ceremonies of the George A. Knauer Marine Science Building on Oct. 17 at NASA Stennis Space Center (SSC). The $2.75 million facility, the first building at the test site funded by the state of Mississippi, houses six science labs, classrooms and office space for 40 faculty and staff. Pictured are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; SSC Assistant Director David Throckmorton; Dr. George A. Knauer, founder of the Center of Marine Science at the University of Southern Mississippi (USM); Lt. Gov. Amy Tuck; and USM President Dr. Shelby Thames.
A Human-Centered Approach to Sense and Respond Logistics
2009-04-10
United States Transportation Command (USTRANSCOM), a human-centered research initiative consisting of eight distinct research efforts designed to...27 2.5 Experimental Design ...120 6.3.6 Auction design parameters
Results from Testing Crew-Controlled Surface Telerobotics on the International Space Station
NASA Technical Reports Server (NTRS)
Bualat, Maria; Schreckenghost, Debra; Pacis, Estrellina; Fong, Terrence; Kalar, Donald; Beutter, Brent
2014-01-01
During Summer 2013, the Intelligent Robotics Group at NASA Ames Research Center conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed lunar mission, in which an astronaut in lunar orbit would remotely operate a planetary rover to deploy a radio telescope on the lunar far side. Over the course of Expedition 36, three ISS astronauts remotely operated the NASA "K10" planetary rover in an analogue lunar terrain located at the NASA Ames Research Center in California. The astronauts used a "Space Station Computer" (crew laptop), a combination of supervisory control (command sequencing) and manual control (discrete commanding), and Ku-band data communications to command and monitor K10 for 11 hours. In this paper, we present and analyze test results, summarize user feedback, and describe directions for future research.
Close up view of the Commander's Seat on the Flight ...
Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Solar Sail Attitude Control Performance Comparison
NASA Technical Reports Server (NTRS)
Bladt, Jeff J.; Lawrence, Dale A.
2005-01-01
Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.
The Hammer Award is presented to KSC and 45th Space Wing.
NASA Technical Reports Server (NTRS)
1999-01-01
At a special presentation in the IMAX 2 Theater in the Kennedy Space Center Visitor Complex, the Hammer Award is presented to Kennedy Space Center and the 45th Space Wing. Among the attendees in the audience are (center) Center Director Roy D. Bridges Jr., flanked by (at left) Commander of the 45th Space Wing Brig. Gen. F. Randall Starbuck and (at right) Commander of the Air Force Space Command General Richard B. Myers. Standing second from right is NASA Administrator Daniel S. Goldin. At the far right is Morley Winograd, director of the National Partnership for Reinventing Government, who presented the award. The Hammer Award is Vice President Al Gore's special recognition of teams of federal employees who have made significant contributions in support of the principles of the National Partnership for Reinventing Government. This Hammer Award acknowledges the accomplishments of a joint NASA and Air Force team that established the Joint Base Operations and Support Contract (J- BOSC) Source Evaluation Board (SEB). Ed Gormel and Chris Fairey, co-chairs of the SEB, accepted the awards for the SEB. The team developed and implemented the acquisition strategy for establishing a single set of base operations and support service requirements for KSC, Cape Canaveral Air Station and Patrick Air Force Base.
1999-07-16
At a special presentation in the IMAX 2 Theater in the Kennedy Space Center Visitor Complex, the Hammer Award is presented to Kennedy Space Center and the 45th Space Wing. Among the attendees in the audience are (center) Center Director Roy D. Bridges Jr., flanked by (at left) Commander of the 45th Space Wing Brig. Gen. F. Randall Starbuck and (at right) Commander of the Air Force Space Command General Richard B. Myers. Standing second from right is NASA Administrator Daniel S. Goldin. At the far right is Morley Winograd, director of the National Partnership for Reinventing Government, who presented the award. The Hammer Award is Vice President Al Gore's special recognition of teams of federal employees who have made significant contributions in support of the principles of the National Partnership for Reinventing Government. This Hammer Award acknowledges the accomplishments of a joint NASA and Air Force team that established the Joint Base Operations and Support Contract (J-BOSC) Source Evaluation Board (SEB). Ed Gormel and Chris Fairey, co-chairs of the SEB, accepted the awards for the SEB. The team developed and implemented the acquisition strategy for establishing a single set of base operations and support service requirements for KSC, Cape Canaveral Air Station and Patrick Air Force Base
Cash Management Improvement in the Navy Stock Fund.
1986-03-01
Command, Aviation Supply Office, Fisca.l Ya 1,985 Material Budget Execution Plan , September 1984. 44 Naval Supply Systems Command, Code 60... Material . .. .. .. ... 57 3. Inventory Augmentation Appropriated Funds. .. .. ... 57 I V. CURRENT NAVY STOCK FUND CASH MANAGEMENT PRACTICES . ..59 A...Control Center, Mechanicsburg, Pennsylvania 13 * Fleet Material Support Office, Mechanicsburg, Pennsylvania Aviation Supply Off Ice, Philadelphia
Hearing on Space Situational Awareness:
2018-06-22
Secretary of Commerce Wilbur Ross, left, NASA Administrator Jim Bridenstine, center, and Commander, U.S. Strategic Command, General John Hyten prepare to testify before the House Subcommittee on Strategic Forces during a hearing on Space Situational Awareness: Whole of Government Perspectives on Roles and Responsibilities, Friday, June 22, 2018 at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)
Hearing on Space Situational Awareness:
2018-06-22
Secretary of Commerce Wilbur Ross, left, NASA Administrator Jim Bridenstine, center, and Commander, U.S. Strategic Command, General John Hyten testify before the House Subcommittee on Strategic Forces during a hearing on Space Situational Awareness: Whole of Government Perspectives on Roles and Responsibilities, Friday, June 22, 2018 at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)
Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils
2003-12-01
Development, and Engineering Command Ames Research Center Moffett Field, California December 2003 National Aeronautics and Space Administration Ames...60A ROTOR BLADE AND AIRFOILS ................................................................................... 2 EVALUATION OF SECTION CHARACTERISTICS...Characteristics of SC1095 and SC1094 R8 Airfoils WILLIAM G. BOUSMAN Aeroflightdynamics Directorate U.S. Army Research, Development, and Engineering Command Ames
Apollo 8 prime crew inside centrifuge gondola in bldg 29 during training
NASA Technical Reports Server (NTRS)
1968-01-01
The Apollo 8 prime crew inside the centrifuge gondola in bldg 29 during centrifuge training in the Manned Spacecraft Center's (MSC) Flight Acceleration Facility (view with crew lying on back). Left to right, are Astronauts Frank Borman, commander; James A. Lovell Jr., command module pilot; and William A. Anders, lunar module pilot.
1969-05-15
S69-34385 (13 May 1969) --- These three astronauts are the prime crew of the Apollo 10 lunar orbit mission. Left to right, are Eugene A. Cernan, lunar module pilot; John W. Young, command module pilot; and Thomas P. Stafford, commander. In the background is the Apollo 10 space vehicle on Pad B, Launch Complex 39, Kennedy Space Center, Florida.
History of the Army Ground Forces. Study Number 27. History of the Armored Force, Command and Center
1946-01-01
Forces be- *• came closer. With its redesignation as the Armored Command on 2 Tuly 1945, the activ- ities of the Armored Force became more closely...techniques. Num- ber of graduates not available. .,- Clerical Courses Clerical Course - Opened 4 November 1940; closed 22 Tuly 1944. Duration of each class - 8
A Method for Designing Deep Underground Structures Subjected to Dynamic Loads
1976-09-01
Expanding the expression for u /u. evaluated at r « r in power « of vJv2 S ive5 / \\ - 1 + (1 - 2v) ə + ,. ui e n=l For p1/p_ = 0 this expression...Continued) Commanding Officer Nucler ,- Weapons Training Center Atlantic Naval Base Norfolk, Va. 23511 ATTN: Nuclear Warfare Department Commander
Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.
Latash, M L; Gottlieb, G L
1991-01-01
The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements.
Future Years Defense Program (FYDP) Structure
2004-04-01
JC - United States Central Command DoD 7045.7-H, April 2004 12 JCA - CJCS Controlled Activities JE - United States European Command JFC - United...Codes ARMY TITLECODE TITLECODE(H) = Historical (H) = Historical 1291 Line of Sight Anti-Tank (LOSAT) Battalion 1295 Armored Cavalry Squadrons (ACR) 1296...TRI-TAC) 0208010N Joint Tactical Communications Program (TRI-TAC) 0208011A CJCS Exercise Program 0208011F CJCS Exercise Program 0208011J CJCS Exercise
2009-03-01
AOR – Area of Responsibility CENTCOM – United States Central Command CMF – Combined Maritime Force COCOM – Combatant Commander...unhelpful to embrace absolute dichotomies – such as purely private versus public goods – which fail to distinguish intermediate possibilities of...external conflict. 16 B. COUNTRIES In order to ensure wide inclusion of extremely varied countries, 84 countries from the areas of
The Evolution of Centralized Operational Logistics
2012-05-17
John Kennedy Ohl, Supplying the Troops, General Somervell and American Logistics in WWII (DeKalb: Northern Illinois University Press, 1994), 60-61. 8...logistics support to the Military Assistance Command Vietnam. Although Admiral John H. Sides, the Commander in Chief, Pacific Fleet, did not want to...Delivering the Goods: The Art of Managing Your Supply Chain (Hoboken: John Wiley and Sons, Inc., 2002), 78. 55 Shrader, United States Army Logistics 1775
Iranian threat: Key concerns for the combatant commander in response. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, S.
1996-03-05
In the aftermath of the Gulf War with Iraq, the Islamic Republic of Iran has emerged as the greatest long-term threat to peace and stability in the Central Region. Through purchase of a wide range of high-tech weapons, Iran now has a formidable military force capable of influencing Gulf economic policy. However, in the event of Iranian aggression, the United States Central Command stands ready to defend vital U.S. interests in the Middle East. The national strategy of Iran is bound by the religious tenets of Islam and an oil based economy struggling to support a population which has explodedmore » over the past sixteen years. Iran seeks to build global alliances for export of oil and liquid petroleum gas while continuing support for Islamic communities under attack. Iran perceives the U.S. and the emerging regional order to be the greatest threat to the republic`s existence and, in response, has bought fast attack missile patrol boats, diesel electric submarines, ballistic missiles and long range strike aircraft. Iran is now capable of conducting terrorist activities, denying international access to the Gulf and threatening the region with chemical/biological weapons. The Combatant Commander`s theater strategy must be tailored to respond rapidly and decisively to the growing Iranian threat.« less
XML in an Adaptive Framework for Instrument Control
NASA Technical Reports Server (NTRS)
Ames, Troy J.
2004-01-01
NASA Goddard Space Flight Center is developing an extensible framework for instrument command and control, known as Instrument Remote Control (IRC), that combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms.
1999-07-19
KENNEDY SPACE CENTER, FLA. -- Singer Judy Collins (left) shares a laugh with First Lady Hillary Rodham Clinton in the Apollo/Saturn V Facility. Both women are at KSC to view the launch of Space Shuttle mission STS-93 scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Judy Collins has honored the commander with a song, "Beyond the Sky," which was commissioned by NASA through the NASA Art Program
Apollo 12 crewmen participate in water egress training
1969-09-20
S69-52990 (20 Sept. 1969) --- The three prime crew men of the Apollo 12 lunar landing mission participate in water egress training in the Gulf of Mexico. They have just egressed the Apollo Command Module (CM) trainer. The man standing at left is a Manned Spacecraft Center's (MSC) swimmer. The crew men await in life raft for helicopter pickup. All four persons are wearing biological isolation garments. Participating in the training exercise were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot.
Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J
2018-01-01
The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P < 0.0001) but were not different between passive and active cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P < 0.001). MSNA burst frequency and incidence decreased during passive and active cycling ( P < 0.0001), but no differences were detected between exercise modes ( P > 0.05). Reductions in total MSNA were attenuated during the first ( P < 0.0001) and second ( P = 0.0004) minute of active compared with passive cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.
NASA Glenn Research Center Overview
NASA Technical Reports Server (NTRS)
Sehra, Arun K.
2002-01-01
This viewgraph presentation provides information on the NASA Glenn Research Center. The presentation is a broad overview, including the chain of command at the center, its aeronautics facilities, and the factors which shape aerospace product line integration at the center. Special attention is given to the future development of high fidelity probabilistic methods, and NPSS (Numerical Propulsion System Simulation).
U.S. Northern Command > About USNORTHCOM > Doing Business with USNORTHCOM
Central Contractor Registration (CCR) http://www.ccr.gov Vendors should register in the U.S. federal government's Central Contractor Registration (CCR). A Data Universal Numbering System (DUNS®) number, provided planning and conducting contracting and contractor management functions in support of joint operations
33 CFR 55.9 - Child development centers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Child development centers. 55.9 Section 55.9 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL CHILD DEVELOPMENT SERVICES General § 55.9 Child development centers. (a) The Commandant may make child development...