Sample records for central composite rotatable

  1. Central composite rotatable design for investigation of microwave-assisted extraction of ginger (Zingiber officinale)

    NASA Astrophysics Data System (ADS)

    Fadzilah, R. Hanum; Sobhana, B. Arianto; Mahfud, M.

    2015-12-01

    Microwave-assisted extraction technique was employed to extract essential oil from ginger. The optimal condition for microwave assisted extraction of ginger were determined by resposnse surface methodology. A central composite rotatable design was applied to evaluate the effects of three independent variables. The variables is were microwave power 400 - 800W as X1, feed solvent ratio of 0.33 -0.467 as X2 and feed size 1 cm, 0.25 cm and less than 0.2 cm as X3. The correlation analysis of mathematical modelling indicated that quadratic polynomial could be employed to optimize microwave assisted extraction of ginger. The optimal conditions to obtain highest yield of essential oil were : microwave power 597,163 W : feed solvent ratio and size of feed less than 0.2 cm.

  2. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-07-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  3. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-02-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  4. Sex differences in righting from supine to prone in rats (Rattus norvegicus): a masculinized skeletomusculature is not required.

    PubMed

    Field, Evelyn F; Martens, David J; Watson, Neil V; Pellis, Sergio M

    2005-05-01

    Previous research has shown that sex differences exist in the composition of lateral movements (E. F. Field, I. Q. Whishaw, & S. M. Pellis, 1996, 1997a, 1997b; see also records 1996-06132-009, 1997-05322-015, and 1997-04722-005). An unresolved question is whether sex differences are present in other movements, such as rotation around the longitudinal axis, and whether this difference is dependent on a feminine or masculine skeletomusculature. Female rats (Rattus norvegicus) first rotate their forequarters and then their hindquarters in the same direction. Male rats exhibit rotation of the hindquarters counter to the direction of forequarter rotation. Males with the testicular feminized mutation, who have a feminized skeletomusculature and masculinized central nervous system, are similar to male controls. This study provides evidence that sex differences in movement integration are not restricted to the lateral plane, are not solely due to sex differences in skeletomusculature, and thus are likely mediated by the central nervous system. 2005 APA, all rights reserved

  5. Comparative study of tow buckling defect during preforming of structural composites based on vegetable fibers

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed; Fazzini, Marina; Ouagne, Pierre

    2018-02-01

    During the complex shape forming of composite fibrous reinforcement, the planar bending of roving tows results in an out-of-plane deflection, along with a rotation on its central axis. The need to accurately follow and quantify the mechanism of formation of such defect has led us to consider two 3D imaging techniques, of which, have been tested and compared in this work.

  6. Physical characteristics of extrudates from corn flour and dehulled carioca bean flour blend

    USDA-ARS?s Scientific Manuscript database

    Extruded products were prepared from a corn flour and dehulled carioca bean (Phaseolus vulgaris, L.) flour blend using a single-screw extruder. A central composite rotate design was used to evaluate the effects of extrusion process variables: screw speed (318.9-392.9 rpm), feed moisture (10.9-21.0 g...

  7. Deferred rotation harvests in central Appalachia: 20- and 25-year results

    Treesearch

    Melissa Thomas-Van Gundy; Thomas M. Schuler

    2008-01-01

    In deferment harvest, two distinct age classes are created and the residual trees remain after establishment of the second cohort. The 20- or 25-year preliminary results from four deferment areas are described. For each area, volume and growth in the residual trees and new cohort, and structure and composition of the new cohort are presented. We also address whether...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punsly, Brian, E-mail: brian.punsly1@verizon.net; ICRANet, Piazza della Repubblica, I-65100 10 Pescara

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ∼580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow.more » It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.« less

  9. Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates

    NASA Astrophysics Data System (ADS)

    Huang, ZunYue; Luo, Zhen; Ao, Sansan; Cai, YangChuan

    2018-10-01

    Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates are studied in the paper. The influence of underwater laser welding parameters (such as laser power, welding speed, defocusing distance and gas flow rate) on weld bowing distortion was investigated through central composite rotatable design and an orthogonal test. A quadratic response model was established to evaluate the underwater laser weld bowing distortion by central composite rotatable design and the order of the impacts of the welding parameters on weld bowing distortion was studied by an orthogonal test. The weld bowing distortion after welding was determined by the digital image correlation technique. The weld bowing distortion of in-air laser welding and underwater laser welding were compared and it revealed that the shape of the in-air and underwater laser welded specimens are the same, but the weld bowing distortion amount of in-air welding is larger than that of underwater welding. Weld bowing distortion mechanism was studied by the digital image correlation technique, and it was demonstrated that weld bowing distortion is associated with the welding plate temperature gradient during laser welding. The wider weld width also resulted in larger weld bowing distortion.

  10. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  11. Study of magnetized accretion flow with variable Γ equation of state

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Chattopadhyay, Indranil

    2018-05-01

    We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.

  12. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  13. Seeking Low Ice Adhesion

    DTIC Science & Technology

    1979-04-01

    stress. D. Cylinder torsion shear test (0 cone), where the adhesive layer is formed between a hollow cylinder and central core , one of which is rotated...products deemed worth testing. These are listed with addresses and contacts. Besides simple resins and other release agents, they include composites ...is incomplete, pockets of air are thermodynamic considerations. left in hollows or adhering to the surface, reduc- ing bonding. Such pockets also can

  14. Central Rotations of Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  15. MO-D-213-05: Sensitivity of Routine IMRT QA Metrics to Couch and Collimator Rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaei, P

    Purpose: To assess the sensitivity of gamma index and other IMRT QA metrics to couch and collimator rotations. Methods: Two brain IMRT plans with couch and/or collimator rotations in one or more of the fields were evaluated using the IBA MatriXX ion chamber array and its associated software (OmniPro-I’mRT). The plans were subjected to routine QA by 1) Creating a composite planar dose in the treatment planning system (TPS) with the couch/collimator rotations and 2) Creating the planar dose after “zeroing” the rotations. Plan deliveries to MatriXX were performed with all rotations set to zero on a Varian 21ex linearmore » accelerator. This in effect created TPS-created planar doses with an induced rotation error. Point dose measurements for the delivered plans were also performed in a solid water phantom. Results: The IMRT QA of the plans with couch and collimator rotations showed clear discrepancies in the planar dose and 2D dose profile overlays. The gamma analysis, however, did pass with the criteria of 3%/3mm (for 95% of the points), albeit with a lower percentage pass rate, when one or two of the fields had a rotation. Similar results were obtained with tighter criteria of 2%/2mm. Other QA metrics such as percentage difference or distance-to-agreement (DTA) histograms produced similar results. The point dose measurements did not obviously indicate the error due to location of dose measurement (on the central axis) and the size of the ion chamber used (0.6 cc). Conclusion: Relying on Gamma analysis, percentage difference, or DTA to determine the passing of an IMRT QA may miss critical errors in the plan delivery due to couch/collimator rotations. A combination of analyses for composite QA plans, or per-beam analysis, would detect these errors.« less

  16. Central composite rotatable design for investigation of microwave-assisted extraction of okra pod hydrocolloid.

    PubMed

    Samavati, Vahid

    2013-10-01

    Microwave-assisted extraction (MAE) technique was employed to extract the hydrocolloid from okra pods (OPH). The optimal conditions for microwave-assisted extraction of OPH were determined by response surface methodology. A central composite rotatable design (CCRD) was applied to evaluate the effects of three independent variables (microwave power (X1: 100-500 W), extraction time (X2: 30-90 min), and extraction temperature (X3: 40-90 °C)) on the extraction yield of OPH. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of OPH. The optimal conditions to obtain the highest recovery of OPH (14.911±0.27%) were as follows: microwave power, 395.56 W; extraction time, 67.11 min and extraction temperature, 73.33 °C. Under these optimal conditions, the experimental values agreed with the predicted ones by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing OPH extraction. After method development, the DPPH radical scavenging activity of the OPH was evaluated. MAE showed obvious advantages in terms of high extraction efficiency and radical scavenging activity of extract within the shorter extraction time. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Experimental design data for the biosynthesis of citric acid using Central Composite Design method.

    PubMed

    Kola, Anand Kishore; Mekala, Mallaiah; Goli, Venkat Reddy

    2017-06-01

    In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.

  18. The Extreme Ultraviolet Deficit and Magnetically Arrested Accretion in Radio-loud Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian

    2014-12-01

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ~580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  19. Submerged Cultivation of Mycelium with High Ergothioneine Content from the Culinary-Medicinal Golden Oyster Mushroom, Pleurotus citrinopileatus (Higher Basidiomycetes).

    PubMed

    Lin, Shin-Yi; Chien, Shih-Chang; Wang, Sheng-Yang; Mau, Jeng-Leun

    2015-01-01

    The optimization of submerged culture of the culinary-medicinal golden oyster mushroom, Pleurotus citrinopileatus, was studied using a one-factor-at-a-time, two-stage stimulation and central composite rotatable design to produce mycelia with high ergothioneine content. The optimal culture conditions for mycelia harvested at day 22 were a temperature of 25°C, an inoculation ratio of 5%, 2% glucose, 0.5% yeast extract, and adjustment of the initial pH value to 10. The biomass and ergothioneine content were 8.28 g/L and 10.65 mg/g dry weight (dw), respectively. The addition of an amino acid precursor increased the ergothioneine content of mycelia; cysteine was the most effective. In addition, the results obtained from central composite rotatable design showed that the recommended combination for cysteine, histidine, and methionine was 8, 4, and 0.5 mmol/L, respectively. The predicted ergothioneine content was 13.90 mg/g dw, whereas the experimental maximal ergothioneine content was 14.57 mg/g dw. With the addition of complex precursors and under optimal culture conditions, mycelia harvested at days 16-20 had higher ergothioneine content. Accordingly, the information obtained could be used to produce mycelia with high ergothioneine content.

  20. Role of Minerogenic Particles in Light Scattering in Lakes and a River in Central New York

    DTIC Science & Technology

    2007-09-10

    calibration protocol. Corrections for differences in the ten samples for both elemental and morphometric pure-water absorption and attenuation due to tem...PA’>, (6) Morphometric characterization of particles by SAX is based on a "rotating chord" algorithm, which pro- where N,,, is the number of...to characterize individual minerogenic par- nous versus autochthonous) is essential information ticles both compositionally and morphometrically for

  1. Composite flywheels with rim and hub

    NASA Astrophysics Data System (ADS)

    Ikegami, K.; Igarashi, J.-I.; Shiratori, E.

    The possibility of obtaining a flywheel of high energy density by increasing both rotating speed and moment of inertia of the disc is investigated. As the starting point of the search process for such a flywheel, a glass cloth-laminated disc with a hole at the center is considered. The rotating speed of the disc is improved by reinforcing the central hole of the disc with the same material as that of the disc. The large moment of inertia is obtained by attaching a rim around the disc. The rim is moulded by winding carbon fiber around it. This rim also has the usual 'hoop' effect which prevents a reduction of the rotating speed of the disc because of the additional moment of inertia of the rim. The shape of the disc having a high energy density is numerically sought by varying the dimensions of the hub and the rim of the disc, and an optimal shape is proposed.

  2. Glenohumeral joint rotation range of motion in competitive swimmers.

    PubMed

    Riemann, Bryan L; Witt, Joe; Davies, George J

    2011-08-01

    Much research has examined shoulder range of motion adaptations in overhead-unilateral athletes. Based on the void examining overhead-bilateral athletes, especially competitive swimmers, we examined shoulder external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion of competitive swimmers. The range of motion of registered competitive swimmers (n = 144, age = 12-61 years) was compared by limb (dominant, non-dominant), sex, and age group (youth, high school, college, masters). Significantly (P < 0.05) greater dominant external rotation was observed for both men and women high school and college swimmers, youth women swimmers, and men masters swimmers compared with the non-dominant limb. The isolated internal rotation (glenohumeral rotation), composite internal rotation (glenohumeral rotation plus scapulothoracic protraction), and total arc of motion (external rotation plus composite internal rotation) of the non-dominant limb was significantly greater than that of the dominant limb by sex and age group. Youth and high school swimmers demonstrated significantly greater composite internal rotation than college and masters swimmers. Youth swimmers displayed significantly greater total arc of motion than all other age groups. These data will aid in the interpretation of shoulder range of motion values in competitive swimmers during preseason screenings, injury evaluations and post-rehabilitation programmes, with the results suggesting that differences exist in bilateral external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion.

  3. Masking of Enamel Fluorosis Discolorations and Tooth Misalignment With a Combination of At-Home Whitening, Resin Infiltration, and Direct Composite Restorations.

    PubMed

    Perdigão, J; Lam, V Q; Burseth, B G; Real, C

    This clinical report illustrates a conservative technique to mask enamel discolorations in maxillary anterior teeth caused by hypomineralization associated with enamel fluorosis and subsequent direct resin composite to improve the anterior esthetics. The treatment consisted of at-home whitening with 10% carbamide peroxide gel with potassium nitrate and sodium fluoride in a custom-fitted tray to mask the brown-stained areas, followed by resin infiltration to mask the white spot areas. An existing resin composite restoration in the maxillary right central incisor was subsequently replaced after completion of the whitening and resin infiltration procedures, whereas the two misaligned and rotated maxillary lateral incisors were built up with direct resin composite restorations to provide the illusion of adequate arch alignment, as the patient was unable to use orthodontic therapy.

  4. Defatted flaxseed meal incorporated corn-rice flour blend based extruded product by response surface methodology.

    PubMed

    Ganorkar, Pravin M; Patel, Jhanvi M; Shah, Vrushti; Rangrej, Vihang V

    2016-04-01

    Considering the evidence of flaxseed and its defatted flaxseed meal (DFM) for human health benefits, response surface methodology (RSM) based on three level four factor central composite rotatable design (CCRD) was employed for the development of DFM incorporated corn - rice flour blend based extruded snack. The effect of DFM fortification (7.5-20 %), moisture content of feed (14-20 %, wb), extruder barrel temperature (115-135 °C) and screw speed (300-330 RPM) on expansion ratio (ER), breaking strength (BS), overall acceptability (OAA) score and water solubility index (WSI) of extrudates were investigated using central composite rotatable design (CCRD). Significant regression models explained the effect of considered variables on all responses. DFM incorporation level was found to be most significant independent variable affecting on extrudates characteristics followed by extruder barrel temperature and then screw rpm. Feed moisture content did not affect extrudates characteristics. As DFM level increased (7.5 % to 20 %), ER and OAA value decreased. However, BS and WSI values were found to increase with increase in DFM level. Based on the defined criteria for numerical optimization, the combination for the production of DFM incorporated extruded snack with desired sensory attributes was achieved by incorporating 10 % DFM (replacing rice flour in flour blend) and by keeping 20 % moisture content, 312 screw rpm and 125 °C barrel temperature.

  5. Segmentation of the Hellenides recorded by Pliocene initiation of clockwise block rotation in Central Greece

    NASA Astrophysics Data System (ADS)

    Bradley, Kyle E.; Vassilakis, Emmanuel; Hosa, Aleksandra; Weiss, Benjamin P.

    2013-01-01

    New paleomagnetic data from Early Miocene to Pliocene terrestrial sedimentary and volcanic rocks in Central Greece constrain the history of vertical-axis rotation along the central part of the western limb of the Aegean arc. The present-day pattern of rapid block rotation within a broad zone of distributed deformation linking the right-lateral North Anatolian and Kephalonia continental transform faults initiated after Early Pliocene time, resulting in a uniform clockwise rotation of 24.3±6.5° over a region >250 km long and >150 km wide encompassing Central Greece and the western Cycladic archipelago. Because the published paleomagnetic dataset requires clockwise rotations of >50° in Western Greece after ˜17 Ma, while our measurements resolve no vertical-axis rotation of Central Greece between ˜15 Ma and post-Early Pliocene time, a large part of the clockwise rotation of Western Greece must have occurred during the main period of contraction within the external thrust belt of the Ionian Zone between ˜17 and ˜15 Ma. Pliocene initiation of rapid clockwise rotation in Central and Western Greece reflects the development of the North Anatolia-Kephalonia Fault system within the previously extended Aegean Sea region, possibly in response to entry of dense oceanic lithosphere of the Ionian Sea into the Hellenic subduction zone and consequent accelerated slab rollback. The development of the Aegean geometric arc therefore occurred in two short-duration pulses characterized by rapid rotation and strong regional deformation.

  6. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Transition from one revolving cluster to two revolving clusters in the ground-state rotational bands of nuclei in the lanthanon region.

    PubMed

    Pauling, L

    1991-02-01

    Whereas 234(92)U142 and other actinon nuclei have ground-state bands that indicate that each nucleus consists of a sphere and a single revolving cluster with constant composition and with only a steady increase in the moment of inertia with increase in J, the angular-momentum quantum number, many of the lanthanon ground-state bands show discontinuities, usually with an initial slightly or strongly curved segment followed by one or two nearly straight segments. The transition to nearly straight segments is interpreted as a change in structure from one revolving cluster to two revolving clusters. The proton-neutron compositions of the clusters and the central sphere are assigned, leading to values of the radius of revolution. The approximation of the two-cluster sequences to linearity is attributed to the very small values of the quadrupole polarizability of the central sphere. Values of the nucleon numbers of clusters and spheres, of the radius of revolution, and of promotion energy are discussed.

  8. Comparison of central corneal thickness measurement using ultrasonic pachymetry, rotating Scheimpflug camera, and scanning-slit topography.

    PubMed

    Sedaghat, Mohammad Reza; Daneshvar, Ramin; Kargozar, Abbas; Derakhshan, Akbar; Daraei, Mona

    2010-12-01

    To evaluate and compare central corneal thickness measurements using rotating Scheimpflug camera, scanning-slit topography, and ultrasound pachymetry in virgin, healthy corneas. Prospective, observational, cross-sectional study. Central corneal thickness in 157 healthy eyes of 157 patients without ocular abnormalities other than refractive errors was measured, in a sequential order, once with rotating Scheimpflug camera and scanning-slit topography and 3 times with ultrasound pachymetry as the last part of examination. All measurements were performed by a single experienced examiner. The results from scanning-slit topography are given with and without correction for "acoustic correction factor" of 0.92. The average measurements of central corneal thickness by rotating Scheimpflug imaging, scanning-slit pachymetry, and ultrasound were 537.15 ± 32.98 μm, 542.06 ± 39.04 μm, and 544.07 ± 34.75 μm, respectively. The mean differences between modalities were 6.92 μm between rotating Scheimpflug and ultrasound (P < .0001), 2.01 μm between corrected scanning-slit and ultrasound (P = .204), and 4.91 μm between corrected scanning-slit and rotating Scheimpflug imaging (P = .001). According to Bland-Altman analysis, highest agreement was between ultrasonic and rotating Scheimpflug pachymetry. In the assessment of normal corneas, rotating Scheimpflug topography measures central corneal thickness values with higher agreement to ultrasound pachymetry. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Rotational spectrum and conformational composition of cyanoacetaldehyde, a compound of potential prebiotic and astrochemical interest.

    PubMed

    Møllendal, Harald; Margulès, Laurent; Motiyenko, Roman A; Larsen, Niels Wessel; Guillemin, Jean-Claude

    2012-04-26

    The rotational spectrum of cyanoacetaldehyde (NCCH(2)CHO) has been investigated in the 19.5-80.5 and 150-500 GHz spectral regions. It is found that cyanoacetaldehyde is strongly preferred over its tautomer cyanovinylalcohol (NCCH═CHOH) in the gas phase. The spectra of two rotameric forms of cyanoacetaldehyde produced by rotation about the central C-C bond have been assigned. The C-C-C-O dihedral angle has an unusual value of 151(3)° from the synperiplanar (0°) position in one of the conformers denoted I, while this dihedral angle is exactly synperiplanar in the second rotamer called II, which therefore has C(s) symmetry. Conformer I is found to be preferred over II by 2.9(8) kJ/mol from relative intensity measurements. A double minimum potential for rotation about the central C-C bond with a small barrier maximum at the exact antiperiplanar (180°) position leads to Coriolis perturbations in the rotational spectrum of conformer I. Selected transitions of I were fitted to a Hamiltonian allowing for this sort of interaction, and the separation between the two lowest vibrational states was determined to be 58794(14) MHz [1.96112(5) cm(-1)]. Attempts to include additional transitions in the fits using this Hamiltonian failed, and it is concluded that it lacks interaction terms to account satisfactorily for all the observed transitions. The situation was different for II. More than 2000 transitions were assigned and fitted to the usual Watson Hamiltonian, which allowed very accurate values to be determined not only for the rotational constants, but for many centrifugal distortion constants as well. Two vibrationally excited states were also assigned for this form. Theoretical calculations were performed at the B3LYP, MP2, and CCSD levels of theory using large basis sets to augment the experimental work. The predictions of these calculations turned out to be in good agreement with most experimental results.

  10. Analysis of gamma-ray energies for 56 excited superdeformed rotational bands of nuclei of lanthanons La to Dy and of Hg, Tl, and Pb on the basis of the two-revolving-cluster model, with evaluation of moments of inertia and radii of revolution and assignment of nucleonic compositions to the clusters and the central sphere.

    PubMed

    Pauling, L

    1992-08-01

    Analysis of the gamma-ray energies of 28 excited superdeformed bands of lanthanon nuclei by application of the two-revolving-cluster model yields the result that the central sphere for all 28 has the semimagic-magic composition p40n50, with the range p8n12 to p14n18 for the clusters and the radius of revolution increasing from 7.31 to 7.76 fm. Similar analysis of 28 excited bands of Hg, Tl, and Pb nuclei leads to p56n82 (semimagic-magic) for the central sphere of 24 bands, p64n82 (semimagic-magic) for 2, and p64n90 (doubly semimagic) for 2, with cluster range p8n12 to p14n16 and values of the radius of revolution from 8.70 to 8.92 fm for 26 bands and 9.2 fm for 2.

  11. Analysis of gamma-ray energies for 56 excited superdeformed rotational bands of nuclei of lanthanons La to Dy and of Hg, Tl, and Pb on the basis of the two-revolving-cluster model, with evaluation of moments of inertia and radii of revolution and assignment of nucleonic compositions to the clusters and the central sphere.

    PubMed Central

    Pauling, L

    1992-01-01

    Analysis of the gamma-ray energies of 28 excited superdeformed bands of lanthanon nuclei by application of the two-revolving-cluster model yields the result that the central sphere for all 28 has the semimagic-magic composition p40n50, with the range p8n12 to p14n18 for the clusters and the radius of revolution increasing from 7.31 to 7.76 fm. Similar analysis of 28 excited bands of Hg, Tl, and Pb nuclei leads to p56n82 (semimagic-magic) for the central sphere of 24 bands, p64n82 (semimagic-magic) for 2, and p64n90 (doubly semimagic) for 2, with cluster range p8n12 to p14n16 and values of the radius of revolution from 8.70 to 8.92 fm for 26 bands and 9.2 fm for 2. PMID:11607313

  12. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Herrera, Eduardo (Inventor); Farrell, Logan Christopher (Inventor); Guo, Raymond (Inventor); Junkin, Lucien Q. (Inventor); Bluethmann, William J. (Inventor); Vitale, Robert L. (Inventor); Weber, Steven J. (Inventor); Lee, Chunhao J. (Inventor); Eggleston, IV, Raymond Edward (Inventor); Figuered, Joshua M. (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  13. Designing safer composite helmets to reduce rotational accelerations during oblique impacts.

    PubMed

    Mosleh, Yasmine; Cajka, Martin; Depreitere, Bart; Vander Sloten, Jos; Ivens, Jan

    2018-05-01

    Oblique impact is the most common accident situation that occupants in traffic accidents or athletes in professional sports experience. During oblique impact, the human head is subjected to a combination of linear and rotational accelerations. Rotational movement is known to be responsible for traumatic brain injuries. In this article, composite foam with a column/matrix composite configuration is proposed for head protection applications to replace single-layer uniform foam, to better attenuate rotational movement of the head during oblique impacts. The ability of composite foam in the mitigation of rotational head movement is studied by performing finite element (FE) simulations of oblique impact on flat and helmet shape specimens. The performance of composite foam with respect to parameters such as compliance of the matrix foam and the number, size and cross-sectional shape of the foam columns is explored in detail, and subsequently an optimized structure is proposed. The simulation results show that using composite foam instead of single-layer foam, the rotational acceleration and velocity of the headform can be significantly reduced. The parametric study indicates that using a more compliant matrix foam and by increasing the number of columns in the composite foam configuration, the rotation can be further mitigated. This was confirmed by experimental results. The simulation results were also analyzed based on global head injury criteria such as head injury criterion, rotational injury criterion, brain injury criterion and generalized acceleration model for brain injury threshold which further confirmed the superior performance of composite foam versus single-layer homogeneous expanded polystyrene foam. The findings of simulations give invaluable information for design of protective helmets or, for instance, headliners for the automotive industry.

  14. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  15. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; van Hinsbergen, Douwe J. J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.

    2018-03-01

    To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ˜ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ˜ 30-35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler-Tecer Fault Zone in the north and by the African-Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.

  16. Extraction of Maxillary Central Incisors: An Orthodontic-Restorative Treatment

    PubMed Central

    Hedayati, Zohreh; Zare, Maryam; Bahramnia, Fateme

    2014-01-01

    Malformed central incisors with poor prognosis could be candidates for extraction especially in crowded dental arches. This case report refers to a 12-year-old boy who suffered from malformed upper central incisors associated with severe attrition. Upper lateral incisors were positioned palatally and canines were rotated and positioned in the high buccal area. The patient had class II malocclusion and space deficiency in both dental arches. Due to incisal wear and malformed short maxillary central incisors and the need for root canal therapy with a major crown build-up, these teeth were extracted. The maxillary lateral incisors were substituted. Thus the maxillary canines were substituted for lateral incisors and the first premolars were substituted for canines. In the lower dental arch the first bicuspids were extracted. Composite resin build-up was performed on the maxillary lateral incisors and canines. This allowed for the crowding and the malocclusion to be corrected. Subsequent gingivectomy improved the patient's gingival margins and smile esthetics one month after orthodontic therapy. PMID:25400954

  17. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems

    PubMed Central

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  18. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  19. Experimental studies of two-stage centrifugal dust concentrator

    NASA Astrophysics Data System (ADS)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  20. Optimization of radiation treatment of ginger ( Zingiber officinale) rhizomes using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nketsia-Tabiri, Josephine

    1998-06-01

    The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling.

  1. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  2. Evaluation of MARC for the analysis of rotating composite blades

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-01-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  3. Evaluation of MARC for the analysis of rotating composite blades

    NASA Astrophysics Data System (ADS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-03-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  4. Experimental-theoretical investigation of the vibration characteristics of rotating composite box beams

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh; Chopra, Inderjit

    1992-08-01

    The objective of the study was to predict the effect of elastic couplings on the free vibration characteristics of thin-walled composite box beams and to correlate the results with experimental data. The free vibration characteristics of coupled thin-walled composite beams under rotation were determined using the Galerkin method. The theoretical results were found to be in satisfactory agreement with experimental data obtained for graphite/epoxy, kevlar/epoxy, and glass/epoxy composite beams in an in-vacuo test facility at different rotational speeds.

  5. New paleomagnetic data from the northern Puna and western Cordillera Oriental, Argentina: a new insight on the timing of rotational deformation

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia; Caffe, Pablo J.; Somoza, Rubén

    2004-09-01

    Along the Central Andes a pattern of vertical axis tectonic rotations has been paleomagnetically identified. The rotations are clockwise in southern Bolivia, northern Chile and northwestern Argentina. Various models have been proposed to explain the geodynamic evolution of the Central Andes, but the driving mechanism of these rotations remains controversial. Constraining the spatial variability and the timing of the rotations may contribute to a better understanding of their origin. Our results complement information from previous studies, improving the knowledge of tectonic rotations in the region of the northern Argentine Puna and western Cordillera Oriental. In the San Juan de Oro basin (SJOB), 132 cores were drilled from the middle Miocene Tiomayo Formation in the zone of Tiomayo-Santa Ana (22°30'S-66°30'W), and from the ˜17 Ma Casa Colorada dacite dome complex. Another 114 cores were collected from middle Miocene dacitic dome centers emplaced in the zone of Laguna de Pozuelos basin (22°30'S-66°00'W). The results of our paleomagnetic study suggest that the sampled zones underwent very low, statistically insignificant rotation since middle Miocene. However, a tendency for low magnitude rotation appears when observing our data together with paleomagnetic results from coeval rocks in neighbouring areas. If so, this low rotation could be related to middle Miocene thrust activity in the central and eastern parts of the Cordillera Oriental. The combined analysis of paleomagnetic and structural data illustrates the probable, direct relationship between timing of significant rotations and timing of local deformation in the sourthern Central Andes.

  6. Comparison of supercritical fluid extraction and ultrasound-assisted extraction of fatty acids from quince (Cydonia oblonga Miller) seed using response surface methodology and central composite design.

    PubMed

    Daneshvand, Behnaz; Ara, Katayoun Mahdavi; Raofie, Farhad

    2012-08-24

    Fatty acids of Cydonia oblonga Miller cultivated in Iran were obtained by supercritical (carbon dioxide) extraction and ultrasound-assisted extraction methods. The oils were analyzed by capillary gas chromatography using mass spectrometric detections. The compounds were identified according to their retention indices and mass spectra (EI, 70eV). The experimental parameters of SFE such as pressure, temperature, modifier volume, static and dynamic extraction time were optimized using a Central Composite Design (CCD) after a 2(5) factorial design. Pressure and dynamic extraction time had significant effect on the extraction yield, while the other factors (temperature, static extraction time and modifier volume) were not identified as significant factors under the selected conditions. The results of chemometrics analysis showed the highest yield for SFE (24.32%), which was obtained at a pressure of 353bar, temperature of 35°C, modifier (methanol) volume of 150μL, and static and dynamic extraction times of 10 and 60min, respectively. Ultrasound-assisted extraction (UAE) of Fatty acids from C. oblonga Miller was optimized, using a rotatable central composite design. The optimum conditions were as follows: solvent (n-hexane) volume, 22mL; extraction time, 30min; and extraction temperature, 55°C. This resulted in a maximum oil recovery of 19.5%. The extracts with higher yield from both methods were subjected to transesterification and GC-MS analysis. The results show that the oil obtained by SFE with the optimal operating conditions allowed a fatty acid composition similar to the oil obtained by UAE in optimum condition and no significant differences were found. The major components of oil extract were Linoleic, Palmitic, Oleic, Stearic and Eicosanoic acids. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Minimum Period of Rotation of Millisecond Pulsars and Pulsar Matter Equations of State

    NASA Astrophysics Data System (ADS)

    Mikheev, Sergey; Tsvetkov, Victor

    2018-02-01

    Based on the findings of our previous studies of fast-rotating Newtonian polytropes, we found the relation between the minimum pulsar rotation period, the value of pulsar central density, and the polytropic index. From this relation we come to the conclusion that the value of minimum central density of a pulsar with a peak period is 2.5088 • 1014 g/cm3.

  8. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    Xiao, Wenjiao

    2016-06-01

    This monograph book represents an important volume summarizing the present geological knowledge and understanding of the geodynamic evolution of large parts of the Central Asian Orogenic Belt (CAOB) or Altaids, which is one of the largest orogenic collages on Earth. The CAOB, like other major accretionary orogens, is a complex assembly of ancient microcontinents, arc terranes, accretionary wedges, fragments of oceanic volcanic islands (sea-mounts), oceanic plateaus, ophiolites, and shelf sediments from passive continental margins. The CAOB has caused much international attention due to its complicated architecture and considerably continental growth. However, after many years of investigations, some fundamental problems still remain controversial, such as the rate and volume of crustal growth, the origin of continental fragments, the detailed mechanism of accretion and collision, the role of terrane rotations during the orogeny, and the age and composition of the lower crust in Central Asia.

  9. Design and simulation on the morphing composite propeller (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Fanlong; Li, Qinyu; Liu, Liwu; Lan, Xin; Liu, Yanju; Leng, Jinsong

    2017-04-01

    As one of the most crucial part of the unmanned underwater vehicle (UUV), the composite propeller plays an important role on the UUV's performance. As the composite propeller behaves excellent properties in hydroelastic facet and acoustic suppression, it attracts increasing attentions all over the globe. This paper goes a step further based on this idea, and comes up with a novel concept of "morphing composite propeller" (MCP) to improve the performance of the conventional composite propeller (CCP) to anticipate the improved propeller can perform better to propel the UUV. Based on the new concept, a novel MCP is designed. Each blade of the propeller is assembled with an active rotatable flap (ARF) to change the blade's local camber with flap rotation. Then the transmission mechanism (TM) has been designed and housed in the propeller blade to push the ARF. With the ARF rotating, the UUV can be propelled by different thrusts under certain rotation velocities of the propeller. Based on the design, the Fluent is exploited to analyze the fluid dynamics around the propeller. Finally, based on the design and hydrodynamic analysis, the structural response for the novel morphing composite propeller is calculated. The propeller blade is simplified and layered with composite materials. And the structure response of an MCP is obtained with various rotation angle under the hydrodynamic pressure. This simulation can instruct the design and fabrication techniques of the MCP.

  10. A central black hole in M32

    NASA Technical Reports Server (NTRS)

    Tonry, John L.

    1987-01-01

    Observations are presented of the stellar rotation and velocity dispersion in M32. The projected rotation curve has an unresolved cusp at the center, with an amplitude of at least 60 km/s. The stellar velocity dispersion is constant at 56 + or - 5 km/s to a radius of 20 arcsec; a central bump in the observed dispersion is an artifact due to the rotation. The form of the rotation is such that isophotes have constant angular rotation velocity. The three-dimensional rotation field is modeled and the internal mean rotation of the stars around the center of M32 must reach at least 90 km/s at a radius of 2 pc. Hydrostatic equilibrium then requires 3-10 x 10 to the 6th solar masses of dark mass within the central parsec of M32. The possibility that M32 is undergoing core collapse and that this dark mass consists of dark stellar remnants is discussed, but ultimately rejected because the time scale for core collapse of M32 should be 2000 Hubble times. A more likely explanation of this dark mass, especially because of the presence of an X-ray point source at the center of M32, is a massive black hole.

  11. Palaeomagnetic Constrains on the Timing and the Geographical Distribution of Tectonic Rotations in the Betic Chain, Southern Spain. A Review

    NASA Astrophysics Data System (ADS)

    Osete, M. L.; Villalain, J. J.; Pavon-Carrasco, F. J.; Palencia, A.

    2009-05-01

    The Betic Cordillera is the northern branch of the Betic-Rifean orogen, the westernmost segment of the Mediterranean Alpine orogenic system. Several palaeomagnetic studies have enhanced the important role that block rotations about vertical axes have played in the tectonic evolution of the region. In this work we present a review of published palaeomagnetic data. According with the rotational deformation, the Betics are divided into the central-western area and the eastern Betics. A sequence of rotations for the two regions is also proposed. In central and western Subbetics almost constant clockwise rotations of about 60 are documented in Jurassic limestones. The existence of a pervasive remagnetization of Jurassic limestones, which was coeval with the folding of the studied units and dated as post-Palaeogene, constrains the timing of tectonic rotations in western Subbetics. New palaeomagnetic data from Neogene sedimentary sequences in central Betics indicate that palaeomagnetic clockwise rotations continued after late Miocene. A similar pattern of 40 CW rotations occurred after 20-17 Ma was obtained from the study of the Ronda-Malaga peridotites (western Internal Betics). In eastern Subbetics a more heterogeneous pattern, including very high CW rotations has been observed. But recent rotational deformation in the Internal part of eastern Betics is CCW and related to the left-lateral strike-slip fault systems. Proposed kinematics models for the Betics are discussed under the light of the present available palaeomagnetic information.

  12. Effects of whey protein concentrate, feed moisture and temperature on the physicochemical characteristics of a rice-based extruded flour.

    PubMed

    Teba, Carla da Silva; Silva, Erika Madeira Moreira da; Chávez, Davy William Hidalgo; Carvalho, Carlos Wanderlei Piler de; Ascheri, José Luis Ramírez

    2017-08-01

    The influence of whey protein concentrate (WPC), feed moisture and temperature on the physicochemical properties of rice-based extrudates has been investigated. WPC (0.64-7.36g/100g rice) was extruded under 5 moisture (16.64-23.36g/100g) and 5 temperature (106.36-173.64°C) established by a 3 2 central composite rotational design. Physicochemical properties [color, porosimetry, crystallinity, water solubility and absorption, pasting properties, reconstitution test, proximate composition, amino acids, minerals and electrophoresis] were determined. WPC and feed moisture increased redness, yellowness and decreased luminosity. Feed moisture and temperature increased density and total volume pore. WPC and moisture increased crystallinity, but only WPC increased solubility and decrease the retrogradation tendency. Increasing temperature increased the viscosity of the extrudates. The addition of WPC improved the nutritional composition of the extrudates, especially proteins. It is suggested that the extrusion process positively affected the retention of most of the polypeptides chains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. G0.9 + 0.1 and the emerging class of composite supernova remnants

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.; Becker, R. H.

    1987-01-01

    High-resolution, multifrequency maps of a bright extended radio source near the Galactic center have revealed it to be a classic example of a composite supernova remnant. A steep-spectrum shell of emission, about 8 arcmin in diameter, surrounds a flat-spectrum, highly polarized Crab-like core about 2 arcmin across. The two components have equal flux densities at about 6 cm, marking this source as having the highest core-to-shell ratio among the about 10 composite remnants identified to date. X-ray and far-infrared data on the source are used to constrain the energetics and evolutionary state of the remnant and its putative central pulsar. It is argued that the total energy contained in the Crab-like components requires that the pulsars powering them were all born with periods shorter than 50 ms, and that if a substantial number of neutron stars with slow initial rotation rates exist, their birthplaces have not yet been found.

  14. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally <1.5 mm/yr predicted by the block model, but extension rates are highest near north-striking normal faults found along the Sierra Nevada frontal fault system and in a left-stepping, en-echelon series of asymmetric basins that extend from Walker Lake to Lake Tahoe. Neotectonic studies in the western Central Walker Lane find little evidence of strike-slip or oblique faulting in the asymmetric basins, prompting the suggestion that dextral deformation in this region is accommodated through clockwise block rotations. We test this hypothesis and show that a model relying solely on the combination of clockwise block rotations and normal faulting to accommodate dextral transtensional strain accumulation systematically misfits the GPS data in comparison with our preferred model. This suggests that some component of oblique or partitioned right-lateral fault slip is needed to accommodate shear in the asymmetric basins of the western Central Walker Lane. Present-day clockwise vertical axis rotation rates in the Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  15. Application of rotatable central composite design in the preparation and optimization of poly(lactic-co-glycolic acid) nanoparticles for controlled delivery of paclitaxel.

    PubMed

    Kollipara, Sivacharan; Bende, Girish; Movva, Snehalatha; Saha, Ranendra

    2010-11-01

    Polymeric carrier systems of paclitaxel (PCT) offer advantages over only available formulation Taxol® in terms of enhancing therapeutic efficacy and eliminating adverse effects. The objective of the present study was to prepare poly (lactic-co-glycolic acid) nanoparticles containing PCT using emulsion solvent evaporation technique. Critical factors involved in the processing method were identified and optimized by scientific, efficient rotatable central composite design aiming at low mean particle size and high entrapment efficiency. Twenty different experiments were designed and each formulation was evaluated for mean particle size and entrapment efficiency. The optimized formulation was evaluated for in vitro drug release, and absorption characteristics were studied using in situ rat intestinal permeability study. Amount of polymer and duration of ultrasonication were found to have significant effect on mean particle size and entrapment efficiency. First-order interactions of amount of miglyol with amount of polymer were significant in case of mean particle size, whereas second-order interactions of polymer were significant in mean particle size and entrapment efficiency. The developed quadratic model showed high correlation (R(2) > 0.85) between predicted response and studied factors. The optimized formulation had low mean particle size (231.68 nm) and high entrapment efficiency (95.18%) with 4.88% drug content. The optimized formulation showed controlled release of PCT for more than 72 hours. In situ absorption study showed faster and enhanced extent of absorption of PCT from nanoparticles compared to pure drug. The poly (lactic-co-glycolic acid) nanoparticles containing PCT may be of clinical importance in enhancing its oral bioavailability.

  16. Preparation and optimization of matrix metalloproteinase-1-loaded poly(lactide- co-glycolide- co-caprolactone) nanoparticles with rotatable central composite design and response surface methodology

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Song, Hua; Cui, Daxiang; Qi, Jun; Xu, Mousheng; Geng, Hongquan

    2012-07-01

    Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy.

  17. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  18. The Effect of Rotation on Oscillatory Double-diffusive Convection (Semiconvection)

    NASA Astrophysics Data System (ADS)

    Moll, Ryan; Garaud, Pascale

    2017-01-01

    Oscillatory double-diffusive convection (ODDC, more traditionally called semiconvection) is a form of linear double-diffusive instability that occurs in fluids that are unstably stratified in temperature (Schwarzschild unstable), but stably stratified in chemical composition (Ledoux stable). This scenario is thought to be quite common in the interiors of stars and giant planets, and understanding the transport of heat and chemical species by ODDC is of great importance to stellar and planetary evolution models. Fluids unstable to ODDC have a tendency to form convective thermocompositional layers that significantly enhance the fluxes of temperature and chemical composition compared with microscopic diffusion. Although a number of recent studies have focused on studying properties of both layered and nonlayered ODDC, few have addressed how additional physical processes such as global rotation affect its dynamics. In this work, we study first how rotation affects the linear stability properties of rotating ODDC. Using direct numerical simulations, we then analyze the effect of rotation on properties of layered and nonlayered ODDC, and we study how the angle of the rotation axis with respect to the direction of gravity affects layering. We find that rotating systems can be broadly grouped into two categories based on the strength of rotation. The qualitative behavior in the more weakly rotating group is similar to nonrotating ODDC, but strongly rotating systems become dominated by vortices that are invariant in the direction of the rotation vector and strongly influence transport. We find that whenever layers form, rotation always acts to reduce thermal and compositional transport.

  19. Posterior Displacement of Supraspinatus Central Tendon Observed on Magnetic Resonance Imaging: A Useful Preoperative Indicator of Rotator Cuff Tear Characteristics.

    PubMed

    Updegrove, Gary F; Armstrong, April D; Mosher, Timothy J; Kim, H Mike

    2015-11-01

    To characterize the orientation of the normal supraspinatus central tendon and describe the displacement patterns of the central tendon in rotator cuff tears using a magnetic resonance imaging (MRI)-based method. We performed a retrospective MRI and chart review of 183 patients with a rotator cuff tear (cuff tear group), 52 with a labral tear but no rotator cuff tear (labral tear group), and 74 with a normal shoulder (normal group). The orientation of the supraspinatus central tendon relative to the bicipital groove was evaluated based on axial MRI and was numerically represented by the shortest distance from the lateral extension line of the central tendon to the bicipital groove. Tear size, fatty degeneration, and involvement of the anterior supraspinatus were evaluated to identify the factors associated with orientation changes. The mean distance from the bicipital groove to the central tendon line was 0.7 mm and 1.3 mm in the normal group and labral tear group, respectively. Full-thickness cuff tears involving the anterior supraspinatus showed a significantly greater distance (17.7 mm) than those sparing the anterior supraspinatus (4.9 mm, P = .001). Fatty degeneration of the supraspinatus was significantly correlated with the distance (P = .006). Disruption of the anterior supraspinatus and fatty degeneration of the supraspinatus were independent predictors of posterior displacement. The supraspinatus central tendon has a constant orientation toward the bicipital groove in normal shoulders, and the central tendon is frequently displaced posteriorly in full-thickness rotator cuff tears involving the anterior leading edge of the supraspinatus. The degree of posterior displacement is proportional to tear size and severity of fatty degeneration of the supraspinatus muscle. A simple and quick assessment of the central tendon orientation on preoperative MRI can be a useful indicator of tear characteristics, potentially providing insight into the intraoperative repair strategy. Level IV, diagnostic case-control study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  20. Discovery of a New Super-Fast Rotator

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    Recent observations of asteroid (335433) 2005 UW163 have added a new member to the mysterious category of "super-fast rotators" — asteroids that rotate faster than should be possible, given current theories of asteroid composition. Asteroids come in sizes of a few meters to a few hundred kilometers, and can spin at rates from 0.1 to nearly 1000 revolutions per day. Current theories suggest that asteroids smaller than 150m are mostly monolithic (made up of a single rock), whereas asteroids larger than 150m are usually what's known as a "rubble pile" — a collection of rock fragments from past collisions, bound together into a clump by gravity. "Rubble pile" asteroids have an important structural limitation: they can't spin faster than once every 2.2 hours without flying apart as the centripetal force overcomes the force of gravity. Asteroid 2005 UW163 violates this rule: its diameter is 690m, but it rotates once every 1.29 hours. This discovery was made by a team of scientists using telescopes at the Palomar Observatory in California to conduct a large survey of the rotation rates of nearby asteroids. The group, led by Chan-Kao Chang of Taiwan's National Central University, discovered 11 super-fast rotator candidates — of which asteroid 2005 UW163 is the first to have its rotation rate confirmed by additional observations. The category of super-fast rotators poses an interesting problem: how are they able to spin so quickly without flying apart? Either the density of these asteroids is unexpectedly high (roughly four times the density of typical "rubble pile" asteroids), or else there must be additional forces besides gravity at work to help hold the asteroid together, such as bonds between the rocks. Future observations of super-fast rotators will help us better understand the peculiar structure of these rocky neighbors. Citation: Chan-Kao Chang et al. 2014 ApJ 791 L35 doi:10.1088/2041-8205/791/2/L35

  1. Bone mineralization changes of the glenoid in shoulders with symptomatic rotator cuff tear.

    PubMed

    Harada, Yohei; Yokoya, Shin; Akiyama, Yuji; Mochizuki, Yu; Ochi, Mitsuo; Adachi, Nobuo

    2018-06-06

    Computed tomography osteoabsorptiometry (CTO) is a method to analyze the stress distribution in joints by measuring the subchondral bone density. The purpose of this study was to evaluate the bone mineralization changes of the glenoid in shoulders with rotator cuff tears by CTO and to evaluate whether rotator cuff tears are associated with stress changes in the glenoid. In total, 32 patients, who were diagnosed with unilateral rotator cuff tears and underwent arthroscopic rotator cuff repair, were enrolled in this study. They underwent CT scanning of both shoulders pre-operatively and the glenoid was evaluated using CTO. Hounsfield units (HU) in seven areas of the glenoid were compared between the affected and unaffected sides. The central area of the glenoid on the affected side had significantly lower HU than on the unaffected side among all patients. Focusing on the rotator cuff tear size and the subscapularis tendon, only patients with larger cuff tears or with subscapularis tendon tears showed significantly lower HU in the central area of the affected side. This study showed a decrease in bone mineralization density in the central glenoid in shoulders with rotator cuff tear. This change was observed in the case of larger cuff tears and subscapularis tendon tears. Our results help clarify the changes in stress distribution in the shoulder joint caused by symptomatic rotator cuff tears.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moll, Ryan; Garaud, Pascale, E-mail: rmoll@soe.ucsc.edu

    Oscillatory double-diffusive convection (ODDC, more traditionally called semiconvection) is a form of linear double-diffusive instability that occurs in fluids that are unstably stratified in temperature (Schwarzschild unstable), but stably stratified in chemical composition (Ledoux stable). This scenario is thought to be quite common in the interiors of stars and giant planets, and understanding the transport of heat and chemical species by ODDC is of great importance to stellar and planetary evolution models. Fluids unstable to ODDC have a tendency to form convective thermocompositional layers that significantly enhance the fluxes of temperature and chemical composition compared with microscopic diffusion. Although a numbermore » of recent studies have focused on studying properties of both layered and nonlayered ODDC, few have addressed how additional physical processes such as global rotation affect its dynamics. In this work, we study first how rotation affects the linear stability properties of rotating ODDC. Using direct numerical simulations, we then analyze the effect of rotation on properties of layered and nonlayered ODDC, and we study how the angle of the rotation axis with respect to the direction of gravity affects layering. We find that rotating systems can be broadly grouped into two categories based on the strength of rotation. The qualitative behavior in the more weakly rotating group is similar to nonrotating ODDC, but strongly rotating systems become dominated by vortices that are invariant in the direction of the rotation vector and strongly influence transport. We find that whenever layers form, rotation always acts to reduce thermal and compositional transport.« less

  3. Rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Herman, Scott W.; Bogue, Scott

    2011-10-01

    We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. Samples from the Upper Miocene (˜9 Ma) Eureka Valley Tuff suggest clockwise vertical-axis block rotations between NE-striking left-lateral faults in the Bridgeport and Mono Basins. Results in the Bodie Hills suggest clockwise rotations (R ± ΔR, 95% confidence limits) of 74 ± 8° since Early to Middle Miocene (˜12-20 Ma), 42 ± 11° since Late Miocene (˜8-9 Ma), and 14 ± 10° since Pliocene (˜3 Ma) time with no detectable northward translation. The data are compatible with a relatively steady rotation rate of 5 ± 2° Ma-1 (2σ) since the Middle Miocene over the three examined timescales. The average rotation rates have probably not varied by more than a factor of two over time spans equal to half of the total time interval. Our paleomagnetic data suggest that block rotations in the region of the Mina Deflection began prior to Late Miocene time (˜9 Ma), and perhaps since the Middle Miocene if rotation rates were relatively constant. Block rotation in the Bodie Hills is similar in age and long-term average rate to rotations in the Transverse Ranges of southern California associated with early transtensional dextral shear deformation. We speculate that the age of rotations in the Bodie Hills indicates dextral shear and strain accommodation within the central Walker Lane Belt resulting from coupling of the Pacific and North America plates.

  4. The effect of different torque wrenches on rotational stiffness in compressive femoral nails: a biomechanical study.

    PubMed

    Karaarslan, A A; Acar, N

    2018-02-01

    Rotation instability and locking screws failure are common problems. We aimed to determine optimal torque wrench offering maximum rotational stiffness without locking screw failure. We used 10 conventional compression nails, 10 novel compression nails and 10 interlocking nails with 30 composite femurs. We examined rotation stiffness and fracture site compression value by load cell with 3, 6 and 8 Nm torque wrenches using torsion apparatus with a maximum torque moment of 5 Nm in both directions. Rotational stiffness of composite femur-nail constructs was calculated. Rotational stiffness of composite femur-compression nail constructs compressed by 6 Nm torque wrench was 3.27 ± 1.81 Nm/angle (fracture site compression: 1588 N) and 60% more than that compressed with 3 Nm torque wrench (advised previously) with 2.04 ± 0.81 Nm/angle (inter fragmentary compression: 818 N) (P = 0.000). Rotational stiffness of composite-femur-compression nail constructs compressed by 3 Nm torque wrench was 2.04 ± 0.81 Nm/angle (fracture site compression: 818 N) and 277% more than that of interlocking nail with 0.54 ± 0.08 Nm/angle (fracture site compression: 0 N) (P = 0.000). Rotational stiffness and fracture site compression value produced by 3 Nm torque wrench was not satisfactory. To obtain maximum rotational stiffness and fracture site compression value without locking screw failure, 6 Nm torque wrench in compression nails and 8 Nm torque wrench in novel compression nails should be used.

  5. Field performance of Populus in short-rotation intensive culture plantations in the north-central U.S.

    Treesearch

    Edward A. Hansen; Michael E. Ostry; Wendell D. Johnson; David N. Tolsted; Daniel A. Netzer; William E. Berguson; Richard B. Hall

    1994-01-01

    Describes a network of short-rotation, Populus research and demonstration plantations that has been established across a 5-state region in the north-central U.S. to identify suitable hybrid poplar clones for large-scale biomass plantations in the region. Reports 6-year results.

  6. Influence of toroidal magnetic field in multiaccreting tori

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Montani, G.

    2018-06-01

    We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.

  7. Rotational 3D printing of damage-tolerant composites with programmable mechanics

    PubMed Central

    Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.

    2018-01-01

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206

  8. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  9. SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Ge, J.; Aragón-Salamanca, A.; Greco, J.; Lin, Y.-T.; Mao, S.; Masters, K.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.; Yan, R.; van den Bosch, F.

    2018-01-01

    We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. group catalog, we identify central and satellite galaxies in groups with halo masses in the range {10}12.5 {h}-1 {M}ȯ < {M}200b< {10}15 {h}-1 {M}ȯ . As in previous work, we see a sharp dependence on stellar mass, in the sense that ∼70% of galaxies with stellar mass {M}* > {10}11 {h}-2 {M}ȯ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ∼30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties, except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of central and satellite galaxies with group finders systematically lower differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group-finding methods will have to be forward-modeled via mock catalogs.

  10. Periodic perturbations with rotational symmetry of planar systems driven by a central force

    NASA Astrophysics Data System (ADS)

    Fonda, Alessandro; Gallo, Anna Chiara

    2018-06-01

    We consider periodic perturbations of a central force field having a rotational symmetry, and prove the existence of nearly circular periodic orbits. We thus generalize, in the planar case, some previous bifurcation results obtained by Ambrosetti and Coti Zelati in [1]. Our results apply, in particular, to the classical Kepler problem.

  11. Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1995-01-01

    Model simulations of the squirrel monkey vestibulo-ocular reflex (VOR) are presented for two motion paradigms: constant velocity eccentric rotation and roll tilt about a naso-occipital axis. The model represents the implementation of three hypotheses: the "internal model" hypothesis, the "gravito-inertial force (GIF) resolution" hypothesis, and the "compensatory VOR" hypothesis. The internal model hypothesis is based on the idea that the nervous system knows the dynamics of the sensory systems and implements this knowledge as an internal dynamic model. The GIF resolution hypothesis is based on the idea that the nervous system knows that gravity minus linear acceleration equals GIF and implements this knowledge by resolving the otolith measurement of GIF into central estimates of gravity and linear acceleration, such that the central estimate of gravity minus the central estimate of acceleration equals the otolith measurement of GIF. The compensatory VOR hypothesis is based on the idea that the VOR compensates for the central estimates of angular velocity and linear velocity, which sum in a near-linear manner. During constant velocity eccentric rotation, the model correctly predicts that: (1) the peak horizontal response is greater while "facing-motion" than with "back-to-motion"; (2) the axis of eye rotation shifts toward alignment with GIF; and (3) a continuous vertical response, slow phase downward, exists prior to deceleration. The model also correctly predicts that a torsional response during the roll rotation is the only velocity response observed during roll rotations about a naso-occipital axis. The success of this model in predicting the observed experimental responses suggests that the model captures the essence of the complex sensory interactions engendered by eccentric rotation and roll tilt.

  12. Characterizing Rapidly Rotating Asteroids with Filtered Photometry

    NASA Astrophysics Data System (ADS)

    Arion, Douglas

    2018-01-01

    It is challenging to characterize rapidly rotating asteroids, as their aspect changes significantly between exposures using different filters. Indeed, small asteroids may very well be agglomerations of smaller components that may have differing compositions, and thus the shape and composition of the body may be incorrectly inferred. We have observed a number of smaller, rapidly rotating bodies to try to separate compositional and shape elements from light curves in B, V, R, and I. Results from these observations will be presented, as well as identifying the challenges in conducting this research will be discussed. This work has been supported by the Wisconsin Space Grant Consortium.

  13. Oroclinal Bending and Mountain Uplift in the Central Andes

    NASA Astrophysics Data System (ADS)

    Mpodozis, C.; Arriagada, C.; Roperch, P.

    2007-05-01

    The large paleomagnetic database now available for the Central Andes permits a good understanding of the overall spatial and temporal variations of rotations. Mesozoic to Early Paleogene rocks along the forearc of northern Chile (23°-28°S) record significant clockwise rotations (>25°) [Arriagada et al., 2006, Tectonics, doi:10.1029/2005TC001923]. Along the forearc of southern Peru, counterclockwise rotations recorded within flat lying red-beds (Moquegua Formation) increase from about -30° at 17.5°S to - 45° at15.5°S and decrease through time from the late Eocene to the late Oligocene-early Miocene [Roperch et al., 2006, Tectonics, doi:10.1029/2005TC001882]. Recently published thermo-chronological studies show evidence for strong exhumation within Bolivian Eastern Cordillera and the Puna plateau starting in the Eocene while structural studies indicate that the majority of crustal shortening in the Eastern Cordillera occurred during the Eocene-Oligocene, although the final stages of deformation may have continued through the Early Miocene. Rotations in the Peruvian and north Chilean forearc thus occurred at the same time than deformation and exhumation/uplift within the Eastern Cordillera. In contrast Neogene forearc rocks in southern Peru and northern Chile do not show evidences of rotation but low magnitude (10°) counterclockwise rotations are usually found in mid to late Miocene rocks from the northern Altiplano. These Neogene rotations are concomitant with shortening in the Sub-Andean zone and sinistral strike-slip faulting along the eastern edge of the northern Altiplano. We interpret the rotation pattern along the southern Peru and north Chile forearc as a result of strong late Eocene- late Oligocene oroclinal bending of the Central Andes associated with shortening gradients along the Eastern Cordillera associated both with the Abancay deflection and the Arica bend. The amount and spatial distribution of pre-Neogene shortening needed to account for oroclinal bending is difficult to estimate as the rotations may be partly driven by transpression along strike slip shear zones. The large rotations strongly highlight the importance of the pre-Neogene tectonic history in the evolution of the Central Andes.

  14. Rotational 3D printing of damage-tolerant composites with programmable mechanics.

    PubMed

    Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A

    2018-02-06

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  15. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  16. Development of a lemon cutting machine.

    PubMed

    Hrishikesh Tavanandi, A; Deepak, S; Venkateshmurthy, K; Raghavarao, K S M S

    2014-12-01

    Cutting of lemon and other similar fruits is conventionally done manually by sharp knife, which is labor intensive and often un-hygienic. In the present work, a device has been designed and developed for cutting of lemon hygienically into four pieces of similar shape based on stationery cutters and rotating centralizing/locating slit plate concept. Machine has a unique knife assembly consisting of two bird wing shaped knives, joined by welding perpendicularly to a vertical knife, so that the lemon can be cut into four pieces in a single sweep. Six numbers of rotating centralizing/locating slit plates are welded on to the side plates and the plates carry a groove on its inner face, to enable the wing shaped knife to complete the horizontal cut. The rotating slit plates, having centralizing angle of 90°, are rotated by an electric geared motor. The prototype machine has capacity of over 5,000 lemons/h with a power consumption of 0.11 kW.

  17. Heavy ion composition in the inner heliosphere: Predictions for Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Livi, S. A.; Galvin, A. B.; Kistler, L. M.; Raines, J. M.; Allegrini, F.; Collier, M. R.; Zurbuchen, T.

    2014-12-01

    The Heavy Ion Sensor (HIS) on SO, with its high time resolution, will provide the first ever solar wind and surpathermal heavy ion composition and 3D velocity distribution function measurements inside the orbit of Mercury. These measurements will provide us the most in depth examination of the origin, structure and evolution of the solar wind. The near co-rotation phases of the orbiter will enable the most accurate mapping of in-situ structures back to their solar sources. Measurements of solar wind composition and heavy ion kinetic properties enable characterization of the sources, transport mechanisms and acceleration processes of the solar wind. This presentation will focus on the current state of in-situ studies of heavy ions in the solar wind and their implications for the sources of the solar wind, the nature of structure and variability in the solar wind, and the acceleration of particles. Additionally, we will also discuss opportunities for coordinated measurements across the payloads of Solar Orbiter and Solar Probe in order to answer key outstanding science questions of central interest to the Solar and Heliophysics communities.

  18. Planetary rings as relics of plasma proto-rings rotating in the magnetic field of a central body

    NASA Astrophysics Data System (ADS)

    Rabinovich, B.

    2007-08-01

    A possibility is discussed in accordance to hypothesis by H. Alfven, that the rings of large planets are relics of some plasma proto-rings rotating in the magnetic fields of central bodies. A finite-dimensional mathematical model of the system is synthesized using the solution of the boundary-value problem by the Boubnov - Galerkin method. The dipole magnetic field of the central body is assumed to have a small eccentricity, and the dipole axis - to be inclined at a small angle to the central body's axis of rotation which coincides with the ring's rotation axis. The proto-ring is supposed to be thin and narrow and having the same rotating axis as the central body. A medium forming the ring is cold rarefied plasma with high electron density, so that electric conductivity of the medium tends to infinity, as well as the magnetic Reynolds number. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. Emphasis is placed on the problems of stability of the ring's steady state rotation and quantization of the eigenvalues of nondimensional sector velocity of the ring with respect to the central body. The solutions corresponding to magneto-gravitational and to magneto-gyroscopic waves are considered It is demonstrated that some rings characterized by integral quantum numbers are stable and long-living, while the rings which are associated with half-integer quantum numbers () are unstable and short-living. As a result, an evolutionally rife rotating plasma ring turns out to be stratified into a large number of narrow elite rings separated by gaps whose position correspond to anti-rings. The regions of possible existence of elite rings in near-central body space are determined. The main result of eigenvalue spectrum's analysis is as follows. Quantum numbers determining elite eigenvalues of the sector velocity of a ring (normalized in a certain manner) coincide with the quantum numbers appearing in the solution of the Schr¨odingerequation for a hydrogen atom. Perturbations of the elite orbits corresponding to this numbers satisfy the de Brogli quantum-mechanical condition. The solution of the model boundary-value problem has been applied to planetary rings origin and evolution. The main result is a mechanism of stratification of the evolutionally mature plasma proto-ring into a large number of narrow elite rings separated by anti-rings (gaps), which were playing a role of for present-day planetary rings. Another result is the theoretical substantiation of the presence in the nearplanetary space of a region of existence and stability of plasma rings. The data, which had been obtained in the course of the Voyager, Galileo, and Cassini missions were used for verification of theoretical results concerning the planetary rings and Io plasma thorus. The theoretical dates turned out to be in accordance with experimental dates. References Alfven H. Cosmic Plasma. Dordrecht: Reidel, 1961. Rabinovich B.I. Dynamics of Plasma Ring Rotating in the Magnetic Field of Central Body: Magneto-GravitationalWaves // Cosmic Research, 2006. V. 44. No. 1. P. 43-51. Rabinovich B.I. Dynamics of Plasma Ring Rotating in the Magnetic Field of Central Body: Magneto-Gyroscopic Waves. Problems of Stability and Quantization // Cosmic Research, 2006. V. 44. No. 2. P. 146 - 161. Gore, Rick. Voyager 1 at Saturn. Riddles of the Rings // National Geographic, 1981. V. 160. No. 1. P. 3 - 31. Porco, Carolyn. Captain 's Log.: 2004, 184 // The Planetary Report, 2004. V. 24, No. 5. P. 2 - 18.

  19. Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.

    PubMed

    Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik

    2014-03-01

    For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.

  20. Dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gravitational waves

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-01-01

    The model problem of the dynamics of a planar plasma ring rotating in the dipole magnetic field of a central body is considered. A finite-dimensional mathematical model of the system is synthesized by the Boubnov-Galerkin method. The class of solutions corresponding to magneto-gravitational waves associated with deformations of the ring boundaries is investigated.

  1. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  2. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  3. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.

    1995-01-01

    The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in six male squirrel monkeys during eccentric rotation. Monkeys were rotated in the dark at a constant velocity of 200 degrees/s (centrally or 79 cm off axis) with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's orientation (facing-motion or back-to-motion) had a dramatic influence on the VOR. These experiments show that: (a) the axis of eye rotation always shifted toward alignment with gravito-inertial force; (b) the peak value of horizontal slow phase eye velocity was greater with the monkey facing-motion than with back-to-motion; and (c) the time constant of horizontal eye movement decay was smaller with the monkey facing-motion than with back-to-motion. All of these findings were statistically significant and consistent across monkeys. In another set of tests, the same monkeys were rapidly tilted about their naso-occipital (roll) axis. Tilted orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the angular rotation, no consistent eye velocity response was observed during or following the tilt for any of the six monkeys. The absence of any eye movement response following tilt weighs against the possibility that translational linear VOR responses are due to simple high-pass filtering of the otolith signals. The VOR response during eccentric rotation was divided into the more familiar angular VOR and linear VOR components. The angular component is known to depend upon semicircular canal dynamics and central influences. The linear component of the response decays rapidly with a mean duration of only 6.6 s, while the axis of eye rotation rapidly aligns (< 10 s) with gravito-inertial force. These results are consistent with the hypothesis that the measurement of gravito-inertial force by the otolith organs is resolved into central estimates of linear acceleration and gravity, such that the central estimate of gravitational force minus the central estimate of linear acceleration approximately equals the otolith measurement of gravito-inertial force.

  4. Pion Condensation by Rotation in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Liu, Yizhuang; Zahed, Ismail

    2018-01-01

    We show that the combined effects of a rotation plus a magnetic field can cause charged pion condensation. We suggest that this phenomenon may yield to observable effects in current heavy ion collisions at collider energies, where large magnetism and rotations are expected in off-central collisions.

  5. The nuclear activity and central structure of the elliptical galaxy NGC 5322

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Knapen, Johan H.; Williams, David R. A.; Beswick, Robert J.; Bendo, George; Baldi, Ranieri D.; Argo, Megan; McHardy, Ian M.; Muxlow, Tom; Westcott, J.

    2018-04-01

    We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with HST and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxy's central structure and its connection to the nuclear activity. We decomposed the composite HST + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The HST images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit Mdef in the spheroid, scoured by SMBH binaries with final mass MBH such that Mdef/MBH ˜ 1.3-3.4. We propose a three-phase formation scenario for NGC 5322, where a few (2-7) `dry' major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly on to the AGN, powering the radio core with a brightness temperature of TB, core ˜ 4.5 × 107 K and the low-power radio jets (Pjets ˜ 7.04 × 1020 W Hz-1), which extend ˜1.6 kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.

  6. Synthesis of Aluminum-Titanium Carbide Micro and Nanocomposites by the Rotating Impeller In-Situ Gas-Liquid Reaction Method

    NASA Astrophysics Data System (ADS)

    Anza, Inigo; Makhlouf, Makhlouf M.

    2018-02-01

    The Rotating Impeller In-Situ Gas-Liquid Reaction Method is employed for the production of Al-TiC composites. The method relies on injecting a carbon-bearing gas by means of a rotating impeller into a specially formulated molten aluminum-titanium alloy. Under the optimal conditions of temperature and composition, the gas reacts preferentially with titanium to form titanium carbide particles. The design of the apparatus, the process operation window, and the routes for forming titanium carbide particles with different sizes are elucidated.

  7. Synthesis of Aluminum-Titanium Carbide Micro and Nanocomposites by the Rotating Impeller In-Situ Gas-Liquid Reaction Method

    NASA Astrophysics Data System (ADS)

    Anza, Inigo; Makhlouf, Makhlouf M.

    2017-12-01

    The Rotating Impeller In-Situ Gas-Liquid Reaction Method is employed for the production of Al-TiC composites. The method relies on injecting a carbon-bearing gas by means of a rotating impeller into a specially formulated molten aluminum-titanium alloy. Under the optimal conditions of temperature and composition, the gas reacts preferentially with titanium to form titanium carbide particles. The design of the apparatus, the process operation window, and the routes for forming titanium carbide particles with different sizes are elucidated.

  8. Stability analysis of internally damped rotating composite shafts using a finite element formulation

    NASA Astrophysics Data System (ADS)

    Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed

    2018-04-01

    This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.

  9. Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States

    Treesearch

    Mark D. Coleman; J.G. Isebrands; David N. Tolsted; Virginia R. Tolbert

    2004-01-01

    We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed...

  10. [Finite element analysis of different load mode on tooth movement for space closure in patient with bimaxillary protrusion].

    PubMed

    Zhang, X B; Yin, Y F; Yao, H M; Han, Y H; Wang, N; Ge, Z L

    2016-07-01

    To investigate the stress distribution on the maxillary anterior teeth retracted with sliding mechanics and micro-implant anchorage using different retraction hook heights and positions. DICOM image data including maxilla and upper teeth were obtained with cone-beam CT. The three-dimensional finite element model was constructed using Mimics software. Brackets and archwire model were constructed using Creo software. The models were instantiated using Pro/Engineer software. Abaqus software was used to simulate the sliding mechanics by loading 2 N force on 0, 2, 4, 6, 8, 10 mm retraction hooks and three different positions, repectively. Rotation of the occlusal plane, the initial displacement and stress distribution of teeth were analyzed. Lingual rotation of maxillary central incisor(0.021°), gingival movement of the maxillary first molar(0.005 mm), and clockwise rotation of the maxillary occlusal plane(0.012°) were observed when the force application point located at the archwire level (0 mm). In contrast, 0.235° labial rotation of the maxillary central incisor, 0.015 mm occlusal movement of the maxillary first molar, and 0.075° anti-clockwise rotation of the maxillary occlusal plane were observed when the force application point located at the higher level(10 mm retraction hook). The more the force application point was located posteriorly at the archwire level, the less lingual rotation of the maxillary central incisor and the more buccal displacement of maxillary first molar was observed. Maxillary anterior tooth rotation and retraction, vertical displacement of posterior segment, and rotation of the occlusal plane could be controlled by adjusting the height and position of the retraction hook in space closure using miniscrew and sliding mechanics.

  11. IVABRADINE LOADED SOLID LIPID MICROPARTICLES: FORMULATION, CHARACTERIZATION AND OPTIMIZATION BY CENTRAL COMPOSITE ROTATABLE DESIGN.

    PubMed

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Sher, Muhammad

    2017-01-01

    The current research focused on improvement of oral bioavailability and decrease in dosing frequency of ivabradine (Iva) in order to enhance patient compliance by formulating novel sustained release Iva loaded solid lipid microparticles (SLMs) with the help of melt emulsification technique. SLMs formulations were designed with the help of three level central composite rotatable design (CCRD) to study the impact of independent variables like lipid concentration, surfactant concentration and stirring speed on responses - percentage yield (Y,) and entrapment efficiency (Y2). Compatibility between the drug and bees wax (BW) was checked by conducting Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). SLMs were further evaluated for rheological behavior, zeta potential, particle size and for morphology by scanning'electron microscope (SEM). The release of drug from SLMs was conducted by USP type-Il apparatus at pH 1.2, pH 6.8 and data were analyzed by different kinetic models like zero order, first order, Higuchi model, Korsmeyer-Peppas and Hixon-Crowell models. The rheo- logical studies approved the good flow behavior of SLMs and spherical smooth surface of SLMs was observed from SEM. DSC, FTIR and XRD studies concluded the lack of any possible interaction between formulation components. The size-of SLMs ranged from 300 to 500 pm and zeta potential study showed the presence of higher negative charge (-30 to -52 mV). Response Y, varied from 53 to 90% and response Y2 ranged from 29 to 78% indicating the effect of formulation variables. The obtained outcomes were analyzed by second order polynomial equation and suggested quadratic model was also validated. SLMs released Iva from 54 to 90% at pH 6.8 and was significantly (p 0.05) affected by BW concentration. The release mechanism followed the zero order and Korsmeyer-Peppas (n 0.85) kinetic models suggesting slow erosion along with diffusion mechanism for Iva release.

  12. Power losses of soft magnetic composite materials under two-dimensional excitation

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Zhong, J. J.; Ramsden, V. S.; Guo, Y. G.

    1999-04-01

    Soft magnetic composite materials produced by powder metallurgy techniques can be very useful for construction of low cost small motors. However, the rotational core losses and the corresponding B-H relationships of soft magnetic composite materials with two-dimensional rotating fluxes have neither been supplied by the manufacturers nor reported in the literature. This article reports the core loss measurement of a soft magnetic composite material, SOMALOY™ 500, Höganäs AB, Sweden, under two-dimensional excitations. The principle of measurement, testing system, and power loss calculation are presented. The results are analyzed and discussed.

  13. Tethys Eyes Saturn

    NASA Image and Video Library

    2015-06-15

    The two large craters on Tethys, near the line where day fades to night, almost resemble two giant eyes observing Saturn. The location of these craters on Tethys' terminator throws their topography into sharp relief. Both are large craters, but the larger and southernmost of the two shows a more complex structure. The angle of the lighting highlights a central peak in this crater. Central peaks are the result of the surface reacting to the violent post-impact excavation of the crater. The northern crater does not show a similar feature. Possibly the impact was too small to form a central peak, or the composition of the material in the immediate vicinity couldn't support the formation of a central peak. In this image Tethys is significantly closer to the camera, while the planet is in the background. Yet the moon is still utterly dwarfed by the giant Saturn. This view looks toward the anti-Saturn side of Tethys. North on Tethys is up and rotated 42 degrees to the right. The image was taken in visible light with the Cassini spacecraft wide-angle camera on April 11, 2015. The view was obtained at a distance of approximately 75,000 miles (120,000 kilometers) from Tethys. Image scale at Tethys is 4 miles (7 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18318

  14. A multidimensional model of the effect of gravity on the spatial orientation of the monkey

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.

    1993-01-01

    A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).

  15. Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral

    1998-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration can be reduced by adding damping to metal and composite blade-disk systems. As part of a joint research effort of the NASA Lewis Research Center and the University of California, San Diego, the use of integral viscoelastic damping treatment to reduce the vibration of rotating composite fan blades was investigated. The objectives of this experiment were to verify the structural integrity of composite plates with viscoelastic material patches embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  16. Full-field Deformation Measurement Techniques for a Rotating Composite Shaft

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.

    2012-01-01

    Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.

  17. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    USDA-ARS?s Scientific Manuscript database

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  18. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission

    NASA Astrophysics Data System (ADS)

    Song, Kun; Ding, Changlin; Su, Zhaoxian; Liu, Yahong; Luo, Chunrong; Zhao, Xiaopeng; Bhattarai, Khagendra; Zhou, Jiangfeng

    2016-12-01

    We propose a planar composite chiral metamaterial (CCMM) by symmetrically inserting a metallic mesh between two layers of conjugated gammadion resonators. As the elaborate CCMM operates at off-resonance frequencies, it therefore presents low-loss and low-dispersion polarization rotation features. The results show that the proposed CCMM can achieve pure and dispersionless polarization rotation with efficient transmission for a linearly polarized wave within a broad bandwidth. This off-resonance CCMM overcomes the drawbacks of high transmission losses and highly dispersive polarization rotation that exist in the previous resonance-type chiral metamaterials and also exhibits more simplicity of fabrication than the three-dimensional CMMs. The intriguing properties greatly improve the performance of chiral metamaterials in controlling the polarization state of electromagnetic waves.

  20. Equilibrium configurations of a charged fluid around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Trova, Audrey; Schroven, Kris; Hackmann, Eva; Karas, Vladimír; Kovář, Jiří; Slaný, Petr

    2018-05-01

    Equilibrium configurations of electrically charged perfect fluid surrounding a central rotating black hole endowed with a test electric charge and embedded in a large-scale asymptotically uniform magnetic field are presented. Following our previous studies considering the central black hole to be nonrotating, we show that in the rotating case conditions for the configurations existence change according to the spin of the black hole. We focus our attention on the charged fluid in rigid rotation, which can form toroidal configurations centered in the equatorial plane or the ones hovering above the black hole, along the symmetry axis. We conclude that a nonzero value of spin changes the existence conditions and the morphology of the solutions significantly. In the case of fast rotation, the morphology of the structures is close to an oblate shape.

  1. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    NASA Astrophysics Data System (ADS)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  2. Surface--micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.

    2002-01-01

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  3. Surface-micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Krygowski, Thomas W.

    2003-11-18

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  4. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  5. Evolutionary models of rotating dense stellar systems: challenges in software and hardware

    NASA Astrophysics Data System (ADS)

    Fiestas, Jose

    2016-02-01

    We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.

  6. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  7. Adaptation of vestibular signals for self-motion perception

    PubMed Central

    St George, Rebecca J; Day, Brian L; Fitzpatrick, Richard C

    2011-01-01

    A fundamental concern of the brain is to establish the spatial relationship between self and the world to allow purposeful action. Response adaptation to unvarying sensory stimuli is a common feature of neural processing, both peripherally and centrally. For the semicircular canals, peripheral adaptation of the canal-cupula system to constant angular-velocity stimuli dominates the picture and masks central adaptation. Here we ask whether galvanic vestibular stimulation circumvents peripheral adaptation and, if so, does it reveal central adaptive processes. Transmastoidal bipolar galvanic stimulation and platform rotation (20 deg s−1) were applied separately and held constant for 2 min while perceived rotation was measured by verbal report. During real rotation, the perception of turn decayed from the onset of constant velocity with a mean time constant of 15.8 s. During galvanic-evoked virtual rotation, the perception of rotation initially rose but then declined towards zero over a period of ∼100 s. For both stimuli, oppositely directed perceptions of similar amplitude were reported when stimulation ceased indicating signal adaptation at some level. From these data the time constants of three independent processes were estimated: (i) the peripheral canal-cupula adaptation with time constant 7.3 s, (ii) the central ‘velocity-storage’ process that extends the afferent signal with time constant 7.7 s, and (iii) a long-term adaptation with time constant 75.9 s. The first two agree with previous data based on constant-velocity stimuli. The third component decayed with the profile of a real constant angular acceleration stimulus, showing that the galvanic stimulus signal bypasses the peripheral transformation so that the brainstem sees the galvanic signal as angular acceleration. An adaptive process involving both peripheral and central processes is indicated. Signals evoked by most natural movements will decay peripherally before adaptation can exert an appreciable effect, making a specific vestibular behavioural role unlikely. This adaptation appears to be a general property of the internal coding of self-motion that receives information from multiple sensory sources and filters out the unvarying components regardless of their origin. In this instance of a pure vestibular sensation, it defines the afferent signal that represents the stationary or zero-rotation state. PMID:20937715

  8. Limited irrigation of corn-based no-till crop rotations in West Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Due to numerous alternatives in crop sequence and changes in crop yield and price, finding the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 1-, 2-, 3-, and 4-yr limited irrigation corn (Zea mays L.)-based crop rotations for...

  9. Neogene Caribbean plate rotation and associated Central American tectonic evolution

    NASA Technical Reports Server (NTRS)

    Wadge, G.; Burke, K.

    1983-01-01

    A theoretical model of the opening of the Cayman Trough is developed on the basis of geological evidence from a wide area. It is proposed that strike slip motion began about 30 Myr ago and proceeded at a rate of 37 + or - 6 mm/yr for a total of 1100 km of relative plate displacement, and that Central America Underwent an anticlockwise rotation with internal plate deformation. Maps of the reconstructed motion are provided.

  10. Composite system in rotationally invariant noncommutative phase space

    NASA Astrophysics Data System (ADS)

    Gnatenko, Kh. P.; Tkachuk, V. M.

    2018-03-01

    Composite system is studied in noncommutative phase space with preserved rotational symmetry. We find conditions on the parameters of noncommutativity on which commutation relations for coordinates and momenta of the center-of-mass of composite system reproduce noncommutative algebra for coordinates and momenta of individual particles. Also, on these conditions, the coordinates and the momenta of the center-of-mass satisfy noncommutative algebra with effective parameters of noncommutativity which depend on the total mass of the system and do not depend on its composition. Besides, it is shown that on these conditions the coordinates in noncommutative space do not depend on mass and can be considered as kinematic variables, the momenta are proportional to mass as it has to be. A two-particle system with Coulomb interaction is studied and the corrections to the energy levels of the system are found in rotationally invariant noncommutative phase space. On the basis of this result the effect of noncommutativity on the spectrum of exotic atoms is analyzed.

  11. Current status of quantitative rotational spectroscopy for atmospheric research

    NASA Technical Reports Server (NTRS)

    Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois

    2004-01-01

    Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.

  12. Aligning flaky FeSiAl particles with a two-dimensional rotating magnetic field to improve microwave-absorbing and shielding properties of composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Jun; Duan, Yubing; Li, Xinghao; Zhang, Deyuan

    2018-07-01

    In order to enhance the microwave-absorbing and shielding properties of the composites, the flaky FeSiAl particles embedded in an epoxy polymer were aligned with a two-dimensional rotating magnetic field. The morphologies, electromagnetic (EM) characteristics, and microwave-absorbing and shielding properties of the unaligned and aligned FeSiAl/epoxy composites were investigated. The results showed that after alignment treatment, the flaky FeSiAl particles tend to orient uniformly in the rotating magnetic field, and the permittivity and permeability of the aligned composites were increased in the frequency range of 1-18 GHz compared with that of randomly distributed composites. The calculated microwave-absorbing properties indicated that the peak value of the return loss (RL) of the aligned composites can reach 8.8 dB, compared with 5.8 dB of the unaligned composites of 2.5 mm in thickness (60 wt%); and the bandwidth with RL value more than 6 dB is in a wider frequency range from 1 to 2.8 GHz. And the calculated shielding effectiveness (SE) of the aligned composites is 1.1-3 times higher than that of unaligned one in every thickness, and the maximum SE of the aligned one is 31.8 dB at 18 GHz with a thickness of 2.5 mm.

  13. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  14. Four-photon spectroscopy of rotational transitions in liquid: recording of changes in the chemical composition of water caused by cavitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunkin, Aleksei F; Pershin, S M

    2010-05-26

    It is shown for the first time by the method of four-photon coherent scattering by rotational molecular resonances that the cavitation action on water changes its chemical composition, resulting in the formation of hydrogen peroxide. It is found that the concentration of hydrogen peroxide during cavitation grows by several times and depends on the cavitation process technology.

  15. Tectonic implications of a paleomagnetic direction obtained from a Miocene dike swarm in central Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Hoshi, H.; Sugisaki, Y.

    2017-12-01

    Central Honshu of Japan is an ideal field for the study of crustal deformation related to arc-arc collision. In this study we obtained rock magnetic and paleomagnetic results from early Miocene igneous rocks in central Honshu in order to examine rotational deformation caused by the collision of the Izu-Bonin-Mariana (IBM) arc with central Honshu. In Takane of the Hida region, gabbro intrusions and older sedimentary rocks are intruded by numerous andesitic dikes that comprise a parallel dike swarm. The dikes formed under two different normal-faulting paleostress conditions, which were suggested using a method of clustering dike orientations. Cross-cutting relationships indicate that the two paleostress conditions existed during the same period. More than 240 oriented cores were taken at 38 sites in two localities for magnetic study. The andesites and gabbros generally have magnetite, and some andesites also contain pyrrhotite. The magnetite records easterly deflected remanent magnetization directions of dual polarities that pass the reversals test. Positive baked contact tests at two sites demonstrate that the easterly deflected direction is a thermoremanent magnetization acquired at the time of intrusion. The overall in situ (i.e., in geographic coordinates) mean direction for andesitic dikes is judged to be highly reliable, although there are two possible scenarios for explaining the easterly deflection: (1) clockwise rotation and (2) tilting to the northwest. We prefer the former scenario and conclude that 45° clockwise rotation occurred in Takane with respect to the North China Block of the Asian continent. This rotation must represent the clockwise rotation of entire Southwest Japan during the opening period of the Japan Sea. Very little difference is observed between the amount of the easterly deflection in Takane and those in the Tokai and Hokuriku regions, indicating no significant relative rotation. Thus, the crust beneath Takane has not suffered rotation caused by collision of the IBM arc with Honshu. Statistical analyses of paleomagnetic directional data suggest that the two paleostress conditions during the intrusion of andesite dikes lasted for a long period enough to sample geomagnetic secular variation.

  16. Studies on the concentration dependence of specific rotation of Alpha lactose monohydrate (α-LM) aqueous solutions and growth of α-LM single crystals

    NASA Astrophysics Data System (ADS)

    Vinodhini, K.; Divya Bharathi, R.; Srinivasan, K.

    2018-02-01

    Lactose is an optically active substance. As it is one of the reducing sugars, exhibits mutarotation in solution when it dissolves in any solvent. In solution, lactose exists in two isomeric forms, alpha-Lactose (α-L) and beta-lactose (β-L) through the mutarotation reaction. Mutarotation produces a dynamic equilibrium between two isomers in a solution and kinetics of this process determines the growth rate of alpha lactose monohydrate (α-LM) crystals. Since no data were available on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C, the initial experiments were carried out on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C. The specific rotations of the solutions were decreased with increasing time through the mutarotation reaction. The initial and final (equilibrium) specific rotations of the solutions were determined by using automatic digital polarimeter. The compositions of α and β-L in all prepared solutions were calculated from initial and final optical rotations by the method of Sharp and Doob. The composition of α-L decreased whereas, the composition of β-L increased in solutions with increasing concentration of α-LM at 33 °C. Experimental results revealed that this method could be easily and safely employed to study the dependence of specific rotation of solutions on their concentration. The effect of β-lactose on the morphology of nucleated α-LM single crystals has been studied at different experimental conditions.

  17. Hα kinematics of S4G spiral galaxies - III. Inner rotation curves

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Leaman, Ryan; Díaz-García, Simón; Salo, Heikki; Laurikainen, Eija; Querejeta, Miguel; Muñoz-Mateos, Juan Carlos; Athanassoula, E.; Bosma, Albert; Comerón, Sebastien; Elmegreen, Bruce G.; Martínez-Valpuesta, Inma

    2016-05-01

    We present a detailed study of the shape of the innermost part of the rotation curves of a sample of 29 nearby spiral galaxies, based on high angular and spectral resolution kinematic Hα Fabry-Perot observations. In particular, we quantify the steepness of the rotation curve by measuring its slope dRvc(0). We explore the relationship between the inner slope and several galaxy parameters, such as stellar mass, maximum rotational velocity, central surface brightness (μ0), bar strength and bulge-to-total ratio. Even with our limited dynamical range, we find a trend for low-mass galaxies to exhibit shallower rotation curve inner slopes than high-mass galaxies, whereas steep inner slopes are found exclusively in high-mass galaxies. This trend may arise from the relationship between the total stellar mass and the mass of the bulge, which are correlated among them. We find a correlation between the inner slope of the rotation curve and the morphological T-type, complementary to the scaling relation between dRvc(0) and μ0 previously reported in the literature. Although we find that the inner slope increases with the Fourier amplitude A2 and decreases with the bar torque Qb, this may arise from the presence of the bulge implicit in both A2 and Qb. As previously noted in the literature, the more compact the mass in the central parts of a galaxy (more concretely, the presence of a bulge), the steeper the inner slopes. We conclude that the baryonic matter dominates the dynamics in the central parts of our sample galaxies.

  18. Connection between Fermi contours of zero-field electrons and ν =1/2 composite fermions in two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Geraedts, Scott D.; Bhatt, R. N.

    2017-07-01

    We investigate the relation between the Fermi sea (FS) of zero-field carriers in two-dimensional systems and the FS of the corresponding composite fermions which emerge in a high magnetic field at filling ν =1/2 , as the kinetic energy dispersion is varied. We study cases both with and without rotational symmetry and find that there is generally no straightforward relation between the geometric shapes and topologies of the two FSs. In particular, we show analytically that the composite Fermi liquid (CFL) is completely insensitive to a wide range of changes to the zero-field dispersion which preserve rotational symmetry, including ones that break the zero-field FS into multiple disconnected pieces. In the absence of rotational symmetry, we show that the notion of "valley pseudospin" in many-valley systems is generically not transferred to the CFL, in agreement with experimental observations. We also discuss how a rotationally symmetric band structure can induce a reordering of the Landau levels, opening interesting possibilities of observing higher-Landau-level physics in the high-field regime.

  19. The experimental behavior of spinning pretwisted laminated composite plates

    NASA Technical Reports Server (NTRS)

    Kosmatka, John B.; Lapid, Alex J.

    1993-01-01

    The purpose of the research is to gain an understanding of the material and geometric couplings present in advanced composite turbo-propellers. Twelve pre-twisted laminated composite plates are tested. Three different ply lay-ups (2 symmetric and 1 asymmetric) and four different geometries (flat and 30x pre-twist about the mid-chord, quarter-chord, and leading edge) distinguish each plate from one another. Four rotating and non-rotating tests are employed to isolate the material and geometric couplings of an advanced turbo propeller. The first series of tests consist of non-rotating static displacement, strain, and vibrations. These tests examine the effects of ply lay-up and geometry. The second series of tests consist of rotating displacement, strain, and vibrations with various pitch and sweep settings. These tests utilize the Dynamic Spin Rig Facility at the NASA Lewis Research Center. The rig allows the spin testing of the plates in a near vacuum environment. The tests examine how the material and plate geometry interact with the pitch and sweep geometry of an advanced turbo-propeller.

  20. Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task.

    PubMed

    Chen, Xiaogang; Bin, Guangyu; Daly, Ian; Gao, Xiaorong

    2013-04-29

    Recent studies have demonstrated that mentally rotating the hands involves participants engaging in motor imagery processing. However, far less is known about the possible neurophysiological basis of such processing. To contribute to a better understanding of hand mental rotation processing, event-related spectral perturbation (ERSP) methods were applied to electroencephalography (EEG) data collected from participants mentally rotating their hands. Time-frequency analyses revealed that alpha-band power suppression was larger over central-parietal regions. This is in accordance with motor imagery findings suggesting that the motor regions may be involved in processing or detection of kinaesthetic information. Furthermore, the presence of a significant negative correlation between reaction times (RTs) and alpha-band power suppression over central regions is illustrated. These findings are consistent with the neural efficiency hypothesis, which proposes the non-use of many brain regions irrelevant for the task performance as well as the more focused use of specific task-related regions in individuals with better performance. These results indicate that ERSP provides some independent insights into the mental rotation process and further confirms that parietal and motor cortices are involved in mental rotation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana?

    NASA Astrophysics Data System (ADS)

    Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.

    2000-08-01

    A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.

  2. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.

    2018-05-01

    We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.

  3. Dynamic behavior of a black phosphorus and carbon nanotube composite system

    NASA Astrophysics Data System (ADS)

    Shi, Jiao; Cai, Haifang; Cai, Kun; Qin, Qing-Hua

    2017-01-01

    A double walled nanotube composite is constructed by placing a black-phosphorene-based nanotube (BPNT) in a carbon nanotube (CNT). When driving the CNT to rotate by stators in a thermal driven rotary nanomotor, the BPNT behaves differently from the CNT. For instance, the BPNT can be actuated to rotate by the CNT, but its rotational acceleration differs from that of the CNT. The BPNT oscillates along the tube axis when it is longer than the CNT. The results obtained indicate that the BPNT functions with high structural stability when acting as a rotor with rotational frequency of ~20 GHz at 250 K. If at a higher temperature than 250 K, say 300 K, the rotating BPNT shows weaker structural stability than its status at 250 K. When the two tubes in the rotor are of equal length, the rotational frequency of the BPNT drops rapidly after the BPNT is collapsed, owing to more broken P-P bonds. When the black-phosphorene nanotube is longer than the CNT, it rotates synchronously with the CNT even if it is collapsed. Hence, in the design of a nanomotor with a rotor from BPNT, the working rotational frequency should be lower than a certain threshold at a higher temperature.

  4. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  5. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies

    PubMed Central

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A.; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A.; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A.; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-01-01

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars. PMID:27759033

  6. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies.

    PubMed

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-10-19

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars.

  7. Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1991-01-01

    Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.

  8. Changes in Central Walker Lane Strain Accommodation near Bridgeport, California; as told by the Stanislaus Group

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; Pluhar, C. J.; Glen, J. M.; Farner, M. J.

    2012-12-01

    Accommodating ~20-25% of the dextral-motion between the Pacific and North American plates the Walker Lane is represented as an elongate, NW oriented, region of active tectonics positioned between the northwesterly-translating Sierra Nevada microplate and the east-west extension of the Basin and Range. This region of transtension is being variably accommodated on regional-scale systems of predominantly strike-slip faulting. At the western edge of the central Walker Lane (ca. 38°-39°N latitude) is a region of crustal-scale blocks bounded by wedge-shaped depositional-basins and normal-fault systems, here defined as the west-central Walker Lane (WCWL). Devoid of obvious strike-slip faulting, the presence of tectonic-block vertical-axis rotations in the WCWL represents unrecognized components of dextral-shearing and/or changes of strain-accommodation over time. We use paleomagnetic reference directions for Eureka Valley Tuff (EVT) members of the late Miocene Stanislaus Group as spatial and temporal markers for documentation of tectonic-block vertical-axis rotations near Bridgeport, CA. Study-site rotations revealed discrete rotational domains of mean vertical-axis rotation ranging from ~10°-30° with heterogeneous regional distribution. Additionally, the highest measured magnitudes of vertical-axis rotation (~50°-60° CW) define a 'Region of High Strain' that includes the wedge-shaped Bridgeport Valley (Basin). This study revealed previously-unrecognized tectonic rotation of reference direction sites from prior studies for two (By-Day and Upper) of the three members of the EVT, resulting in under-estimates of regional strain accommodation by these studies. Mean remanent directions and virtual geomagnetic poles utilized in our study yielded a recalculated reference direction for the By-Day member of: Dec.=353.2°; Inc.= 43.7°; α95=10.1, in agreement with new measurements in the stable Sierra Nevada. This recalculated direction confirmed the presence of previously unrecognized reference site rotations, and provided an additional reference direction for determining vertical-axis rotation magnitudes. We present a kinematic model based on mean rotation magnitudes of ~30° CW for the Sweetwater Mountains and Bodie Hills that accounts for rotational-strain accommodation of dextral shear in the WCWL since the late Miocene. This model considers rotational magnitudes, paleostrain indicators, edge-effects, and strain-accommodating structures of rotating crustal blocks to represent changes in regional strain accommodation over time. The results and models presented here elucidate the complicated and evolving nature of the WCWL, and further understanding of variations in strain accommodation for the Walker Lane.

  9. Rotating Science Classrooms.

    ERIC Educational Resources Information Center

    Hogg, Loretta A.

    1980-01-01

    Described is a science classroom program with centralized materials, and assistance and workshops for teachers. Classroom materials on one of five topics rotate every six weeks among five schools. Teachers plan specific units to match the arrival of the materials in their schools. (Author/DS)

  10. Spinning solutions in general relativity with infinite central density

    NASA Astrophysics Data System (ADS)

    Flammer, P. D.

    2018-05-01

    This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.

  11. Palaeomagnetic study of the Kepezdaǧ and Yamadaǧ volcanic complexes, central Turkey: Neogene tectonic escape and block definition in the central-east Anatolides

    NASA Astrophysics Data System (ADS)

    Gürsoy, H.; Tatar, O.; Piper, J. D. A.; Koçbulut, F.; Akpınar, Zafer; Huang, Baochun; Roberts, A. P.; Mesci, B. L.

    2011-05-01

    The Anatolian accretionary collage between Afro-Arabia and Eurasia is currently subject to two tectonic regimes. Ongoing slip of Arabia relative to Africa along the Dead Sea Fault Zone in the east is extruding crustal blocks away from the indenter by a combination of strike-slip and rotation. This zone of compression gives way to an extensional province in western Turkey, which also includes the eastern sector of Aegean Province. Although it is now well established that rotational deformation throughout Anatolia is distributed and differential, the sizes of the blocks involved are poorly understood. As a contribution towards evaluating this issue in central-east Turkey, we report palaeomagnetic study of the mid-Miocene Kepezdağ and Yamadağ volcanic complexes in central-south Anatolia (38-39.5°N, 37.5-39°E). A distributed sample through the Yamadağ complex identifies eruption during an interval of multiple geomagnetic field reversals (40 normal, 36 reversed, 8 intermediate sites) with a selected mean defined by 63 sites of D/ I = 335.4/51.1° ( α95 = 4.4°). The smaller Kepezdağ complex (8 reversed, 4 normal and 1 intermediate site) yields a comparable mean direction from 12 sites of 338.7/49.8° ( α95 = 14.1°). In the context of a range of radiometric age evidence, two thick normal polarity zones within the Yamadağ succession probably correlate with zones C5ACn and C5ADn of the Geomagnetic Polarity Time Scale and imply that the bulk of the volcanic activity took place between ˜15 and 13.5 Ma. Comparison of the palaeomagnetic results with the adjoining major plate indenters shows that the Yamadağ complex has rotated CCW by 29.3 ± 5.2° relative to Eurasia; the much smaller dataset from the Kepezdağ complex indicates a comparable CCW rotation of 26.0 ± 11.8° with respect to Eurasia. The Arabian Indenter has also been rotating CCW since mid Miocene times, and the block incorporating these two volcanic complexes north of the East Anatolian Fault Zone (EAFZ) is determined to have rotated 18.2 ± 6.0° CCW relative to the northern perimeter of Arabia. Comparison with data to the north identifies quasi-uniform rotation across a ˜200 km wide block extending from the Central Anatolian Fault Zone in the northwest to close to the East Anatolian transform fault zone in the south east. Although absence of suitable younger rocks does not permit the timing of this rotation to be determined in the study area, analogies with results from the Sivas Basin suggest that it is young, and followed establishment of the major transform faults. Rotation has evidently taken place around bounding arcuate faults and accompanied westward expulsion as the accretionary collage north of Arabia has been subject to ongoing post-collisional indentation.

  12. Third generation snacks manufactured from orange by-products: physicochemical and nutritional characterization.

    PubMed

    Tovar-Jiménez, Xochitl; Caro-Corrales, José; Gómez-Aldapa, Carlos A; Zazueta-Morales, José; Limón-Valenzuela, Víctor; Castro-Rosas, Javier; Hernández-Ávila, Juan; Aguilar-Palazuelos, Ernesto

    2015-10-01

    A mixture of orange vesicle flour, commercial nixtamalized corn flour and potato starch was extruded using a Brabender Laboratory single screw extruder (2:1 L/D). The resulting pellets were expanded by microwaves. Expansion index, bulk density, penetration force, carotenoid content, and dietary fiber were measured for this third-generation snack and optimum production conditions were estimated. Response surface methodology was applied using a central composite rotatable experimental design to evaluate the effect of moisture content and extrusion temperature. Temperature mainly affected the expansion index, bulk density and penetration force, while carotenoids content was affected by moisture content. Surface overlap was used to identify optimum processing conditions: temperature: 128-130 °C; moisture content: 22-24 %. Insoluble dietary fiber decreased and soluble dietary fiber increased after extrusion.

  13. Analysis of a Circular Composite Disk Subjected to Edge Rotations and Hydrostatic Pressure

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.

    2004-01-01

    The structural analysis results for a graphite/epoxy quasi-isotropic circular plate subjected to a forced rotation at the boundary and pressure is presented. The analysis is to support a specialized material characterization test for composite cryogenic tanks. Finite element models were used to ensure panel integrity and determine the pressure necessary to achieve a predetermined equal biaxial strain value. The displacement results due to the forced rotation at the boundary led to a detailed study of the bending stiffness matrix [D]. The variation of the bending stiffness terms as a function of angular position is presented graphically, as well as, an illustrative technique of considering the laminate as an I-beam.

  14. Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields

    NASA Astrophysics Data System (ADS)

    Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei

    2012-06-01

    Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation.

  15. A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

    Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubblemore » height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.« less

  16. Time-resolved deposition in the remote region of the JET-ILW divertor: measurements and modelling

    NASA Astrophysics Data System (ADS)

    Catarino, N.; Widdowson, A.; Baron-Wiechec, A.; Coad, J. P.; Heinola, K.; Rubel, M.; Alves, E.; Contributors, JET

    2017-12-01

    One crucial requirement for the development of fusion power is to know where, and how much, impurities collect in the machine, and how much of the fuelling isotope tritium will be trapped therein. The most relevant information on this issue comes from the operation of the Joint European Tokamak (JET), which is the world’s largest operating tokamak and has the same interior plasma-facing materials as the next step machine, ITER. Much of the information gained so far has been from post-mortem analysis of samples collected after whole campaigns involving varied types of operation. This paper describes time-resolved measurements of the deposition rate using rotating collectors (RC) placed in remote areas of the JET divertor during the 2013-2014 campaign with the ITER-like Wall (ILW). These techniques allow the effects of different types of operation to be distinguished. Rotating collectors made of silicon discs housed behind an aperture are exposed to the plasma. Each time the magnetic field coils are ramped up for a discharge the disc rotates, providing a linear relationship between the exposed region and the discharge number. Post-mortem ion beam analyses provide information on the deposit composition as a function of the discharge number. The results show that the Be deposition average for the RC in the corners of the inner and outer divertor are 4.9 × 1016 cm-2 and 1.8 × 1017 cm-2, respectively, accumulated over an average of ˜25 pulses. Data from the rotating collector below Tile 5 in the central region of divertor indicate a Be deposition rate of 9.3 × 1015 cm-2, per ˜25 pulses.

  17. Comparison of geologically-averaged paleomagnetic and "instantaneous" GPS rotation data in the West-Central Walker Lane

    NASA Astrophysics Data System (ADS)

    Farner, M. J.; Pluhar, C. J.; Carlson, C. W.

    2011-12-01

    The Walker Lane belt is a highly tectonically active region of dextral shear in western North America. Situated between the margins of the Sierra Nevada microplate and the Basin and Range extension, it extends northward from the Garlock Fault into portions of Southern Oregon. The Walker Lane is characterized by dextral shear accommodated by strike slip faults and left-stepping normal faults (Unruh et al, 2003). Faulting in the Walker Lane accounts for approximately 25% of the relative motion between the North American and Pacific Plates (Reheis and Dixon 1996). The study spans a region where the Sierra Nevada microplate has shed fault-bounded blocks from its eastern margin into the central Walker Lane during the Neogene. These blocks have behaved somewhat independently of one another and the Sierra Nevada as evidenced by spatially-variable magnitudes of vertical-axis rotation. This blurs the boundary of definition between microplate and fault block. One of the key questions regarding Walker Lane deformation is what is the role of rotation with respect to fault blocks and at what rate(s) does rotation occur. The software package SSPX (Cardozo and Allmendinger 2009) is used to examine previously published geodetic data to derive rotation rates in the west-central Walker Lane. A rate of 1.70° ± 0.24°/Ma is determined for Bridgeport Valley, CA based upon strain inversion of the locally-sparse GPS station data in SSPX. This rate is consistent with paleomagnetically-determined rotation rates for ~9.4 Ma members of the Stanislaus Group around Bridgeport Valley, adjacent to the Mina Deflection (e.g. King et al, 2007 and our data). However there are several shortcomings to using currently available GPS data for this purpose. GPS station spacing in many places does not provide spatial resolution of rotation comparable to the paleomagnetic dataset, which in turn limits our ability to examine small lithospheric fault blocks geodetically. The paleomagnetic data shows rotation variations on the scale of <5 km. Thus, due to GPS station spacing, our strain inversion reveals a spatially-averaged rotation for a larger given area and is not able to detect small lithospheric blocks or groups of blocks with anomalously large rotation rates of 7°/Ma or higher. An alternative hypothesis is that rotation rate is variable with time and that large rotations occurred and have slowed or stopped.

  18. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate both vertical canals and otolith organs. However, the recorded responses could not be predicted from a linear combination of EVA rotational and translational responses. In contrast, one-third of the neurons responded similarly during EVA and EHA rotations, although a significant response modulation was present during translation. Thus this subpopulation of otolith + canal cells, which included neurons with either high- or low-pass dynamics to translation, appear to selectively ignore the component of otolith-selective activation that is due to changes in the orientation of the head relative to gravity. Thus contrary to primary otolith afferents and otolith-only central neurons that respond equivalently to tilts relative to gravity and translational movements, approximately one-third of the otolith + canal cells seem to encode a true estimate of the translational component of the imposed passive head and body movement.

  19. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  20. Paleomagnetism of the Oligocene Kalamazoo Tuff: implications for middle Tertiary extension in east central Nevada

    USGS Publications Warehouse

    Hagstrum, J.T.; Gans, P.B.

    1989-01-01

    The Oligocene Kalamazoo Tuff (???35 Ma) was sampled for paleomagnetic analysis across a 100-km-wide zone of highly extended crust in east central Nevada to estimate between-site vertical axis rotations and thus the relative importance of strike-slip faulting to the mechanism of extension. The tilt-corrected data, with sources of error reduced or eliminated, exhibit a 28?? ?? 12?? clockwise rotation of the Schell Creek Range relative to the Kern Mountains region. This rotation implies differential extension accommodated by strike-slip faulting or N-S shortening. The paleomagnetic results also suggest that large changes in strike of layered units near faults with presumed strike-slip movement need not be the result of oroclinal bending, but could result from superimposed sets of orthogonal normal faults. -from Authors

  1. High-frequency rotational losses in different soft magnetic composites

    NASA Astrophysics Data System (ADS)

    de la Barrière, O.; Appino, C.; Ragusa, C.; Fiorillo, F.; Mazaleyrat, F.; LoBue, M.

    2014-05-01

    The isotropic properties of Soft Magnetic Composites (SMC) favor the design of new machine topologies and their granular structure can induce a potential decrease of the dynamic loss component. This paper is devoted to the characterization of the broadband magnetic losses of different SMC types under alternating and circular induction. The investigated materials differ by their grain size, heat treatment, compaction rate, and binder type. It is shown that, up to peak polarization Jp = 1.25 T, the ratios between the rotational and the alternating loss components (classical, hysteresis, and excess) are quite independent of the material structural details, quite analogous to the known behavior of nonoriented steel laminations. On the contrary, at higher inductions, it is observed that the Jp value at which the rotational hysteresis loss attains its maximum, related to the progressive disappearance of the domain walls under increasing rotational fields, decreases with the material susceptibility.

  2. New fundamental parameters for attitude representation

    NASA Astrophysics Data System (ADS)

    Patera, Russell P.

    2017-08-01

    A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.

  3. Wingtip vortex turbine

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr. (Inventor)

    1990-01-01

    A means for extracting rotational energy from the vortex created at aircraft wing tips which consists of a turbine with blades located in the crossflow of the vortex and attached downstream of the wingtip. The turbine has blades attached to a core. When the aircraft is in motion, rotation of a core transmits energy to a centrally attached shaft. The rotational energy thus generated may be put to use within the airfoil or aircraft fuselage.

  4. Reduction of toroidal rotation by fast wave power in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassie, J.S. de; Baker, D.R.; Burrell, K.H.

    1997-04-01

    The application of fast wave power in DIII-D has proven effective for both electron heating and current drive. Since the last RIF Conference FW power has been applied to advanced confinement regimes in DIII-D; negative central shear (NCS), VH- and H-modes, high {beta}{sub p}, and high-{ell}i. Typically these regimes show enhanced confinement of toroidal momentum exhibited by increased toroidal rotation velocity. Indeed, layers of large shear in toroidal velocity are associated with transport barriers. A rather common occurrence in these experiments is that the toroidal rotation velocity is decreased when the FW power is turned on, to lowest order independentmore » of whether the antennas are phased for co or counter current drive. At present all the data is for co-injected beams. The central toroidal rotation can be reduced to 1/2 of the non-FW level. Here the authors describe the effect in NCS discharges with co-beam injection.« less

  5. Six components observations of local earthquakes during the 2016 Central Italy seismic sequence

    NASA Astrophysics Data System (ADS)

    Simonelli, A.; Bernauer, F.; Chow, B.; Braun, T.; Wassermann, J. M.; Igel, H.

    2017-12-01

    For many years the seismological community has looked for a reliable, sensitive, broadband three-component portable rotational sensor. In this preliminary study, we show the possibility of measuring and extracting relevant seismological information from local earthquakes. We employ portable three-component rotational sensors, insensitive to translations, which operate on optical interferometry principles (Sagnac effect). Multiple sensors recording redundantly add significance to the measurements.During the Central Italy seismic sequence in November 2016, we deployed two portable fiber-optic gyroscopes (BlueSeis3A from iXBlue and LCG demonstrator from LITEF) and a broadband seismometer in Colfiorito, Italy. We present here the six-component observations, with analysis of rotational (three redundant components) and translational (three components) ground motions, generated by earthquakes at local distances. For each seismic event, we compare coherence between rotational sensors and estimate a back azimuth consistent with theoretical values. We also estimate Love and Rayleigh wave phase velocities in the 5 to 10 Hz frequency range.

  6. C II forbidden-line 158 micron mapping in Sagittarius A Rotation curve and mass distribution in the galactic center

    NASA Technical Reports Server (NTRS)

    Lugten, J. B.; Genzel, R.; Crawford, M. K.; Townes, C. H.

    1986-01-01

    Based on data obtained with the NASA Kuiper Airborne Observatory 91.4 cm telescope, the 158-micron fine structure line emission of C(+) is mapped near the galactic center. The strongest emission comes from a 10-pc FWHM diameter disk centered on Sgr A West whose dominant motion is rotation. Extended C(+) emission is also found from the +50 km/s galactic center molecular cloud, and a second cloud at v(LSR) of about -35 km/s. The rotation curve and mass distribution within 10 pc of the galactic center are derived, and the C(+) profiles show a drop-off of rotation velocity between 2 and 10 pc. A mass model is suggested with 2-4 million solar masses in a central point mass, and a M/L ratio of the central stellar cluster of 0.5 solar masses/solar luminosities, suggesting a large abundance of giants and relatively recent star formation in the center.

  7. Effect of storage on the chemical composition, microbiological load, and sensory properties of cassava starch-based custard powder

    PubMed Central

    Awoyale, Wasiu; Sanni, Lateef O; Shittu, Taofik A; Adegunwa, Mojisola O

    2015-01-01

    The effect of storage on the chemical, microbiological, and sensory properties of cassava starch-based custard powder (CbCP) blends as mixture of yellow-fleshed cassava root starch (YfCRS) (90–98%) and whole egg powder (WEP) (2–10%) was investigated. These were prepared using central composite rotatable design, and separately packaged in polyvinyl chloride plastic can and stored in storage box (30 ± 2°C). The chemical and microbiological analyses of the stored CbCP were evaluated at 3 weeks intervals, while the sensory property was determined at 6 weeks interval for 24 weeks. The result showed that the protein, fat, and the total-β-carotene contents of the CbCP decreased significantly (P ≤ 0.001) after storage while moisture content and microbiological load increased. All the CbCP sensory attributes were accepted at the end of storage, except taste and color. The CbCP gruel prepared from 94% YfCRS: 0.34% WEP and 90% YfCRS: 2% WEP blends were the most acceptable after storage. PMID:26405528

  8. Effect of storage on the chemical composition, microbiological load, and sensory properties of cassava starch-based custard powder.

    PubMed

    Awoyale, Wasiu; Sanni, Lateef O; Shittu, Taofik A; Adegunwa, Mojisola O

    2015-09-01

    The effect of storage on the chemical, microbiological, and sensory properties of cassava starch-based custard powder (CbCP) blends as mixture of yellow-fleshed cassava root starch (YfCRS) (90-98%) and whole egg powder (WEP) (2-10%) was investigated. These were prepared using central composite rotatable design, and separately packaged in polyvinyl chloride plastic can and stored in storage box (30 ± 2°C). The chemical and microbiological analyses of the stored CbCP were evaluated at 3 weeks intervals, while the sensory property was determined at 6 weeks interval for 24 weeks. The result showed that the protein, fat, and the total-β-carotene contents of the CbCP decreased significantly (P ≤ 0.001) after storage while moisture content and microbiological load increased. All the CbCP sensory attributes were accepted at the end of storage, except taste and color. The CbCP gruel prepared from 94% YfCRS: 0.34% WEP and 90% YfCRS: 2% WEP blends were the most acceptable after storage.

  9. Proteomics Perspectives in Rotator Cuff Research: A Systematic Review of Gene Expression and Protein Composition in Human Tendinopathy

    PubMed Central

    Sejersen, Maria Hee Jung; Frost, Poul; Hansen, Torben Bæk; Deutch, Søren Rasmussen; Svendsen, Susanne Wulff

    2015-01-01

    Background Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics – the comprehensive study of protein composition - in tendon research. Materials and Methods We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue. Results We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies) and III (13 of 14), metalloproteinase (MMP)-1 (6 of 12), -9 (7 of 7), -13 (4 of 7), tissue inhibitor of metalloproteinase (TIMP)-1 (4 of 7), and vascular endothelial growth factor (4 of 7), and a decrease in MMP-3 (10 of 12). Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro. Conclusions Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins) that characterise specific tendon disorders or stages of tendinopathy. Thus, our results suggested an untapped potential for proteomics in tendon research. PMID:25879758

  10. Proteomics perspectives in rotator cuff research: a systematic review of gene expression and protein composition in human tendinopathy.

    PubMed

    Sejersen, Maria Hee Jung; Frost, Poul; Hansen, Torben Bæk; Deutch, Søren Rasmussen; Svendsen, Susanne Wulff

    2015-01-01

    Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics--the comprehensive study of protein composition--in tendon research. We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue. We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies) and III (13 of 14), metalloproteinase (MMP)-1 (6 of 12), -9 (7 of 7), -13 (4 of 7), tissue inhibitor of metalloproteinase (TIMP)-1 (4 of 7), and vascular endothelial growth factor (4 of 7), and a decrease in MMP-3 (10 of 12). Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro. Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins) that characterise specific tendon disorders or stages of tendinopathy. Thus, our results suggested an untapped potential for proteomics in tendon research.

  11. The dynamics of layered and non-layered oscillatory double-diffusive convection

    NASA Astrophysics Data System (ADS)

    Moll, Ryan D.

    Oscillatory double diffusive convection (ODDC) is a double diffusive instability that occurs in fluids that are unstably stratified in temperature and stably stratified in chemical composition. Regions unstable to ODDC are common in the interiors of stars and giant planets, and knowing thermal and compositional transport through these regions is important for stellar and planetary evolution models. Using 3D direct numerical simulations, Rosenblum et al. 2011 first showed that ODDC can either lead to the spontaneous formation of convective layers, or remain in a state dominated by large scale gravity waves. Subsequent studies focused on identifying the conditions for layer formation (Mirouh et al. 2012), and quantifying transport through layered systems (Wood et al. 2013). This document includes 3 works that build on the results of these earlier studies. The subject of the first is transport through non-layered ODDC and shows that in the absence of layered convection, ODDC is dominated by large scale gravity waves that grow to the size of the domain. We find that while these gravity waves induce small amounts of turbulent mixing, turbulent transport through non-layered systems is not significant for the purposes of astrophysical modeling (unlike in layered convection). The second study pertains to ODDC in the presence of Coriolis forces, and shows that rotating systems can be categorized depending on the strength of the rotation. We find that in the slowly rotating regime, the presence of rotation does not significantly affect qualitative behavior, but leads to modest reductions in thermal and compositional transport, while in the fast rotation regime qualitative behaviors are radically different, and systems are dominated by vortices that affect thermal and compositional transport in complex ways. In the final work we study simulations of ODDC at non-layered parameters that are forced into a layered configuration by initial conditions. Our results show that measurements of thermal and compositional transport deviate from values predicted by oft-cited geophysical transport laws.

  12. Faunistic Composition, Ecological Properties and Zoogeographical Composition of the Family Elateridae (Coleoptera) of the Central Anatolian Region of Turkey

    PubMed Central

    Kabalak, Mahmut; Sert, Osman

    2011-01-01

    The focus of this study was to understand the faunistic composition, ecological properties and zoogeographical composition of Elateridae (Coleoptera) of the Central Anatolian region. 72 species belonging to seven subfamilies and 25 genera were identified. The major part of the Elateridae fauna of the Central Anatolian region is formed by the subfamilies Elaterinae and Cardiophorinae. The genus Cardiophorus was the most species-rich genus. The species composition of the Elateridae fauna of the Central Anatolian region is partially consistent with known Elateridae fauna of Turkey. The Central Anatolian region shares most species with the European part of the Western Palaearctic as does the Elateridae fauna of Turkey. Detailed localities of nine species are given for the first time for Turkey, with emphasis on the Central Anatolian region. PMID:21864150

  13. Comparison of central corneal thickness measurements by rotating Scheimpflug camera, ultrasonic pachymetry, and scanning-slit corneal topography.

    PubMed

    Amano, Shiro; Honda, Norihiko; Amano, Yuki; Yamagami, Satoru; Miyai, Takashi; Samejima, Tomokazu; Ogata, Miyuki; Miyata, Kazunori

    2006-06-01

    To compare central corneal thickness measurements and their reproducibility when taken by a rotating Scheimpflug camera, ultrasonic pachymetry, and scanning-slit corneal topography/pachymetry. Experimental study. Seventy-four eyes of 64 subjects without ocular abnormalities other than cataract. Corneal thickness measurements were compared among the 3 methods in 54 eyes of 54 subjects. Two sets of measurements were repeated by a single examiner for each pachymetry in another 10 eyes of 5 subjects, and the intraexaminer repeatability was assessed as the absolute difference of the first and second measurements. Two experienced examiners took one measurement for each pachymetry in another 10 eyes of 5 subjects, and the interexaminer reproducibility was assessed as the absolute difference of the 2 measurements of the first and second examiners. Central corneal thickness measurements by the 3 methods, absolute difference of the first and second measurements by a single examiner, absolute difference of the 2 measurements by 2 examiners, and relative amount of variation. The average measurements of central corneal thickness by a rotating Scheimpflug camera, scanning-slit topography, and ultrasonic pachymetry were 538+/-31.3 microm, 541+/-40.7 microm, and 545+/-31.3 microm, respectively. There were no statistically significant differences in the measurement results among the 3 methods (P = 0.569, repeated-measures analysis of variance). There was a significant linear correlation between the rotating Scheimpflug camera and ultrasonic pachymetry (r = 0.908, P<0.0001), rotating Scheimpflug camera and scanning-slit topography (r = 0.930, P<0.0001), and ultrasonic pachymetry and scanning-slit topography (r = 0.887, P<0.0001). Ultrasonic pachymetry had the smallest intraexaminer variability, and scanning-slit topography had the largest intraexaminer variability among the 3 methods. There were similar variations in interexaminer reproducibility among the 3 methods. Mean corneal thicknesses were comparable among rotating Scheimpflug camera, ultrasonic pachymetry, and scanning-slit topography with the acoustic equivalent correction factor. The measurements of the 3 instruments had significant linear correlations with one another, and all methods had highly satisfactory measurement repeatability.

  14. Composite-Light-Pulse Technique for High-Precision Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Berg, P.; Abend, S.; Tackmann, G.; Schubert, C.; Giese, E.; Schleich, W. P.; Narducci, F. A.; Ertmer, W.; Rasel, E. M.

    2015-02-01

    We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120 nrad s-1 Hz-1 /2 and determine the Earth's rotation rate with a relative uncertainty of 1.2%.

  15. Damping Experiment of Spinning Composite Plates with Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral; Kosmatka, John B.

    1997-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration reduction can be achieved by adding damping to metal and composite blade-disk systems. This experiment was done to investigate the use of integral viscoelastic damping treatments to reduce vibration of rotating composite fan blades. It is part of a joint research effort with NASA LeRC and the University of California, San Diego (UCSD). Previous vibration bench test results obtained at UCSD show that plates with embedded viscoelastic material had over ten times greater damping than similar untreated plates; and this was without a noticeable change in blade stiffness. The objectives of this experiment, were to verify the structural integrity of composite plates with viscoelastic material embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  16. Rotating cathode device for molten salt bath

    NASA Astrophysics Data System (ADS)

    1983-11-01

    The invention relates to a rotating cathode device for molten salt baths used to prepare metallic titanium or aluminum and the like by electrolysis of molten salts. The rotating cathode device is described. It is a cyclindrical cathode mounted on a rotating spindle, made of a lightweight material and mounted in such a way as to avoid thermal strain between the rotational shaft and the cylindrical cathode. At least one of the upper and lower ends of the cylindrical cathode are closed by a cap and a seal consisting of an inorganic fiber composite in the area between the cap and the cathode.

  17. Peripheral refraction with eye and head rotation with contact lenses.

    PubMed

    Lopes-Ferreira, Daniela P; Neves, Helena I F; Faria-Ribeiro, Miguel; Queirós, António; Fernandes, Paulo R B; González-Méijome, José M

    2015-04-01

    To evaluate the impact of eye and head rotation in the measurement of peripheral refraction with an open-field autorefractometer in myopic eyes wearing two different center-distance designs of multifocal contact lenses (MFCLs). Nineteen right eyes from 19 myopic patients (average central M ± SD = -2.67 ± 1.66 D) aged 20-27 years (mean ± SD = 23.2 ± 3.3 years) were evaluated using a Grand-Seiko autorefractometer. Patients were fitted with one multifocal aspheric center-distance contact lens (Biofinity Multifocal D(®)) and with one multi-concentric MFCL (Acuvue Oasys for Presbyopia). Axial and peripheral refraction were evaluated by eye rotation and by head rotation under naked eye condition and with each MFCL fitted randomly and in independent sessions. For the naked eye, refractive pattern (M, J0 and J45) across the central 60° of the horizontal visual field values did not show significant changes measured by rotating the eye or rotating the head (p > 0.05). Similar results were obtained wearing the Biofinity D, for both testing methods, no obtaining significant differences to M, J0 and J45 values (p > 0.05). For Acuvue Oasys for presbyopia, also no differences were found when comparing measurements obtained by eye and head rotation (p > 0.05). Multivariate analysis did not showed a significant interaction between testing method and lens type neither with measuring locations (MANOVA, p > 0.05). There were significant differences in M and J0 values between naked eyes and each MFCL. Measurements of peripheral refraction by rotating the eye or rotating the head in myopic patients wearing dominant design or multi-concentric multifocal silicone hydrogel contact lens are comparable. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  18. Rotation and transport in Alcator C-Mod ITB plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.

    2010-06-01

    Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 < r/a < 0.4) but rises steeply in the region where the foot in the ITB density profile is observed (0.5 < r/a < 0.7). A correspondingly strong E × B shear is seen at the location of the ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.

  19. 40 CFR 63.9375 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a series of curved vanes or blades arranged on a central spindle that rotates. Deviation means any... combustion chamber. Expansion of the hot combustion gases in the chamber rotates a shaft, either through a... source to emit a pollutant under its physical and operational design. Any physical or operational...

  20. Stuck threaded member extractor tool and extraction methods

    DOEpatents

    Roscosky, James M.; Essay, Shane M.

    2016-02-02

    Disclosed is a tool having a tapered first portion configured to translate a rotational force to the stuck member, a second portion connecting with the first portion and configured to translate the rotational force to the tapered first portion, a planar tip at an end of the first portion and perpendicular to a central axis passing through the first portion and the second portion, a plurality of left-handed splines extending helically around the central axis from the tip toward the second portion, a driver engaged with the second portion and configured to receive a third rotational force from a mechanical manipulator, and a leak seal connected to the driver and configured to form a seal around the stuck member and at least a portion of the driver and prevent gases opposite the stuck member from escaping.

  1. Nutrient enhanced short rotation coppice for biomass in central Wales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodson, R.W.; Slater, F.M.; Lynn, S.F.

    1993-12-31

    Two projects involving short rotation willow coppice are taking place on the eastern side of the Cambrian Mountains in central Wales. One project examines, as an alternative land use, the potential of short rotation willow coppice variously enhanced by combinations of lime, phosphorous and potassium fertilizers and also digested sewage sludge on an acidic upland site at an altitude of 260m. The first year results of this project are described in detail, showing the necessity for limestone additions and also demonstrating that of the four willow varieties established, Salix dasyclados is the only possible, profitable fuel crop. The other projectmore » involving willow in a filter bed system is outlined along with an additional project investigating the effect of sewage sludge additions on the Rubus fruticosus production in a birch dominated mixed deciduous woodland.« less

  2. Is the Critical Rotation of Be Stars Really Critical for the Be Phenomenon?

    NASA Astrophysics Data System (ADS)

    Stee, Ph.; Meilland, A.

    We aim to study the effect of the fast rotation, stellar wind and circumstellar disks around active hot stars and their effects on the formation and evolution of these massive stars. For that purpose, we obtained, for the first time, interferometric measurements of three active hot stars, namely α Arae, κ CMa and Achernar, using the VLTI /AMBER and VLTI/MIDI instruments which allow us to study the kinematics of the central star and its surrounding circumstellar matter. These data coupled with our numerical code SIMECA (SIMulation pour Etoiles Chaudes Actives) seem to indicate that the presence of equatorial disks and polar stellar wind around Be stars are not correlated. A polar stellar wind was detected for α Arae and Achernar whereas κ CMa seems to exhibit no stellar wind. On the other hand, these two first Be stars are certainly nearly critical rotators whereas the last one seems to be far from the critical rotation. Thus a polar stellar wind may be due to the nearly critical rotation which induces a local effective temperature change following the von Zeipel theorem, producing a hotter polar region triggering a polar stellar wind. This critical rotation may also explain the formation of a circumstellar disk which is formed by the centrifugal force balancing the equatorial effective gravity of the central star. Following these results we try to investigate if critical rotation may be the clue for the Be phenomenon.

  3. Counterclockwise and Clockwise Rotation of QRS Transitional Zone: Prospective Correlates of Change and Time-Varying Associations With Cardiovascular Outcomes.

    PubMed

    Patel, Siddharth; Kwak, Lucia; Agarwal, Sunil K; Tereshchenko, Larisa G; Coresh, Josef; Soliman, Elsayed Z; Matsushita, Kunihiro

    2017-11-03

    A few studies have recently reported clockwise and counterclockwise rotations of QRS transition zone as predictors of mortality. However, their prospective correlates and associations with individual cardiovascular disease (CVD) outcomes are yet to be investigated. Among 13 567 ARIC (Atherosclerosis Risk in Communities) study participants aged 45 to 64 years, we studied key correlates of changes in the status of clockwise and counterclockwise rotation over time as well as the association of rotation status with incidence of coronary heart disease (2408 events), heart failure (2196 events), stroke (991 events), composite CVD (4124 events), 898 CVD deaths, and 3469 non-CVD deaths over 23 years of follow-up. At baseline, counterclockwise rotation was most prevalent (52.9%), followed by no (40.5%) and clockwise (6.6%) rotation. Of patients with no rotation, 57.9% experienced counterclockwise or clockwise rotation during follow-up, with diabetes mellitus and black race significantly predicting clockwise and counterclockwise conversion, respectively. Clockwise rotation was significantly associated with higher risk of heart failure (hazard ratio, 1.20; 95% confidence interval [CI], 1.02-1.41) and non-CVD death (hazard ratio, 1.28; 95% CI, 1.12-1.46) after adjusting for potential confounders including other ECG parameters. On the contrary, counterclockwise rotation was significantly related to lower risk of composite CVD (hazard ratio, 0.93; 95% CI, 0.87-0.99]), CVD mortality (hazard ratio, 0.76; 95% CI, 0.65-0.88), and non-CVD deaths (hazard ratio, 0.92; 95% CI, 0.85-0.99 [borderline significance with heart failure]). Counterclockwise rotation, the most prevalent QRS transition zone pattern, demonstrated the lowest risk of CVD and mortality, whereas clockwise rotation was associated with the highest risk of heart failure and non-CVD mortality. These results have implications on how to interpret QRS transition zone rotation when ECG was recorded. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. The development of thermoplastic fibre based reinforcements for the rotational moulding process

    NASA Astrophysics Data System (ADS)

    Alemán, D. N. Castellanos; McCourt, M.; Kearns, M. P.; Martin, P. J.; Butterfield, J.

    2018-05-01

    Rotational moulding is a method used to produce hollow plastic parts through the heating, melting and cooling of polymer powder within a metal mould. A wide range of products are made using this process, such as fluid containment tanks, boats, light weight vehicle bodies and marine buoys. Rotomoulded composites using thermoplastic fibres are of increasing interest to the industry, as they have the potential to significantly improve impact strength, whilst reducing part weight, resulting in a structure that is 100% recyclable compared to a traditional composite. A series of self-reinforced thermoplastic weaves can be used to produce a number of composite structures using the rotational moulding process. This work outlines the improvements obtained from the range of rotomoulded composites structures, as well as preforms that could be used in future rotational moulding work. Characteristics of self-reinforced materials were exploited with the aim of increasing the mechanical properties, preserving the weaves and increasing the nature of the material adhesion. Addition of the fabrics in the cooling stage was shown to be of great interest as this avoided exposure of the material to the peak temperature, which may affect the integrity of the fabric. Placing the weave during cooling was useful as the material could receive the maximum amount of tensile force during the impact test. A total of nine diverse types of compounds were manufactured and tested, with seven of the impact tests showing an increase in strength greater than 50%.

  5. Multi-mode horn

    NASA Technical Reports Server (NTRS)

    Neilson, Jeffrey M. (Inventor)

    2002-01-01

    A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.

  6. Paleomagnetic, structural, and seismological evidence for oblique-slip deformation in fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and central Coast Ranges

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya Liana

    The two geologic questions I address in this research are: do fault-related folds accommodate oblique-slip shortening, and how is oblique-slip deformation absorbed within the folded strata? If the strata is deforming as a strike-slip shear zone, then we should be able to observe material rotations produced by strike-slip shear by measuring paleomagnetic vertical-axis rotations. I have approached these problems by applying paleomagnetic vertical-axis rotations, minor fault analyses, and focal mechanism strain inversions to identify evidence of strike-slip shear and to quantify oblique-slip deformation within fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and the central Coast Ranges. Clockwise paleomagnetic vertical-axis rotations and compressive paleostress rotations of 15-40º in the forelimb of the Grayback Monocline, northeastern Front Range Colorado, indicate that this Laramide fold is absorbing right-lateral shear from a N90E regional shortening direction. This work shows that paleomagnetic vertical-axis rotations in folded strata can be used to identify strike-slip motion on an underlying fault, and that oblique-slip deformation is localized in the forelimb of the fold. I applied the same paleomagnetic methods to identify oblique-slip on the underlying faults of the Nacimiento, East Kaibab, San Rafael, and Grand Hogback monoclines of the Colorado Plateau. The absence of paleomagnetic rotations and structural evidence for small displacements at the Nacimiento and East Kaibab monoclines indicate minor (<1km) right-lateral slip is being accommodated in these folds. Paleomagnetic vertical-axis rotations are found in the forelimbs of the San Rafael and Grand Hogback monoclines, yielding strike-slip displacements of ˜5km within these two folds. These results are consistent with a northeast Laramide compressive stress direction. In the Coalinga anticline, central Coast Ranges, California, clockwise paleomagnetic rotations and an 8º counterclockwise deflection of the maximum shortening direction (derived from focal mechanisms strain inversions of the upper 7km) are compatible with right-lateral shear. The maximum shortening direction in the area of the mainshock rupture is fold-normal, indicating that strike-slip displacement is confined to the main fault plane and not distributed to the hanging wall. The San Andreas Fault is therefore partitioning a small amount of strike-slip to the Coalinga anticline.

  7. Optimum conditions for extracting collagen from the tunica albuginea of immunologically castrated pig testes and the functional properties of the isolated collagen.

    PubMed

    Simões, Gislaine Silveira; Silveira, Expedito Tadeu Facco; de Oliveira, Simone Raymundo; Poleze, Evandro; Allison, Jim R D; Ida, Elza Iouko; Shimokomaki, Massami

    2014-04-01

    This study evaluated alternative methods for extracting collagen from the tunica albuginea of pig testes and characterized the functional properties of the isolated collagen. Using the statistical tools of factorial design (2⁴⁻¹) and a central composite rotatable design (2³), it was concluded that the best conditions were 0.83 mol L⁻¹ acetic acid, 0.24% pepsin and 28 h of hydrolysis to isolate 82.54 g of collagen per 100g of sample. This purified collagen had improved functional properties in relation to bovine skin collagen, including water solubility, water-holding capacity, emulsifying capacity and emulsion stability. These results suggest that isolated collagen from the tunica albuginea can be used in pharmaceutical and food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Optimization of the formulation and technology of pearl millet based 'ready-to-reconstitute' kheer mix powder.

    PubMed

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur

    2014-10-01

    The objective of this study was to optimize the process of manufacturing instant kheer mix based on pearl millet instead of rice. Dairy whitener, pearl millet and powdered sugar were the responses studied by employing the 3-factor Central Composite Rotatable Design. The formulation with 15 g sugar, 30 g dairy whitener and 20 g pearl millet was found suitable for obtaining dry kheer mix. The analyses were based on scores of consistency, cohesiveness, viscosity and overall acceptability. The reconstituted product from the formulated kheer mix had an overall acceptability score of 7.66 and desirability index of 0.7663. The moisture, fat, protein, carbohydrate and ash contents of the dry mix product were 2.8, 4.38, 5.84, 85.88 and 1.1 %, respectively.

  9. Nonlinear Dynamic Responses of Composite Rotor Blades

    DTIC Science & Technology

    1988-08-01

    models. QHD40 is an eight-noded plate element with seven degrees of freedom (three midsurface displacements, two rotations and two higher order terms for...in-plane displacements) per corner node and three degrees of freedom (transverse midsurface displacement and two rotations) per mid-state node. QHD48...and QHD48S are eight-noded plate and shell elements respectively, with six degrees of freedom (three midsurface displacements and three rotations

  10. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  11. Central cavity of fructose-1,6-bisphosphatase and the evolution of AMP/fructose 2,6-bisphosphate synergism in eukaryotic organisms.

    PubMed

    Gao, Yang; Shen, Lu; Honzatko, Richard B

    2014-03-21

    The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser(45) → His substantially fills the central cavity of pFBPase, and the triple mutation Ser(45) → His, Thr(46) → Arg, and Leu(186) → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.

  12. Evaluation of short-rotation woody crops to stabilize a decommissioned swine lagoon

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C. Hennessey; Chad J. Penn

    2012-01-01

    Fast growing tree stands represent an environmentally friendly, less expensive method for stabilization of decommissioned animal production lagoons than traditional lagoon closure. We tested the feasibility of using short-rotation woody crops (SRWCs) in central Oklahoma to close a decommissioned swine lagoon by evaluating the growth performance and nutrient uptake of...

  13. Replacing fallow with forage triticale in dryland crop rotations increases profitability

    USDA-ARS?s Scientific Manuscript database

    A common dryland rotational cropping system in the semi-arid central Great Plains of the U.S. is wheat (Triticum aestivum L.)-corn (Zea mays L.)-fallow (WCF). However, the 12-month fallow period following corn production has been shown to be relatively inefficient in storing precipitation during the...

  14. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    USDA-ARS?s Scientific Manuscript database

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...

  15. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    USDA-ARS?s Scientific Manuscript database

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...

  16. On the Stability of Periodic Mercury-type Rotations

    NASA Astrophysics Data System (ADS)

    Churkina, Tatyana E.; Stepanov, Sergey Y.

    2017-12-01

    We consider the stability of planar periodic Mercury-type rotations of a rigid body around its center of mass in an elliptical orbit in a central Newtonian field of forces. Mercurytype rotations mean that the body makes 3 turns around its center of mass during 2 revolutions of the center of mass in its orbit (resonance 3:2). These rotations can be 1) symmetrical 2π- periodic, 2) symmetrical 4π-periodic and 3) asymmetrical 4π-periodic. The stability of rotations of type 1) was investigated by A.P.Markeev. In our paper we present a nonlinear stability analysis for some rotations of types 2) and 3) in 3rd- and 4th-order resonant cases, in the nonresonant case and at the boundaries of regions of linear stability.

  17. Injection Therapies for Rotator Cuff Disease.

    PubMed

    Lin, Kenneth M; Wang, Dean; Dines, Joshua S

    2018-04-01

    Rotator cuff disease affects a large proportion of the overall population and encompasses a wide spectrum of pathologies, including subacromial impingement, rotator cuff tendinopathy or tear, and calcific tendinitis. Various injection therapies have been used for the treatment of rotator cuff disease, including corticosteroid, prolotherapy, platelet-rich plasma, stem cells, and ultrasound-guided barbotage for calcific tendinitis. However, the existing evidence for these therapies remains controversial or sparse. Ultimately, improved understanding of the underlying structural and compositional deficiencies of the injured rotator cuff tissue is needed to identify the biological needs that can potentially be targeted with injection therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Unruh effect for eccentric uniformly rotating observers

    NASA Astrophysics Data System (ADS)

    Ramezani-Aval, H.

    It is common to use Galilean rotational transformation (GRT) to investigate the Unruh effect for uniformly rotating observers. However, the rotating observer in this subject is an eccentric observer while GRT is only valid for centrally rotating observers. Thus, the reliability of the results of applying GRT to the study of the Unruh effect might be considered as questionable. In this work, the rotational analog of the Unruh effect is investigated by employing two relativistic rotational transformations corresponding to the eccentric rotating observer, and it is shown that in both cases, the detector response function is nonzero. It is also shown that although consecutive Lorentz transformations cannot give a frame within which the canonical construction can be carried out, the expectation value of particle number operator in canonical approach will be zero if we use modified Franklin transformation. These conclusions reinforce the claim that correspondence between vacuum states defined via canonical field theory and a detector is broken for rotating observers. Some previous conclusions are commented on and some controversies are also discussed.

  19. Effects of Group Gender Composition on Mental Rotation Test Performance in Women.

    PubMed

    Moè, Angelica

    2018-06-01

    Mental rotation is a task in which men outscore women by up to one standard deviation. Many biological, strategic, experiential, and motivational factors concur to explain this gender gap. Among these there are gender stereotypes, which could either harm or favor performance, giving rise, respectively, to stereotype threat or lift effects. This study examined effects due to stereotypes induced by testing women in a minority mixed-gender group composition (subtle message) when provided with instructions about men's or women's superiority (blatant message), in order to assess the hypothesis that the effort of disconfirming a negative stereotype causes increased performance when two messages, either blatant or subtle, are provided. Sixty-six men and 78 women tested either in a mixed-gender or a same-gender group composition were provided with one of the three instructions (men better, women better, nullifying) after performing a mental rotation test (baseline measure) and before taking another one. Results showed that women increased performance mainly when instructed that men score higher in the mixed-gender group composition, and after the nullifying instructions when tested in the same-gender group composition. Men increased performance mainly when they were instructed that women scored higher. Taken together, the results showed that both genders improve performance, when two threats arise both subtly and blatantly, or when no threat is in the air. Effects of implicit and explicit activated stereotypes are discussed.

  20. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Guan, Tian; Liu, Fang; Yang, Anping; He, Yonghong; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo

    2018-05-01

    A transmission optical rotation detection scheme based on a weak measurement was proposed for the chirality detection of enantiomers. In this transmission weak measurement system in the frequency domain, the optical activity of the chiral liquid sample was estimated with the central wavelength shift, by modifying the preselected polarization state with the optical rotation (OR). The central wavelength shift of output spectra is sensitive to the OR angle but immune to the interference of the refractive index change caused by measuring circumstances. Two isomers of chiral amino acid acquired opposite responses with this system, and a resolution of 2.17 × 10-9 mol/ml for Proline detection could be obtained. Such a resolution is about 2 orders of magnitude higher than that of common methods, which shows a high sensitivity. This proposed weak measurement scenario suggested an approach to polarimetry and provided a way to accurately assess molecular chirality.

  1. Artificial gravity as a countermeasure in long-duration space flight

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    2000-01-01

    Long-duration exposure to weightlessness results in bone demineralization, muscle atrophy, cardiovascular deconditioning, altered sensory-motor control, and central nervous system reorganizations. Exercise countermeasures and body loading methods so far employed have failed to prevent these changes. A human mission to Mars might last 2 or 3 years and without effective countermeasures could result in dangerous levels of bone and muscle loss. Artificial gravity generated by rotation of an entire space vehicle or of an inner chamber could be used to prevent structural changes. Some of the physical characteristics of rotating environments are outlined along with their implications for human performance. Artificial gravity is the centripetal force generated in a rotating vehicle and is proportional to the product of the square of angular velocity and the radius of rotation. Thus, for a particular g-level, there is a tradeoff between velocity of rotation and radius. Increased radius is vastly more expensive to achieve than velocity, so it is important to know the highest rotation rates to which humans can adapt. Early studies suggested that 3 rpm might be the upper limit because movement control and orientation were disrupted at higher velocities and motion sickness and chronic fatigue were persistent problems. Recent studies, however, are showing that, if the terminal velocity is achieved over a series of gradual steps and many body movements are made at each dwell velocity, then full adaptation of head, arm, and leg movements is possible. Rotation rates as high as 7.5-10 rpm are likely feasible. An important feature of the new studies is that they provide compelling evidence that equilibrium point theories of movement control are inadequate. The central principles of equilibrium point theories lead to the equifinality prediction, which is violated by movements made in rotating reference frames. Copyright 2000 Wiley-Liss, Inc.

  2. Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides

    PubMed Central

    de Leeuw, Arjan; Mandic, Oleg; Krijgsman, Wout; Kuiper, Klaudia; Hrvatović, Hazim

    2012-01-01

    The geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood, especially in comparison with the neighboring Alps and Carpathians. Here, we construct a new chronostratigraphy for the post-orogenic intra-montane basins of the Central Dinarides based on paleomagnetic and 40Ar/39Ar age data. A first phase of basin formation occurred in the late Oligocene. A second phase of basin formation took place between 18 and 13 Ma, concurrent with profound extension in the neighboring Pannonian Basin. Our paleomagnetic results further indicate that the Dinarides have not experienced any significant tectonic rotation since the late Oligocene. This implies that the Dinarides were decoupled from the adjacent Adria and the Tisza–Dacia Mega-Units that both underwent major rotation during the Miocene. The Dinaride orogen must consequently have accommodated significant shortening. This is corroborated by our AMS data that indicate post-Middle Miocene shortening in the frontal zone, wrenching in the central part of the orogen, and compression in the hinterland. A review of paleomagnetic data from the Adria plate, which plays a major role in the evolution of the Dinarides as well as the Alps, constrains rotation since the Early Cretaceous to 48 ± 10° counterclockwise and indicates 20° of this rotation took place since the Miocene. It also shows that Adria behaved as an independent plate from the Late Jurassic to the Eocene. From the Eocene onwards, coupling between Adria and Africa was stronger than between Adria and Europe. Adria continued to behave as an independent plate. The amount of rotation within the Adria-Dinarides collision zone increases with age and proximity of the sampled sediments to undeformed Adria. These results significantly improve our insight in the post-orogenic evolution of the Dinarides and resolve an apparent controversy between structural geological and paleomagnetic rotation estimates for the Dinarides as well as Adria. PMID:27065500

  3. Permian paleomagnetism of the Tien Shan fold belt, Central Asia: post-collisional rotations and deformation

    NASA Astrophysics Data System (ADS)

    Bazhenov, Mikhail L.; S. Burtman, Valentin; Dvorova, Ariadna V.

    1999-11-01

    Permian volcanic and sedimentary rocks were sampled from eight localities in the western and central parts of the Tien Shan fold belt. High-temperature, sometimes intermediate-temperature components isolated from these rocks at seven localities after stepwise thermal demagnetization are shown either to predate folding or be acquired during deformation; the conglomerate test at some localities is positive. The observed inclinations fit rather well with the Eurasian reference data, whereas the declinations are strongly deflected westward; westerly declinations have already been observed from the other parts of the Tien Shan (from the Turan plate in the west to the northern rim of Tarim and the Urumque area in the east). Our analysis shows that a considerable counterclockwise rotation of the Tien Shan fold belt as a rigid body is geologically improbable. We hypothesize that a sinistral shear zone existed over the fold belt thus accounting for systematically westerly declinations. This zone is about 300 km wide and is traced along the Tien Shan fold belt for 2500 km. A large area of Permian alkali magmatism in the West and Central Tien Shan is interpreted as an extensional domain conjugated with the shear zone. This shear zone can be accounted for by translation of the Kara Kum and Tarim blocks along the Eurasian boundary after their oblique collision in the Late Carboniferous. Two phases of rotation are recognized in the Tien Shan. The earlier rotation took place under shear strain during the D3 stage of deformation in the Artinskian-Ufimian. The later rotation is connected with transpression (D4 stage of deformation) and could occur from the Late Permian to Early Jurassic.

  4. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  5. Paleomagnetism and tectonic rotation of the lower Miocene Peach Springs Tuff: Colorado Plateau, Arizona, to Barstow, California

    USGS Publications Warehouse

    Wells, Ray E.; Hillhouse, John W.

    1989-01-01

    We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in the central Mojave Desert. Most of our sites in the Transition Zone and Basin and Range province have had no significant rotation, although small counterclockwise rotation in the McCullough and New York Mountains may be related to sinistral shear along en echelon faults southwest of the Lake Mead shear zone. The larger rotations occur in the Colorado River extensional corridor, where 8 of 14 sites show rotations ranging from 37° clockwise to 51° counterclockwise. These rotations occur in allochthonous tilt blocks which have been transported northeastward above the Chemehuevi-Whipple Mountains detachment fault. Upper-plate blocks within 1 km of the exposed detachment unexpectedly show no significant rotation. From this relation, we infer that rotations are accommodated along numerous low-angle faults at higher structural levels above the detachment surface.

  6. OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.

    PubMed

    Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui

    2017-08-07

    We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.

  7. Polygonal shaft hole rotor

    DOEpatents

    Hussey, John H.; Rose, John Scott; Meystrik, Jeffrey J.; White, Kent Lee

    2001-01-23

    A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.

  8. Aperture Synthesis C18O (1-0) Observations of L 1551 IRS5

    NASA Astrophysics Data System (ADS)

    Munetake, Momose; Nagayoshi, Ohashi; Ryohei, Kawabe; Takenori, Nakano; Masahiko, Hayashi

    We report aperture synthesis jceto observations of L1551 IRS5 with a spatial resolution of 2.8" x 2.5" using the Nobeyama Millimeter Array. We have detected an emission component centrally condensed around IRS 5, as well as a diffuse component extending in the north-south direction from the centrally condensed component. The centrally condensed component, 2380 AU x 1050 AU in size, is elongated in the direction perpendicular to the outflow axis, indicating the existence of a flattened circumstellar envelope around L1551 IRS5. The mass of the centrally condensed component is estimated to be 0.062 Mo. The position-velocity (P-V) diagrams reveal that the velocity field in the centrally condensed component is composed of infall and slight rotation. The infall velocity in the outer part is equal to the free-fall velocity around a central mass of ~0.1 Mo, e.g., 0.5 km/s at r = 700 AU, while the rotation velocity, 0.24 km/s at the same radius, gets prominent at inner radii with a radial dependence of r-1. The infall rate in the envelope is derived to be 6 times 10-6 Mo/yr from the radius and mass of the centrally condensed component, and the infall velocity.

  9. Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies.

    PubMed

    Roopa, N; Chauhan, O P; Raju, P S; Das Gupta, D K; Singh, R K R; Bawa, A S

    2014-10-01

    An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively.

  10. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Northern California

    NASA Astrophysics Data System (ADS)

    Post, A.; Conley, S. A.; Zhao, Y.; Cliff, S. S.; Faloona, I. C.; Wexler, A. S.; Lighthall, D.

    2012-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley have prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County. Six months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, approximately monthly ozone surveys are conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. The measurements exhibit no systematic diurnal variations of ozone or water vapor, an indication that the site primarily samples lower free tropospheric air which has not been significantly influenced by either local emissions or convective coupling to the surface. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal patterns of influence that long range transport has on California air quality.

  11. Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment

    NASA Astrophysics Data System (ADS)

    Danish, Mohammed; Ahmad, Tanweer; Nadhari, W. N. A. W.; Ahmad, Mehraj; Khanday, Waheed Ahmad; Ziyang, Lou; Pin, Zhou

    2018-03-01

    This experiment was run to characterize the banana trunk-activated carbon through methylene blue dye adsorption property. The H3PO4 chemical activating agent was used to produce activated carbons from the banana trunk. A small rotatable central composite design of response surface methodology was adopted to prepare chemically (H3PO4) activated carbon from banana trunk. Three operating variables such as activation time (50-120 min), activation temperature (450-850 °C), and activating agent concentration (1.5-7.0 mol/L) play a significant role in the adsorption capacities ( q) of activated carbons against methylene blue dye. The results implied that the maximum adsorption capacity of fixed dosage (4.0 g/L) banana trunk-activated carbon was achieved at the activation time of 51 min, the activation temperature of 774 °C, and H3PO4 concentration of 5.09 mol/L. At optimum conditions of preparation, the obtained banana trunk-activated carbon has adsorption capacity 64.66 mg/g against methylene blue. Among the prepared activated carbons run number 3 (prepared with central values of the operating variables) was characterized through Fourier transform infrared spectroscopy, field emission scanning microscopy, and powder X-ray diffraction.

  12. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences between static and dynamic behavior, Preliminary three point bending testing was conducted to determine the parameters for the final experiments. Static bending testing was conducted on the bare, plywood composite, and fiberglass composite steel tubing. The point of these experiments was to produce a Moment vs. Rotation plot to determine the specimens' maximum moments and their associated rotation, as that is when the steel buckles and fails. The dynamic three point bending experiments were conducted using the impact loading apparatus and had the same purpose as the static experiments. For both static and dynamic experiments, the performances of the different types of specimens were compared based upon their Moment vs. Rotation plots. This will determine the effect that the composite has on the rotation and maximum moment at which the tubing fails. After conducting these experiments, amplification factors were established for each specimen by comparing the maximum moment and their associated rotation between static and dynamic testing. lambda was calculated to quantify the ratio between the static and dynamic maximum moments. beta was used to quantify the ratio between the rotation needed to produce the maximum moment between static and dynamic events. A small amplification factor denotes that material performs well under impact loading and the material doesn't experience dramatic change in behavior during dynamic events. Amplification factors were compared between the bare, plywood, and fiberglass composite steel tubing in order to evaluate the performance of the composites. After comparing the amplification factors of the different types of tubing, recommendations can be made. Fiberglass and plywood composite were shown to be valuable because it decreased the effect of dynamic forces as beta was reduced by a factor of 2 in comparison to bare tubing. Based upon the amplification factors, it was recommended to use 14 gauge fiberglass composite tubing as Paratransit bus structural members because it was affected the least by dynamic loading.

  13. Relaxation dynamics in a binary hard-ellipse liquid.

    PubMed

    Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia

    2015-01-21

    Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.

  14. Design and numerical investigations of a counter-rotating axial compressor for a geothermal power plant application

    NASA Astrophysics Data System (ADS)

    Qualman, Thomas, II

    Geothermal provides a steady source of energy unlike other renewable sources, however, there are non-condensable gases (NCG's) that need to be removed before the steam enters the turbine/generator or the efficiency suffers. By utilizing a multistage counter-rotating axial compressor with integrated composite wound impellers the process of removing NCG's could be significantly improved. The novel composite impeller design provides a high level of corrosion resistance, a good strength to weight ratio, reduced size, and reduced manufacturing and maintenance costs. This thesis focuses on the design of the first 3 stages of a multistage counter-rotating axial compressor with integrated composite wound impellers for NCG removal. Because of the novel technique, an unusual set of constraints required a simplified 1 and 2D design methodology to be developed and investigated through CFD. The results indicate that by utilizing constant thickness blades with constant shroud radius (to ease manufacturing difficulties) a total pressure ratio of 1.37 with a total polytropic efficiency of 89.81% could be achieved.

  15. Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor

    2007-10-01

    The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.

  16. Viking radio science data analysis and synthesis. [rotation of Mars, solar system dynamics, and gravitational laws

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1984-01-01

    The rotational motion of Mars and its geophysical ramifications were investigated. Solar system dynamics and the laws of gravitation were also studied. The planetary ephemeris program, which was the central element in data analysis for this project, is described in brief. Viking Lander data were used in the investigation.

  17. Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

    NASA Astrophysics Data System (ADS)

    Boardman, Nicholas Fraser; Weijmans, Anne-Marie; van den Bosch, Remco; Kuntschner, Harald; Emsellem, Eric; Cappellari, Michele; de Zeeuw, Tim; Falcón-Barroso, Jesus; Krajnović, Davor; McDermid, Richard; Naab, Thorsten; van de Ven, Glenn; Yildirim, Akin

    2017-11-01

    We observed 12 nearby H I-detected early-type galaxies (ETGs) of stellar mass ˜1010 M⊙ ≤ M* ≤ ˜1011 M⊙ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionized gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly used H β, Fe5015, Mg b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H β gradients and negative Mg b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.

  18. Early Yields of Biomass Plantations in the North-Central U.S.

    Treesearch

    Edward Hansen

    1990-01-01

    A network of hybrid poplar short-rotation plantations was established across the north-central region of the U.S. during 1986-1988. This paper documents the greater than expected early yields from these plantations and dicusses potential yields and uncertainties surrounding potential yield estimates.

  19. Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species.

    PubMed

    Melo, Priscilla Siqueira; Massarioli, Adna Prado; Denny, Carina; dos Santos, Luciana Ferracini; Franchin, Marcelo; Pereira, Giuliano Elias; Vieira, Thais Maria Ferreira de Souza; Rosalen, Pedro Luiz; de Alencar, Severino Matias

    2015-08-15

    Nearly 20 million tons of winery by-products, with many biological activities, are discarded each year in the world. The extraction of bioactive compounds from Chenin Blanc, Petit Verdot, and Syrah grape by-products, produced in the semi-arid region in Brazil, was optimized by a Central Composite Rotatable Design. The phenolic compounds profile, antioxidant capacity against synthetic free radicals (DPPH and ABTS), reactive oxygen species (ROS; peroxyl radical, superoxide radical, hypochlorous acid), cytotoxicity assay (MTT) and quantification of TNF-α production in RAW 264.7 cells were conducted. Gallic acid, syringic acid, procyanidins B1 and B2, catechin, epicatechin, epicatechin gallate, quercetin 3-β-d-glucoside, delfinidin 3-glucoside, peonidin 3-O-glucoside, and malvidin 3-glucoside were the main phenolic compounds identified. In general, rachis showed higher antioxidant capacity than pomace extract, especially for Chenin Blanc. All extracts showed low cytotoxicity against RAW 264.7 cells and Petit Verdot pomace suppressed TNF-α liberation in vitro. Therefore, these winery by-products can be considered good sources of bioactive compounds, with great potential for application in the food and pharmaceutical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nonlinear Finite Element Analysis of a General Composite Shell

    DTIC Science & Technology

    1988-12-01

    strain I Poisson’s ratio ix I I iI I I 1 Total potential energy a Normal stress rShear stress Rotational terms Distance from midsurface e ,Y ,0 Rotations...respectively 0 0 Subscript "e" indicates element reference Subscript "g" indicates global reference Superscript "o" indicates midsurface values...surface strains and rotations are small, and displacements away from the midsurface are restricted by the Kirchhoff-Love hypotheses [3]. With these

  1. Effect of ingredients on sensory profile of idli.

    PubMed

    Durgadevi, Manoharan; Shetty, Prathapkumar H

    2014-09-01

    Idli is a traditional fermented food and is consumed in India and Srilanka. The objective of the present study is to select the ingredients for optimum desirable product characteristics and to identify the optimum ratios of ingredients and fermentation time with respect to sensory attributes using Response Surface Methodology (RSM). The sensory attributes included were color, appearance, texture, taste and overall quality. Preliminary trials were conducted using five variants of rice and common black gram dhal before framing a model using Central Composite Rotatable Design (CCRD). From the study it was found that a desirable score of 0.7439 was obtained for sensory attributes of idli made with the ratio of 3: 1.475 for IR20 idli rice and ADT3 variety black gram (with husk removed after soaking) fermented for 10.2 h. Principal Component Analysis (PCA) helped to discriminate the samples and attributes within the data matrix, depending upon their inter relationships.

  2. Combined effects of gamma radiation doses and sodium nitrite content on the lipid oxidation and color of mortadella.

    PubMed

    Dutra, Monalisa Pereira; Cardoso, Giselle Pereira; Fontes, Paulo Rogério; Silva, Douglas Roberto Guimarães; Pereira, Marcio Tadeu; Ramos, Alcinéia de Lemos Souza; Ramos, Eduardo Mendes

    2017-12-15

    The effects of different doses of gamma radiation (0-20kGy) on the color and lipid oxidation of mortadella prepared with increasing nitrite levels (0-300ppm) were evaluated using a central composite rotatable design. Higher radiation doses increased the redox potential, promoted the lipid oxidation and elevating the hue color of the mortadellas. Nevertheless, higher addition of sodium nitrite elevated the residual nitrite content, reduced the lipid oxidation and promoted the increase of redness and the reduce of hue color of the mortadellas, regardless of the radiation dose applied. Nitrite addition had a greater effect than irradiation on the quality parameters evaluated, and even at low levels (∼75ppm), its use decreased the deleterious effects of irradiation at doses as high as 20kGy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: an optimisation study using response surface methodology.

    PubMed

    Mazaheri, Hossein; Lee, Keat Teong; Bhatia, Subhash; Mohamed, Abdul Rahman

    2010-12-01

    Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%. 2010 Elsevier Ltd. All rights reserved.

  4. Modeling and optimization of joint quality for laser transmission joint of thermoplastic using an artificial neural network and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Cheng; Li, Pin; Wang, Kai; Hu, Yang; Zhang, Peng; Liu, Huixia

    2012-11-01

    A central composite rotatable experimental design(CCRD) is conducted to design experiments for laser transmission joining of thermoplastic-Polycarbonate (PC). The artificial neural network was used to establish the relationships between laser transmission joining process parameters (the laser power, velocity, clamp pressure, scanning number) and joint strength and joint seam width. The developed mathematical models are tested by analysis of variance (ANOVA) method to check their adequacy and the effects of process parameters on the responses and the interaction effects of key process parameters on the quality are analyzed and discussed. Finally, the desirability function coupled with genetic algorithm is used to carry out the optimization of the joint strength and joint width. The results show that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective method to enhance the joint quality.

  5. Maximization of fructose esters synthesis by response surface methodology.

    PubMed

    Neta, Nair Sampaio; Peres, António M; Teixeira, José A; Rodrigues, Ligia R

    2011-07-01

    Enzymatic synthesis of fructose fatty acid ester was performed in organic solvent media, using a purified lipase from Candida antartica B immobilized in acrylic resin. Response surface methodology with a central composite rotatable design based on five levels was implemented to optimize three experimental operating conditions (temperature, agitation and reaction time). A statistical significant cubic model was established. Temperature and reaction time were found to be the most significant parameters. The optimum operational conditions for maximizing the synthesis of fructose esters were 57.1°C, 100 rpm and 37.8 h. The model was validated in the identified optimal conditions to check its adequacy and accuracy, and an experimental esterification percentage of 88.4% (±0.3%) was obtained. These results showed that an improvement of the enzymatic synthesis of fructose esters was obtained under the optimized conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effects of the addition of mechanically deboned poultry meat and collagen fibers on quality characteristics of frankfurter-type sausages.

    PubMed

    Pereira, Anirene Galvão Tavares; Ramos, Eduardo Mendes; Teixeira, Jacyara Thaís; Cardoso, Giselle Pereira; Ramos, Alcinéia de Lemos Souza; Fontes, Paulo Rogério

    2011-12-01

    The effects of mechanically deboned poultry meat (MDPM) and levels of collagen fibers on comminuted, cooked sausage quality characteristics were investigated using the central composite rotatable design of response surface methodology (RSM). Use of collagen fiber as an additive affected the sausage characteristics, but the effect depended on the amount of the MDPM used. While MDPM additions resulted in higher cooking loss and darker and redder frankfurters, the addition of collagen fibers improved cooking yields and contributed to the lightness of the final product. Higher collagen fiber content was also accompanied by a significant increase in frankfurter hardness regardless of the MDPM content. Use of collagen fibers countered the negative effects of MDPM on sausage quality attributes, especially on cooking yields and final product color. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn.

    PubMed

    Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yan, Zijun

    2012-05-01

    Supercritical fluid extraction with carbon dioxide (SC-CO2 extraction) was performed to isolate essential oils from the rhizomes of Cyperus rotundus Linn. Effects of temperature, pressure, extraction time, and CO2 flow rate on the yield of essential oils were investigated by response surface methodology (RSM). The oil yield was represented by a second-order polynomial model using central composite rotatable design (CCRD). The oil yield increased significantly with pressure (p<0.0001) and CO2 flow rate (p<0.01). The maximum oil yield from the response surface equation was predicted to be 1.82% using an extraction temperature of 37.6°C, pressure of 294.4bar, extraction time of 119.8 min, and CO2 flow rate of 20.9L/h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Plexus structure imaging with thin slab MR neurography: rotating frames, fly-throughs, and composite projections

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; McIntee, Diane; Tsuruda, Jay S.; Colletti, Patrick; Tatevossian, Raymond; Frazier, James

    2006-03-01

    We explored multiple image processing approaches by which to display the segmented adult brachial plexus in a three-dimensional manner. Magnetic resonance neurography (MRN) 1.5-Tesla scans with STIR sequences, which preferentially highlight nerves, were performed in adult volunteers to generate high-resolution raw images. Using multiple software programs, the raw MRN images were then manipulated so as to achieve segmentation of plexus neurovascular structures, which were incorporated into three different visualization schemes: rotating upper thoracic girdle skeletal frames, dynamic fly-throughs parallel to the clavicle, and thin slab volume-rendered composite projections.

  9. Use of rotation to suppress thermosolutal convection in directionally solidified binary alloys

    NASA Technical Reports Server (NTRS)

    Pearlstein, Arne J.

    1994-01-01

    Effects of rotation on onset of convection during plane-front directional solidification of Pb-Sn and the pseudobinary system mercury cadmium telluride (Hg(1-x)Cd(x)Te), and on dendritic solidification of Pb-Sn have been studied by means of linear stability analysis. Incorporating Coriolis and centrifugal accelerations into the momentum equation of Coriell et al., we find that under realistic processing conditions, a large degree of stabilization can be achieved using modest rotation rates for both Pb-Sn and mercury cadmium telluride. At a growth velocity of 5 micron/sec and nominal liquid-side temperature gradient of 200 K/cm in Pb-Sn, rotation at 500 rpm results in a hundredfold increase in the critical Sn concentration. Large increases in the maximum allowable growth velocity at fixed melt composition are also attainable with modest rotation rates. The effect is amplified under conditions of reduced gravitational acceleration. For Hg(1-x)Cd(x)Te, we have also studied the nonrotating case. The key differences are due to the existence of a composition range for Hg(1-x)Cd(x)Te in which the melt density has a local maximum as a function of temperature. When the melt solidifies by cooling from below, the liquid density may initially increase with distance above the interface, before ultimately decreasing as the melt temperature increases above the value at which the local density maximum occurs. In contrast to the Pb-Sn case where density depends monotonically on temperature and composition, for Hg(1-x)Cd(x)Te there exists a critical value of the growth velocity above which plane-front solidification is unstable for all bulk CdTe mole fractions. Again, rotation leads to significant inhibition of onset. We identify the predicted stabilization with the Taylor-Proudman mechanism by which rotation inhibits thermal convection in a single-component fluid heated from below. In a binary liquid undergoing solidification, rotation inhibits the onset of buoyancy-driven convection, and has no effect on the short-wavelength morphological instability. At large growth velocities, the plane-front interface between liquid and solid becomes unstable with respect to a morphological instability and solidification occurs dendritically, with a mushy zone of dendrites and interdendritic fluid separating the solid from the melt. For the Pb-Sn system, rotation substantially suppresses the onset of convection in the mushy zone and in the overlying liquid, holding open the promise that rotation can suppress freckling and other macrosegregation defects.

  10. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hässig, M.; Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J. J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M.; De Keyser, J.; Eberhardt, P.; Fiethe, B.; Fuselier, S. A.; Galand, M.; Gasc, S.; Gombosi, T. I.; Hansen, K. C.; Jäckel, A.; Keller, H. U.; Kopp, E.; Korth, A.; Kührt, E.; Le Roy, L.; Mall, U.; Marty, B.; Mousis, O.; Neefs, E.; Owen, T.; Rème, H.; Rubin, M.; Sémon, T.; Tornow, C.; Tzou, C.-Y.; Waite, J. H.; Wurz, P.

    2015-01-01

    Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.

  11. Transonic flow solutions using a composite velocity procedure for potential, Euler and RNS equations

    NASA Technical Reports Server (NTRS)

    Gordnier, R. E.; Rubin, S. G.

    1986-01-01

    Solutions for transonic viscous and inviscid flows using a composite velocity procedure are presented. The velocity components of the compressible flow equations are written in terms of a multiplicative composite consisting of a viscous or rotational velocity and an inviscid, irrotational, potential-like function. This provides for an efficient solution procedure that is locally representative of both asymptotic inviscid and boundary layer theories. A modified conservative form of the axial momentum equation that is required to obtain rotational solutions in the inviscid region is presented and a combined conservation/nonconservation form is applied for evaluation of the reduced Navier-Stokes (RNS), Euler and potential equations. A variety of results is presented and the effects of the approximations on entropy production, shock capturing, and viscous interaction are discussed.

  12. The dynamic stator stalk of rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Lee, Lawrence K.; Donohoe, Mhairi; Chaston, Jessica J.; Stock, Daniela

    2012-01-01

    Rotary ATPases couple ATP hydrolysis/synthesis with proton translocation across biological membranes and so are central components of the biological energy conversion machinery. Their peripheral stalks are essential components that counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Here we present a 2.25-Å resolution crystal structure of the peripheral stalk from Thermus thermophilus A-type ATPase/synthase. We identify bending and twisting motions inherent within the structure that accommodate and complement a radial wobbling of the ATPase headgroup as it progresses through its catalytic cycles, while still retaining azimuthal stiffness necessary to counteract rotation of the central stalk. The conformational freedom of the peripheral stalk is dictated by its unusual right-handed coiled-coil architecture, which is in principle conserved across all rotary ATPases. In context of the intact enzyme, the dynamics of the peripheral stalks provides a potential mechanism for cooperativity between distant parts of rotary ATPases. PMID:22353718

  13. [Effect of conservation tillage on weeds in a rotation system on the Loess Plateau of eastern Gansu, Northwest China].

    PubMed

    Zhao, Yu-xin; Lu, Jiao-yun; Yang, Hui-min

    2015-04-01

    A field study was conducted to investigate the influences of no-tillage, stubble retention and crop type on weed density, species composition and community feature in a rotation system (winter wheat-common vetch-maize) established 12 years ago on the Loess Plateau of eastern Gansu. This study showed that the weed species composition, density and community feature varied with the change of crop phases. No-tillage practice increased the weed density at maize phase, while rotation with common vetch decreased the density in the no-tillage field. Stubble retention reduced the weed density under maize phase and the lowest density was observed in the no-tillage plus stubble retention field. No-tillage practice significantly increased the weed species diversity under winter wheat phase and decreased the diversity under common vetch phase. At maize phase, a greater species diversity index was observed in the no-tillage field. These results suggested that no-tillage practice and stubble retention possibly suppress specific weeds with the presence of some crops and crop rotation is a vital way to controlling weeds in a farming system.

  14. Economic investigations of short rotation intensively cultured hybrid poplars

    Treesearch

    David C. Lothner

    1983-01-01

    The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

  15. Investigation of noise in gear transmissions by the method of mathematical smoothing of experiments

    NASA Technical Reports Server (NTRS)

    Sheftel, B. T.; Lipskiy, G. K.; Ananov, P. P.; Chernenko, I. K.

    1973-01-01

    A rotatable central component smoothing method is used to analyze rotating gear noise spectra. A matrix is formulated in which the randomized rows correspond to various tests and the columns to factor values. Canonical analysis of the obtained regression equation permits the calculation of optimal speed and load at a previous assigned noise level.

  16. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  17. First direct detection of a Keplerian rotating disk around the Be star α Arae using AMBER/VLTI

    NASA Astrophysics Data System (ADS)

    Meilland, A.; Stee, P.; Vannier, M.; Millour, F.; Domiciano de Souza, A.; Malbet, F.; Martayan, C.; Paresce, F.; Petrov, R. G.; Richichi, A.; Spang, A.

    2007-03-01

    Aims:We aim to study the geometry and kinematics of the disk around the Be star α Arae as a function of wavelength, especially across the Brγ emission line. The main purpose of this paper is to understand the nature of the disk rotation around Be stars. Methods: We use the AMBER/VLTI instrument operating in the K-band, which provides a gain by a factor of 5 in spatial resolution compared to previous MIDI/VLTI observations. Moreover, it is possible to combine the high angular resolution provided with the (medium) spectral resolution of AMBER to study the kinematics of the inner part of the disk and to infer its rotation law. Results: For the first time, we obtain direct evidence that the disk is in Keplerian rotation, answering a question that has existed since the discovery of the first Be star γ Cas by Father Secchi in 1866. We also present the global geometry of the disk, showing that it is compatible with a thin disk and polar enhanced winds modeled with the SIMECA code. We found that the disk around α Arae is compatible with a dense equatorial matter confined to the central region, whereas a polar wind is contributing along the rotational axis of the central star. Between these two regions, the density must be low enough to reproduce the large visibility modulus (small extension) obtained for two of the four VLTI baselines. Moreover, we obtain that α Arae is rotating very close to its critical rotation. This scenario is also compatible with the previous MIDI measurements. Based on observations collected at the European Southern Observatory, Paranal, Chile, within the science demonstration time programme 074.A-9026(A).

  18. Ion flow measurements during the rotating kink behavior of the central column in the HIST device

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Yoshikawa, T.; Hashimoto, S.; Nishioka, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2007-11-01

    Plasma flow is essentially driven in self-organization and magnetic reconnection process of compact spherical torus (ST) and spheromak in the helicity-driven systems. For example, when reversing the external toroidal field of ST, the direction not only of the plasma current but also of the toroidal ion flow is self-reversed during the formation of the flipped ST relaxed states. Mach probe measurement shows that the velocity of the ion flow reversed after the flip increases to about 20 km/s. We have been newly developing an ion Doppler spectrometer (IDS) system using a compact 16 or 64 channel photomultiplier tube (PMT) in order to measure the spatial profile of ion temperature and rotation velocity in the HIST device. The IDS system consists of a light collection system including optical fibers, 1 m-spectrometer and the PMT detector. The optical fibers covered with glass tubes are inserted into the plasma. The glass tubes can be rotated in the poloidal and the toroidal directions. The new IDS system will be applied to observations of ion temperature and plasma rotation in the flipped ST formation and in the MHD control of kinking behaviors of the central column by using the rotating magnetic field (RMF). Preliminary IDS results will be compared to those from Mach probe measurements in space.

  19. VizieR Online Data Catalog: Evolution of rotating very massive LC stars (Kohler, 2015)

    NASA Astrophysics Data System (ADS)

    Kohler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Grafener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2014-11-01

    A dense model grid with chemical composition appropriate for the Large Magellanic Cloud is presented. A one-dimensional hydrodynamic stellar evolution code was used to compute our models on the main sequence, taking into account rotation, transport of angular momentum by magnetic fields and stellar wind mass loss. We present stellar evolution models with initial masses of 70-500M⊙ and with initial surface rotational velocities of 0-550km/s. (2 data files).

  20. An infinitely-stiff elastic system via a tuned negative-stiffness component stabilized by rotation-produced gyroscopic forces

    NASA Astrophysics Data System (ADS)

    Kochmann, D. M.; Drugan, W. J.

    2016-06-01

    An elastic system containing a negative-stiffness element tuned to produce positive-infinite system stiffness, although statically unstable as is any such elastic system if unconstrained, is proved to be stabilized by rotation-produced gyroscopic forces at sufficiently high rotation rates. This is accomplished in possibly the simplest model of a composite structure (or solid) containing a negative-stiffness component that exhibits all these features, facilitating a conceptually and mathematically transparent, completely closed-form analysis.

  1. The effect of rotating magnetic field on the microstructure of in situ TiB2/Cu composites

    NASA Astrophysics Data System (ADS)

    Zou, C.; Kang, H.; Li, R.; Li, M.; Wang, W.; Chen, Z.; Wang, T.

    2016-03-01

    Nano ceramic particulate reinforced metal matrix composites are confronted with the problem of particle aggregation emerging in the process of solidification. It sharply deteriorates the mechanical properties of the composites. In order to improve the microstructure and particle distribution, in situ TiB2/Cu composites were prepared using Ti and Cu-B master alloys in a vacuum medium frequency induction furnace equipped with a rotating magnetic field (RMF). The effect of RMF magnetic field intensity employed on the microstructure and particles distribution of the TiB2/Cu composites were investigated. The results show that with the applied RMF, TiB2 particles are homogeneously distributed in the copper matrix, which significantly improves the mechanical properties of TiB2/Cu composites. The mechanism of RMF may be ascribed to the following two aspects. On the one hand, the electromagnetic body force generated by appropriate RMF drives forced convection in the equatorial plane of composite melt during solidification. On the other hand, a secondary flow in the meridional plane is engendered by a radial pressure gradient, thus making a strong agitation in the melt. These two effects result in a homogenous dispersion of TiB2 particles in the copper matrix, and hence excellent properties of TiB2/Cu composites were obtained.

  2. Rotating bio-reactor cell culture apparatus

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1991-01-01

    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  3. Effect of accelerated crucible rotation on melt composition in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2000-02-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing. The rate of mixing depends strongly on the length of the ACRT cycle, with an optimum half-cycle length between 2 and 4 Ekman time units. Significant melting of the crystal occurs during a portion of the rotation cycle, caused by periodic reversal of the secondary flow at the solid-liquid interface, indicating the possibility of compositional striations.

  4. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  5. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith

    DOEpatents

    Milleron, Norman

    1983-01-01

    A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.

  7. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  8. Central Cavity of Fructose-1,6-bisphosphatase and the Evolution of AMP/Fructose 2,6-bisphosphate Synergism in Eukaryotic Organisms*

    PubMed Central

    Gao, Yang; Shen, Lu; Honzatko, Richard B.

    2014-01-01

    The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser45 → His substantially fills the central cavity of pFBPase, and the triple mutation Ser45 → His, Thr46 → Arg, and Leu186 → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P. PMID:24436333

  9. A new look inside planetary nebula LoTr 5: a long-period binary with hints of a possible third component

    NASA Astrophysics Data System (ADS)

    Aller, A.; Lillo-Box, J.; Vučković, M.; Van Winckel, H.; Jones, D.; Montesinos, B.; Zorotovic, M.; Miranda, L. F.

    2018-05-01

    LoTr 5 is a planetary nebula with an unusual long-period binary central star. As far as we know, the pair consists of a rapidly rotating G-type star and a hot star, which is responsible for the ionization of the nebula. The rotation period of the G-type star is 5.95 d and the orbital period of the binary is now known to be ˜2700 d, one of the longest in central star of planetary nebulae. The spectrum of the G central star shows a complex H α double-peaked profile which varies with very short time-scales, also reported in other central stars of planetary nebulae and whose origin is still unknown. We present new radial velocity observations of the central star which allow us to confirm the orbital period for the long-period binary and discuss the possibility of a third component in the system at ˜129 d to the G star. This is complemented with the analysis of archival light curves from Super Wide Angle Search for Planets, All Sky Automated Survey, and Optical Monitoring Camera. From the spectral fitting of the G-type star, we obtain an effective temperature of Teff = 5410 ± 250 K and surface gravity of log g = 2.7 ± 0.5, consistent with both giant and subgiant stars. We also present a detailed analysis of the H α double-peaked profile and conclude that it does not present correlation with the rotation period and that the presence of an accretion disc via Roche lobe overflow is unlikely.

  10. Spontaneous nystagmus in dorsolateral medullary infarction indicates vestibular semicircular canal imbalance.

    PubMed

    Rambold, H; Helmchen, C

    2005-01-01

    Spontaneous nystagmus caused by dorsolateral medullary infarction may be of vestibular origin. To test if imbalance of the central pathways of the semicircular canals contributes to spontaneous nystagmus in dorsolateral medullary syndrome. We examined four patients with dorsolateral medullary syndrome and recorded spontaneous nystagmus binocularly at gaze straight ahead with the three-dimensional search coil technique. The median slow phase velocity of the nystagmus was analysed in the light and in the dark, and the normalised velocity axes were compared with the rotation axes as predicted from anatomical data of the semicircular canal. The slow phase rotation axes of all patients aligned best with the rotation axes resulting from stimulation of the contralesional posterior and horizontal semicircular canals. This alignment cannot be explained by pure otolith imbalance. We propose that vestibular imbalance caused by an ipsilesional lesion of the central semicircular canal pathways of the horizontal and anterior semicircular canals largely accounts for spontaneous nystagmus in dorsolateral medullary syndrome.

  11. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in terms of near-receiver P-SH converted energy due to 3D effects. Those particular coda waves, however, do exhibit a large variability in the rotation/acceleration ratio, as a likely consequence of differences in the wavepath and/or source mechanism.

  12. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  13. Budgets of divergent and rotational kinetic energy during two periods of intense convection

    NASA Technical Reports Server (NTRS)

    Buechler, D. E.; Fuelberg, H. E.

    1986-01-01

    The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.

  14. Tectonic reconstruction of the Panama arc using paleomagnetic, geochronology and thermochronologic data

    NASA Astrophysics Data System (ADS)

    Montes, C.; Bayona, G.; Cardona, A.; Pardo, A.; Nova, G.; Montano, P.

    2013-05-01

    A recent update of the geochronologic and mapping database of the Isthmus of Panama suggests that the Isthmus represents an arc that was left-laterally fragmented between 38 and 28 Ma, and then oroclinally bent. This was hypothesis was tested using paleomagnetic data (24 sites and 192 cores) that indicated large counterclockwise vertical-axis rotations (70.9°, ± 6.7°), and moderate clockwise rotations (between 40° ± 4.1° and 56.2° ± 11.1) on either side of an east-west trending fault at the apex of the Isthmus (Rio Gatun Fault), consistent with Isthmus curvature. Sampling for paleomagnetism was performed on Cretaceous basaltic rocks of the Panama arc, some of them probably correlative to the Caribbean large igneous province. Also, sampling took place in younger Cenozoic cover rocks, as well as in the younger arc rocks. This database is here complemented with 15 new pilot paleomagnetic sites taken in eastern, central, and western Panama, and 3 new sites from Miocene cover rocks of what is now considered to be the southeastern-most tip of the Central American arc. The latter record clockwise vertical-axis rotations between 12 and 40°, in agreement with oroclinal bending hypothesis for the formation of the Isthmus of Panama. These new results begin to fill a gap in the paleomagnetic vertical-axis rotation database for the Panama arc. These results also support the continuity of the Central America arc to the east, into what is now docked to western South America.

  15. A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Husser, T.-O.; Dreizler, S.; Emsellem, E.; Weilbacher, P. M.; Martens, S.; Bacon, R.; den Brok, M.; Giesers, B.; Krajnović, D.; Roth, M. M.; Wendt, M.; Wisotzki, L.

    2018-02-01

    This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3σ) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.

  16. Defining a dryland grain sorghum production function for the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Grain sorghum (Sorghum bicolor L. Moench) is a drought tolerant C4 species capable of making use of limited available water supplies and is suitable for dryland crop rotations in the central Great Plains. In order for farmers to assess the production risk encountered when utilizing sorghum in rotati...

  17. Rotor assembly and assay method

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  18. Rotor assembly and assay method

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1993-01-01

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor.

  19. Comparison between two scalar field models using rotation curves of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  20. Life prediction systems for critical rotating components

    NASA Technical Reports Server (NTRS)

    Cunningham, Susan E.

    1993-01-01

    With the advent of advanced materials in rotating gas turbine engine components, the methodologies for life prediction of these parts must also increase in sophistication and capability. Pratt & Whitney's view of generic requirements for composite component life prediction systems are presented, efforts underway to develop these systems are discussed, and industry participation in key areas requiring development is solicited.

  1. Koronis Family Member (3032) Evans: Photometric Reconnaissance and Lightcurves in 2008, 2009, and 2016

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Neugent, Kathryn F.; Melton, Casey; Beck, Madeleine

    2018-01-01

    We observed rotation lightcurves of (3032) Evans during three apparitions using the 0.6-m telescope at Whitin Observatory. The lightcurve amplitude was consistently rather low ( 0.15 mag.) during all three apparitions, and although we can construct credible doubly-periodic composite lightcurves from our data, we discuss why we favor a rotation period of 3.3970 ± 0.0002 h even though the resulting composite lightcurves are quadruply periodic. The observations from 2008 are calibrated to a standard system, enabling us to measure the absolute magnitude HR, slope parameter GR, and V–R color, from which we calculate H = 11.75 ± 0.05.

  2. Solute redistribution and constitutional supercooling effects in vertical Bridgman grown indium gallium antimonide by accelerated crucible rotation technique

    NASA Astrophysics Data System (ADS)

    Vogel, K. Juliet

    The ternary alloy, InxGa1- xSb, is a compound semiconducting material of compositionally tunable bandgap (0.18 - 0.72 eV), making it desirable for use in photovoltaic, photodetector, and other opto-electronic devices in the infra-red regime. In the past, this material has proven to be difficult to synthesize in bulk due to the large phase separation between the constituent binaries. In this work, InxGa1-xSb has been grown in a state-of-the-art, computer-controlled system based on vertical Bridgman technique designed to allow crucible rotation during solidification of the material to reincorporate excess solute and improve material quality. Independent thermocouples allow for in situ monitoring and maintenance of the temperature to 0.2°C precision during crystal growth, reducing compositional inhomogeneities caused by temperature fluctuations. A series of experiments has been performed to evaluate the effect of accelerated crucible rotation technique (ACRT) on the structural quality and compositional homogeneity of bulk-grown InxGa 1-xSb for a starting melt composition of x = 0.25. A lowering rate of 3 mm/hr has been employed, for an overall cooling rate of 5.1°C/hr, which deliberately exceeds the threshold for constitutional supercooling. Scanning electron microscopy (SEM) has been performed on samples of In0.18Ga0.82Sb revealing a 92% percent reduction in micro-cracking with the application of ACRT when compared to synthesis performed without rotation. Furthermore; electron probe microscopy (EPMA) indicates an order of magnitude improvement in compositional homogeneity in the direction of growth with the use of ACRT. Micro-cracking and compositional homogeneity throughout cross-sections of InxGa1-xSb material also indicate areas of improved mixing during solidification, which can be compared to existing models of fluid flow exhibited in ACRT. The boule synthesized with ACRT shows a decrease in compositional deviation of 62% in the first-to-freeze areas of the sample, indicating suppression of supercooling in areas identified as Ekman flow regions. Results also demonstrate evidence of "dead-zones" in the ACRT mixing in the extreme center of the material, which confirms computational models of ACRT-induced fluid flow above the Ekman shear layer.

  3. Review of paleomagnetic data from the Klamath Mountains, Blue Mountains, and Sierra Nevada; Implications for paleogeographic reconstructions

    USGS Publications Warehouse

    Mankinen, Edward A.; Irwin, William P.

    1990-01-01

    Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.

  4. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  5. Paleomagnetic Data Bearing on the Eastern and Southern Boundaries of the Walker Lane Belt Transfer System

    NASA Astrophysics Data System (ADS)

    Grow, J. S.; Geissman, J. W.; Oldow, J. S.

    2007-12-01

    In west-central Nevada, a transfer zone, which initiated in the mid-Miocene, presently links, via the Mina Deflection, right-lateral faults of the Eastern California Shear Zone to the south and the Central Nevada Seismic Belt and Walker Lane to the north. This transfer zone, the early inception of which is characterized by moderate (20-30°) clockwise crustal rotations previously identified (e.g., Candelaria Hills and surrounding ranges), along with right-lateral structures to the south and north, are part of a diffuse zone of intracontinental deformation that accommodates some 25 percent of the motion between the Pacific and North American plates. Although the northern and western boundaries of the transfer zone are relatively well defined by paleomagnetic data, the eastern and southeastern boundaries remain poorly constrained. Additional paleomagnetic data are being obtained from mid-to-late Tertiary volcanic rocks, presumably lying within (e.g., Montezuma Range, Palmetto Mountains, Monte Cristo Range) and outside (e.g., Goldfield Hills, San Antonio Mountains, Slate Ridge) of the transfer zone. Areas outside of the transfer zone are inferred to have not undergone any appreciable rotation since its inception. Volcanic rocks as well as shallow intrusions ranging in age from Oligocene to mid-Pliocene have been sampled (N=187) from inside and outside of the inferred southern and eastern boundaries of the transfer zone. Overall, the collection responds very favorably to progressive demagnetization; initial results are tentatively interpreted as suggesting the absence of appreciable rotation of the San Antonio Range (Tonopah, Nevada area and farther north). The extent to which areas near the eastern and southeastern boundaries have been rotated is under investigation. These data will aid in a better understanding of differential block rotation and tilting throughout the development of the west-central Nevada transfer system from the mid-Miocene to late Pliocene.

  6. A Kinematic Model for Opening of the Gulf of Mexico between 169-150 Ma

    NASA Astrophysics Data System (ADS)

    Harry, D. L.; Jha, S.

    2016-12-01

    Lineated magnetic anomalies interpreted to be seafloor spreading isochrons are identified in the central and eastern Gulf of Mexico. The southernmost of these anomalies coincides with a strong positive vertical gravity gradient interpreted to mark the location of the extinct spreading ridge in the Gulf. Together, the magnetic and gravity anomalies reveal a concave-south fossil spreading system that accommodated counterclockwise rotation of Yucatan away from North America during Jurassic opening of the Gulf. Magnetic models show that the magnetic lineations correlate with geomagnetic time scale chrons M22n (150 Ma), M33n (161 Ma), M39n (165 Ma), and Toar-Aal N (174 Ma). M22n lies astride the fossil ridge and defines the age at which seafloor spreading ended. M33n lies between the ridge and the Florida shelf. M39n lies close to the shelf edge in the eastern Gulf. Taor-Aal N is the oldest recognized seafloor spreading anomaly and is present only in the central Gulf, laying near the ocean-continent transition (OCT). The magnetic anomalies define an Euler pole located at 22°N, 82ºW. Rotating Yucatan clockwise 29° about this pole places the northeast Yucatan shelf edge tightly against the southwestern Florida shelf, closing the southeastern Gulf. An additional 12° clockwise rotation juxtaposes the OCT on the northwestern Yucatan margin against the North American OCT in the central Gulf. These constraints on Yucatan's past position indicate that continental extension propagated from the western into the eastern Gulf between 215-174 Ma as Yucatan began to rotate away from North America. Seafloor spreading began 174 Ma and was asymmetric, with all extension occurring north of the spreading ridge. Symmetric seafloor spreading was established by 165 Ma and continued until 150 Ma. A total of 41°counterclockwise rotation of Yucatan relative to North America is predicted to have occurred during continental extension and seafloor spreading.

  7. Electro-mechanical sine/cosine generator

    NASA Technical Reports Server (NTRS)

    Flagge, B. (Inventor)

    1972-01-01

    An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.

  8. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  9. A Five-Dimensional Mathematical Model for Regional and Global Changes in Cardiac Uptake and Motion

    NASA Astrophysics Data System (ADS)

    Pretorius, P. H.; King, M. A.; Gifford, H. C.

    2004-10-01

    The objective of this work was to simultaneously introduce known regional changes in contraction pattern and perfusion to the existing gated Mathematical Cardiac Torso (MCAT) phantom heart model. We derived a simple integral to calculate the fraction of the ellipsoidal volume that makes up the left ventricle (LV), taking into account the stationary apex and the moving base. After calculating the LV myocardium volume of the existing beating heart model, we employed the property of conservation of mass to manipulate the LV ejection fraction to values ranging between 13.5% and 68.9%. Multiple dynamic heart models that differ in degree of LV wall thickening, base-to-apex motion, and ejection fraction, are thus available for use with the existing MCAT methodology. To introduce more complex regional LV contraction and perfusion patterns, we used composites of dynamic heart models to create a central region with little or no motion or perfusion, surrounded by a region in which the motion and perfusion gradually reverts to normal. To illustrate this methodology, the following gated cardiac acquisitions for different clinical situations were simulated analytically: 1) reduced regional motion and perfusion; 2) same perfusion as in (1) without motion intervention; and 3) washout from the normal and diseased myocardial regions. Both motion and perfusion can change dynamically during a single rotation or multiple rotations of a simulated single-photon emission computed tomography acquisition system.

  10. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    PubMed

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  11. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  12. The Role of 2D and 3D Mental Rotation in Mathematics for Young Children: What Is It? Why Does It Matter? And What Can We Do about It?

    ERIC Educational Resources Information Center

    Bruce, Catherine D.; Hawes, Zachary

    2015-01-01

    The ability to mentally rotate objects in space has been singled out by cognitive scientists as a central metric of spatial reasoning (see Jansen, Schmelter, Quaiser-Pohl, Neuburger, & Heil, 2013; Shepard & Metzler, 1971 for example). However, this is a particularly undeveloped area of current mathematics curricula, especially in North…

  13. Breeding Birds of Late-Rotation Pine Hardwood Stands: Community Characteristics and Similarity to Other Regional Pine Forests

    Treesearch

    Daniel R. Petit; Lisa J. Petit; Thomas E. Martin; others

    1994-01-01

    The relative abundances of bird species and the ecological characteristics of the overall avian community were quantified within 20 late-rotation pine-hardwood sites in the Ouschitn and Ozark National Forests in Arkansas and Oklahoma during 1992 and 1993. In addition, similarities in species composition and guild representation were compared with those of forest...

  14. The perforator pedicled propeller (PPP) flap method: report of two cases.

    PubMed

    Hyakusoku, Hiko; Ogawa, Rei; Oki, Koichiro; Ishii, Nobuaki

    2007-10-01

    Perforator flaps are thin free-tissue transfers consisting of skin and subcutaneous tissue which have the advantage of decreasing donor site morbidity. We have reconstructed postburn scar contractures using "propeller flaps" of the remaining healthy skin around the recipient sites. In this paper, we report on two cases and describe the concept of using "perforator flaps" and "propeller flaps" together as what are called "perforator pedicled propeller (PPP) flaps." Patient 1 was an 18-year-old man with a sacral pressure ulcer. The soft tissue defect was reconstructed with a rotated superior gluteal artery PPP flap. Patient 2 was a 53-year-old woman who presented with an open fracture of the right elbow. The skin defect over the fracture was covered with a rotated deep brachial artery PPP flap raised on the lateral upper arm. The PPP flaps are useful for burn reconstruction and repairing various types of wound. Moreover, microsurgery is unnecessary. The PPP flap may be classified into two types: the central axis type and the acentric axis type. The central axis PPP flap is significant when used as a 90-degree-rotation island flap, and the acentric axis PPP flap is significant when used as a 180-degree-rotation island flap. Both types are easy to harvest and useful for repairing various kinds of wound.

  15. Modelling the Centers of Galaxies

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The key to studying central regions by means of nobody numerical experiments is to concentrate on the central few parsecs of a galaxy, replacing the remainder of the galaxy by a suitable boundary condition, rather after the manner in which stellar interiors can be studied without a detailed stellar atmosphere by replacing the atmosphere with a boundary condition. Replacements must be carefully designed because the long range gravitational force means that the core region is sensitive to mass outside that region and because particles can exchange between the outer galaxy and the core region. We use periodic boundary conditions, coupled with an iterative procedure to generate initial particle loads in isothermal equilibrium. Angular momentum conservation is ensured for problems including systematic rotation by a circular reflecting boundary and by integrating in a frame that rotates with the mean flow. Mass beyond the boundary contributes to the gravitational potential, but does not participate in the dynamics. A symplectic integration scheme has been developed for rotating coordinate systems. This combination works well, leading to robust configurations. Some preliminary results with this combination show that: (1) Rotating systems are extremely sensitive to non-axisymmetric external potentials, and (2) that a second core, orbiting near the main core (like the M31 second core system), shows extremely rapid orbital decay. The experimental setups will be discussed, along with preliminary results.

  16. Counterclockwise rotations in the Late Eocene-Oligocene volcanic fields of San Luis Potosí and Sierra de Guanajuato (eastern Mesa Central, Mexico)

    NASA Astrophysics Data System (ADS)

    Andreani, Louis; Gattacceca, Jerôme; Rangin, Claude; Martínez-Reyes, Juventino; Demory, François

    2014-12-01

    We used paleomagnetic and structural data to investigate the late Eocene-Oligocene tectonic evolution of the Mesa Central area in Mexico. The Mesa Central was affected by NW-trending faults (Tepehuanes-San Luis fault system) coeval with a Late Eocene-Oligocene ignimbrite flare-up and by post-27 Ma NNE-trending grabens related to the Basin and Range. We obtained reliable paleomagnetic directions from 61 sites within the Late Eocene-Oligocene volcanic series (~ 30 to ~ 27 Ma) of the San Luis Potosí volcanic field and Sierra de Guanajuato. For each site we also measured the anisotropy of magnetic susceptibility (AMS). Tilt corrections were made using AMS data for 33 sites where in situ bedding measurements were not available. Paleomagnetic directions indicate counterclockwise rotations of about 10° with respect to stable North America after 30-25 Ma. Structural data suggest that the volcanic succession was mainly affected by normal faults. However, we also found evidences for oblique or horizontal striae showing a left-lateral component along NW-trending faults and a right lateral component along NE-trending faults. Both motions are consistent with a N-S extension oblique to the Tepehuanes-San Luis fault system. Previous paleomagnetic studies in northern and southern Mexico show the prevalence of minor left-lateral shear components along regional-scale transpressional and transtensional lineaments. Our paleomagnetic data may reflect thus small vertical-axis rotations related to a minor shear component coeval with the Oligocene intra-arc extension in central Mexico.

  17. Composites Strengthened with Graphene Platelets and Formed in Semisolid State Based on α and α/β MgLiAl Alloys

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr

    2018-04-01

    MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from Raman spectroscopy results.

  18. Composites Strengthened with Graphene Platelets and Formed in Semisolid State Based on α and α/β MgLiAl Alloys

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr

    2018-05-01

    MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from Raman spectroscopy results.

  19. Effect of rotation on fingering convection in stellar and planetary interiors

    NASA Astrophysics Data System (ADS)

    Sengupta, Sutirtha; Garaud, Pascale

    2018-01-01

    We study the effects of global rotation on the growth and saturation of the fingering (double-diffusive) instability at low Prandtl numbers and estimate the compositional transport rates as a function of the relevant non-dimensional parameters - the Taylor number, Ta^* (defined in terms of the rotation rate, Ω, thermal diffusivity κ_T and associated finger length scale d) and density ratio through direct numerical simulations. Within our explored range of parameters, we find rotation to have very little effect on vertical transport apart for an exceptional case where a cyclonic large scale vortex (LSV) is observed at low density ratio and fairly high Taylor number. The LSV leads to significant enhancement in the fingering transport rates by concentrating high composition fluid at its core which moves downward. The formation of such LSVs is of particular interest for solving the missing mixing problem in the astrophysical context of RGB stars though the parameter regime in which we observe the emergence of this LSV seems to be quite far from the stellar scenario. However, understanding the basic mechanism driving such large scale structures as observed frequently in polar regions of planets (e.g. those seen by Juno near the poles of Jupiter) is important in general for studies of rotating turbulence and its applications to stellar and planetary interior studies, and will be investigated in further detail in a forthcoming work.

  20. Rotations and Abundances of Blue Horizontal-Branch Stars in Globular Cluster M15.

    PubMed

    Behr; Cohen; McCarthy

    2000-03-01

    High-resolution optical spectra of 18 blue horizontal-branch stars in the globular cluster M15 indicate that their stellar rotation rates and photospheric compositions vary strongly as a function of effective temperature. Among the cooler stars in the sample, at Teff approximately 8500 K, metal abundances are in rough agreement with the canonical cluster metallicity, and the vsini rotations appear to have a bimodal distribution, with eight stars at vsini<15 km s-1 and two stars at vsini approximately 35 km s-1. Most of the stars at Teff>/=10,000 K, however, are slowly rotating, vsini<7 km s-1, and their iron and titanium are enhanced by a factor of 300 to solar abundance levels. Magnesium maintains a nearly constant abundance over the entire range of Teff, and helium is depleted by factors of 10-30 in three of the hotter stars. Diffusion effects in the stellar atmospheres are the most likely explanation for these large differences in composition. Our results are qualitatively very similar to those previously reported for M13 and NGC 6752, but with even larger enhancement amplitudes, presumably due to the increased efficiency of radiative levitation at lower intrinsic [Fe/H]. We also see evidence for faster stellar rotation explicitly preventing the onset of the diffusion mechanisms among a subset of the hotter stars.

  1. Titrating decision processes in the mental rotation task.

    PubMed

    Provost, Alexander; Heathcote, Andrew

    2015-10-01

    Shepard and Metzler's (1971) seminal mental-rotation task-which requires participants to decide if 1 object is a rotated version of another or its mirror image-has played a central role in the study of spatial cognition. We provide the first quantitative model of behavior in this task that is comprehensive in the sense of simultaneously providing an account of both error rates and the full distribution of response times. We used Brown and Heathcote's (2008) model of choice processing to separate out the contributions of mental rotation and decision stages. This model-based titration process was applied to data from a paradigm where converging evidence supported performance being based on rotation rather than other strategies. Stimuli were similar to Shepard and Metzler's block figures except a long major axis made rotation angle well defined for mirror stimuli, enabling comprehensive modeling of both mirror and normal responses. Results supported a mental rotation stage based on Larsen's (2014) model, where rotation takes a variable amount of time with a mean and variance that increase linearly with rotation angle. Differences in response threshold differences were largely responsible for mirror responses being slowed, and for errors increasing with rotation angle for some participants. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  2. Elastic rotation of Escherichia coli F(O)F(1) having ε subunit fused with cytochrome b(562) or flavodoxin reductase.

    PubMed

    Oka, Hideyuki; Hosokawa, Hiroyuki; Nakanishi-Matsui, Mayumi; Dunn, Stanley D; Futai, Masamitsu; Iwamoto-Kihara, Atsuko

    2014-04-18

    Intra-molecular rotation of FOF1 ATP synthase enables cooperative synthesis and hydrolysis of ATP. In this study, using a small gold bead probe, we observed fast rotation close to the real rate that would be exhibited without probes. Using this experimental system, we tested the rotation of FOF1 with the ε subunit connected to a globular protein [cytochrome b562 (ε-Cyt) or flavodoxin reductase (ε-FlavR)], which is apparently larger than the space between the central and the peripheral stalks. The enzymes containing ε-Cyt and ε-FlavR showed continual rotations with average rates of 185 and 148 rps, respectively, similar to the wild type (172 rps). However, the enzymes with ε-Cyt or ε-FlavR showed a reduced proton transport. These results indicate that the intra-molecular rotation is elastic but proton transport requires more strict subunit/subunit interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Resolved H I Observations of Local Analogs to z ∼ 1 Luminous Compact Blue Galaxies: Evidence for Rotation-supported Disks

    NASA Astrophysics Data System (ADS)

    Rabidoux, Katie; Pisano, D. J.; Garland, C. A.; Guzmán, Rafael; Castander, Francisco J.; Wolfe, Spencer A.

    2018-01-01

    While bright, blue, compact galaxies are common at z∼ 1, they are relatively rare in the local universe, and their evolutionary paths are uncertain. We have obtained resolved H I observations of nine z∼ 0 luminous compact blue galaxies (LCBGs) using the Giant Metrewave Radio Telescope and Very Large Array in order to measure their kinematic and dynamical properties and better constrain their evolutionary possibilities. We find that the LCBGs in our sample are rotating galaxies that tend to have nearby companions, relatively high central velocity dispersions, and can have disturbed velocity fields. We calculate rotation velocities for each galaxy by measuring half of the velocity gradient along their major axes and correcting for inclination using axis ratios derived from SDSS images of each galaxy. We compare our measurements to those previously made with single dishes and find that single-dish measurements tend to overestimate LCBGs’ rotation velocities and H I masses. We also compare the ratio of LCBGs’ rotation velocities and velocity dispersions to those of other types of galaxies and find that LCBGs are strongly rotationally supported at large radii, similar to other disk galaxies, though within their half-light radii the {V}{rot}/σ values of their H I are comparable to stellar {V}{rot}/σ values of dwarf elliptical galaxies. We find that LCBGs’ disks on average are gravitationally stable, though conditions may be conducive to local gravitational instabilities at the largest radii. Such instabilities could lead to the formation of star-forming gas clumps in the disk, resulting eventually in a small central bulge or bar.

  4. Cometary science. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko.

    PubMed

    Hässig, M; Altwegg, K; Balsiger, H; Bar-Nun, A; Berthelier, J J; Bieler, A; Bochsler, P; Briois, C; Calmonte, U; Combi, M; De Keyser, J; Eberhardt, P; Fiethe, B; Fuselier, S A; Galand, M; Gasc, S; Gombosi, T I; Hansen, K C; Jäckel, A; Keller, H U; Kopp, E; Korth, A; Kührt, E; Le Roy, L; Mall, U; Marty, B; Mousis, O; Neefs, E; Owen, T; Rème, H; Rubin, M; Sémon, T; Tornow, C; Tzou, C-Y; Waite, J H; Wurz, P

    2015-01-23

    Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface. Copyright © 2015, American Association for the Advancement of Science.

  5. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  6. Hatch cover

    NASA Technical Reports Server (NTRS)

    Allton, Charles S. (Inventor); Okane, James H. (Inventor)

    1989-01-01

    This invention relates to a hatch and more particularly to a hatch for a space vehicle where the hatch has a low volume sweep and can be easily manipulated from either side of the hatch. The hatch system includes an elliptical opening in a bulkhead and an elliptical hatch member. The hatch cover system includes an elliptical port opening in a housing and an elliptical cover member supported centrally by a rotational bearing for rotation about a rotational axis normal to the cover member and by pivot pins in a gimbal member for pivotal movement about axes perpendicular to the rotational axis. Arm members support the gimbal member pivotally by pivot members so that upon rotation and manipulation the cover member can be articulatedly moved from a closed position to the port opening to an out of the way position with a minimum of volume sweep by the cover member.

  7. Conflicting motion perspective simulating sinultaneous clockwise and counterclockwise rotation in depth.

    PubMed

    Hershberger, W A; Stewart, M R; Laughlin, N K

    1976-05-01

    Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.

  8. Improved nine-node shell element MITC9i with reduced distortion sensitivity

    NASA Astrophysics Data System (ADS)

    Wisniewski, K.; Turska, E.

    2017-11-01

    The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell kinematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved transformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447-1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.

  9. Optical trapping using cascade conical refraction of light.

    PubMed

    O'Dwyer, D P; Ballantine, K E; Phelan, C F; Lunney, J G; Donegan, J F

    2012-09-10

    Cascade conical refraction occurs when a beam of light travels through two or more biaxial crystals arranged in series. The output beam can be altered by varying the relative azimuthal orientation of the two biaxial crystals. For two identical crystals, in general the output beam comprises a ring beam with a spot at its centre. The relative intensities of the spot and ring can be controlled by varying the azimuthal angle between the refracted cones formed in each crystal. We have used this beam arrangement to trap one microsphere within the central spot and a second microsphere on the ring. Using linearly polarized light, we can rotate the microsphere on the ring with respect to the central sphere. Finally, using a half wave-plate between the two crystals, we can create a unique beam profile that has two intensity peaks on the ring, and thereby trap two microspheres on diametrically opposite points on the ring and rotate them around the central sphere. Such a versatile optical trap should find application in optical trapping setups.

  10. The central nervous system--an additional consideration in 'rotator cuff tendinopathy' and a potential basis for understanding response to loaded therapeutic exercise.

    PubMed

    Littlewood, Chris; Malliaras, Peter; Bateman, Marcus; Stace, Richmond; May, Stephen; Walters, Stephen

    2013-12-01

    Tendinopathy is a term used to describe a painful tendon disorder but despite being a well-recognised clinical presentation, a definitive understanding of the pathoaetiology of rotator cuff tendinopathy remains elusive. Current explanatory models, which relate to peripherally driven nocioceptive mechanisms secondary to structural abnormality, or failed healing, appear inadequate on their own in the context of current literature. In light of these limitations this paper presents an extension to current models that incorporates the integral role of the central nervous system in the pain experience. The role of the central nervous system (CNS) is described and justified along with a potential rationale to explain the favourable response to loaded therapeutic exercises demonstrated by previous studies. This additional consideration has the potential to offer a useful way to explain pain to patients, for clinicians to prescribe appropriate therapeutic management strategies and for researchers to advance knowledge in relation to this clinically challenging problem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin

    2018-05-01

    The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.

  12. An Alternative Estimate of the Motion of the Capricorn Plate

    NASA Astrophysics Data System (ADS)

    Burris, S. G.; Gordon, R. G.

    2013-12-01

    Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2] Gordon, R. G., Royer, J.-Y., and D. F. Argus, 2008. Space geodetic test of kinematic models for the Indo-Australian composite plate, Geology, 36, 827-830, doi: 10.1130/G25089A.1. [3] DeMets, C., Gordon, R. G., & Argus, D. F., 2010. Geologically current plate motions, Geophys. J. Int., 181, 1-80, doi: 10.1111/j.1365-246X.2009.04491.x.

  13. A rotational Raman study under non-thermal conditions in a pulsed CO2 glow discharge

    NASA Astrophysics Data System (ADS)

    Klarenaar, B. L. M.; Grofulović, M.; Morillo-Candas, A. S.; van den Bekerom, D. C. M.; Damen, M. A.; van de Sanden, M. C. M.; Guaitella, O.; Engeln, R.

    2018-04-01

    The implementation of in situ rotational Raman spectroscopy is realized for a pulsed glow discharge in CO2 in the mbar range and is used to study the rotational temperature and molecular number densities of CO2, CO, and O2. The polarizability anisotropy of these molecules is required for extracting number densities from the recorded spectra and is determined for incident photons of 532 nm. The spatiotemporally-resolved measurements are performed in the same reactor and at equal discharge conditions (5–10 ms on–off cycle, 50 mA plasma current, 6.7 mbar pressure) as in recently published work employing in situ Fourier transform infrared (FTIR) spectroscopy. The rotational temperature ranges from 394 to 809 K from start to end of the discharge pulse and is constant over the length of the reactor. The discharge is demonstrated to be spatially uniform in gas composition, with a CO2 conversion factor of 0.15 ± 0.02. Rotational temperatures and molecular composition agree well with the FTIR results, while the spatial uniformity confirms the assumption made for the FTIR analysis of a homogeneous medium over the line-of-sight of absorption. Furthermore, the rotational Raman spectra of CO2 are related to vibrational temperatures through the vibrationally averaged nuclear spin degeneracy, which is expressed in the intensity ratio between even and odd numbered Raman peaks. The elevation of the odd averaged degeneracy above thermal conditions agrees well with the elevation of vibrational temperatures of CO2, acquired in the FTIR study.

  14. Tori sequences as remnants of multiple accreting periods of Kerr SMBHs

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-03-01

    Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.

  15. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds.

    PubMed

    Zheng, Quan; Ren, Daoyuan; Yang, Nana; Yang, Xingbin

    2016-10-01

    Artemisia sphaerocephala Krasch seeds polysaccharides have been reported to have a variety of important biological activities. However, effective extraction of Artemisia sphaerocephala Krasch seeds polysaccharides is still an unsolved issue. In this study, the orthogonal rotatable central composite design was employed to optimize ultrasound-assisted extraction conditions of Artemisia sphaerocephala Krasch seeds polysaccharides. Based on a single-factor analysis method, ultrasonic power, extraction time, solid-liquid ratio and extraction temperature were shown to significantly affect the yield of polysaccharides extracted from the A. sphaerocephala Krasch seeds. The optimal conditions for extraction of Artemisia sphaerocephala Krasch seeds polysaccharides were determined as following: ultrasonic power 243W, extraction time 125min, solid-liquid ratio 64:1 and extraction temperature 64°C, where the experimental yield was 14.78%, which was well matched with the predicted value of 14.81%. Furthermore, ASKP was identified as a typical heteropolysaccharide with d-galacturonic acid (38.8%) d-galactose (20.2%) and d-xylose (15.5%) being the main constitutive monosaccharides. Moreover, Artemisia sphaerocephala Krasch seeds polysaccharides exhibited high total reducing power and considerable scavenging activities on DPPH, hydroxyl and superoxide radicals, in a concentration-dependent manner in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The properties of the progenitor, neutron star, and pulsar wind in the supernova remnant Kes 75

    NASA Astrophysics Data System (ADS)

    Gelfand, J. D.; Slane, P. O.; Temim, T.

    2014-03-01

    By studying composite supernova remnants (SNRs), remnants which contain a pulsar wind nebula (PWN), it is possible to estimate physical properties of the progenitor explosion, central neutron star, and its pulsar wind that are difficult to measure directly. This is best done by fitting the dynamical and broadband spectral properties of a PWN with an evolutionary model for a PWN inside an SNR. We apply such a model to the composite SNR Kes 75, whose associated pulsar PSR J1846-0258 is thought to have an extremely strong surface magnetic field. If ˜ 3 M_⊙ of mass was ejected in the supernova, our model suggests a normal or slightly subenergetic supernova in a low density environment. Additionally, for the measured pre-outburst braking index of p=2.65, our model prefers an age of {˜ 430} years and an initial spin period P_0 ˜ 0.2 s. Lastly, the magnetization of the pulsar wind and energy spectrum of particles injected at the termination shock are similar to those observed from other PWNe powered by less magnetized neutron stars. While further study is needed to verify these results, they are nominally inconsistent with strong neutron star magnetic fields resulting from very fast initial rotation.

  17. Development of Low-Fat Soft Dough Biscuits Using Carbohydrate-Based Fat Replacers

    PubMed Central

    Singh, Gurmukh; Kumbhar, B. K.

    2013-01-01

    Experiments were conducted to develop low-fat soft dough biscuits using carbohydrate-based fat replacers (maltodextrin and guar gum). A central composite rotatable design was used to optimise the level of sugar 24–36%, composite fat (fat 10.5–24.5%, maltodextrin 10.4–24%, and guar gum 0.1–0.5%), ammonium bicarbonate 0.5–2.5%, and water 20–24% for production of low-fat biscuits. Diameter (P < 0.01) and stress-strain ratio (P < 0.05) decreased significantly with increase in the amount of sugar. There was a significant decrease (P < 0.01) in spread ratio at high amount of water. Hardness was significantly affected by the interactions of ammonium bicarbonate with sugar (P < 0.05) and fat (P < 0.1). The optimum level of ingredients obtained for low-fat biscuits was sugar 31.7 g, fat 13.55 g, maltodextrin 21.15 g, guar gum 0.3 g, ammonium bicarbonate 2.21 g, and water 21 mL based on 100 g flour. The fat level in the optimised low-fat biscuit formulation was found to be 8.48% as compared to 22.65% in control; therefore, the reduction in fat was 62.5%. PMID:26904603

  18. Relativistic g-modes in rapidly rotating neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaertig, Erich; Kokkotas, Kostas D.; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124

    2009-09-15

    We study the g-modes of fast rotating stratified neutron stars in the general relativistic Cowling approximation, where we neglect metric perturbations and where the background models take into account the buoyant force due to composition gradients. This is the first paper studying this problem in a general relativistic framework. In a recent paper [A. Passamonti, B. Haskell, N. Andersson, D. I. Jones, and I. Hawke, Mon. Not. R. Astron. Soc. 394, 730 (2009)], a similar study was performed within the Newtonian framework, where the authors presented results about the onset of CFS-unstable g-modes and the close connection between inertial andmore » gravity modes for sufficiently high rotation rates and small composition gradients. This correlation arises from the interplay between the buoyant force which is the restoring force for g-modes and the Coriolis force which is responsible for the existence of inertial modes. In our relativistic treatment of the problem, we find an excellent qualitative agreement with respect to the Newtonian results.« less

  19. Understory composition of hardwood stands in north central West Virginia

    Treesearch

    M.J. Twery

    1991-01-01

    Understory composition was measured on 960 10.5 m2 plots in 16 stands on the West Virginia University Forest in north-central West Virginia. The overstory composition was dominated by oaks (Quercus spp.) on 50% of the stands and by a mixture of oaks and yellow-poplar (Liriodendron tulipifera L.) on 50%. All...

  20. Extrapolation of the DIII-D high poloidal beta scenario to ITER steady-state using transport modeling

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.

    2016-10-01

    Transport modeling of a proposed ITER steady-state scenario based on DIII-D high βP discharges finds that the core confinement may be improved with either sufficient rotation or a negative central shear q-profile. The high poloidal beta scenario is characterized by a large bootstrap current fraction( 80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with improved normalized confinement. Typical temperature and density profiles from the non-inductive high poloidal beta scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving Q=5 steady state performance in ITER with ``day one'' H&CD capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. Either strong negative central magnetic shear or rotation are found to successfully provide the turbulence suppression required to maintain the temperature and density profiles. This work supported by the US Department of Energy under DE-FC02-04ER54698.

  1. Missing mass or missing light?

    NASA Astrophysics Data System (ADS)

    Davies, J. I.

    1990-07-01

    Disney et al. (1989) have argued that the observational data are consistent with disk galaxies being optically thick, particularly in their inner regions. Here, these results are used to reinterpret the radial surface-brightness distributions of spiral galaxies. It is found that the fitting of a profile with an absorbed disk plus bulge leads to both disk and bulge masses (mass in luminous material) that are larger than previously assumed. In addition, it is shown how the rotation velocity, as determined from optical data in the central regions, may systematically underestimate the true rotational velocity in an optically thick disk. If the bulges of late-type galaxies are as large as is hypothesized, then this has important implications in models of galaxy evolution and galaxy dynamics. The model greatly reduces or even eliminates the need for dark matter within the optical radius; it removes a major argument against S0 evolution from later-type galaxies; it accounts for the similarity of rotation curve forms among galaxies of different morphological types; and it leads to a further reappraisal of the observed constancy of the extrapolated central surface brightness of galactic disks.

  2. Analysis of Rotation and Transport Data in C-Mod ITB Plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2009-11-01

    Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.

  3. Nonlinear deformation of composites with consideration of the effect of couple-stresses

    NASA Astrophysics Data System (ADS)

    Lagzdiņš, A.; Teters, G.; Zilaucs, A.

    1998-09-01

    Nonlinear deformation of spatially reinforced composites under active loading (without unloading) is considered. All the theoretical constructions are based on the experimental data on unidirectional and ±π/4 cross-ply epoxy plastics reinforced with glass fibers. Based on the elastic properties of the fibers and EDT-10 epoxy binder, the linear elastic characteristics of a transversely isotropic unidirectionally reinforced fiberglass plastic are found, whereas the nonlinear characteristics are obtained from experiments. For calculating the deformation properties of the ±π/4 cross-ply plastic, a refined version of the Voigt method is applied taking into account also the couple-stresses arising in the composite due to relative rotation of the reinforcement fibers. In addition, a fourth-rank damage tensor is introduced in order to account for the impact of fracture caused by the couple-stresses. The unknown constants are found from the experimental uniaxial tension curve for the cross-ply composite. The comparison between the computed curves and experimental data for other loading paths shows that the description of the nonlinear behavior of composites can be improved by considering the effect of couple-stresses generated by rotations of the reinforcing fibers.

  4. New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.

  5. Performance of central venous catheterization by medical students: a retrospective study of students’ logbooks

    PubMed Central

    2014-01-01

    Background Medical students often learn the skills necessary to perform a central venous catheterization in the operating room after simulator training. We examined the performance of central venous catheterization by medical students from the logbooks during their rotation in department of anesthesiology. Methods From the logbooks of medical students rotating in our department between January 2011 and June 2012, we obtained the kind and the number of central venous catheterization students had done, the results of the procedures whether they were success or failed, the reasons of the failures, complications, and the student self-reported confidence and satisfaction of their performance. Results There were 93 medical students performed 875 central venous catheterizations with landmark guidance on patients in the operating theater, and the mean number of catheterizations performed per student was 9.4 ± 2.0, with a success rate of 67.3%. Adjusted for age, sex, body mass index, surgical category, ASA score and insertion site, the odds of successful catherization improved with cumulative practice (odds ratio 1.10 per additional central venous catheterization performed; 95% confidence interval 1.05–1.15). The major challenge students encountered during the procedure was the difficulty of finding the central veins, which led to 185 catheterizations failed. The complication rate of central venous catheterization by the students was 7.8%, while the most common complication was puncture of artery. The satisfaction and confidence of students regarding their performance increased with each additional procedure and decreased significantly if failure or complications had occurred. Conclusion A student logbook is a useful tool for recording the actual procedural performance of students. From the logbooks, we could see the students’ performance, challenges, satisfaction and confidence of central venous catheterization were improved through cumulative clinical practice of the procedure. PMID:25123826

  6. Effect of rotation rate on the forces of a rotating cylinder: Simulation and control

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Ou, Yuh-Roung

    1993-01-01

    In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.

  7. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    NASA Technical Reports Server (NTRS)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  8. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Moučka, R.; Sapurina, I.; Spivak, Yu. M.; Moshnikov, V. A.

    2012-01-01

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from -20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ*. It is established that, at high frequencies, the μ* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.

  9. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    USDA-ARS?s Scientific Manuscript database

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  10. Acidic deposition and sustainable forest management in the central Appalachians, USA

    Treesearch

    Mary Beth Adams

    1999-01-01

    Long-term productivity of mixed-species forests in the central Appalachian region of the United States may be threatened by changes in base cation availability of the soil. These changes may be due to increased intensity of harvest removals and a shift toward shorter rotations that result in increased removal of calcium and magnesium in aboveground biomass, and through...

  11. Heterogeneous State of Stress and Seismicity Distribution Along the San Andreas Fault in Southern California: New Insights into Rupture Terminations of Past Earthquakes

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Ross, Z. E.; Yu, C.

    2016-12-01

    The southern San Andreas Fault (SAF) accommodates 80% of the plate motion between the Pacific and North America plates in southern California. We image complex patterns of the state of stress, style of faulting, and seismicity adjacent to the SAF, both along strike and away from the fault. This complexity is not captured in previous one-dimensional profiles of stress orientations across the fault. On average the maximum principal stress (S1) rotates from N30°E in central California, along the Cholame segment, to N0°-20°W along the Mojave and San Bernardino segments. Farther south, along the Coachella Valley segment the orientation is again N30°E. On a broad scale these changes in S1 orientation coincide with the more westerly strike of the SAF across the Mojave Desert but in detail they suggest significant variations in frictional coefficient or strength along strike. Similarly, on a more detailed scale, the size of the S1 rotations is spatially heterogeneous, with the largest rotations associated with the two bends in the SAF, at Gorman and Cajon Pass. In each location a major fault, Garlock fault and San Jacinto fault, intersects the SAF. In these intersected regions, the seismicity is more abundant and the S1 orientation is more likely to exhibit abrupt changes in trend by up to 10° across the fault. The GPS maximum principal strain rate orientations exhibit a similar but smoother pattern with mostly west of north orientations along the Mojave and San Bernardino segments. The style of faulting as derived from stress inversion is similarly heterogeneous with a mixture of strike-slip and thrust faulting forming complex spatial patterns. The D95% maximum depth of earthquakes changes abruptly both along and across the SAF suggesting that local variations in composition affect the maximum seismicity depth. The heterogeneity in the state of stress is not influenced by the average heat flow, which is similar along the whole length of the southern SAF. The crustal composition, background seismicity, and the strength of the SAF vary along strike, with the strongest fault segments being near the two bends, Gorman and Cajon Pass, where past major earthquake ruptures may have preferentially terminated.

  12. Frame-dragging effect in the field of non rotating body due to unit gravimagnetic moment

    NASA Astrophysics Data System (ADS)

    Deriglazov, Alexei A.; Ramírez, Walberto Guzmán

    2018-04-01

    Nonminimal spin-gravity interaction through unit gravimagnetic moment leads to modified Mathisson-Papapetrou-Tulczyjew-Dixon equations with improved behavior in the ultrarelativistic limit. We present exact Hamiltonian of the resulting theory and compute an effective 1/c2-Hamiltonian and leading post-Newtonian corrections to the trajectory and spin. Gravimagnetic moment causes the same precession of spin S as a fictitious rotation of the central body with angular momentum J = M/m S. So the modified equations imply a number of qualitatively new effects, that could be used to test experimentally, whether a rotating body in general relativity has null or unit gravimagnetic moment.

  13. Latching Solenoid-Operated Ball Valve

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron

    1994-01-01

    Proposed solenoid-operated ball valve latches in open or closed position until energized to change position. Electrical energy consumed only during opening or closing motion. Valve ball contains central channel through which fluid could flow. Made of highly magnetically permeable steel. When appropriate coil(s) energized by brief pulse (or pulses) of electrical current at appropriate polarity, ball rotates clockwise until permanent magnets come to rest against hard stops in housing, and inlet and outlet ports aligned with central channel so fluid flows through valve. Magnets adhere to stops by magnetic attraction, latching valve in open position. To close valve, appropriate coil(s) energized by pulse (or pulses) of appropriate polarity to generate magnetic forces rotating ball counterclockwise until magnets make contact with hard stops, and inlet and outlet ports sealed.

  14. On the stability and maximum mass of differentially rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that `quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  15. Qualitative evaluation of the mineralogical and chemical composition of dry deposition in the central and southern highlands of Jordan.

    PubMed

    Jiries, Anwar; El-Hasan, Tayel; Manasrah, Walid

    2002-09-01

    The chemical and mineralogical composition of dry deposition in the western highlands of central and south Jordan at the end of the summer season 2000, reflect the composition of soils in addition to anthropogenic activities at these areas. Calcite predominated in the central region whereas calcite and quartz are the dominant minerals in south Jordan. The concentrations of Hg, Cr, Ni, Cu, Pb and Zn were higher in central Jordan, which might be attributed to higher anthropogenic activities than south. On the other hand, Fe, Mn, Ti, Ba, Sr, Y and Rb were higher in the south of Jordan reflecting the composition of soil at these sites. At Aqaba city, the only port of Jordan, where Cr, Cd, As and S were higher than other areas. This variation might be attributed to the contribution of phosphate dust in the atmosphere through handling processes.

  16. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Yoder, C. F.; Yuan, D. N.; Standish, E. M.; Preston, R. A.

    1997-01-01

    Doppler and range measurements to the Mars Pathfinder lander made using its radio communications system have been combined with similar measurements from the Viking landers to estimate improved values of the precession of Mars' pole of rotation and the variation in Mars' rotation rate. The observed precession of -7576 +/- 35 milliarc seconds of angle per year implies a dense core and constrains possible models of interior composition. The estimated annual variation in rotation is in good agreement with a model of seasonal mass exchange of carbon dioxide between the atmosphere and ice caps.

  17. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder.

    PubMed

    Folkner, W M; Yoder, C F; Yuan, D N; Standish, E M; Preston, R A

    1997-12-05

    Doppler and range measurements to the Mars Pathfinder lander made using its radio communications system have been combined with similar measurements from the Viking landers to estimate improved values of the precession of Mars' pole of rotation and the variation in Mars' rotation rate. The observed precession of -7576 +/- 35 milliarc seconds of angle per year implies a dense core and constrains possible models of interior composition. The estimated annual variation in rotation is in good agreement with a model of seasonal mass exchange of carbon dioxide between the atmosphere and ice caps.

  18. Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives

    PubMed Central

    Shao, Dongwei; Xu, Min; Cai, Liping; Shi, Sheldon Q.

    2016-01-01

    Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%–50% at rotor rotational speeds of 15–45 rpm and filled coefficients of 0.55–0.75. Four regression equations, i.e., the tensile strength (Ts), elongation at break (Eb), hardness (Ha) and rebound resilience (Rr) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the Ts, Eb and Rr of the panels were reduced, Ha was considerably increased by 17%–58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%–3%, which was much lower than commercial wood-based composites. PMID:28773591

  19. Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis.

    PubMed

    Chavan, Satishkumar S; Mahajan, Abhishek; Talbar, Sanjay N; Desai, Subhash; Thakur, Meenakshi; D'cruz, Anil

    2017-02-01

    Neurocysticercosis (NCC) is a parasite infection caused by the tapeworm Taenia solium in its larvae stage which affects the central nervous system of the human body (a definite host). It results in the formation of multiple lesions in the brain at different locations during its various stages. During diagnosis of such symptomatic patients, these lesions can be better visualized using a feature based fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This paper presents a novel approach to Multimodality Medical Image Fusion (MMIF) used for the analysis of the lesions for the diagnostic purpose and post treatment review of NCC. The MMIF presented here is a technique of combining CT and MRI data of the same patient into a new slice using a Nonsubsampled Rotated Complex Wavelet Transform (NSRCxWT). The forward NSRCxWT is applied on both the source modalities separately to extract the complementary and the edge related features. These features are then combined to form a composite spectral plane using average and maximum value selection fusion rules. The inverse transformation on this composite plane results into a new, visually better, and enriched fused image. The proposed technique is tested on the pilot study data sets of patients infected with NCC. The quality of these fused images is measured using objective and subjective evaluation metrics. Objective evaluation is performed by estimating the fusion parameters like entropy, fusion factor, image quality index, edge quality measure, mean structural similarity index measure, etc. The fused images are also evaluated for their visual quality using subjective analysis with the help of three expert radiologists. The experimental results on 43 image data sets of 17 patients are promising and superior when compared with the state of the art wavelet based fusion algorithms. The proposed algorithm can be a part of computer-aided detection and diagnosis (CADD) system which assists the radiologists in clinical practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. New insights on the recent and current deformation in Central-Eastern Iran, derived from a combined tectonic and GPS analysis

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Manighetti, I.; Tavakoli, F.; Mousavi, Z.; Vergnolle, M.; Jadidi, A.; Hatzfeld, D.; Aghamohammadi, A.; Djamour, Y.; Nankali, H.; Sedighi, M.; Lutz, L.

    2012-04-01

    We have studied the recent to current deformation in Iran and especially Central-Eastern Iran by tightly combining tectonic and GPS analyses. Based on morphotectonic analyses of satellite images, we have identified and mapped the major active faults that dissect the entire ≈ 4500 km x 2500 km2 region that extends from Eastern Turkey to Western Afghanistan/Pakistan and hence encompasses Iran, emphasizing their large-scale organization and kinematic relationships. Doing so, we have identified the major fault systems that control the tectonics of Iran, especially in its central-eastern part. We have also analyzed the 11 years GPS record on the 92 stations deployed in central-eastern Iran in the framework of the Iranian-French collaboration. The GPS analysis reveals that all major faults identified as seismogenic in central-eastern Iran are indeed currently active and slipping at fast rates. The northerly-trending East Lut, West Lut, Kuhbanan, Anar and Deshir faults have a current right-lateral slip rate of 5.7 ± 0.9, 4.7 ± 1.7, 2.3 ± 1.9, 2.7 ± 1.3 and 0.5 ± 0.2 mm/yr, respectively, while the ≈ EW-trending Doruneh and Sedeh faults have a left-lateral current slip rate of 3.1 ± 1.8 and 1.7 ± 0.2 mm/yr, respectively. The large regions bounded by the northerly-striking faults behave as fairly rigid blocks that are all found to move towards both the N13°E ARA-EUR convergence direction and the WNW, at fast rates, in the range 6.5-12.5 and 1-5 mm/yr, respectively. Combined with the available data on the studied faults, our tectonic and geodetic results suggest that a bookshelf faulting strain transfer mechanism has been and is still operating in central-eastern Iran. The coeval dextral motion of the two major, overlapping, North Anatolian-Main Recent and Caucasus-Kopeh Dagh-Herat fault lines that embrace central-eastern Iran, induces a large-scale regional sinistral shear on either side of the region, which forces the northerly-trending right-lateral faults and the blocks they bound to rotate counterclockwise in the horizontal plane. The faults and blocks have been rotating over the last ≈12 Ma, at rates reaching 1.8 °/Ma, and are still currently rotating at about these rates. We estimate the sinistral shear imposed at both edges of the central-eastern rotating zone to be in the range 2.2 - 7.2 mm/yr. The Doruneh fault likely formed more recently than the other central-eastern Iranian faults, as the imposed sinistral shear was evolving from diffuse to more localized. As a consequence, the western half of the Doruneh fault currently accommodates a significant part of the imposed regional sinistral shear. Our study thus shows that the recent to current tectonics of central-eastern Iran is not only controlled by the ARA-EUR convergence, but also by the large-scale kinematics of the adjacent plates. We finally discuss the implications of the novel strain model that we propose on the seismicity that occurs in Central-Eastern Iran.

  1. Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology.

    PubMed

    Javed, Umair; Farooq, Robina; Shehzad, Farrukh; Khan, Zakir

    2018-04-01

    The present study investigates the optimization of HNO 3 leaching of Cu from old AMD Athlon processors under the effect of nitric acid concentration (%), temperature (°C) and ultrasonic power (W). The optimization study is carried out using response surface methodology with central composite rotatable design (CCRD). The ANOVA study concludes that the second degree polynomial model is fitted well to the fifteen experimental runs based on p-value (0.003), R 2 (0.97) and Adj-R 2 (0.914). The study shows that the temperature is the most significant process variable to the leaching concentration of Cu followed by nitric acid concentration. However, ultrasound power shows no significant impact on the leaching concentration. The optimum conditions were found to be 20% nitric acid concentration, 48.89 °C temperature and 5.52 W ultrasound power for attaining maximum concentration of 97.916 mg/l for Cu leaching in solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cellulose extraction from orange peel using sulfite digestion reagents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2011-11-01

    Orange peel (OP) was used as raw material for cellulose extraction. Two different pulping reagents were used, sodium sulfite and sodium metabisulfite. The effect of the main process parameters, sulfite agent dosage and reaction duration, on cellulose yield was investigated. A central composite rotatable design involving two variables at five levels and response surface methodology were used for the optimization of cellulose recovery. Other two invariable parameters were reaction temperature and hydromodulus. The optimum yields, referred to the weight of double extracted OP, were 40.4% and 45.2% for sodium sulfite and sodium metabisulfite digestions, respectively. The crude celluloses were bleached with hypochlorite and oxygen. The physicochemical characterization data of these cellulose materials indicate good levels of purity, low crystallinities, good whitenesses, good water retention and moderate molecular weights. According to these specific properties the recovered celluloses could be used as fillers, water absorbents, or as raw materials for cellulose derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Enhancement of the functionality of bread by incorporation of Shatavari (Asparagus racemosus).

    PubMed

    Singh, Nishu; Jha, Alok; Chaudhary, Anand; Upadhyay, Ashutosh

    2014-09-01

    In view of the wider consumption of bakery products, they could be good choice for the delivery of functionality. The present study attempts to develop a functional formulation of bread by incorporation of shatavari (Asparagus racemosus Willd.), which is an important medicinal plant of India. Central composite rotatable design (CCRD) was used for experiments in which yeast and shatavari powder were taken as variables. Response surface methodology (RSM) was used to optimize the bread formulations on the basis of hardness, adhesiveness, springiness, chewiness and cohesiveness as responses. Qualitative tests were performed for assessing the presence of phytochemicals in shatavari bread. Sensory attributes of the shatavari bread were evaluated using descriptive analysis technique. The optimum acceptable level for shatavari and yeast in bread was found to be 3.5 % and 4.96 %, respectively. All the phytochemicals such as alkaloid, steroid, terpenoid and saponin present in original herbs were also present in bread. However flavonoids were not found in the bread when analysed qualitatively and using TLC.

  4. Optimization and Performance parameters for adsorption of Cr6+ by microwave assisted carbon from Sterculia foetida shells

    NASA Astrophysics Data System (ADS)

    Gnanasundaram, N.; Loganathan, M.; Singh, A.

    2017-06-01

    Modeling of adsorption of Cr6+ on to activated carbon prepared from Sterculia foetida dried seed shells under different drying techniques namely sun, oven, and microwave drying (450W, 600W, 900W power). Optimization of process parameters such as pH, adsorbent dosage (g/ml), temperature (°C), contact time (min) were evaluated using Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). For batch adsorption studies at pH 3, adsorbent dosage of 1.5 g/ml, temperature 35°C and contact time 90 min were found to be optimum for the system under consideration and Microwave Activated Carbonized Sterculia foetida (MACSF) at 450W was found to be best suited for the adsorption of Cr+6 ions. The system was found to follow Langmuir type monolayer adsorption for the given operational parameters. SEM analysis was used to study the surface morphology of the carbon samples and the effect of pretreatment on carbonization.

  5. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films.

    PubMed

    Nogueira, Gislaine Ferreira; Fakhouri, Farayde Matta; de Oliveira, Rafael Augustus

    2018-04-15

    This research work aimed extraction and characterization of arrowroot starch. Besides, the effects of different concentrations of starch (2.59-5.41%, mass/mass) and concentrations of glycerol (9.95-24.08%, mass versus starch mass) on films properties were evaluated by a rotational central composite 2 2 experimental design. Arrowroot starch showed high amylose content (35%). Low values were found for the swelling power and solubility index. The X-ray diffraction showed "C" type crystalline structures, while thermogram showed Tg around of 118 and 120 °C. The thermogravimetric analysis showed that 40% of mass loss of starch occurred between 330 and 410 °C. The films were homogeneous, transparent and manageable. Starch and glycerol concentrations played a significant role in thickness and solubility in water of films, but was not significant for water vapor permeability and tensile strength. Therefore, arrowroot is a very promising starch source for application in films. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Production of Biosurfactants by Pseudomonas Species for Application in the Petroleum Industry.

    PubMed

    Silva, Maria Aparecida M; Silva, Aline F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2017-02-01

      The production of surfactants by microorganisms has become an attractive option in the treatment of oil-contaminated environments because biosurfactants are biodegradable and less toxic than synthetic surfactants, although production costs remain high. With the aim of reducing the cost of biosurfactant production, three strains of Pseudomonas (designated P1, P2, and P3) were cultivated in a low-cost medium containing molasses and corn steep liquor as substrates. Following the selection of the best producer (P3), a rotational central composite design (RCCD) was used to determine the influence of substrates concentration on surface tension and biosurfactant yield. The biosurfactant reduced the surface tension of water to 27.5 mN/m, and its CMC was determined to be 600 mg/L. The yield was 4.0 g/L. The biosurfactant demonstrated applicability under specific environmental conditions and was able to remove 80 to 90% of motor oil adsorbed to sand. The properties of the biosurfactant suggest its potential application in bioremediation of hydrophobic pollutants.

  7. Optimized extraction of polysaccharides from Cymbopogon citratus and its biological activities.

    PubMed

    Thangam, Ramar; Suresh, Veeraperumal; Kannan, Soundarapandian

    2014-04-01

    In this study the extraction of hot water soluble polysaccharides (HWSPs) from Cymbopogon citratus using hot water decoction was discussed. Response surface methodology (RSM) based on a three level, three variable central composite rotatable design (CCRD), was employed to obtain best possible combination of extraction time (X1: 30-180 min), extraction temperature (X2: 70-100 °C) and water to the raw material ratio (X3: 10-60) for maximum HWSPs extraction. The optimum extraction conditions were as follows: extraction time was around 113.81 min, extraction temperature at 99.66 °C and the ratio of water to raw material was 33.11 g/mL. Under these conditions, the experimental yield was 13.24±0.23%, which is well in close agreement with the value predicted by RSM model yield (13.19%). The basic characterization of HWSPs was determined by using the FTIR. These preliminary in vitro biological studies indicated that lemongrass polysaccharides were useful for anticancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optimization of HTST process parameters for production of ready-to-eat potato-soy snack.

    PubMed

    Nath, A; Chattopadhyay, P K; Majumdar, G C

    2012-08-01

    Ready-to-eat (RTE) potato-soy snacks were developed using high temperature short time (HTST) air puffing process and the process was found to be very useful for production of highly porous and light texture snack. The process parameters considered viz. puffing temperature (185-255 °C) and puffing time (20-60 s) with constant initial moisture content of 36.74% and air velocity of 3.99 m.s(-1) for potato-soy blend with varying soy flour content from 5% to 25% were investigated using response surface methodology following central composite rotatable design (CCRD). The optimum product in terms of minimum moisture content (11.03% db), maximum expansion ratio (3.71), minimum hardness (2,749.4 g), minimum ascorbic acid loss (9.24% db) and maximum overall acceptability (7.35) were obtained with 10.0% soy flour blend in potato flour at the process conditions of puffing temperature (231.0 °C) and puffing time (25.0 s).

  9. Application of response surface methodology for optimization of polygalacturonase production by Aspergillus niger.

    PubMed

    Yadav, Kaushlesh K; Garg, Neelima; Kumar, Devendra; Kumar, Sanjay; Singh, Achal; Muthukumar, M

    2015-01-01

    Polygalacturonase (PG) degrades pectin into D-galacturonic acid monomers and is used widely in food industry especially for juice clarification. In the present study,. fermentation conditions for polygalacturonase production by Asgergillus niger NAIMCCF-02958, using mango peel as substrate, were optimized using the 2(3) factorial design with central composite rotatable experimental design (CCRD) of response surface methodology (RSM). The maximum PG activity 723.66 U g(-1) was achieved under pH 4.0, temperature 30 degrees C and 2% inoculum by response surface curve. The experimental value of PG activity wkas higher 607.65 U g(-1) than the predicted value 511.75 U g(-1). Under the proposed optimized conditions, the determination coefficient (R2) was equal to 0.66 indicating that the model could explain 66% of the total variation as well as establish the relationship between the variables and the responses. ANOVA analysis and the three dimensional plots also confirmed interactions among the parameters.

  10. Chemometric study on the electrochemical incineration of diethylenetriaminepentaacetic acid using boron-doped diamond anode.

    PubMed

    Xian, Jiahui; Liu, Min; Chen, Wei; Zhang, Chunyong; Fu, Degang

    2018-05-01

    The electrochemical incineration of diethylenetriaminepentaacetic acid (DTPA) with boron-doped diamond (BDD) anode had been initially performed under galvanostatic conditions. The main and interaction effects of four operating parameters (flow rate, applied current density, sulfate concentration and initial DTPA concentration) on mineralization performance were investigated. Under similar experimental conditions, Doehlert matrix (DM) and central composite rotatable design (CCRD) were used as statistical multivariate methods in the optimization of the anodic oxidation processes. A comparison between DM model and CCRD model revealed that the former was more accurate, possibly due to its higher operating level numbers employed (7 levels for two variables). Despite this, these two models resulted in quite similar optimum operating conditions. The maximum TOC removal percentages at 180 min were 76.2% and 73.8% for case of DM and CCRD, respectively. In addition, with the aid of quantum chemistry calculation and LC/MS analysis, a plausible degradation sequence of DTPA on BDD anode was also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies

    PubMed Central

    Muñoz, Antonio Jesús; Espínola, Francisco; Moya, Manuel; Ruiz, Encarnación

    2015-01-01

    Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium  Klebsiella sp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process. PMID:26504824

  12. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.

    PubMed

    Wray, Derek; Ramaswamy, Hosahalli S

    2015-12-01

    A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. © 2015 Institute of Food Technologists®

  13. Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.

    PubMed

    Brown, J N; Brown, R C

    2012-01-01

    A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1.

    PubMed

    Muñoz, Antonio Jesús; Espínola, Francisco; Ruiz, Encarnación

    2017-05-05

    This study investigated the potential ability of Klebsiella sp. 3S1 to remove silver cations from aqueous solutions. The selected strain is a ubiquitous bacterium selected from among several microorganisms that had been isolated from wastewaters. To optimise the operating conditions in the biosorption process, a Rotatable Central Composite Experimental Design was developed establishing pH, temperature and biomass concentration as independent variables. Interaction mechanisms involved were analysed through kinetic and equilibrium studies. The experimental results suit pseudo-second order kinetics with two biosorption stages, being the first almost instantly. The Langmuir equilibrium model predicted a maximum capacity of biosorption (q) of 114.1mg Ag/g biomass. The study of the mechanisms involved in the biosorption was completed by employing advanced techniques which revealed that both bacterium-surface interactions and intracellular bioaccumulation participate in silver removal from aqueous solutions. The ability of Klebsiella sp. 3S1 to form silver chloride nanoparticles with interesting potential applications was also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. New paleomagnetic results from Upper Cretaceous arc-type rocks from the northern and southern branches of the Neotethys ocean in Anatolia

    NASA Astrophysics Data System (ADS)

    Cengiz Cinku, Mualla; Heller, Friedrich; Ustaömer, Timur

    2017-10-01

    A paleomagnetic study of Cretaceous arc type rocks in the Central-Eastern Pontides and in the Southeastern Taurides investigates the tectonic and paleolatitudinal evolution of three volcanic belts in Anatolia, namely the Northern and Southern Volcanic Belts in the Pontides and the SE Taurides volcanic belt. The paleomagnetic data indicate that magnetizations were acquired prior to folding at most sampling localities/sites, except for those in the Erzincan area in the Eastern Pontides. The Southern Volcanic Belt was magnetized at a paleolatitude between 23.8_{-3.8}^{+4.2}°N and 20.2_{-1.2}^{+1.3}°N. Hisarlı (J Geodyn 52:114-128, 2011) reported a more northerly paleolatitude (26.6_{-4.6}^{+5.1}°N) for the Northern Volcanic Belt. The comparison of the new paleomagnetic results with previous ones in Anatolia allows to conclude that the Southern Volcanic Belt in the Central-Eastern Pontides was emplaced after the Northern Volcanic Belt as a result of slab-roll back of the Northern Neotethys ocean in the Late Cretaceous. In the Southeast Taurides, Upper Cretaceous arc-related sandstones were at a paleolatitude of 16.8_{-3.8}^{+4.2} . The Late Cretaceous paleomagnetic rotations in the Central Pontides exhibit a counterclockwise rotation of R± Δ R=-37.1° ± 5.8° (Group 1; Çankırı, Yaylaçayı Formation) while Maastrichtian arc type rocks in the Yozgat area (Group 2) show clockwise rotations R + Δ R = 33.7° ± 8.4° and R + Δ R = 29.3° ± 6.0°. In the SE Taurides counterclockwise and clockwise rotations of R± Δ R=-48.6° ± 5.2° and R± Δ R=+34.1° ± 15.1° are obtained (Group 4; Elazığ Magmatic Complex). The Late Cretaceous paleomagnetic rotations in the Pontides follow a general trend in concordance with the shape of the suture zone after the collision between the Pontides and the Kırşehir block. The affect of the westwards excursion of the Anatolian plate and the associated fault bounded block rotations in Miocene are observed in the east of the study area and the SE Taurides.

  16. Paleomagnetic and AMS study of Permian and Triassic rocks from the Hronic Nappe and Paleogene rocks from the Central Carpathian Paleogene Basin, Western Carpathians

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Madzin, Jozef; Bučová, Jana; Grabowski, Jacek; Plašienka, Dušan; Aubrecht, Roman

    2017-04-01

    The Hronic (Choč) units form the highest cover nappe system of the Central Western Carpathians which was emplaced over the Fatric (Krížna) nappe system during the Late Cretaceous. The Permian (red beds and lava flows) and Triassic (sediments) rocks, the main targets of our study, were affected only by diagenetic or very low-grade, burial-related recrystallization and were tilted and transported together. The pre-late Cretaceous sequence is overlapped by Paleogene mainly flysch sequences. Three laboratories (Bratislava, Budapest and Warsaw) were involved in standard paleomagnetic processing and AMS measurements of the samples, while Curie-points were determined in Budapest. The site/locality mean paleomagnetic directions obtained were significantly different from the local direction of the present Earth magnetic field, indicating the long term stability of the paleomagnetic signal. The magnetic fabrics varied from un-oriented to dominantly schistose with well-defined lineations. The latter were normally subhorizontal, although subvertical maxima also occurred among the Triassic sediments. Shallow inclinations, after tilt corrections, suggest near-equatorial position for most of the Permian and Lower Triassic, while around 20°N for the Middle-Upper Triassic localities. The paleomagnetic declinations are interpreted in terms of CW tectonic rotations, which are normally larger for the Permian than for the Triassic samples, although there are some differences within the same age groups. This may be attributed to differential movements during nappe emplacement or subsequent tectonic disturbances. For two localities from the Paleogene cover sequence of the Hronic units, close to the main sampling area (Low Tatra Mts) of the present study documented fairly large CCW rotations, thus obtained additional evidence for the general CCW rotation of the Central Western Carpathians during the Cenozoic. Thus, we conclude that the Cenozoic CCW rotation was pre-dated by large CW rotations, probably connected to the nappe emplacement. In addition, a pre-Jurassic moderate CW rotation is inferred from the difference in declinations between Triassic and Permian palaeomagnetic declinations. Acknowledgement: This work was financially supported by the Slovak Research and Development Agency under the contract No. APVV-0212-12 and by the Hungarian Scientific Research Fund OTKA K105245.

  17. The functional significance of velocity storage and its dependence on gravity.

    PubMed

    Laurens, Jean; Angelaki, Dora E

    2011-05-01

    Research in the vestibular field has revealed the existence of a central process, called 'velocity storage', that is activated by both visual and vestibular rotation cues and is modified by gravity, but whose functional relevance during natural motion has often been questioned. In this review, we explore spatial orientation in the context of a Bayesian model of vestibular information processing. In this framework, deficiencies/ambiguities in the peripheral vestibular sensors are compensated for by central processing to more accurately estimate rotation velocity, orientation relative to gravity, and inertial motion. First, an inverse model of semicircular canal dynamics is used to reconstruct rotation velocity by integrating canal signals over time. However, its low-frequency bandwidth is limited to avoid accumulation of noise in the integrator. A second internal model uses this reconstructed rotation velocity to compute an internal estimate of tilt and inertial acceleration. The bandwidth of this second internal model is also restricted at low frequencies to avoid noise accumulation and drift of the tilt/translation estimator over time. As a result, low-frequency translation can be erroneously misinterpreted as tilt. The time constants of these two integrators (internal models) can be conceptualized as two Bayesian priors of zero rotation velocity and zero linear acceleration, respectively. The model replicates empirical observations like 'velocity storage' and 'frequency segregation' and explains spatial orientation (e.g., 'somatogravic') illusions. Importantly, the functional significance of this network, including velocity storage, is found during short-lasting, natural head movements, rather than at low frequencies with which it has been traditionally studied.

  18. The functional significance of velocity storage and its dependence on gravity

    PubMed Central

    Laurens, Jean

    2013-01-01

    Research in the vestibular field has revealed the existence of a central process, called ‘velocity storage’, that is activated by both visual and vestibular rotation cues and is modified by gravity, but whose functional relevance during natural motion has often been questioned. In this review, we explore spatial orientation in the context of a Bayesian model of vestibular information processing. In this framework, deficiencies/ambiguities in the peripheral vestibular sensors are compensated for by central processing to more accurately estimate rotation velocity, orientation relative to gravity, and inertial motion. First, an inverse model of semicircular canal dynamics is used to reconstruct rotation velocity by integrating canal signals over time. However, its low-frequency bandwidth is limited to avoid accumulation of noise in the integrator. A second internal model uses this reconstructed rotation velocity to compute an internal estimate of tilt and inertial acceleration. The bandwidth of this second internal model is also restricted at low frequencies to avoid noise accumulation and drift of the tilt/translation estimator over time. As a result, low-frequency translation can be erroneously misinterpreted as tilt. The time constants of these two integrators (internal models) can be conceptualized as two Bayesian priors of zero rotation velocity and zero linear acceleration, respectively. The model replicates empirical observations like ‘velocity storage’ and ‘frequency segregation’ and explains spatial orientation (e.g., ‘somatogravic’) illusions. Importantly, the functional significance of this network, including velocity storage, is found during short-lasting, natural head movements, rather than at low frequencies with which it has been traditionally studied. PMID:21293850

  19. Integration of Canal and Otolith Inputs by Central Vestibular Neurons Is Subadditive for Both Active and Passive Self-Motion: Implication for Perception

    PubMed Central

    Carriot, Jerome; Jamali, Mohsen; Brooks, Jessica X.

    2015-01-01

    Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life. PMID:25716854

  20. Effects of Axial Torsion on Disc Height Distribution: an In Vivo Study

    PubMed Central

    Espinoza Orías, Alejandro A.; Mammoser, Nicole M.; Triano, John J.; An, Howard S.; Andersson, Gunnar B.J.; Inoue, Nozomu

    2016-01-01

    Objectives Axial rotation of the torso is commonly used during manipulation treatment of low back pain. Little is known about the effect of these positons on disc morphology. Rotation is a three-dimensional event that is inadequately represented with planar images in the clinic. True quantification of the intervertebral gap can be achieved with a disc height distribution. The objective of this study was to analyze disc height distribution patterns during torsion relevant to manipulation in vivo. Methods Eighty-one volunteers were CT-scanned both in supine and in right 50° rotation positions. Virtual models of each intervertebral gap representing the disc were created with the inferior endplate of each ‘disc’ set as the reference surface and separated into five anatomical zones: four peripheral and one central, corresponding to the footprint of the annulus fibrosus and nucleus pulposus, respectively. Whole-disc and individual anatomical zone disc height distributions were calculated in both positions, and were compared against each other with ANOVA, with significance set at p < 0.05. Results Mean neutral disc height was 7.32 (1.59) mm. With 50° rotation, a small but significant increase to 7.44 (1.52) mm (p < 0.0002) was observed. The right side showed larger separation in most levels, except at L5/S1. The posterior and right zones increased in height upon axial rotation of the spine (p < 0.0001), while the left, anterior and central decreased. Conclusions This study quantified important tensile/compressive changes disc height during torsion. The implications of these mutually opposing changes on spinal manipulation are still unknown. PMID:27059249

  1. Plate rotations, fault slip rates, fault locking, and distributed deformation in northern Central America from 1999-2017 GPS observations

    NASA Astrophysics Data System (ADS)

    Ellis, A. P.; DeMets, C.; Briole, P.; Cosenza, B.; Flores, O.; Guzman-Speziale, M.; Hernandez, D.; Kostoglodov, V.; La Femina, P. C.; Lord, N. E.; Lasserre, C.; Lyon-Caen, H.; McCaffrey, R.; Molina, E.; Rodriguez, M.; Staller, A.; Rogers, R.

    2017-12-01

    We describe plate rotations, fault slip rates, and fault locking estimated from a new 100-station GPS velocity field at the western end of the Caribbean plate, where the Motagua-Polochic fault zone, Middle America trench, and Central America volcanic arc faults converge. In northern Central America, fifty-one upper-plate earthquakes caused approximately 40,000 fatalities since 1900. The proximity of main population centers to these destructive earthquakes and the resulting loss of human life provide strong motivation for studying the present-day tectonics of Central America. Plate rotations, fault slip rates, and deformation are quantified via a two-stage inversion of daily GPS position time series using TDEFNODE modeling software. In the first stage, transient deformation associated with three M>7 earthquakes in 2009 and 2012 is estimated and removed from the GPS position time series. In Stage 2, linear velocities determined from the corrected GPS time series are inverted to estimate deformation within the western Caribbean plate, slip rates along the Motagua-Polochic faults and faults in the Central America volcanic arc, and the gradient of extension in the Honduras-Guatemala wedge. Major outcomes of the second inversion include the following: (1) Confirmation that slip rates on the Motagua fault decrease from 17-18 mm/yr at its eastern end to 0-5 mm/yr at its western end, in accord with previous results. (2) A transition from moderate subduction zone locking offshore from southern Mexico and parts of southern Guatemala to weak or zero coupling offshore from El Salvador and parts of Nicaragua along the Middle America trench. (3) Evidence for significant east-west extension in southern Guatemala between the Motagua fault and volcanic arc. Our study also shows evidence for creep on the eastern Motagua fault that diminishes westward along the North America-Caribbean plate boundary.

  2. Titan's interior from its rotation axis orientation and its Love number

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Gabriel, Tobie; Axel, Lefèvre

    2013-04-01

    The tidal Love number k2 of Titan has been recently estimated from Cassini flybys radio-tracking and is consistent with the presence of a global ocean in Titan's interior, located between two ice layers (Iess et al. 2012), in accordance with prediction from interior and evolutionary models for Titan. Previously, the orientation of the rotation axis of Titan has been measured on the basis of radar images from Cassini (Stiles et al. 2008). Titan's obliquity, is about 0.3. The measured orientation is more consistent with the presence of a global internal liquid ocean than with an entirely solid Titan (Baland et al. 2011). The global topography data of Titan seem to indicate some departure from the hydrostatic shape expected for a synchronous satellite under the influence of its rotation and the static tides raised by the central planet (Zebker et al. 2009). This may be explained by a differential tidal heating in the ice shell which flattens the poles (Nimmo and Bills 2010). A surface more flattened than expected implies compensation in depth to explain the measured gravity coefficients C20 and C22 of Iess et al. (2012). Here, all layers are assumed to have a tri-axial ellipsoid shape, but with polar and equatorial flattenings that differ from the hydrostatic expected ones. We assess the influence of this non-hydrostatic shape on the conclusions of Baland et al. (2011), which developped a Cassini state model for the orientation of the rotation axis of a synchronous satellite having an internal liquid layer. We assess the possibility to constrain Titan's interior (and particularly the structure of the water/ice layer) from both the rotation axis orientation and the Love number. We consider a range of internal structure models consistent with the mean density and the mean radius of Titan, and made of a shell, an ocean, a mantle, and a core, from the surface to the center, with various possible compositions (e.g. ammonia mixed with water for the ocean). The internal structure models consistent with the measured orientation of the rotation axis and Love number still have to be examined with respect to other constrains, such as the shell thickness estimation derived from electric-field measurement of the Huyges probe (Béghin et al. 2012) and the expected temperature profile of the water/ice layer. For instance, a thin shell would imply a rather thick ocean, based on water (or water/ammonia) phase diagram.

  3. Direct Resin Composite Restoration of Maxillary Central Incisors with Fractured Tooth Fragment Reattachment: Case Report.

    PubMed

    Szmidt, Monika; Górski, Maciej; Barczak, Katarzyna; Buczkowska-Radlińska, Jadwiga

    This article presents a clinical protocol to reconstruct two accidentally damaged maxillary central incisors using composite resin material and a fractured tooth component. A patient was referred to the clinic with fracture of the two maxillary central incisors. Clinical examination revealed that both teeth were fractured in the middle third of the crown and that the fractures involved enamel and dentin with no pulp exposure. The patient had also suffered a lower lip laceration. When the lip was evaluated, a fractured fragment of the maxillary right central incisor was found inside the wound. The missing part of the tooth was replaced via adhesive attachment. Due to the damage of the fractured part of the maxillary left central incisor, direct composite restoration of this tooth was performed. With the advent of adhesive dentistry, the process of fragment reattachment has become simplified and more reliable. This procedure provides improved function, is faster to perform, and provides long-lasting effects, indicating that reattachment of a coronal fragment is a realistic alternative to placement of conventional resin composite restorations.

  4. Evolution and Nucleosynthesis of Massive Stars

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Maeder, André; Choplin, Arthur; Takahashi, Koh; Ekström, Sylvia; Hirschi, Raphael; Chiappini, Cristina; Eggenberger, Patrick

    Massive stars are rapid nuclear reactors that play a key role in injecting new synthesized elements in the interstellar medium. Depending on the strengths of the stellar winds on the efficiency of mixing processes, the masses and the chemical compositions of their ejecta can be dramatically different. In a first part, we describe two types of rotating models differing by the physics involved and discussing various consequences. In a second part, we focus on the impacts of rotation in massive stars at very low metallicity. Various nucleosynthetic signatures pointing towards the need for some extra-mixing in the first generation of stars are presented. This extra-mixing has great chance to be driven by rotation for the following reasons: 1) when the metallicity decreases, the formation of fast rotators seem to be favored; 2) rotational mixing is more efficient at low metallicities; 3) primary nitrogen is produced only at low metallicities a fact that can be well explained by more efficient rotational mixing at low metallicities.

  5. Rotation Studies of Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Wasserman, Lawrence H.; Lederer, Susan M.; Rohl, Derrick A.

    2011-08-01

    The Jovian Trojan asteroids appear to be fundamentally different from main belt asteroids. They formed further from the sun, they are of different composition, and their collisional history is different. Lightcurve studies provide information about the distribution of rotation frequencies of a group of asteroids. For main belt asteroids larger than about 40 km in diameter, the distribution of rotation frequencies is Maxwellian (Pravec et al. 2000). This suggests that collisions determine their rotation properties. Smaller main belt asteroids, however, show a predominance of both fast and slow rotators, with the observed spin distribution apparently controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect (Pravec et al. 2008). The Trojans larger than 100 km in diameter have been almost completely sampled, but lightcurves for smaller Trojans have been less well studied due to their low albedos and greater solar distances. We propose to investigate the rotation periods of 4-6 small (D < 50 km) Trojan asteroids and 6-9 Trojans in the 50-100 km size range.

  6. The tectonic and geomagnetic significance of paleomagnetic observations from volcanic rocks from central Afar, Africa

    NASA Astrophysics Data System (ADS)

    Acton, Gary D.; Tessema, Abera; Jackson, Michael; Bilham, Roger

    2000-08-01

    Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal-Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of ˜11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below ˜500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.

  7. Is the rotation of the femoral head a potential initiation for cutting out? A theoretical and experimental approach.

    PubMed

    Lenich, Andreas; Bachmeier, Samuel; Prantl, Lukas; Nerlich, Michael; Hammer, Jochen; Mayr, Edgar; Al-Munajjed, Amir Andreas; Füchtmeier, Bernd

    2011-04-22

    Since cut-out still remains one of the major clinical challenges in the field of osteoporotic proximal femur fractures, remarkable developments have been made in improving treatment concepts. However, the mechanics of these complications have not been fully understood.We hypothesize using the experimental data and a theoretical model that a previous rotation of the femoral head due to de-central implant positioning can initiate a cut-out. In this investigation we analysed our experimental data using two common screws (DHS/Gamma 3) and helical blades (PFN A/TFN) for the fixation of femur fractures in a simple theoretical model applying typical gait pattern on de-central positioned implants. In previous tests during a forced implant rotation by a biomechanical testing machine in a human femoral head the two screws showed failure symptoms (2-6Nm) at the same magnitude as torques acting in the hip during daily activities with de-central implant positioning, while the helical blades showed a better stability (10-20Nm).To calculate the torque of the head around the implant only the force and the leverarm is needed (N [Nm] = F [N] * × [m]). The force F is a product of the mass M [kg] multiplied by the acceleration g [m/s2]. The leverarm is the distance between the center of the head of femur and the implant center on a horizontal line. Using 50% of 75 kg body weight a torque of 0.37Nm for the 1 mm decentralized position and 1.1Nm for the 3 mm decentralized position of the implant was calculated. At 250% BW, appropriate to a normal step, torques of 1.8Nm (1 mm) and 5.5Nm (3 mm) have been calculated.Comparing of the experimental and theoretical results shows that both screws fail in the same magnitude as torques occur in a more than 3 mm de-central positioned implant. We conclude the center-center position in the head of femur of any kind of lag screw or blade is to be achieved to minimize rotation of the femoral head and to prevent further mechanical complications.

  8. Pervasive Palaeogene remagnetization of the central Taurides fold-and-thrust belt (southern Turkey) and implications for rotations in the Isparta Angle

    NASA Astrophysics Data System (ADS)

    Meijers, Maud J. M.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Altıner, Demir; Kaymakcı, Nuretdin; Langereis, Cor G.

    2011-03-01

    The Turkish Anatolide-Tauride block rifted away from the northern margin of Gondwana in the Triassic, which gave way to the opening of the southern Neo-Tethys. By the late Palaeocene to Eocene, it collided with the southern Eurasian margin, leading to the closure of the northern Neo-Tethys ocean. To determine the position of the Anatolide-Tauride block with respect to the African and Eurasian margin we carried out a palaeomagnetic study in the central Taurides belt, which constitutes the eastern limb of the Isparta Angle. The sampled sections comprise Carboniferous to Palaeocene rocks (mainly limestones). Our data suggest that all sampled rocks are remagnetized during the late Palaeocene to Eocene phase of folding and thrusting event, related to the collision of the Anatolide-Tauride block with Eurasia. To further test the possibility of remagnetization, we use a novel end-member modelling approach on 174 acquired isothermal remanent magnetization (IRM) curves. We argue that the preferred three end-member model confirms the proposed remagnetization of the rocks. Comparing our data to the post-Eocene declination pattern in the central Tauride belt, we conclude that our clockwise rotations are in agreement with data from other studies. After combining our results with previously published data from the Isparta Angle (that includes our study area), we have reasons to cast doubt on the spatial and temporal extent of an earlier reported early to middle Miocene remagnetization event. We argue that the earlier reported remagnetized directions from Triassic rocks—in tilt corrected coordinates—from the southwestern Antalya Nappes (western Taurides), are in good agreement with other studies from the area that show a primary origin of their characteristic remanent magnetization. This implies that we document a clockwise rotation for the southwestern Antalya Nappes since the Triassic that is remarkably similar to the post-Eocene (˜40°) rotation of the central Taurides. For the previously published results that are clearly remagnetized, we argue that their remagnetization has occurred in the Palaeocene to Eocene.

  9. Influence of tumor location on the intensity-modulated radiation therapy plan of helical tomotherapy.

    PubMed

    Xu, Yingjie; Yan, Hui; Hu, Zhihui; Ma, Pan; Men, Kuo; Huang, Peng; Ren, Wenting; Dai, Jianrong; Li, Yexiong

    2017-01-01

    Given the design of the Helical TomoTherapy device, the patient's central axis is routinely aligned with the machine's rotational axis to prevent the patient's body from colliding with the machine walls. However, for treatment of tumors located away from the patient's central axis, this position may not be optimal as the adequate radiation dose may not reach the affected site. Our study aimed to investigate the influence of tumor location on dose quality and delivery efficiency of tomotherapy plans. A phantom and 15 patients were selected for this study. Two plans, A and B, were implemented for each case. In plan A, the patient's central axis was aligned with the machine's rotational axis, whereas in plan B, the center of the planning target volume (PTV) was aligned with the machine's rotational axis. Both plans were optimized with the same planning parameters, and the dose quality of the plans was evaluated using dosimetrics. The delivery efficiency was determined from delivery time and monitor units (MUs). A paired t-test or nonparametric Wilcoxon signed-rank test was performed for statistical comparison. In the phantom study, the median delivery times were 358 and 336 seconds for plans A and B, respectively, and this difference was significant (p = 0.005). In the patient study, the median delivery times were 348 and 317 seconds for plans A and B, respectively, and this difference was also significant (p = 0.001). The dose qualities of both plans for each patient were nearly identical. No significant differences were found in the conformal index, heterogeneity index, and mean dose delivered to normal tissue between the plans. Both phantom and patient studies showed that for normal-sized patients, the delivery time reduced as the distance between the PTV and the patient's central axis increased when the PTV center was aligned with the machine axis. In conclusion, aligning the PTV center with the machine's rotational axis by shifting the patient during tomotherapy reduces the delivery time without compromising the dose quality of intensity-modulated radiation therapy. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  10. Qualitative numerical study of simultaneous high-G-intensified gas–solids contact, separation and segregation in a bi-disperse rotating fluidized bed in a vortex chamber

    DOE PAGES

    De Wilde, Juray; Richards, George; Benyahia, Sofiane

    2016-05-13

    Coupled discrete particle method – computational fluid dynamics simulations are carried out to demonstrate the potential of combined high-G-intensified gas-solids contact, gas-solids separation and segregation in a rotating fluidized bed in a static vortex chamber. A case study with two distinct types of particles is focused on. When feeding solids using a standard solids inlet design, a dense and uniform rotating fluidized bed is formed, guaranteeing intense gas-solids contact. The presence of both types of particles near the chimney region reduces, however, the strength of the central vortex and is detrimental for separation and segregation. Optimization of the solids inletmore » design is required, as illustrated by stopping the solids feeding. High-G separation and segregation of the batch of particles is demonstrated, as the strength of the central vortex is restored. The flexibility with respect to the gas flow rate of the bed density and uniformity and of the gas-solids separation and segregation is demonstrated, a unique feature of vortex chamber generated rotating fluidized beds. With the particles considered in this case study, turbulent dispersion by large eddies in the gas phase is shown to have only a minor impact on the height of the inner bed of small/light particles.« less

  11. Do Disk Galaxies Have Different Central Velocity Dispersions At A Given Rotation Velocity?

    NASA Astrophysics Data System (ADS)

    Danilovich, Taissa; Jones, H.; Mould, J.; Taylor, E.; Tonini, C.; Webster, R.

    2011-05-01

    Hubble's classification of spiral galaxies was one dimensional. Actually it was 1.5 dimensional, as he distinguished barred spirals. Van den Bergh's was two dimensional: spirals had luminosity classes too. Other schemes are summarized at http://www.daviddarling.info/encyclopedia/G/galaxyclassification.html A more quantitative approach is to classify spiral galaxies by rotation velocity. Their central velocity dispersion (bulge) tends to be roughly one half of their rotation velocity (disk). There is a trend from σ/W = 0.8 to σ/W = 0.2 as one goes from W = 100 to 500 km/s, where W is twice the rotation velocity. But some fraction of spirals have a velocity dispersion up to a factor of two larger than that. In hierarchical galaxy formation models, the relative contributions of σ and W depend on the mass accretion history of the galaxy, which determines the mass distribution of the dynamical components such as disk, bulge and dark matter halo. The wide variety of histories that originate in the hierarchical mass assembly produce at any value of W a wide range of σ/W, that reaches high values in more bulge- dominated systems. In a sense the two classifiers were both right: spirals are mostly one dimensional, but σ/W (bulge to disk ratio) is often larger than average. Is this a signature of merger history?

  12. Alterations in central motor representation increase over time in individuals with rotator cuff tendinopathy.

    PubMed

    Ngomo, Suzy; Mercier, Catherine; Bouyer, Laurent J; Savoie, Alexandre; Roy, Jean-Sébastien

    2015-02-01

    To investigate whether rotator cuff tendinopathy leads to changes in central motor representation of a rotator cuff muscle, and to assess whether such changes are related to pain intensity, pain duration, and physical disability. Using transcranial magnetic stimulation, motor representation of infraspinatus muscle was assessed bilaterally in patients with unilateral rotator cuff tendinopathy. Active motor threshold is significantly larger for the affected shoulder comparatively to the unaffected shoulder (n=39, p=0.01), indicating decreased corticospinal excitability on the affected side compared to unaffected side. Further, results suggest that this asymmetry in corticospinal excitability is associated with duration of pain (n=39; r=0.45; p=0.005), but not with pain intensity (n=39; r<0.03; p>0.43). In contrast with findings in other populations with musculoskeletal pain, no significant inter-hemispheric asymmetry was observed in map location (n=16; p-values ⩾ 0.91), or in the amplitude of motor responses obtained at various stimulation intensities (n=16; p=0.83). Chronicity of pain, but not its intensity, appears to be a factor related to lower excitability of infraspinatus representation. These results support the view that while cortical reorganization correlates with magnitude of pain in neuropathic pain syndromes, it could be more related to chronicity in the case of musculoskeletal disorders. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Some Aspects of Designing Multirim Composite Flywheels

    NASA Astrophysics Data System (ADS)

    Portnov, G. G.; Bakis, C. E.; Emerson, R. P.

    2004-09-01

    Approximate solutions are given for stresses in a flexible cylindrical interlayer connecting concentric, rigid, cylindrical rims subjected to three loading cases: (i) rotation about the axis of symmetry; (ii) in-plane translation of the rims relative to each other; (iii) out-of-plane rotation of the rims relative to each other. The solutions are important for the multiple filament-wound composite rims used in energy storage flywheels, where the elastomeric interlayer idea has been proposed as a means of preventing high radial tensile stresses, which would otherwise break down the rims at less than optimal speeds. The compliances associated with the second and third loading cases are also given, establishing a simple means of analysis of the critical vibration frequencies of multirim flywheel rotors.

  14. Changes in non-pine woody species density, composition, and diversity following herbicide and fertilization application to mid-rotation loblolly pine stands

    Treesearch

    Hal O. Liechty; Conner Fristoe

    2012-01-01

    We monitored woody vegetation (dbh>1.0 in) response for up to six years following a herbicide (16 ounces imazapyr /acre), a fertilizer (365 pounds urea and 175 pounds diammonium phosphate/acre ) and a combined fertilizer and herbicide application in four mid-rotation loblolly pine stands located within the Upper Gulf Coastal Plain in Arkansas. Approximately 60-80%...

  15. Temporal patterns of woody species diversity in a central Appalachian forest from 1856 to 1997

    Treesearch

    Thomas M. Schuler; Andrew R. Gillespie

    2000-01-01

    This study examined the composition of woody species in a mixed mesophytic forest in the central Appalachian region with respect to both time and different disturbance regimes. Species composition and diversity were assessed from 1856 to 1997 on a tract of land that currently is part of the Fernow Experimental Forest in north-central West Virginia. Additionally, the...

  16. Giant Faraday rotation in Bi(x)Ce(3-x)Fe5O12 epitaxial garnet films.

    PubMed

    Chandra Sekhar, M; Singh, Mahi R; Basu, Shantanu; Pinnepalli, Sai

    2012-04-23

    Thin films of Bi(x)Ce(3-x)Fe(5)O(12) with x = 0.7 and 0.8 compositions were prepared by using pulsed laser deposition. We investigated the effects of processing parameters used to fabricate these films by measuring various physical properties such as X-ray diffraction, transmittance, magnetization and Faraday rotation. In this study, we propose a phase diagram which provides a suitable window for the deposition of Bi(x)Ce(3-x)Fe(5)O(12) epitaxial films. We have also observed a giant Faraday rotation of 1-1.10 degree/µm in our optimized films. The measured Faraday rotation value is 1.6 and 50 times larger than that of CeYIG and YIG respectively. A theoretical model has been proposed for Faraday rotation based on density matrix method and an excellent agreement between experiment and theory is found. © 2012 Optical Society of America

  17. Hafnium isotope stratigraphy of ferromanganese crusts

    PubMed

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  18. A novel verification method using a plastic scintillator imagining system for assessment of gantry sag in radiotherapy.

    PubMed

    Tsuneda, Masato; Nishio, Teiji; Saito, Akito; Tanaka, Sodai; Suzuki, Tatsuhiko; Kawahara, Daisuke; Matsushita, Keiichiro; Nishio, Aya; Ozawa, Shuichi; Karasawa, Kumiko; Nagata, Yasushi

    2018-06-01

    High accuracy of the beam-irradiated position is required for high-precision radiation therapy such as stereotactic body radiation therapy (SBRT), volumetric modulated arc therapy (VMAT), and intensity modulated radiation therapy (IMRT). Users generally perform the verification of the mechanical and radiation isocenters using the star shot test and the Winston Lutz test that allow evaluation of the displacement at the isocenter. However, these methods are unable to evaluate directly and quantitatively the sagging angle that is caused by the weight of the gantry itself along the gantry rotation axis. In addition, the verification of the central axis of the irradiated beam that is not dependent at the isocenter is needed for the mechanical quality assurance of a nonisocentric irradiation technique. In this study, we have developed a prototype system for the verification of three-dimensional (3D) beam alignment and we have verified the system concept for 3D isocentricity. Our system allows detection of the central axis in 3D coordinates and evaluation of the irradiated oblique angle to the gantry rotation axis, i.e., the sagging angle. In order to measure the central axis of the irradiated beam in 3D coordinates, we constructed the prototype verification system consisting of a column-shaped plastic scintillator (CoPS), a truncated cone-shaped mirror (TCsM), and a cooled charged-coupled device (CCD) camera. This verification system was irradiated with 6-MV photon beams and the scintillation light was measured using the CCD camera. The central axis on the axial plane (two-dimensional (2D) central axis) was acquired from the integration of the scintillation light along the major axis of the CoPS, and the central axis in 3D coordinates (3D central axis) was acquired from two curve-shaped profiles which were reflected by the TCsM. We verified the calculation accuracy of the gantry rotation axis, θ z . Additionally, we calculated the 3D central axis and the sagging angle at each gantry angle. We acquired the measurement images composed of the 2D central axis and the two curve-shaped profiles. The relationship between the irradiated and measured angles with respect to the gantry rotation axis had good linearity. The mean and standard deviation of the difference between the irradiated and measured angles were 0.012 and 0.078 degrees, respectively. The size of the 2D and 3D radiation isocenters were 0.470 and 0.652 mm on the axial plane and in 3D coordinates, respectively. The sagging angles were -0.31, 0.39, and 0.38 degrees at the gantry angles of 0, 180, and 180E degrees, respectively. We developed a novel verification system, designated as the "kompeito shot test system," to verify the 3D beam alignment. This system concept works for both verification of the 3D isocentricity and the direct evaluation of the sagging angle. Next, we want to improve the aspects of this system, such as the shape and the type of scintillator, to increase the system accuracy and nonisocentric beam alignment performance. © 2018 American Association of Physicists in Medicine.

  19. Nonlinear Buckling Analysis of Functionally Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational Constraints under Uniform Radial Load.

    PubMed

    Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang

    2018-05-28

    The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.

  20. Material and Stress Rotations: Anticipating the 1992 Landers, CA Earthquake

    NASA Astrophysics Data System (ADS)

    Nur, A. M.

    2014-12-01

    "Rotations make nonsense of the two-dimensional reconstructions that are still so popular among structural geologists". (McKenzie, 1990, p. 109-110) I present a comprehensive tectonic model for the strike-slip fault geometry, seismicity, material rotation, and stress rotation, in which new, optimally oriented faults can form when older ones have rotated about a vertical axis out of favorable orientations. The model was successfully tested in the Mojave region using stress rotation and three independent data sets: the alignment of epicenters and fault plane solutions from the six largest central Mojave earthquakes since 1947, material rotations inferred from paleomagnetic declination anomalies, and rotated dike strands of the Independence dike swarm. The model led not only to the anticipation of the 1992 M7.3 Landers, CA earthquake but also accounts for the great complexity of the faulting and seismicity of this event. The implication of this model for crustal deformation in general is that rotations of material (faults and the blocks between them) and of stress provide the key link between the complexity of faults systems in-situ and idealized mechanical theory of faulting. Excluding rotations from the kinematical and mechanical analysis of crustal deformation makes it impossible to explain the complexity of what geologists see in faults, or what seismicity shows us about active faults. However, when we allow for rotation of material and stress, Coulomb's law becomes consistent with the complexity of faults and faulting observed in situ.

  1. Effect of composition gradient on magnetothermal instability modified by shear and rotation

    NASA Astrophysics Data System (ADS)

    Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar

    2018-02-01

    We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.

  2. Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation

    PubMed Central

    Bock, Lars V.; Blau, Christian; Vaiana, Andrea C.; Grubmüller, Helmut

    2015-01-01

    During ribosomal translation, the two ribosomal subunits remain associated through intersubunit bridges, despite rapid large-scale intersubunit rotation. The absence of large barriers hindering rotation is a prerequisite for rapid rotation. Here, we investigate how such a flat free-energy landscape is achieved, in particular considering the large shifts the bridges undergo at the periphery. The dynamics and energetics of the intersubunit contact network are studied using molecular dynamics simulations of the prokaryotic ribosome in intermediate states of spontaneous translocation. Based on observed occupancies of intersubunit contacts, residues were grouped into clusters. In addition to the central contact clusters, peripheral clusters were found to maintain strong steady interactions by changing contacts in the course of rotation. The peripheral B1 bridges are stabilized by a changing contact pattern of charged residues that adapts to the rotational state. In contrast, steady strong interactions of the B4 bridge are ensured by the flexible helix H34 following the movement of protein S15. The tRNAs which span the subunits contribute to the intersubunit binding enthalpy to an almost constant degree, despite their different positions in the ribosome. These mechanisms keep the intersubunit interaction strong and steady during rotation, thereby preventing dissociation and enabling rapid rotation. PMID:26109353

  3. Army Research Office Workshop on Dynamic Response of Composite Structures Held in New Orleans, Louisiana on August 30-September 1, 1993

    DTIC Science & Technology

    1994-04-01

    were then fibrous composites and a detailed machined at the mid-span using a rotating saw understanding of these materials response to blade. The...Cruciform shaped samples were used. Testing was performed on a Most work on joints in composite biaxial machine developed and built plates or shells...Apr 94 Final 1 Feb 93-30 Sep 93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Dynamic Response of Composite Structures DAAHO4-93-G-0052 IL AUTHOR(S) David

  4. Contribution of intravestibular sensory conflict to motion sickness and dizziness in migraine disorders.

    PubMed

    Wang, Joanne; Lewis, Richard F

    2016-10-01

    Migraine is associated with enhanced motion sickness susceptibility and can cause episodic vertigo [vestibular migraine (VM)], but the mechanisms relating migraine to these vestibular symptoms remain uncertain. We tested the hypothesis that the central integration of rotational cues (from the semicircular canals) and gravitational cues (from the otolith organs) is abnormal in migraine patients. A postrotational tilt paradigm generated a conflict between canal cues (which indicate the head is rotating) and otolith cues (which indicate the head is tilted and stationary), and eye movements were measured to quantify two behaviors that are thought to minimize this conflict: suppression and reorientation of the central angular velocity signal, evidenced by attenuation ("dumping") of the vestibuloocular reflex and shifting of the rotational axis of the vestibuloocular reflex toward the earth vertical. We found that normal and migraine subjects, but not VM patients, displayed an inverse correlation between the extent of dumping and the size of the axis shift such that the net "conflict resolution" mediated through these two mechanisms approached an optimal value and that the residual sensory conflict in VM patients (but not migraine or normal subjects) correlated with motion sickness susceptibility. Our findings suggest that the brain normally controls the dynamic and spatial characteristics of central vestibular signals to minimize intravestibular sensory conflict and that this process is disrupted in VM, which may be responsible for the enhance motion intolerance and episodic vertigo that characterize this disorder. Copyright © 2016 the American Physiological Society.

  5. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    NASA Technical Reports Server (NTRS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  6. Rotation and anisotropy of galaxies revisited

    NASA Astrophysics Data System (ADS)

    Binney, James

    2005-11-01

    The use of the tensor virial theorem (TVT) as a diagnostic of anisotropic velocity distributions in galaxies is revisited. The TVT provides a rigorous global link between velocity anisotropy, rotation and shape, but the quantities appearing in it are not easily estimated observationally. Traditionally, use has been made of a centrally averaged velocity dispersion and the peak rotation velocity. Although this procedure cannot be rigorously justified, tests on model galaxies show that it works surprisingly well. With the advent of integral-field spectroscopy it is now possible to establish a rigorous connection between the TVT and observations. The TVT is reformulated in terms of sky-averages, and the new formulation is tested on model galaxies.

  7. Diverter assembly for radioactive material

    DOEpatents

    Andrews, Katherine M.; Starenchak, Robert W.

    1989-01-01

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which mvoes between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place.

  8. The low energy plasma in the Uranian magnetosphere

    NASA Technical Reports Server (NTRS)

    Mcnutt, R. L., Jr.; Belcher, J.; Bridge, H.; Lazarus, A. J.; Richardson, J.; Sands, M.; Bagenal, F.; Eviatar, A.; Goertz, C.; Ogilvie, K.

    1987-01-01

    The Plasma Science experiment on Voyager 2 detected a magnetosphere filled with a tenuous plasma, rotating with the planet. Temperatures of the plasma, composed of protons and electrons, ranged from 10 eV to about 1 keV. The sources of these protons and electrons are probably the ionosphere of Uranus or the extended neutral hydrogen cloud surrounding the planet. As at earth, Jupiter, and Saturn, there is an extended magnetotail with a central plasma sheet. Although similar in global structure to the magnetospheres of these planets, the large angle between the rotation and magnetic axes of the planet and the orientation of the rotation axis with respect to the solar wind flow make the Uranian magnetosphere unique.

  9. Method for culturing mammalian cells in a perfused bioreactor

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1992-01-01

    A bio-reactor system wherein a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  10. High resolution spectroscopy in the microwave and far infrared

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  11. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  12. Chemical mixing model studies of lunar orbital geochemical data - Apollo 16 and 17 highlands compositions

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.

    1982-01-01

    Chemical mixing model studies of lunar geochemical data for the central and Taurus-Littrow lunar highlands were performed utilizing pristine highland rock types as end member compositions. The central highlands show considerable diversity in composition; anorthosite is the principal rock type in the Apollo 16/Descartes region, while norite predominates in the highlands west of the landing site. This change in crustal composition is coincident with a major color boundary seen in earth-based multispectral data and probably represents the presence of distinct geochemical provinces within the central highlands. The Taurus-Littrow highlands are dominated by norite; anorthosite is far less abundant than in the central highlands. This suggests that the impact target for the Serenitatis basin was different than that of the Nectaris basin and further strengthens the hypothesis that the lunar highlands are petrologically heterogeneous on a regional basis. It is suggested that the lunar highlands should be viewed in terms of geochemical provinces that have undergone distinct and complex igneous and impact histories.

  13. On the Intensity of Radiation of an Electromagnetic Field by a Rotating Ferroelectric Sphere

    NASA Astrophysics Data System (ADS)

    Gladkov, S. O.; Bogdanova, S. B.

    2018-05-01

    It is shown that in the case when the spontaneous polarization vector P 0 and the rotational frequency vector ω of a ferroelectric sphere do not coincide, electromagnetic waves will be radiated. The intensity of the radiation is calculated as a function of the coordinates and time, and the anisotropy of this radiation is proven. The distribution of the intensity of radiation is graphically illustrated in the form of a function of the central distance r.

  14. Universal Relation among the Many-Body Chern Number, Rotation Symmetry, and Filling

    NASA Astrophysics Data System (ADS)

    Matsugatani, Akishi; Ishiguro, Yuri; Shiozaki, Ken; Watanabe, Haruki

    2018-03-01

    Understanding the interplay between the topological nature and the symmetry property of interacting systems has been a central matter of condensed matter physics in recent years. In this Letter, we establish nonperturbative constraints on the quantized Hall conductance of many-body systems with arbitrary interactions. Our results allow one to readily determine the many-body Chern number modulo a certain integer without performing any integrations, solely based on the rotation eigenvalues and the average particle density of the many-body ground state.

  15. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-07-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  16. Intrinsic rotation from a residual stress at the boundary of a cylindrical laboratory plasma.

    PubMed

    Yan, Z; Xu, M; Diamond, P H; Holland, C; Müller, S H; Tynan, G R; Yu, J H

    2010-02-12

    An azimuthally symmetric radially sheared azimuthal flow is driven by a nondiffusive, or residual, turbulent stress localized to a narrow annular region at the boundary of a cylindrical magnetized helicon plasma device. A no-slip condition, imposed by ion-neutral flow damping outside the annular region, combined with a diffusive stress arising from turbulent and collisional viscous damping in the central plasma region, leads to net plasma rotation in the absence of momentum input.

  17. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-03-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  18. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A.

    Treesearch

    J.E. Smith; R. Molina; M.M.P. Huso; D.L. Luoma; D. McKay; M.A. Castellano; T. Lebel; Y. Valachovic

    2002-01-01

    Knowledge of the community structure of ectomycorrhizal fungi among successional forest age-classes is critical for conserving fungal species diversity. Hypogeous and epigeous sporocarps were collected from three replicate stands in each of three forest age-classes (young, rotation-age, and old-growth) of Douglas-fir (Pseudotsuga menziesii (Mirb.)...

  19. Nonlinear thermo-mechanical analysis of stiffened composite laminates by a new finite element

    NASA Astrophysics Data System (ADS)

    Barut, Atila

    A new stiffened shell element combining shallow beam and shallow shell elements is developed for geometrically nonlinear analysis of stiffened composite laminates under thermal and/or mechanical loading. The formulation of this element is based on the principal of virtual displacements in conjunction with the co-rotational form of the total Lagrangian description of motion. In the finite element formulation, both the shell and the beam (stiffener) elements account for transverse shear deformations and material anisotropy. The cross-section of the stiffener (beam) can be arbitrary in geometry and lamination. In order to combine the stiffener with the shell element, constraint conditions are applied to the displacement and rotation fields of the stiffener. These constraint conditions ensure that the cross-section of the stiffener remains co-planar with the shell section after deformation. The resulting expressions for the displacement and rotation fields of the stiffener involve only the nodal unknowns of the shell element, thus reducing the total number of degrees of freedom. Also, the discretization of the entire stiffened shell structure becomes more flexible.

  20. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests

  1. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.

  2. Long-term changes in the chemical composition of soil organic matter, depending on fertilization and crop rotation

    NASA Astrophysics Data System (ADS)

    Tammik, Kerttu; Kauer, Karin; Astover, Alar

    2017-04-01

    The objective of this study was to determine whether it is possible to assess the impact of different management practices (crop rotation, fertilization (organic and mineral fertilizers) on the chemical composition of soil organic matter, using Fourier transform infrared spectroscopy (FTIR). The study is based IOSDV long-term (established in 1989) three field crop rotation (potato-wheat-barely) experiment located in Tartu, Estonia. Soil samples (Stagnic Albeluvisol) were collected from the 0-20 cm depth in the autumn of 2015, air dried, sieved to 2 mm and grinded to obtain homogeneous samples. The content of soil organic matter was measured by the dry combustion method in a varioMax CNS elemental analyser (ELEMENTAR, Germany). The samples were analysed using Thermo-Nicolet iS10 Fourier Transform Infrared Spectrophotometer (FT-IR) and OMNIC software. An intense and sharp peak was recorded in the region of Si-O vibrations of clay minerals and polysaccharides in all samples analysed. The volume of the peak correlated with the quantity of fertilizers administered

  3. Effect of toroidal field ripple on plasma rotation in JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vries, P.; Salmi, A.; Parail, V.

    Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude ( ) from an average value of M = 0.40 0.55 for operations at the standard JET ripple of = 0.08% to M = 0.25 0.40 for = 0.5% and M = 0.1 0.3 for = 1%. TF ripple effectsmore » should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes ( ~ 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.« less

  4. Magnetic dipolar ordering and hysteresis of geometrically defined nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Kure, Mathias; Beleggia, Marco; Frandsen, Cathrine

    2017-10-01

    Magnetic nanoparticle clusters have several biomedical and engineering applications, and revealing the basic interplay between particle configuration and magnetic properties is important for tuning the clusters for specific uses. Here, we consider the nanoparticles as macrospins and use computer simulations to determine their magnetic configuration when placed at the vertices of various polyhedra. We find that magnetic dipoles of equal magnitude arrange in flux-closed vortices on a layer basis, giving the structures a null remanent magnetic moment. Assigning a toroidal moment to each layer, we find that the geometrical arrangement, i.e., "triangular packing" vs. "square packing," of the moments in the adjacent layer determines whether the flux-closed layers are ferrotoroidal (co-rotating vortices) or antiferrotoroidal (counter-rotating vortices). Interestingly, upon adding a single magnetic moment at the center of the polyhedra, the central moment relaxes along one of the principal axes and induces partial alignment of the surrounding moments. The resulting net moment is up to nearly four times that of the single moment added. Furthermore, we model quasi-static hysteresis loops for structures with and without a central moment. We find that a central moment ensures an opening of the hysteresis loop, and the resultant loop areas are typically many-fold larger compared to the same structure without a central moment.

  5. Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.

    PubMed

    Nesti, Alessandro; de Winkel, Ksander; Bülthoff, Heinrich H

    2017-01-01

    While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence.

  6. Dynamic characteristics of otolith ocular response during counter rotation about dual yaw axes in mice

    PubMed Central

    Shimizu, Naoki; Wood, Scott; Kushiro, Keisuke; Yanai, Shuichi; Perachio, Adrian; Makishima, Tomoko

    2014-01-01

    The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1 g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmaus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provides the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration. PMID:25446357

  7. Insights into the Molecular Mechanism of Rotation in the Fo Sector of ATP Synthase

    PubMed Central

    Aksimentiev, Aleksij; Balabin, Ilya A.; Fillingame, Robert H.; Schulten, Klaus

    2004-01-01

    F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. PMID:14990464

  8. Effects of Axial Torsion on Disc Height Distribution: An In Vivo Study.

    PubMed

    Espinoza Orías, Alejandro A; Mammoser, Nicole M; Triano, John J; An, Howard S; Andersson, Gunnar B J; Inoue, Nozomu

    2016-05-01

    Axial rotation of the torso is commonly used during manipulation treatment of low back pain. Little is known about the effect of these positions on disc morphology. Rotation is a three-dimensional event that is inadequately represented with planar images in the clinic. True quantification of the intervertebral gap can be achieved with a disc height distribution. The objective of this study was to analyze disc height distribution patterns during torsion relevant to manipulation in vivo. Eighty-one volunteers were computed tomography-scanned both in supine and in right 50° rotation positions. Virtual models of each intervertebral gap representing the disc were created with the inferior endplate of each "disc" set as the reference surface and separated into 5 anatomical zones: 4 peripheral and 1 central, corresponding to the footprint of the annulus fibrosus and nucleus pulposus, respectively. Whole-disc and individual anatomical zone disc height distributions were calculated in both positions and were compared against each other with analysis of variance, with significance set at P < .05. Mean neutral disc height was 7.32 mm (1.59 mm). With 50° rotation, a small but significant increase to 7.44 mm (1.52 mm) (P < .0002) was observed. The right side showed larger separation in most levels, except at L5/S1. The posterior and right zones increased in height upon axial rotation of the spine (P < .0001), whereas the left, anterior, and central decreased. This study quantified important tensile/compressive changes disc height during torsion. The implications of these mutually opposing changes on spinal manipulation are still unknown. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  9. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.

  10. Reliability of magnetic resonance imaging assessment of rotator cuff: the ROW study.

    PubMed

    Jain, Nitin B; Collins, Jamie; Newman, Joel S; Katz, Jeffrey N; Losina, Elena; Higgins, Laurence D

    2015-03-01

    Physiatrists encounter patients with rotator cuff disorders, and imaging is frequently an important component of their diagnostic assessment. However, there is a paucity of literature on the reliability of magnetic resonance imaging (MRI) assessment between shoulder specialists and musculoskeletal radiologists. We assessed inter- and intrarater reliability of MRI characteristics of the rotator cuff. Cross-sectional secondary analyses in a prospective cohort study. Academic tertiary care centers. Subjects with shoulder pain were recruited from orthopedic and physiatry clinics. Two shoulder-fellowship-trained physicians (a physiatrist and a shoulder surgeon) jointly performed a blinded composite MRI review by consensus of 31 subjects with shoulder pain. Subsequently, MRI was reviewed by one fellowship-trained musculoskeletal radiologist. We calculated the Cohen kappa coefficients and percentage agreement among the 2 reviews (composite review of 2 shoulder specialists versus that of the musculoskeletal radiologist). Intrarater reliability was assessed among the shoulder specialists by performing a repeated blinded composite MRI review. In addition to this repeated composite review, only one of the physiatry shoulder specialists performed an additional review. Interrater reliability (shoulder specialists versus musculoskeletal radiologist) was substantial for the presence or absence of tear (kappa 0.90 [95% confidence interval {CI}, 0.72-1.00]), tear thickness (kappa 0.84 [95% CI, 0.70-0.99]), longitudinal size of tear (kappa 0.75 [95% CI, 0.44-1.00]), fatty infiltration (kappa 0.62 [95% CI, 0.45-0.79]), and muscle atrophy (kappa 0.68 [95% CI, 0.50-0.86]). There was only fair interrater reliability of the transverse size of tear (kappa 0.20 [95% CI, 0.00-0.51]). The kappa for intrarater reliability was high for tear thickness (0.88 [95% CI, 0.72-1.00]), longitudinal tear size (0.61 [95% CI, 0.22-0.99]), fatty infiltration (0.89 [95% CI, 0.80,-0.98]), and muscle atrophy (0.87 [95% CI, 0.76-0.98]). Intrarater reliability for the individual shoulder specialist was similar to that of the composite reviews. There was high interrater and intrarater reliability for most findings on shoulder MRI. Analysis of our data supports the reliability of MRI assessment by shoulder specialists for rotator cuff disorders. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Transverse-displacement stabilizer for passive magnetic bearing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Richard F

    The invention provides a way re-center a rotor's central longitudinal rotational axis with a desired system longitudinal axis. A pair of planar semicircular permanent magnets are pieced together to form a circle. The flux from each magnet is pointed in in opposite directions that are both parallel with the rotational axis. A stationary shorted circular winding the plane of which is perpendicular to the system longitudinal axis and the center of curvature of the circular winding is positioned on the system longitudinal axis. Upon rotation of the rotor, when a transverse displacement of the rotational axis occurs relative to themore » system longitudinal axis, the winding will experience a time-varying magnetic flux such that an alternating current that is proportional to the displacement will flow in the winding. Such time-varying magnetic flux will provide a force that will bring the rotor back to its centered position about the desired axis.« less

  12. Vortex Structures in the Shock-deformed Armor Steels

    NASA Astrophysics Data System (ADS)

    Atroshenko, Svetlana; Meshcheryakov, Yuri; Natalia, Naumova

    2009-06-01

    Several kinds of armor steel were tested under uniaxial strain conditions within impact velocity range from 250 to 400 m/s. Using optical and REM microscopy, the post shocked specimens were studied to reveal the kinematical mechanisms of dynamic deformation at the mesoscale. In all the specimens, the cross-section of specimens was found to be filled with rotational cells of very complex space morphology. Each rotation cell consists of central core of 1-2 μm in diameter and family of petals surrounding the core, so the space configuration of eddy is closely remands a fan of total size 6-7 μm. During the deformation, the petals move around the core providing the vortical motion of rotation as a whole. Dependence of rotational cell density on the strain rate changes non-monotonously, maximum density corresponds to maximum macrohardness and maximum of spall-strength of steel.

  13. Forces and torques on rigid inclusions in an elastic environment: Resulting matrix-mediated interactions, displacements, and rotations

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Menzel, Andreas M.

    2017-05-01

    Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.

  14. Agglutinates as recorders of fossil soil compositions. [of Apollo 17 lunar probes

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Wentworth, S.; Warner, R. D.; Keil, K.

    1978-01-01

    The composition of agglutinates in polished sections of the Apollo 17 drill core was studied in an attempt to deduce the nature of the Taurus-Littrow valley regolith prior to the formation of the Camelot and Central Cluster craters. The agglutinate compositions in the soils differed from the host soil compositions except for samples from the North Massif. Local materials from the valley floor and the massifs appear to form the pre-Central Cluster regolith. It is also shown that chemical mixing models for bulk soil compositions can be misleading unless the petrologic characteristics of each soil are taken into account.

  15. Product diversification of banana cv. Mas Kirana off grade by using a double rotating screw extruder

    NASA Astrophysics Data System (ADS)

    Setyadjit, S.; Sukasih, E.; Risfaheri, R.

    2018-01-01

    Extrusion technology is today’s favorite technology since it has a varied, practical and consistent product form. The purpose of this research was to get precise composite flour composition so that the quality of the resulted product has optimum quality for breakfast meals. The experimental design used was Design Expert vs. 7 with response surface box-behnken. The flour composition and level to be inputted to the program were banana flour (10-50g), mung beans (10-30g), egg flour (10-20g). Formula made was based on 200 g with addition of maize flour if the amount is less than 200 g. The extrusion tool used is a Thermo Scientific double rotating screw; with Haake Reomax OS. The best results in terms of carbohydrate content is the Formula 8 with a composition of 60 g of banana flour, 20 g eggs, 20 g of green beans and 100 g maize flour. The proximate chemical content of this formula is carbohydrate 84.04%, protein 8.55%, fat 5.49%, ash content 1.24%. K-calories per 100 g is 419.5 which is higher than the standard of breakfast meals calories.

  16. Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Farhana, N.; Marini, C. D.

    2018-03-01

    Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.

  17. Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives.

    PubMed

    Shao, Dongwei; Xu, Min; Cai, Liping; Shi, Sheldon Q

    2016-06-14

    Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%-50% at rotor rotational speeds of 15-45 rpm and filled coefficients of 0.55-0.75. Four regression equations, i.e. , the tensile strength ( T s), elongation at break ( E b), hardness ( H a) and rebound resilience ( R r) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the T s, E b and R r of the panels were reduced, H a was considerably increased by 17%-58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%-3%, which was much lower than commercial wood-based composites.

  18. Estructuras circumnucleares en la galaxia Seyfert interactuante NGC 1241

    NASA Astrophysics Data System (ADS)

    Díaz, R. J.; Carranza, G.; Dottori, H.

    We have studied the rotation curve and morphology of the central 10 kiloparsecs (~40'') of NGC 1241 obtaining 50 radial velocity measurements in three different position angles. These observations indicate a large velocity gradient of 70 km/sec/('') in the central 5''. The fitting of different density distribution laws to the derived rotation curve indicates a mass of ~ 9 E9 Msolar in the inner kpc. HST-NICMOS images show the presence of a circumnuclear star formation ring at radius ~ 2.8'' (720 pc). This ring is more defined than most of the known cases and harbours a mini-bar and nuclear spiral arms with a sense of rotation opposite than the main spiral arms. This morphological evidence suggest the presence of a dynamically decoupled system inside the circumnuclear ring. As in other cases studied by us, the ring seems to be inside an Inner Lindblad Resonance and the Lindblad curve ω-κ/2 for this object begins to drop for Rmax = 400 pc (~1.5''), but the limited spatial resolution does not allow us to find out a definitive evidence for the existence of a second ILR inside at inner radii. Up to date there is no published morphological or kinematical evidence for the presence of a second ILR at such small radii, a necessary ingredient for the presence of circumnuclear ring of star formation, considering the results of recent hydrodynamic simulations. We have proposed the observation of NGC 1241 with better instruments in order to extend the rotation curve to the central 2'', unveil the presence of a second inner resonance, study in detail the structural properties of the nuclear counterrotating arms and establish accurate models of mass distribution in galaxies with circumnuclear rings. This program has been awarded with Band 1 observing time at the Gemini North Telescope Quick Start Stage (Brasil and Argentina).

  19. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  20. Venus

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Carr, M. H.

    1984-01-01

    The following aspects of the planet Venus are discussed: orbit, rotation, composition, wind erosion, topography, surface roughness, gravity, and tectonics. The Venera satellites, Pioneer space probes, and Mariner space probes involved in Venusian exploration are enumerated.

  1. Pluto.

    ERIC Educational Resources Information Center

    Binzel, Richard P.

    1990-01-01

    Discussed are details of what is known about the composition, physical characteristics, and formation of the planet Pluto and its satellite, Charon. Alignments of these bodies and details of their rotations and revolutions are described. (CW)

  2. A thermodynamic and mechanical model for formation of the Solar System via 3-dimensional collapse of the dusty pre-solar nebula

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Criss, Robert E.

    2012-03-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive -ΔUg≅Δ.R.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing 3-d pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain to the rarified PSN until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E.≅R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.≅R.E.f(1-If/Ii), where I is the moment of inertia. Orbital data for the inner planets follow 0.04×R.E.f≅-Ug which confirms conservation of angular momentum. Significant loss of spin, attributed to viscous dissipation during differential rotation, masks the initial spin of the un-ignited protoSun predicted by R.E.=-Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time-dependent virial theorem. As the PSN slowly contracted, collapse of pre-solar dust in spheroidal shells simultaneously formed rocky protoplanets embedded in a dusty debris disk, creating their nearly circular co-planar orbits and upright axial spins with the same sense as orbital rotation, which were then enhanced via subsequent local contraction of nearby nebulae. Because rocky kernels at great distance out-competed the pull of the co-accreting star, gas giants formed in the outer reaches within ∼3 Ma as PSN contraction hastened. This pattern repeated to form satellite systems. The PSN imploded, once constricted to within Jupiter's orbit. Afterwards, disk debris slowly spiraled toward the protoSun, cratering and heating intercepted surfaces. Our conservative 3-d model, which allows for different behaviors of gas and dust, explains key Solar System characteristics (spin, orbits, gas giants and their compositions) and second-order features (dwarf planets, comet mineralogy, satellite system sizes).

  3. Faraday rotation in Hg1 - xMnxTe at 1.3 and 1.55 µm

    NASA Astrophysics Data System (ADS)

    Dillon, J. F., Jr.; Furdyna, J. K.; Debska, U.; Mycielski, A.

    1990-05-01

    The large Faraday rotations of Mn-containing diluted magnetic semiconductors have led to their consideration for use in magneto-optical isolators. With such applications in mind, we have examined the magneto-optical properties of Hg1-xMnxTe (x=0.26, 0.31, and 0.36). The samples are polished plates cut from single-crystal boules. The compositions were chosen to have their band edges in the vicinity of wavelengths of interest for fiber optical communications, 1.3 and 1.55 μm. Faraday rotation at 295, 77, and 1.7 K, as well as the absorption coefficient at 295 K, have been measured for these alloys and the data compared with the theoretical predictions. The measured rotations at the wavelengths of interest here are about 100-fold larger than those of other high-rotation paramagnetic materials, such as Tb3Al5O10 and various rare-earth glasses. However, the specific rotations available in reasonable fields (say, 3000 Oe) are about tenfold lower than those reported for Bi-doped ferrimagnetic garnets.

  4. Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation

    PubMed Central

    Aravamuthan, Bhooma R.; Angelaki, Dora E.

    2012-01-01

    The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson’s disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were vestibular-only cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns. PMID:22864184

  5. Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. II. Torques, Bars, and Mode Saturation with Applications to Protostars and Fizzlers

    NASA Astrophysics Data System (ADS)

    Imamura, James N.; Durisen, Richard H.; Pickett, Brian K.

    2000-01-01

    Dynamic nonaxisymmetric instabilities in rapidly rotating stars and protostars have a range of potential applications in astrophysics, including implications for binary formation during protostellar cloud collapse and for the possibility of aborted collapse to neutron star densities at late stages of stellar evolution (``fizzlers''). We have recently presented detailed linear analyses for polytropes of the most dynamically unstable global modes, the barlike modes. These produce bar distortions in the regions near the rotation axis but have trailing spiral arms toward the equator. In this paper, we use our linear eigenfunctions to predict the early nonlinear behavior of the dynamic instability and compare these ``quasi-linear'' predictions with several fully nonlinear hydrodynamics simulations. The comparisons demonstrate that the nonlinear saturation of the barlike instability is due to the self-interaction gravitational torques between the growing central bar and the spiral arms, where angular momentum is transferred outward from bar to arms. We also find a previously unsuspected resonance condition that accurately predicts the mass of the bar regions in our own simulations and in those published by other researchers. The quasi-linear theory makes other accurate predictions about consequences of instability, including properties of possible end-state bars and increases in central density, which can be large under some conditions. We discuss in some detail the application of our results to binary formation during protostellar collapse and to the formation of massive rotating black holes.

  6. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract--an agro-industry waste.

    PubMed

    Rani, Mahadevaswamy Usha; Rastogi, Navin K; Appaiah, K A Anu

    2011-07-01

    During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5- 8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5- 2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

  7. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  8. Why Is the Moon Synchronously Rotating?

    DTIC Science & Technology

    2013-06-19

    and a retrograde initial rotation. Key words: Moon – planets and satellites: dynamical evolution and stability. 1 IN T RO D U C T I O N The origin of...tides, which should not be used for planets and moons of terrestrial composition (Efroimsky & Makarov 2013). In recent years, a more realistic model...Efroimsky & Williams 2009; Efroimsky 2012). In the framework of this model, the capture of Mercury into the current 3:2 spin– orbit resonance becomes a

  9. Characteristics of composite images in multiview imaging and integral photography.

    PubMed

    Lee, Beom-Ryeol; Hwang, Jae-Jeong; Son, Jung-Young

    2012-07-20

    The compositions of images projected to a viewer's eyes from the various viewing regions of the viewing zone formed in one-dimensional integral photography (IP) and multiview imaging (MV) are identified. These compositions indicate that they are made up of pieces from different view images. Comparisons of the composite images with images composited at various regions of imaging space formed by camera arrays for multiview image acquisition reveal that the composite images do not involve any scene folding in the central viewing zone for either MV or IP. However, in the IP case, compositions from neighboring viewing regions aligned in the horizontal direction have reversed disparities, but in the viewing regions between the central and side viewing zones, no reversed disparities are expected. However, MV does exhibit them.

  10. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-04-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  11. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-07-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  12. The Composite Strain Index (COSI) and Cumulative Strain Index (CUSI): methodologies for quantifying biomechanical stressors for complex tasks and job rotation using the Revised Strain Index.

    PubMed

    Garg, Arun; Moore, J Steven; Kapellusch, Jay M

    2017-08-01

    The Composite Strain Index (COSI) quantifies biomechanical stressors for complex tasks consisting of exertions at different force levels and/or with different exertion times. The Cumulative Strain Index (CUSI) further integrates biomechanical stressors from different tasks to quantify exposure for the entire work shift. The paper provides methodologies to compute COSI and CUSI along with examples. Complex task simulation produced 169,214 distinct tasks. Use of average, time-weighted average (TWA) and peak force and COSI classified 66.9, 28.2, 100 and 38.9% of tasks as hazardous, respectively. For job rotation the simulation produced 10,920 distinct jobs. TWA COSI, peak task COSI and CUSI classified 36.5, 78.1 and 66.6% jobs as hazardous, respectively. The results suggest that the TWA approach systematically underestimates the biomechanical stressors and peak approach overestimates biomechanical stressors, both at the task and job level. It is believed that the COSI and CUSI partially address these underestimations and overestimations of biomechanical stressors. Practitioner Summary: COSI quantifies exposure when applied hand force and/or duration of that force changes during a task cycle. CUSI integrates physical exposures from job rotation. These should be valuable tools for designing and analysing tasks and job rotation to determine risk of musculoskeletal injuries.

  13. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  14. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  15. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  16. Wind turbine/generator set and method of making same

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  17. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  18. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2011-02-22

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  19. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  20. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    NASA Astrophysics Data System (ADS)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  1. None of the Rotor Residues of F1-ATPase Are Essential for Torque Generation

    PubMed Central

    Chiwata, Ryohei; Kohori, Ayako; Kawakami, Tomonari; Shiroguchi, Katsuyuki; Furuike, Shou; Adachi, Kengo; Sutoh, Kazuo; Yoshida, Masasuke; Kinosita, Kazuhiko

    2014-01-01

    F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor’s high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3β3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3β3 subunits using the energy derived from ATP hydrolysis. The rotor consists of an axle, a coiled coil of the amino- and carboxyl-terminal α-helices of γ, which deeply penetrates the stator cylinder, and a globular protrusion that juts out from the stator. Previous work has shown that, for a thermophilic F1, significant portions of the axle can be truncated and the motor still rotates a submicron sized bead duplex, indicating generation of up to half the wild-type (WT) torque. Here, we inquire if any specific interactions between the stator and the rest of the rotor are needed for the generation of a sizable torque. We truncated the protruding portion of the rotor and replaced part of the remaining axle residues such that every residue of the rotor has been deleted or replaced in this or previous truncation mutants. This protrusionless construct showed an unloaded rotary speed about a quarter of the WT, and generated one-third to one-half of the WT torque. No residue-specific interactions are needed for this much performance. F1 is so designed that the basic rotor-stator interactions for torque generation and control of catalysis rely solely upon the shape and size of the rotor at very low resolution. Additional tailored interactions augment the torque to allow ATP synthesis under physiological conditions. PMID:24853745

  2. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    PubMed

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  3. Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System

    PubMed Central

    Wang, Jichen; Ni, Lei; Song, Yang; Rhodes, Geoff; Li, Jing; Huang, Qiwei; Shen, Qirong

    2017-01-01

    Ammonia oxidation by microorganisms is a rate-limiting step of the nitrification process and determines the efficiency of fertilizer utilized by crops. Little is known about the dynamic response of ammonia-oxidizers to different fertilization regimes in a wheat-rice rotation system. Here, we examined ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities across eight representative stages of wheat and rice growth and under four fertilization regimes: no nitrogen fertilization (NNF), chemical fertilization (CF), organic-inorganic mixed fertilizer (OIMF) and organic fertilization (OF). The abundance and composition of ammonia oxidizers were analyzed using quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) of their amoA genes. Results showed that fertilization but not plant growth stages was the best predictor of soil AOB community abundance and composition. Soils fertilized with more urea-N had higher AOB abundance, while organic-N input showed little effect on AOB abundance. 109 bp T-RF (Nitrosospira Cluster 3b) and 280 bp T-RF (Nitrosospira Cluster 3c) dominated the AOB communities with opposing responses to fertilization regimes. Although the abundance and composition of the AOA community was significantly impacted by fertilization and plant growth stage, it differed from the AOB community in that there was no particular trend. In addition, across the whole wheat-rice rotation stages, results of multiple stepwise linear regression revealed that AOB played a more important role in ammonia oxidizing process than AOA. This study provided insight into the dynamic effects of fertilization strategies on the abundance and composition of ammonia-oxidizers communities, and also offered insights into the potential of managing nitrogen for sustainable agricultural productivity with respect to soil ammonia-oxidizers. PMID:28446904

  4. Diverter assembly for radioactive material

    DOEpatents

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  5. The Gaia-ESO Survey: dynamical models of flattened, rotating globular clusters

    NASA Astrophysics Data System (ADS)

    Jeffreson, S. M. R.; Sanders, J. L.; Evans, N. W.; Williams, A. A.; Gilmore, G. F.; Bayo, A.; Bragaglia, A.; Casey, A. R.; Flaccomio, E.; Franciosini, E.; Hourihane, A.; Jackson, R. J.; Jeffries, R. D.; Jofré, P.; Koposov, S.; Lardo, C.; Lewis, J.; Magrini, L.; Morbidelli, L.; Pancino, E.; Randich, S.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-08-01

    We present a family of self-consistent axisymmetric rotating globular cluster models which are fitted to spectroscopic data for NGC 362, NGC 1851, NGC 2808, NGC 4372, NGC 5927 and NGC 6752 to provide constraints on their physical and kinematic properties, including their rotation signals. They are constructed by flattening Modified Plummer profiles, which have the same asymptotic behaviour as classical Plummer models, but can provide better fits to young clusters due to a slower turnover in the density profile. The models are in dynamical equilibrium as they depend solely on the action variables. We employ a fully Bayesian scheme to investigate the uncertainty in our model parameters (including mass-to-light ratios and inclination angles) and evaluate the Bayesian evidence ratio for rotating to non-rotating models. We find convincing levels of rotation only in NGC 2808. In the other clusters, there is just a hint of rotation (in particular, NGC 4372 and NGC 5927), as the data quality does not allow us to draw strong conclusions. Where rotation is present, we find that it is confined to the central regions, within radii of R ≤ 2rh. As part of this work, we have developed a novel q-Gaussian basis expansion of the line-of-sight velocity distributions, from which general models can be constructed via interpolation on the basis coefficients.

  6. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  7. The kinematic evolution of the Serra Central Salient, Eastern Brazil: A Neoproterozoic progressive arc in northern Espinhaço fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Bersan, Samuel Moreira; Danderfer, André; Lagoeiro, Leonardo; Costa, Alice Fernanda de Oliveira

    2017-12-01

    Convex-to-the-foreland map-view curves are common features in fold-thrust belts around cratonic areas. These features are easily identifiable in belts composed of supracrustal rocks but have been rarely described in rocks from relatively deeper crustal levels where plastic deformation mechanisms stand out. Several local salients have been described in Neoproterozoic marginal fold-thrust belts around the São Francisco craton. In the northern part of the Espinhaço fold-thrust belt, which borders the eastern portion of the São Francisco craton, both Archean-Paleoproterozoic basement rocks and Proterozoic cover rocks are involved in the so-called Serra Central salient. A combination of conventional structural analysis and microstructural and paleostress studies were conducted to characterize the kinematic and the overall architecture and processes involved in the generation of this salient. The results allowed us to determine that the deformation along the Serra Central salient occur under low-grade metamorphic conditions and was related to a gently oblique convergence with westward mass transport that developed in a confined flow, controlled by two transverse bounding shear zones. We propose that the Serra Central salient nucleates as a basin-controlled primary arc that evolves to a progressive arc with secondary vertical axis rotation. This secondary rotation, well-illustrated by the presence of two almost orthogonal families of folds, was dominantly controlled by buttress effect exert by a basement high located in the foreland of the Serra Central salient.

  8. Tectonic and kinematics of curved orogenic systems: insights from AMS analysis and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Cifelli, Francesca; Mattei, Massimo

    2016-04-01

    During the past few years, paleomagnetism has been considered a unique tool for constraining kinematic models of curved orogenic systems, because of its great potential in quantifying vertical axis rotations and in discriminating between primary and secondary (orocline s.l.) arcs. In fact, based on the spatio-temporal relationships between deformation and vertical axis rotation, curved orogens can be subdivided as primary or secondary (oroclines s.l.), if they formed respectively in a self-similar manner without undergoing important variations in their original curved shape or if their curvature in map-view is the result of a bending about a vertical axis of rotation. In addition to the kinematics of the arc and the timing of its curvature, a crucial factor for understanding the origin of belts curvature is the knowledge of the geodynamic process governing arc formation. In this context, the detailed reconstruction of the rotational history is mainly based on paleomagnetic and structural analyses (fold axes, kinematic indicators), which include the magnetic fabric. In fact, in curved fold and thrust belts, assuming that the magnetic lineation is tectonically originated and formed during layer-parallel shortening (LPS) before vertical axis rotations, the orientation of the magnetic lineation often strictly follows the curvature of the orogeny. This assumption represents a fundamental prerequisite to fully understand the origin of orogenic arcs and to unravel the geodynamic processes responsible for their curvature. We present two case studies: the central Mediterranean arcs and the Alborz Mts in Iran. The Mediterranean area has represented an attractive region to apply paleomagnetic analysis, as it shows a large number of narrow arcs, whose present-day shape has been driven by the space-time evolution of the Mediterranean subduction system, which define a irregular and rather diffuse plate boundary. The Alborz Mts. form a sinuous range over 1,200 km long, defining from west to east a salient with a southward concavity which results in the wrapping of the South Caspian basin to the north, and a southward reentrant with apex which encircles the Central Iranian block to the south. The integration of paleomagnetic and AMS data indicates that this orogen started to form as an almost straight E-W oriented range and acquired its present-day curved shape by means of opposite vertical axis rotations. Such a process was probably caused by the relative motion between different rigid blocks (South Caspian, Central Iran, and the Eastern Iranian Blocks) forming the collision zone and hence must be a crustal to lithospheric-scale process.

  9. The pentag meridian circle

    NASA Astrophysics Data System (ADS)

    Nemiro, A. A.

    The opticomechanical scheme of a pentag meridian circle is presented. The central rotating part of the instrument, made of sitall (cer-vit), is compact and uniform, making it possible to minimize the gravitational and thermal deformations. It is shown that variations of the orientation of the central part do not affect observations because of the use of the pentag. Formulas are presented for determining the collimation error and zero point of the circle using autocollimation readings.

  10. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  11. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE PAGES

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-16

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  12. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].

    PubMed

    Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin

    2013-09-01

    Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.

  13. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than immobilization in internal rotation. Additionally, this review suggests that there is minimal difference in patients' perceptions of their health-related quality of life after immobilization in internal versus external rotation. © 2015 The Author(s).

  14. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case ofmore » the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.« less

  15. Rotatable electric cable connecting system

    NASA Technical Reports Server (NTRS)

    Manges, D. R. (Inventor)

    1985-01-01

    A cable reel assembly is described which is particularly adapted for, but not limited to, a system for providing electrical connection of power and data signals between an orbiter vehicle, such as a space shuttle, and a recovered satellite. The assembly is comprised of two mutually opposing ring type structures having 180 deg relative rotation with one of the structures being held in fixed position while the other structure is rotatable. Motor controlled berthing latches and umbilical cable connectors for the satellite are located on the rim of the rotatable ring structure. The electrical cable assembly is fed in two sections from the orbiter vehicle into the outer rim portion of the fixed ring structure where they are directed inwardly and attached to two concentrically coiled metal bands whose respective ends are secured to inner and outer post members of circular sets of guide pins located on opposing circular plate members, one rotatable and one fixed. The cable sections are fed out as three output cable sections through openings in the central portion of the circular plate of the rotatable ring structure where they are directed to the latches and connectors located on its rim.

  16. Prediction of advanced endovascular stent graft rotation and its associated morbidity and mortality.

    PubMed

    Crawford, Sean A; Sanford, Ryan M; Doyle, Matthew G; Wheatcroft, Mark; Amon, Cristina H; Forbes, Thomas L

    2018-01-29

    Advanced endovascular aneurysm repair (EVAR) with fenestrated and branched stent grafts is increasingly being used to repair complex aortic aneurysms; however, these devices can rotate unpredictably during deployment, leading to device misalignment. The objectives of this study were to quantify the short-term clinical outcomes in patients with intraoperative stent graft rotation and to identify quantitative anatomic markers of the arterial geometry that can predict stent graft rotation preoperatively. A prospective study evaluating all patients undergoing advanced EVAR was conducted at two university-affiliated hospitals between November 2015 and December 2016. Stent graft rotation (defined as ≥10 degrees) was measured on intraoperative fluoroscopic video of the deployment sequence. Standard preoperative computed tomography angiography imaging was used to calculate the geometric properties of the arterial anatomy. Any in-hospital and 30-day complications were prospectively documented, and a composite outcome of any end-organ ischemia or death was used as the primary end point. Thirty-nine patients undergoing advanced EVAR were enrolled in the study with a mean age of 75 years (interquartile range [IQR], 71-80 years) and a mean aneurysm diameter of 64 mm (IQR, 59-65 mm). The incidence of stent graft rotation was 37% (n = 14), with a mean rotation of 25 degrees (IQR, 21-28 degrees). A nominal logistic regression model identified iliac artery torsion, volume of iliac artery calcification, and stent graft length as the primary predictive factors. The total net torsion and the total volume of calcific plaque were higher in patients with stent graft rotation, 8.9 ± 0.8 mm -1 vs 4.1 ± 0.5 mm -1 (P < .0001) and 1054 ± 144 mm 3 vs 525 ± 83 mm 3 (P < .01), respectively. The length of the implanted stent grafts was also higher in patients with intraoperative rotation, 172 ± 9 mm vs 156 ± 8 mm (P < .01). The composite outcome of any end-organ ischemia or death was also substantially higher in patients with stent graft rotation (36% vs 0%; P = .004). In addition, patients with stent graft rotation had significantly higher combined rates of type Ib and type III endoleaks (43% vs 8%; P = .03). Patients with intraoperative stent graft rotation have a significantly higher rate of severe postoperative complications, and this is strongly associated with higher levels of iliac artery torsion, calcification, and stent graft length. These findings suggest that preoperative quantitative analysis of iliac artery torsion and calcification may improve risk stratification of patients before advanced EVAR. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation

    NASA Astrophysics Data System (ADS)

    Wallenhorst, M.; Niemöller, M.; Dötsch, H.; Hertel, P.; Gerhardt, R.; Gather, B.

    1995-04-01

    Garnet films of composition Lu3-xBixFe5-yGayO12 are grown by liquid-phase epitaxy on [111]-oriented substrates of gadolinium gallium garnet. Faraday rotation and saturation magnetization are measured as a function of substitution levels, which range up to x=1.4 and y=1.8, respectively. Nonreciprocal propagation of the TM0 is studied at a wavelength of 1.3 μm. It is shown that the difference between forward and backward propagation constants can be optimized using double layers with opposite sign of the Faraday rotation. Agreement between experiments and calculations is excellent.

  18. Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain

    PubMed Central

    Bockhorst, Tobias

    2015-01-01

    The polarization pattern of skylight provides a compass cue that various insect species use for allocentric orientation. In the desert locust, Schistocerca gregaria, a network of neurons tuned to the electric field vector (E-vector) angle of polarized light is present in the central complex of the brain. Preferred E-vector angles vary along slices of neuropils in a compasslike fashion (polarotopy). We studied how the activity in this polarotopic population is modulated in ways suited to control compass-guided locomotion. To this end, we analyzed tuning profiles using measures of correlation between spike rate and E-vector angle and, furthermore, tested for adaptation to stationary angles. The results suggest that the polarotopy is stabilized by antagonistic integration across neurons with opponent tuning. Downstream to the input stage of the network, responses to stationary E-vector angles adapted quickly, which may correlate with a tendency to steer a steady course previously observed in tethered flying locusts. By contrast, rotating E-vectors corresponding to changes in heading direction under a natural sky elicited nonadapting responses. However, response amplitudes were particularly variable at the output stage, covarying with the level of ongoing activity. Moreover, the responses to rotating E-vector angles depended on the direction of rotation in an anticipatory manner. Our observations support a view of the central complex as a substrate of higher-stage processing that could assign contextual meaning to sensory input for motor control in goal-driven behaviors. Parallels to higher-stage processing of sensory information in vertebrates are discussed. PMID:25609107

  19. Circumnuclear Molecular Disks in Early-type Galaxies: Physical Properties and Precision Black Hole Mass Measurements

    NASA Astrophysics Data System (ADS)

    Boizelle, Benjamin

    2018-01-01

    ALMA is now capable of providing the most precise determinations of the masses of supermassive black holes in early-type galaxies (ETGs). In ALMA Cycle 2 we began a program to map the molecular gas kinematics in nearby ETGs that host central dust disks as seen in Hubble Space Telescope imaging. These initial observations targeted CO(2-1) emission at ~0.3" resolution, corresponding roughly to the projected radii of influence of the central black holes. In all cases we detect significant (~108 M⊙) molecular gas reservoirs that are in dynamically cold rotation, providing the most sensitive probes of the inner gravitational potentials of luminous ETGs. Using these gas kinematics, we verify that these molecular disks are formally stable against gravitational fragmentation and collapse. In several galaxies we detect central high-velocity gas rotation that provides direct kinematic evidence for a black hole. For two of these targets, NGC 1332 and NGC 3258, we have obtained higher-resolution observations (0.044" and 0.09") in Cycles 3 and 4 that more fully map out the gas rotation within the gravitational sphere of influence. We present dynamical modeling results for these targets, demonstrating that ALMA observations can enable black hole mass measurements at a precision of 10% or better, with minimal susceptibility to the systematic uncertainties that affect other methods of black hole mass measurement in ETGs. We discuss the impact of future high-resolution ALMA observations on black hole demographics and their potential to refine the high-mass end of the black hole-host galaxy scaling relationships.

  20. Essential oil composition of five collections of Achillea biebersteinii from central Turkey and their antifungal and insecticidal activity

    USDA-ARS?s Scientific Manuscript database

    The composition of the essential oils hydrodistilled from the aerial parts of five Achillea biebersteinii Afan samples, collected in central Turkey from Konya, Isparta and Ankara, were analyzed both by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Eighty-four componen...

  1. Design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatments.

    PubMed

    Grams, Michael P; de Los Santos, Luis E Fong

    2018-06-01

    To describe the design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatment plans using radiochromic film. A solid water cylindrical phantom was designed with separable upper and lower halves and rests on plastic bearings allowing for 360° rotation about its central axis. The phantom accommodates a half sheet of radiochromic film, and by rotating the cylinder, the film can be placed in any plane between coronal and sagittal. Calculated dose planes coinciding with rotated film measurements are exported by rotating the CT image and dose distribution within the treatment planning system. The process is illustrated with 2 rotated film measurements of an SRS treatment plan involving 4 separate targets. Additionally, 276 patient specific QA measurements were obtained with the phantom and analyzed with a 2%/2 mm gamma criterion. The average 2%/2 mm gamma passing rate for all 276 plans was 99.3%. Seventy-two of the 276 plans were measured with the plane of the film rotated between the coronal and sagittal planes and had an average passing rate of 99.4%. The rotational phantom allows for accurate film measurements in any plane. With this technique, regions of a dose distribution which might otherwise require multiple sagittal or coronal measurements can be verified with as few as a single measurement. This increases efficiency and, in combination with the high spatial resolution inherent to film dosimetry, makes the rotational technique an attractive option for patient-specific QA. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Volume II: Compendium Abstracts

    DTIC Science & Technology

    2008-08-01

    project developed a fast and simple method of characterization for ceramic , polymer composite, and ceramic -composite materials systems. Current methods...incrementally at 1-inch intervals and displayed as a false-color image map of the sample. This experimental setup can be easily scaled from single ceramic ...low-power, high-force characteristics of lead zirconate titanate ( PZT ) and an offset-beam design to achieve rotational or near-linear translational

  3. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  4. Extension tectonics: The Neogene opening of the north-south trending basins of central Thailand

    NASA Astrophysics Data System (ADS)

    McCabe, Robert; Celaya, Michael; Cole, Jay; Han, Hyun-Chul; Ohnstad, Tiffany; Paijitprapapon, Vivat; Thitipawarn, Veeravat

    1988-10-01

    Paleomagnetic samples were collected from late Neogene basalt flows from Thailand. All of these flows are horizontal and are relatively unaltered in thin section. These rocks possess a stable magnetization which is believed to be primary. Samples from 48 lava flows were collected from sites located within the Khorat Plateau, the Chao Phraya-Phitsanulok Basin, and the mountainous terrane west of the Chao Phraya-Phitsanulok Basin. These data were combined with previously reported late Neogene data from five flows from western Thailand. Although the average inclination from the 53 sites is indistiguishable from the expected dipole inclination, the average declination has a net clockwise rotation of 13.5±5.8 from the geocentric dipole field. Furthermore, the mean declination values from the 29 flows from the Khorat Plateau are indistinguishable from the present dipole field direction (Dm = 4.3°±7.5°) and indistinguishable from the mean declination from 28 late Neogene volcanic flows from Vietnam. In contrast, the mean declinations from 24 flows collected from central and western Thailand are deflected significantly clockwise (Dm = 24.4°±7.7°) from the geocentric dipole field direction. The differential rotation between western and central Thailand versus the Khorat Plateau suggests that Indochina is composed of at least two structural blocks which underwent a different rotational history. These observations, when combined with geologic and geophysical data from the Chao Phraya-Phitsanulok Basin, Gulf of Thailand, and the intermontane basins of western Thailand, suggest that the rotations are recording a late Neogene phase of E-W extension of these basins. We suggest that the formation of these basins and the related basaltic volcanism developed in reponse to subduction of the Indian plate under western Burma. We envision the tectonics of this region is similar in style to the Basin and Range region of the western United States. Last, we have observed field relationships from some of the rhyolites located in the central basin. Although these rhyolites are reported to be Mesozoic or Paleozoic in age, our field observations and a K-Ar age date show that at least some of these rhyolites are younger than the basalts. We suggest that the rhyolites form a bimodal suite with the basaltic rocks which were erupted in the later stages of the extension.

  5. An integrtated approach to the use of Landsat TM data for gold exploration in west central Nevada

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Myers, J. S.; Miller, N. L.

    1987-01-01

    This paper represents an integration of several Landsat TM image processing techniques with other data to discriminate the lithologies and associated areas of hydrothermal alteration in the vicinity of the Paradise Peak gold mine in west central Nevada. A microprocessor-based image processing system and an IDIMS system were used to analyze data from a 512 X 512 window of a Landsat-5 TM scene collected on June 30, 1984. Image processing techniques included simple band composites, band ratio composites, principal components composites, and baseline-based composites. These techniques were chosen based on their ability to discriminate the spectral characteristics of the products of hydrothermal alteration as well as of the associated regional lithologies. The simple band composite, ratio composite, two principal components composites, and the baseline-based composites separately can define the principal areas of alteration. Combined, they provide a very powerful exploration tool.

  6. More on rotations as spin matrix polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtright, Thomas L.

    2015-09-15

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.

  7. VizieR Online Data Catalog: Pulsar rotation measures (Han+, 2018)

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Manchester, R. N.; van Straten, W.; Demorest, P.

    2018-03-01

    The Parkes 64m observations were made in seven sessions between 2006 August and 2008 February. All observations were in the 20cm band. The Green Bank 100m telescopes (GBT) observations were made in 2007 November using the 800MHz prime focus receiver. The Green Bank Astronomy Signal Processor pulsar observing system was used with a central frequency of 774MHz and a bandwidth of 96MHz. We have measured rotation measures for 477 pulsars, of which 441 are either new or improved over previous measurements. (3 data files).

  8. Vibration and buckling of rotating, pretwisted, preconed beams including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.

  9. Vibration and buckling of rotating, pretwisted, preconed beams including Cooriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.

  10. Imaging Borrelly

    USGS Publications Warehouse

    Soderblom, L.A.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Lee, M.; Nelson, R.M.; Oberst, J.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.

    2004-01-01

    The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ???60?? N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation. ?? 2003 Elsevier Inc. All rights reserved.

  11. Meniscus Stability in Rotating Systems

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael

    2013-11-01

    In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.

  12. Long latency postural responses are functionally modified by cognitive set.

    PubMed

    Beckley, D J; Bloem, B R; Remler, M P; Roos, R A; Van Dijk, J G

    1991-10-01

    We examined how cognitive set influences the long latency components of normal postural responses in the legs. We disturbed the postural stability of standing human subjects with sudden toe-up ankle rotations. To influence the subjects' cognitive set, we varied the rotation amplitude either predictably (serial 4 degrees versus serial 10 degrees) or unpredictably (random mixture of 4 degrees and 10 degrees). The subjects' responses to these ankle rotations were assessed from the EMG activity of the tibialis anterior, the medial gastrocnemius, and the vastus lateralis muscles of the left leg. The results indicate that, when the rotation amplitude is predictable, only the amplitude of the long latency (LL) response in tibialis anterior and vastus lateralis varied directly with perturbation size. Furthermore, when the rotation amplitude is unpredictable, the central nervous system selects a default amplitude for the LL response in the tibialis anterior. When normal subjects are exposed to 2 perturbation amplitudes which include the potential risk of falling, the default LL response in tibialis anterior appropriately anticipates the larger amplitude perturbation rather than the smaller or an intermediate one.

  13. Earth-type planets (Mercury, Venus, and Mars)

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  14. Photopolarimetric observations of the minor planet Flora.

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1971-01-01

    Review of the rotation period, phase coefficients, and polarization curve of the unusual asteroid Flora. It is an almost spherical asteroid whose period of rotation is probably 13.6 h, but may be only one half of this. Its surface layer consists of a dark material resembling lunar surface soil, but since the polarization curves of Flora and the moon, though generally similar, are not identical the surface of Flora must differ somewhat either in composition or in texture from that of the moon.

  15. The effect of axial crucible rotation on microstructural uniformity during horizontal directional solidification

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Kim, Shinwoo; Woodward, Tracey; Wang, T. G.

    1992-01-01

    The effects on microstructure of crucible orientation with respect to the earth's gravitational vector, g, during directional solidification of low-volume fraction copper and aluminum, Pb-Cu, and Sn-Al alloys are examined. It is demonstrated that horizontal alignment (i.e. perpendicular to g) in combination with axial rotation of the crucible during growth is sufficient to negate factors which initiate macrosegregation, e.g. density gradients attributed to temperature and/or compositional differences, and promotes a uniform microstructure.

  16. Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite

    NASA Astrophysics Data System (ADS)

    Ujianto, O.; Noviyanti, R.; Wijaya, R.; Ramadhoni, B.

    2017-07-01

    Natural rubber (NR)/coconut coir (CF) composites were fabricated using co-rotating twin screw extruder with maleated NR (MNR) used as compatibilizer. The MNR was produced at three level of maleic anhydride (MA), and analyzed qualitative and quantitatively using FTIR and titration technique. Analysis on MNR using FTIR and titration methods showed that MA was grafted on NR chain at different percentage (0.76, 2.23, 4.79%) depended on MA concentration. Tensile strength data showed the best tensile strength was produced at 7 phr of MNR with 1 phr of MA level in MNR resulting 16.4 MPa. The improvement of compatibilized samples were more than 300% compare to uncompatibilized composite attributed to better interfacial bonding. The improvement on tensile strength was significantly influenced by MNR level and amount of MA added to produce MNR, as well as their interaction. The optimum conditions for producing NR-CF composite were predicted at 6.5 phr of MNR level with 1 phr of MA concentration added in MNR production, regardless screw rotation settings. Results from verification experiments confirm that developed model was capable of describing phenomena during composite preparation. Morphology analysis using scanning electron microscopy shows smooth covered fiber in compatibilized samples than that of without MNR. The morphology also showed less voids on compatibilized samples attributed to better interfacial bonding leading to tensile strength improvement.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tingting; Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004; Shao, Guangjie, E-mail: shaoguangjie@ysu.edu.cn

    A method of pulse electrodeposition under supergravity field was proposed to synthesize MnO{sub 2}-graphene composites. Supergravity is very efficient for promoting mass transfer and decreasing concentration polarization during the electrodeposition process. The synthesis was conducted on our homemade supergravity equipment. The strength of supergravity field depended on the rotating speed of the ring electrode. 3D flower like MnO{sub 2} spheres composed of nanoflakes were acquired when the rotating speed was 3000 rpm. Graphene nanosheets play as a role of conductive substrates for MnO{sub 2} growing. The composites are evaluated as electrode materials for supercapacitors. Electrochemical results show that the maximummore » specific capacitance of the MnO{sub 2}-graphene composite is 595.7 F g{sup −1} at a current density of 0.5 A g{sup −1}. In addition, the composite exhibits excellent cycle stability with no capacitance attenuation after 1000 cycles. The approach provides new ideas for developing supercapacitor electrode materials with high performance. - Graphical abstract: 3D flower like MnO{sub 2} spheres composed of nanoflakes were acquired at 3000 rpm. - Highlights: • MnO{sub 2}-graphene composites were prepared by pulse electrodeposition under supergravity. • 3D flower like MnO{sub 2} spheres are anchored on the graphene nanosheets. • The MnO{sub 2}-graphene electrode exhibits a specific capacitance of 595.7 F g{sup −1}.« less

  18. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  19. MO-F-CAMPUS-T-05: Correct Or Not to Correct for Rotational Patient Set-Up Errors in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briscoe, M; Ploquin, N; Voroney, JP

    2015-06-15

    Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied tomore » two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.« less

  20. The formation of protostellar disks. 2: Disks around intermediate-mass stars

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Bodenheimer, Peter; Laughlin, G.

    1995-01-01

    Hydrodynamical calculations of the evolution of a collapsing, rotating axisymmetric 10 solar masses molecular clump, including the effects of radiative acceleration but without magnetic fields, are represented. The initial cloud is assumed to be uniformly rotating, centrally condensed sphere with rho is proportional to r(exp -2). Several cases are considered, in which both the overall clump size and the total amount of angular momentum are varied. The calculations show how a warm, quasi-hydrostatic disk surrounding a central unresolved core of only a few solar masses forms and grows in size and mass. The disk is encased in two distinct accretion shock fronts, both of which are several scale heights above the equatorial plane. At the end of the calculation of our standard case, the central unresolved region is found to have a mass of 2.7 solar masses and a ratio of rotational to gravitational energy of approximately 0.45, sufficiently large to be unstable to nonaxisymmetric perturbations. In addition, the inner portions of the disk containing most of the mass are unstable according to the local Toomre criterion, implying that also in this region nonaxisymmetric perturbations will lead to rapid evolution. Under the assumption that gravitational torques would transport angular momentum out of this region, a central core of less than or approximately 8 solar masses with a stable disk of greater than or approximately = 2 solar masses should result. Frequency-dependent radiative transfer calculations of the standard case at selected ages show how the continuum spectrum of the structure depends on the disk's orientation and age and how the observed isophotal contours vary with wavelength. Because of the strong dependence on viewing angle, continuum spectra alone should not be used to estimate the evolutionary stage of development of these objects. Comparable results were obtained for the other cases considered.

  1. Regional offshore geology of central and western Solomon Islands and Bougainville, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedder, J.G.; Colwell, J.B.; Bruns, T.R.

    The central and western Solomon Islands and the Bougainville regions are parts of a complex island-arc system that includes an intra-arc basin and remnants of both forearc and back-arc depositional wedges. These features formed in response to episodic Cenozoic tectonism along the convergent boundary between the Pacific and Australia-India plates. Presumed early Tertiary southwest-directed subduction of the Pacific plate and associated arc magmatism were curtailed by impingement of the leading edge of the Ontong Java Plateau. Aprons of back-arc and forearc sediment were derived from highstanding parts of the arc during the late Oligocene and early Miocene. Late Tertiary arc-polaritymore » reversal and northeastward-directed subduction of the Woodlark spreading system caused a renewal of island-arc magmatism that completed the construction of the Central Solomons Trough as an enclosed intra-arc basin. Interpretations of multichannel profiles from 1982 and 1984 CCOP/SOPAC Tripartite Cruises of the research vessel R/V S.P. Lee indicate that the Central Solomons Trough is a composite intra-arc basin containing as much as 5.5 km of late Oligocene(.) and younger sedimentary rocks. As many as five lenticular seismic-stratigraphic units can be identified on the basis of unconformities and abrupt velocity changes. Late Miocene and younger folds and faults deform the northeast and southwest flanks of the basin. Profiles across the Kilinailau Trench show Ontong Java Plateau rocks covered by 2-4 km of trench sediment. The inner trench wall consists of folded, upfaulted, and rotated blocks of trench and forearc strata. The deep-water basin northwest of Bougainville is a southeastward extension of the New Ireland forearc basin, the southern margin of which is formed by a subsided part of the early Cenozoic arc. There, Oligocene(.) and younger basin strata, as much as 7 km thick, are deformed by pre-Pliocene faults and folds.« less

  2. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.

    PubMed

    Gonzalez-Mira, E; Egea, M A; Souto, E B; Calpena, A C; García, M L

    2011-01-28

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol(®) 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween(®) 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (∼90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  3. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mira, E.; Egea, M. A.; Souto, E. B.; Calpena, A. C.; García, M. L.

    2011-01-01

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol® 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween® 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (~90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  4. Influence of oxygen concentration, fuel composition, and strain rate on synthesis of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hou, Shuhn-Shyurng; Huang, Wei-Cheng

    2015-02-01

    This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).

  5. Comparison of central corneal thickness measurements with a rotating scheimpflug camera, a specular microscope, optical low-coherence reflectometry, and ultrasound pachymetry in keratoconic eyes.

    PubMed

    Cinar, Yasin; Cingu, Abdullah Kursat; Turkcu, Fatih Mehmet; Cinar, Tuba; Sahin, Alparslan; Yuksel, Harun; Ari, Seyhmus

    2015-03-01

    To compare central corneal thickness (CCT) measurements with a rotating Scheimpflug camera (RSC), noncontact specular microscopy (SM), optical low-coherence reflectometry (OLCR), and ultrasonic pachymetry (UP) in keratoconus (KC) patients. In this prospective study, four CCT measurements taken with an RSC, SM, OLCR, and UP were compared in 81 eyes of 44 consecutive KC patients. The KC patients were divided into four subgroups according to Amsler-Krumeich's KC classification. The RSC and UP measurements of the CCT were not statistically significant in all the groups. Comparison of the SM vs. the OLCR measurements yielded statistically significant differences in all the KC patients and in all KC stages. In all the KC patients, RSC and OLCR showed a high correlation coefficient factor (r = 0.87, p = 0.000). CCT measurements with RSC are comparable to those achieved with UP. Compared with the other devices, according to SM measurements, the central cornea is thicker in all keratoconic eyes and in all KC grades, and it is thinner according to OLCR. RSC, UP, SM, and OLCR should not be used interchangeably in keratoconic eyes.

  6. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  7. Optimal management and productivity of Eucalyptus grandis on former phosphate mined and citrus lands in central and southern Florida: influence of genetics and spacing

    Treesearch

    Kyle W. Fabbro; Donald L. Rockwood

    2016-01-01

    Eucalyptus short rotation woody crops (SRWC) with superior genotypes are promising in central and south Florida due to their fast growth, freeze resilience, coppicing ability, and site tolerance. Four Eucalyptus grandis cultivars, E.nergy™ G1, G2, G3, and/or G5, were established in 2009 at varying planting densities on a...

  8. Determination of the absolute configurations at stereogenic centers in the presence of axial chirality.

    PubMed

    Polavarapu, Prasad L; Jeirath, Neha; Kurtán, Tibor; Pescitelli, Gennaro; Krohn, Karsten

    2009-01-01

    Cephalochromin, a homodimeric naphthpyranone natural product, contains both axial chirality due to the hindered rotation along the biaryl axis and central chirality due to the C-2, C-2' stereogenic centers of the fused pyranone ring. For determining the absolute configurations (ACs) of central chirality elements, different chiroptical spectroscopic methods, namely vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotation (OR), have been used. From these experimental data, in conjunction with corresponding quantum chemical predictions at B3LYP/6-311G* level, it is found that the ECD spectra of cephalochromin are dominated by its axial chirality and are not suitable to distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers and hence to determine the ACs of the central chirality elements. OR signs also did not distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers. On other hand, VCD spectrum of cephalochromin exhibited separate spectral features attributable to axial chirality and stereogenic centers, thereby allowing the determination of both types of chirality elements. This is the first investigation demonstrating that, because of vibrations specific to the studied stereogenic centers, VCD spectroscopy can be used to simultaneously determine the ACs of axial and central chirality elements whenever other chiroptical methods (ECD and OR) fail to report on them. (c) 2009 Wiley-Liss, Inc.

  9. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  10. Analysis of rotation sensor data from the SINAPS@ Kefalonia (Greece) post-seismic experiment—link to surface geology and wavefield characteristics

    NASA Astrophysics Data System (ADS)

    Sbaa, Sarah; Hollender, Fabrice; Perron, Vincent; Imtiaz, Afifa; Bard, Pierre-Yves; Mariscal, Armand; Cochard, Alain; Dujardin, Alain

    2017-09-01

    Although rotational seismology has progressed in recent decades, the links between rotational ground motion and site soil conditions are poorly documented. New experiments were performed on Kefalonia Island (Greece) following two large earthquakes ( M W = 6.0, M W = 5.9) in early 2014 on two well-characterized sites (soft soil, V S30 250 m/s; rock, V S30 830 m/s, V S30 being harmonic average shear-wave velocity between 0 and 30 m depth). These earthquakes led to large six-component (three translations and three rotations) datasets of hundreds of well-recorded events. The relationship between peak translational acceleration versus peak rotational velocity is found sensitive to the site conditions mainly for the rotation around the vertical axis (torsion; dominated by Love waves): the stiffer the soil, the lower the torsion, for a given level of translational acceleration. For rotation around the horizontal axes (rocking; dominated by Rayleigh waves), this acceleration/rotation relationship exhibits much weaker differences between soft and rock sites. Using only the rotation sensor, an estimate of the Love-to-Rayleigh energy ratios could be carried out and provided the same results as previous studies that have analyzed the Love- and Rayleigh-wave energy proportions using data from translational arrays deployed at the same two sites. The coupling of translational and rotational measurements appears to be useful, not only for direct applications of engineering seismology, but also to investigate the composition of the wavefield, while avoiding deployment of dense arrays. The availability of new, low-noise rotation sensors that are easy to deploy in the field is of great interest and should extend the use of rotation sensors and expand their possible applications.[Figure not available: see fulltext.

  11. Influence of Markets on the Composition of Central Appalachian Forests

    Treesearch

    William G. Luppold; Gary W. Miller; Gary W. Miller

    2005-01-01

    Timber harvesting has been disturbing Central Appalachian hardwood forests since colonial times, but its most profound influence on forest composition has occurred during the last 130 years. Between the end of the Civil War and the Great Depression, the lumber industry went from state to state harvesting relatively large portions of the timber resource. This...

  12. Stand hazard rating for central Idaho forests

    Treesearch

    Robert Steele; Ralph E. Williams; Julie C. Weatherby; Elizabeth D. Reinhardt; James T. Hoffman; R. W. Thier

    1996-01-01

    Growing concern over sustainability of central ldaho forests has created a need to assess the health of forest stands on a relative basis. A stand hazard rating was developed as a composite of 11 individual ratings to compare the health hazards of different stands. The composite rating includes Douglas-fir beetle, mountain pine beetle, western pine beetle, spruce...

  13. Chemical composition of acid precipitation in central Texas

    Treesearch

    Hal B. H., Jr. Cooper; Jerry M. Demo

    1976-01-01

    Studies were undertaken to determine factors affecting composition of acidic precipitation formation in the Austin area of Central Texas. The study was initiated to determine background levels of acid and alkalinity producing constituents in an area with elevated natural dust levels from nearby limestone rock formations. Results showed normal rainfall pH values of 6.5...

  14. Passive motion reduces vestibular balance and perceptual responses

    PubMed Central

    Fitzpatrick, Richard C; Watson, Shaun R D

    2015-01-01

    With the hypothesis that vestibular sensitivity is regulated to deal with a range of environmental motion conditions, we explored the effects of passive whole-body motion on vestibular perceptual and balance responses. In 10 subjects, vestibular responses were measured before and after a period of imposed passive motion. Vestibulospinal balance reflexes during standing evoked by galvanic vestibular stimulation (GVS) were measured as shear reaction forces. Perceptual tests measured thresholds for detecting angular motion, perceptions of suprathreshold rotation and perceptions of GVS-evoked illusory rotation. The imposed conditioning motion was 10 min of stochastic yaw rotation (0.5–2.5 Hz ≤ 300 deg s−2) with subjects seated. This conditioning markedly reduced reflexive and perceptual responses. The medium latency galvanic reflex (300–350 ms) was halved in amplitude (48%; P = 0.011) but the short latency response was unaffected. Thresholds for detecting imposed rotation more than doubled (248%; P < 0.001) and remained elevated after 30 min. Over-estimation of whole-body rotation (30–180 deg every 5 s) before conditioning was significantly reduced (41.1 to 21.5%; P = 0.033). Conditioning reduced illusory vestibular sensations of rotation evoked by GVS (mean 113 deg for 10 s at 1 mA) by 44% (P < 0.01) and the effect persisted for at least 1 h (24% reduction; P < 0.05). We conclude that a system of vestibular sensory autoregulation exists and that this probably involves central and peripheral mechanisms, possibly through vestibular efferent regulation. We propose that failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. Key points Human activity exposes the vestibular organs to a wide dynamic range of motion. We aimed to discover whether the CNS regulates sensitivity to vestibular afference during exposure to ambient motion. Balance and perceptual responses to vestibular stimulation were measured before and after a 10 min period of imposed, moderate intensity, stochastic whole-body rotation. After this conditioning, vestibular balance reflexes evoked by galvanic vestibular stimulation were halved in amplitude. Conditioning doubled the thresholds for perceiving small rotations, and reduced perceptions of the amplitude of real rotations, and illusory rotation evoked by galvanic stimulation. We conclude that the CNS auto-regulates sensitivity to vestibular sensory afference and that this probably involves central and peripheral mechanisms, as might arise from vestibular efferent regulation. Failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. PMID:25809702

  15. Quilt Block Symmetries

    ERIC Educational Resources Information Center

    Roscoe, Matt B.; Zephyrs, Joe

    2016-01-01

    Geometric transformations have long been topics of middle school mathematics. Generations of middle school students have learned to reflect, rotate, and translate geometric objects. Historically, though, the mathematics of "movement" might have been considered a departure from other more central middle-grades geometric content areas,…

  16. High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data

    NASA Technical Reports Server (NTRS)

    Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.

    2006-01-01

    Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.

  17. Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks.

    PubMed

    Cortés, R Nallely Falfán; Guzmán, Iñigo Verdalet; Martínez-Bustos, Fernando

    2014-12-01

    The aim of this work was to study the effect of the addition of passion fruit pulp (PFP: 0-7%), the variation of barrel temperature in the third zone extruder (BT: 80-140 °C) and feed moisture (FM:16-30%) in a blend of corn starch and passion fruit pulp on different physicochemical characteristics of directly expanded snacks by extrusion technology. Single-screw laboratory extruder and a central, composite, rotatable experimental design were used. Expansion index of extrudates ranged between 1.0 and 1.8. Decreasing of feed moisture (18%), passion fruit pulp concentration (1.42%) and the increasing of barrel temperature (127 °C) resulted in higher expansion index. The increasing of feed moisture and passion fruit pulp concentration resulted in higher penetration force values of extrudates. The passion fruit pulp concentration showed a highly significant effect (p ≤ 0.01) on the L *, a * and b * parameters. Passion fruit pulp has a reasonable source of β-carotene, proteins and dietary fibers that can be added to expanded snacks.

  18. Quality characteristics of gluten free bread from barnyard millet-soy flour blends.

    PubMed

    Chakraborty, Subir K; Gupta, Saumya; Kotwaliwale, Nachiket

    2016-12-01

    The effects of formulation of leavened bread by using varying levels (for 50 g base flour) of soy flour-barnyard millet blends (with 5.74, 6.25, 7, 7.75 and 8.26 g of soy flour), yeast (1.83, 2, 2.25, 2.5 and 2.67 g) and salt (0.63, 0.8, 1.05, 1.30 and 1.47 g) on textural, colour and specific volume were determined. A central composite rotatable design of response surface methodology was used to plan the experiments. The second order models obtained were observed to be statistically significant and capable of demonstrating the effects input variables on responses. All the textural properties were affected significantly by amount of soy flour and yeast in the dough. Soy flour had a significant effect on the colour of the bread making it more brown. Interaction of soy flour and yeast affected the specific volume to maximum extent. Two-tailed t test established that the efficacy of the models as no significant was observed between the predicted and the actual values.

  19. Response surface methodology for studying the effect of processing conditions on some nutritional and textural properties of bambara groundnuts (Voandzei subterranea) during canning.

    PubMed

    Afoakwa, Emmanuel Ohene; Budu, Agnes Simpson; Merson, Alan Bullock

    2007-06-01

    The response surface methodology and central composite rotatable design for K=3 was used to study the combined effect of blanching, soaking and sodium hexametaphosphate salt concentration on moisture, ash, leached solids, phytates, tannins and hardness of bambara groundnut during canning. Regression models were developed to predict the effects of the processing parameters on the studied indices. Significant interactions were observed between all the factors with high regression coefficients (64.4-82.6%). Blanching and soaking of the seeds prior to canning led to increases in moisture content and leached solids, while significant decreases were observed for phytates, tannins and hardness of the canned bambara groundnuts. Increasing the concentration of sodium salt added during soaking caused significant (P

  20. Optimization of pre-sowing magnetic field doses through RSM in pea

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Ahmad, I.; Hussain, S. M.; Khera, R. A.; Bokhari, T. H.; Shehzad, M. A.

    2013-09-01

    Seed pre-sowing magnetic field treatment was reported to induce biochemical and physiological changes. In the present study, response surface methodology was used for deduction of optimal magnetic field doses. Improved growth and yield responses in the pea cultivar were achieved using a rotatable central composite design and multivariate data analysis. The growth parameters such as root and shoot fresh masses and lengths as well as yield were enhanced at a certain magnetic field level. The chlorophyll contents were also enhanced significantly vs. the control. The low magnetic field strength for longer duration of exposure/ high strength for shorter exposure were found to be optimal points for maximum responses in root fresh mass, chlorophyll `a' contents, and green pod yield/plant, respectively and a similar trend was observed for other measured parameters. The results indicate that the magnetic field pre-sowing seed treatment can be used practically to enhance the growth and yield in pea cultivar and response surface methodology was found an efficient experimental tool for optimization of the treatment level to obtain maximum response of interest.

  1. Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using Ocimum basilicum.

    PubMed

    Mosaddeghi, Mohammad Reza; Pajoum Shariati, Farshid; Vaziri Yazdi, Seyed Ali; Nabi Bidhendi, Gholamreza

    2018-06-21

    The wastewater produced in a pulp and paper industry is one of the most polluted industrial wastewaters, and therefore its treatment requires complex processes. One of the simple and feasible processes in pulp and paper wastewater treatment is coagulation and flocculation. Overusing a chemical coagulant can produce a large volume of sludge and increase costs and health concerns. Therefore, the use of natural and plant-based coagulants has been recently attracted the attention of researchers. One of the advantages of using Ocimum basilicum as a coagulant is a reduction in the amount of chemical coagulant required. In this study, the effect of basil mucilage has been investigated as a plant-based coagulant together with alum for treatment of paper recycling wastewater. Response surface methodology (RSM) was used to optimize the process of chemical coagulation based on a central composite rotatable design (CCRD). Quadratic models for colour reduction and TSS removal with coefficients of determination of R 2 >96 were obtained using the analysis of variance. Under optimal conditions, removal efficiencies of colour and total suspended solids (TSS) were 85% and 82%, respectively.

  2. Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1.

    PubMed

    Singh, Ram Sarup; Singh, Harpreet; Saini, Gaganpreet Kaur

    2009-01-01

    Culture conditions for pullulan production by Aureobasidium pullulans were optimized using response surface methodology at shake flask level without pH control. In the present investigation, a five-level with five-factor central composite rotatable design of experiments was employed to optimize the levels of five factors significantly affecting the pullulan production, biomass production, and sugar utilization in submerged cultivation. The selected factors included concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride. Using this methodology, the optimal values for concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride were 5.31%, 0.11%, 0.07%, 0.05%, and 0.15% (w/v), respectively. This optimized medium has projected a theoretically production of pullulan of 4.44%, biomass yield of 1.03%, and sugar utilization of 97.12%. The multiple correlation coefficient 'R' was 0.9976, 0.9761 and 0.9919 for pullulan production, biomass production, and sugar utilization, respectively. The value of R being very close to one justifies an excellent correlation between the predicted and the experimental data.

  3. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  5. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods.

    PubMed

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2017-02-15

    Natural antioxidants are widely used as dietary supplements or food additives. An optimized method of ultrasound-assisted extraction (UAE) was proposed for the effective extraction of antioxidants from the flowers of Limonium sinuatum and evaluated by response surface methodology. In this study, ethanol concentration, ratio of solvent to solid, ultrasonication time and temperature were investigated and optimized using a central composite rotatable design. The optimum extraction conditions were as follows: ethanol concentration, 60%; ratio of solvent to solid, 56.9:1mL/g; ultrasonication time, 9.8min; and temperature, 40°C. Under the optimal UAE conditions, the experimental values (483.01±15.39μmolTrolox/gDW) matched with those predicted (494.13μmolTrolox/gDW) within a 95% confidence level. In addition, the antioxidant activities of UAE were compared with those of conventional maceration and Soxhlet extraction methods, and the ultrasound-assisted extraction could give higher yield of antioxidants and markedly reduce the extraction time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: Ocular anti-inflammatory applications.

    PubMed

    Parra, Alexander; Mallandrich, Mireia; Clares, Beatriz; Egea, María A; Espina, Marta; García, María L; Calpena, Ana C

    2015-12-01

    This work aimed the design and development of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) for the ocular delivery of Carprofen (CP) by a central rotatable composite design 2(3)+ star. NPs showed adequate size for ocular administration (189.50 ± 1.67 nm), low polydispersity (0.01 ± 0.01), negative charge surface (-22.80 ± 0.66 mV) and optimal entrapment efficiency (74.70 ± 0.95%). Physicochemical analysis confirmed that CP was dispersed inside the NPs. The drug release followed a first order kinetic model providing greater sustained CP release after lyophilization. Ex vivo permeation analysis through isolated rabbit cornea revealed that a sufficient amount of CP was retained in the tissue avoiding excessive permeation and thus, potential systemic levels. Ex vivo ocular tolerance results showed no signs of ocular irritancy, which was also confirmed by in vivo Draize test. In vivo ocular anti-inflammatory efficacy test confirmed an optimal efficacy of NPs and its potential application in eye surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Optimization of instant dalia dessert pre-mix production by using response surface methodology.

    PubMed

    Jha, Alok; Shalini, B N; Patel, Ashok Ambalal; Singh, Mithilesh; Rasane, Prasad

    2015-02-01

    Dalia, a wheat-based, particulate containing dairy dessert is popularly consumed as a breakfast food and is also considered as a health food. Though popular throughout Northern parts of the country, its limited shelf-life even under refrigeration imposes severe restrictions on its organized manufacture and marketing. In order to promote dalia dessert as a marketable product, in the present study, a process was developed for manufacture of instant dalia pre-mix, as a dry product with long shelf-life, which could be attractively packaged and easily reconstituted for consumption. During the investigation, the effect of different levels of milk solids and wheat solids was studied on dalia pre-mix quality by employing a central composite rotatable design (CCRD). The suggested formulation had 17.82 % milk solids and 2.87 % wheat solids. This formulation was found to be most appropriate for manufacture of instant dalia pre-mix with predicted sensory scores (Max. 100) of 85.35, 41.98 and 67.27 for mouthfeel, consistency and flavor, respectively; the viscosity of the product was 941.0 cp.

  8. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  9. Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses).

    PubMed

    Srivastava, Abhinay Kumar; Tripathi, Abhishek Dutt; Jha, Alok; Poonia, Amrita; Sharma, Nitya

    2015-06-01

    In the present work Lactobacillus delbrueckii was used to utilize agro-industrial byproduct (cane molasses) for lactic acid production under submerged fermentation process. Screening of LAB was done by Fourier transform infra red spectroscopy (FTIR). Effect of different amino acids (DL-Phenylalanine, L-Lysine and DL-Aspartic acid) on the fermentation process was done by high performance liquid chromatography (HPLC). Central composite rotatable design (CCRD) was used to optimize the levels of three parameters viz. tween 80, amino acid and cane molasses concentration during fermentative production of lactic acid. Under optimum condition lactic acid production was enhanced from 55.89 g/L to 84.50 g/L. Further, validation showed 81.50 g/L lactic acid production. Scale up was done on 7.5 L fermentor. Productivity was found to be 3.40 g/L/h which was higher than previous studies with reduced fermentation time from 24 h to 12 h. Further characterization of lactic acid was done by FTIR.

  10. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    PubMed

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  11. A thermodynamic and mechanical model for the earliest Solar System: Formation via 3-d collapse of dust in the pre-Solar nebula

    NASA Astrophysics Data System (ADS)

    Criss, R. E.; Hofmeister, A.

    2012-12-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive ΔUg ˜= ΔR.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E. ˜= R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.depends on the contraction of orbits during collapse. Orbital data for the inner planets follow 0.04xR.E.f ˜= -Ug which confirms conservation of angular momentum. Measured spins of the youngest stars confirm that R.E.˜= -Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time-dependent virial theorem. As the PSN slowly contracted, collapse of pre-solar dust in spheroidal shells simultaneously formed rocky protoplanets embedded in a dusty debris disk, creating their nearly circular co-planar orbits and upright axial spins with the same sense as orbital rotation, which were then enhanced via subsequent local contraction of nearby nebulae. Because rocky kernels at great distance out-competed the pull of the co-accreting star, gas giants formed in the outer reaches within ~3 Ma as PSN contraction hastened. This pattern repeated to form satellite systems. The PSN imploded, once constricted to within Jupiter's orbit. Afterwards, disk debris slowly spiraled toward the protoSun, cratering and heating intercepted surfaces. Our conservative 3-d model, which allows for different behaviors of gas and dust, explains key Solar System characteristics (spin, orbits, gas giants and their compositions) and second-order features (dwarf planets, comet mineralogy, satellite system sizes).

  12. A Massive Star Census of the Starburst Cluster R136

    NASA Astrophysics Data System (ADS)

    Crowther, Paul

    2011-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  13. A Massive Star Census of the Starburst Cluster R136

    NASA Astrophysics Data System (ADS)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  14. Dental preparation with sonic vs high-speed finishing: analysis of microleakage in bonded veneer restorations.

    PubMed

    Faus-Matoses, Ignacio; Solá-Ruiz, Fernanda

    2014-02-01

    To compare marginal microleakage in porcelain veneer restorations following dental finishing using two types of instruments to test the hypothesis that microleakage will be less when teeth are prepared with sonic oscillating burs than when prepared with high-speed rotating burs. Fifty-six extracted human maxillary central incisors were selected and divided randomly into two groups. Group 1 samples underwent dental finishing using high-speed rotating diamond burs, while group 2 used sonic oscillating diamond burs. Buccal chamfer preparation was carried out for both groups. Forty eight of the samples (24 per group) were restored using IPS Empress ceramic veneers. 2% methylene blue was used to evaluate microleakage at the tooth/composite veneer interface. Teeth were sectioned lengthwise into three parts and microleakage was measured at two points - cervical and incisal - on each section. Before bonding, four teeth per group underwent SEM examination. Evaluation of microleakage at the cervical dentin margin showed a value of 10.5% in group 1 and 6.6% in group 2, which was statistically significantly different (p < 0.05). Incisal microleakage was 1.3% for group 1 and 1.2% for group 2, which was not significantly different. SEM revealed different patterns of surface texture in both areas according to the instrument used. Group 1 exhibited parallel horizontal abrasion grooves with a milled effect and thick smear layers; group 2 showed abrasive erosion, discontinuous perpendicular depressions, and thin smear layers. Tooth preparations finished with sonic burs produced significantly less microleakage in the cervical dentin area of bonded veneer restorations. No differences were found in the incisal enamel area.

  15. Process for manufacturing an auto-collimating scintillator and product produced thereby

    DOEpatents

    Goodman, C.A.; Lyon, A.F.; Perez-Mendez, V.

    1995-06-27

    There is described a process for the vapor deposition of a scintillator phosphor composition with concomitant shadowing wherein the substrate to be processed is rotated through an arc relative to a vapor source of the scintillator phosphor composition whereby shadowing introduces voided gaps or interstices between columns as a result of the preferential components receiving more coating flux, particularly in the presence of oblique flux. 8 figs.

  16. Temperature dependence of broadline NMR spectra of water-soaked, epoxy-graphite composites

    NASA Astrophysics Data System (ADS)

    Lawing, David; Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1981-10-01

    Water-soaked, epoxy resin-graphite fiber composites show a waterline in their broadline proton NMR spectrum which indicates a state of intermediate mobility between the solid and free water liquid states. The line is still present at -42 °C, but shows a reversible decrease in amplitude with decreasing temperature. The line is isotropic upon rotation of the fiber axis with respect to the external magnetic field.

  17. Process for manufacturing an auto-collimating scintillator and product produced thereby

    DOEpatents

    Goodman, Claude A.; Lyon, Alan F.; Perez-Mendez, Victor

    1995-01-01

    There is described a process for the vapor deposition of a scintillator phosphor composition with concomitant shadowing wherein the substrate to be processed is rotated through an arc relative to a vapor source of the scintillator phosphor composition whereby shadowing introduces voided gaps or interstices between columns as a result of the preferential components receiving more coating flux, particularly in the presence of oblique flux.

  18. Effect of chemical pressure on competition and cooperation between polar and antiferrodistortive distortions in sodium niobate

    NASA Astrophysics Data System (ADS)

    Jauhari, Mrinal; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Chaplot, S. L.

    2017-12-01

    We present results obtained from a combination of dielectric and x-ray diffraction measurements for compositional design of (1 -x )NaNb O3-x BaTi O3(NNBT x ) , which can induce interferroelectric phase transitions. Anomalies are observed in dielectric measurements performed for various compositions at 300 K, as well as at different temperatures for NNBT03. We observed the appearance(disappearance) of the superlattice reflections along with change in the intensities of the main perovskite peaks in the powder x-ray diffraction data, which provide clear evidences for structural phase transitions with composition and temperature. We found that increasing the concentration of BaTi O3 leads to the suppression of out-of-phase rotation of octahedra and an increment in tetragonality (c /a ratio), which promotes the polar mode at room temperature. The temperature-dependent powder diffraction study shows that the ferroelectric rhombohedral phase of pure sodium niobate gets suppressed for the composition x =0.03 , and the monoclinic phase C c gets stabilized at low temperature. The monoclinic phase is believed to provide for a flexible polarization rotation and is considered to be directly linked to the high-performance piezoelectricity in materials due to presence of more easy axes for spontaneous polarizations than the rhombohedral phase.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ∼2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σ{sub inst} ∼ 25 km s{sup –1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h {sub 3}, and h {sub 4}) for each galaxy. Combining withmore » literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.« less

  20. Hot, metastable hydronium ion in the Galactic centre: formation pumping in X-ray-irradiated gas?

    PubMed

    Lis, Dariusz C; Schilke, Peter; Bergin, Edwin A; Emprechtinger, Martin

    2012-11-13

    With a 3.5 m diameter telescope passively cooled to approximately 80 K, and a science payload comprising two direct detection cameras/medium resolution imaging spectrometers (PACS and SPIRE) and a very high spectral resolution heterodyne spectrometer (HIFI), the Herschel Space Observatory is providing extraordinary observational opportunities in the 55-670 μm spectral range. HIFI has opened for the first time to high-resolution spectroscopy the submillimetre band that includes the fundamental rotational transitions of interstellar hydrides, the basic building blocks of astrochemistry. We discuss a recent HIFI discovery of metastable rotational transitions of the hydronium ion (protonated water, H(3)O(+)), with rotational level energies up to 1200 K above the ground state, in absorption towards Sagittarius B2(N) in the Galactic centre. Hydronium is an important molecular ion in the oxygen chemical network. Earlier HIFI observations have indicated a general deficiency of H(3)O(+) in the diffuse gas in the Galactic disc. The presence of hot H(3)O(+) towards Sagittarius B2(N) thus appears to be related to the unique physical conditions in the central molecular zone, manifested, for example, by the widespread presence of abundant H(3)(+). One intriguing theory for the high rotational temperature characterizing the population of the H(3)O(+) metastable levels may be formation pumping in molecular gas irradiated by X-rays emitted by the Galactic centre black hole. Alternatively, the pervasive presence of enhanced turbulence in the central molecular zone may give rise to shocks in the lower-density medium that is exposed to energetic radiation.

  1. Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation.

    PubMed

    Aravamuthan, B R; Angelaki, D E

    2012-10-25

    The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson's disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only (VO) cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were VO cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Sensory substitution information informs locomotor adjustments when walking through apertures.

    PubMed

    Kolarik, Andrew J; Timmis, Matthew A; Cirstea, Silvia; Pardhan, Shahina

    2014-03-01

    The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0, +18, +35 and +70 % of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35 % for apertures of +18 % of body width) suggests that spatial representations are not as accurate as offered by full vision.

  3. Engineering new properties in PbTiO3 based superlattices: compositionally broken inversion symmetry and polarization rotation

    NASA Astrophysics Data System (ADS)

    Dawber, Matthew

    2013-03-01

    In this talk I will present results on two superlattice systems which contain ultra fine layers of PbTiO3 and another perovskite material. In recent years, much work has been done on the PbTiO3/SrTiO3 system, with a focus on improper ferroelectricity and the arrangement of ferroelectric domains. Here, we consider two different partner materials for PbTiO3, each of which introduces markedly different behavior in the resulting superlattice. PbTiO3/SrRuO3 superlattices with ultra-thin SrRuO3 layers were studied both experimentally and using density functional theory. Due to the superlattice geometry, the samples show a large anisotropy in their electrical resistivity, which can be controlled by changing the thickness of the PbTiO3 layers. Therefore, along the ferroelectric direction, SrRuO3 layers can act as dielectric, rather than metallic, elements. We show that, by reducing the thickness of the PbTiO3 layers, an increasingly important effect of polarization asymmetry due to compositional inversion symmetry breaking occurs. The compositional inversion symmetry breaking is seen in this bi-color superlattice due to the combined variation of A and B site ions within the superlattice. We have also achieved an experimental enhancement of the piezoelectric response and dielectric tunability in artificially layered epitaxial PbTiO3/CaTiO3 superlattices through an engineered rotation of the polarization direction. As the relative layer thicknesses within the superlattice were changed from sample to sample we found evidence for polarization rotation in multiple x-ray diffraction measurements. Associated changes in functional properties were seen in electrical measurements and piezoforce microscopy. These results demonstrate a new approach to inducing polarization rotation under ambient conditions in an artificially layered thin film. Work supported by NSF DMR1055413

  4. Polarization splitting phenomenon of photonic crystals constructed by two-fold rotationally symmetric unit-cells

    NASA Astrophysics Data System (ADS)

    Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-09-01

    We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.

  5. Functional anatomy of human scalene musculature: rotation of the cervical spine.

    PubMed

    Olinger, Anthony B; Homier, Phillip

    2010-10-01

    Actions of the scalene muscles include flexion and lateral flexion of the cervical spine and elevation of the first and second ribs. The cervical rotational qualities of the scalene muscles remain unclear. Textbooks and recent studies report contradictory findings with respect to the cervical rotational properties of the scalene muscles. The present study was designed to take a mechanical approach to determining whether the scalene muscles produce rotation of the cervical spine. The scalene muscles were isolated, removed, and replaced by a durable suture material. The suture material was attached at the origin and then passed through a hole on the corresponding rib near the central point of the insertion. The suture material was pulled down through the corresponding costal insertion hole to simulate contraction of each muscle. The simulated anterior, middle, and posterior scalene muscles, working independently and jointly, produced ipsilateral rotation of the cervical spine. The upper cervical spine rotated in the ipsilateral direction in response to the simulated muscle contraction. Findings were similar for the lower cervical spine with the exception of 2 specimens, which rotated contralaterally in response to the simulation. Experimental models of the scalene muscles are capable of producing ipsilateral rotation of the cervical spine. The findings of this study support the accepted main actions of the scalene muscles. The clinical applications for understanding the cervical rotational properties of the scalene muscles include the diagnosis, management, and treatment of cervical pain conditions as well as thoracic outlet syndrome. Copyright © 2010 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  6. Standard versus Rotation Technique for Insertion of Supraglottic Airway Devices: Systematic Review and Meta-Analysis

    PubMed Central

    Park, Jin Ha; Lee, Jong Seok; Nam, Sang Beom; Ju, Jin Wu

    2016-01-01

    Purpose Supraglottic airway devices have been widely utilized as an alternative to tracheal intubation in various clinical situations. The rotation technique has been proposed to improve the insertion success rate of supraglottic airways. However, the clinical efficacy of this technique remains uncertain as previous results have been inconsistent, depending on the variable evaluated. Materials and Methods We systematically searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials in April 2015 for randomized controlled trials that compared the rotation and standard techniques for inserting supraglottic airways. Results Thirteen randomized controlled trials (1505 patients, 753 with the rotation technique) were included. The success rate at the first attempt was significantly higher with the rotation technique than with the standard technique [relative risk (RR): 1.13; 95% confidence interval (CI): 1.05 to 1.23; p=0.002]. The rotation technique provided significantly higher overall success rates (RR: 1.06; 95% CI: 1.04 to 1.09; p<0.001). Device insertion was completed faster with the rotation technique (mean difference: -4.6 seconds; 95% CI: -7.37 to -1.74; p=0.002). The incidence of blood staining on the removed device (RR: 0.36; 95% CI: 0.27 to 0.47; p<0.001) was significantly lower with the rotation technique. Conclusion The rotation technique provided higher first-attempt and overall success rates, faster insertion, and a lower incidence of blood on the removed device, reflecting less mucosal trauma. Thus, it may be considered as an alternative to the standard technique when predicting or encountering difficulty in inserting supraglottic airways. PMID:27189296

  7. Electromembrane extraction through a virtually rotating supported liquid membrane.

    PubMed

    Hosseiny Davarani, Saied Saeed; Moazami, Hamid Reza; Memarian, Elham; Nojavan, Saeed

    2016-01-01

    Electromembrane extraction (EME) of model analytes was carried out using a virtually rotating supported liquid membrane (SLM). The virtual (nonmechanical) rotating of the SLM was achieved using a novel electrode assembly including a central electrode immersed inside the lumen of the SLM and five counter electrodes surrounding the SLM. A particular electronic circuit was designed to distribute the potential among five counter electrodes in a rotating pattern. The effect of the experimental parameters on the recovery of the extraction was investigated for verapamil (VPL), trimipramine (TRP), and clomipramine (CLP) as the model analytes and 2-ethyl hexanol as the SLM solvent. The results showed that the recovery of the extraction is a function of the angular velocity of the virtual rotation. The best results were obtained at an angular velocity of 1.83 RadS(-1) (or a rotation frequency of 0.29 Hz).The optimization of the parameters gave higher recoveries up to 50% greater than those of a conventional EME method. The rotating also allowed the extraction to be carried out at shorter time (15 min) and lower voltage (200 V) with respect to the conventional extraction. The model analytes were successfully extracted from wastewater and human urine samples with recoveries ranging from 38 to 85%. The RSD of the determinations was in the range of 12.6 to 14.8%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Decreased Left Ventricular Torsion and Untwisting in Children with Dilated Cardiomyopathy

    PubMed Central

    Jin, Seon Mi; Bae, Eun Jung; Choi, Jung Yun; Yun, Yong Soo

    2007-01-01

    The purpose of this study was to analyze left ventricular (LV) torsion and untwisting, and to evaluate the correlation between torsion and other components of LV contraction in children with dilated cardiomyopathy (DCM). Segmental and global rotation, rotational rate (Vrot) were measured at three levels of LV using the two-dimensional (2D) speckle tracking imaging (STI) method in 10 DCM patients (range 0.6-15 yr, median 6.5 yr, 3 females) and 17 age- and sex-matched normal controls. Global torsion was decreased in DCM (peak global torsion; 10.9±4.6° vs. 0.3±2.1°, p<0.001). Loss of LV torsion occurred mainly by the diminution of counterclockwise apical rotation and was augmented by somewhat less reduction in clockwise basal rotation. In DCM, the normal counterclockwise apical rotation was not observed, and the apical rotation about the central axis was clockwise or slightly counterclockwise (peak apical rotation; 5.9±4.1° vs. -0.9±3.1°, p<0.001). Systolic counterclockwise Vrot and early diastolic clockwise Vrot at the apical level were decreased or abolished. In DCM, decreased systolic torsion and loss of early diastolic recoil contribute to LV systolic and diastolic dysfunction. The STI method may facilitate the serial evaluation of the LV torsional behavior in clinical settings and give new biomechanical concepts for better management of patients with DCM. PMID:17728501

  9. The evolution of rotating very massive stars with LMC composition

    NASA Astrophysics Data System (ADS)

    Köhler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2015-01-01

    Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims: We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods: We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M⊙ and with initial surface rotational velocities from 0 to 550 km s-1, covering the core-hydrogen burning phase of evolution. Results: We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M⊙, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ~150 M⊙ at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ~56 000 K, at ~180 M⊙, and to an evolution of stars in the mass range 50 M⊙...100 M⊙ to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ~180 M⊙. Conclusions: The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses. The dataset of the presented stellar evolution models is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A71Appendices are available in electronic form at http://www.aanda.org

  10. Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications

    NASA Astrophysics Data System (ADS)

    Chapkin, Wesley Aaron

    We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This finding matches an electrostatic potential energy model for CNT rotation. Lastly, we investigate the effects of conductive carbon fibers on electrostatically induced alignment of CNTs within carbon fiber composites. The relative electric field strength throughout the composite is modeled using COMSOL Multiphysics. We show the ability to generate enhanced electric field gradients within the gaps between carbon fibers for various fiber orientations. Using polarized Raman spectroscopy, increased levels of CNT alignment are observed between carbon fiber tows, which is consistent with the modeled higher electric field strengths in these regions. These findings could potentially lead to the development of carbon fiber composites with CNT additions that selectively enhance the composite properties outside the carbon fiber interphase in the neat epoxy.

  11. I -Love- Q relations for white dwarf stars

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Quevedo, H.; Zhami, B.

    2017-02-01

    We investigate the equilibrium configurations of uniformly rotating white dwarfs, using Chandrasekhar and Salpeter equations of state in the framework of Newtonian physics. The Hartle formalism is applied to integrate the field equation together with the hydrostatic equilibrium condition. We consider the equations of structure up to the second order in the angular velocity, and compute all basic parameters of rotating white dwarfs to test the so-called moment of inertia, rotational Love number, and quadrupole moment (I-Love-Q) relations. We found that the I-Love-Q relations are also valid for white dwarfs regardless of the equation of state and nuclear composition. In addition, we show that the moment of inertia, quadrupole moment, and eccentricity (I-Q-e) relations are valid as well.

  12. Evaluation of biochemical urinary stone composition and its relationship to tap water hardness in Qom province, central Iran.

    PubMed

    Moslemi, Mohammad Kazem; Saghafi, Hossein; Joorabchin, Seyed Mohammad Amin

    2011-01-01

    The aim of this study was to evaluate the biochemical stone composition in general population of Qom province, central Iran, and its relationship with high tap water hardness. In a prospective study, from March 2008 to July 2011, biochemical analysis of urinary stones in patients living in Qom province for at least 5 years was performed. Stones were retrieved by spontaneous passage, endoscopic or open surgery, and after extracorporeal shockwave lithotripsy. Demographic findings and the drinking water supply of patients were evaluated and compared with biochemical stone analysis. Stone analysis was performed in 255 patients. The most dominant composition of urinary stones was calcium oxalate (73%), followed by uric acid (24%), ammonium urate (2%), and cystine (1%). The peak incidence of urinary stone was in patients in their forties. Overall male to female ratio was 4.93:1. The dominant stone composition in inhabitants of central Iran, where tap water hardness is high, was calcium oxalate stones. On the basis of this study, biochemical urinary stone composition of Qom does not differ from other regions of Iran with lower water hardness.

  13. The architecture of the joint head cuticle and its transition to the arthrodial membrane in the terrestrial crustacean Porcellio scaber.

    PubMed

    Ruangchai, Sukhum; Reisecker, Christian; Hild, Sabine; Ziegler, Andreas

    2013-04-01

    The cuticle of terrestrial isopods is an interesting model for the study of structure-function relationships in biological composite materials. Its organic matrix has a hierarchically organised structure, and type and phase of the mineral compound can vary. The cuticle forms functionally diverse skeletal elements whose properties are adapted to their specific functions. In order to better understand the relation between structure, composition and function of isopod cuticle, we studied the structure and composition of the joint head that is part of the pereiopod's basis. It consists of a central region, whose shape fits well into the joint socket, and an edge region that is connected to the soft arthrodial membrane and protects the central region from mechanical load. The cuticle architecture of the joint head has local variations in structure and composition. In the central region the cuticle is similar to the previously published tergite cuticle. High concentrations of amorphous calcium phosphate are located in the endocuticle suggesting a coexistence with amorphous calcium carbonate. The edge region has an unexpected organisation characterised by thickening of the epi- and exocuticle and an unusual unidirectional orientation of chitin-protein fibrils within the endocuticle. The concentrations of phosphate are considerably higher than in the central region. The overall differentiation in the cuticular architecture of the edge in comparison to the central region reflects the adaptation to mechanical strains the cuticle has to sustain during contraction of extensor muscles, and to the structural and compositional transition from the edge to the connecting arthrodial membrane. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Experimental Investigation of Rotating Menisci

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael E.

    2014-07-01

    In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.

  15. Natural selection in the colloid world: active chiral spirals.

    PubMed

    Zhang, Jie; Granick, Steve

    2016-10-06

    We present a model system in which to study natural selection in the colloid world. In the assembly of active Janus particles into rotating pinwheels when mixed with trace amounts of homogeneous colloids in the presence of an AC electric field, broken symmetry in the rotation direction produces spiral, chiral shapes. Locked into a central rotation point by the centre particle, the spiral arms are found to trail rotation of the overall cluster. To achieve a steady state, the spiral arms undergo an evolutionary process to coordinate their motion. Because all the particles as segments of the pinwheel arms are self-propelled, asymmetric arm lengths are tolerated. Reconfiguration of these structures can happen in various ways and various mechanisms of this directed structural change are analyzed in detail. We introduce the concept of VIP (very important particles) to express that sustainability of active structures is most sensitive to only a few particles at strategic locations in the moving self-assembled structures.

  16. The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement.

    PubMed

    Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A

    2015-03-01

    The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. There is ongoing debate about how best to reconstruct the ACL to restore normal knee function, including where is the best place for ACL graft tunnels. This study found that the most important area on the femur, in terms of resisting displacement of the tibia, was in the central-anterior part of the femoral ACL attachment, near the roof of the intercondylar notch. The testing protocol did not lead to data that would support using a large ACL graft tunnel that attempts to cover the whole natural femoral attachment area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Role of Fibers in the Femoral Attachment of the Anterior Cruciate Ligament in Resisting Tibial Displacement

    PubMed Central

    Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A.

    2015-01-01

    Purpose The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. Methods A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. Results The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Conclusions Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. Clinical Relevance There is ongoing debate about how best to reconstruct the ACL to restore normal knee function, including where is the best place for ACL graft tunnels. This study found that the most important area on the femur, in terms of resisting displacement of the tibia, was in the central-anterior part of the femoral ACL attachment, near the roof of the intercondylar notch. The testing protocol did not lead to data that would support using a large ACL graft tunnel that attempts to cover the whole natural femoral attachment area. PMID:25530509

  18. Thinning Pole-Sized Aspen Has no Effect on Number of Veneer Trees or Total Yield

    Treesearch

    Bryce E. Schlaegel; Stanley B. Ringlod

    1971-01-01

    Thinning 37-year-old aspen in north central Minnesota did not increase either total volume production or the number of veneer-sized trees after 10 years. Thinning is not recommended for stands nearing rotation age.

  19. Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion

    PubMed Central

    Saita, Ei-ichiro; Suzuki, Toshiharu; Kinosita, Kazuhiko; Yoshida, Masasuke

    2015-01-01

    F1-ATPase is a motor enzyme in which a central shaft γ subunit rotates 120° per ATP in the cylinder made of α3β3 subunits. During rotation, the chemical energy of ATP hydrolysis (ΔGATP) is converted almost entirely into mechanical work by an elusive mechanism. We measured the force for rotation (torque) under various ΔGATP conditions as a function of rotation angles of the γ subunit with quasi-static, single-molecule manipulation and estimated mechanical work (torque × traveled angle) from the area of the function. The torque functions show three sawtooth-like repeats of a steep jump and linear descent in one catalytic turnover, indicating a simple physical model in which the motor is driven by three springs aligned along a 120° rotation angle. Although the second spring is unaffected by ΔGATP, activation of the first spring (timing of the torque jump) delays at low [ATP] (or high [ADP]) and activation of the third spring delays at high [Pi]. These shifts decrease the size and area of the sawtooth (magnitude of the work). Thus, F1-ATPase responds to the change of ΔGATP by shifting the torque jump timing and uses ΔGATP for the mechanical work with near-perfect efficiency. PMID:26195785

  20. Rotational broadening and conservation of angular momentum in post-extreme horizontal branch stars

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Latour, M.

    2018-06-01

    We show that the recent realization that isolated post-extreme horizontal branch (post-EHB) stars are generally characterized by rotational broadening with values of V rot sini between 25 and 30 km s-1 can be explained as a natural consequence of the conservation of angular momentum from the previous He-core burning phase on the EHB. The progenitors of these evolved objects, the EHB stars, are known to be slow rotators with an average value of V rot sini of 7.7 km s-1. This implies significant spin-up between the EHB and post-EHB phases. Using representative evolutionary models of hot subdwarf stars, we demonstrate that angular momentum conservation in uniformly rotating structures (rigid-body rotation) boosts that value of the projected equatorial rotation speed by a factor 3.6 by the time the model has reached the region of the surface gravity-effective temperature plane where the newly-studied post-EHB objects are found. This is exactly what is needed to account for their observed atmospheric broadening. We note that the decrease of the moment of inertia causing the spin-up is mostly due to the redistribution of matter that produces more centrally-condensed structures in the post-EHB phase of evolution, not to the decrease of the radius per se.

Top