Sample records for central dark object

  1. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  2. The dark matter content of Local Group dwarf spheroidals

    NASA Astrophysics Data System (ADS)

    Collins, Michelle; PAndAS Team

    2016-01-01

    Dwarf spheroidal galaxies are the most dark matter dominated objects we have observed in the Universe. By measuring the dynamics of their stellar populations, we can hope to map out the shapes of their central density profiles, and compare these to expectations from simulations. In this poster, we will present the central kinematics of a range of dwarf galaxies around the Milky Way and Andromeda, taken as part of the PAndAS Keck II DEIMOS survey. We will highlight a number of unusual objects, which have either very high mass to light ratios - indicating they may be promising candidates for indirect detection experiments - or those with exceptionally low central densities, whose kinematic profiles suggest that these systems are out of dynamical equilibrium.

  3. 4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN 'B'; PIPE, WOOD, STOVE MATERIALS, AND COLLAPSED ROOT CELLAR IN CENTRAL AREA. VERTICAL, DARK PIPE IS VISIBLE IN CENTER/UPPER THIRD. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackrisson, Erik; Rydberg, Claes-Erik; Oestlin, Goeran

    The first stars in the history of the universe are likely to form in the dense central regions of {approx}10{sup 5}-10{sup 6} M{sub sun} cold dark matter halos at z {approx} 10-50. The annihilation of dark matter particles in these environments may lead to the formation of so-called dark stars, which are predicted to be cooler, larger, more massive, and potentially more long-lived than conventional population III stars. Here, we investigate the prospects of detecting high-redshift dark stars with the upcoming James Webb Space Telescope (JWST). We find that all dark stars with masses up to 10{sup 3} M{sub sun}more » are intrinsically too faint to be detected by JWST at z > 6. However, by exploiting foreground galaxy clusters as gravitational telescopes do, certain varieties of cool (T{sub eff} {<=} 30, 000 K) dark stars should be within reach at redshifts up to z {approx} 10. If the lifetimes of dark stars are sufficiently long, many such objects may also congregate inside the first galaxies. We demonstrate that this could give rise to peculiar features in the integrated spectra of galaxies at high redshifts, provided that dark stars make up at least {approx}1% of the total stellar mass in such objects.« less

  5. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    NASA Astrophysics Data System (ADS)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  6. Star counts and visual extinctions in dark nebulae

    NASA Technical Reports Server (NTRS)

    Dickman, R. L.

    1978-01-01

    Application of star count techniques to the determination of visual extinctions in compact, fairly high-extinction dark nebulae is discussed. Particular attention is devoted to the determination of visual extinctions for a cloud having a possibly anomalous ratio of total to selective extinction. The techniques discussed are illustrated in application at two colors to four well-known compact dust clouds or Bok globules: Barnard 92, B 133, B 134, and B 335. Minimum masses and lower limits to the central extinction of these objects are presented.

  7. Dark and white lesions observed in central serous chorioretinopathy on optical coherence tomography angiography.

    PubMed

    De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine

    2018-03-01

    To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.

  8. Universal relations with fermionic dark matter

    NASA Astrophysics Data System (ADS)

    Krut, A.; Argüelles, C. R.; Rueda, J. A.; Ruffini, R.

    2018-01-01

    We have recently introduced a new model for the distribution of dark matter (DM) in galaxies, the Ruffini-Argüelles-Rueda (RAR) model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser quantum core towards the center of each configuration. We demonstrate here, for the first time, that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for galaxies finite size and mass, defines a new solution with a compact quantum core which represents an alternative to the central black hole (BH) scenario for SgrA*. For a fermion mass in the range 48keV ≤ mc2 ≤ 345keV, the DM halo distribution fulfills the most recent data of the Milky Way rotation curves while harbors a dense quantum core of 4×106M⊙ within the S2 star pericenter. In particular, for a fermion mass of mc2 ˜ 50keV the model is able to explain the DM halos from typical dwarf spheroidal to normal elliptical galaxies, while harboring dark and massive compact objects from ˜ 103M⊙ tp to 108M⊙ at their respective centers. The model is shown to be in good agreement with different observationally inferred universal relations, such as the ones connecting DM halos with supermassive dark central objects. Finally, the model provides a natural mechanism for the formation of supermassive BHs as heavy as few ˜ 108M⊙. We argue that larger BH masses (few ˜ 109-10M⊙) may be achieved by assuming subsequent accretion processes onto the above heavy seeds, depending on accretion efficiency and environment.

  9. Gravitational Lensing and Microlensing in Clusters: Clusters as Dark Matter Telescopes

    NASA Astrophysics Data System (ADS)

    Safonova, Margarita

    2018-04-01

    Gravitational lensing is brightening of background objects due to deflection of light by foreground sources. Rich clusters of galaxies are very effective lenses because they are centrally concentrated. Such natural Gravitational Telescopes provide us with strongly magnified galaxies at high redshifts otherwise too faint to be detected or analyzed. With a lensing boost, we can study galaxies shining at the end of the “Dark Ages”. We propose to exploit the opportunity provided by the large field of view and depth, to search for sources magnified by foreground clusters in the vicinity of the cluster critical curves, where enhancements can be of several tens in brightness. Another aspect is microlensing (ML), where we would like to continue our survey of a number of Galactic globular clusters over time-scales of weeks to years to search for ML events from planets to hypothesized central intermediate-mass black holes (IMBH).

  10. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    PubMed

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  11. The Structure of Dark Matter Halos in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    1995-07-01

    Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.

  12. Earth-mass dark-matter haloes as the first structures in the early Universe.

    PubMed

    Diemand, J; Moore, B; Stadel, J

    2005-01-27

    The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter, the determination of which is one of the biggest challenges in present-day science. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 10(15) to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of gamma-rays (from particle-particle annihilation).

  13. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.

    PubMed

    Monaco, Simona; Gallivan, Jason P; Figley, Teresa D; Singhal, Anthony; Culham, Jody C

    2017-11-29

    The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay. SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it. Copyright © 2017 the authors 0270-6474/17/3711572-20$15.00/0.

  14. Discovery of the Lensed Quasar System DES J0408-5354

    DOE PAGES

    Lin, H.; Buckley-Geer, E.; Agnello, A.; ...

    2017-03-27

    We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (more » $$i\\lt 20$$) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.« less

  15. Discovery of the Lensed Quasar System DES J0408-5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H.; Buckley-Geer, E.; Agnello, A.

    We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (more » $$i\\lt 20$$) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.« less

  16. Modified hollow Gaussian beam and its paraxial propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Chen, Chiyi; Wang, Fei

    2007-10-01

    A model named modified hollow Gaussian beam (HGB) is proposed to describe a dark hollow beam with adjustable beam spot size, central dark size and darkness factor. In this modified model, both the beam spot size and the central dark size will be convergent to finite constants as the beam order approaches infinity, which are much different from that of the previous unmodified model, where the beam spot size and the central dark size will not be convergent as the beam order approaches infinity. The dependences of the propagation factor of modified and unmodified HGBs on the beam order are found to be the same. Based on the Collins integral, analytical formulas for the modified HGB propagating through aligned and misaligned optical system are derived. Some numerical examples are given.

  17. Non-nebular Origin of Dark Mantles Around Chondrules and Inclusions in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Trigo-Rodriquez, Josep M.; Rubin, Alan E.; Wasson, John T.

    2006-01-01

    Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 1992, 2873-28971. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791 198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r(sup 2) = 0.44) if we limit consideration to central objects with radii >35 microns; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed "mantles"; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as "primary accretionary rocks" by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts reflect their lithified nature and low surface/volume ratios during the period when they resided in the regolith and were subject to irradiation by solar particles. The clasts are analogous to the light-colored metamorphosed clasts in ordinary-chondrite regolith breccias (which also lack solar-flare particle tracks and solar-wind gas).

  18. A Kinematic Study of the Andromeda Dwarf Spheroidal System

    NASA Astrophysics Data System (ADS)

    Collins, Michelle L. M.; Chapman, Scott C.; Rich, R. Michael; Ibata, Rodrigo A.; Martin, Nicolas F.; Irwin, Michael J.; Bate, Nicholas F.; Lewis, Geraint F.; Peñarrubia, Jorge; Arimoto, Nobuo; Casey, Caitlin M.; Ferguson, Annette M. N.; Koch, Andreas; McConnachie, Alan W.; Tanvir, Nial

    2013-05-01

    We present a homogeneous kinematic analysis of red giant branch stars within 18 of the 28 Andromeda dwarf spheroidal (dSph) galaxies, obtained using the Keck I/LRIS and Keck II/DEIMOS spectrographs. Based on their g - i colors (taken with the CFHT/MegaCam imager), physical positions on the sky, and radial velocities, we assign probabilities of dSph membership to each observed star. Using this information, the velocity dispersions, central masses, and central densities of the dark matter halos are calculated for these objects, and compared with the properties of the Milky Way dSph population. We also measure the average metallicity ([Fe/H]) from the co-added spectra of member stars for each M31 dSph and find that they are consistent with the trend of decreasing [Fe/H] with luminosity observed in the Milky Way population. We find that three of our studied M31 dSphs appear as significant outliers in terms of their central velocity dispersion, And XIX, XXI, and XXV, all of which have large half-light radii (gsim 700 pc) and low velocity dispersions (σ v < 5 km s-1). In addition, And XXV has a mass-to-light ratio within its half-light radius of just [M/L]_half=10.3^{+7.0}_{-6.7}, making it consistent with a simple stellar system with no appreciable dark matter component within its 1σ uncertainties. We suggest that the structure of the dark matter halos of these outliers have been significantly altered by tides.

  19. Correction of Atmospheric Haze in RESOURCESAT-1 LISS-4 MX Data for Urban Analysis: AN Improved Dark Object Subtraction Approach

    NASA Astrophysics Data System (ADS)

    Mustak, S.

    2013-09-01

    The correction of atmospheric effects is very essential because visible bands of shorter wavelength are highly affected by atmospheric scattering especially of Rayleigh scattering. The objectives of the paper is to find out the haze values present in the all spectral bands and to correct the haze values for urban analysis. In this paper, Improved Dark Object Subtraction method of P. Chavez (1988) is applied for the correction of atmospheric haze in the Resoucesat-1 LISS-4 multispectral satellite image. Dark object Subtraction is a very simple image-based method of atmospheric haze which assumes that there are at least a few pixels within an image which should be black (% reflectance) and such black reflectance termed as dark object which are clear water body and shadows whose DN values zero (0) or Close to zero in the image. Simple Dark Object Subtraction method is a first order atmospheric correction but Improved Dark Object Subtraction method which tends to correct the Haze in terms of atmospheric scattering and path radiance based on the power law of relative scattering effect of atmosphere. The haze values extracted using Simple Dark Object Subtraction method for Green band (Band2), Red band (Band3) and NIR band (band4) are 40, 34 and 18 but the haze values extracted using Improved Dark Object Subtraction method are 40, 18.02 and 11.80 for aforesaid bands. Here it is concluded that the haze values extracted by Improved Dark Object Subtraction method provides more realistic results than Simple Dark Object Subtraction method.

  20. Constraints on an annihilation signal from a core of constant dark matter density around the milky way center with H.E.S.S.

    PubMed

    Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S

    2015-02-27

    An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9  h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300  GeV to ∼10  TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24}  cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4  TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.

  1. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE PAGES

    Zhang, Yuanyuan; Bell, Eric F.

    2017-01-13

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  2. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Bell, Eric F.

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  3. Thin Planes of Satellites in ΛCDM are not kinematically coherent

    NASA Astrophysics Data System (ADS)

    Buck, Tobias; Dutton, Aaron A.; Macciò, Andrea V.

    2017-03-01

    Recently it has been shown by Ibata et al. (2013) that a large fraction of the dwarf satellite galaxies found in the PAndAS survey (McConnachie et al. 2009) and orbiting the Andromeda galaxy are surprisingly aligned in a thin, extended, and kinematically coherent planar structure. The presence of such a structure seems to challenge the current Cold Dark Matter paradigm of structure formation (Ibata et al. 2014, Pawlowski et al. 2014), which predicts a more uniform distribution of satellites around central objects. We show that it is possible to obtain a thin, extended, rotating plane of satellites resembling the one in Andromeda in cosmological collisionless simulations based on this model. Our new 21 high-resolution simulations (see Buck et al. 2015) show a correlation between the formation time of the dark matter halo and the thickness of the plane of satellites. Our simulations have a high incidence of satellite planes as thin, extended, and as rich as the one in Andromeda and with a very coherent kinematic structure when we select early forming haloes. By tracking the formation of the satellites in the plane we show that they have mainly been accreted onto the main object along thin dark matter filaments at high redshift (Dekel et al. 2009, Libeskind et al. 2009, 2011). Our results show that the presence of a thin, extended, rotating plane of satellites is not a challenge for the Cold Dark Matter paradigm, but actually supports one of the predictions of this paradigm related to the presence of filaments of dark matter around galaxies at high redshift.

  4. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE PAGES

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; ...

    2017-07-10

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  5. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  6. STEM-HAADF electron microscopy analysis of the central dark line defect of human tooth enamel crystallites.

    PubMed

    Gasga, Jose Reyes; Carbajal-de-la-Torre, Georgina; Bres, Etienne; Gil-Chavarria, Ivet M; Rodríguez-Hernández, Ana G; Garcia-Garcia, Ramiro

    2008-02-01

    When human tooth enamel is observed with the Transmission Electron Microscope (TEM), a structural defect is registered in the central region of their nanometric grains or crystallites. This defect has been named as Central Dark Line (CDL) and its structure and function in the enamel structure have been unknown yet. In this work we present the TEM analysis to these crystallites using the High Angle Annular Dark Field (HAADF) technique. Our results suggest that the CDL region is the calcium richest part of the human tooth enamel crystallites.

  7. A KINEMATIC STUDY OF THE ANDROMEDA DWARF SPHEROIDAL SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Michelle L. M.; Martin, Nicolas F.; Chapman, Scott C.

    We present a homogeneous kinematic analysis of red giant branch stars within 18 of the 28 Andromeda dwarf spheroidal (dSph) galaxies, obtained using the Keck I/LRIS and Keck II/DEIMOS spectrographs. Based on their g - i colors (taken with the CFHT/MegaCam imager), physical positions on the sky, and radial velocities, we assign probabilities of dSph membership to each observed star. Using this information, the velocity dispersions, central masses, and central densities of the dark matter halos are calculated for these objects, and compared with the properties of the Milky Way dSph population. We also measure the average metallicity ([Fe/H]) frommore » the co-added spectra of member stars for each M31 dSph and find that they are consistent with the trend of decreasing [Fe/H] with luminosity observed in the Milky Way population. We find that three of our studied M31 dSphs appear as significant outliers in terms of their central velocity dispersion, And XIX, XXI, and XXV, all of which have large half-light radii ({approx}> 700 pc) and low velocity dispersions ({sigma}{sub v} < 5 km s{sup -1}). In addition, And XXV has a mass-to-light ratio within its half-light radius of just [M/L]{sub half}=10.3{sup +7.0}{sub -6.7}, making it consistent with a simple stellar system with no appreciable dark matter component within its 1{sigma} uncertainties. We suggest that the structure of the dark matter halos of these outliers have been significantly altered by tides.« less

  8. [Adaptation of control mechanisms involved in upright undisturbed stance maintenance during prolonged darkness].

    PubMed

    Rougier, P

    2003-04-01

    To assess to which extent the non visual somato-sensorial information may, through a recalibration process, induce a reorganisation by the central nervous system to control undisturbed upright stance. Ten healthy adults were placed in complete darkness for a 24 min period. Their postural performance was recorded through a force platform on which they were required to stand still at regular intervals. Centre of Pressure (CP) displacements, recorded from the platform, were modelled as fractional brownian motion. Through this analysis, one may objectively assess from which distance and for how long the corrective process is initiated with the aim of slowing and retrace its steps. In addition, the degree to which the CP trajectories are successively controlled was determined. Once in complete darkness, an increase of the mean time intervals (Delta(t)) before the corrective process intervenes was observed, the effect being mostly significant for the mediolateral direction. In parallel, the mean distances covered at this Delta(t) were slightly affected for both mediolateral and anteroposterior directions. Lastly, the degree to which the CP trajectories are controlled tended to decrease. These data suggest a reorganisation of the control mechanisms called into play for maintaining an undisturbed upright stance, thus implying participation of the central nervous system. This short-term adaptation is discussed on the basis of our knowledge of long term adaptations previously observed in blind individuals, and also in a rehabilitation perspective.

  9. The short-term effect of flavonoid-rich dark chocolate on retinal vessel diameter in glaucoma patients and age-matched controls.

    PubMed

    Terai, Naim; Gedenk, Alexandra; Spoerl, Eberhard; Pillunat, Lutz E; Stodtmeister, Richard

    2014-08-01

    To investigate the effect of flavonoid-rich dark chocolate and non-flavonoid-rich white chocolate on retinal vessel diameter in glaucoma patients and age-matched controls. Thirty glaucoma patients and 30 age-matched subjects were assigned to dark or white chocolate by randomization with forced equal distribution. The number in each of the four groups was 15. Measured parameters included systemic blood pressure (BP), blood glucose levels, static retinal vessel analysis, as measured by central retinal artery equivalent (CRAE) (which relates to the diameter of the central retinal artery), central retinal vein equivalent (CRVE) (which relates to the diameter of central retinal vein) and the arterio-venous ratio (AVR), which represents the CRAE/CRVE ratio, dynamic retinal vessel analysis as measured by the change in vessel diameter in response to flicker light stimulation. Three recording cycles from each were averaged. Blood pressure parameters (systolic BP, diastolic BP and pulse), IOP and blood glucose levels did not differ significantly between both groups before and after consumption of white or dark chocolate. Static vessel analysis did not show any significant changes in CRAE, CRVE or AVR before and after dark or white chocolate in both groups (p > 0.05). Mean dilatation of the venules in the control group was 3.2 ± 0.9 % before dark chocolate and 4.2 ± 1.4 % after dark chocolate intake, which was statistically significantly different (p = 0.01). Mean dilatation of the arterioles in the control group was 2.8 ± 1.8 % before dark chocolate and 3.5 ± 1.8 % after dark chocolate intake with a trend to statistical significance (p = 0.14), but not reaching the significance level. Mean diameter changes in the glaucoma group did not show any significant differences after dark chocolate consumption. The present study showed a significant improvement of venous vasodilatation 2 hr after dark chocolate intake in the control group, but not in the glaucoma group. This effect might be indicative of an increased bioavailability of nitric oxide (NO) after dark chocolate consumption. The lack of finding a significant venous response after dark chocolate in the glaucoma group might be related to the already impaired endothelial function in these patients. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. A new Starlight Reserve for the central South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Hearnshaw, John

    2015-03-01

    The Aoraki Mackenzie International Dark Sky Reserve is a new reserve created in 2012 by the International Dark-Sky Association in the central South Island of New Zealand, and covers over 4300 square kilometres around Mt John University Observatory. It is the first such reserve to be recognized at gold tier level and is the largest dark sky reserve in the world. Astro-tourism in the new reserve will be a prominent activity in the coming years.

  11. Comparison between two scalar field models using rotation curves of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  12. Far-infrared observations of a star-forming region in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Cruz-Gonzalez, I.; Mcbreen, B.; Fazio, G. G.

    1984-01-01

    A high-resolution far-IR (40-250-micron) survey of a 0.9-sq-deg section of the core region of the Corona Australis dark cloud (containing very young stellar objects such as T Tauri stars, Herbig Ae and Be stars, Herbig-Haro objects, and compact H II regions) is presented. Two extended far-IR sources were found, one associated with the Herbig emission-line star R CrA and the other with the irregular emission-line variable star TY CrA. The two sources have substantially more far-IR radiation than could be expected from a blackbody extrapolation of their near-IR fluxes. The total luminosities of these sources are 145 and 58 solar luminosity, respectively, implying that the embedded objects are of intermediate or low mass. The infrared observations of the sources associated with R CrA and TY CrA are consistent with models of the evolution of protostellar envelopes of intermediate mass. However, the TY CrA source appears to have passed the evolutionary stage of expelling most of the hot dust near the central source, yielding an age of about 1 Myr.

  13. Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes

    NASA Astrophysics Data System (ADS)

    Berezinsky, V. S.; Dokuchaev, V. I.; Eroshenko, Yu. N.

    2013-11-01

    We discuss the formation mechanisms and structure of the superdense dark matter clumps (SDMC) and ultracompact minihaloes (UCMH), outlining the differences between these types of DM objects. We define as SDMC the gravitationally bounded DM objects which have come into virial equilibrium at the radiation-dominated (RD) stage of the universe evolution. Such objects can be formed from the isocurvature (entropy) density perturbations or from the peaks in the spectrum of curvature (adiabatic) perturbation. The axion miniclusters (Kolb and Tkachev 1994) are the example of the former model. The system of central compact mass (e.g. in the form of SDMC or primordial black hole (PBH)) with the outer DM envelope formed in the process of secondary accretion we refer to as UCMH. Therefore, the SDMC can serve as the seed for the UCMH in some scenarios. Recently, the SDMC and UCMH were considered in the many works, and we try to systematize them here. We consider also the effect of asphericity of the initial density perturbation in the gravitational evolution, which decreases the SDMC amount and, as the result, suppresses the gamma-ray signal from DM annihilation.

  14. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis.

    PubMed

    Tokede, O A; Gaziano, J M; Djoussé, L

    2011-08-01

    Cocoa products, which are rich sources of flavonoids, have been shown to reduce blood pressure and the risk of cardiovascular disease. Dark chocolate contains saturated fat and is a source of dietary calories; consequently, it is important to determine whether consumption of dark chocolate adversely affects the blood lipid profile. The objective was to examine the effects of dark chocolate/cocoa product consumption on the lipid profile using published trials. A detailed literature search was conducted via MEDLINE (from 1966 to May 2010), CENTRAL and ClinicalTrials.gov for randomized controlled clinical trials assessing the effects of flavanol-rich cocoa products or dark chocolate on lipid profile. The primary effect measure was the difference in means of the final measurements between the intervention and control groups. In all, 10 clinical trials consisting of 320 participants were included in the analysis. Treatment duration ranged from 2 to 12 weeks. Intervention with dark chocolate/cocoa products significantly reduced serum low-density lipoprotein (LDL) and total cholesterol (TC) levels (differences in means (95% CI) were -5.90 mg/dl (-10.47, -1.32 mg/dl) and -6.23 mg/dl (-11.60, -0.85 mg/dl), respectively). No statistically significant effects were observed for high-density lipoprotein (HDL) (difference in means (95% CI): -0.76 mg/dl (-3.02 to 1.51 mg/dl)) and triglyceride (TG) (-5.06 mg/dl (-13.45 to 3.32 mg/dl)). These data are consistent with beneficial effects of dark chocolate/cocoa products on total and LDL cholesterol and no major effects on HDL and TG in short-term intervention trials.

  15. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; Bacon, David; Nichol, Robert C.; Nord, Brian; Morice-Atkinson, Xan; Amara, Adam; Birrer, Simon; Kuropatkin, Nikolay; More, Anupreeta; Papovich, Casey; Romer, Kathy K.; Tessore, Nicolas; Abbott, Tim M. C.; Allam, Sahar; Annis, James; Benoit-Lévy, Aurlien; Brooks, David; Burke, David L.; Carrasco Kind, Matias; Castander, Francisco Javier J.; D'Andrea, Chris B.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Doel, Peter; Eifler, Tim F.; Flaugher, Brenna; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gschwend, Julia; Gutierrez, Gaston; James, David J.; Kuehn, Kyler; Kuhlmann, Steve; Lahav, Ofer; Li, Ting S.; Lima, Marcos; Maia, Marcio A. G.; March, Marisa; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Plazas, Andrs A.; Rykoff, Eli S.; Sanchez, Eusebio; Scarpine, Vic; Schindler, Rafe; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Mathew; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Tucker, Douglas L.; Walker, Alistair R.

    2017-07-01

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is ˜ {10}14.2 {M}⊙ . We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile—with a free parameter for the inner density slope—we find that the break radius is {270}-76+48 kpc, and that the inner density falls with radius to the power -0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as {r}-1. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as {r}-0.8 and {r}-1.0) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.

  16. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster atmore » $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $$z_s=2.39$$ and the mass enclosed within the 14 arc second radius Einstein ring is $$10^{14.2}$$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $$270^{+48}_{-76}$$ kpc, and that the inner density falls with radius to the power $$-0.38\\pm0.04$$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $$r^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $$r^{-0.8}$$ and $$r^{-1.0}$$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  17. Disappearing Decalage: Object Search in Light and Dark at 6 Months

    ERIC Educational Resources Information Center

    Shinskey, Jeanne L.

    2012-01-01

    Infants search for an object hidden by an occluder in the light months later than one hidden by darkness. One explanation attributes this decalage to easier action demands in darkness versus occlusion, whereas another attributes it to easier representation demands in darkness versus occlusion. However, search tasks typically confound these two…

  18. Depth Perception in Space (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept shows how astronomers use the unique orbit of NASA's Spitzer Space Telescope and a depth-perceiving trick called parallax to determine the distance of dark planets, black holes and failed stars that lurk invisibly among us. These objects do not produce light, and are too faint to detect from Earth. However, astronomers can deduce their presence from the way they affect the light from background objects. When such a dark body passes in front of a bright star, its gravity warps the path of the star's light and causes it to brighten -- this process is called gravitational microlensing.

    By comparing the 'peak brightness' of the microlensing event from two perspectives -- Earth and Spitzer -- scientists can determine how far away the dark object is. Peak brightness is the moment when the observer, the dark object and background star are most closely aligned.

    Humans naturally use parallax to determine distance -- this is commonly referred to as depth perception. In the case of humans, each eye sees the position of an object differently. The brain takes each eye's perspective, and instantaneously calculates how far away the object is. In space, astronomers can use the same trick to determine the distance of an invisible dark object.

    In this illustration, the dark object is the moving black ball between Earth, Spitzer and our neighboring galaxy the Small Magellanic Cloud (SMC; bottom right).

    To determine the object's distance, astronomers observe the microlensing event at its 'peak brightness' from Earth when the dark object crosses our line-of-sight (dashed line) to a given star in the SMC. This represents one perspective, like looking at an object with only your left eye.

    To get the other 'right eye' perspective, astronomers also observe the peak brightness with Spitzer when the object later moves through its line-of-sight. Because astronomers know the exact distance between Earth and Spitzer, they can determine the dark body's speed by timing how long it took for Spitzer to see peak brightness after astronomers observed the event on Earth. Using trigonometric equations and graphs to do the 'brain's' job, scientists can infer the dark body's distance.

    The scales in this diagram are greatly exaggerated for clarity. The distance between Spitzer and the Earth is miniscule in comparison to the distance to the dark object and SMC. Since microlensing events require extremely precise alignments, even such a tiny separation is enough to measure these objects out to tremendous distances.

  19. Galaxy halo formation in the absence of violent relaxation and a universal density profile of the halo center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baushev, A. N., E-mail: baushev@gmail.com; Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm

    2014-05-01

    While N-body simulations testify to a cuspy profile of the central region of dark matter halos, observations favor a shallow, cored density profile of the central region of at least some spiral galaxies and dwarf spheroidals. We show that a central profile, very close to the observed one, inevitably forms in the center of dark matter halos if we make a supposition about a moderate energy relaxation of the system during the halo formation. If we assume the energy exchange between dark matter particles during the halo collapse is not too intensive, the profile is universal: it depends almost notmore » at all on the properties of the initial perturbation and is very akin, but not identical, to the Einasto profile with a small Einasto index n ∼ 0.5. We estimate the size of the 'central core' of the distribution, i.e., the extent of the very central region with a respectively gentle profile, and show that the cusp formation is unlikely, even if the dark matter is cold. The obtained profile is in good agreement with observational data for at least some types of galaxies but clearly disagrees with N-body simulations.« less

  20. Circadian Differences in the Contribution of the Brain Renin-Angiotensin System in Genetically Hypertensive Mice

    PubMed Central

    Jackson, Kristy L.; Marques, Francine Z.; Lim, Kyungjoon; Davern, Pamela J.; Head, Geoffrey A.

    2018-01-01

    Objective: Genetically hypertensive BPH/2J mice are recognized as a neurogenic model of hypertension, primarily based on sympathetic overactivity and greater neuronal activity in cardiovascular regulatory brain regions. Greater activity of the central renin angiotensin system (RAS) and reactive oxygen species (ROS) reportedly contribute to other models of hypertension. Importantly the peripheral RAS contributes to the hypertension in BPH/2J mice, predominantly during the dark period of the 24 h light cycle. The aim of the present study was to determine whether central AT1 receptor stimulation and the associated ROS signaling contribute to hypertension in BPH/2J mice in a circadian dependent manner. Methods: Blood pressure (BP) was measured in BPH/2J and normotensive BPN/3J mice (n = 7–8) via pre-implanted telemetry devices. Acute intracerebroventricular (ICV) microinjections of AT1 receptor antagonist, candesartan, and the superoxide dismutase (SOD) mimetic, tempol, were administered during the dark and light period of the 24 h light cycle via a pre-implanted ICV guide cannula. In separate mice, the BP effect of ICV infusion of the AT1 receptor antagonist losartan for 7 days was compared with subcutaneous infusion to determine the contribution of the central RAS to hypertension in BPH/2J mice. Results: Candesartan administered ICV during the dark period induced depressor responses which were 40% smaller in BPH/2J than BPN/3J mice (Pstrain < 0.05), suggesting AT1 receptor stimulation may contribute less to BP maintenance in BPH/2J mice. During the light period candesartan had minimal effect on BP in either strain. ICV tempol had comparable effects on BP between strains during the light and dark period (Pstrain > 0.08), suggesting ROS signaling is also not contributing to the hypertension in BPH/2J mice. Chronic ICV administration of losartan (22 nmol/h) had minimal effect on BPN/3J mice. By contrast in BPH/2J mice, both ICV and subcutaneously administered losartan induced similar hypotensive responses (−12.1 ± 1.8 vs. −14.7 ± 1.8 mmHg, Proute = 0.31). Conclusion: While central effects of peripheral losartan cannot be excluded, we suggest the hypotensive effect of chronic ICV losartan was likely peripherally mediated. Thus, based on both acute and chronic AT1 receptor inhibition and acute ROS inhibition, our findings suggest that greater activation of central AT1 receptors or ROS are unlikely to be mediating the hypertension in BPH/2J mice. PMID:29615926

  1. Understanding the Star Formation Process in the Filamentary Dark Cloud GF 9: Near-Infrared Observations

    NASA Technical Reports Server (NTRS)

    Ciardi, David R.; Woodward, Charles E.; Clemens, Dan P.; Harker, David E.; Rudy, Richard J.

    1998-01-01

    We have performed a near-infrared JHK survey of a dense core and a diffuse filament region within the filamentary dark cloud GF 9 (LDN 1082). The core region is associated with the IRAS point source PSC 20503+6006 and is suspected of being a site of star formation. The diffuse filament region has no associated IRAS point sources and is likely quiescent. We find that neither the core nor the filament region appears to contain a Class I or Class II young stellar object. As traced by the dust extinction, the core and filament regions contain 26 and 22 solar mass, respectively, with an average H2 volume density for both regions of approximately 2500/cu cm. The core region contains a centrally condensed extinction maximum with a peak extinction of A(sub v) greater than or approximately equal to 10 mag that appears to be associated with the IRAS point source. The average H2 volume density of the extinction core is approximately 8000/cu cm. The dust within the filament, however, shows no sign of a central condensation and is consistent with a uniform-density cylindrical distribution.

  2. Phantom gravastar supported for the explanation of compact dark matter objects

    NASA Astrophysics Data System (ADS)

    Errehymy, Abdelghani; Daoud, Mohammed; Jammari, Mohammed Kamal

    2017-11-01

    The understanding of dark matter objects is one of the modern mysteries. Usually one interprets them as black holes, but there is no empirical evidence only a lack of alternatives. Proposing the idea of a phantom gravastar we will give an alternative explanation to these dark matter objects without supposing them to be black holes, in particular to the SgrA* and the MACHOs.

  3. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  4. How does the Structure of Spherical Dark Matter Halos Affect the Types of Orbits in Disk Galaxies?

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    The main objective of this work is to determine the character of orbits of stars moving in the meridional (R,z) plane of an axially symmetric time-independent disk galaxy model with a central massive nucleus and an additional spherical dark matter halo component. In particular, we try to reveal the influence of the scale length of the dark matter halo on the different families of orbits of stars, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when this parameter varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely bet ween ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our numerical computations reveal that when the dark matter halo is highly concentrated, that is when the scale length has low values the vast majority of star orbits move in regular orbits, while on the oth er hand in less concentrated dark matter halos the percentage of chaos increases significantly. We also compared our results with early related work.

  5. On wave dark matter in spiral and barred galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L., E-mail: lmedina@fis.cinvestav.mx, E-mail: bray@math.duke.edu, E-mail: tmatos@fis.cinvestav.mx

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particlesmore » simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.« less

  6. Influence of environmental enrichment vs. time-of-day on behavioral repertoire of male albino Swiss mice.

    PubMed

    Loss, Cássio Morais; Binder, Luisa Bandeira; Muccini, Eduarda; Martins, Wagner Carbolin; de Oliveira, Paulo Alexandre; Vandresen-Filho, Samuel; Prediger, Rui Daniel; Tasca, Carla Inês; Zimmer, Eduardo R; Costa-Schmidt, Luiz Ernesto; de Oliveira, Diogo Losch; Viola, Giordano Gubert

    2015-11-01

    Environmental enrichment (EE) is a non-pharmacological manipulation that promotes diverse forms of benefits in the central nervous system of captive animals. It is thought that EE influences animal behavior in a specie-(strain)-specific manner. Since rodents in general present different behaviors during distinct periods of the day, in this study we aimed to investigate the influence of time-of-day on behavioral repertoire of Swiss mice that reared in EE. Forty male Swiss mice (21days old) were housed in standard (SC) or enriched conditions (EC) for 60days. Behavioral assessments were conducted during the light phase (in presence of light) or dark phase (in absence of light) in the following tasks: open field, object recognition and elevated plus maze. First, we observed that the locomotor and exploratory activities are distinct between SC and EC groups only during the light phase. Second, we observed that "self-protective behaviors" were increased in EC group only when mice were tested during the light phase. However, "less defensive behaviors" were not affected by both housing conditions and time-of-day. Third, we showed that the performance of EE animals in object recognition task was improved in both light and dark conditions. Our findings highlight that EE-induced alterations in exploratory and emotional behaviors are just evident during light conditions. However, EE-induced cognitive benefits are remarkable even during dark conditions, when exploratory and emotional behaviors were similar between groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Solitons riding on solitons and the quantum Newton's cradle.

    PubMed

    Ma, Manjun; Navarro, R; Carretero-González, R

    2016-02-01

    The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear Schrödinger equation is used to study the behavior of collective compression waves corresponding to Toda lattice solitons. We coin the term hypersoliton to describe such solitary waves riding on a chain of solitons. It is observed that in the case of dark soliton chains, the formulated reduction dynamics provides an accurate an robust evolution of traveling hypersolitons. As an application to Bose-Einstein condensates trapped in a standard harmonic potential, we study the case of a finite dark soliton chain confined at the center of the trap. When the central chain is hit by a dark soliton, the energy is transferred through the chain as a hypersoliton that, in turn, ejects a dark soliton on the other end of the chain that, as it returns from its excursion up the trap, hits the central chain repeating the process. This periodic evolution is an analog of the classical Newton's cradle.

  8. Point sources from dissipative dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Randall, Lisa

    2017-12-01

    If a component of dark matter has dissipative interactions, it can cool to form compact astrophysical objects with higher density than that of conventional cold dark matter (sub)haloes. Dark matter annihilations might then appear as point sources, leading to novel morphology for indirect detection. We explore dissipative models where interaction with the Standard Model might provide visible signals, and show how such objects might give rise to the observed excess in gamma rays arising from the galactic center.

  9. Sound effects: Multimodal input helps infants find displaced objects.

    PubMed

    Shinskey, Jeanne L

    2017-09-01

    Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion, suggesting auditory input is more salient in the absence of visual input. This article addresses how audiovisual input affects 10-month-olds' search for displaced objects. In AB tasks, infants who previously retrieved an object at A subsequently fail to find it after it is displaced to B, especially following a delay between hiding and retrieval. Experiment 1 manipulated auditory input by keeping the hidden object audible versus silent, and visual input by presenting the delay in the light versus dark. Infants succeeded more at B with audible than silent objects and, unexpectedly, more after delays in the light than dark. Experiment 2 presented both the delay and search phases in darkness. The unexpected light-dark difference disappeared. Across experiments, the presence of auditory input helped infants find displaced objects, whereas the absence of visual input did not. Sound might help by strengthening object representation, reducing memory load, or focusing attention. This work provides new evidence on when bimodal input aids object processing, corroborates claims that audiovisual processing improves over the first year of life, and contributes to multisensory approaches to studying cognition. Statement of contribution What is already known on this subject Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion. This suggests they find auditory input more salient in the absence of visual input in simple search tasks. After 9 months, infants' object processing appears more sensitive to multimodal (e.g., audiovisual) input. What does this study add? This study tested how audiovisual input affects 10-month-olds' search for an object displaced in an AB task. Sound helped infants find displaced objects in both the presence and absence of visual input. Object processing becomes more sensitive to bimodal input as multisensory functions develop across the first year. © 2016 The British Psychological Society.

  10. Intermediate-mass Black Holes and Dark Matter at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lacroix, Thomas; Silk, Joseph

    2018-01-01

    Could there be a large population of intermediate-mass black holes (IMBHs) formed in the early universe? Whether primordial or formed in Population III, these are likely to be very subdominant compared to the dark matter density, but could seed early dwarf galaxy/globular cluster and supermassive black hole formation. Via survival of dark matter density spikes, we show here that a centrally concentrated relic population of IMBHs, along with ambient dark matter, could account for the Fermi gamma-ray “excess” in the Galactic center because of dark matter particle annihilations.

  11. A dark matter scaling relation from mirror dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2014-12-01

    Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos around spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, RSN ∝ρ0r02 (RSN is the supernova rate and ρ0 ,r0 the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than 3 ×1011M⊙. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

  12. THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto, E-mail: allison.merritt@yale.edu

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less

  13. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging

    PubMed Central

    Pekcevik, Yeliz; Mitchell, Charles H; Mealy, Maureen A; Orman, Gunes; Lee, In H; Newsome, Scott D; Thompson, Carol B; Pardo, Carlos A; Calabresi, Peter A; Levy, Michael; Izbudak, Izlem

    2016-01-01

    Background Although spinal magnetic resonance imaging (MRI) findings of neuromyelitis optica (NMO) have been described, there is limited data available that help differentiate NMO from other causes of longitudinally extensive transverse myelitis (LETM). Objective To investigate the spinal MRI findings of LETM that help differentiate NMO at the acute stage from multiple sclerosis (MS) and other causes of LETM. Methods We enrolled 94 patients with LETM into our study. Bright spotty lesions (BSL), the lesion distribution and location were evaluated on axial T2-weighted images. Brainstem extension, cord expansion, T1 darkness and lesion enhancement were noted. We also reviewed the brain MRI of the patients during LETM. Results Patients with NMO had a greater amount of BSL and T1 dark lesions (p < 0.001 and 0.003, respectively). The lesions in NMO patients were more likely to involve greater than one-half of the spinal cord’s cross-sectional area; to enhance and be centrally-located, or both centrally- and peripherally-located in the cord. Of the 62 available brain MRIs, 14 of the 27 whom were NMO patients had findings that may be specific to NMO. Conclusions Certain spinal cord MRI features are more commonly seen in NMO patients and so obtaining brain MRI during LETM may support diagnosis. PMID:26209588

  14. DARK-FIELD ILLUMINATION SYSTEM

    DOEpatents

    Norgren, D.U.

    1962-07-24

    A means was developed for viewing objects against a dark background from a viewing point close to the light which illuminates the objects and under conditions where the back scattering of light by the objects is minimal. A broad light retro-directing member on the opposite side of the objects from the light returns direct light back towards the source while directing other light away from the viewing point. The viewing point is offset from the light and thus receives only light which is forwardly scattered by an object while returning towards the source. The object is seen, at its true location, against a dark background. The invention is particularly adapted for illuminating and viewing nuclear particle tracks in a liquid hydrogen bubble chamber through a single chamber window. (AEC)

  15. A central black hole in M32

    NASA Technical Reports Server (NTRS)

    Tonry, John L.

    1987-01-01

    Observations are presented of the stellar rotation and velocity dispersion in M32. The projected rotation curve has an unresolved cusp at the center, with an amplitude of at least 60 km/s. The stellar velocity dispersion is constant at 56 + or - 5 km/s to a radius of 20 arcsec; a central bump in the observed dispersion is an artifact due to the rotation. The form of the rotation is such that isophotes have constant angular rotation velocity. The three-dimensional rotation field is modeled and the internal mean rotation of the stars around the center of M32 must reach at least 90 km/s at a radius of 2 pc. Hydrostatic equilibrium then requires 3-10 x 10 to the 6th solar masses of dark mass within the central parsec of M32. The possibility that M32 is undergoing core collapse and that this dark mass consists of dark stellar remnants is discussed, but ultimately rejected because the time scale for core collapse of M32 should be 2000 Hubble times. A more likely explanation of this dark mass, especially because of the presence of an X-ray point source at the center of M32, is a massive black hole.

  16. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β -Oxidation, and Plant Survival under Extended Darkness

    DOE PAGES

    Fan, Jilian; Yu, Linhui; Xu, Changcheng

    2017-06-01

    Triacylglycerol is a key intermediate in membrane lipid breakdown and fatty acid β-oxidation, and blocking triacylglycerol hydrolysis reduces oxidative stress and enhances plant survival under extended darkness.

  17. Evolution of the baryon fraction in the Local Group: accretion versus feedback at low and high z

    NASA Astrophysics Data System (ADS)

    Peirani, Sébastien; Jung, Intae; Silk, Joseph; Pichon, Christophe

    2012-12-01

    Using hydrodynamical zoom simulations in the standard Λ cold dark matter cosmology, we investigate the evolution of the distribution of baryons (gas and stars) in a Local Group-type universe. First, with standard star formation and supernova feedback prescriptions, we find that the mean baryonic fraction value estimated at the virial radius of the two main central objects (i.e. the Milky Way and Andromeda) is decreasing over time and is 10-15 per cent lower than the universal value 0.166, at z = 0. This decrease is mainly due to the fact that the amount of accretion of dissipative gas on to the halo, especially at low redshift, is in general much lower than that of the dissipationless dark matter. Indeed, a significant part of the baryons does not collapse on to the haloes and remains in their outskirts, mainly in the form of warm hot intergalactic medium (WHIM). Moreover, during the formation of each object, some dark matter and baryons are also expelled through merger events via tidal disruption. In contrast to baryons, expelled dark matter can be more efficiently re-accreted on to the halo, enhancing both the reduction of fb inside Rv and the increase of the mass of WHIM outside Rv. Varying the efficiency of supernova feedback at low redshift does not seem to significantly affect these trends. Alternatively, when a significant fraction of the initial gas in the main objects is released at high redshifts by more powerful sources of feedback, such as active galactic nuclei from intermediate-mass black holes in lower mass galaxies, the baryonic fraction at the virial radius can have a lower value (fb˜0.12) at low redshift. Hence, physical mechanisms able to drive the gas out of the virial radius at high redshifts will have a stronger impact on the deficit of baryons in the mass budget of Milky Way-type galaxies at present times than those that expel the gas in the longer, late phases of galaxy formation.

  18. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  19. Gravitationally Focused Dark Matter around Compact Stars

    NASA Astrophysics Data System (ADS)

    Bromley, Benjamin C.

    2011-12-01

    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.

  20. The formation and evolution of earth-mass dark matter microhalos and their impact on indirect probes of dark matter

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2013-07-01

    Earth-mass dark matter microhalos with a size of ~100 AU are the first structures formed in the universe, if the dark matter of the universe is made of neutralinos. We report the results of ultra-high-resolution cosmological N-body simulations of the formation and evolution of these microhalos. We found that microhalos have the central density cusps of the form ρ ∝ r-1.5, much steeper than the cusps of larger dark halos. The central regions of these microhalos survive the encounters with stars except in the very inner region of the galaxy down to the radius of a few hundreds parsecs from the galactic center. The annihilation signals from the nearest microhalos are observed as gamma-ray point sources (radius less than 1'), with unusually large proper motions of ~0.2 deg per year. Their surface brightnesses are ~10% of that of the galactic center. Their signal-to-noise ratios might be better if they are far from the galactic plane.

  1. Dark sector impact on gravitational collapse of an electrically charged scalar field

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz

    2015-11-01

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  2. Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2017-06-01

    Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.

  3. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhancedmore » tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem.« less

  4. A Baryonic Solution to the Missing Satellites Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhancedmore » tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem« less

  5. Relativistic self-similar dynamic gravitational collapses of a quasi-spherical general polytropic magnetofluid

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Xia, Yu-Kai

    2017-05-01

    We study magnetohydrodynamic (MHD) self-similar collapses and void evolution, with or without shocks, of a general polytropic quasi-spherical magnetofluid permeated by random transverse magnetic fields under the Paczynski-Wiita gravity that captures essential general relativistic effects of a Schwarzschild black hole (BH) with a growing mass. Based on the derived set of non-linear MHD ordinary differential equations, we obtain various asymptotic MHD solutions, the geometric and analytical properties of the magnetosonic critical curve (MSCC) and MHD shock jump conditions. Novel asymptotic MHD solution behaviours near the rim of central expanding voids are derived analytically. By exploring numerical global MHD solutions, we identify allowable boundary conditions at large radii that accommodate a smooth solution and show that a reasonable amount of magnetization significantly increases the mass accretion rate in the expansion-wave-collapse solution scenario. We also construct the counterparts of envelope-expansion-core-collapse solutions that cross the MSCC twice, which are found to be closely paired with a sequence of global smooth solutions satisfying a novel type of central MHD behaviours. MHD shocks with static outer and various inner flow profiles are also examined. Astrophysical applications include dynamic core collapses of magnetized massive stars and compact objects as well as formation of supermassive, hypermassive, dark matter and mixed matter BHs in the Universe, including the early Universe. Such gigantic BHs can be detected in X-ray/gamma-ray sources, quasars, ultraluminous infrared galaxies or extremely luminous infrared galaxies and dark matter overwhelmingly dominated elliptical galaxies as well as massive dark matter halos, etc. Gravitational waves and electromagnetic wave emissions in broad band (including e.g., gamma-ray bursts and fast radio bursts) can result from this type of dynamic collapses of forming BHs involving magnetized media.

  6. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  7. Search for the CO-dark Mass in the Central Molecular Zone by using the ASTE 10-m Telescope

    NASA Astrophysics Data System (ADS)

    Tanaka, Kunihiko

    2017-01-01

    Atomic carbon (C0) is one of the most abundant carbon-bearing species in the interstellar molecular gas, and its submillimeter lines are good tracers of low-density molecular clouds which are often dark in CO rotational lines. We present a new map of the central 150 pc region of the Milky Way in the 500 GHz [CI] line, which has been recently obtained with the ASTE 10-m telescope. The [CI] emission is brightest toward the central 5-pc region, where massive GMCs are absent. This [CI]-bright region is approximately centered toward Sgr A*, covering the entire circum-nuclear ring (CND) and the western part of the 50-km/s cloud. The C0/CO abundance ratio is 0.5-2 there, and the highest ratio is observed toward the CND but just outside of the 2-pc ring of dense gas. This discovery may suggest that the CO-dark component occupies a significant fraction of the molecular gas in the circumnuclear region.

  8. A New Target Object for Constraining Annihilating Dark Matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2017-07-01

    In the past decade, gamma-ray observations and radio observations of our Milky Way and the Milky Way dwarf spheroidal satellite galaxies put very strong constraints on annihilation cross sections of dark matter. In this paper, we suggest a new target object (NGC 2976) that can be used for constraining annihilating dark matter. The radio and X-ray data of NGC 2976 can put very tight constraints on the leptophilic channels of dark matter annihilation. The lower limits of dark matter mass annihilating via {e}+{e}-, {μ }+{μ }-, and {τ }+{τ }- channels are 200 GeV, 130 GeV, and 110 GeV, respectively, with the canonical thermal relic cross section. We suggest that this kind of large nearby dwarf galaxy with a relatively high magnetic field can be a good candidate for constraining annihilating dark matter in future analyses.

  9. Red and nebulous objects in dark clouds - A survey

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    A search on the NGS-PO Sky Survey photographs has revealed 150 interesting nebulous and/or red objects, mostly lying in dark clouds and not previously catalogued. Spectral classifications are presented for 55 objects. These indicate a small number of new members of the class of Herbig-Haro objects, a significant number of new T Tauri stars, and a few emission-line hot stars. It is argued that hot, high-mass stars form preferentially in the dense cores of dark clouds. The possible symbiosis of high and low mass stars is considered. A new morphology class is defined for cometary nebulae, in which a star lies on the periphery of a nebulous ring.

  10. "Dark Skies, Bright Kids" -- Astronomy Education and Outreach in Rural Virginia

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Johnson, K.; Beaton, R.; Carlberg, J.; Czekala, I.; de Messieres, G.; Drosback, M.; Filipetti, C.; Gugliucci, N.; Hoeft, A.; Jackson, L.; Lynch, R.; Romero, C.; Sivakoff, G.; Whelan, D.; Wong, A.

    2010-01-01

    In the hills of central Virginia, the extraordinarily dark nighttime skies of southern Albemarle County provide a natural outdoor classroom for local science education. Until recently, this rural area lacked the financial and educational support to take full advantage of this rare and valuable natural resource. With funds provided by the NSF, a team of volunteers from the University of Virginia introduced a new program this fall called "Dark Skies - Bright Kids," which promotes science education at the elementary school level through a wide range of activities. The program volunteers (comprising undergraduate and graduate students, postdocs, and faculty) have sought to develop a coherent schedule of fun and educational activities throughout the semester, with emphases on hands-on learning and critical thinking. For example, students learn about the constellations by making star-wheels, about rocketry by building and launching rockets, and about comets by assembling miniature analogs. Additional activities include stories about the scientific and cultural history of astronomy, visits by professional astronomers and popular book authors, and astronomy-themed exercises in art, music, and physical education. These projects are designed to make astronomy, and by extension all science, accessible and appealing to each student. Family involvement is important in any educational environment, particularly at the elementary school level. To include the students' families and the larger community in "Dark Skies," we hold weekly telescope observing sessions at the school. Here, all interested parties can come together to hear what the students are learning and view astronomical objects through a small telescope. We hope that this well-received program will soon expand to other disadvantaged schools in the area. The "Dark Skies" team is proud and excited to have an impact on the scientific literacy of the students in these starry-skied communities!

  11. Baryonic Dark Matter: The Results from Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Drake, Andrew J.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Minniti, Dante; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.

    Baryonic material can exist in several dark forms: ``planets," brown dwarfs, very old degenerate dwarf stars, and neutron stars. (Black holes are frequently added to this list, even though a black hole has no baryon number.) These objects, most of which emit some light but at levels below present day detection thresholds, are collectively known as Machos. Several groups have exploited the gravitational microlens signature to search for Machos in the dark halo of the Milky Way. Over 200 microlensing events have been reported (most by the MACHO Project, which uses the Great Melbourne Telescope near this conference site), of which about 20 are toward the Magellanic Clouds. The most straightforward interpretation of the results is that Machos make up between 20% and 100% of the dark matter in the halo, and that these objects weigh about 0.5 msun. Objects of substellar mass do not comprise much of the dark matter. Many alternative interpretations of these results have been proposed. We will discuss strategies for resolving the differences among these competing explanations.

  12. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng

    2018-05-01

    The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.

  13. On the Generation of the Hubble Sequence Through an Internal Secular Dynamical Process

    DTIC Science & Technology

    2004-01-01

    is apparently brought about by the fact that spiral galaxies still have varying reserves of baryonic dark matter to form stars, therefore as the...central baryonic dark matter supply, thus the ellipticals in more advanced stage of evolution (which also generally have larger L) will experi- ence...This view is particularly favored by the currently popular hierarchical clustering/cold dark matter (CDM) paradigm of structure formation and evolution

  14. Dark matter annihilations in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gondolo, Paolo

    1994-05-01

    I examine the possibility of detecting high energy γ-rays from non-baryonic dark matter annihilations in the central region of the Large Magellanic Cloud. Present address: LPTHE, Université Paris VII, Tour 24-14, 5 étage, 2 Place Jussieu, 75251 Paris Cédex 05, France;

  15. Dark matter influence on black objects thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wojnar, Aneta

    2018-05-01

    Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

  16. KSC-2009-5209

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System - Demonstrator spacecraft is bathed in light under a dark, cloudy sky. Rain over Central Florida's east coast caused the scrub of the launch. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 24. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-5210

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System Demonstrator spacecraft waits for launch under dark, cloudy sky. Rain over Central Florida's east coast caused the scrub of the launch. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 24. Photo credit: NASA/Jack Pfaller

  18. Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos

    NASA Astrophysics Data System (ADS)

    Ardaneh, Kazem; Luo, Yang; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-06-01

    We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ˜10 M⊙ and a highly variable luminosity of 1038 - 1039 erg s-1, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ˜10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10-3 pc, which is ˜100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.

  19. Wide-Field Infrared Survey Explorer Observations of Young Stellar Objects in the Lynds 1509 Dark Cloud in Auriga

    NASA Technical Reports Server (NTRS)

    Liu, Wilson M.; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Leisawitz, David

    2015-01-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4, 4.6, 12, and 22 microns, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  20. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  1. Physical properties of Meridiani Sinus-type units in the central equatorial region of Mars

    NASA Technical Reports Server (NTRS)

    Strickland, Edwin L., III

    1992-01-01

    Classification and mapping of surficial units in the central equatorial region of Mars (30 degrees N to 20 degrees S, 57 degrees E to 75 degrees W) using enhanced color images and Mars Consortium data identified four major color/albedo units in the dark, reddish-gray regions that form the classical dark albedo markings of Mars, including Meridiani Sinus. The darkest, least red (relatively 'blue') materials form splotches (some with dune forms) in craters, inter-crater depressions, and part of Valles Marineris. These form the 'Dark Blue' Meridiani unit. Abundant materials that have higher albedos and are somewhat redder than the 'Dark Blue' unit have uniquely high green/(violet + red) color ratios in Viking Orbiter images. These materials, named 'Green-blue' Meridiani surround and mix with 'Dark Blue' Meridiani patches and are abundant on crater rims and local elevations. Discontinuous, patchy deposits with still higher albedos and much redder colors have morphologies classified of the Type Ib bright depositional dust streaks and sheets that were classified by Thomas et al. These dust deposits, which appear to be optically thin and patchy and are darker and not as red as other Type Ib dust deposits on Mars, and their Meridiani substrates, were designated the 'Red' Meridiani unit. Distinctive deposits that form highly eroded mesas and escarpments in northern Meridiani Sinus were named 'Light Blue' Meridiani, since they are not as red as other materials with moderately high albedos. Large areas dominated by these units form Meridiani Province in the central equatorial region of Mars.

  2. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Espinosa, J. R.; Racco, D.; Riotto, A.

    2018-03-01

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  3. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Boselli, A.; Gorgas, J.

    2013-01-01

    The physical mechanisms involved in the formation and evolution of dwarf early-type galaxies (dEs) are not well understood yet. Whether these objects, that outnumber any other class of object in clusters, are the low luminosity extension of massive early-type galaxies, i.e. formed through similar processes, or are a different group of objects possibly formed through the transformation of low luminosity spiral galaxies, is still an open debate. Studying the kinematic properties of dEs is a powerful way to distinguish between these two scenarios. In my PhD, awarded with a Fulbright postdoctoral Fellowship and with the 2011 prize to the best Spanish PhD dissertation in Astronomy, we used this technique to make a spectrophotometric analysis of 18 dEs in the Virgo cluster. I found some differences for these dEs within the cluster. The dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity. They are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older. Ram pressure stripping, which removes the gas of galaxies leaving the stars untouched, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the disky structures of these galaxies. I am conducting new analysis with 20 new dEs to throw some light in this direction. I also analysed the Faber-Jackson and the Fundamental Plane relations, and I found that dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. This indicates that dEs have a non-negligible dark matter fraction within their half light radius, we used these diagrams to quantify this dark matter content, which is ~40%, significantly larger than previously thought for these kind of objects.

  4. 76 FR 63701 - Culturally Significant Objects Imported for Exhibition Determinations: “Anglo-Saxon Hoard: Gold...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... DEPARTMENT OF STATE [Public Notice 7640] Culturally Significant Objects Imported for Exhibition Determinations: ``Anglo-Saxon Hoard: Gold From England's Dark Ages'' SUMMARY: Notice is hereby given of the... exhibition ``Anglo-Saxon Hoard: Gold From England's Dark Ages,'' imported from abroad for temporary...

  5. Age of high redshift objects—a litmus test for the dark energy models

    NASA Astrophysics Data System (ADS)

    Jain, Deepak; Dev, Abha

    2006-02-01

    The discovery of the quasar, the APM 08279+5255 at z=3.91 whose age is 2 3 Gyr has once again led to “age crisis”. The noticeable fact about this object is that it cannot be accommodated in a universe with Ω=0.27, currently accepted value of matter density parameter and ω=const. In this work, we explore the concordance of various dark energy parameterizations (w(z) models) with the age estimates of the old high redshift objects. It is alarming to note that the quasar cannot be accommodated in any dark energy model even for Ω=0.23, which corresponds to 1σ deviation below the best fit value provided by WMAP. There is a need to look for alternative cosmologies or some other dark energy parameterizations which allow the existence of the high redshift objects.

  6. A new direction for dark matter research: intermediate-mass compact halo objects

    NASA Astrophysics Data System (ADS)

    Chapline, George F.; Frampton, Paul H.

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.

  7. Fundus-controlled two-color dark adaptometry with the Microperimeter MP1.

    PubMed

    Bowl, Wadim; Stieger, Knut; Lorenz, Birgit

    2015-06-01

    The aim of this study was to provide fundus-controlled two-color adaptometry with an existing device. A quick and easy approach extends the application possibilities of a commercial fundus-controlled perimeter. An external filter holder was placed in front the objective lens of the MP1 (Nidek, Italy) and fitted with filters to modify background, stimulus intensity, and color. Prior to dark adaptometry, the subject's visual sensitivity profile was measured for red and blue stimuli to determine whether rods or cones or both mediated the absolute threshold. After light adaptation, 20 healthy subjects were investigated with a pattern covering six spots at the posterior pole of the retina up to 45 min of dark adaptation. Thresholds were determined using a 200 ms red Goldmann IV and a blue Goldmann II stimulus. The pre-test sensitivity showed a typical distribution of values along the meridian, with high peripheral light increment sensitivity (LIS) and low central LIS for rods and the reverse for cones. After bleach, threshold recovery had a classic biphasic shape. The absolute threshold was reached after approximately 10 min for the red and 15 min for the blue stimulus. Two-color fundus-controlled adaptometry with a commercial MP1 without internal changes to the device provides a quick and easy examination of rod and cone function during dark adaptation at defined retinal loci of the posterior pole. This innovative method will be helpful to measure rod vs. cone function at known loci of the posterior pole in early stages of retinal degenerations.

  8. The morphology of solar granulations and dark networks

    NASA Astrophysics Data System (ADS)

    Graves, J. Elon; Pierce, A. Keith

    1986-08-01

    Solar granules are classified into four groups based on shape and splitting by sharp rifts crossing them. Grains are classified as: single granules varying in size from 1/8 to 3 in., single granules embayed by a broad dark area or possessing a central darkening, single granules split by very narrow rifts which are significantly narrower than the intergranular lanes, and complexes of granules displaying a daisy pattern. The formation and growth of 'white-light dark networks' are also discussed

  9. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter.

    PubMed

    Espinosa, J R; Racco, D; Riotto, A

    2018-03-23

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11}  GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  10. A History of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertone, Gianfranco; Hooper, Dan

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  11. Multiplicative-Generated Dark Matter Accelerated Cosmic Expansion

    NASA Astrophysics Data System (ADS)

    Zhang, Weijia; Kelly, Neil

    2011-02-01

    In order to make the increase of Astronomical Unit consistent with observations of the Earth's orbital period variation, an increase of the Solar dark matter as 10-12/yr is needed. This implies that dark matter has an increase ratio, and therefore supports Dirac's multiplicative matter creation, and provides another explanation to the accelerating expansion of the universe. This is in accordance with the analysis on orbital dynamics around a mass varying central body to the phenomenon of accretion of dark matter assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. Dark matter and dark energy, two of the most vexing problems in science today which dominate the universe, comprising some 96 percent of all mass and energy, seem to be two sides of the same coin.

  12. Dark CO2 Fixation in Gladiolus Cormels and Its Regulation during the Break of Dormancy 1

    PubMed Central

    Ginzburg, Chen

    1975-01-01

    The increase in dark CO2 fixation during cold storage of Gladiolus x gandavensis van Houtte-type grandiflorus cormels is used to monitor changes in their state of dormancy. Dark fixation is also promoted by benzyladenine, which breaks cormel dormancy, and is inhibited by abscisic acid and gibberellin A3, which inhibit cormel germination. The rate of dark fixation by nondormant cormels is five times higher than that in dormant ones. Dark fixation is not due to microorganisms. It is temperature-dependent and can be measured stoichiometrically in vivo. The apex and base of the cormels accumulate more label than the central part. Dark fixation of both dormant and nondormant cormels is also promoted by imbibition in water. The fate of the labeled assimilates was followed by ion exchange chromatography. PMID:16659256

  13. The insight into the dark side - I. The pitfalls of the dark halo parameters estimation

    NASA Astrophysics Data System (ADS)

    Saburova, Anna S.; Kasparova, Anastasia V.; Katkov, Ivan Yu.

    2016-12-01

    We examined the reliability of estimates of pseudo-isothermal, Burkert and NFW dark halo parameters for the methods based on the mass-modelling of the rotation curves. To do it, we constructed the χ2 maps for the grid of the dark matter halo parameters for a sample of 14 disc galaxies with high-quality rotation curves from THINGS. We considered two variants of models in which: (a) the mass-to-light ratios of disc and bulge were taken as free parameters, (b) the mass-to-light ratios were fixed in a narrow range according to the models of stellar populations. To reproduce the possible observational features of the real galaxies, we made tests showing that the parameters of the three halo types change critically in the cases of a lack of kinematic data in the central or peripheral areas and for different spatial resolutions. We showed that due to the degeneracy between the central densities and the radial scales of the dark haloes there are considerable uncertainties of their concentrations estimates. Due to this reason, it is also impossible to draw any firm conclusion about universality of the dark halo column density based on mass-modelling of even a high-quality rotation curve. The problem is not solved by fixing the density of baryonic matter. In contrast, the estimates of dark halo mass within optical radius are much more reliable. We demonstrated that one can evaluate successfully the halo mass using the pure best-fitting method without any restrictions on the mass-to-light ratios.

  14. Galaxies in X-ray Selected Clusters and Groups in Dark Energy Survey Data: Stellar Mass Growth of Bright Central Galaxies Since z~1.2

    DOE PAGES

    Zhang, Y.; Miller, C.; McKay, T.; ...

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation.

  15. Search for domain wall dark matter with atomic clocks on board global positioning system satellites.

    PubMed

    Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei

    2017-10-30

    Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.

  16. A Dark Horse Medium in Basic Business

    ERIC Educational Resources Information Center

    Eckert, Sidney W.

    1974-01-01

    The Dark Horse (DH) board is described and discussed as one medium which may be utilized in the classroom. The DH Board holds fairly heavy three-dimensional display objects and consists of two components: a special material which serves as the display surface and an adhesive material which is fixed to objects displayed. (SC)

  17. Nanolensed Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2017-12-01

    It is suggested that fast radio bursts can probe gravitational lensing by clumpy dark matter objects that range in mass from 10-3 M ⊙-102 M ⊙. They may provide a more sensitive probe than observations of lensings of objects in the Magellanic Clouds, and could find or rule out clumpy dark matter with an extended mass spectrum.

  18. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  19. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  20. Dark matter as a cancer hazard

    NASA Astrophysics Data System (ADS)

    Chashchina, Olga; Silagadze, Zurab

    2016-07-01

    We comment on the paper ;Dark matter collisions with the human body; by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  1. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  2. IRAS observations of young stellar objects in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Wilking, Bruce A.; Greene, Thomas P.; Lada, Charles J.; Meyer, Michael R.; Young, Erick T.

    1992-01-01

    The young stellar object (YSO) population associated with the dark cloud complex in Corona Australis is studied by synthesizing IRAS data with newly obtained near-IR and mid-IR photometry and previously published optical/IR data. Twenty-four YSOs in the Cr A complex are identified. The observed range of spectral energy distribution shapes and bolometric luminosities are consistent with those observed in other dark clouds. The duration and efficiency of star formation are found to be similar to the Rho Ophiuchi IR cluster. The low number of YSOs compared to other dark clouds is understood by a reevaluation of the molecular mass of the R Cr A cloud which shows it to be much less massive than previously assumed.

  3. Dynamics of massive black holes as a possible candidate of Galactic dark matter

    NASA Technical Reports Server (NTRS)

    Xu, Guohong; Ostriker, Jeremiah P.

    1994-01-01

    If the dark halo of the Galaxy is comprised of massive black holes (MBHs), then those within approximately 1 kpc will spiral to the center, where they will interact with one another, forming binaries which contract, owing to further dynamical friction, and then possibly merge to become more massive objects by emission of gravitational radiation. If successive mergers would invariably lead, as has been proposed by various authors, to the formation of a very massive nucleus of 10(exp 8) solar mass, then the idea of MBHs as a dark matter candidate could be excluded on observational grounds, since the observed limit (or value) for a Galactic central black hole is approximately 10(exp 6.5) solar mass. But, if successive mergers are delayed or prevented by other processes, such as the gravitational slingshot or rocket effect of gravitational radiation, then a large mass accumulation will not occur. In order to resolve this issue, we perform detailed N-body simulations using a modfied Aarseth code to explore the dynamical behavior of the MBHs, and we find that for a 'best estimate' model of the Galaxy a runaway does not occur. The code treates the MBHs as subject to the primary gravitational forces of one another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to dynamical friction and gravitational radiation. Instead of a runaway, three-body interactions between hard binaries and single MBHs eject massive objects before accumulation of more than a few units, so that typically the center will contain zero, one, or two MBHs. We study how the situation depends in detail on the mass per MBH, the rotation of the halo, the mass distribution within the Galaxy, and other parameters. A runaway will most sensitively depend on the ratio of initial (spheroid/halo) central mass densities and secondarily on the typical values for the mass per MBH, with the rough dividing line, using Galactic parameters, being M(sub BH) less than or = 10(exp 6.5) solar mass. Using parameters from Lacey & Ostriker (1985) and our most accurate model for Galaxy, no runaway occurs.

  4. FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dokkum, Pieter G.; Merritt, Allison; Geha, Marla

    2015-01-10

    We report the discovery of 47 low surface brightness objects in deep images of a 3° × 3° field centered on the Coma cluster, obtained with the Dragonfly Telephoto Array. The objects have central surface brightness μ(g, 0) ranging from 24-26 mag arcsec{sup –2} and effective radii r {sub eff} = 3''-10'', as measured from archival Canada-France-Hawaii Telescope images. From their spatial distribution we infer that most or all of the objects are galaxies in the Coma cluster. This relatively large distance is surprising as it implies that the galaxies are very large: with r {sub eff} = 1.5-4.6 kpcmore » their sizes are similar to those of L {sub *} galaxies even though their median stellar mass is only ∼6 × 10{sup 7} M {sub ☉}. The galaxies are relatively red and round, with (g – i) = 0.8 and (b/a) = 0.74. One of the 47 galaxies is fortuitously covered by a deep Hubble Space Telescope Advanced Camera for Surveys (ACS) observation. The ACS imaging shows a large spheroidal object with a central surface brightness μ{sub 475} = 25.8 mag arcsec{sup –2}, a Sérsic index n = 0.6, and an effective radius of 7'', corresponding to 3.4 kpc at the distance of Coma. The galaxy is not resolved into stars, consistent with expectations for a Coma cluster object. We speculate that these ''ultra-diffuse galaxies'' may have lost their gas supply at early times, possibly resulting in very high dark matter fractions.« less

  5. INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luis C. B.

    The nature and properties of dark matter (DM) are both outstanding issues in physics. Besides clustering in halos, the universal character of gravity implies that self-gravitating compact DM configurations-predicted by various models-might be spread throughout the universe. Their astrophysical signature can be used to probe fundamental particle physics, or to test alternative descriptions of compact objects in active galactic nuclei. Here, we discuss the most promising dissection tool of such configurations: the inspiral of a compact stellar-size object and consequent gravitational-wave (GW) emission. The inward motion of this ''test probe'' encodes unique information about the nature of the supermassive configuration.more » When the probe travels through some compact region we show, within a Newtonian approximation, that the quasi-adiabatic inspiral is mainly driven by DM accretion and by dynamical friction, rather than by radiation reaction. When accretion dominates, the frequency and amplitude of the GW signal produced during the latest stages of the inspiral are nearly constant. In the exterior region we study a model in which the inspiral is driven by GW and scalar-wave emission, described at a fully relativistic level. Resonances in the energy flux appear whenever the orbital frequency matches the effective mass of the DM particle, corresponding to the excitation of the central object's quasinormal frequencies. Unexpectedly, these resonances can lead to large dephasing with respect to standard inspiral templates, to such an extent as to prevent detection with matched filtering techniques. We discuss some observational consequences of these effects for GW detection.« less

  6. Dark energy two decades after: observables, probes, consistency tests.

    PubMed

    Huterer, Dragan; Shafer, Daniel L

    2018-01-01

    The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.

  7. Baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  8. A new direction for dark matter research: intermediate-mass compact halo objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, George F.; Frampton, Paul H., E-mail: george.chapline@gmail.com, E-mail: paul.h.frampton@gmail.com

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15 M {sub ⊙} may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of thesemore » stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.« less

  9. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light–dark cycle

    DOE PAGES

    Welkie, David; Zhang, Xiaohui; Markillie, Meng; ...

    2014-12-29

    Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we were able to quantify the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions.

  10. Determinants of anemia among pregnant mothers attending antenatal care in Dessie town health facilities, northern central Ethiopia, unmatched case -control study

    PubMed Central

    Seid, Omer; G/Mariam, Yemane; Fekadu, Abel; Wasihun, Yitbarek; Endris, Kedir; Bitew, Abebayehu

    2017-01-01

    Introduction Anemia affects around 38.2% and 22% of pregnant women at a global and national level respectively. In developing countries, women start pregnancy with already depleted body stores of iron and other vitamins with significant variation of anemia within and between regions. Objective To identify the determinants of anemia among pregnant mothers attending antenatal care in Dessie town health facilities, northern central Ethiopia. Methods A health facility based unmatched case control study was conducted among 112 cases and 336 controls from January to March 2016 G.C. The sample size was determined by using Epi Info version 7.1.5.2. Study subjects were selected using consecutive sampling technique. Data were collected using a structured questionnaire, entered using Epi Data version 3.1 and analyzed using SPSS version 20. Bivariable and multivariable logistic regression model was used to see the determinants of anemia. Adjusted odds ratio (AOR) with 95% confidence interval (CI) and p-value<0.05 were used to see the significant association. Results Failure to take dark green leafy vegetables per two weeks (AOR = 5.02, 95% CI: 2.16, 11.71), didn’t take chicken per two weeks (AOR = 2.68, 95% CI: 1.22, 5.86), 1st trimester (AOR = 2.07, 95% CI: 1.12, 3.84), 3rd trimester (AOR = 2.96, 95% CI: 1.53, 5.72), HIV infection (AOR = 6.78, 95% CI: 2.28, 20.18) and medication (AOR = 3.57 95% CI: 1.60, 7.98) were positively associated with anemia. Conclusions Inadequate intake of dark green leafy vegetables, inadequate consumption of chicken, trimester of the current pregnancy, HIV infection and medication were the determinants of anemia among pregnant women. Therefore, anemia prevention strategy should include promotion of adequate intake of dark green leafy vegetables and chicken, increase meal pattern during the entire pregnancy and strengthen the prevention of mother to child HIV transmission/antenatal care programs. PMID:28288159

  11. Embedded Outflows from Herbig-Haro 46/47

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on image for larger view of insert

    This image from NASA's Spitzer Space Telescope transforms a dark cloud into a silky translucent veil, revealing the molecular outflow from an otherwise hidden newborn star. Using near-infrared light, Spitzer pierces through the dark cloud to detect the embedded outflow in an object called HH 46/47. Herbig-Haro (HH) objects are bright, nebulous regions of gas and dust that are usually buried within dark clouds. They are formed when supersonic gas ejected from a forming protostar, or embryonic stars, interacts with the surrounding interstellar medium. These young stars are often detected only in the infrared.

    The Spitzer image was obtained with the infrared array camera and is a three-color mosaic. Emission at 3.6 microns is shown as blue, emission from 4.5 and 5.8 microns has been combined as green, and 8.0 micron emission is depicted as red.

    HH 46/47 is a striking example of a low mass protostar ejecting a jet and creating a bipolar, or two-sided, outflow. The central protostar lies inside a dark cloud (known as a 'Bok globule') which is illuminated by the nearby Gum Nebula. Located at a distance of 1,140 light-years and found in the constellation Vela, the protostar is hidden from view in the visible-light image (inset). With Spitzer, the star and its dazzling jets of molecular gas appear with clarity.

    The 8-micron channel of the infrared array camera is sensitive to emission from polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by the surrounding radiation field and become luminescent, accounting for the reddish cloud. Note that the boundary layer of the 8-micron emission corresponds to the lower right edge of the dark cloud in the visible-light picture.

    Outflows are fascinating objects, since they characterize one of the most energetic phases of the formation of low-mass stars (like our Sun). The jets arising from these protostars can reach sizes of trillions of miles and velocities of hundreds of thousands miles per hour. Outflows are clear evidence of the presence of a process that creates supersonic beams of gas. This mechanism is tightly bound to the presence of circumstellar discs which surround the young stars. Such discs are likely to contain the materials from which planetary systems form. Our Sun probably underwent a similar process some 4.5 billion years ago. Hence the interest in understanding how quickly and efficiently this mass accretion and loss process takes place in protostars.

  12. Formation of Compact Ellipticals in the merging star cluster scenario

    NASA Astrophysics Data System (ADS)

    Urrutia Zapata, Fernanda Cecilia; Theory and star formation group

    2018-01-01

    In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are dark matter dominated objects. If our scenario is true, then they would be dark matter free very extended and massive "star clusters".

  13. Searching for dark matter

    NASA Astrophysics Data System (ADS)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  14. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    DOE PAGES

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less

  15. Galileo imaging results from the second Earth-Moon flyby: Lunar Maria and related units

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Belton, M. J. S.; Head, J. W.; Mcewen, A. S.; Pieters, C. M.; Neukum, G.; Becker, T. L.; Fischer, E. M.; Kadel, S. D.; Robinson, M. S.

    1993-01-01

    The second flyby of the Earth-Moon System by Galileo occurred on December 7, 1992, on its trajectory toward Jupiter. The flyby took the spacecraft over the lunar north polar region from the dark farside and continued across the illuminated nearside. This provided the first opportunity to observe northern and northeastern limb regions with a modern, multispectral imaging system with high spatial resolution (up to 1.1 km/pixel). Scientific objectives included compositional assessment of previously uncharacterized mare regions, study of various light plains materials, and assessment of dark mantle deposits (DMD) and dark halo craters (DHC). Color composite images were prepared from ratios of Galileo SSI filter data (0.76/0.41 yields red; 0.76/0.99 yields green; 0.41/0.76 yields blue) and used for preliminary comparison of units. The 0.41/0.76 ratio has been empirically correlated to Ti content of mare soils (blue is relatively high, red is relatively low). The relative strengths of the ferrous one micron absorption in mafic minerals can be compared using the 0.76/0.99 ratio. In addition, relative ages of units analyzed spectrally were determined from crater statistics using Lunar Orbiter images following the techniques of Neukum et al. Mare deposits analyzed include Mare Humboldtianum, central and eastern Mare Frigoris, Mare Crisium and other deposits in the Crisium Basin, and isolated mare patches on the northeastern lunar limb. Preliminary results show a diversity of 0.41/0.76 micron signatures, implying a wide range of titanium contents. Some light plains units are similar to units found at the Apollo 16 site; others may be ancient mare materials. Dark mantle deposits (DMD) analyzed also are available.

  16. X-ray constraints on the shape of the dark matter in five Abell clusters

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Canizares, Claude R.

    1992-01-01

    X-ray observations obtained with the Einstein Observatory are used to constrain the shape of the dark matter in the inner regions of Abell clusters A401, A426, A1656, A2029, and A2199, each of which exhibits highly flattened optical isopleths. The dark matter is modeled as an ellipsoid with a mass density of about r exp -2. The possible shapes of the dark matter is constrained by comparing these model isophotes to the image isophotes. The X-ray isophotes, and therefore the gravitational potentials, have ellipticities of about 0.1-0.2. The dark matter within the central 1 Mpc is found to be substantially rounder for all the clusters. It is concluded that the shape of the galaxy distributions in these clusters traces neither the gravitational potential nor the gravitating matter.

  17. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  18. The Hydrogen Contribution to the Dark Matter in Draco.

    DTIC Science & Technology

    1997-01-01

    this system may be as high as approximately 100. Various possible forms of dark matter have been proposed for this class of objects, but a more...population. Here, we examine in detail the possible contribution of H2 to the dark matter content of Draco and conclude that most of its mass may be in the

  19. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  20. Conserved actions, maximum entropy and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Governato, Fabio

    2013-03-01

    We use maximum entropy arguments to derive the phase-space distribution of a virialized dark matter halo. Our distribution function gives an improved representation of the end product of violent relaxation. This is achieved by incorporating physically motivated dynamical constraints (specifically on orbital actions) which prevent arbitrary redistribution of energy. We compare the predictions with three high-resolution dark matter simulations of widely varying mass. The numerical distribution function is accurately predicted by our argument, producing an excellent match for the vast majority of particles. The remaining particles constitute the central cusp of the halo (≲4 per cent of the dark matter). They can be accounted for within the presented framework once the short dynamical time-scales of the centre are taken into account.

  1. Spectrum from Embedded Star in Herbig-Haro 46/47

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Spitzer Space Telescope has lifted the cosmic veil to see an otherwise hidden newborn star, while detecting the presence of water and carbon dioxide ices, as well as organic molecules. Using near-infrared light, Spitzer pierces through an optically dark cloud to detect the embedded outflow in an object called HH 46/47. Herbig-Haro (HH) objects are bright, nebulous regions of gas and dust that are usually buried within dark dust clouds. They are formed when supersonic gas ejected from a forming protostar, or embryonic star, interacts with the surrounding interstellar medium. These young stars are often detected only in the infrared.

    HH 46/47 is a striking example of a low mass protostar ejecting a jet and creating a bipolar, or two-sided, outflow. The central protostar lies inside a dark cloud (known as a 'Bok globule') which is illuminated by the nearby Gum Nebula. Located at a distance of 1140 light-years and found in the constellation Vela, the protostar is hidden from view in the visible-light image (inset). With Spitzer, the star and its dazzling jets of molecular gas appear with clarity.

    The Spitzer image (inset) was obtained with the infrared array camera and is a three-color mosaic. Emission at 3.6 microns is shown as blue, emission from 4.5 and 5.8 microns has been combined as green, and 8.0 micron emission is depicted as red. The 8-micron channel of the camera is sensitive to emission from polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by the surrounding radiation field and become luminescent, accounting for the reddish cloud. Note that the boundary layer of the 8-micron mission corresponds to the lower right edge of the dark cloud in the visible-light picture.

    The primary image shows a spectrum obtained with Spitzer's infrared spectrograph instrument, stretching from wavelengths of 5.5 microns (left) to 20 microns (right). Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition.

    The broad depression in the center of the spectrum signifies the presence of silicates, which are chemically similar to beach sand. The depth of the silicate absorption feature indicates that the dusty cocoon surrounding the embedded protostar star is extremely thick Other absorption dips are produced by water ice (blue) and carbon dioxide ice (green). The fact that water and carbon dioxide appear in solid form suggests that the material immediately surrounding the protostar is cold. In addition, the Spitzer spectrum includes the chemical signatures of methane (purple) and methyl alcohol (tan).

  2. Theoretical Comparison Between Candidates for Dark Matter

    NASA Astrophysics Data System (ADS)

    McKeough, James; Hira, Ajit; Valdez, Alexandra

    2017-01-01

    Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.

  3. Vector dark energy and high-z massive clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.

    2011-12-01

    The detection of extremely massive clusters at z > 1 such as SPT-CL J0546-5345, SPT-CL J2106-5844 and XMMU J2235.3-2557 has been considered by some authors as a challenge to the standard Λ cold dark matter cosmology. In fact, assuming Gaussian initial conditions, the theoretical expectation of detecting such objects is as low as ≤1 per cent. In this paper we discuss the probability of the existence of such objects in the light of the vector dark energy paradigm, showing by means of a series of N-body simulations that chances of detection are substantially enhanced in this non-standard framework.

  4. New constraints on macroscopic compact objects as dark matter candidates from gravitational lensing of type Ia supernovae.

    PubMed

    Metcalf, R Benton; Silk, Joseph

    2007-02-16

    We use the distribution, and particularly the skewness, of high redshift type Ia supernovae brightnesses relative to the low redshift sample to constrain the density of macroscopic compact objects (MCOs) in the Universe. The supernova data favor dark matter made of microscopic particles (such as the lightest supersymmetric partner) over MCOs with masses between 10(-2)Mo and 10(10)Mo at 89% confidence. Future data will greatly improve this limit. Combined with other constraints, MCOs larger than one-tenth the mass of Earth (approximately 10(-7)Mo) can be eliminated as the sole constituent of dark matter.

  5. Collapsed Dark Matter Structures

    NASA Astrophysics Data System (ADS)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  6. Collapsed Dark Matter Structures.

    PubMed

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  7. Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric

    2018-06-01

    We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.

  8. The DRIFT Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Miller, Eric

    2010-11-01

    The DRIFT dark matter detector is a 1 cubic meter scale TPC with direction sensitivity to WIMP recoils operating in the Boulby Mine in England. Results on a spin-dependent limit from data taken underground with a 30 Torr CS2 - 10 Torr CF4 gas mixture will be presented. The primary source of backgrounds in this data are from low-energy nuclear recoil events due to radon progeny plated out on the detector's wire central cathode. Here we describe a dramatic background reduction resulting from the installation of a new thin-film central cathode. We also describe a new technique which promises to fully fiducialize the chamber, potentially eliminating this source of background entirely.

  9. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma.

    PubMed

    Sharma, A; Misra, S; Mishra, S K; Kourakis, I

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  10. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Misra, S.; Mishra, S. K.; Kourakis, I.

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  11. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.

  12. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    PubMed

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  13. Ganymede Impact Crater Morphology as Revealed by Galileo

    NASA Astrophysics Data System (ADS)

    Weitz, C. M.; Head, J. W.; Pappalardo, R.; Chapman, C.; Greeley, R.; Helfenstein, P.; Neukum, G.; Galileo SSI Team

    1997-07-01

    We have used the Galileo G1, G2, G7, and G8 images to study the morpholo- gy and degradation of impact craters on Ganymede. Results from the G1 and G2 data showed three types of degradation states: pristine, partially degraded, and heavily degraded. With the more recent G7 and G8 images, there are now several other distinct crater morphologies that we have identified. Enki Catena is about 120 km in length and consists of 13 attached impact craters. The six craters in the chain that impacted onto the bright terrain have visible bright ejecta while those that impacted onto the dark terrain have barely visible ejecta. Kittu crater is about 15 km in diameter and it has a bright central peak surrounded by a bright floor and hummocky wall material. The crater rim in the north is linear in appearance at the location that corresponds to the boundary between the groove terrain and the adjacent dark terrain, indicating structural control by the underlying topography. The dark rays that are easily seen in the Voyager images are barely visible in the Galileo image. Neith crater has a central fractured dome surrounded by a jagged central ring, smoother outer ejecta facies, and less prominent outer rings. Achelous crater and its neighbor, which were imaged at low sun angle to show topography, have smooth floors and subdued pedestal ejecta. Nicholson Regio has tectonically disrupted craters on the groove and fractured terrains while the surrounding smoother dark terrain has numerous degrad- ed craters that may indicate burial by resurfacing or by regolith development.

  14. Infrared Images of an Infant Solar System

    NASA Astrophysics Data System (ADS)

    2002-05-01

    ESO Telescopes Detect a Strange-Looking Object Summary Using the ESO 3.5-m New Technology Telescope and the Very Large Telescope (VLT) , a team of astronomers [1] have discovered a dusty and opaque disk surrounding a young solar-type star in the outskirts of a dark cloud in the Milky Way. It was found by chance during an unrelated research programme and provides a striking portrait of what our Solar System must have looked like when it was in its early infancy. Because of its striking appearance, the astronomers have nicknamed it the "Flying Saucer" . The new object appears to be a perfect example of a very young star with a disk in which planets are forming or will soon form, and located far away from the usual perils of an active star-forming environment . Most other young stars, especially those that are born in dense regions, run a serious risk of having their natal dusty disks destroyed by the blazing radiation of their more massive and hotter siblings in these clusters. The star at the centre of the "Flying Saucer", seems destined to live a long and quiet life at the centre of a planetary system , very much like our own Sun. This contributes to making it a most interesting object for further studies with the VLT and other telescopes. The mass of the observed disk of gas and dust is at least twice that of the planet Jupiter and its radius measures about 45 billion km, or 5 times the size of the orbit of Neptune. PR Photo 12a/02 : The "Flying Saucer" object photographed with NTT/SOFI. PR Photo 12b/02 : VLT/ISAAC image of this object. PR Photo 12c/02 : Enlargement of VLT/ISAAC image . Circumstellar Disks and Planets Planets form in dust disks around young stars. This is a complex process of which not all stages are yet fully understood but it begins when small dust particles collide and stick to each other. For this reason, observations of such dust disks, in particular those that appear as extended structures (are "resolved"), are very important for our understanding of the formation of solar-type stars and planetary systems from the interstellar medium. However, in most cases the large difference of brightness between the young star and its surrounding material makes it impossible to image directly the circumstellar disk. But when the disk is seen nearly edge-on, the light from the central star will be blocked out by the dust grains in the disk. Other grains below and above the disk midplane scatter the stellar light, producing a typical pattern of a dark lane between two reflection nebulae. The first young stellar object (YSO) found to display this typical pattern, HH 30 IRS in the Taurus dark cloud at a distance of about 500 light-years (140 pc), was imaged by the Hubble Space telescope (HST) in 1996. Edge-on disks have since also been observed with ground-based telescopes in the near-infrared region of the spectrum, sometimes by means of adaptive optics techniques or speckle imaging, or under very good sky image quality, cf. ESO PR Photo 03d/01 with a VLT image of such an object in the Orion Nebula. A surprise discovery ESO PR Photo 12a/02 ESO PR Photo 12a/02 [Preview - JPEG: 400 x 459 pix - 55k] [Normal - JPEG: 800 x 918 pix - 352k] Caption : PR Photo 12a/02 shows a three-colour reproduction of the discovery image of strange-looking object (nicknamed the "Flying Saucer" by the astronomers), obtained with the SOFI multi-mode instrument at the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory. Compared to the unresolved stars in the field, the image of this object appears extended. Two characteristic reflection nebulae are barely visible, together with a marginally resolved dark dust lane in front of the star and oriented East-West. Technical information about the photo is available below. Last year, a group of astronomers [1] carried out follow-up observations of new X-ray sources found by the ESA XMM-Newton and NASA Chandra X-ray satellites. They were looking at the periphery of the so-called Rho Ophiuchi dark cloud , one of the nearest star-forming regions at a distance of about 500 light-years (140 pc), obtaining images in near-infrared light with the SOFI multi-mode instrument on the 3.5-m New Technology Telescope (NTT) at the ESO La Silla Observatory (Chile). On one of the NTT photos obtained on April 7, 2001, they discovered by chance a strange object which by closer inspection turned out to be a resolved edge-on circumstellar disk, so far unnoticed and displaying infrared scattered light around a young star. On this photo ( PR Photo 12a/02 ) two characteristic reflection nebulae can barely be seen, flanking a marginally resolved dark dust lane in the East-West direction in front of the star. VLT confirmation ESO PR Photo 12b/02 ESO PR Photo 12b/02 [Preview - JPEG: 437 x 430 pix - 64k] [Normal - JPEG: 873 x 800 pix - 564k] ESO PR Photo 12c/02 ESO PR Photo 12c/02 [Preview - JPEG: 400 x 468 pix - 69k] [Normal - JPEG: 800 x 935 pix - 432k] Captions : PR Photo 12b/02 shows the new object, as imaged with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at Paranal during the follow-up observations. The circumstellar disk is well visible in the left part of the field as a shadow in front of the nebula. Many background galaxies are visible in this deep image and one edge-on galaxy is seen visible close to the image centre. A close-up of the object is shown in PR Photo 12c/02 . Note the reddish aspect of the upper nebula; this phenomenon is not yet fully understood. Technical information about the photos is available below. To confirm this discovery and in order to learn more about the object and the disk, the astronomers obtained additional observations (during "Director's Discretionary Time") with the 8.2-m VLT ANTU telescope. The observations were carried out in "service mode" by ESO staff, using the near-infrared multi-mode Infrared Spectrometer And Array Camera (ISAAC) - the "father" of the SOFI instrument ("Son OF Isaac"). A series of fine images was obtained on August 15, 2001, under very good observing conditions (with "seeing" of 0.4 arcsec). Now the two reflection nebulae are clearly seen ( PR Photos 12b-c/02 ), and the dark dust lane is well resolved. The leader of the group, Nicolas Grosso , recalls the first impression when seeing the true shape of the object: "That is when we looked at each other and, with one voice, immediately decided to nickname it the `Flying Saucer'!". The nature of the new object Seven young stars in the Rho Ophiuchi star-forming region are known to display similar reflection nebulae surrounding a dark lane (suggesting the presence of a dusty disk), but these objects are all still deeply embedded in the dense cores of this dark cloud. They are mostly protostars with ages of about 100,000 years, surrounded by a remnant infalling envelope. On the other hand, astronomers think that the newly found object has an age of about 1 million years and is in a more evolved stage than those in the neighboring Rho Ophiuchi star-forming region. The new disk is located at the periphery of the dark cloud and is much less obscured than the younger objects still embedded in the dense dark cloud nursery, thus allowing a much clearer view of the dust disk. The resolved circumstellar dust disk in the "Flying Saucer" has a radius of about 300 Astronomical Units (45 billion km), or 5 times the size of the orbit of Neptune (assuming the same distance as the Rho Ophiuchi star-forming cloud, 500 light-years). From model calculations, the astronomers find that it is inclined only about 4° to the line of sight and therefore seen very nearly from the side. A lower limit to the total mass of the disk is about twice the mass of planet Jupiter, or 600-700 times the mass of the Earth. A study of the recorded (reflected) light from the optical to the near-infrared indicates that the central young solar-type star has a temperature of about 3000 K and 0.4 times the luminosity of our actual Sun. A detailed analysis of both reflection nebulae shows an unusual excess of infrared light from the upper nebula, both visible in the NTT and VLT images, which cannot be explained by a simple axisymmetrical model. Future complementary high-resolution observations by the VLT adaptive optics camera NAOS-CONICA will help the astronomers to understand the origin of this puzzling phenomenon, and its possible link to the planet-forming mechanism. Said Nicolas Grosso : "The `Flying Saucer' object presents us with a striking portrait of our Solar System in its early infancy. With this object, Nature has provided us a perfect laboratory for the study of both dust and gas in young circumstellar disks, the raw material of planets." The next steps As this disk is located at a dark cloud periphery and not embedded in it, follow-up studies at millimetre wavelengths with existing antenna arrays will give a clear view without the complication of unrelated background emission from dark cloud material. These future observations will provide an easy mapping of the gas and dust material around this young solar-type star, and allow a study of the chemical processes at work in this protoplanetary disk. Moreover, current antenna arrays should be able to detect the Keplerian rotation of this disk, providing a direct measurement of the mass of the central star. Computer simulations predict that baby planets produce measurable structural changes in circumstellar disks, however such signs of the planet formation are far from the sensitivity and the spatial resolution of the actual antenna arrays. The detection of these features are the goal of ALMA , and there is no doubt that this "planet nursery" object will be a prime target for this future array of antennas. More information The results described in this Press Release have been submitted to the European research journal Astronomy & Astrophysics ("The `Flying Saucer': a new edge-on circumstellar dust disk at the periphery of the rho Ophiuchi dark cloud" by N. Grosso and co-authors). Notes [1]: The team consists of Nicolas Grosso (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), João Alves (ESO, Garching, Germany), Kenneth Wood (School of Physics & Astronomy, University of St Andrews, Scotland, UK), Ralph Neuhäuser (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), Thierry Montmerle (Service d'Astrophysique, CEA Saclay,Gif-sur-Yvette, France) and Jon E. Bjorkman (Ritter Observatory, Department of Physics & Astronomy, University of Toledo, Ohio, USA).

  15. Dark matter and alternative recipes for the missing mass

    NASA Astrophysics Data System (ADS)

    Tortora, Crescenzo; Jetzer, Philippe; Napolitano, Nicola R.

    2012-03-01

    Within the standard cosmological scenario the Universe is found to be filled by obscure components (dark matter and dark energy) for ~ 95% of its energy budget. In particular, almost all the matter content in the Universe is given by dark matter, which dominates the mass budget and drives the dynamics of galaxies and clusters of galaxies. Unfortunately, dark matter and dark energy have not been detected and no direct or indirected observations have allowed to prove their existence and amount. For this reason, some authors have suggested that a modification of Einstein Relativity or the change of the Newton's dynamics law (within a relativistic and classical framework, respectively) could allow to replace these unobserved components. We will start discussing the role of dark matter in the early-type galaxies, mainly in their central regions, investigating how its content changes as a function of the mass and the size of each galaxy and few considerations about the stellar Initial mass function have been made. In the second part of the paper we have described, as examples, some ways to overcome the dark matter hypothesis, by fitting to the observations the modified dynamics coming out from general relativistic extended theories and the MOdyfled Newtonian dynamics (MOND).

  16. Dual-Use of Compact HF Radars for the Detection of Mid-and Large-size Vessels

    DTIC Science & Technology

    2010-01-01

    make detecting a ship nearby very difficult. The zero-Doppler is from signals returned from any stationary object wile the sea-echo Bragg peaks are due...the six detection processes IIR-128 (blue), IIR-256 (red), IIR-256 (magenta), Median-64 (dark brown ), Median-128 ( brown ), Median-256 (dark green). As...IIR-256 (red), IIR-256 (magenta), Median-64 (dark brown ), Median-128 ( brown ), Median-256 (dark green). Acknowledgements This work was funded by the

  17. The "Water-Fountain Nebula" IRAS 16342-3814: Hubble Space Telescope/Very Large Array Study of a Bipolar Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Sahal, Raghvendra; teLintelHekkert, Peter; Morris, Mark; Zijlstra, Albert; Likkel, Lauren

    1999-01-01

    We present Hubble Space Telescope (HST) Wide-Field Planetary Camera 2 images and VLA OH maser emission-line maps of the cold infrared object IRAS 16342-3814, believed to be a protoplanetary nebula. The HST images show an asymmetrical bipolar nebula, with the lobes separated by a dark equatorial waist. The two bright lobes and the dark waist are simply interpreted as bubble-like reflection nebulae illuminated by starlight escaping through polar holes in a dense, flattened, optically thick cocoon of dust, which completely obscures the central star. A faint halo can be seen surrounding each of the lobes. The bubbles are likely to have been created by a fast outflow (evidenced by H2O emission) plowing into a surrounding dense, more slowly expanding, circumstellar envelope of the progenitor asymptotic giant-branch (AGB) star (evidenced by the halo). The IRAS fluxes indicate a circumstellar mass of about 0.7 solar mass (D/2 kpc) and an AGB mass-loss rate of about 10(exp -4) solar mass/yr (V(sub exp)/15 km/s)(D/2 kpc)(sup 2) (assuming a gas-to-dust ratio of 200). OH features with the largest redshifted and blueshifted velocities are concentrated around the bright eastern and western polar lobes, respectively, whereas intermediate-velocity features generally occur at low latitudes, in the dark waist region. We critically examine evidence for the post-AGB classification of IRAS 16342-3814.

  18. Strong lensing by fermionic dark matter in galaxies

    NASA Astrophysics Data System (ADS)

    Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.

    2016-12-01

    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used for the deflection angle which may become bigger than 2 π . An important difference in comparison to BHs is in the fact that quantum DM cores do not show a photon sphere; this implies that they do not cast a shadow (if they are transparent). Similar conclusions apply to the other DM distributions for other fermion masses in the above-specified range and for other galaxy types.

  19. Black holes and gravitational waves in models of minicharged dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Vitor; Perimeter Institute for Theoretical Physics,31 Caroline Street North Waterloo, Ontario N2L 2Y5; Macedo, Caio F.B.

    In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden U(1) symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole’s charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the finalmore » black hole’s charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burst of low-frequency dark photons which might provide a possible electromagnetic counterpart to black-hole mergers in these scenarios.« less

  20. Stellar, remnant, planetary, and dark-object masses from astrometric microlensing

    NASA Technical Reports Server (NTRS)

    Boden, A.; Gould, A. P.; Bennett, D. P.; Depoy, D. L.; Gaudi, S. B.; Griest, K.; Han, C.; Paczynski, B.; Reid, I. N.

    2002-01-01

    With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  1. Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Marinacci, Federico; Springel, Volker; Li, Yuexing

    2017-04-01

    We study the orbital properties of dark matter haloes by combining a spectral method and cosmological simulations of Milky Way-sized Galaxies. We compare the dynamics and orbits of individual dark matter particles from both hydrodynamic and N-body simulations, and find that the fraction of box, tube and resonant orbits of the dark matter halo decreases significantly due to the effects of baryons. In particular, the central region of the dark matter halo in the hydrodynamic simulation is dominated by regular, short-axis tube orbits, in contrast to the chaotic, box and thin orbits dominant in the N-body run. This leads to a more spherical dark matter halo in the hydrodynamic run compared to a prolate one as commonly seen in the N-body simulations. Furthermore, by using a kernel-based density estimator, we compare the coarse-grained phase-space densities of dark matter haloes in both simulations and find that it is lower by ˜0.5 dex in the hydrodynamic run due to changes in the angular momentum distribution, which indicates that the baryonic process that affects the dark matter is irreversible. Our results imply that baryons play an important role in determining the shape, kinematics and phase-space density of dark matter haloes in galaxies.

  2. Venus - Possible Remnants of a Meteoroid in Lakshmi Region

    NASA Image and Video Library

    1996-11-26

    This full resolution mosaiced image covers an area of approximately 100 kilometers by 120 kilometers (62 by 74 miles) and is located in the Lakshmi region of Venus at 47 degrees north latitude and 334 east longitude. Due to the dense Venusian atmosphere, primary impact craters of less than a 3 kilometer (2 mile) diameter are nonexistent. The dark circular region and associated central bright feature in this image are thought to be the remnants of a meteoroid smaller than the size necessary to create an impact crater entering the atmosphere at a low velocity (approximately 350 meters/second.) The central bright feature appears to be a cluster of small secondary impacts, ejecta and debris from the original meteor that broke up in the atmosphere. Even though most of the meteorite did not hit the surface, the atmospheric shock wave could be great enough to modify the surrounding region. One explanation for this radar dark circular formation, called dark margins, could be that the shock wave was energetic enough to pulverize the surface (smooth surfaces generally appear radar dark.) Another explanation is that the surface could be blanketed by a fine material that was formed by the original meteor's breakup through the atmosphere. More than half of the impact craters on Venus have associated dark margins, and most of these are prominently located left of center of the crater. This is another effect which could be caused by the dense atmosphere of Venus. http://photojournal.jpl.nasa.gov/catalog/PIA00477

  3. Venus - Possible Remnants of a Meteoroid in Lakshmi Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This full resolution mosaiced image covers an area of approximately 100 kilometers by 120 kilometers (62 by 74 miles) and is located in the Lakshmi region of Venus at 47 degrees north latitude and 334 east longitude. Due to the dense Venusian atmosphere, primary impact craters of less than a 3 kilometer (2 mile) diameter are nonexistent. The dark circular region and associated central bright feature in this image are thought to be the remnants of a meteoroid smaller than the size necessary to create an impact crater entering the atmosphere at a low velocity (approximately 350 meters/second.) The central bright feature appears to be a cluster of small secondary impacts, ejecta and debris from the original meteor that broke up in the atmosphere. Even though most of the meteorite did not hit the surface, the atmospheric shock wave could be great enough to modify the surrounding region. One explanation for this radar dark circular formation, called dark margins, could be that the shock wave was energetic enough to pulverize the surface (smooth surfaces generally appear radar dark.) Another explanation is that the surface could be blanketed by a fine material that was formed by the original meteor's breakup through the atmosphere. More than half of the impact craters on Venus have associated dark margins, and most of these are prominently located left of center of the crater. This is another effect which could be caused by the dense atmosphere of Venus.

  4. On the formalism of dark energy accretion onto black- and worm-holes

    NASA Astrophysics Data System (ADS)

    Martín-Moruno, Prado

    2008-01-01

    In this work a general formalism for the accretion of dark energy onto astronomical objects, black holes and wormholes, is considered. It is shown that in models with four dimensions or more, any singularity with a divergence in the Hubble parameter may be avoided by a big trip, if it is assumed that there is no coupling between the bulk and this accreting object. If this is not the case in more than four dimensions, the evolution of the cosmological object depends on the particular model.

  5. REVIEWS OF TOPICAL PROBLEMS: Small-scale structure of dark matter and microlensing

    NASA Astrophysics Data System (ADS)

    Gurevich, Aleksandr V.; Zybin, Kirill P.; Sirota, V. A.

    1997-09-01

    It has been revealed using microlensing that a considerable part, possibly more than half, of the dark matter in the halo of our Galaxy consists of objects with a mass spectrum ranging from 0.05 to 0.8 of the solar mass. What is the nature of these objects? There exist two hypotheses. According to one, these are Jupiter type planets or small stars (brown and white dwarfs) consisting of normal baryonic matter. According to the other, these are non-compact objects, i.e., small-scale formations in non-baryonic dark matter. Here, a theory is proposed describing the possibility of the existence of non-compact objects in the halo of our Galaxy, their structure and formation from non-baryonic matter. The theory of microlensing on compact and non-compact objects is considered in detail. The results of microlensing observations are described and compared with theory. Possible astrophysical manifestations of the presence of small-scale structure are pointed out. The field is being extensively studied and is of fundamental interest for cosmology and astrophysics.

  6. Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Koopmans, L.V.E.; Barnabe, M.; Bolton, A.; Bradac, M.; Ciotti, L.; Congdon, A.; Czoske, O.; Dye, S.; Dutton, A.; Elliasdottir, A.; Evans, E.; Fassnacht, C.D.; Jackson, N.; Keeton, C.; Lasio, J.; Moustakas, L.; Meneghetti, M.; Myers, S.; Nipoti, C.; Suyu, S.; van de Ven, G.; Vegetti, S.; Wucknitz, O.; Zhao, H.-S.

    Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optical (e.g. LSST and JDEM) instruments can provide 10^(2-4) new lenses, and up to 10^(4-6) new lens systems from SKA/LSST/JDEM all-sky surveys around ~2020. Follow-up imaging of (radio) lenses is necessary with moderate ground/space-based optical-IR telescopes and with 30-50m telescopes for spectroscopy (e.g. TMT, GMT, ELT). To answer these fundamental questions through strong gravitational lensing, a strong investment in large radio and optical-IR facilities is therefore critical in the coming decade. In particular, only large-scale radio lens surveys (e.g. with SKA) provide the large numbers of high-resolution and high-fidelity images of lenses needed for SMBH and flux-ratio anomaly studies.

  7. Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter

    NASA Technical Reports Server (NTRS)

    Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.

    1993-01-01

    The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.

  8. Concealing with structured light.

    PubMed

    Sun, Jingbo; Zeng, Jinwei; Wang, Xi; Cartwright, Alexander N; Litchinitser, Natalia M

    2014-02-13

    While making objects less visible (or invisible) to a human eye or a radar has captured people's imagination for centuries, current attempts towards realization of this long-awaited functionality range from various stealth technologies to recently proposed cloaking devices. A majority of proposed approaches share a number of common deficiencies such as design complexity, polarization effects, bandwidth, losses and the physical size or shape requirement complicating their implementation especially at optical frequencies. Here we demonstrate an alternative way to conceal macroscopic objects by structuring light itself. In our approach, the incident light is transformed into an optical vortex with a dark core that can be used to conceal macroscopic objects. Once such a beam passed around the object it is transformed back into its initial Gaussian shape with minimum amplitude and phase distortions. Therefore, we propose to use that dark core of the vortex beam to conceal an object that is macroscopic yet small enough to fit the dark (negligibly low intensity) region of the beam. The proposed concealing approach is polarization independent, easy to fabricate, lossless, operates at wavelengths ranging from 560 to 700 nm, and can be used to hide macroscopic objects providing they are smaller than vortex core.

  9. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  10. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 < z < 1, using a sample of dark-matter only cosmological N-body simulations from Le SBARBINE data set. Using a spherical overdensity algorithm to identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  11. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, active galactic nuclei, stellar populations, exoplanet characterization and Solar System objects. In this paper, we review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research. The James Webb Space Telescope was designed to meet science objectives in four themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life. More recently, it has become clear that Webb will also make major contributions to studies of dark energy, dark matter, active galactic nuclei, stellar populations, exoplanet characterization and Solar System objects. We review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  12. Triton - Detail of Dark and Light Material

    NASA Image and Video Library

    1996-09-26

    NASA's Voyager 2 acquired this black and white image of Triton, Neptune's largest satellite, during the night of Aug. 24-25, 1989. Triton's limb cuts obliquely across the middle of the image. The field of view is about 1,000 km (600 miles) across. Three irregular dark areas, surrounded by brighter material, dominate the image. Low-lying material with intermediate albedo occupies the central area, and fresh craters occur along the right margin. Sub-parallel alignment of linear patches of dark material shown in the lower and left part of the image suggests that the patches are structurally controlled. http://photojournal.jpl.nasa.gov/catalog/PIA00056

  13. Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil.

    PubMed

    Macedo, Rodrigo S; Teixeira, Wenceslau G; Corrêa, Marcelo M; Martins, Gilvan C; Vidal-Torrado, Pablo

    2017-01-01

    Anthrosols known as Amazonian Dark Earth (ADE) have borne witness to the intensification of sedentary patterns and the demographic increase in Central Amazon. As a result, a recurring pattern has been observed of mounds with ADE arising from domestic activities and the disposal of waste. The objective of this research was to demonstrate the relationship of these anthropic activities with pedogenetic formation processes of ADE in the municipality of Iranduba, Brazil. Disturbed and undisturbed soil samples were taken from two areas of ADE (pretic horizon) and from a non-anthropic pedon. Physical, chemical, micromorphological and SEM-EDS analyses were performed. The coarse material of the pretic horizons consisted predominantly of quartz, iron nodules, ceramics and charcoal fragments, and the fine material is organo-mineral. There was a direct relationship between the color of pretic horizons and the number of charcoal fragments. The thickness of the ADE results from the redistribution of charcoal at depth through bioturbation, transforming subsurface horizons into anthropic horizons. ADE presents granular microaggregates of geochemical and zoogenetic origin. Degradation of iron nodules is intensified in pretic horizons, promoting a reverse pedogenic process contributing to the xanthization process. Surprisingly the anthropic activities also favor clay dispersion and argilluviation; clay coatings on the ceramic fragments and in the pores demonstrate that this is a current process. Processes identified as contributing to ADE genesis included: i) addition of organic residues and ceramic artifacts (cumulization) with the use of fire; ii) mechanical action of humans, roots and macrofauna (bioturbation); iii) melanization of deeper horizons as a result of bioturbation; iv) argilluviation and degradation of iron nodules. This study offers new support to archaeological research in respect to ADE formation processes in Central Amazon and confirmed the hypothesis that ancient anthropic activities may trigger and/or accelerate pedogenetic processes previously credited only to natural causes.

  14. Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil

    PubMed Central

    Macedo, Rodrigo S.; Teixeira, Wenceslau G.; Corrêa, Marcelo M.; Martins, Gilvan C.

    2017-01-01

    Anthrosols known as Amazonian Dark Earth (ADE) have borne witness to the intensification of sedentary patterns and the demographic increase in Central Amazon. As a result, a recurring pattern has been observed of mounds with ADE arising from domestic activities and the disposal of waste. The objective of this research was to demonstrate the relationship of these anthropic activities with pedogenetic formation processes of ADE in the municipality of Iranduba, Brazil. Disturbed and undisturbed soil samples were taken from two areas of ADE (pretic horizon) and from a non-anthropic pedon. Physical, chemical, micromorphological and SEM-EDS analyses were performed. The coarse material of the pretic horizons consisted predominantly of quartz, iron nodules, ceramics and charcoal fragments, and the fine material is organo-mineral. There was a direct relationship between the color of pretic horizons and the number of charcoal fragments. The thickness of the ADE results from the redistribution of charcoal at depth through bioturbation, transforming subsurface horizons into anthropic horizons. ADE presents granular microaggregates of geochemical and zoogenetic origin. Degradation of iron nodules is intensified in pretic horizons, promoting a reverse pedogenic process contributing to the xanthization process. Surprisingly the anthropic activities also favor clay dispersion and argilluviation; clay coatings on the ceramic fragments and in the pores demonstrate that this is a current process. Processes identified as contributing to ADE genesis included: i) addition of organic residues and ceramic artifacts (cumulization) with the use of fire; ii) mechanical action of humans, roots and macrofauna (bioturbation); iii) melanization of deeper horizons as a result of bioturbation; iv) argilluviation and degradation of iron nodules. This study offers new support to archaeological research in respect to ADE formation processes in Central Amazon and confirmed the hypothesis that ancient anthropic activities may trigger and/or accelerate pedogenetic processes previously credited only to natural causes. PMID:28542442

  15. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    NASA Technical Reports Server (NTRS)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  16. Characterisation of Hypertensive Patients with Improved Endothelial Function after Dark Chocolate Consumption

    PubMed Central

    d'El-Rei, Jenifer; Cunha, Ana Rosa; Burlá, Adriana; Burlá, Marcelo; Oigman, Wille

    2013-01-01

    Recent findings indicate an inverse relationship between cardiovascular disease and consumption of flavonoids. We aimed to identify clinical and vascular parameters of treated hypertensive who present beneficial effects of dark chocolate for one-week period on vascular function. Twenty-one hypertensive subjects, aged 40–65 years, were included in a prospective study with measurement of blood pressure (BP), brachial flow-mediated dilatation (FMD), peripheral arterial tonometry, and central hemodynamic parameters. These tests were repeated after seven days of eating dark chocolate 75 g/day. Patients were divided according to the response in FMD: responders (n = 12) and nonresponders (n = 9). The responder group presented lower age (54 ± 7 versus 61 ± 6 years, P = 0.037), Framingham risk score (FRS) (2.5 ± 1.8 versus 8.1 ± 5.1%, P = 0.017), values of peripheral (55 ± 9 versus 63 ± 5 mmHg, P = 0.041), and central pulse pressure (PP) (44 ± 10 versus 54 ± 6 mmHg, P = 0.021). FMD response showed negative correlation with FRS (r = −0.60, P = 0.014), baseline FMD (r = −0.54, P = 0.011), baseline reactive hyperemia index (RHI; r = −0.56, P = 0.008), and central PP (r = −0.43, P = 0.05). However, after linear regression analysis, only FRS and baseline RHI were associated with FMD response. In conclusion, one-week dark chocolate intake significantly improved endothelial function and reduced BP in younger hypertensive with impaired endothelial function in spite of lower cardiovascular risk. PMID:23533716

  17. Characterisation of hypertensive patients with improved endothelial function after dark chocolate consumption.

    PubMed

    d'El-Rei, Jenifer; Cunha, Ana Rosa; Burlá, Adriana; Burlá, Marcelo; Oigman, Wille; Neves, Mario Fritsch; Virdis, Agostino; Medeiros, Fernanda

    2013-01-01

    Recent findings indicate an inverse relationship between cardiovascular disease and consumption of flavonoids. We aimed to identify clinical and vascular parameters of treated hypertensive who present beneficial effects of dark chocolate for one-week period on vascular function. Twenty-one hypertensive subjects, aged 40-65 years, were included in a prospective study with measurement of blood pressure (BP), brachial flow-mediated dilatation (FMD), peripheral arterial tonometry, and central hemodynamic parameters. These tests were repeated after seven days of eating dark chocolate 75 g/day. Patients were divided according to the response in FMD: responders (n = 12) and nonresponders (n = 9). The responder group presented lower age (54 ± 7 versus 61 ± 6 years, P = 0.037), Framingham risk score (FRS) (2.5 ± 1.8 versus 8.1 ± 5.1%, P = 0.017), values of peripheral (55 ± 9 versus 63 ± 5 mmHg, P = 0.041), and central pulse pressure (PP) (44 ± 10 versus 54 ± 6 mmHg, P = 0.021). FMD response showed negative correlation with FRS (r = -0.60, P = 0.014), baseline FMD (r = -0.54, P = 0.011), baseline reactive hyperemia index (RHI; r = -0.56, P = 0.008), and central PP (r = -0.43, P = 0.05). However, after linear regression analysis, only FRS and baseline RHI were associated with FMD response. In conclusion, one-week dark chocolate intake significantly improved endothelial function and reduced BP in younger hypertensive with impaired endothelial function in spite of lower cardiovascular risk.

  18. Stability of satellite planes in M31 II: effects of the dark subhalo population

    NASA Astrophysics Data System (ADS)

    Fernando, Nuwanthika; Arias, Veronica; Lewis, Geraint F.; Ibata, Rodrigo A.; Power, Chris

    2018-01-01

    The planar arrangement of nearly half the satellite galaxies of M31 has been a source of mystery and speculation since it was discovered. With a growing number of other host galaxies showing these satellite galaxy planes, their stability and longevity have become central to the debate on whether the presence of satellite planes are a natural consequence of prevailing cosmological models, or represent a challenge. Given the dependence of their stability on host halo shape, we look into how a galaxy plane's dark matter environment influences its longevity. An increased number of dark matter subhaloes results in increased interactions that hasten the deterioration of an already-formed plane of satellite galaxies in spherical dark haloes. The role of total dark matter mass fraction held in subhaloes in dispersing a plane of galaxies presents non-trivial effects on plane longevity as well. But any misalignment of plane inclines to major axes of flattened dark matter haloes lead to their lifetimes being reduced to ≤3 Gyr. Distributing ≥40 per cent of total dark mass in subhaloes in the overall dark matter distribution results in a plane of satellite galaxies which is prone to change through the 5-Gyr integration time period.

  19. Euclid and the Dark Universe

    NASA Astrophysics Data System (ADS)

    Mellier, Yannick

    2016-07-01

    The ESA Euclid mission aims to understand why the expansion of the Universe is accelerating and pin down the source responsible for the acceleration. It will uncover the very nature of dark energy and gravitation by measuring with exquisite accuracy the expansion rate of the Universe and the growth rate of structure formation in the Universe. To achieve its objectives Euclid will observe the distribution of dark matter in the Universe by measuring shapes of weakly distorted distant galaxies lensed by foreground cosmic structures with the VIS imaging instrument. In parallel, Euclid will analyse the clustering of galaxies and the distribution of clusters of galaxies by using spectroscopy and measuring redshifts of galaxies with the NISP photometer and spectrometer instrument. The Euclid mission will observe one third of the sky (15,000 deg2) to collect data on several billion galaxies spread over the last ten billion years. In this presentation I will report on the considerable technical and scientific progresses made since COSPAR 2014, on behalf of the Euclid Collaboration. The recent mission PDR that has been passed successfully shows that Euclid should meet its requirements and achieve its primary scientific objectives to map the dark universe. The most recent forecasts and constraints on dark energy, gravity, dark matter and inflation will be presented.

  20. Charged Q-ball dark matter from B and L direction

    NASA Astrophysics Data System (ADS)

    Hong, Jeong-Pyong; Kawasaki, Masahiro; Yamada, Masaki

    2016-08-01

    We consider nearly equal number of gauge mediation type charged (anti-) Q-balls with charge of ±α-1 simeq ±137 well before the BBN epoch and discussed how they evolve in time. We found that ion-like objects with electric charges of +O(1) are likely to become relics in the present universe, which we expect to be the dark matter. These are constrained by MICA experiment, where the trail of heavy atom-like or ion-like object in 109 years old ancient mica crystals is not observed. We found that the allowed region for gauge mediation model parameter and reheating temperature have to be smaller than the case of the neutral Q-ball dark matter.

  1. Astronaut John Young stands at ALSEP deployment site during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands at the Apollo Lunar Surface Experiments Package (ALSEP) deployment site during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. The components of the ALSEP are in the background. The lunar surface drill is just behind and to the right of Young. The drill's rack and bore stems are to the left. The three sensor Lunar Surface Magnetometer is beyond the rack. The dark object in the right background is the Radioisotope Thermoelectric Generator (RTG). Between the RTG and the drill is the Heat Flow Experiment. A part of the Central Station is at the right center edge of the picture. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot.

  2. Constraining self-interacting dark matter with scaling laws of observed halo surface densities

    NASA Astrophysics Data System (ADS)

    Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia

    2018-04-01

    The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.

  3. Serial MR Imaging of Intramuscular Hematoma: Experimental Study in a Rat Model with the Pathologic Correlation

    PubMed Central

    Lee, Yeon Soo; Kwon, Soon Tae; Kim, Jong Ok

    2011-01-01

    Objective We wanted to demonstrate the temporal changes of the magnetic resonance imaging (MRI) findings in experimentally-induced intramuscular hematomas in rats and to correlate these data with the concurrent pathologic observations. Materials and Methods Intramuscular hematoma was induced in 30 rats. The MR images were obtained at 1, 4, 7 and 10 days and at 2, 3, 4, 6 and 8 weeks after muscle injury. The characteristic serial MRI findings were evaluated and the relative signal intensities were calculated. Pathologic specimens were obtained at each time point. Results On the T1-weighted imaging (T1WI), the intramuscular hematomas exhibited isointensity compared to that of muscle or the development of a high signal intensity (SI) rim on day one after injury. The high SI persisted until eight weeks after injury. On the T2-weighted imaging (T2WI), the hematomas showed high SI or centrally low SI on day one after injury, and mainly high SI after four days. A dark signal rim was apparent after seven days, which was indicative of hemosiderin on the pathology. The gradient echo (GRE) imaging yielded dark signal intensities at all stages. Conclusion Unlike brain hematomas, experimentally-induced intramuscular hematomas show increased SI on both the T1WI and T2WI from the acute stage onward, and this is pathologically correlated with a rich blood supply and rapid healing response to injury in the muscle. On the T2WI and GRE imaging, high SI with a peripheral dark signal rim is apparent from seven days to the chronic stage. PMID:21228942

  4. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    PubMed

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  5. High-resolution imaging of compact high-velocity clouds

    NASA Astrophysics Data System (ADS)

    Braun, R.; Burton, W. B.

    2000-02-01

    Six examples of the compact, isolated H i high-velocity clouds (CHVCs) identified by Braun & Burton (\\cite{brau99}), but only marginally resolved in single-dish data, have been imaged with the Westerbork Synthesis Radio Telescope. The 65 confirmed objects in this class define a dynamically cold system, with a global minimum for the velocity dispersion of only 70 km s-1, found in the Local Group Standard of Rest. The population is in-falling at 100 km s-1 toward the Local Group barycenter. These objects have a characteristic morphology, in which one or more compact cores is embedded in a diffuse halo. The compact cores typically account for 40% of the H i line flux while covering some 15% of the source area. The narrow line width of all core components allows unambiguous identification of these with the cool condensed phase of \\hi , the CNM, with kinetic temperature near 100 K, while the halos appear to represent a shielding column of warm diffuse \\hi , the WNM, with temperature near 8000 K. We detect a core with one of the narrowest H i emission lines ever observed, with intrinsic FWHM of no more than 2 km s-1 and 75 K brightness. From a comparison of column and volume densities for this feature we derive a distance in the range 0.5 to 1 Mpc. We determine a metallicity for this same object of 0.04 to 0.07 solar. Comparably high distances are implied by demanding the stability of objects with multiple cores, which show relative velocities as large as 70 km s-1 on 30 arcmin scales. Many of the compact cores show systematic velocity gradients along the major axis of their elliptical extent which are well-fit by circular rotation in a flattened disk system. Two out of three of the derived rotation curves are well-fit by Navarro, Frenk & White (1997) cold dark matter profiles. These kinematic signatures imply a high dark-to-visible mass ratio of 10-50, for D = 0.7 Mpc, which scales as 1/D. The implied dark matter halos dominate the mass volume density within the central 2 kpc (10 arcmin) of each source, providing a sufficent hydrostatic pressure to allow CNM condensation. The CHVC properties are similar in many respects to those of the Local Group dwarf irregular galaxies, excepting the presence of a high surface brightness stellar population.

  6. Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Dong Dong; Zheng, Xian Zhong; Zhao, Hai Bin; Pan, Zhi Zheng; Li, Bin; Zou, Hu; Zhou, Xu; Guo, KeXin; An, Fang Xia; Li, Yu Bin

    2017-09-01

    We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree2 field centered on the Hickson Compact Group 95 (HCG 95) using deep g- and r-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at z = 0.199) and two poor clusters (Pegasus I at z = 0.013 and Pegasus II at z = 0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50-60 true UDGs with a half-light radius {r}{{e}}> 1.5 {kpc} and a central surface brightness μ (g,0)> 24.0 mag arcsec-2. Deep z\\prime -band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in g - r color, and ˜26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass 1.1× {10}9 M ⊙ detected by the Very Large Array, and has a stellar mass of {M}\\star ˜ 1.8× {10}8 M ⊙. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.

  7. The missing mass in clusters of galaxies and elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F.

    1991-01-01

    We review the available data for the existence of dark matter in clusters of galaxies and elliptical galaxies. While the amount of dark matter in clusters is not well determined, both the X-ray and optical data show that more than 50 percent of the total mass must be dark. There is in general fair agreement in the binding mass estimates between the X-ray and optical techniques, but there is not detailed agreement on the form of the potential or the distribution of dark matter. The X-ray spectral and spatial observations of elliptical galaxies demonstrate that dark matter is also required in these objects and that it must be considerably more extended than the stellar distribution.

  8. Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)

    ScienceCinema

    Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-06-12

    No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.

  9. Radial oscillations of strange quark stars admixed with condensed dark matter

    NASA Astrophysics Data System (ADS)

    Panotopoulos, G.; Lopes, Ilídio

    2017-10-01

    We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.

  10. Alphonsus crater - Floor fracture and dark-mantle deposit distribution from new 3.0-cm radar images

    NASA Technical Reports Server (NTRS)

    Zisk, Stanley H.; Campbell, Bruce C.; Pettengill, Gordon H.; Brockelman, Richard

    1991-01-01

    The lunar crater Alphonsus is characterized by numerous fractures or graben, and by endogenic dark-halo craters. Existing maps of fractures from analysis of lunar photography may be biased by the east-west solar illumination. This paper presents new high-resolution, dual-polarization 3.0-cm wavelength radar images of Alphonsus with radar illumination from northerly directions, and uses these data to better map the locations of both the graben and a variety of dark-mantle deposits. The distribution of fractures, and several graben which cut the crater floor and central ridge, are cited as possible evidence for simultaneous, post-Imbrium uplift of both structures. Some of the endogenic dark halo deposits are more extensive in depolarized radar images than in photographs; these extensions are attributed in some cases to more distant emplacement of pyroclastic material, and in others to fortuitous connections with smoother, less cratered portions of the Alphonsus floor.

  11. Good Liars Are Neither ‘Dark’ Nor Self-Deceptive

    PubMed Central

    Wright, Gordon R. T.; Berry, Christopher J.; Catmur, Caroline; Bird, Geoffrey

    2015-01-01

    Deception is a central component of the personality 'Dark Triad' (Machiavellianism, Psychopathy and Narcissism). However, whether individuals exhibiting high scores on Dark Triad measures have a heightened deceptive ability has received little experimental attention. The present study tested whether the ability to lie effectively, and to detect lies told by others, was related to Dark Triad, Lie Acceptability, or Self-Deceptive measures of personality using an interactive group-based deception task. At a group level, lie detection accuracy was correlated with the ability to deceive others—replicating previous work. No evidence was found to suggest that Dark Triad traits confer any advantage either to deceive others, or to detect deception in others. Participants who considered lying to be more acceptable were more skilled at lying, while self-deceptive individuals were generally less credible and less confident when lying. Results are interpreted within a framework in which repeated practice results in enhanced deceptive ability. PMID:26083765

  12. Observation of two new L4 Neptune Trojans in the Dark Energy Survey supernova fields

    DOE PAGES

    Gerdes, D. W.

    2016-01-28

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO 441 and 2014 QP 441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO 441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigatemore » the objects' long-term dynamical stability and physical properties.« less

  13. Uncratered Area on Mercury

    NASA Image and Video Library

    1999-10-08

    A dark, smooth, relatively uncratered area on Mercury was photographed two hours after NASA Mariner 10 flew by the planet. The prominent, sharp crater with a central peak is 30 kilometers 19 miles across.

  14. HUBBLE SEES DISKS AROUND YOUNG STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA

  15. Comparison of objective refraction in darkness to cycloplegic refraction: a pilot study.

    PubMed

    Vasudevan, Balamurali; Ciuffreda, Kenneth J; Meehan, Kelly; Grk, Dejana; Cox, Misty

    2016-03-01

    The aim was to assess non-cycloplegic objective refraction in darkness using an open-field auto-refractor, and furthermore to compare it with distance cycloplegic subjective refraction and distance cycloplegic retinoscopy in the light, in children and young adults. Twenty-three, visually-normal, young-adults (46 eyes) ages 23 to 31 years, and five children (10 eyes) ages five to 12 years, participated in the study. The spherical component of their refraction ranged from -2.25 D to +3.75 D with a mean of +1.80 D, and a mean cylinder of -0.70 D. Three techniques were used to assess refractive error. An objective measure of the non-cycloplegic refractive state was obtained using an open-field autorefractor (WAM-5500) after five minutes in the dark to allow for dissipation of accommodative transients and relaxation of accommodation. In addition, both distance retinoscopy and subjective distance refraction were performed following cycloplegia (Cyclopentolate, 1%) using conventional clinical procedures. All measurements were obtained on the same day within a single session. The spherical component of the refraction was compared among the three techniques in both the children and adults. There was no significant difference in spherical refraction among the three techniques: non-cycloplegic objective refraction in the dark, distance cycloplegic retinoscopy and distance cycloplegic subjective refraction, in either the adults [F(2, 137) = 0.79, p = 0.45] or the children [F(2, 27) = 0.47, p = 0.62]. Mean difference in the spherical component between refraction in the dark and the cycloplegic distance retinoscopy was -0.34 D (r = 0.89) in the adults and +0.14 D (r = 0.96) in the children. The mean difference in spherical component between refraction in the dark and the cycloplegic distance subjective refraction was -0.25 D (r = 0.92) in the adults and -0.05 D (r = 0.95) in the children. Comparison of the spherical refractive component between the three techniques was not significantly different and furthermore, they were highly correlated in both the children and adults in this pilot study. Non-cycloplegic refraction in the dark may provide a reliable adjunct or alternative to conventional cycloplegic refraction in both children and young adults. © 2016 Optometry Australia.

  16. POTASSIUM AS AN INDEX OF NATURALLY OCCURRING RADIOACTIVITY IN TUNA MUSCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarti, D.; Joyner, T.

    1959-06-30

    Determinations of the potassium levels of light and dark muscle tissues were made for tuns fish samples from the Central Pacific. The mean potassium content was determined to be 2.3 mg/g for these tissues and was used as an index to calculate the radioactivity to be expected from K/sup 40/ at 4.2 dis/min per gram of wet tissue. The levels of potassium in light and dark muscle samples were not significantly different. (auth)

  17. Projected alignment of non-sphericities of stellar, gas, and dark matter distributions in galaxy clusters: analysis of the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2018-04-01

    While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013M⊙. Our results indicate that the distributions of these components are well aligned with the major-axes of the central galaxies, with the root mean square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root mean square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analyzing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.

  18. Projected alignment of non-sphericities of stellar, gas, and dark matter distributions in galaxy clusters: analysis of the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2018-07-01

    While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here, we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013 M⊙. Our results indicate that the distributions of these components are well aligned with the major axes of the central galaxies, with the root-mean-square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root-mean-square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analysing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.

  19. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  20. Detection of Frictional Heating on Faults Using Raman Spectra of Carbonaceous Material

    NASA Astrophysics Data System (ADS)

    Ito, K.; Ujiie, K.; Kagi, H.

    2017-12-01

    Raman spectra of carbonaceous material (RSCM) have been used as geothermometer in sedimentary and metamorphic rocks. However, it remains poorly understood whether RSCM are useful for detecting past frictional heating on faults. To detect increased heating during seismic slip, we examine the thrust fault in the Jurassic accretionary complex, central Japan. The thrust fault zone includes 10 cm-thick cataclasite and a few mm-thick dark layer. The cataclasite is characterized by fragments of black and gray chert in the black carbonaceous mudstone matrix. The dark layer is marked by intensely cracked gray chert fragments in the dark matrix of carbonaceous mudstone composition, which bounds the fractured gray chert above from the cataclasite below. The RSCM are analyzed for carbonaceous material in the cataclasite, dark layer, and host rock <10 mm from cataclasite and dark layer boundaries. The result indicates that there is no increased carbonization in the cataclasite. In contrast, the dark layer and part of host rocks <2 mm from the dark layer boundaries show prominent increase in carbonization. The absent of increased carbonization in the cataclasite could be attributed to insufficient frictional heating associated with distributed shear and/or faulting at low slip rates. The dark layer exhibits the appearance of fault and injection veins, and the dark layer boundaries are irregularly embayed or intensely cracked; these features have been characteristically observed in pseudotachylytes. Therefore, the increased carbonization in the dark layer is likely resulted from increased heating during earthquake faulting. The intensely cracked fragments in the dark layer and cracked wall rocks may reflect thermal fracturing in chert, which is caused by heat conduction from the molten zone. We suggest that RSCM are useful for the detection of increased heating on faults, particularly when the temperature is high enough for frictional melting and thermal fracturing.

  1. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer

    2008-02-01

    We formulate and evaluate in terms of graphical outputs, source and receiver plane expressions, the complex degree of coherence, beam size variation and power in bucket performance for higher order partially coherent dark hollow beams propagating in turbulent atmosphere. Our formulation is able to cover square, rectangular, circular, elliptical geometries for dark hollow and flat-topped beams in one single expression. From the graphical outputs of the receiver plane, it is observed that higher order partially coherent dark hollow beams will initially develop an outer ring around a central lobe, but will eventually evolve towards a Gaussian shape as the propagation distance is extended. It is further observed that stronger turbulence levels and greater partial coherence have similar effects on beam profile. During propagation, modulus of complex degree of coherence of partially coherent dark hollow beams appears to rise above that of the source plane values, reaching as high as near unity. Beam size analysis shows that, among the types examined, (nearly) flat-topped beam experiences the least beam expansion. Power in bucket analysis indicates that lowest order square fully coherent dark beam offers the best power capturing.

  2. ARC-1985-A86-7001

    NASA Image and Video Library

    1985-11-28

    Range: 72.3 million km. ( 44.9 million miles ) P-29314B/W This Voyager 2 photograph of Uranus shows the planets outermost, or epsilon, ring. This is a computerized summation of six images shot by the narrow angle camera. It is the first photo to show the epsilon ring unblurred by Earth's atmosphere. The Epsilon ring, some 51,200 km. ( 31,800 miles ) from the planets center, is the most prominent of Uranus' nine known rings. Ground based observations of stellar occulations by the rings have determined that the Epsilon ring is eccentric, or elliptical, with its widest portion about 100 km. ( 60 miles ) wide and its narrowest portion about 20 km. (12 miles ). Estimates of the rings brightness suggest that it is also very dark, with a reflectance of only 1 or 2 percent and a probable composition of carbonaceous material similiar to that on dark asteroids and the dark side of Saturn's moon Lapetus. Because the ring is so narrow and dark, at this range, the Voyager camera could not resolve even the widest part, resulting in long exposure times so obtain a good image. six exposures of 11 or 15 second duration were added together by computer to produce this image. In this image, the central portion is greatly overexposed. Various artifacts due to electronic effects and image proccessing can be seen in the central portion of the frame, including the dark image just above the planets image, the diffuse brightening below it and the small, bright projection from the edge of the planet in the upper left. The ring is distinctly less prominent in the lower left portion and more prominent in the upper right. This is in agreement with the predicted locations of the narrow and wide portions of the ring, respectively.

  3. Interspecific and environmentally induced variation in foliar dark respiration among eighteen southeastern deciduous tree species

    Treesearch

    Katherine A. Mitchell; Paul V. Bolstad; James M. Vose

    1999-01-01

    We measured variations in leaf dark respiration rate (Rd) and leaf nitrogen (N) across species, canopy light environment, and elevation for 18 co-occurring deciduous hardwood species in the Southern Appalachian Mountains of Western North Carolina. Our overall objective was to estimate leaf...

  4. Melanoma - neck (image)

    MedlinePlus

    This melanoma on the neck is variously colored with a very darkly pigmented area found centrally. It has irregular ... be larger than 0.5 cm. Prognosis in melanoma is best defined by its depth on resection.

  5. Searches for dark matter and new physics with unconventional signatures

    NASA Astrophysics Data System (ADS)

    Wulz, C.-E.; CMS Collaboration

    2017-07-01

    Selected results on searches for dark matter and unconventional signatures with the CMS detector are presented. Dark matter searches in channels with one or two jets, single photons, vector bosons, or top and bottom quarks combined with missing momentum in the final states are described. Unusual signatures such as displaced objects, disappearing or kinked tracks, delayed or stopped particles have also been explored. The analyses were performed with proton-proton data recorded at LHC centre-of-mass energies up to 13TeV.

  6. Dark Skies, Bright Kids Year 7

    NASA Astrophysics Data System (ADS)

    Bittle, Lauren E.; Johnson, Kelsey E.; Borish, H. Jacob; Burkhardt, Andrew; Firebaugh, Ariel; Hancock, Danielle; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; Prager, Brian; Pryal, Matthew; Sokal, Kimberly R.; Troup, Nicholas William; Wenger, Trey

    2016-01-01

    We present updates from our seventh year of operation including new club content, continued assessments, and our fifth annual Star Party. Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.

  7. The MEDIDO Survey: Dark Matter in Low Dispersion Stellar Systems

    NASA Astrophysics Data System (ADS)

    Noyola, Eva; Bustamante, Maria Jose

    2017-06-01

    We will present preliminary results of the Medido Survey. The Survey focuses on dwarf galaxies of various types, as well as Milky Way globular clusters. We have been gathering data at the McDonald Observatory using the VIRUS-W spectrograph, which is capable of resolving velocity dispersions slightly above 10 km/s. For the galaxies, our focus is to improve kinematics in the central regions in order to tackle the cusp/core discrepancy between observations and models. In the case of the globular clusters, we map kinematics out to about 2 half-light radii with the goal of testing if any dark matter content can be detected or if dark matter can be confidently ruled out for these systems.

  8. The effects of five-order nonlinear on the dynamics of dark solitons in optical fiber.

    PubMed

    He, Feng-Tao; Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce.

  9. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    PubMed Central

    Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce. PMID:23818814

  10. MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardel, John R.; Gebhardt, Karl; Fabricius, Maximilian H.

    2013-02-15

    We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Ourmore » non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 {<=} r {<=} 700 pc. The profile for r {>=} 20 pc is well fit by a power law with slope {alpha} = -1.0 {+-} 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.« less

  11. Astronaut John Young stands at ALSEP deployment site during first EVA

    NASA Image and Video Library

    1972-04-21

    AS16-114-18388 (21 April 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands at the Apollo Lunar Surface Experiments Package (ALSEP) deployment site during the first Apollo 16 extravehicular activity (EVA) at the Descartes landing site. The components of the ALSEP are in the background. The lunar surface drill is just behind and to the right of astronaut Young. The drill's rack and bore stems are to the left. The three-sensor Lunar Surface Magnetometer is beyond the rack. The dark object in the right background is the Radioisotope Thermoelectric Generator (RTG). Between the RTG and the drill is the Heat Flow Experiment. A part of the Central Station is at the right center edge of the picture. This photograph was taken by astronaut Charles M. Duke Jr., lunar module pilot.

  12. Giove 2003-2004: rapporto osservativo

    NASA Astrophysics Data System (ADS)

    Adamoli, Gianluigi

    2005-08-01

    The planet was monitored from 2003 September 19 to 2004 August 7, with plenty of digital images and a few visual observations. Undulations in latitude were shown by many belts, with SSTB, STB and NNTB spiralling so as to overpose parallel to themselves after a turn. Bright SPH and an SPB were recorded in the SPR, with spots discernible to about 60°S. The SSTZ anti-cyclonic white ovals were prominent, so as oval BA, well visible amidst dark SSTB/STB features; it was reached by a prograding STB dark sector. A dark STZ spot surpassed the GRS and then became a diagonal streak. The GRS was pale red, with a darker S. edge and a central condensation, followed by the usual train of white spots in SEB. This belt had much structure, with white SEBZ, a central dark component and projections on both edges. EZ was 3/4 veiled and EB was systematically S. of the equator; NEBs activity consisted of the usual festoons, often distorted through the Zone by the wind speed shear, and prominent blue bars on the edge of the belt. The NEB N. edge underwent a new Northern expansion in April; its barges were few and faint, while Roger's Z bay decelerated. A continuous NTrB was present, with NTB very faint; they were blue, while NNTB had a warm hue and the NNTBs jetstream was very active. Many faint belt sectors were recorded N. of it, with spots to about 60°N.

  13. Effect of degree of dark cutting on tenderness and flavor attributes of beef

    USDA-ARS?s Scientific Manuscript database

    The objective of this experiment was to determine the effects of degree of dark cutting (DC) on tenderness and flavor descriptive attributes of beef. During routine grading procedures at a large-scale U.S. beef harvesting facility, DC carcasses (n=160) and matching normal cohorts (NC; n=160; same ...

  14. The effects of degree of dark cutting on tenderness and sensory attributes of beef

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of degree of dark cutting (DC) on the tenderness, juiciness, and flavor attributes of beef. During carcass grading at a large U.S. commercial beef harvesting facility, DC carcasses (n = 160) and matching normal control (NC) carcasses (n = 160)...

  15. Net returns from segregating dark northern spring wheat by protein concentration during harvest

    USDA-ARS?s Scientific Manuscript database

    In-line, optical sensing has been developed for on-combine measurement and mapping of grain protein concentration (GPC). The objective of this study was to estimate changes in costs and net returns from using this technology for segregation of the dark northern spring (DNS) subclass of hard red whe...

  16. A Guided Inquiry on Hubble Plots and the Big Bang

    ERIC Educational Resources Information Center

    Forringer, Ted

    2014-01-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…

  17. Around the Way: Testing ΛCDM with Milky Way Stellar Stream Constraints

    NASA Astrophysics Data System (ADS)

    Dai, Biwei; Robertson, Brant E.; Madau, Piero

    2018-05-01

    Recent analyses of the Pal 5 and GD-1 tidal streams suggest that the inner dark matter halo of the Milky Way is close to spherical, in tension with predictions from collisionless N-body simulations of cosmological structure formation. We use the Eris simulation to test whether the combination of dissipative physics and hierarchical structure formation can produce Milky Way–like galaxies whose dark matter halos match the tidal stream constraints from the GD-1 and Pal 5 clusters. We use a dynamical model of the simulated Eris galaxy to generate many realizations of the GD-1 and Pal 5 tidal streams, marginalize over observational uncertainties in the cluster galactocentric positions and velocities, and compare with the observational constraints. We find that the total density and potential of Eris contributed by baryons and dark matter satisfies constraints from the existing Milky Way stellar stream data, as the baryons both round and redistribute the dark matter during the dissipative formation of the galaxy, and provide a centrally concentrated mass distribution that rounds the inner potential. The Eris dark matter halo or a spherical Navarro–Frenk–White dark matter work comparably well in modeling the stream data. In contrast, the equivalent dark matter–only ErisDark simulation produces a prolate halo that cannot reproduce the observed stream data. The ongoing Gaia mission will provide decisive tests of the consistency between {{Λ }}{CDM} and Milky Way streams, and should distinguish between models like Eris and more spherical halos.

  18. fire in the field: simulating the threshold of galaxy formation

    NASA Astrophysics Data System (ADS)

    Fitts, Alex; Boylan-Kolchin, Michael; Elbert, Oliver D.; Bullock, James S.; Hopkins, Philip F.; Oñorbe, Jose; Wetzel, Andrew; Wheeler, Coral; Faucher-Giguère, Claude-André; Kereš, Dušan; Skillman, Evan D.; Weisz, Daniel R.

    2017-11-01

    We present a suite of 15 cosmological zoom-in simulations of isolated dark matter haloes, all with masses of Mhalo ≈ 1010 M⊙ at z = 0, in order to understand the relationship among halo assembly, galaxy formation and feedback's effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (fire) project and are performed at extremely high resolution (mbaryon = 500 M⊙, mdm = 2500 M⊙). The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (M*/M⊙ ≈ 105 - 107). This non-negligible spread in stellar mass at z = 0 in haloes within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity Vmax, both of which are tightly linked to halo formation time. Much of this dependence of M* on a second parameter (beyond Mhalo) is a direct consequence of the Mhalo ˜ 1010 M⊙ mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming haloes remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Haloes that form galaxies with M⋆ ≳ 2 × 106 M⊙ have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r1/2. Lower-mass galaxies do not modify their host dark matter haloes at the mass scale studied here. This apparent stellar mass threshold of M⋆ ≈ 2 × 106 - 2 × 10- 4 Mhalo is broadly consistent with previous work and provides a testable prediction of fire feedback models in Λcold dark matter.

  19. Deadly Dark Matter Cusps versus Faint and Extended Star Clusters: Eridanus II and Andromeda XXV

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.

    2017-07-01

    The recent detection of two faint and extended star clusters in the central regions of two Local Group dwarf galaxies, Eridanus II and Andromeda XXV, raises the question of whether clusters with such low densities can survive the tidal field of cold dark matter halos with central density cusps. Using both analytic arguments and a suite of collisionless N-body simulations, I show that these clusters are extremely fragile and quickly disrupted in the presence of central cusps ρ ˜ {r}-α with α ≳ 0.2. Furthermore, the scenario in which the clusters were originally more massive and sank to the center of the halo requires extreme fine tuning and does not naturally reproduce the observed systems. In turn, these clusters are long lived in cored halos, whose central regions are safe shelters for α ≲ 0.2. The only viable scenario for hosts that have preserved their primordial cusp to the present time is that the clusters formed at rest at the bottom of the potential, which is easily tested by measurement of the clusters proper velocity within the host. This offers means to readily probe the central density profile of two dwarf galaxies as faint as {L}V˜ 5× {10}5 {L}⊙ and {L}V˜ 6× {10}4 {L}⊙ , in which stellar feedback is unlikely to be effective.

  20. The effect of neonatal handling on adult feeding behavior is not an anxiety-like behavior.

    PubMed

    Silveira, P P; Portella, A K; Clemente, Z; Gamaro, G D; Dalmaz, C

    2005-02-01

    Brief periods of handling during the neonatal period have been shown to have profound and long-lasting physiological consequences. Previous studies performed in our laboratory have demonstrated that handling the pups during the neonatal period leads to increased sweet food ingestion in adult life. The objective of this study is to verify if this effect could be explained by the enhanced anxiety levels in these animals. Litters were divided in: (1) intact; (2) handled (10 min in an incubator/day) and (3) handled + tactile stimulation (10 min/day). Procedures were performed on days 1-10 after birth. When adults, rats were tested in the elevated plus maze apparatus, light dark exploration test and open field test. They were also tested for sweet food ingestion, being injected with 2 mg/kg diazepam or vehicle 60 min before the test. Handling and handling + tactile stimulation do not alter performance in the plus maze test, but handled rats presented more crossings in the light/dark exploration test and open field (two-way ANOVA). Females also spent more % time in the open arms in the plus maze and more time in the lit compartment in the light/dark test, presenting more crossings in both tests. Both treated rats (handled and handled + tactile stimulation groups) consumed more sweet food than intact ones (two-way ANOVA). When diazepam was injected prior to the measurement of sweet food ingestion, there was no effect of the drug. We suggest that handling during the neonatal period leads to plastic alterations in the central nervous system of these animals, causing an increased ingestion of palatable food in adult life, and this alteration does not express an anxiety-like behavior.

  1. What sets the central structure of dark matter haloes?

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  2. Gravitational collapse and the vacuum energy

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-03-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  3. CLUMPY: A code for γ-ray signals from dark matter structures

    NASA Astrophysics Data System (ADS)

    Charbonnier, Aldée; Combet, Céline; Maurin, David

    2012-03-01

    We present the first public code for semi-analytical calculation of the γ-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, anti-protons) will be included in a second release.

  4. The Clustering of High-redshift (2.9 ≤ z ≤ 5.1) Quasars in SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Myers, Adam D.; Pellegrino, Andrew; Bauer, Franz E.; Lacy, Mark; Schneider, Donald P.; Wollack, Edward J.; Zakamska, Nadia L.

    2018-05-01

    We present a measurement of the two-point autocorrelation function of photometrically selected high-z quasars over ∼100 deg2 on the Sloan Digital Sky Survey Stripe 82 field. Selection is performed using three machine-learning algorithms in a six-dimensional optical/mid-infrared color space. Optical data from the Sloan Digital Sky Survey are combined with overlapping deep mid-infrared data from the Spitzer IRAC Equatorial Survey and the Spitzer-HETDEX Exploratory Large-Area survey. Our selection algorithms are trained on the colors of known high-z quasars. The selected quasar sample consists of 1378 objects and contains both spectroscopically confirmed quasars and photometrically selected quasar candidates. These objects span a redshift range of 2.9 ≤ z ≤ 5.1 and are generally fainter than i = 20.2, a regime that has lacked sufficient number density to perform autocorrelation function measurements of photometrically classified quasars. We compute the angular correlation function of these data, marginally detecting quasar clustering. We fit a single power law with an index of δ = 1.39 ± 0.618 and amplitude of θ 0 = 0.‧71 ± 0.‧546 . A dark matter model is fit to the angular correlation function to estimate the linear bias. At the average redshift of our survey (< z> =3.38), the bias is b = 6.78 ± 1.79. Using this bias, we calculate a characteristic dark matter halo mass of 1.70–9.83× {10}12{h}-1 {M}ȯ . Our bias estimate suggests that quasar feedback intermittently shuts down the accretion of gas onto the central supermassive black hole at early times. If confirmed, these results hint at a level of luminosity dependence in the clustering of quasars at high-z.

  5. Dark Skies, Bright Kids Year 8

    NASA Astrophysics Data System (ADS)

    Bittle, Lauren E.; Wenger, Trey; Johnson, Kelsey E.; Angell, Dylan; Burkhardt, Andrew; Davis, Blair; Firebaugh, Ariel; Hancock, Danielle; Richardson, Whitney; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; McNair, Shunlante; Prager, Brian; Pryal, Matthew; Troup, Nicholas William

    2017-01-01

    We present activities from the eighth year of Dark Skies Bright Kids (DSBK), an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Over the past seven years, our primary focus has been hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools, and over the past several years, we have partnered with local businesses to host our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows. This past summer we expanded our reach through a new initiative to bring week-long summer day camps to south and southwest Virginia, home to some of the most underserved communities in the commonwealth.

  6. Implications for gravitational lensing and the dark matter content in clusters of galaxies from spatially resolved x-ray spectra

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1994-01-01

    A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.

  7. Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.

    PubMed

    Tornow, R P; Stilling, R

    1998-01-01

    To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.

  8. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA/Jason Cowan (Astronomy Technology Center)]A team of scientists led by Evencio Mediavilla (Institute of Astrophysics of the Canaries, University of La Laguna) has now used our observations of quasar microlensing to place constraints on the amount of dark matter that could be made up of intermediate-mass primordial black holes.Poor Outlook for Primordial Black HolesMediavilla and collaborators used simulations to estimate the effects of a distribution of masses on light from distant quasars, and they then compared their results to microlensing magnification measurements from 24 gravitationally lensed quasars. In this way, they were able to determine both the abundance and masses of possible objects causing the quasar microlensing effects we see.The authors find that the observations constrain the mass of the possible microlensing objects to be between 0.05 and 0.45 solar masses not at all the intermediate-mass black holes postulated. Whats more, they find that the lensing objects make up 20% of the total matter, which is barely more than expected for normal stellar matter. This suggests that normal stars are doing the majority of the quasar microlensing, not a large population of intermediate-mass black holes.What does this mean for primordial black holes as dark matter? Black holes in the range of 10200 stellar masses are unlikely to account for much (if any) dark matter, Mediavilla and collaborators conclude which means that LIGOs detection of gravitational waves likely came from two black holes collapsed from stars, not primordial black holes.CitationE. Mediavilla et al 2017 ApJL 836 L18. doi:10.3847/2041-8213/aa5dab

  9. Windblown Sand in West Candor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 December 2003

    West Candor Chasma, a part of the vast Valles Marineris trough system, is known for its layered sedimentary rock outcrops. It is less known for dark fields of windblown sand, but that is what occurs in the north-central part of the chasm. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, obtained in December 2003, shows the interplay of dark, wind-blown sand with buttes and mesas of layered rock in west Candor Chasma. Dark streamers of sand point toward the east/southeast (right/lower right), indicating that dominant winds blow from the west. This picture is located near 5.2oS, 75.7oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  10. Dragging force on galaxies due to streaming dark matter

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Miyoshi, Shigeru

    1990-01-01

    It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.

  11. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  12. Is the onset of the 6th century 'dark age' in Maya history related to explosive volcanism?

    NASA Astrophysics Data System (ADS)

    Nooren, Kees; Hoek, Wim Z.; Van der Plicht, Hans; Sigl, Michael; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans; Van Bergen, Manfred

    2016-04-01

    Maya societies in Southern Mexico, Guatemala and Belize experienced a 'dark age' during the second half of the 6th century. This period, also known as the 'Maya Hiatus', is characterized by cultural downturn, political instability and abandonment of many sites in the Central Maya Lowlands. Many theories have been postulated to explain the occurrence of this 'dark age' in Maya history. A possible key role of a large volcanic eruption in the onset of this 'dark age' will be discussed. Volcanic deposits recovered from the sedimentary archive of lake Tuspán and the Usumacinta-Grijalva delta were studied in detail and the combination of multiple dating techniques allowed the reconstruction of the timing of a large 6th century eruption. Volcanic glass shards were fingerprinted to indicate the source volcano and high resolution pollen records were constructed to indicate the environmental impact of the eruption. Results are compared with available archaeological data and causality with the disruption of Maya civilization will be evaluated.

  13. The Milky Way's Mass Inferered by Satellite Kinematics from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Lazar, Alexander; Boylan-Kolchin, Michael

    2017-06-01

    A precise interpretion of the Milky Way’s dark matter halo mass has limited our ability to depict the Milky Way in cosmological context. One of the noteworthy issues is that only a handful of tracers — satellite galaxies — probe the gravitational potential at large radii, and converting observed velocities into a constraint on the mass profile requires significant assumptions. High resolution cosmological simulations provide a powerful tool for interpreting data, but most results to date rely on dark-matter-only simulations that neglect the effects of galaxy formation physics. We compare the orbital kinematics of satellite galaxies in the Illustris simulation with its dark-matter-only counterpart, which allows us to compare, on an object-by-object basis, the differences influenced in orbits from baryonic physics. We quantify the effects of galaxy formation physics on orbital distributions of satellites and describe how these differences affect inferences for the mass of the Milky Way.

  14. Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.

  15. LHC searches for dark sector showers

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong; Mishra-Sharma, Siddharth

    2017-11-01

    This paper proposes a new search program for dark sector parton showers at the Large Hadron Collider (LHC). These signatures arise in theories characterized by strong dynamics in a hidden sector, such as Hidden Valley models. A dark parton shower can be composed of both invisible dark matter particles as well as dark sector states that decay to Standard Model particles via a portal. The focus here is on the specific case of `semi-visible jets,' jet-like collider objects where the visible states in the shower are Standard Model hadrons. We present a Simplified Model-like parametrization for the LHC observables and propose targeted search strategies for regions of parameter space that are not covered by existing analyses. Following the `mono- X' literature, the portal is modeled using either an effective field theoretic contact operator approach or with one of two ultraviolet completions; sensitivity projections are provided for all three cases. We additionally highlight that the LHC has a unique advantage over direct detection experiments in the search for this class of dark matter theories.

  16. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    PubMed

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.

  17. Evolution of Occator Crater on (1) Ceres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathues, A.; Platz, T.; Thangjam, G.

    2017-03-01

    The dwarf planet Ceres (diameter 939 km) is the largest object in the main asteroid belt. Recent investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body which was never completely molten but possibly differentiated into a rocky core, an ice-rich mantle, and which may contain remnant internal liquid water. Thermal alteration and exogenic material infall contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of Occator crater derived from the Framing Camera and the Visible and Infrared Spectrometer onboard Dawn. We found that themore » central bright spot (Cerealia Facula) of Occator is ∼30 Myr younger than the crater itself. The central spot is located in a central pit which contains a dome that is spectrally homogenous, exhibiting absorption features that are consistent with carbonates. Multiple radial fractures across the dome indicate an extrusive formation process. Our results lead us to conclude that the floor region was subject to past endogenic activity. Dome and bright material in its vicinity formed likely due to a long-lasting, periodic, or episodic ascent of bright material from a subsurface reservoir rich in carbonates. Originally triggered by an impact event, gases, possibly dissolved from a subsurface water/brine layer, enabled material rich in carbonates to ascend through fractures and be deposited onto the surface.« less

  18. A beam hardening and dispersion correction for x-ray dark-field radiography.

    PubMed

    Pelzer, Georg; Anton, Gisela; Horn, Florian; Rieger, Jens; Ritter, André; Wandner, Johannes; Weber, Thomas; Michel, Thilo

    2016-06-01

    X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.

  19. The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Roy, N.; Radovich, M.; Getman, F.; Koopmans, L. V. E.; Verdoes Kleijn, G. A.; Kuijken, K. H.

    2018-01-01

    We study the dark matter (DM) assembly in the central regions of massive early-type galaxies up to z ∼ 0.65. We use a sample of ∼3800 massive (log M⋆/M⊙ > 11.2) galaxies with photometry and structural parameters from 156 deg2 of the Kilo Degree Survey (KiDS), and spectroscopic redshifts and velocity dispersions from Sloan Digital Sky Survey (SDSS). We obtain central total-to-stellar mass ratios, Mdyn/M⋆, and DM fractions, by determining dynamical masses, Mdyn, from Jeans modelling of SDSS aperture velocity dispersions and stellar masses, M⋆, from KiDS galaxy colours. We first show how the central DM fraction correlates with structural parameters, mass and density proxies, and demonstrate that most of the local correlations are still observed up to z ∼ 0.65; at fixed M⋆, local galaxies have larger DM fraction, on average, than their counterparts at larger redshift. We also interpret these trends with a non-universal initial mass function (IMF), finding a strong evolution with redshift, which contrast independent observations and is at odds with the effect of galaxy mergers. For a fixed IMF, the galaxy assembly can be explained, realistically, by mass and size accretion, which can be physically achieved by a series of minor mergers. We reproduce both the Re-M⋆ and Mdyn/M⋆-M⋆ evolution with stellar and dark mass changing at a different rate. This result suggests that the main progenitor galaxy is merging with less massive systems, characterized by a smaller Mdyn/M⋆, consistently with results from halo abundance matching.

  20. Multistep cascade annihilations of dark matter and the Galactic Center excess

    DOE PAGES

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect ofmore » multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.« less

  1. Effect of Age and Glaucoma on the Detection of Darks and Lights

    PubMed Central

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Purpose We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. Methods We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. Results We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. Conclusions We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma. PMID:26513506

  2. Effect of Age and Glaucoma on the Detection of Darks and Lights.

    PubMed

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma.

  3. Sulfur isotope geochemistry of the central Japan Sea sediments (IODP Exp. 346) 20 150 kyr ago: Implications for the evolution of Asian Monsoon climate system

    NASA Astrophysics Data System (ADS)

    Oshio, S.; Yamaguchi, K. E.; Takahashi, S.; Naraoka, H.; Ikehara, M.

    2016-12-01

    Asian monsoon climate system has started about 50 Ma, after the collision of the Indian and Eurasian continents followed by uplift of the Himalaya and Tibetan Plateau. It has influenced sediments in the Japan Sea, where cm-scale alternation of Corg-rich dark layers and Corg-poor light layers occurs. This is most likely due to temporal changes in the nutrient status and/or oceanic redox conditions, which are likely caused by the fluctuations in the intensity of continental weathering and ocean currents, both of which were ultimately caused by the variable monsoon system. In order to obtain insights into the evolving oceanic redox state and the monsoon system, we conducted sulfur speciation and isotope study for the marine sediment core samples recovered in the central Japan Sea by IODP Exp. 346. The light layers have lower Spy (0.03-0.25 wt.%) contents when compared to the dark layers (0.26-1.49 wt.%). The Corg contents have similar distribution (0.34-1.10 wt.% for light layers and 1.16-3.38 wt.% for dark layers). However, the SSO4 contents (0.02-.64 wt.%) and the δ34S values (-34 to -38‰) did not show such light-dark distinction. Elevated Spy/Corg ratios (0.03-1.00) in the dark layers are interpreted to represent sulfide formation in the anoxic water column by bacterial sulfate reduction. During deposition of light layers, oxidation of sulfide minerals could have resulted in formation of sulfate minerals without significant isotope fractionation, as observed in this study. Regardless of the type of the sediments (dark vs. light), sulfate was not limiting during bacterial sulfate reduction, as reflected in the sulfur isotope compositions. We speculate that, during deposition of dark layers, enhanced summer monsoon activity caused heavy rainfall and increased source-rock weathering, runoff of the Yangtze River, and nutrient input into the East China Sea and the Tsushima Warm Current. Inflow of nutrient-rich and less salty water into the Japan Sea triggered enhanced biological activity, water-column density stratification, transport of organic matter into deeper ocean and consumption of dissolved oxygen, and ultimately the creation of anoxic water body to allow bacterial sulfate reduction. (syngenetic sulfide formation)

  4. Searching for Decaying Dark Matter in Deep XMM-Newton Observation of the Draco Dwarf Spheroidal

    NASA Technical Reports Server (NTRS)

    Ruchayskiy, Oleg; Boyardsky, Alex; Iakbovskyi, Dmytro; Bulbul, Esra; Eckert, Domique; Franse, Jeron; Malyshev, Denys; Markevitch, Maxim; Neronov, Andrii

    2016-01-01

    We present results of a search for the 3.5 keV emission line in our recent very long (approx. 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau >(7-9) × 10(exp 27) s at 95% CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modeled continuum) at E = 3.54 +/- 0.06 keV with a 2.3(sigma) significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1(sigma) with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Centre within their 1 - 2(sigma) uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects.

  5. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea.

    PubMed

    Glaubitz, Sabine; Lueders, Tillmann; Abraham, Wolf-Rainer; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2009-02-01

    Marine pelagic redoxclines are zones of high dark CO(2) fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO(2) fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO(2) incorporation in (13)C-bicarbonate pulse experiments. The incorporation of (13)C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in (13)C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO(2)-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the (13)C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO(2)-fixing Proteobacteria within this habitat.

  6. Supermassive dark-matter Q-balls in galactic centers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troitsky, Sergey; Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs weremore » seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.« less

  7. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  8. Applying the dark diversity concept to nature conservation.

    PubMed

    Lewis, Rob J; de Bello, Francesco; Bennett, Jonathan A; Fibich, Pavel; Finerty, Genevieve E; Götzenberger, Lars; Hiiesalu, Inga; Kasari, Liis; Lepš, Jan; Májeková, Maria; Mudrák, Ondřej; Riibak, Kersti; Ronk, Argo; Rychtecká, Terezie; Vitová, Alena; Pärtel, Meelis

    2017-02-01

    Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat-specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species. © 2016 Society for Conservation Biology.

  9. The First Six Months of Iapetus Observations by the Cassini ISS Camera

    NASA Technical Reports Server (NTRS)

    Denk, T.; Neukum, G.; Helfenstein, P.; Thomas, P. C.; Turtle, E. P.; McEwen, A. S.; Roatsch, T.; Veverka, J.

    2005-01-01

    Since Saturn arrival in June 2004, Iapetus has been studied intensively by the Cassini ISS camera [1] at various ranges. The first of two relatively close flybys in the primary mission occurred on Dec 31, 2004 at an altitude of approx.123,400 km over the northern leading hemisphere, resulting in images with a minimum pixel scale of 740 m. Detailed results of this flyby are given in [2], while this abstract covers the observations obtained earlier. Among the most important discoveries are: (a) Four giant impact basins with diameters between 390 and 550 km were detected, three of them are located in the dark terrain [3]. (b) Data revealed a >1300 km long ridge that marks exactly Iapetus' equator within the dark terrain. Individual mountains within the western part of the ridge reach heights of approx.20 km over surrounding terrain [3]. (c) Impact craters were confirmed to be the main geological feature within the dark terrain and at high southern latitudes. (d) There are numerous craters with dark walls roughly facing towards the central parts of the dark hemisphere [3]. (e) Almost all parts of Iapetus have been imaged at least at low resolution (< 60 km/pxl).

  10. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.

  11. Decoding the Domino: The Dark Side of Iapetus

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Cruikshank, Dale P.; DalleOre, C. M.; Geballe, T. R.; Roush, T. L.; deBergh, C.; Meier, Roland; Pendleton, Yvonne J.; Khare, Bishun N.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    We present new spectra of the leading and trailing hemispheres of Iapetus from 2.4 to 3.8 micron. We have combined the leading hemisphere spectra with previous observations by others to construct a composite spectrum of the dark side (leading) hemisphere from 0.3 to 3.8 gm. We review attempts to deduce the composition of the dark material from previously available spectrophotometry. None of them (numbering more than 20 million!) leads to a synthetic spectrum that matches the new data. An intimate mixture of water ice, amorphous carbon and a nitrogen-rich organic compound (modeled here as Triton tholin) can fit the entire composite dark side spectrum. Observations in this spectral region have not revealed this mix of material on any other object observed thus far. We propose that this dark material may have originated on Titan, where atmospheric photochemistry has been producing nitrogen-rich organic compounds for 4.5 GY.

  12. Diurnal behavioral and endocrine effects of chronic shaker stress in mice.

    PubMed

    Dubovicky, Michal; Mach, Mojmir; Key, Mary; Morris, Mariana; Paton, Sara; Lucot, James B

    2007-12-01

    Experiments were performed in C57BL/6J male mice to determine 1) light/dark effects of acute and chronic shaker stress on open field behavioral patterns and 2) light/dark effects of chronic stress on plasma corticosterone and oxytocin. Shaker stress was applied acutely (15 min) or chronically (3 or 7 days). Mice were tested in the open field in the light or dark phase of the circadian cycle. For the endocrine study, mice were exposed to 3 days of intermittent shaker stress and sacrificed after the last stress event (09:00 or 19:00 h). Acute or chronic shaker stress had no significant effects on intensity of motor activity and rearing of mice tested under either light condition. Mice tested in the dark phase had higher motor activity and exhibited lower anxiety-like behavior as expressed by central zone activities and had higher emotionality as expressed by increased defecation. Chronic stress increased corticosterone with a greater absolute increase in the dark period. However, the percentage stress-induced increase was not different between the day and night periods. The oxytocin response to stress was observed only during the light phase with no change seen at dark phase. These results show that there is a marked difference in the light/dark pituitary stress response with no alteration in stress induced behavioral changes. They also suggest that there are circadian interactions in the endocrine stress axis that are without consequences for open field behavior.

  13. Institutional Denial about the Dark Side of Law School, and Fresh Empirical Guidance for Constructively Breaking the Silence.

    ERIC Educational Resources Information Center

    Krieger, Lawrence S.

    2002-01-01

    Noting evidence of the "dark side" of legal education and the process of denial among faculty, describes recent psychological research on the components of happiness and life satisfaction. Asserts that this research provides an objective framework for understanding the pervasive problems in legal education settings and thus can lead to…

  14. The Dark Side of Iapetus: New Evidence for an Exogenous Origin

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Mosher, J. A.

    1994-01-01

    The Saturnian satellite Iapetus presents one of the most unusual appearances of any object in the Solar System: one hemisphere is about 10 times as bright as the other. The origin of the dark hemisphere - which reflects only a few percent of the solar radiation falling on it - is one of the great enigmas of planetary science.

  15. Chameleon gravity, electrostatics, and kinematics in the outer galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, R.; Mann, R.B.; Afshordi, N.

    2011-12-01

    Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude.more » In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.« less

  16. Temporal expectation in focal hand dystonia.

    PubMed

    Avanzino, Laura; Martino, Davide; Martino, Isadora; Pelosin, Elisa; Vicario, Carmelo M; Bove, Marco; Defazio, Gianni; Abbruzzese, Giovanni

    2013-02-01

    Patients with writer's cramp present sensory and representational abnormalities relevant to motor control, such as impairment in the temporal discrimination between tactile stimuli and in pure motor imagery tasks, like the mental rotation of corporeal and inanimate objects. However, only limited information is available on the ability of patients with dystonia to process the time-dependent features (e.g. speed) of movement in real time. The processing of time-dependent features of movement has a crucial role in predicting whether the outcome of a complex motor sequence, such as handwriting or playing a musical passage, will be consistent with its ultimate goal, or results instead in an execution error. In this study, we sought to evaluate the implicit ability to perceive the temporal outcome of different movements in a group of patients with writer's cramp. Fourteen patients affected by writer's cramp in the right hand and 17 age- and gender-matched healthy subjects were recruited for the study. Subjects were asked to perform a temporal expectation task by predicting the end of visually perceived human body motion (handwriting, i.e. the action performed by the human body segment specifically affected by writer's cramp) or inanimate object motion (a moving circle reaching a spatial target). Videos representing movements were shown in full before experimental trials; the actual tasks consisted of watching the same videos, but interrupted after a variable interval ('pre-dark') from its onset by a dark interval of variable duration. During the 'dark' interval, subjects were asked to indicate when the movement represented in the video reached its end by clicking on the space bar of the keyboard. We also included a visual working memory task. Performance on the timing task was analysed measuring the absolute value of timing error, the coefficient of variability and the percentage of anticipation responses. Patients with writer's cramp exhibited greater absolute timing error compared with control subjects in the human body motion task (whereas no difference was observed in the inanimate object motion task). No effect of group was documented on the visual working memory tasks. Absolute timing error on the human body motion task did not significantly correlate with symptom severity, disease duration or writing speed. Our findings suggest an alteration of the writing movement representation at a central level and are consistent with the view that dystonia is not a purely motor disorder, but it also involves non-motor (sensory, cognitive) aspects related to movement processing and planning.

  17. “Local” Dark Energy Outflows Around Galaxy Groups and Rich Clusters

    NASA Astrophysics Data System (ADS)

    Byrd, Gene G.; Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M.

    2013-01-01

    First detected at large Gpc distances, dark energy is a vacuum energy formulated as Einstein's cosmological constant, Λ. We have found its effects on “small” 1-3 Mpc scales in our Local Group. We have now found these effects in other nearby groups using member Doppler shifts and 3D distances from group centers (Cen A-M83; M81-M82; CV I). For the larger 20-30 Mpc Virgo and Fornax clusters, we now have found similar effects. Observationally, for both groups and clusters, gravity dominates a bound central system. The system gravitation and dark energy create a “zero-gravity” radius (R_{ZG}) from the center where the two balance. Smaller members bound inside R_{ZG} may be pulled out along with the less bound members which recede farther. A linear increase of recession with distance results which approaches a linear global Hubble law. These outflows are seen around groups in cosmological simulations which include galaxies as small as ~10^{-4} of the group mass. Scaled plots of asymptotic recessional velocity, V/(H(R_{ZG})), versus distance/ R_{ZG} of the outer galaxies are very similar for both the small groups and large clusters. This similarity on 1-30 Mpc scales suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of dark energy. Our new text book: Byrd, G., Chernin, A., Terrikorpi, P. and Valtonen, M. 2012, "Paths to Dark Energy: Theory and Observation," de Gruyter, Berlin/Boston, contains background and cosmological simulation plots. Group data and scaled plots are in our new article: A. D. Chernin, P. Teerikorpi, V. P. Dolgachev, A. A. Kanter, L. M. Domozhilova, M. J. Valtonen, and G. G. Byrd, 2012, Astronomy Reports, Vol. 56 , p. 653-669.

  18. Constraint on dark matter central density in the Eddington inspired Born-Infeld (EiBI) gravity with input from Weyl gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapov, Alexander A.; Mikolaychuk, Olga; Mikolaychuk, Nikolay

    Recently, Harko et al. (2014) derived an approximate metric of the galactic halo in the Eddington inspired Born-Infeld (EiBI) gravity. In this metric, we show that there is an upper limit ρ {sub 0}{sup upper} on the central density ρ {sub 0} of dark matter such that stable circular orbits are possible only when the constraint ρ {sub 0}≤ ρ {sub 0}{sup upper} is satisfied in each galactic sample. To quantify different ρ {sub 0}{sup upper} for different samples, we follow the novel approach of Edery and Paranjape (1998), where we use as input the geometric halo radius R{sub WR} from Weyl gravity and equate itmore » with the dark matter radius R{sub DM} from EiBI gravity for the same halo boundary. This input then shows that the known fitted values of ρ {sub 0} obey the constraint ρ {sub 0}≤ ρ {sub 0}{sup upper}∝  (R{sub WR}){sup −2}. Using the mass-to-light ratios giving α , we shall also evaluate ρ {sub 0}{sup lower} ∝  (α −1)M{sub lum}R{sub WR}{sup −3} and the average dark matter density  ( ρ ) {sup lower}. Quantitatively, it turns out that the interval ρ {sub 0}{sup lower} ≤ ρ {sub 0}≤  ρ {sub 0}{sup upper} verifies reasonably well against many dark matter dominated low surface brightness (LSB) galaxies for which values of ρ {sub 0} are independently known. The interval holds also in the case of Milky Way galaxy. Qualitatively, the existence of a stability induced upper limit  ρ {sub 0}{sup upper} is a remarkable prediction of the EiBI theory.« less

  19. Scanning laser densitometry and color perimetry demonstrate reduced photopigment density and sensitivity in two patients with retinal degeneration.

    PubMed

    Tornow, R P; Stilling, R; Zrenner, E

    1999-10-01

    To test the feasibility of scanning laser densitometry with a modified Rodenstock scanning laser ophthalmoscope (SLO) to measure the rod and cone photopigment distribution in patients with retinal diseases. Scanning laser densitometry was performed using a modified Rodenstock scanning laser ophthalmoscope. The distribution of the photopigments was calculated from dark adapted and bleached images taken with the 514 nm laser of the SLO. This wavelength is absorbed by rod and cone photopigments. Discrimination is possible due to their different spatial distribution. Additionally, to measure retinal sensitivity profiles, dark adapted two color static perimetry with a Tübinger manual perimeter was performed along the horizontal meridian with 1 degree spacing. A patient with retinitis pigmentosa had slightly reduced photopigment density within the central +/- 5 degrees but no detectable photopigment for eccentricities beyond 5 degrees. A patient with cone dystrophy had nearly normal pigment density beyond +/- 5 degrees, but considerably reduced photopigment density within the central +/- 5 degrees. Within the central +/- 5 degrees, the patient with retinitis pigmentosa had normal sensitivity for the red stimulus and reduced sensitivity for the green stimulus. There was no measurable function beyond 7 degrees. The patient with cone dystrophy had normal sensitivity for the green stimulus outside the foveal center and reduced sensitivity for the red stimulus at the foveal center. The results of color perimetry for this patient with a central scotoma were probably influenced by eccentric fixation. Scanning laser densitometry with a modified Rodenstock SLO is a useful method to assess the human photopigment distribution. Densitometry results were confirmed by dark adapted two color static perimetry. Photopigment distribution and retinal sensitivity profiles can be measured with high spatial resolution. This may help to measure exactly the temporal development of retinal diseases and to test the success of different therapeutic treatments. Both methods have limitations at the present state of development. However, some of these limitations can be overcome by further improving the instruments.

  20. Active Galactic Nuclei and X-ray Ovservations

    NASA Astrophysics Data System (ADS)

    Vasylenko, A. A.; Zhdanov, V. I.; Fedorova, E. V.

    2016-11-01

    Active galactic nuclei (AGN) are the brightest objects in the Universe and their brightness is mainly caused by accretion of m atter onto supermassive black holes (SMBH). This is the common reason of the AGN activity. However, every AGN has differences and fine features, which are the subject of an intensive investigation. The occurrence of such highly-relativistic objects as SMBH residing at the AGN core makes them an excellent laboratory for testing the fundamental physical theories. The X-rays and gamma-rays generated in a corona of an accretion disc around SMBH yield valuable information for these tests, the radiation in the range of 1-100 keV being at present the most informative source. However, there are a number of obstacles for such a study due to different physical processes that complicate the interpretation of observations in different bands of the electromagnetic radiation. In this paper, we review the current concepts concerning the structure of AGNs with a focus on the central part of these objects th at require relativistic theories for their understanding. The basic notions of the unified AGN schemes are considered; some modifications are reviewed. The paper contains the following sections. I. Introduction; II. Observational manifestations and classification of galaxies with active nuclei (II.A. Optical observations; II.B. Radio observations; II.C. X-ray data; II.D Infrared data; II.E. AGN anatomy with multywave data); III. AGN "central machine"; III.A. Black holes; III.B. Accretion disc types; III.C. Corona; III.D. AGN unified scheme); IV. Simulation X-ray AGN spectra (IV.A. The power-law contimuum and the exponential cut-off; IV.B. The absorption of X-rays; IV.C. Reflection; IV.D. Fe K a line; IV.E. Spin paradigm); V. AGN as a laboratory to test the fundamental interactions (V.A. Strong gravitational fields; V.B. Dynamic dark energy near compact astrophysical objects

  1. Dark zone in the centre of the Arago-Poisson diffraction spot of a helical laser beam

    NASA Astrophysics Data System (ADS)

    Emile, O.; Voisin, A.; Niemiec, R.; Viaris de Lesegno, B.; Pruvost, L.; Ropars, G.; Emile, J.; Brousseau, C.

    2013-03-01

    We report on the diffraction of non-zero Laguerre Gaussian laser beams by an opaque disk. We observe a tiny circular dark zone at the centre of the usual Arago-Poisson diffraction bright spot. For such non-diffracting dark hollow beams, we have measured diameters as small as 20 μm on distances of the order of ten metres, without focalization. Diameters depend on the diffracting object size and on the topological charge of the input Laguerre Gaussian beam. These results are in good agreement with theoretical considerations. Potential applications are then discussed.

  2. Distance to Dark Bodies

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Using the unique orbit of NASA's Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist's concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception.

    Our Milky Way galaxy is heavier than it looks, and scientists use the term 'dark matter' to describe all the 'heavy stuff' in the universe that seems to be present but invisible to our telescopes. While much of this dark matter is likely made up of exotic materials, different from the ordinary particles that make up the world around us, some may consist of dark celestial bodies -- like planets, black holes, or failed stars -- that do not produce light or are too faint to detect from Earth. OGLE-2005-SMC-001 is one of these dark celestial bodies.

    Although astronomers cannot see a dark body, they can sense its presence from the way light acts around it. When a dark body like OGLE-2005-SMC-001 passes in front of a bright star, its gravity causes the background starlight to bend and brighten, a process called gravitational microlensing. When the observing telescope, dark body, and star system are closely aligned, the microlensing event reaches maximum, or peak, brightness.

    A team of astronomers first sensed OGLE-2005-SMC-001's presence when it passed in front of a star in a neighboring satellite galaxy called the Small Magellanic Cloud. In this artist's rendering, the satellite galaxy is depicted as the fuzzy structure sitting to the left of Earth. Once they detected this microlensing event, the scientists used Spitzer and the principle of parallax to figure out its distance. Humans naturally use parallax to determine distance. Each eye sees the distance of an object differently. The brain takes each eye's perspective and instantaneously calculates how far away the object is.

    To determine OGLE-2005-SMC-001's distance, astronomers measured the microlensing event over several months with both Spitzer in space and the Earth-based telescopes. Careful analysis of the data revealed the time of the peak brightness differed slightly between the two locations.

    Because astronomers knew the exact distance between Earth and Spitzer and the time lag between the peak-observed brightness, they could determine OGLE-2005-SMC-001's speed. Using trigonometric equations and graphs to do the 'brain's' job, scientists then inferred the dark body's location to be in the outer portion, or halo, of our galaxy.

    The picture of the Small Magellanic Cloud in this concept is a two-color image from two Digitized Sky Survey 2 observations The Digitized Sky Survey is based at the Space Telescope Science Institute in Baltimore, Md.

  3. The OGLE view of microlensing towards the Magellanic Clouds - II. OGLE-II Small Magellanic Cloud data

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Ł.; Kozłowski, S.; Skowron, J.; Belokurov, V.; Smith, M. C.; Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Szewczyk, O.

    2010-09-01

    The primary goal of this paper is to provide evidence that can prove true or false the hypothesis that dark matter in the Galactic halo can clump into stellar-mass compact objects. If such objects exist, they would act as lenses to external sources in the Magellanic Clouds, giving rise to an observable effect of microlensing. We present the results of our search for such events, based on data from the second phase of the OGLE survey (1996-2000) towards the Small Magellanic Cloud (SMC). The data set we used comprises 2.1 million monitored sources distributed over an area of 2.4deg2. We found only one microlensing event candidate, however its poor-quality light curve limited our discussion of the exact distance to the lensing object. Given a single event, taking blending (crowding of stars) into account for the detection-efficiency simulations and deriving the Hubble Space Telescope (HST)-corrected number of monitored stars, the microlensing optical depth is τ = (1.55 +/- 1.55) × 10-7. This result is consistent with the expected SMC self-lensing signal, with no need to introduce dark matter microlenses. Rejecting the unconvincing event leads to an upper limit on the fraction of dark matter in the form of massive compact halo objects (MACHOs) of f < 20 per cent for deflector masses around 0.4Msolar and f < 11 per cent for masses between 0.003 and 0.2Msolar (95 per cent confidence limit). Our result indicates that the Milky Way's dark matter is unlikely to be clumpy and to form compact objects in the subsolar-mass range. Based on observations obtained with the 1.3-m Warsaw Telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. E-mail: wyrzykow@ast.cam.ac.uk ‡ Name pronunciation: Woocash Vizhikovsky

  4. Dark matter annihilation in the milky way galaxy: effects of baryonic compression.

    PubMed

    Prada, F; Klypin, A; Flix, J; Martínez, M; Simonneau, E

    2004-12-10

    If the dark matter (DM), which is considered to constitute most of the mass of galaxies, is made of supersymmetric particles, the central region of our Galaxy should emit gamma rays produced by their annihilation. We use detailed models of the Milky Way to make accurate estimates of continuum gamma-ray fluxes. We argue that the most important effect, which was previously neglected, is the compression of the dark matter due to the infall of baryons to the galactic center: it boosts the expected signal by a factor 1000. To illustrate this effect, we computed the expected gamma fluxes in the minimal supergravity scenario. Our models predict that the signal could be detected at high confidence levels by imaging atmospheric C erenkov telescopes assuming that neutralinos make up most of the DM in the Universe.

  5. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.

  6. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Albert, A.; Anderson, B.; ...

    2014-02-11

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via γ rays. We report on γ -ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in γ rays, and we present γ -ray flux upper limits between 500 MeVmore » and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. Furthermore, we set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical standard model channels. We also find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse γ -ray background modeling, and assumed dark matter density profile.« less

  7. Apparent minification in an imaging display under reduced viewing conditions.

    PubMed

    Meehan, J W

    1993-01-01

    When extended outdoor scenes are imaged with magnification of 1 in optical, electronic, or computer-generated displays, scene features appear smaller and farther than in direct view. This has been shown to occur in various periscopic and camera-viewfinder displays outdoors in daylight. In four experiments it was found that apparent minification of the size of a planar object at a distance of 3-9 m indoors occurs in the viewfinder display of an SLR camera both in good light and in darkness with only the luminous object visible. The effect is robust and survives changes in the relationship between object luminance in the display and in direct view and occurs in the dark when subjects have no prior knowledge of room dimensions, object size or object distance. The results of a fifth experiment suggest that the effect is an instance of reduced visual size constancy consequent on elimination of cues for size, which include those for distance.

  8. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  9. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE PAGES

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...

    2015-10-15

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  10. Generation of dark-bright soliton trains in superfluid-superfluid counterflow.

    PubMed

    Hamner, C; Chang, J J; Engels, P; Hoefer, M A

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics.

  11. Generation of Dark-Bright Soliton Trains in Superfluid-Superfluid Counterflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamner, C.; Chang, J. J.; Engels, P.

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics.

  12. The Intriguing Case of the (Almost) Dark Galaxy AGC 229385

    NASA Astrophysics Data System (ADS)

    Salzer, John

    2015-10-01

    The ALFALFA blind HI survey has catalogued tens of thousands of HI sources over 7000 square degrees of high Galactic latitude sky. While the vast majority of the sources in ALFALFA have optical counterparts in existing wide-field surveys like SDSS, a class of objects has been identified that have no obvious optical counterparts in existing catalogs. Dubbed almost dark galaxies, these objects represent an extreme in the continuum of galaxy properties, with the highest HI mass-to-optical light ratios ever measured. We propose to use HST to observe AGC 229385, an almost dark object found in deep WIYN imaging to have an ultra-low surface brightness stellar component with extremely blue colors. AGC 229385 falls well off of all galaxy scaling relationships, including the Baryonic Tully-Fisher relation. Ground-based optical and HI data have been able to identify this object as extreme, but are insufficient to constrain the properties of its stellar component or its distance - for this, we need HST. Our science goals are twofold: to better constrain the distance to AGC 229385, and to investigate the stellar population(s) in this mysterious object. The requested observations will not only provide crucial insight into the properties and evolution of this specific system but will also help us understand this important class of ultra low surface brightness, gas-rich galaxies. The proposed observations are designed to be exploratory, yet they promise to pay rich dividends for a modest investment in observing time.

  13. The Effects of Admixed Dark Matter on Accretion Induced Collapse

    NASA Astrophysics Data System (ADS)

    Leung, Shing-Chi; Chu, Ming-Chung; Lin, Lap-Ming; Nomoto, Ken'ichi

    About 90% mass of matter in the universe is dark matter (DM) and most of its properties remain poorly constrained since it does not interact with electromagnetic and strong forces. To constrain the properties of DM, studying its effects on stellar objects is one of the methods. In [Leung et al., Phys. Rev. D 87, 123506 (2013); Leung et al., Astrophys. J. 812, 110 (2015)] we have shown that the dark matter admixture can significantly lower the Chandrasekhar mass of a white dwarf and also its corresponding explosion as a Type Ia supernova (SNe Ia). This type of objects may explain some observed sub-luminous SNe Ia. Depending on their stellar evolution path and interactions with companion stars, such objects can also undergo a direct collapse to form neutron stars (NSs) instead of explosion. Here we present results of one-dimensional hydrodynamics simulations of a NS with admixed DM. The DM is assumed to be asymmetric and in the form of an ideal degenerate Fermi gas. We study how the admixture of DM affects the collapse dynamics, its neutrino signals and the properties of the proto-NS. Possible observational signals are also discussed.

  14. Learning and Inferring "Dark Matter" and Predicting Human Intents and Trajectories in Videos.

    PubMed

    Xie, Dan; Shu, Tianmin; Todorovic, Sinisa; Zhu, Song-Chun

    2018-07-01

    This paper presents a method for localizing functional objects and predicting human intents and trajectories in surveillance videos of public spaces, under no supervision in training. People in public spaces are expected to intentionally take shortest paths (subject to obstacles) toward certain objects (e.g., vending machine, picnic table, dumpster etc.) where they can satisfy certain needs (e.g., quench thirst). Since these objects are typically very small or heavily occluded, they cannot be inferred by their visual appearance but indirectly by their influence on people's trajectories. Therefore, we call them "dark matter", by analogy to cosmology, since their presence can only be observed as attractive or repulsive "fields" in the public space. A person in the scene is modeled as an intelligent agent engaged in one of the "fields" selected depending his/her intent. An agent's trajectory is derived from an Agent-based Lagrangian Mechanics. The agents can change their intents in the middle of motion and thus alter the trajectory. For evaluation, we compiled and annotated a new dataset. The results demonstrate our effectiveness in predicting human intent behaviors and trajectories, and localizing and discovering distinct types of "dark matter" in wide public spaces.

  15. Multi-Objective UAV Mission Planning Using Evolutionary Computation

    DTIC Science & Technology

    2008-03-01

    on a Solution Space. . . . . . . . . . . . . . . . . . . . 41 4.3. Crowding distance calculation. Dark points are non-dominated solutions. [14...SPEA2 was devel- oped by Zitzler [64] as an improvement to the original SPEA algorithm [65]. SPEA2 Figure 4.3: Crowding distance calculation. Dark ...thesis, Los Angeles, CA, USA, 2003. Adviser-Maja J. Mataric . 114 21. Homberger, Joerg and Hermann Gehring. “Two Evolutionary Metaheuristics for the

  16. What is Gravitational Lensing? (LBNL Summer Lecture Series)

    ScienceCinema

    Leauthaud, Alexie [Univ. of California, Berkeley, CA (United States). Berkeley Center for Cosmological Physics (BCCP); Nakajima, Reiko [Univ. of California, Berkeley, CA (United States). Berkeley Center for Cosmological Physics (BCCP)

    2018-05-04

    Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.

  17. What is Gravitational Lensing? (LBNL Summer Lecture Series)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leauthaud, Alexie; Nakajima, Reiko

    2009-07-28

    Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.

  18. Effective Dynamic Range and Retest Reliability of Dark-Adapted Two-Color Fundus-Controlled Perimetry in Patients With Macular Diseases.

    PubMed

    Pfau, Maximilian; Lindner, Moritz; Müller, Philipp L; Birtel, Johannes; Finger, Robert P; Harmening, Wolf M; Fleckenstein, Monika; Holz, Frank G; Schmitz-Valckenberg, Steffen

    2017-05-01

    To determine the effective dynamic range (EDR), retest reliability, and number of discriminable steps (DS) for mesopic and dark-adapted two-color fundus-controlled perimetry (FCP) using the S-MAIA (Scotopic-Macular Integrity Assessment) "micro-perimeter." In this prospective cross-sectional study, each of the 52 eyes of 52 subjects with various macular diseases (mean age 62.0 ± 16.9 years; range, 19.1-90.1 years) underwent duplicate mesopic (achromatic stimuli, 400-800 nm), dark-adapted cyan (505 nm), and dark-adapted red (627 nm) FCP using a grid of 61 stimuli covering 18° of the central retina. The EDR, the number of DS, and the retest reliability for point-wise sensitivity (PWS) were analyzed. The effects of fixation stability, sensitivity, and age on retest reliability were examined using mixed-effects models. The EDR was 10 to 30 dB with five DS for mesopic and 4 to 17 dB with four DS for dark-adapted cyan and red testing. PWS retest reliability was good among all three types of retinal sensitivity assessments (coefficient of repeatability ±5.79, ±4.72, and ±4.77 dB, respectively) and did not depend on fixation stability or age. PWS had no effect on retest variability in dark-adapted cyan and dark-adapted red testing but had a minor effect in mesopic testing. Combined mesopic and dark-adapted two-color FCP allows for reliable topographic testing of cone and rod function in patients with various macular diseases with and without foveal fixation. Retest reliability is homogeneous across eccentricities and various degrees of scotoma depth, including zones at risk for disease progression. These reliability estimates can serve for the design of future clinical trials.

  19. Venus - Impact Crater 'Jeanne

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan full-resolution image shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt.

  20. EDITORIAL: Focus on Dark Matter and Particle Physics

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von Doetinchem, H Gast, T Kirn and S Schael Axion searches with helioscopes and astrophysical signatures for axion(-like) particles K Zioutas, M Tsagri, Y Semertzidis, T Papaevangelou, T Dafni and V Anastassopoulos The indirect search for dark matter with IceCube Francis Halzen and Dan Hooper DIRECT DARK MATTER SEARCHES:EXPERIMENTS Gaseous dark matter detectors G Sciolla and C J Martoff Search for dark matter with CRESST Rafael F Lang and Wolfgang Seidel DIRECT AND INDIRECT PARTICLE DARK MATTER SEARCHES:THEORY Dark matter annihilation around intermediate mass black holes: an update Gianfranco Bertone, Mattia Fornasa, Marco Taoso and Andrew R Zentner Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses John Ellis, Keith A Olive and Pearl Sandick Dark stars: a new study of the first stars in the Universe Katherine Freese, Peter Bodenheimer, Paolo Gondolo and Douglas Spolyar Determining the mass of dark matter particles with direct detection experiments Chung-Lin Shan The detection of subsolar mass dark matter halos Savvas M Koushiappas Neutrino coherent scattering rates at direct dark matter detectors Louis E Strigari Gamma rays from dark matter annihilation in the central region of the Galaxy Pasquale Dario Serpico and Dan Hooper DARK MATTER MODELS The dark matter interpretation of the 511 keV line Céline Boehm Axions as dark matter particles Leanne D Duffy and Karl van Bibber Sterile neutrinos Alexander Kusenko Dark matter candidates Lars Bergström Minimal dark matter: model and results Marco Cirelli and Alessandro Strumia Shedding light on the dark sector with direct WIMP production Partha Konar, Kyoungchul Kong, Konstantin T Matchev and Maxim Perelstein Axinos as dark matter particles Laura Covi and Jihn E Kim

  1. Effects of Dark Brooders on Behavior and Fearfulness in Layers

    PubMed Central

    Riber, Anja B.; Guzman, Diego A.

    2016-01-01

    Simple Summary Chicks require heat to maintain body temperature during the first weeks after hatch. Heat is normally provided by use of heating lamps or whole-house heating, but an alternative is dark brooders, i.e. horizontal heating elements equipped with curtains. The effects of providing layer chicks with dark brooders during the brooding period on behavior and fearfulness were investigated. Brooders resulted in chicks showing less locomotive activity, feather pecking and fleeing. Also, a long-term reduction of fearfulness in brooder birds was found. Results support the suggestion that rearing with dark brooders can be a successful method of reducing or preventing some of the major welfare problems in layers. Abstract Chicks require heat to maintain body temperature during the first weeks after hatch. This may be provided by dark brooders; i.e., horizontal heating elements equipped with curtains. The objective was to test effects of rearing layer chicks with dark brooders on time budget and fearfulness. Behavioral observations were performed during the first six weeks of age. Three different fear tests were conducted when the birds were age 3–6, 14–15 and 26–28 weeks. During the first four days, brooder chicks rested more than control chicks whereas they spent less time drinking, feather pecking and on locomotion (p ≤ 0.009). On days 16, 23, 30 and 42, brooder chicks spent less time on feather pecking, locomotion and fleeing (p ≤ 0.01) whereas foraging and dust bathing occurred more often on day 42 (p ≤ 0.032). Brooder birds had shorter durations of tonic immobility at all ages (p = 0.0032), moved closer to the novel object at age 15 weeks (p < 0.0001), and had shorter latencies to initiate locomotion in the open-field test at age 28 weeks (p < 0.0001). Results support the suggestion that dark brooders can be a successful method of reducing or preventing fear and feather pecking in layers. PMID:26751482

  2. New T Tauri stars in Chamaeleon I and Chamaeleon II

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick

    1993-01-01

    A new objective prism survey of the entire Chamaeleon I dark cloud and 2/3 of the Chamaeleon II cloud has uncovered 26 new H-alpha emission line objects that were missed by previous H-alpha plate surveys. The new H-alpha emission line objects have similar IR colors and spatial distributions to the known T Tauri stars in these dark clouds, and could represent the very low mass end of the stellar population in these clouds or an older, less active component to the usual classical T Tauri star population. The new H-alpha survey identified 70 percent of the total known Young Stellar Objects (YSOs) in Cha I, compared with 35 percent for IRAS, and 25 percent from the Einstein X-ray survey. Ten of the new objects are weak-lined stars, with H-alpha equivalent widths less than 10 A. Weak-lined T Tauri stars make up about half of the total population of young stars in the Chamaeleon I cloud, a proportion similar to the Taurus-Auriga cloud. Presented are coordinates, finding charts, and optical and IR photometry of the new emission-line objects.

  3. Self-reported skin colour and erythemal sensitivity vs. objectively measured constitutive skin colour in an African population with predominantly dark skin.

    PubMed

    Wright, Caradee Y; Wilkes, Marcus; du Plessis, Johan L; Reeder, Anthony I

    2015-11-01

    Skin colour is an important factor in skin-related diseases. Accurate determination of skin colour is important for disease prevention and supporting healthy sun behaviour, yet such data are lacking for dark skin types. Self-perceived, natural skin colour and sun-skin reaction were compared with objectively measured skin colour among an African population with predominantly dark skin. Unexposed skin of 556 adults (70.1% Black) was measured with a reflectance spectrophotometer to calculate an individual typology angle (°ITA). Participants reported self-perceived skin colour and erythemal sensitivity. There was a strong, positive monotonic correlation between self-reported and measured skin colour (Spearman ρ = 0.6438, P < 0.001), but only a weak correlation between self-reported erythemal sensitivity and measured skin colour (Spearman ρ = 0.2713, P < 0.001). Self-report biases in underestimation and overestimation of skin colour were evident. Many participants with 'dark brown' and 'black' skin had difficulty in classifying erythemal sensitivity. In Africa, self-reported skin colour could potentially be used in lieu of spectrophotometer measurements, but options for questions on sunburn and tanning require suitable adjustment. Our study provides evidence of range in °ITA values among residents in Africa and reinforces previous results that self-report may be reliable for determining skin colour, but not erythemal sensitivity, for dark skin individuals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness1[OPEN

    PubMed Central

    2017-01-01

    Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness. PMID:28572457

  5. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness.

    PubMed

    Fan, Jilian; Yu, Linhui; Xu, Changcheng

    2017-07-01

    Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Freeman, K. C.

    2016-02-01

    Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.

  7. First Image and Spectrum of a Dark Matter Object

    NASA Astrophysics Data System (ADS)

    2001-12-01

    HST and VLT Identify MACHO as a Small and Cool Star Summary An international team of astronomers [2] has observed a Dark Matter object directly for the first time . Images and spectra of a MACHO microlens - a nearby dwarf star that gravitationally focuses light from a star in another galaxy - were taken by the NASA/ESA Hubble Space Telescope (HST) and the European Southern Observatory's Very Large Telescope (VLT) . The result is a strong confirmation of the theory that a large fraction of Dark Matter exists as small, faint stars in galaxies such as our Milky Way . PR Photo 35a/01 : HST image of a MACHO. PR Photo 35b/01 : VLT spectrum of a MACHO. The Riddle of Dark Matter The nature of Dark Matter is one of the fundamental puzzles in astrophysics today. Observations of clusters of galaxies and the large scale structure of individual galaxies tell us that no more than a quarter of the total amount of matter in the Universe consists of normal atoms and molecules that make up the familiar world around us. Of this normal matter, no more than a quarter emits the radiation we see from stars and hot gas. So, a large fraction of the matter in our Universe is dark and of unknown composition . For the past ten years, active search projects have been underway for possible candidate objects for Dark Matter. One of many possibilities is that the Dark Matter consists of weakly interacting, massive sub-atomic sized particles known as WIMPs . Alternatively, Dark Matter may consist of massive compact objects ( MACHOs ), such as dead or dying stars (neutron stars and cool dwarf stars), black holes of various sizes or planet-sized collections of rocks and ice. The MACHOs In 1986, Bohdan Paczynski from Princeton University (USA) realised that if some of the Dark Matter were in the form of MACHOs, its presence could be detected by the gravitational influence MACHOs have on light from distant stars. If a MACHO object in the Milky Way passes in front of a background star in a nearby galaxy, such as the Large Magellanic Cloud (LMC), then the gravitational field of the MACHO will bend the light from the distant star and focus it into our telescopes. The MACHO is acting as a gravitational lens, increasing the brightness of the background star for the short time it takes for the MACHO to pass by. Depending on the mass of the MACHO and its distance from Earth, this period of brightening can last days, weeks or months. The form and duration of the brightening caused by the MACHO - the microlensing "light curve" - can be predicted by theory and searched for as a clear signal of the presence of MACHO Dark Matter. MACHOs are described as "microlenses" since they are much smaller than other known cases of gravitational lensing, such as those observed around clusters of galaxies, cf. ESO PR 19/98. Observations of microlensing events have been done on many occasions with ESO telescope with intersting results, e.g., the recent detection of a corona of a distant star in the Milky Way ( ESO PR 17/01 ). The MACHO Project Astronomers from the Lawrence Livermore National Laboratory , the Center for Particle Astrophysics in the United States and the Australian National University joined forces to form the "MACHO Project" in 1991. This team [2] used a dedicated telescope at the Mount Stromlo Observatory in Australia to monitor the brightness of more than 10 million stars in the Large Magellanic Cloud (LMC) over a period of eight years. The team discovered their first gravitational lensing event in 1993 and have now published approximately twenty instances of microlenses in the direction of the Magellanic Clouds. These results demonstrate that there is a population of MACHO objects in and around the Milky Way galaxy that could comprise as much as 50% of the Milky Way total (baryonic/normal-matter) Dark Matter content. Hubble obtains the first direct image of a MACHO ESO PR Photo 35a/01 ESO PR Photo 35a/01 [Preview - JPEG: 400 x 387 pix - 36k] [Normal - JPEG: 800 x 774 pix - 87k] ESO PR Photo 35a/01 is based on three exposures from the WFPC2 camera at the NASA/ESA Hubble Space Telescope , obtained in the V-, R- and I-bands (shown as blue, green and red, respectively). It shows the first image of a Dark Matter object - a MACHO (a massive compact object). It is the red object that is indicated with an arrow and very near to the upper left (at 2 o'clock) of a blue background star. This MACHO is a nearby red dwarf star that gravitationally focused light from the blue background star in another galaxy in a so-called microlensing event. Since the event six years ago, the MACHO has moved 0.134 arcseconds on the sky and can now be clearly separated in the Hubble image. In order to learn more about each microlensing event, the MACHO team has used the Hubble Space Telescope (HST) to take high-resolution images of the lensed stars. One of these images showed a faint red object within a small fraction of an arcsecond from a blue, normal (main-sequence) background star in the Large Magellanic Cloud ( ESO PR Photo 35a/01 ). The image was taken by Hubble 6 years after the original microlensing event, which had lasted approximately 100 days. The brightness of the faint red star and its direction and separation from the star in the Large Magellanic Cloud are completely consistent with the values indicated 6 years earlier from the MACHO light curve data alone. This Hubble observation further reveals that the MACHO is a small faint, dwarf star at a distance of 600 light-years, and with a mass between 5% and 10% of the mass of the Sun. The VLT adds spectral information ESO PR Photo 35b/01 ESO PR Photo 35b/01 [Preview - JPEG: 400 x 319 pix - 37k] [Normal - JPEG: 1003 x 800 pix - 144k] ESO PR Photo 35b/01 shows a composite spectrum of the two very close objects seen on the HST image ( PR Photo 35a/01 ). It is based on four 1500-second exposures that were obtained with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope on February 2, 2001. The presence of certain metal and alkali resonance lines, in particular of sodium (Na), is typical of a cool stellar object. Telluric molecular bands (from the Earth's atmosphere) are indicated with an earth-symbol. To further confirm these findings, members of the MACHO team sent in a special application for observing time on the FORS2 instrument on the ESO 8.2-m VLT KUEYEN Unit Telescope to obtain spectra of the object. ESO responded swiftly and positively to the request. Although it was not possible to separate the spectra of the MACHO and background star, the combined spectrum ( PR Photo 35b/01 ) showed the unmistakable signs in the red spectral region of the deep absorption lines of a dwarf M star superimposed on the spectrum of the blue main sequence star in the Large Magellanic Cloud. The nature of Dark Matter The combination of the microlensing light curve from the MACHO project, the high-resolution images from Hubble and the spectroscopy from the VLT has established the first direct detection of a MACHO object, to be published in the international science journal "Nature" on December 6, 2001. Thanks to the HST and VLT observations, the astronomers now have a complete picture of this particular MACHO: its mass, distance and velocity. The result greatly strengthens the argument that a large fraction of the 'normal' Dark Matter in and around our galaxy exists in the form of MACHOs. Thus this Dark Matter is not as dark as previously believed! Future searches for MACHO-like objects will have the potential to map out this form of Dark Matter and reach a greater understanding of the role that Dark Matter plays in the formation of galaxies. These efforts will further strengthen the drive to reveal the secrets of Dark Matter and take a large step towards closing the books on the mass budget of the Universe. Note [1]: This is a joint Press Release by the European Southern Observatory (ESO) and the Hubble European Space Agency Information Centre. The Hubble Space Telescope is a project of international co-operation between ESA and NASA. [2]: The MACHO collaboration is made up of: Kem H. Cook , Andrew J. Drake , Stefan C. Keller , Stuart L. Marshall , Cailin A. Nelson and Piotr Popowski (Lawrence Livermore National Laboratory, Livermore, CA, USA); Charles Alcock and Matt J. Lehner (University of Pennsylvania, Philadelphia, PA, USA); Robyn A. Allsman (Australian National Supercomputing Facility, Canberra, ACT, Australia); David R. Alves (STScI, Baltimore, USA); Tim S. Axelrod , Ken C. Freeman and Bruce A. Peterson (Mount Stromlo Observatory, Weston, ACT, Australia); Andrew C. Becker (Bell Labs, Murray Hill, NJ, USA); Dave P. Bennett (University of Notre Dame, IN, USA); Marla Geha (University of California at Santa Cruz, CA, USA); Kim Griest and Thor Vandehei (University of California, San Diego, CA, USA); Dante Minniti (P. Universidad Catolica, Santiago de Chile); Mark R. Pratt , Christopher W. Stubbs and Austin B. Tomaney (University of Washington, Seatlle, WA, USA); Peter J. Quinn (European Southern Observatory, Garching, Germany); Will Sutherland (University of Oxford, UK) and Doug Welch (McMaster University, Hamilton, Ontario, Canada).

  8. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.

  9. A young star takes centre stage

    NASA Image and Video Library

    2015-03-02

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this new NASA/ESA Hubble Space Telescope image. The star in the centre, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the Sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a verylow-mass object in the outer circumstellar disc.

  10. Extended micro objects as dark matter particles

    NASA Astrophysics Data System (ADS)

    Belotsky, K.; Rubin, S.; Svadkovsky, I.

    2017-05-01

    Models of various forms of composite dark matter (DM) predicted by particle theory and the DM constituents formed by gravity that are not reduced to new elementary particle candidates are discussed. Main attention is paid to a gravitational origin of the DM. The influence of extended mass spectrum of primordial black holes on observational limits is considered. It is shown that non-uniformly deformed extra space can be considered as point-like masses which possess only gravitational interaction with each other and with the ordinary particles. The recently discussed six-dimensional stable wormholes could contribute to the DM. The contribution of dark atoms is also considered.

  11. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  12. Particle tagging and its implications for stellar population dynamics

    NASA Astrophysics Data System (ADS)

    Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.

    2017-07-01

    We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.

  13. Tidal disruption of fuzzy dark matter subhalo cores

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  14. "Dark Victory" (prognosis negative): The beginnings of neurology on screen.

    PubMed

    Wijdicks, Eelco F M

    2016-04-12

    In "Dark Victory," released in theaters in 1939, the diagnosis and management of a progressive brain tumor was a central part of the screenplay, and this film marked the beginnings of the depiction of neurologic disease in cinema. Bette Davis' cinematic portrayal of a young woman dying from a brain tumor is close to the reality of denial, bargaining, a hope for a cure, and final acceptance. "Dark Victory" includes part of a neurologic examination (funduscopy, testing of strength, testing of stereognosis, and tendon reflexes). The film also alludes to decisions on what to tell the patient (better say nothing) and shows an implausible clinical course (an abrupt peaceful ending). The film is unusual in depicting the presentation of a brain tumor, but the cinematic portrayal of the vicissitudes of living with a brain tumor is often close to reality. © 2016 American Academy of Neurology.

  15. Seasonal Variations in Color Preference.

    PubMed

    Schloss, Karen B; Nelson, Rolf; Parker, Laura; Heck, Isobel A; Palmer, Stephen E

    2017-08-01

    We investigated how color preferences vary according to season and whether those changes could be explained by the ecological valence theory (EVT). To do so, we assessed the same participants' preferences for the same colors during fall, winter, spring, and summer in the northeastern United States, where there are large seasonal changes in environmental colors. Seasonal differences were most pronounced between fall and the other three seasons. Participants liked fall-associated dark-warm colors-for example, dark-red, dark-orange (brown), dark-yellow (olive), and dark-chartreuse-more during fall than other seasons. The EVT could explain these changes with a modified version of Palmer and Schloss' (2010) weighted affective valence estimate (WAVE) procedure that added an activation term to the WAVE equation. The results indicate that color preferences change according to season, as color-associated objects become more/less activated in the observer. These seasonal changes in color preferences could not be characterized by overall shifts in weights along cone-contrast axes. Copyright © 2016 Cognitive Science Society, Inc.

  16. What is Gravitational Lensing?(LBNL Summer Lecture Series)

    ScienceCinema

    Alexie, Leauthaud; Reiko, Nakajima [Berkeley Center for Cosmological Physics, Berkely, California, United States

    2017-12-09

    July 28, 2009 Berkeley Lab summer lecture: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.

  17. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement

    USDA-ARS?s Scientific Manuscript database

    Redox transformations involving electron transfer from natural organic matter (NOM) are important for the mercury (Hg) biogeochemical cycle. In the water column light drives the reduction of Hg(II) to Hg(0), whereas in soils and sediments dark reduction of Hg(II) is of greater importance. The object...

  18. The effectiveness and cost effectiveness of dark chocolate consumption as prevention therapy in people at high risk of cardiovascular disease: best case scenario analysis using a Markov model

    PubMed Central

    Zomer, Ella; Owen, Alice; Magliano, Dianna J; Liew, Danny

    2012-01-01

    Objective To model the long term effectiveness and cost effectiveness of daily dark chocolate consumption in a population with metabolic syndrome at high risk of cardiovascular disease. Design Best case scenario analysis using a Markov model. Setting Australian Diabetes, Obesity and Lifestyle study. Participants 2013 people with hypertension who met the criteria for metabolic syndrome, with no history of cardiovascular disease and not receiving antihypertensive therapy. Main outcome measures Treatment effects associated with dark chocolate consumption derived from published meta-analyses were used to determine the absolute number of cardiovascular events with and without treatment. Costs associated with cardiovascular events and treatments were applied to determine the potential amount of funding required for dark chocolate therapy to be considered cost effective. Results Daily consumption of dark chocolate (polyphenol content equivalent to 100 g of dark chocolate) can reduce cardiovascular events by 85 (95% confidence interval 60 to 105) per 10 000 population treated over 10 years. $A40 (£25; €31; $42) could be cost effectively spent per person per year on prevention strategies using dark chocolate. These results assume 100% compliance and represent a best case scenario. Conclusions The blood pressure and cholesterol lowering effects of dark chocolate consumption are beneficial in the prevention of cardiovascular events in a population with metabolic syndrome. Daily dark chocolate consumption could be an effective cardiovascular preventive strategy in this population. PMID:22653982

  19. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.

    PubMed

    Hellbach, Katharina; Baehr, Andrea; De Marco, Fabio; Willer, Konstantin; Gromann, Lukas B; Herzen, Julia; Dmochewitz, Michaela; Auweter, Sigrid; Fingerle, Alexander A; Noël, Peter B; Rummeny, Ernst J; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Wieberneit, Nataly; Proksa, Roland; Koehler, Thomas; Rindt, Karsten; Schroeter, Tobias J; Mohr, Juergen; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Reiser, Maximilian F

    2018-02-08

    The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.

  20. Gamma rays from dark matter subhalos revisited: Refining the predictions and constraints

    DOE PAGES

    Hooper, Dan; Witte, Samuel J.

    2017-04-11

    Utilizing data from the ELVIS and Via Lactea-II simulations, we characterize the local dark matter subhalo population, and use this information to refine the predictions for the gamma-ray fluxes arising from annihilating dark matter in this class of objects. We find that the shapes of nearby subhalos are significantly altered by tidal effects, and are generally not well described by NFW density profiles, instead prefering power-law profiles with an exponential cutoff. From the subhalo candidates detected by the Fermi Gamma-Ray Space Telescope, we place limits on the dark matter annihilation cross section that are only modestly weaker than those basedmore » on observations of dwarf galaxies. Furthermore, we also calculate the fraction of observable subhalos that are predicted to be spatially extended at a level potentially discernible to Fermi.« less

  1. Gamma rays from dark matter subhalos revisited: refining the predictions and constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Witte, Samuel J., E-mail: dhooper@fnal.gov, E-mail: switte@physics.ucla.edu

    2017-04-01

    Utilizing data from the ELVIS and Via Lactea-II simulations, we characterize the local dark matter subhalo population, and use this information to refine the predictions for the gamma-ray fluxes arising from annihilating dark matter in this class of objects. We find that the shapes of nearby subhalos are significantly altered by tidal effects, and are generally not well described by NFW density profiles, instead prefering power-law profiles with an exponential cutoff. From the subhalo candidates detected by the Fermi Gamma-Ray Space Telescope, we place limits on the dark matter annihilation cross section that are only modestly weaker than those basedmore » on observations of dwarf galaxies. We also calculate the fraction of observable subhalos that are predicted to be spatially extended at a level potentially discernible to Fermi.« less

  2. Gamma rays from dark matter subhalos revisited: Refining the predictions and constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Witte, Samuel J.

    Utilizing data from the ELVIS and Via Lactea-II simulations, we characterize the local dark matter subhalo population, and use this information to refine the predictions for the gamma-ray fluxes arising from annihilating dark matter in this class of objects. We find that the shapes of nearby subhalos are significantly altered by tidal effects, and are generally not well described by NFW density profiles, instead prefering power-law profiles with an exponential cutoff. From the subhalo candidates detected by the Fermi Gamma-Ray Space Telescope, we place limits on the dark matter annihilation cross section that are only modestly weaker than those basedmore » on observations of dwarf galaxies. Furthermore, we also calculate the fraction of observable subhalos that are predicted to be spatially extended at a level potentially discernible to Fermi.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Jeong-Pyong; Kawasaki, Masahiro; Kavli IPMU

    We consider nearly equal number of gauge mediation type charged (anti-) Q-balls with charge of ±α{sup −1}≃±137 well before the BBN epoch and discussed how they evolve in time. We found that ion-like objects with electric charges of +O(1) are likely to become relics in the present universe, which we expect to be the dark matter. These are constrained by MICA experiment, where the trail of heavy atom-like or ion-like object in 10{sup 9} years old ancient mica crystals is not observed. We found that the allowed region for gauge mediation model parameter and reheating temperature have to be smallermore » than the case of the neutral Q-ball dark matter.« less

  4. The VIRUS Emission Line Detection Recipe

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Hopp, U.; Köhler, R.; Grupp, F.; Relke, H.; Drory, N.; Gebhardt, K.; Hill, G.; MacQueen, P.

    2007-10-01

    HETDEX, the Hobby-Eberly Telescope Dark Energy Experiment, will measure the imprint of the baryonic acoustic oscillations on the galaxy population at redshifts of 1.8 < z < 3.7 to constrain the nature of dark energy. The survey will be performed over at least 200 deg^2. The tracer population for this blind search will be Ly-α emitting galaxies through their most prominent emission line. The data reduction pipeline will extract these emission line objects from ˜35,000 spectra per exposure (5 million per night, i.e. 500 million in total) while performing astrometric, photometric, and wavelength calibration fully automatically. Here we will present our ideas how to find and classify objects even at low signal-to-noise ratios.

  5. Is Visually Guided Reaching in Early Infancy a Myth?

    ERIC Educational Resources Information Center

    Clifton, Rachel K.; And Others

    1993-01-01

    Seven infants were tested between the ages of 6 and 25 weeks to see how they would grasp objects presented in full light and glowing or sounding objects presented in total darkness. In all three conditions, the infants first grasped the objects at nearly the same time, suggesting that internal stimuli, not visual guidance, directed their actions.…

  6. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b

  7. Effect of dark matter halo on global spiral modes in a collisionless galactic disk

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2017-07-01

    Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2 , spiral modes in a galactic disk, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modeled as a disk-alone system or as a disk plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of strong large-scale spiral structure in LSBs. An earlier work (Ghosh et al., 2016) where the galactic disk was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. We found that this difference arises due to the different dispersion relation used in the two cases and which plays a crucial role in the search for global spiral modes. Thus the correct treatment of stars as a collisionless system as done here results in the suppression of global spiral modes, in agreement with the observations. We performed a similar modal analysis for the Galaxy, and found that the dark matter halo has a negligible effect on large-scale spiral structure.

  8. Simultaneous wood and metal particle detection on dark-field radiography.

    PubMed

    Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela

    2018-01-01

    Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.

  9. Treatment of infraorbital dark circles using 694-nm fractional Q-switched ruby laser.

    PubMed

    Xu, Tian-Hua; Li, Yuan-Hong; Chen, John Z S; Gao, Xing-Hua; Chen, Hong-Duo

    2016-12-01

    The objective of this study was to evaluate the efficacy and safety of using a 694-nm fractional Q-switched ruby laser to treat infraorbital dark circles. Thirty women with infraorbital dark circles (predominant color: dark/brown) participated in this open-labeled study. The participants received eight sessions of 694-nm fractional Q-switched ruby laser treatment using a fluence of 3.0-3.5 J/cm 2 , at an interval of 7 days. The melanin deposition in the lesional skin was observed in vivo using reflectance confocal microscopy (RCM). The morphological changes were evaluated using a global evaluation, an overall self-assessment, and a Mexameter. Twenty-eight of the 30 patients showed global improvements that they rated as excellent or good. Twenty-six patients rated their overall satisfaction as excellent or good. The melanin index indicated a substantial decrease from 240.44 (baseline) to 194.56 (P < 0.05). The RCM results showed a dramatic decrease in melanin deposition in the upper dermis. The adverse effects were minimal. The characteristic finding of dark/brown infraorbital dark circles is caused by increased melanin deposition in the upper dermis. The treatment of these infraorbital dark circles using a 694-nm fractional QSR laser is safe and effective.

  10. Traveling in the dark: the legibility of a regular and predictable structure of the environment extends beyond its borders.

    PubMed

    Yaski, Osnat; Portugali, Juval; Eilam, David

    2012-04-01

    The physical structure of the surrounding environment shapes the paths of progression, which in turn reflect the structure of the environment and the way that it shapes behavior. A regular and coherent physical structure results in paths that extend over the entire environment. In contrast, irregular structure results in traveling over a confined sector of the area. In this study, rats were tested in a dark arena in which half the area contained eight objects in a regular grid layout, and the other half contained eight objects in an irregular layout. In subsequent trials, a salient landmark was placed first within the irregular half, and then within the grid. We hypothesized that rats would favor travel in the area with regular order, but found that activity in the area with irregular object layout did not differ from activity in the area with grid layout, even when the irregular half included a salient landmark. Thus, the grid impact in one arena half extended to the other half and overshadowed the presumed impact of the salient landmark. This could be explained by mechanisms that control spatial behavior, such as grid cells and odometry. However, when objects were spaced irregularly over the entire arena, the salient landmark became dominant and the paths converged upon it, especially from objects with direct access to the salient landmark. Altogether, three environmental properties: (i) regular and predictable structure; (ii) salience of landmarks; and (iii) accessibility, hierarchically shape the paths of progression in a dark environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Earth observations taken from shuttle orbiter Discovery STS-70 mission

    NASA Image and Video Library

    1995-07-16

    STS070-705-094 (13-22 JULY 1995) --- The southern half (about 70 miles in this view) of the Tifernine dunes of east-central Algeria appears on this view. The Tifernine dune-sea is one of the more dramatic features visible from the Shuttle when flying over the Sahara Desert. The dunes lie in a basin of dark-colored rocks heavily cut by winding stream courses (top right). Very occasional storms allow the streams to erode the dark rocks and transport the sediment to the basin. Westerly winds then mold the stream sediments into the complex dune shapes so well displayed here. North at bottom.

  12. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way.

    PubMed

    Schödel, R; Ott, T; Genzel, R; Hofmann, R; Lehnert, M; Eckart, A; Mouawad, N; Alexander, T; Reid, M J; Lenzen, R; Hartung, M; Lacombe, F; Rouan, D; Gendron, E; Rousset, G; Lagrange, A-M; Brandner, W; Ageorges, N; Lidman, C; Moorwood, A F M; Spyromilio, J; Hubin, N; Menten, K M

    2002-10-17

    Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.

  13. Stellar kinematics and dark matter in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Battaglia, Giuseppina

    2015-08-01

    In this review I will tour through the most recent findings on the internal kinematic properties of Local Group dwarf galaxies, as determined from extensive spectroscopic surveys of their stellar component.I will also discuss the current status on determinations of the dark matter content and distribution in these objects, with particular focus on the Milky Way dwarf spheroidals, for which the available data-sets allow the application of sophisticated mass modeling techniques.

  14. Search for gamma-ray emission from dark matter annihilation in the Small Magellanic Cloud with the Fermi Large Area Telescope

    DOE PAGES

    Caputo, Regina; Buckley, Matthew R.; Martin, Pierrick; ...

    2016-03-22

    The Small Magellanic Cloud (SMC) is the second-largest satellite galaxy of the Milky Way and is only 60 kpc away. As a nearby, massive, and dense object with relatively low astrophysical backgrounds, it is a natural target for dark matter indirect detection searches. In this work, we use six years of Pass 8 data from the Fermi Large Area Telescope to search for gamma-ray signals of dark matter annihilation in the SMC. Using data-driven fits to the gamma-ray backgrounds, and a combination of N-body simulations and direct measurements of rotation curves to estimate the SMC DM density profile, we found that themore » SMC was well described by standard astrophysical sources, and no signal from dark matter annihilation was detected. We set conservative upper limits on the dark matter annihilation cross section. Furthermore, these constraints are in agreement with stronger constraints set by searches in the Large Magellanic Cloud and approach the canonical thermal relic cross section at dark matter masses lower than 10 GeV in the bb¯ and τ +τ - channels.« less

  15. Venus - Impact Crater Jeanne

    NASA Image and Video Library

    1996-11-20

    This full-resolution image from NASA Magellan spacecraft shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt. http://photojournal.jpl.nasa.gov/catalog/PIA00472

  16. Orbital radar studies of paleodrainages in the central Namib Desert

    USGS Publications Warehouse

    Lancaster, N.; Schaber, G.G.; Teller, J.T.

    2000-01-01

    Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area. (C) Elsevier Science Inc., 2000.Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area.

  17. A Theoretically Based Model of Rat Personality with Implications for Welfare

    PubMed Central

    Franks, Becca; Higgins, E. Tory; Champagne, Frances A.

    2014-01-01

    As animal personality research becomes more central to the study of animal behavior, there is increasing need for theoretical frameworks addressing its causes and consequences. We propose that regulatory focus theory (RFT) could serve as one such framework while also providing insights into how animal personality relates to welfare. RFT distinguishes between two types of approach motivation: promotion, the motivation to approach gains, and prevention, the motivation to approach or maintain safety. Decades of research have established the utility of RFT as a model of human behavior and recent evidence from zoo-housed primates and laboratory rats has suggested that it may be applicable to nonhuman animal behavior as well. Building on these initial studies, we collected data on 60 rats, Rattus norvegicus, navigating an automated maze that allowed individuals to maintain darkness (indicative of prevention/safety-approach motivation) and/or activate food rewards (indicative of promotion/gain-approach motivation). As predicted, both behaviors showed stable individual differences (Ps <0.01) and were inversely associated with physiological signs of chronic stress, possibly indicating poor welfare (Ps <0.05). Subsequently, half the rats were exposed to a manageable threat (noxious novel object) in the homecage. Re-testing in the maze revealed that threat exposure increased darkness time achieved (P<0.05), suggesting a mechanism by which prevention motivation may be enhanced. These results point toward the potential utility of RFT as a model for animal behavior and welfare. PMID:24755737

  18. IRAC Imaging of LSB Galaxies

    NASA Astrophysics Data System (ADS)

    Schombert, James; McGaugh, Stacy; Lelli, Federico

    2017-04-01

    We propose a program to observe a large sample of Low Surface Brightness (LSB) galaxies. Large galaxy surveys conducted with Spitzer suffer from the unavoidable selection bias against LSB systems (e.g., the S4G survey). Even those programs thathave specifically targeted LSB galaxies have usually been restricted objects of intermediate surface brightness (between 22 and 23 B mag/ []). Our sample is selected to be of a more extreme LSB nature (with central surface brightness fainter than 23 Bmag/[]). Even warm, Spitzer is the ideal instrument to image these low contrast targets in the near infrared: our sample goes a considerable way towards remedying this hole in the Spitzer legacy archive, also increasing coverage in terms of stellar mass, gas mass, and SFR. The sample will be used to address the newly discovered radial acceleration relation (RAR) in disk galaxies. While issues involving the connection between baryons and dark matter have been known since the development of the global baryonic Tully-Fisher (bTF) relation, it is only in the last six months that the particle physics and theoretical communities have recognized and responded to the local coupling between dark and baryonic matter represented by the RAR. This important new correlation is effectively a new natural law for galaxies. Spitzer photometry has been at the forefront of resolving the stellar mass component in galaxies that make-up the RAR and is the primary reason for the discovery of this new kinematic law.

  19. Distributed Computerized Catalog System

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.; Wagner, David A.

    1995-01-01

    DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.

  20. KSC-2011-2640

    NASA Image and Video Library

    2011-03-31

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, dark clouds hover over the Vehicle Assembly Building in the Launch Complex 39 area. Severe storms associated with a frontal system are moving through Central Florida, producing strong winds, heavy rain, frequent lightning and even funnel clouds. Photo credit: NASA/Jack Pfaller

  1. KSC-2011-2641

    NASA Image and Video Library

    2011-03-31

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, dark clouds hover over the Vehicle Assembly Building in the Launch Complex 39 area. Severe storms associated with a frontal system are moving through Central Florida, producing strong winds, heavy rain, frequent lightning and even funnel clouds. Photo credit: NASA/Jack Pfaller

  2. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  3. Effects of dietary blueberry on cognition and in vivo and in vitro inflammatory status

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation is thought to play a role in age-related cognitive decline. Previous studies from our laboratory have shown that dietary intervention with darkly pigmented berry fruit can reduce systemic and central biomarkers of inflammation while reversing behavioral impairments in aged rats....

  4. Nigeria

    Atmospheric Science Data Center

    2013-04-15

    article title:  Smoke over Nigeria and the Gulf of Guinea     ... document extensive smoke from fires burning throughout Nigeria and north central Africa on January 31, 2003. At left are natural-color ... the dark-colored Aïr Mountains), through forested Nigeria, and beyond the Niger Delta to the Gulf of Guinea and the open ocean. ...

  5. Characterization of Rod Function Phenotypes Across a Range of Age-Related Macular Degeneration Severities and Subretinal Drusenoid Deposits

    PubMed Central

    Flynn, Oliver J.; Cukras, Catherine A.; Jeffrey, Brett G.

    2018-01-01

    Purpose To examine spatial changes in rod-mediated function in relationship to local structural changes across the central retina in eyes with a spectrum of age-related macular degeneration (AMD) disease severity. Methods Participants were categorized into five AMD severity groups based on fundus features. Scotopic thresholds were measured at 14 loci spanning ±18° along the vertical meridian from one eye of each of 42 participants (mean = 71.7 ± 9.9 years). Following a 30% bleach, dark adaptation was measured at eight loci (±12°). Rod intercept time (RIT) was defined from the time to detect a −3.1 log cd/m2 stimulus. RITslope was defined from the linear fit of RIT with decreasing retinal eccentricity. The presence of subretinal drusenoid deposits (SDD), ellipsoid (EZ) band disruption, and drusen at the test loci was evaluated using optical coherence tomography. Results Scotopic thresholds indicated greater rod function loss in the macula, which correlated with increasing AMD group severity. RITslope, which captures the spatial change in the rate of dark adaptation, increased with AMD severity (P < 0.0001). Three rod function phenotypes emerged: RF1, normal rod function; RF2, normal scotopic thresholds but slowed dark adaptation; and RF3, elevated scotopic thresholds with slowed dark adaptation. Dark adaptation was slowed at all loci with SDD or EZ band disruption, and at 32% of loci with no local structural changes. Conclusions Three rod function phenotypes were defined from combined measurement of scotopic threshold and dark adaptation. Spatial changes in dark adaptation across the macula were captured with RITslope, which may be a useful outcome measure for functional studies of AMD. PMID:29847647

  6. Characterization of Rod Function Phenotypes Across a Range of Age-Related Macular Degeneration Severities and Subretinal Drusenoid Deposits.

    PubMed

    Flynn, Oliver J; Cukras, Catherine A; Jeffrey, Brett G

    2018-05-01

    To examine spatial changes in rod-mediated function in relationship to local structural changes across the central retina in eyes with a spectrum of age-related macular degeneration (AMD) disease severity. Participants were categorized into five AMD severity groups based on fundus features. Scotopic thresholds were measured at 14 loci spanning ±18° along the vertical meridian from one eye of each of 42 participants (mean = 71.7 ± 9.9 years). Following a 30% bleach, dark adaptation was measured at eight loci (±12°). Rod intercept time (RIT) was defined from the time to detect a -3.1 log cd/m2 stimulus. RITslope was defined from the linear fit of RIT with decreasing retinal eccentricity. The presence of subretinal drusenoid deposits (SDD), ellipsoid (EZ) band disruption, and drusen at the test loci was evaluated using optical coherence tomography. Scotopic thresholds indicated greater rod function loss in the macula, which correlated with increasing AMD group severity. RITslope, which captures the spatial change in the rate of dark adaptation, increased with AMD severity (P < 0.0001). Three rod function phenotypes emerged: RF1, normal rod function; RF2, normal scotopic thresholds but slowed dark adaptation; and RF3, elevated scotopic thresholds with slowed dark adaptation. Dark adaptation was slowed at all loci with SDD or EZ band disruption, and at 32% of loci with no local structural changes. Three rod function phenotypes were defined from combined measurement of scotopic threshold and dark adaptation. Spatial changes in dark adaptation across the macula were captured with RITslope, which may be a useful outcome measure for functional studies of AMD.

  7. Are we in the dark ages of environmental toxicology?

    PubMed

    McCarty, L S

    2013-12-01

    Environmental toxicity is judged to be in a "dark ages" period due to longstanding limitations in the implementation of the simple conceptual model that is the basis of current aquatic toxicity testing protocols. Fortunately, the environmental regulatory revolution of the last half-century is not substantially compromised as development of past regulatory guidance was designed to deal with limited amounts of relatively poor quality toxicity data. However, as regulatory objectives have substantially increased in breadth and depth, aquatic toxicity data derived with old testing methods are no longer adequate. In the near-term explicit model description and routine assumption validation should be mandatory. Updated testing methods could provide some improvements in toxicological data quality. A thorough reevaluation of toxicity testing objectives and methods resulting in substantially revised standard testing methods, plus a comprehensive scheme for classification of modes/mechanisms of toxic action, should be the long-term objective. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A low upper mass limit for the central black hole in the late-type galaxy NGC 4414

    NASA Astrophysics Data System (ADS)

    Thater, S.; Krajnović, D.; Bourne, M. A.; Cappellari, M.; de Zeeuw, T.; Emsellem, E.; Magorrian, J.; McDermid, R. M.; Sarzi, M.; van de Ven, G.

    2017-01-01

    We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemini Multi-Object Spectrographs-North (GMOS), we derived two-dimensional stellar kinematic maps of NGC 4414 covering the central 1.5 arcsec and 10 arcsec, respectively, at a NIFS spatial resolution of 0.13 arcsec. The kinematic maps reveal a regular rotation pattern and a central velocity dispersion dip down to around 105 km s-1. We constructed dynamical models using two different methods: Jeans anisotropic dynamical modeling and axisymmetric Schwarzschild modeling. Both modeling methods give consistent results, but we cannot constrain the lower mass limit and only measure an upper limit for the black hole mass of MBH = 1.56 × 106M⊙ (at 3σ level) which is at least 1σ below the recent MBH-σe relations. Further tests with dark matter, mass-to-light ratio variation and different light models confirm that our results are not dominated by uncertainties. The derived upper limit mass is not only below the MBH-σe relation, but is also five times lower than the lower limit black hole mass anticipated from the resolution limit of the sphere of influence. This proves that via high quality integral field data we are now able to push black hole measurements down to at least five times less than the resolution limit. The reduced data cubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A18

  9. Antimatter in the universe

    NASA Astrophysics Data System (ADS)

    Dolgov, A. D.

    2011-03-01

    The models leading to a high abundance of antimatter in the universe are discussed. Special attention is payed to the model of antimatter creation in the form of compact stellar-like objects. Such objects can contribute significantly to the cosmological dark matter. Observational signatures of antimatter in the Galaxy are discussed.

  10. Antimatter in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A. D., E-mail: dolgov@itep.ru

    2011-03-15

    The models leading to a high abundance of antimatter in the universe are discussed. Special attention is payed to the model of antimatter creation in the form of compact stellar-like objects. Such objects can contribute significantly to the cosmological dark matter. Observational signatures of antimatter in the Galaxy are discussed.

  11. The importance of centralities in dark network value chains

    NASA Astrophysics Data System (ADS)

    Toth, Noemi; Gulyás, László; Legendi, Richard O.; Duijn, Paul; Sloot, Peter M. A.; Kampis, George

    2013-09-01

    This paper introduces three novel centrality measures based on the nodes' role in the operation of a joint task, i.e., their position in a criminal network value chain. For this, we consider networks where nodes have attributes describing their "capabilities" or "colors", i.e., the possible roles they may play in a value chain. A value chain here is understood as a series of tasks to be performed in a specific order, each requiring a specific capability. The first centrality notion measures how many value chain instances a given node participates in. The other two assess the costs of replacing a node in the value chain in case the given node is no longer available to perform the task. The first of them considers the direct distance (shortest path length) between the node in question and its nearest replacement, while the second evaluates the actual replacement process, assuming that preceding and following nodes in the network should each be able to find and contact the replacement. In this report, we demonstrate the properties of the new centrality measures using a few toy examples and compare them to classic centralities, such as betweenness, closeness and degree centrality. We also apply the new measures to randomly colored empirical networks. We find that the newly introduced centralities differ sufficiently from the classic measures, pointing towards different aspects of the network. Our results also pinpoint the difference between having a replacement node in the network and being able to find one. This is the reason why "introduction distance" often has a noticeable correlation with betweenness. Our studies show that projecting value chains over networks may significantly alter the nodes' perceived importance. These insights might have important implications for the way law enforcement or intelligence agencies look at the effectiveness of dark network disruption strategies over time.

  12. Influence of ∼7 keV sterile neutrino dark matter on the process of reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro, E-mail: rudakovskyi@gmail.com, E-mail: iakubovskyi@nbi.ku.dk

    2016-06-01

    Recent reports of a weak unidentified emission line at ∼3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino with the mass of ∼7 keV . Previous works show that sterile neutrino dark matter with parameters consistent with the new line measurement modestly affects structure formation compared to conventional cold dark matter scenario. In this work, we concentrate for the first time on contribution of the sterile neutrino dark matter ablemore » to produce the observed line at ∼3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ∼7 keV sterile neutrinos into extended semi-analytical 'bubble' model of reionization we obtain that such sterile neutrino dark matter would produce significantly sharper reionization compared to widely used cold dark matter models, impossible to 'imitate' within the cold dark matter scenario under any reasonable choice of our model parameters, and would have a clear tendency of lowering both the redshift of reionization and the electron scattering optical depth (although the difference is still below the existing model uncertainties). Further dedicated studies of reionization (such as 21 cm measurements or studies of kinetic Sunyaev-Zeldovich effect) will thus be essential for reconstruction of particle candidate responsible the ∼3.5 keV line.« less

  13. Fundamentalist physics: why Dark Energy is bad for astronomy

    NASA Astrophysics Data System (ADS)

    White, Simon D. M.

    2007-06-01

    Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.

  14. Black holes are neither particle accelerators nor dark matter probes.

    PubMed

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  15. Black hole formation due to collapsing dark matter in a presence of dark energy in the brane-world scenario

    NASA Astrophysics Data System (ADS)

    Shah, Hasrat Hussain

    In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), ρM, and Dark Energy (DE), ρ in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) pt = kρ and pr = lρ, (l + 2k < ‑1). We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.

  16. Effect of supersonic relative motion between baryons and dark matter on collapsed objects

    NASA Astrophysics Data System (ADS)

    Asaba, Shinsuke; Ichiki, Kiyotomo; Tashiro, Hiroyuki

    2016-01-01

    Great attention is given to the first star formation and the epoch of reionization as main targets of planned large radio interferometries (e.g. Square Kilometre Array). Recently, it is claimed that the supersonic relative velocity between baryons and cold dark matter can suppress the abundance of first stars and impact the cosmological reionization process. Therefore, in order to compare observed results with theoretical predictions it is important to examine the effect of the supersonic relative motion on the small-scale structure formation. In this paper, we investigate this effect on the nonlinear structure formation in the context of the spherical collapse model in order to understand the fundamental physics in a simple configuration. We show the evolution of the dark matter sphere with the relative velocity by both using N-body simulations and numerically calculating the equation of motion for the dark matter mass shell. The effects of the relative motion in the spherical collapse model appear as the delay of the collapse time of dark matter halos and the decrease of the baryon mass fraction within the dark matter sphere. Based on these results, we provide the fitting formula of the critical density contrast for collapses with the relative motion effect and calculate the mass function of dark matter halos in the Press-Schechter formalism. As a result, the relative velocity decreases the abundance of dark matter halos whose mass is smaller than 108M⊙/h .

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence newmore » particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.« less

  18. Proteomic identification of rhythmic proteins in rice seedlings.

    PubMed

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  19. Self-interacting dark matter

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Argüelles, Carlos R.; Ruffini, Remo; Rueda, Jorge A.

    Self-interacting dark matter (SIDM) is a hypothetical form of dark matter (DM), characterized by relatively strong (compared to the weak interaction strength) self-interactions (SIs), which has been proposed to resolve a number of issues concerning tensions between simulations and observations at the galactic or smaller scales. We review here some recent developments discussed at the 14th Marcel Grossmann Meeting (MG14), paying particular attention to restrictions on the SIDM (total) cross-section from using novel observables in merging galactic structures, as well as the rôle of SIDM on the Milky Way halo and its central region. We report on some interesting particle-physics inspired SIDM models that were discussed at MG14, namely the glueball DM, and a right-handed neutrino DM (with mass of a few tens of keV, that may exist in minimal extensions of the standard model (SM)), interacting among themselves via vector bosons mediators in the dark sector. A detailed phenomenology of the latter model on galactic scales, as well as the potential role of the right handed neutrinos in alleviating some of the small-scale cosmology problems, namely the discrepancies between observations and numerical simulations within standard ΛCDM and ΛWDM cosmologies are reported.

  20. Products of dark CO sub 2 fixation in pea root nodules support bacteroid metabolism. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosendahl, L.; Pedersen, W.B.; Vance, C.P.

    1990-05-01

    Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in themore » wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.« less

  1. Object Lesson: Discovering and Learning to Recognize Objects

    DTIC Science & Technology

    2002-01-01

    4 x 4 grid represents the possible appearance of an edge, quantized to just two luminance levels. The dark line centered in the grid is the average...11):33-38, 1995. [16] Maja J. Mataric . A distributed model for mobile robot environment-learning and navigation. Technical Report AIlR- 1228

  2. Direct detection of a microlens in the Milky Way.

    PubMed

    Alcock, C; Allsman, R A; Alves, D R; Axelrod, T S; Becker, A C; Bennett, D P; Cook, K H; Drake, A J; Freeman, K C; Geha, M; Griest, K; Keller, S C; Lehner, M J; Marshall, S L; Minniti, D; Nelson, C A; Peterson, B A; Popowski, P; Pratt, M R; Quinn, P J; Stubbs, C W; Sutherland, W; Tomaney, A B; Vandehei, T; Welch, D

    2001-12-06

    The nature of dark matter remains mysterious, with luminous material accounting for at most approximately 25 per cent of the baryons in the Universe. We accordingly undertook a survey looking for the microlensing of stars in the Large Magellanic Cloud (LMC) to determine the fraction of Galactic dark matter contained in massive compact halo objects (MACHOs). The presence of the dark matter would be revealed by gravitational lensing of the light from an LMC star as the foreground dark matter moves across the line of sight. The duration of the lensing event is the key observable parameter, but gives non-unique solutions when attempting to estimate the mass, distance and transverse velocity of the lens. The survey results to date indicate that between 8 and 50 per cent of the baryonic mass of the Galactic halo is in the form of MACHOs (ref. 3), but removing the degeneracy by identifying a lensing object would tighten the constraints on the mass in MACHOs. Here we report a direct image of a microlens, revealing it to be a nearby low-mass star in the disk of the Milky Way. This is consistent with the expected frequency of nearby stars acting as lenses, and demonstrates a direct determination of a lens mass from a microlensing event. Complete solutions such as this for halo microlensing events will probe directly the nature of the MACHOs.

  3. INTEGRAL and Light Dark Matter

    NASA Astrophysics Data System (ADS)

    Cassé, M.; Fayet, P.; Schanne, S.; Cordier, B.; Paul, J.

    2004-10-01

    The nature of Dark Matter remains one of the outstanding questions of modern astrophysics. The success of the Cold Dark Matter cosmological model argues strongly in favor of a major component of the dark matter being in the form of elementary particles, not yet discovered. Based on earlier theoretical considerations, a possible link between the recent SPI/INTEGRAL measurement of an intense and extended emission of 511 keV photons (the hallmark of positron annihilation) from the central Galaxy, and this mysterious component of the Universe, has been established advocating the existence of a light dark matter (LDM) particle (at variance with the neutralino, in general considered as very heavy). We show that it can explain the 511 keV emission mapped with SPI/INTEGRAL without overproducing undesirable signals like high energy gamma-rays arising from π? decays, and radio synchrotron photons emitted by high energy positrons circulating in magnetic fields. Combining the annihilation line constraint with the cosmological one (i.e. that the relic LDM energy density reaches about 23% of the density of the Universe), one can restrict the main properties of the light dark matter particle. Its mass should lie between ≈ 1 and 100 MeV, and the required annihilation cross section, velocity dependent, should be significantly larger than for weak interactions, and may be induced by the virtual production of a new light neutral spin 1 boson U. On astrophysical grounds, the best target to validate the LDM proposal seems to be the observation by SPI/INTEGRAL and future gamma ray telescopes of the annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular cluster, thought to be dominated by dark matter. Key words: Galaxy center; dark matter; gamma rays. 0Corresponding author: m.casse@cea.fr 3 Institut d'Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris, France 4 Fédération de Recherche Astroparticule et Cosmologie, Coll`ege de France, 11 Place Marcellin Berthelot, 75231 Paris, France

  4. Using Voronoi Tessellations to identify groups in N-body Simulation

    NASA Astrophysics Data System (ADS)

    Gonzalez, R. E.; Theuns, T.

    Dark matter N-body simulations often use a friends-of-friends (FOF) group finder to link together particles above a specified density threshold. An over density of 200 picks-out objects that can be identified with virialised dark matter haloes, based on the spherical collapse model for the formation of structure. When the halo contains significant substructure, as is the case in very high resolution simulations, then FOF will simply link all substructure to the parent halo. Many cosmological simulations now also include gas and stars, and these are often distributed differently from the dark matter. It is then not clear whether the structures identified by FOF are very physical. Here we use Voronoi tesselations to identify structures in hydrodynamical cosmological simulations, that contain dark matter, gas and stars. This adaptive technique allows accurate estimates of densities, and density gradients, for a non-structured distribution of points. We discuss how these estimates allow us to identify structures in the dark matter that can be identified with haloes, and in the stars, to identify galaxies.

  5. A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.

    PubMed

    Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G

    2003-12-18

    Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.

  6. The effects of anandamide and oleamide on cognition depend on diurnal variations.

    PubMed

    Rueda-Orozco, Pavel E; Montes-Rodriguez, Corinne J; Ruiz-Contreras, Alejandra E; Mendez-Diaz, Monica; Prospero-Garcia, Oscar

    2017-10-01

    Cannabinergic receptor 1 (CB1r) is highly expressed in almost the entire brain; hence, its activation affects diverse functions, including cognitive processes such as learning and memory. On the other hand, it has been demonstrated that CB1r expression fluctuates along the light-dark cycle. In this context, the objective of this work was to characterize the cannabinergic influence over cognitive processes and its relationship with the light-dark cycle. To this aim we studied the effects of two endogenous cannabinoids, anandamide (AEA) and oleamide (ODA), on the consolidation of memory and event-related potentials (ERPs) depending on the light-dark cycle. Our results indicate that AEA and ODA impair the consolidation of spatial and emotional memories and reduce the amplitude of several components of the ERP complex, depending on the phase of the light-dark cycle. This study further supports the notion that endocannabinoids participate in the regulation of cognitive processes with strong influence of environmental variables such as the light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Voyage dans le noir. Trous noirs, matière noire, énergie noire et antimatière [Journey in the dark. Black holes, dark matter, dark energy and antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez-Gaume, Luis; Doser, Michael; Grojean, Chri

    2009-11-26

    Et si nous faisions avec les physiciens un voyage dans le noir ? De l'astrophysique à la physique des particules les trois noirs, la matière noire, l'énergie noire ou l’antimatière intriguent et fascinent. Que sont ces objets qui bousculent nos idées et qui véhiculent parfois des craintes irraisonnées? Luis Alvarez-Gaume, Michael Doser et Christophe Grojean, physiciens du CERN vous invitent à mettre en lumière (!) les constituants de base de la matière et à explorer les mystères de la physique contemporaine. Une soirée lumineuse pour éclairer des concepts et ne plus avoir peur du noir. [ What if we mademore » a trip to the physicists in the dark? From astrophysics to particle physics the three blacks, dark matter, dark energy or antimatter intrigue and fascinate. What are these objects that jostle our ideas and sometimes convey irrational fears? Luis Alvarez-Gaume, Michael Doser and Christophe Grojean, CERN physicists invite you to highlight (!) The basic constituents of matter and to explore the mysteries of contemporary physics. A bright evening to illuminate concepts and not be afraid of the dark.]« less

  8. On the Ultimate Fate of Massive Neutron Stars in an Ever Expanding Universe

    NASA Astrophysics Data System (ADS)

    Hujeirat, Ahmad A.

    2018-01-01

    General theory of relativity predicts the central densities of massive neutron stars (-MANs) to be much larger than the nuclear density. In the absence of energy production, the lifetimes of MANs should be shorter that their low-mass counterparts. Yet neither black holes nor neutron stars, whose masses are between two and five solar masses have ever been observed. Also, it is not clear what happened to the old MANs that were created through the collapse of first generation of stars shortly after the Big Bang. In this article, it is argued that MANs must end as completely invisible objects, whose cores are made of incompressible quark-gluon-superfluids and that their effective masses must have doubled through the injection of dark energy by a universal scalar field at the background of supranuclear density. It turns out that recent glitch observations of pulsars and young neutron star systems and data from particle collisions at the LHC and RHIC are in line with the presen! t scenario.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzon, Wolfgang; Schubnell, Michael

    Over the past decade scientists have collected convincing evidence that the expansion of the universe is accelerating, leading to the conclusion that the content of our universe is dominated by a mysterious 'dark energy'. The fact that present theory cannot account for the dark energy has made the determination of the nature of dark energy central to the field of high energy physics. It is expected that nothing short of a revolution in our understanding of the fundamental laws of physics is required to fully understand the accelerating universe. Discovering the nature of dark energy is a very difficult task,more » and requires experiments that employ a combination of different observational techniques, such as type-Ia supernovae, gravitational weak lensing surveys, galaxy and galaxy cluster surveys, and baryon acoustic oscillations. A critical component of any approach to understanding the nature of dark energy is precision photometry. This report addresses just that. Most dark energy missions will require photometric calibration over a wide range of intensities using standardized stars and internal reference sources. All of the techniques proposed for these missions rely on a complete understanding of the linearity of the detectors. The technical report focuses on the investigation and characterization of 'reciprocity failure', a newly discovered count-rate dependent nonlinearity in the NICMOS cameras on the Hubble Space Telescope. In order to quantify reciprocity failure for modern astronomical detectors, we built a dedicated reciprocity test setup that produced a known amount of light on a detector, and to measured its response as a function of light intensity and wavelength.« less

  10. Le volcanisme cambrien du Maroc central : implications géodynamiquesThe Central Morocco Cambrian volcanism: geodynamic implications

    NASA Astrophysics Data System (ADS)

    Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul

    2003-05-01

    In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).

  11. "Darkness Overcomes You": Shaun Tan and Søren Kierkegaard

    ERIC Educational Resources Information Center

    Johansen, Martin Blok

    2015-01-01

    This article analyses Shaun Tan's picturebook "The Red Tree" using some of the central concepts of existentialism developed by the Danish philosopher Søren Kierkegaard. Kierkegaard argued that being a person entails a coming-to-be ["tilblivelse"], and for the person this coming-to-be manifests itself as a task. The task is to…

  12. Iris Pigmentation and Fractionated Reaction and Reflex Time.

    ERIC Educational Resources Information Center

    Hale, Bruce D.; And Others

    Behavioral measures, fractionated reaction and reflex times by means of electromyography, were used to determine if the eye color differences are found in the central or peripheral regions of the nervous system. The purpose of this research was to determine the truth of the hypothesis that dark-eyed individuals have faster reflex and reaction time…

  13. Centralized automated quality assurance for large scale health care systems. A pilot method for some aspects of dental radiography.

    PubMed

    Benn, D K; Minden, N J; Pettigrew, J C; Shim, M

    1994-08-01

    President Clinton's Health Security Act proposes the formation of large scale health plans with improved quality assurance. Dental radiography consumes 4% ($1.2 billion in 1990) of total dental expenditure yet regular systematic office quality assurance is not performed. A pilot automated method is described for assessing density of exposed film and fogging of unexposed processed film. A workstation and camera were used to input intraoral radiographs. Test images were produced from a phantom jaw with increasing exposure times. Two radiologists subjectively classified the images as too light, acceptable, or too dark. A computer program automatically classified global grey level histograms from the test images as too light, acceptable, or too dark. The program correctly classified 95% of 88 clinical films. Optical density of unexposed film in the range 0.15 to 0.52 measured by computer was reliable to better than 0.01. Further work is needed to see if comprehensive centralized automated radiographic quality assurance systems with feedback to dentists are feasible, are able to improve quality, and are significantly cheaper than conventional clerical methods.

  14. Melatonin and female reproduction.

    PubMed

    Tamura, Hiroshi; Takasaki, Akihisa; Taketani, Toshiaki; Tanabe, Manabu; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Aasada, Hiromi; Yamagata, Yoshiaki; Sugino, Norihiro

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by the pineal gland. After entering the circulation, melatonin acts as an endocrine factor and a chemical messenger of light and darkness. It regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It also affects the brain, immune, gastrointestinal, cardiovascular, renal, bone and endocrine functions and acts as an oncostatic and anti-aging molecule. Many of melatonin's actions are mediated through interactions with specific membrane-bound receptors expressed not only in the central nervous system, but also in peripheral tissues. Melatonin also acts through non-receptor-mediated mechanisms, for example serving as a scavenger for reactive oxygen species and reactive nitrogen species. At both physiological and pharmacological concentrations, melatonin attenuates and counteracts oxidative stress and regulates cellular metabolism. Growing scientific evidence of reproductive physiology supports the role of melatonin in human reproduction. This review was conducted to investigate the effects of melatonin on female reproduction and to summarize our findings in this field. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  15. Effects of rat sex differences and lighting on locomotor exploration of a circular open field with free-standing central corners and without peripheral walls.

    PubMed

    Alstott, Jeff; Timberlake, William

    2009-01-23

    A typical open field consists of a square enclosure, bounded by four straight walls joined by identical corners. For decades behavioral researchers have used the open center and more sheltered perimeter of such fields to examine the effects of drugs, sex differences, and illumination on the behavioral expression of fear and anxiety. The present study "reversed" the relative security of the center and periphery of a circular field to re-examine the functional relation of open field behavior to experience, sex differences and lighting. Across six daily exposures, males in both the light and dark rapidly increased their preference for the center. Females in the light developed a similar pattern, though more slowly; females in the dark continued to spend the great majority of their time in the open periphery, including the edge of the field. The behavior of all groups, but especially the dark females, strongly supports the continued importance of environmental assessment in open field behavior.

  16. Disruption of retinoid-related orphan receptor beta changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice.

    PubMed Central

    André, E; Conquet, F; Steinmayr, M; Stratton, S C; Porciatti, V; Becker-André, M

    1998-01-01

    The orphan nuclear receptor RORbeta is expressed in areas of the central nervous system which are involved in the processing of sensory information, including spinal cord, thalamus and sensory cerebellar cortices. Additionally, RORbeta localizes to the three principal anatomical components of the mammalian timing system, the suprachiasmatic nuclei, the retina and the pineal gland. RORbeta mRNA levels oscillate in retina and pineal gland with a circadian rhythm that persists in constant darkness. RORbeta-/- mice display a duck-like gait, transient male incapability to sexually reproduce, and a severely disorganized retina that suffers from postnatal degeneration. Consequently, adult RORbeta-/- mice are blind, yet their circadian activity rhythm is still entrained by light-dark cycles. Interestingly, under conditions of constant darkness, RORbeta-/- mice display an extended period of free-running rhythmicity. The overall behavioral phenotype of RORbeta-/- mice, together with the chromosomal localization of the RORbeta gene, suggests a close relationship to the spontaneous mouse mutation vacillans described >40 years ago. PMID:9670004

  17. Eating dark and milk chocolate: a randomized crossover study of effects on appetite and energy intake

    PubMed Central

    Sørensen, L B; Astrup, A

    2011-01-01

    Objective: To compare the effect of dark and milk chocolate on appetite sensations and energy intake at an ad libitum test meal in healthy, normal-weight men. Subjects/methods: A total of 16 young, healthy, normal-weight men participated in a randomized, crossover study. Test meals were 100 g of either milk (2285 kJ) or dark chocolate (2502 kJ). Visual-analogue scales were used to record appetite sensations before and after the test meal was consumed and subsequently every 30 min for 5 h. An ad libitum meal was served 2 h after the test meal had been consumed. Results: The participants felt more satiated, less hungry, and had lower ratings of prospective food consumption after consumption of the dark chocolate than after the milk chocolate. Ratings of the desire to eat something sweet, fatty or savoury were all lower after consumption of the dark chocolate. Energy intake at the ad libitum meal was 17% lower after consumption of the dark chocolate than after the milk chocolate (P=0.002). If the energy provided by the chocolate is included in the calculation, the energy intake after consumption of the dark chocolate was still 8% lower than after the milk chocolate (P=0.01). The dark chocolate load resulted in an overall energy difference of −584 kJ (95% confidence interval (−1027;−141)) during the test period. Conclusion: In the present study, dark chocolate promotes satiety, lowers the desire to eat something sweet, and suppresses energy intake compared with milk chocolate. PMID:23455041

  18. Direct probe of dark energy through gravitational lensing effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Hong-Jian; Zhang, Zhen, E-mail: hjhe@tsinghua.edu.cn, E-mail: zh.zhang@pku.edu.cn

    We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w . We find that it generates w -dependent and position-dependent modification to the conventional light orbital equation of w =−1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident lightmore » rays. We demonstrate that the dark-energy-induced deflection angle Δα{sub DE}∝ M {sup (1+1/3} {sup w} {sup )} (with 1+1/3 w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M → 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect . This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w =−1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of Δα{sub DE} → 0 (under 0 M → ) at the leading order.« less

  19. Massive black hole factories: Supermassive and quasi-star formation in primordial halos

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad

    2013-10-01

    Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.

  20. A New Synergetic Nanocomposite for Dye Degradation in Dark and Light

    PubMed Central

    V., Lakshmi Prasanna; Rajagopalan, Vijayaraghavan

    2016-01-01

    Environmental hazard caused due to the release of dyes in effluents is a concern in many countries. Among the various methods to combat this problem, Advanced Oxidation Process, in which semiconductor photocatalysts are used, is considered the most effective one. These materials release Reactive Oxygen Species (ROS) such as hydroxyl radical and superoxide in suspension that degrade the dyes into non-toxic minerals. However, this process requires visible or UV light for activation. Hence, there is a need to develop materials that release ROS, both in the absence and in the presence of light, so that the efficiency of dye removal is enhanced. Towards this objective, we have designed and synthesized a new nanocomposite ZnO2/polypyrrole which releases ROS even in the dark. The ROS released in the dark and in light were estimated by standard methods. It is to be noted that ZnO2 degrades the dye only under UV light but not in dark or in the presence of visible light. We propose the mechanism of dye degradation in dark and light. The synergically coupled nanocomposite of ZnO2/ppy is the first example that degrades dyes in the dark, through advanced oxidation process without employing additional reagents. PMID:27929084

  1. CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Timothy D.

    2016-06-20

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of ≳5 M {sub ⊙} as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least 10 such galaxies places independent limits on MACHO dark matter of masses ≳10 M {sub ⊙}.more » Both Eri II’s cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M {sub ⊙} and half-light radii of 13 pc (for the cluster) and ∼30 pc (for the ultra-faint dwarfs). These systems close the ∼20–100 M {sub ⊙} window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ∼10{sup −7} M {sub ⊙} up to arbitrarily high masses.« less

  2. Simple potential model for interaction of dark particles with massive bodies

    NASA Astrophysics Data System (ADS)

    Takibayev, Nurgali

    2018-01-01

    A simple model for interaction of dark particles with matter based on resonance behavior in a three-body system is proposed. The model describes resonant amplification of effective interaction between two massive bodies at large distances between them. The phenomenon is explained by catalytic action of dark particles rescattering at a system of two heavy bodies which are understood here as the big stellar objects. Resonant amplification of the effective interaction between the two heavy bodies imitates the increase in their mass while their true gravitational mass remains unchanged. Such increased interaction leads to more pronounced gravitational lensing of bypassing light. It is shown that effective interaction between the heavy bodies is changed at larger distances and can transform into repulsive action.

  3. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results

    DOE PAGES

    Yuan, Fang

    2015-07-29

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxiesmore » and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as m r = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. In conclusion, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.« less

  4. OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Lidman, C.; Davis, T. M.; Childress, M.; Abdalla, F. B.; Banerji, M.; Buckley-Geer, E.; Carnero Rosell, A.; Carollo, D.; Castander, F. J.; D'Andrea, C. B.; Diehl, H. T.; Cunha, C. E.; Foley, R. J.; Frieman, J.; Glazebrook, K.; Gschwend, J.; Hinton, S.; Jouvel, S.; Kessler, R.; Kim, A. G.; King, A. L.; Kuehn, K.; Kuhlmann, S.; Lewis, G. F.; Lin, H.; Martini, P.; McMahon, R. G.; Mould, J.; Nichol, R. C.; Norris, R. P.; O'Neill, C. R.; Ostrovski, F.; Papadopoulos, A.; Parkinson, D.; Reed, S.; Romer, A. K.; Rooney, P. J.; Rozo, E.; Rykoff, E. S.; Sako, M.; Scalzo, R.; Schmidt, B. P.; Scolnic, D.; Seymour, N.; Sharp, R.; Sobreira, F.; Sullivan, M.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Wechsler, R. H.; Wester, W.; Wilcox, H.; Zhang, B.; Abbott, T.; Allam, S.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carrasco Kind, M.; Covarrubias, R.; Crocce, M.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; Marshall, J.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.

    2015-09-01

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. Finally, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.

  5. Topics in physics beyond the standard model with strong interactions

    NASA Astrophysics Data System (ADS)

    Gomez Sanchez, Catalina

    In this thesis we study a few complementary topics related to some of the open questions in the Standard Model (SM). We first consider the scalar spectrum of gauge theories with walking dynamics. The question of whether or not a light pseudo-Nambu-Goldstone boson associated with the spontaneous breaking of approximate dilatation symmetry appears in these theories has been long withstanding. We derive an effective action for the scalars, including new terms not previously considered in the literature, and obtain solutions for the lightest scalar's momentum-dependent form factor that determines the value of its pole mass. Our results for the lowest-lying state suggest that this scalar is never expected to be light, but it can have some properties that closely resemble the SM Higgs boson. We then propose a new leptonic charge-asymmetry observable well suited for the study of some Beyond the SM (BSM) physics objects at the LHC. New resonances decaying to one or many leptons could constitute the first signs of BSM physics that we observe at the LHC; if these new objects carry QCD charge they may have an associated charge asymmetry in their daughter leptons. Our observable can be used in events with single or multiple leptons in the final state. We discuss this measurement in the context of coloured scalar diquarks, as well as that of top-antitop pairs. We argue that, although a fainter signal is expected relative to other charge asymmetry observables, the low systematic uncertainties keep this particular observable relevant, especially in cases where reconstruction of the parent particle is not a viable strategy. Finally, we propose a simple dark-sector extension to the SM that communicates with ordinary quarks and leptons only through a small kinetic mixing of the dark photon and the photon. The dark sector is assumed to undergo a series of phase transitions such that monopoles and strings arise. These objects form long-lived states that eventually decay and can account for the observed cosmic-ray positron excess observed by the PAMELA and Fermi satellites. This topological Dark Matter (DM) can account for the Universe's DM content if the coupling in the dark sector is strong.

  6. Dark matter in the outer solar system

    NASA Technical Reports Server (NTRS)

    Owen, T.; Cruikshank, D.; De Bergh, C.; Geballe, T.

    1994-01-01

    There are now a large number of small bodies in the outer solar system that are known to be covered with dark material. Attempts to identify that material have been thwarted by the absence of discrete absorption features in the reflection spectra of these planetesimals. An absorption at 2.2 micrometers that appeared to be present in several objects has not been confirmed by new observations. Three absorptions in the spectrum of the unusually red planetesimal 5145 Pholus are well-established, but their identity remains a mystery.

  7. Dark Energy Found Stifling Growth in Universe

    NASA Astrophysics Data System (ADS)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its development to slow down." Vikhlinin and his colleagues used Chandra to observe the hot gas in dozens of galaxy clusters, which are the largest collapsed objects in the universe. Some of these clusters are relatively close and others are more than halfway across the universe. The results show the increase in mass of the galaxy clusters over time aligns with a universe dominated by dark energy. It is more difficult for objects like galaxy clusters to grow when space is stretched, as caused by dark energy. Vikhlinin and his team see this effect clearly in their data. The results are remarkably consistent with those from the distance measurements, revealing general relativity applies, as expected, on large scales. "For years, scientists have wanted to start testing how gravity works on large scales and now, we finally have," said William Forman, a co-author of the study from the Smithsonian Astrophysical Observatory. "This is a test that general relativity could have failed." When combined with other clues -- supernovas, the study of the cosmic microwave background, and the distribution of galaxies -- this new X-ray result gives scientists the best insight to date on the properties of dark energy. The study strengthens the evidence that dark energy is the cosmological constant. Although it is the leading candidate to explain dark energy, theoretical work suggests it should be about 10 raised to the power of 120 times larger than observed. Therefore, alternatives to general relativity, such as theories involving hidden dimensions, are being explored. "Putting all of this data together gives us the strongest evidence yet that dark energy is the cosmological constant, or in other words, that 'nothing weighs something'," said Vikhlinin. "A lot more testing is needed, but so far Einstein's theory is looking as good as ever." These results have consequences for predicting the ultimate fate of the universe. If dark energy is explained by the cosmological constant, the expansion of the universe will continue to accelerate, and the Milky Way and its neighbor galaxy, Andromeda, never will merge with the Virgo cluster. In that case, about a hundred billion years from now, all other galaxies ultimately would disappear from the Milky Way's view and, eventually, the local superclusters of galaxies also would disintegrate. The work by Vikhlinin and his colleagues will be published in two separate papers in the Feb. 10 issue of The Astrophysical Journal. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  8. On the Evolution of High-redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Kim, Minsun

    2016-09-01

    We build a simple physical model to study the high-redshift active galactic nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo V c and the velocity dispersion of a galaxy σ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At z˜ 4, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at z˜ 6 can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of 2× {10}5 {{years}}. The X-ray AGN LFs and X-ray AGN number counts are also calculated at 2.0\\lt z\\lt 5.0 and z\\gt 3, respectively, using the same parameters adopted in the calculation for the optical AGN LF at z˜ 4. It is estimated that about 30 AGNs per {{{\\deg }}}2 at z\\gt 6 can be detected with a flux limit of 3× {10}-17 {erg} {{cm}}-2 {{{s}}}-1 in the 0.5-2 keV band. Additionally, the cosmic reionization is also investigated. The ultraviolet photons emitted from the high-redshift AGNs mainly contribute to the cosmic reionization, and the central BHs of the high-redshift AGNs have a mass range of {10}6{--}{10}8{M}⊙ . We also discuss some uncertainties in both the AGN LFs and AGN number counts originating from the {M}{{BH}}{--}σ relation, Eddington ratio, AGN lifetime, and X-ray attenuation in our model.

  9. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  10. Relativistic dynamics and extreme mass ratio inspirals

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau

    2018-05-01

    It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.

  11. Relativistic dynamics and extreme mass ratio inspirals.

    PubMed

    Amaro-Seoane, Pau

    2018-01-01

    It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes-how some of them grow by orders of magnitude in mass-lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.

  12. THE DETECTION OF ULTRA-FAINT LOW SURFACE BRIGHTNESS DWARF GALAXIES IN THE VIRGO CLUSTER: A PROBE OF DARK MATTER AND BARYONIC PHYSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giallongo, E.; Menci, N.; Grazian, A.

    2015-11-01

    We have discovered 11 ultra-faint (r ≲ 22.1) low surface brightness (LSB, central surface brightness 23 ≲ μ{sub r} ≲ 26) dwarf galaxy candidates in one deep Virgo field of just 576 arcmin{sup 2} obtained by the Large Binocular Camera at the Large Binocular Telescope. Their association with the Virgo cluster is supported by their distinct position in the central surface brightness—total magnitude plane with respect to the background galaxies of similar total magnitude. They have typical absolute magnitudes and scale sizes, if at the distance of Virgo, in the range −13 ≲ M{sub r} ≲ −9 and 250 ≲more » r{sub s} ≲ 850 pc, respectively. Their colors are consistent with a gradually declining star formation history with a specific star formation rate of the order of 10{sup −11} yr{sup −1}, i.e., 10 times lower than that of main sequence star-forming galaxies. They are older than the cluster formation age and appear to be regular in morphology. They represent the faintest extremes of the population of low luminosity LSB dwarfs that has recently been detected in wider surveys of the Virgo cluster. Thanks to the depth of our observations, we are able to extend the Virgo luminosity function down to M{sub r} ∼ −9.3 (corresponding to total masses M ∼ 10{sup 7} M{sub ⊙}), finding an average faint-end slope α ≃ −1.4. This relatively steep slope puts interesting constraints on the nature of the dark matter and, in particular, on warm dark matter (WDM) often invoked to solve the overprediction of the dwarf number density by the standard cold dark matter scenario. We derive a lower limit on the WDM particle mass >1.5 keV.« less

  13. SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au

    2016-02-01

    Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences betweenmore » S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.« less

  14. The Distance to M54 using Infrared Photometry of RR Lyrae Variable Stars and the Implications of its Relation to the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Gupta, Arvind F.; Beaton, Rachael L.; Majewski, Steven R.; SMHASH Team

    2018-01-01

    CDM cosmological models predict that dark matter halo density profiles will have central cusps. Yet for many dwarf spheroidal galaxies (dSphs), this expectation is in contrast with observations of cored, rather than cusped, halos. This 'cusp-core problem' is apparent in the Sagittarius Dwarf Galaxy (Sgr), one of the largest satellites of the Milky Way. The globular cluster M54, one of several clusters associated with Sgr, coincides in on-sky position with the center of the main body of Sgr. While several studies find that M54 lies within the center of Sgr, other findings show that M54 is offset from the center by several kiloparsecs along our line of sight. The latter requires Sgr to have a cored dark matter distribution. In the presence of a cuspy halo, the orbit of M54 would have decayed via dynamical friction and the cluster would have fallen to the center of Sgr. A clear determination of the relation of the two bodies may help us better understand the distribution of dark matter in Sgr and other dSphs. Here we present a measurement of the distance modulus to M54 using a set of RR Lyrae variable stars in near-infrared Magellan data mid-infrared Spitzer data. The magnitudes of individual stars are measured using multi-epoch PSF photometry and light curve fitting. From precise RR Lyrae period-luminosity relations at these wavelengths, we then find the mean M54 distance modulus to be 17.126 ± 0.023 (ran) ± 0.080 (sys). Our result is consistent with a distance measurement to Sgr derived via nearly identical methods and thus also consistent with the expectation of a central cusp in the dark matter density profile of Sgr.

  15. Unveiling the High Energy Obscured Universe: Hunting Collapsed Objects Physics

    NASA Technical Reports Server (NTRS)

    Ubertini, P.; Bazzano, A.; Cocchi, M.; Natalucci, L.; Bassani, L.; Caroli, E.; Stephen, J. B.; Caraveo, P.; Mereghetti, S.; Villa, G.

    2005-01-01

    A large part of energy from space is coming from collapsing stars (SN, Hypernovae) and collapsed stars (black holes, neutron stars and white dwarfs). The peak of their energy release is in the hard-X and gamma-ray wavelengths where photons are insensitive to absorption and can travel from the edge the Universe or the central core of the Galaxy without loosing the primordial information of energy, time signature and polarization. The most efficient process to produce energetic photons is gravitational accretion of matter from a "normal" star onto a collapsed companion (LGxMcollxdMacc/dtx( 1Rdisc)-dMacc/dt x c2), exceeding by far the nuclear reaction capability to generate high energy quanta. Thus our natural laboratory for "in situ" investigations are collapsed objects in which matter and radiation co-exist in extreme conditions of temperature and density due to gravitationally bent geometry and magnetic fields. This is a unique opportunity to study the physics of accretion flows in stellar mass and super-massive Black Holes (SMBHs), plasmoids generated in relativistic jets in galactic microQSOs and AGNs, ionised plasma interacting at the touching point of weakly magnetized NS surface, GRB/Supernovae connection, and the mysterious origins of "dark" GRB and X-ray flash.

  16. Infrared and Optical Spectroscopy of Protostars in the Elephant Trunk Nebula

    NASA Astrophysics Data System (ADS)

    Faied, Dohy; Reach, W. T.; Tappe, A.; Rho, J.

    2006-12-01

    We present Spitzer Space Telescope observations of the optically dark globule IC1396A. We have identified red objects located within the molecular globule to be Class I protostars, and objects scattered near the globule are found to be Class II T-Tauri stars surrounded by warm, luminous disks. We obtained simultaneous optical and infrared spectra (5.5 40 microns) with the Palomar Hale 200 inch telescope. The Class I sources were observed to have extremely red continua, rising at 24 microns, with deep silicate absorption at 9-11 microns, and weaker silicate absorption at around 12 microns. Some of these sources also display weak ice features such as CO2 and H2O. In contrast, the Class II sources have strong H-alpha emission and silicate emission features at 9-11 microns, indicative of circumstellar disks. These results all suggest that star formation within this globule is occurring at two different stages the first stage, leading to the Class II sources located in the center of the globule, and a second, very recent one (less than 100,000 yr ago) that is occurring within the globule. This second phase was likely triggered by the wind and radiation of the central O-type star of the IC 1396 H II region.

  17. A galactic cloak for an exploding star

    NASA Image and Video Library

    2015-02-23

    The galaxy pictured here is NGC 4424, located in the constellation of  Virgo. It is not visible with the naked eye but has been captured here with the NASA/ESA Hubble Space Telescope. Although it may not be obvious from this image, NGC 4424 is in fact a spiral galaxy. In this image it is seen more or less edge on, but from above you would be able to see the arms of the galaxy wrapping around its centre to give the characteristic spiral form . In 2012 astronomers observed a supernova in NGC 4424 — a violent explosion marking the end of a star’s life. During a supernova explosion, a single star can often outshine an entire galaxy. However, the supernova in NGC 4424, dubbed SN 2012cg, cannot be seen here as the image was taken ten years prior to the explosion. Along the central region of the galaxy, clouds of dust block the light from distant stars and create dark patches. To the left of NGC 4424 there are two bright objects in the frame. The brightest is another, smaller galaxy known as LEDA 213994 and the object closer to NGC 4424 is an anonymous star in our Milky Way. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Gilles Chapdelaine.

  18. Distant asteroids and Chiron

    NASA Technical Reports Server (NTRS)

    French, Linda M.; Vilas, Faith; Hartmann, William K.; Tholen, David J.

    1989-01-01

    Knowledge of the physical properties of distant asteroids (a greater than 3.3 AU) has grown dramatically over the past five years, due to systematic compositional and lighcurve studies. Most of these objects have red, dark surfaces, and their spectra show a reddening in spectral slope with heliocentric distance, implying a change in surface composition. Trojans for which near-opposition phase curve information is available appear to show little or no opposition effect, unlike any other dark solar system objects. The lightcurve amplitudes of Trojan and Hilda asteroids imply significantly more elongated shapes for these groups than for main-belt asteroids of comparable size. These recent observations are reviewed in the context of their implications for the formationan and subsequent evolution of the distant asteroids, and their interrelations with the main belt, Chiron, and comets.

  19. The nature of the embedded population in the Rho Ophiuchi dark cloud - Mid-infrared observations

    NASA Technical Reports Server (NTRS)

    Lada, C. J.; Wilking, B. A.

    1984-01-01

    In combination with previous IR and optical data, the present 10-20 micron observations of previously identified members of the embedded population of the Rho Ophiuchi dark cloud allow determinations to be made of the broadband energy distributions for 32 of the 44 sources. The majority of the sources are found to emit the bulk of their luminosity in the 1-20 micron range, and to be surrounded by dust shells. Because they are, in light of these characteristics, probably premain-sequence in nature, relatively accurate bolometric luminosities for these objects can be obtained through integration of their energy distributions. It is found that 44 percent of the sources are less luminous than the sun, and are among the lowest luminosity premain-sequence/protostellar objects observed to date.

  20. Venus Monitoring Camera (VMC/VEx) 1 micron emissivity and Magellan microwave properties of crater-related radar-dark parabolas and other terrains

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.

    2017-09-01

    The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).

  1. Probability distribution and statistical properties of spherically compensated cosmic regions in ΛCDM cosmology

    NASA Astrophysics Data System (ADS)

    Alimi, Jean-Michel; de Fromont, Paul

    2018-04-01

    The statistical properties of cosmic structures are well known to be strong probes for cosmology. In particular, several studies tried to use the cosmic void counting number to obtain tight constrains on dark energy. In this paper, we model the statistical properties of these regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-linearly evolved Universe in the standard Λ cold dark matter model. This formalism applies similarly for minima (voids) and maxima (such as DM haloes), which are here considered symmetrically. We first derive the full joint Gaussian distribution of CoSphere's parameters in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where the compensation radius becomes very large, i.e. when the central extremum decouples from its cosmic environment. We compute the probability distribution of the compensation size in this primordial field. We show that this distribution is redshift independent and can be used to model cosmic voids size distribution. We also derive the statistical distribution of the peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic environment. We show that small central extrema with low density are associated with narrow compensation regions with deep compensation density, while higher central extrema are preferentially located in larger but smoother over/under massive regions.

  2. Voyage dans le noir. Trous noirs, matière noire, énergie noire et antimatière [Journey in the dark. Black holes, dark matter, dark energy and antimatter

    ScienceCinema

    Alvarez-Gaume, Luis; Doser, Michael; Grojean, Chri

    2018-05-24

    Et si nous faisions avec les physiciens un voyage dans le noir ? De l'astrophysique à la physique des particules les trois noirs, la matière noire, l'énergie noire ou l’antimatière intriguent et fascinent. Que sont ces objets qui bousculent nos idées et qui véhiculent parfois des craintes irraisonnées? Luis Alvarez-Gaume, Michael Doser et Christophe Grojean, physiciens du CERN vous invitent à mettre en lumière (!) les constituants de base de la matière et à explorer les mystères de la physique contemporaine. Une soirée lumineuse pour éclairer des concepts et ne plus avoir peur du noir. [ What if we made a trip to the physicists in the dark? From astrophysics to particle physics the three blacks, dark matter, dark energy or antimatter intrigue and fascinate. What are these objects that jostle our ideas and sometimes convey irrational fears? Luis Alvarez-Gaume, Michael Doser and Christophe Grojean, CERN physicists invite you to highlight (!) The basic constituents of matter and to explore the mysteries of contemporary physics. A bright evening to illuminate concepts and not be afraid of the dark.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabra, Bassem M.; Saliba, Charbel; Akl, Maya Abi

    We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBHmore » and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.« less

  4. Stereopsis and positional acuity under dark adaptation.

    PubMed

    Livingstone, M S; Hubel, D H

    1994-03-01

    Though experience tells us we can perceive depth in dim light, it is not so obvious that one of the chief mechanisms for depth perception, stereopsis, is possible under scotopic conditions. The only studies on human stereopsis in the dark adapted state seem to be those of Nagel [(1902) Zeitschrift für Psychologie, 27, 264-266] and Mueller and Lloyd [(1948) Proceedings of the National Academy of Science, U.S.A., 34, 223-227], both of which used real objects or line stereograms. We tested stereopsis using both random-dot and line stereograms and, in agreement with these studies, found that stereopsis is indeed possible in dark adaptation. We also measured stereo acuity and positional acuity (both of which are examples of hyperacuity) and compared these with grating acuity at several levels of light and dark adaptation. At all illumination levels tested, acuities for stereopsis and relative line position were both higher than for grating acuity. As light levels decreased, positional and grating acuity declined in parallel fashion, whereas stereoacuity declined more steeply.

  5. Effect of processing on recovery and variability associated with immunochemical analytical methods for multiple allergens in a single matrix: dark chocolate.

    PubMed

    Khuda, Sefat; Slate, Andrew; Pereira, Marion; Al-Taher, Fadwa; Jackson, Lauren; Diaz-Amigo, Carmen; Bigley, Elmer C; Whitaker, Thomas; Williams, Kristina

    2012-05-02

    Immunodetection of allergens in dark chocolate is complicated by interference from the chocolate components. The objectives of this study were to establish reference materials for detecting multiple allergens in dark chocolate and to determine the accuracy and precision of allergen detection by enzyme-linked immunosorbent assay (ELISA) before and after chocolate processing. Defatted peanut flour, whole egg powder, and spray-dried milk were added to melted chocolate at seven incurred levels and tempered for 4 h. Allergen concentrations were measured using commercial ELISA kits. Tempering decreased the detection of casein and β-lactoglobulin (BLG), but had no significant effect on the detection of peanut and egg. Total coefficients of variation were higher in tempered than untempered chocolate for casein and BLG, but total and analytical CVs were comparable for peanut and egg. These findings indicate that processing has a greater effect on recovery and variability of casein and BLG than peanut and egg detection in a dark chocolate matrix.

  6. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  7. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter

    NASA Astrophysics Data System (ADS)

    Muñoz, Julian B.; Kovetz, Ely D.; Dai, Liang; Kamionkowski, Marc

    2016-08-01

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20 - 100 M⊙ window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ˜20 M⊙ would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass ML induces two images, separated by a typical time delay ˜few×(ML/30 M⊙) msec . Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 1 04 FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 1 04 FRBs would constrain the fraction fDM of dark matter in MACHOs to fDM≲0.08 for ML≳20 M⊙ .

  8. The x ray morphology of the relaxed cluster of galaxies A2256. 2: Sources around the extended cluster emission

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick; Briel, U. G.

    1991-01-01

    X-ray emission from cluster galaxies as well as from 'dark objects' (i.e. not visible on the Palomar Observatory Sky Survey (POSS)) seen in the x-ray observation of A2256 with the imaging proportional counter on board ROSAT (x-ray astronomy satellite), is reported. This observation revealed significantly more sources in the field around the extended cluster emission than one would expect by chance. In a preliminary investigation, 14 sources were discovered at the limiting flux for this exposure, whereas about 7 sources would have been expected by chance. At least two of those sources are coincident with cluster member galaxies, having x-ray luminosities of approximately 10(exp +42) erg/s in the ROSAT energy band from 0.1 to 2.4 keV, but at least four more are from 'dark' objects. The similarity of these objects to those in A1367 suggests the existence of a new class of x-ray sources in clusters.

  9. Byurakan Cosmogony Concept in the Light of Modern Observational Data: Why We Need to Recall it?

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.

    2017-07-01

    Some physically possible consequences of interaction between baryonic matter and dark energy are considered. We are arguing that the modern cosmogony and cosmology based on the hypothesis of Kant and Laplace and its further modifications are not adequate to the nowadays growing base of observational data. A thought experiment is conducted in the framework of generally accepted physical concepts and laws to study the most prominent consequences of interactions between various types of substances with the dark energy carrier. Such experiments allow one to arrive at a conclusion that owing to continuous exchanges of energy between the atomic nuclei and the bearer of dark energy, the binding energy of nuclei should reduce and their mass had increase over time. This process can be considered as the Universe total mass growth at the expense of dark energy. Then one would be able to explain the long standing paradox: why the Universe did not collapse immediately after the mass formation event at the very beginning of the Universe formation. On the other hand, this way of thinking leads to a physical picture of the Universe where huge amounts of embryonic baryons possessing of negligible masses can exist in the interiors of large cosmic objects to transform into the ordinary baryonic matter of vast masses in the future. As a result, clumps of matter of huge masses can be ejected from the cores of such objects.

  10. Spherical collapse of dark matter haloes in tidal gravitational fields

    NASA Astrophysics Data System (ADS)

    Reischke, Robert; Pace, Francesco; Meyer, Sven; Schäfer, Björn Malte

    2016-11-01

    We study the spherical collapse model in the presence of external gravitational tidal shear fields for different dark energy scenarios and investigate the impact on the mass function and cluster number counts. While previous studies of the influence of shear and rotation on δc have been performed with heuristically motivated models, we try to avoid this model dependence and sample the external tidal shear values directly from the statistics of the underlying linearly evolved density field based on first-order Lagrangian perturbation theory. Within this self-consistent approach, in the sense that we restrict our treatment to scales where linear theory is still applicable, only fluctuations larger than the scale of the considered objects are included into the sampling process which naturally introduces a mass dependence of δc. We find that shear effects are predominant for smaller objects and at lower redshifts, I. e. the effect on δc is at or below the percent level for the ΛCDM model. For dark energy models we also find small but noticeable differences, similar to ΛCDM. The virial overdensity ΔV is nearly unaffected by the external shear. The now mass dependent δc is used to evaluate the mass function for different dark energy scenarios and afterwards to predict cluster number counts, which indicate that ignoring the shear contribution can lead to biases of the order of 1σ in the estimation of cosmological parameters like Ωm, σ8 or w.

  11. The James Webb Space Telescope: Extending the Science

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks. to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, exoplanet characterization and Solar System objects. In this paper, I review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  12. Comparing dark matter models, modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Li, Xin; Tang, Li; Lin, Hai-Nan

    2017-05-01

    We compare six models (including the baryonic model, two dark matter models, two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves. For the dark matter models, we assume NFW profile and core-modified profile for the dark halo, respectively. For the modified Newtonian dynamics models, we discuss Milgrom’s MOND theory with two different interpolation functions, the standard and the simple interpolation functions. For the modified gravity, we focus on Moffat’s MSTG theory. We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies. We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model. It is found that none of the six models can fit all the galaxy rotation curves well. Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter. MOND can fit the largest number of galaxies, and only one galaxy can be best fitted by the MSTG model. Core-modified model fits about half the LSB galaxies well, but no HSB galaxies, while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies. This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well. Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547305 and 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

  13. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Parker, Alexander K; Gaddie, Cristina D

    2013-05-15

    Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.

  14. Pressure from dark matter annihilation and the rotation curve of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wechakama, M.; Ascasibar, Y.

    2011-05-01

    The rotation curves of spiral galaxies are one of the basic predictions of the cold dark matter paradigm, and their shape in the innermost regions has been hotly debated over the last decades. The present work shows that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. We adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E0˜mdmc2 in the range from 1 MeV to 1 TeV and the injection rate is constrained by INTEGRAL, Fermi and HESS data. The pressure of the relativistic electron-positron gas is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung and ionization. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that pressure gradients are strong enough to balance gravity in the central parts if E0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on ˜kpc scales for most values of E0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).

  15. The bolt on Space Shuttle Atlantis is source of concern

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A bolt is shown in the lower central part of the photo. It is visible as a dark circle with a shadow surrounding it inside a larger silvery circle. The bolt extends above the surface 2-1/4 inches, causing the shadow. The photo was taken at launch of Space Shuttle Atlantis on mission STS-106.

  16. Scots pine in eastern Nebraska: A provenance study

    Treesearch

    Ralph A. Read

    1971-01-01

    Seedling progenies of 36 rangewide provenances of Scots pine (Pinus sylvestris) were established in a field test in eastern Nebraska. Results in growth and other characteristics after 8 years reveal that (1) southern origins bordering the Mediterranean grow slowly to moderately fast and remain dark green in winter, (2) central European origins grow very fast and turn...

  17. Molecular convergence of cloc and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target populations

    USDA-ARS?s Scientific Manuscript database

    A mechanism for integrating light perception and the endogenous circadian clock is central to a plant’s capacity to coordinate its growth and development with the prevailing daily light/dark cycles. Under short-day (SD) photocycles, hypocotyl elongation is maximal at dawn, being promoted by the coll...

  18. Sunspot Umbra: Structure and Evolution

    NASA Astrophysics Data System (ADS)

    Vázquez, M.; Murdin, P.

    2000-11-01

    Sunspots show two main structures: a central dark region, the umbra, surrounded by a brighter and filamentary zone, the SUNSPOT PENUMBRA (see figure 1 in the article on SUNSPOT EVOLUTION). Sunspots without penumbra are usually called SUNSPOT PORES. Observed with low spatial resolution, the umbra appears homogeneous. However, even by the nineteenth century astronomers were able to detect fine deta...

  19. Ray tracing analysis of overlapping objects in refraction contrast imaging.

    PubMed

    Hirano, Masatsugu; Yamasaki, Katsuhito; Okada, Hiroshi; Sakurai, Takashi; Kondoh, Takeshi; Katafuchi, Tetsuro; Sugimura, Kazuro; Kitazawa, Sohei; Kitazawa, Riko; Maeda, Sakan; Tamura, Shinichi

    2005-08-01

    We simulated refraction contrast imaging in overlapping objects using the ray tracing method. The easiest case, in which two columnar objects (blood vessels) with a density of 1.0 [g/cm3], run at right angles in air, was calculated. For absorption, we performed simulation using the Snell law adapted to the object's boundary. A pair of bright and dark spot results from the interference of refracted X-rays where the blood vessels crossed. This has the possibility of increasing the visibility of the image.

  20. The Dark Energy Spectroscopic Instrument (DESI)

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna; Bebek, Chris

    2014-07-01

    The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).

  1. Binge alcohol drinking elicits persistent negative affect in mice.

    PubMed

    Lee, Kaziya M; Coehlo, Michal; McGregor, Hadley A; Waltermire, Ryan S; Szumlinski, Karen K

    2015-09-15

    Cessation from chronic alcohol abuse often produces a dysphoric state that can persist into protracted withdrawal. This dysphoric state is theorized to function as a negative reinforcer that maintains excessive alcohol consumption and/or precipitates relapse in those struggling to abstain from alcohol. However, we know relatively little regarding the impact of cessation from binge drinking on behavioral measures of negative affect and related neurobiology. Male C57BL/6J mice were given access to unsweetened 20% alcohol for 6 weeks under modified Drinking-in-the-dark procedures, followed by behavioral testing beginning either 1 or 21 days into withdrawal. Mice were administered a behavioral test battery consisting of: the elevated plus maze, light/dark box, novel object test, marble burying test, Porsolt forced swim test and sucrose preference test to assess anxiogenic and depressive signs. Egr1 immunostaining was used to quantify cellular activity within the central nucleus of the amygdala (CEA), basolateral amygdala (BLA), bed nucleus of the stria terminalis (BNST), and the nucleus accumbens (Acb) shell (AcbSh) and core (AcbC). Compared to water controls, alcohol-drinking mice exhibited higher indices of emotionality in the majority of behavioral assays. The hyper-emotionality exhibited by binge drinking mice was apparent at both withdrawal time-points and correlated with higher Egr1+ cell counts in the CEA and BNST, compared to controls. These data show that affective symptoms emerge very early after cessation of binge drinking and persist into protracted withdrawal. A history of binge drinking is capable of producing enduring neuroadaptations within brain circuits mediating emotional arousal. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Exploring the under-investigated “microbial dark matter” of drinking water treatment plants

    PubMed Central

    Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio

    2017-01-01

    Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term “microbial dark matter” was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water. PMID:28290543

  3. Exploring the under-investigated "microbial dark matter" of drinking water treatment plants.

    PubMed

    Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio

    2017-03-14

    Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term "microbial dark matter" was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water.

  4. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  5. Astronomy Meets the Environmental Sciences: Activities for Informal and Formal Educational Settings

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R. T.

    2011-09-01

    Dark Skies Rangers are a set of activities that address how light pollution affects safety, energy conservation, cost, health and wildlife, as well as our ability to view the stars. The activities were created by the National Optical Astronomy Observatory (NOAO) for grades 3-12, for use both in and out of the classroom. They are downloadable online and available on CD as part of a Dark Skies Kit. The central part of the kit is an interactive light shielding demonstration, which illustrates the reasons for lighting responsibly. Four of the seven activities, including the light shielding demonstration, were presented at four workshops for the 2010 Astronomical Society of the Pacific annual conference. Three of these activities are described here.

  6. Dynamics of supernova remnants in the Galactic centre.

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Mapelli, M.; Spera, M.

    The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.

  7. Kinetic theory of dark solitons with tunable friction.

    PubMed

    Hurst, Hilary M; Efimkin, Dmitry K; Spielman, I B; Galitski, Victor

    2017-05-01

    We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a noninteracting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semiclassical dynamics of the dark soliton, a particlelike object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative-mass objects and find that their dynamics are drastically different from their positive-mass counterparts: they do not undergo Brownian motion. From the exact phase-space probability distribution function (i.e., in position and velocity), we find that both the trajectory and lifetime of the soliton are altered by friction, and the soliton can undergo Brownian motion only in the presence of friction and a confining potential. These results agree qualitatively with experimental observations by Aycock et al. [Proc. Natl. Acad. Sci. USA 114 , 2503 (2017)] in a similar system with bosonic impurity scatterers.

  8. The effect of silver nanoparticles on apoptosis and dark neuron production in rat hippocampus

    PubMed Central

    Bagheri-abassi, Farzaneh; Alavi, Hassan; Mohammadipour, Abbas; Motejaded, Fatemeh; Ebrahimzadeh-bideskan, Alireza

    2015-01-01

    Objective(s): Silver nanoparticles (Ag-NPs) are used widely in bedding, water purification, tooth paste and toys. These nanoparticles can enter into the body and move into the hippocampus. The aim of this study was to investigate the neurotoxicity of silver nanoparticles in the adult rat hippocampus. Materials and Methods: 12 male Wistar rats were randomly divided into two experimental and control groups (6 rats in each group). Animals in the experimental group received Ag-NPs (30 mg/kg) orally (gavage) for 28 consecutive days. Control group in the same period was treated with distilled water via gavage. At the end of experiment, animals were deeply anesthetized, sacrificed, and their brains were collected from each group. Finally the brain sections were stained using toluidine blue and TUNEL. Then to compare the groups, dark neurons (DNs) and apoptotic neurons were counted by morphometric method. Results: Results showed that the numbers of DNs and apoptotic cells in the CA1, CA2, CA3, and dentate gyrus (DG) of hippocampus significantly increased in the Ag-NPs group in comparison to the control group (P<0.05). Conclusion: Exposure to Ag-NPs can induce dark neuron and apoptotic cells in the hippocampus. PMID:26351553

  9. Kinetic theory of dark solitons with tunable friction

    PubMed Central

    Hurst, Hilary M.; Efimkin, Dmitry K.; Spielman, I. B.; Galitski, Victor

    2018-01-01

    We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a noninteracting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semiclassical dynamics of the dark soliton, a particlelike object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative-mass objects and find that their dynamics are drastically different from their positive-mass counterparts: they do not undergo Brownian motion. From the exact phase-space probability distribution function (i.e., in position and velocity), we find that both the trajectory and lifetime of the soliton are altered by friction, and the soliton can undergo Brownian motion only in the presence of friction and a confining potential. These results agree qualitatively with experimental observations by Aycock et al. [Proc. Natl. Acad. Sci. USA 114, 2503 (2017)] in a similar system with bosonic impurity scatterers. PMID:29744482

  10. Einstein's idealism and a new kind of space research

    NASA Astrophysics Data System (ADS)

    Popov, M. A.

    In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen made an attempt to imagine quantum experimental nonsense or some impossible experiment (EPR-experiment) in order to justify their local realism in physics. However, in the mid-1960s, John Bell showed that it is possible to realize this kind of nonsense in laboratory. Today, when EPR-refutation of local realism is routine in modern experimental physics (Clauser and Freedman [1972]; Aspect, Dalibard and Roger [1982]; Zeilinger et al. [1998]), we must; nevertheless, remark that Albert Einstein was not always a realist. As is known, in his Special Relativitz A. Einstein introduced some pure idealistic principle which K. Godel developed in famous "Remark about the relationship between Relativity theorz and Idealistic Philosophy" (1949). Kurt Godel for the first time showed an existence of special-relativistic solipsism, assuming that objective simultaneity in experimental science "loses its objective meaning". Correspondingly, there is only subjective simultaneity, that is provable by calculations with the finite velocity of light and astronomical observations. In particular, this space solipsism means that when we observe the sun, we can see only what happend on Sun 8.33 minutes ago; in other words, we percieve only certain sensations or a certain collections of ideas of the past, but not the present. Similarly, when astronomers observe galaxies estimated to be two billion light years from the Earth, they see these galaxies as they were two billion light years ago not as they are Now. Thus, in accordance with this, we may await that in this context for some pairs of astronomical objects we cannot prove they exist NOW. Moreover, this new kind of space research could be connected with introduction of the Cognitive Dark Matter, or, what is associated with manifold of the large-scale events of the Universe as a whole which are realizing Now, beyond consciousness of the observers-humans. Because we cannot know present time in Cosmology, the Cognitive Dark Matter is Kant-like superphenomental, or transcendental "noumental process" (Noumena). To describe Transcendental Dark Matter by methods of experimental idealism is, probably, the most sursprising and profound task for new space discipline ("Space Idealism"). We may await also that some fundamental characteristics of physical Dark Matter, discovered by Ostiker, Steinhardt, Krauss and Turner (1955), can be explained by our hypothethis, because it is not impossible that the Dark Matter is a part of the Cognitive Dark Matter, contained an observer's impact, which cannot be neglected after Special Relativity.

  11. Gravitational Lensing by Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Tyson, J.; Murdin, P.

    2000-11-01

    CLUSTERS OF GALAXIES are massive and relatively rare objects containing hundreds of galaxies. Their huge mass—dominated by DARK MATTER—bends light from all background objects, systematically distorting the images of thousands of distant galaxies (shear). This observed gravitational lens distortion can be inverted to produce an `image' of the mass in the foreground cluster of galaxies. Most of the...

  12. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    PubMed

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.

  13. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  14. THE EXTREME SMALL SCALES: DO SATELLITE GALAXIES TRACE DARK MATTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Douglas F.; Berlind, Andreas A.; McBride, Cameron K.

    2012-04-10

    We investigate the radial distribution of galaxies within their host dark matter halos as measured in the Sloan Digital Sky Survey by modeling their small-scale clustering. Specifically, we model the Jiang et al. measurements of the galaxy two-point correlation function down to very small projected separations (10 h{sup -1} kpc {<=} r {<=} 400 h{sup -1} kpc), in a wide range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -23). We use a halo occupation distribution framework with free parameters that specify both the number and spatial distribution of galaxies within their host dark matter halos. Wemore » assume one galaxy resides in the halo center and additional galaxies are considered satellites that follow a radial density profile similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the concentration and inner slope are allowed to vary. We find that in low luminosity samples (M{sub r} < -19.5 and lower), satellite galaxies have radial profiles that are consistent with NFW. M{sub r} < -20 and brighter satellite galaxies have radial profiles with significantly steeper inner slopes than NFW (we find inner logarithmic slopes ranging from -1.6 to -2.1, as opposed to -1 for NFW). We define a useful metric of concentration, M{sub 1/10}, which is the fraction of satellite galaxies (or mass) that are enclosed within one-tenth of the virial radius of a halo. We find that M{sub 1/10} for low-luminosity satellite galaxies agrees with NFW, whereas for luminous galaxies it is 2.5-4 times higher, demonstrating that these galaxies are substantially more centrally concentrated within their dark matter halos than the dark matter itself. Our results therefore suggest that the processes that govern the spatial distribution of galaxies, once they have merged into larger halos, must be luminosity dependent, such that luminous galaxies become poor tracers of the underlying dark matter.« less

  15. Thinking about feathers: Adaptations of Golden Eagle rectrices

    USGS Publications Warehouse

    Ellis, D.H.; Lish, J.W.

    2006-01-01

    The striking black and white plumage of the juvenile Golden Eagle (Aquila chrysaetos) provides an excellent opportunity to examine the possible selective forces influencing the strategic placement of dark pigment in birds. The conflict between opposing selective pressures (first, toward large white patches, which may allay aggression in adults, and second, toward dark plumage to promote camouflage and limit solar and abrasive wear) provides the stage whereon are revealed a score of pigmentation traits of potential adaptive value. The general pigmentation trend is for zones that are more exposed to the sun to be darker than elsewhere. More specifically: (1) for rectrices and remiges, outer webs are darker than inner; (2) for those few feathers (e.g., central rectrices, some scapulars, and some tertials), where both inner and outer webs are heavily and nearly equally solar exposed, pigmentation is supplied similarly on both webs; (3) outermost primaries and rectrices are darkest of all and are structurally similar; (4) for central rectrices, subject to high levels of abrasion with substrate, the tip is paler (resultant flexibility may limit breakage); and (5) pigment is heavier along or on the rachis than on the webs. Many of the traits listed above for the Golden Eagle are also found in other families of birds. Traits of the tail common to many species were a terminal pale tip, a subterminal dark band, rachis darker than vane, and outer webs darker than inner for both remiges and rectrices. The most widespread traits likely have adaptive value. ?? 2006 The Raptor Research Foundation, Inc.

  16. Space Shuttle Project

    NASA Image and Video Library

    1990-12-02

    Space Shuttle Columbia (STS-35) blasts off into a dark Florida sky. Columbia's payload included the ASTRO project which was designed to obtain ultraviolet (UV) data on astronomical objects using a UV telescope flying on Spacelab.

  17. Effects of aging on the fundamental color chemistry of dark-cutting beef.

    PubMed

    English, A R; Wills, K M; Harsh, B N; Mafi, G G; VanOverbeke, D L; Ramanathan, R

    2016-09-01

    The objective of the current study was to evaluate the effects of aging on myoglobin chemistry of dark-cutting beef. Ten USDA Choice (mean pH = 5.6; normal pH beef) and 10 no-roll dark cutter (mean pH = 6.4) strip loins were obtained from a commercial packing plant within 3 d of harvest. Loins were cut into 4 sections, vacuum packaged, randomly assigned to 0-, 21-, 42-, and 62-d aging at 2°C in the dark. Following aging, loin sections were cut into 2.5-cm-thick steaks and were used to determine bloom development, oxygen consumption (OC), metmyoglobin reducing activity (MRA), and lipid oxidation. Surface color readings were measured using a HunterLab Miniscan XE Plus spectrophotometer. A significant muscle type × aging time interaction resulted for OC ( < 0.001). Normal pH steaks declined more ( < 0.001) in OC during aging than dark-cutting beef. On d 0, dark-cutting beef had a greater OC ( < 0.001) than normal pH beef. There was a significant muscle type × oxygenation time × aging period interaction for L* values, deoxymyoglobin (DeoxyMb), and oxymyoglobin (OxyMb). When dark-cutting sections were aged for 62 d, both 0 and 60 min bloom development L* values were greater ( < 0.0001) than 0 min dark-cutting sections aged for 21 or 42 d. At all aging periods, normal pH beef had greater OxyMb content and lower DeoxyMb ( < 0.0001) during bloom development than dark-cutting beef. An aging period × muscle type interaction was significant for % overall reflectance ( = 0.0017) and absorbance ( = 0.0038). Dark cutting and normal pH beef loin sections aged for 62 d had greater reflectance ( < 0.0001) than 21 d. On d 0, dark-cutting beef had greater ( < 0.0001) MRA than normal pH beef. There were no significant ( = 0.14) differences in MRA between 42 and 62 d between dark-cutting and normal pH beef. Dark cutting steaks had lower thiobarbituric acid reactive substances values ( < 0.0001) than normal pH steaks. The results indicate that characterizing the myoglobin chemistry during aging will help to design strategies to improve appearance of high pH beef.

  18. A randomized control trial evaluating fluorescent ink versus dark ink tattoos for breast radiotherapy

    PubMed Central

    Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A

    2016-01-01

    Objective: The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. Methods: In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σsetup) was no less accurate than with conventional dark ink tattoos, i.e. <2.8 mm. Results: 46 patients were randomized to receive conventional dark or UV ink tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σsetup for the UV tattoo group was <2.8 mm in the u and v directions (p = 0.001 and p = 0.009, respectively). A larger proportion of patients reported improvement in body image score in the UV tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. Conclusion: UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial. PMID:27710100

  19. A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health: clinical findings from a sample of healthy, cognitively intact older adults.

    PubMed

    Crews, W David; Harrison, David W; Wright, James W

    2008-04-01

    In recent years, there has been increased interest in the potential health-related benefits of antioxidant- and phytochemical-rich dark chocolate and cocoa. The objective of the study was to examine the short-term (6 wk) effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health in healthy older adults. A double-blind, placebo-controlled, fixed-dose, parallel-group clinical trial was used. Participants (n = 101) were randomly assigned to receive a 37-g dark chocolate bar and 8 ounces (237 mL) of an artificially sweetened cocoa beverage or similar placebo products each day for 6 wk. No significant group (dark chocolate and cocoa or placebo)-by-trial (baseline, midpoint, and end-of-treatment assessments) interactions were found for the neuropsychological, hematological, or blood pressure variables examined. In contrast, the midpoint and end-of-treatment mean pulse rate assessments in the dark chocolate and cocoa group were significantly higher than those at baseline and significantly higher than the midpoint and end-of-treatment rates in the control group. Results of a follow-up questionnaire item on the treatment products that participants believed they had consumed during the trial showed that more than half of the participants in both groups correctly identified the products that they had ingested during the experiment. This investigation failed to support the predicted beneficial effects of short-term dark chocolate and cocoa consumption on any of the neuropsychological or cardiovascular health-related variables included in this research. Consumption of dark chocolate and cocoa was, however, associated with significantly higher pulse rates at 3- and 6-wk treatment assessments.

  20. Preclinical x-ray dark-field imaging: foreign body detection

    NASA Astrophysics Data System (ADS)

    Braig, Eva-Maria; Muenzel, Daniela; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Pfeiffer, Franz; Noel, Peter

    2017-03-01

    The purpose of this study was to evaluate the performance of X-ray dark-field imaging for detection of retained foreign bodies in ex-vivo hands and feet. X-ray dark-field imaging, acquired with a three-grating Talbot-Lau interferometer, has proven to provide access to sub-resolution structures due to small-angle scattering. The study was institutional review board (IRB) approved. Foreign body parts included pieces of wood and metal which were placed in a formalin fixated human ex-vivo hand. The samples were imaged with a grating-based interferometer consisting of a standard microfocus X-ray tube (60 kVp, 100 W) and a Varian 2520-DX detector (pixel size: 127 μm). The attenuation and the dark-field signals provide complementary diagnostic information for this clinical task. With regard to detecting of wooden objects, which are clinically the most relevant, only the dark-field image revealed the locations. The signal is especially strong for dry wood which in comparison is poorly to non-visible in computed tomography. The detection of high atomic-number or dense material and wood-like or porous materials in a single X-ray scan is enabled by the simultaneous acquisition of the conventional attenuation and dark-field signal. Our results reveal that with this approach one can reach a significantly improved sensitivity for detection of foreign bodies, while an easy implementation into the clinical arena is becoming feasible.

  1. Charting the Unknown: A Hunt in the Dark

    NASA Astrophysics Data System (ADS)

    Mohlabeng, Gopolang Mokoka

    Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust program based on a wide range of new theoretical ideas and complementary strategies for detection. The aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under three main frameworks of study: (I) the model dependent approach, (II) model independent approach and (III) considering simplified models. In each framework we focus on unexplored and well motivated dark matter scenarios as well as their prospects of detection at current and future experiments. First, we concentrate on the model dependent method where we consider minimal dark matter in the form of mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We find that the manner of mixing has an impact on the detectability of the dark matter at experiments. Pursuing this model dependent direction, we explore a space-time extension of the standard model which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology of the model and find that these control the way dark matter may interact with baryonic matter. Next we investigate the model independent approach in which we examine a non-minimal dark sector in the form of boosted dark matter. In this study, we consider an effective field theory involving two stable fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center and the center of the Sun, and investigate its detection prospects at current and future large volume experiments. Finally, we explore an intermediate approach in the form of a simplified model. Here we analyze a different non-minimal dark sector in which its interactions with the standard model sector are mediated primarily by the Higgs Boson. We discuss for the first time a vector and fermion dark matter preserved under the same stabilization symmetry. We find that the presence of both species in the early Universe results in rare processes contributing to the dark matter relic abundance. We conclude that connecting these three frameworks under one main dark matter program, instead of concentrating on them individually, could help us understand what we are missing, and may assist us to produce ground breaking ideas which lead to the discovery of a signal in the near future.

  2. Dark Matter Core Defies Explanation

    NASA Image and Video Library

    2017-12-08

    NASA image release March 2, 2012 This composite image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520, formed from a violent collision of massive galaxy clusters. The natural-color image of the galaxies was taken with NASA's Hubble Space Telescope and with the Canada-France-Hawaii Telescope in Hawaii. Superimposed on the image are "false-colored" maps showing the concentration of starlight, hot gas, and dark matter in the cluster. Starlight from galaxies, derived from observations by the Canada-France-Hawaii Telescope, is colored orange. The green-tinted regions show hot gas, as detected by NASA's Chandra X-ray Observatory. The gas is evidence that a collision took place. The blue-colored areas pinpoint the location of most of the mass in the cluster, which is dominated by dark matter. Dark matter is an invisible substance that makes up most of the universe's mass. The dark-matter map was derived from the Hubble Wide Field Planetary Camera 2 observations, by detecting how light from distant objects is distorted by the cluster galaxies, an effect called gravitational lensing. The blend of blue and green in the center of the image reveals that a clump of dark matter resides near most of the hot gas, where very few galaxies are found. This finding confirms previous observations of a dark-matter core in the cluster. The result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to dark matter, even during the shock of a collision. Abell 520 resides 2.4 billion light-years away. To read more go to: www.nasa.gov/mission_pages/hubble/science/dark-matter-cor... Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  4. Constraining the Drag Coefficients of Meteors in Dark Flight

    NASA Technical Reports Server (NTRS)

    Carter, R. T.; Jandir, P. S.; Kress, M. E.

    2011-01-01

    Based on data in the aeronautics literature, we have derived functions for the drag coefficients of spheres and cubes as a function of Mach number. Experiments have shown that spheres and cubes exhibit an abrupt factor-of-two decrease in the drag coefficient as the object slows through the transonic regime. Irregularly shaped objects such as meteorites likely exhibit a similar trend. These functions are implemented in an otherwise simple projectile motion model, which is applicable to the non-ablative dark flight of meteors (speeds less than .+3 km/s). We demonstrate how these functions may be used as upper and lower limits on the drag coefficient of meteors whose shape is unknown. A Mach-dependent drag coefficient is potentially important in other planetary and astrophysical situations, for instance, in the core accretion scenario for giant planet formation.

  5. Astrometry with LSST: Objectives and Challenges

    NASA Astrophysics Data System (ADS)

    Casetti-Dinescu, D. I.; Girard, T. M.; Méndez, R. A.; Petronchak, R. M.

    2018-01-01

    The forthcoming Large Synoptic Survey Telescope (LSST) is an optical telescope with an effective aperture of 6.4 m, and a field of view of 9.6 square degrees. Thus, LSST will have an étendue larger than any other optical telescope, performing wide-field, deep imaging of the sky. There are four broad categories of science objectives: 1) dark-energy and dark matter, 2) transients, 3) the Milky Way and its neighbours and, 4) the Solar System. In particular, for the Milky-Way science case, astrometry will make a critical contribution; therefore, special attention must be devoted to extract the maximum amount of astrometric information from the LSST data. Here, we outline the astrometric challenges posed by such a massive survey. We also present some current examples of ground-based, wide-field, deep imagers used for astrometry, as precursors of the LSST.

  6. An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Cohen, Yotam; Danieli, Shany; Kruijssen, J. M. Diederik; Romanowsky, Aaron J.; Merritt, Allison; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O’Sullivan, Ewan; Zhang, Jielai

    2018-04-01

    We recently found an ultra diffuse galaxy (UDG) with a half-light radius of R e = 2.2 kpc and little or no dark matter. The total mass of NGC1052–DF2 was measured from the radial velocities of bright compact objects that are associated with the galaxy. Here, we analyze these objects using a combination of Hubble Space Telescope (HST) imaging and Keck spectroscopy. Their average size is < {r}h> =6.2+/- 0.5 pc and their average ellipticity is < ε > =0.18+/- 0.02. From a stacked Keck spectrum we derive an age of ≳9 Gyr and a metallicity of [Fe/H] = ‑1.35 ± 0.12. Their properties are similar to ω Centauri, the brightest and largest globular cluster in the Milky Way, and our results demonstrate that the luminosity function of metal-poor globular clusters is not universal. The fraction of the total stellar mass that is in the globular cluster system is similar to that in other UDGs, and consistent with “failed galaxy” scenarios, where star formation terminated shortly after the clusters were formed. However, the galaxy is a factor of ∼1000 removed from the relation between globular cluster mass and total galaxy mass that has been found for other galaxies, including other UDGs. We infer that a dark matter halo is not a prerequisite for the formation of metal-poor globular cluster-like objects in high-redshift galaxies.

  7. Gender is not simply a matter of black and white, or is it?

    PubMed

    Semin, Gün R; Palma, Tomás; Acartürk, Cengiz; Dziuba, Aleksandra

    2018-08-05

    Based on research in physical anthropology, we argue that brightness marks the abstract category of gender, with light colours marking the female gender and dark colours marking the male gender. In a set of three experiments, we examine this hypothesis, first in a speeded gender classification experiment with male and female names presented in black and white. As expected, male names in black and female names in white are classified faster than the reverse gender-colour combinations. The second experiment relies on a gender classification task involving the disambiguation of very briefly appearing non-descript stimuli in the form of black and white 'blobs'. The former are classified predominantly as male and the latter as female names. Finally, the processes driving light and dark object choices for males and females are examined by tracking the number of fixations and their duration in an eye-tracking experiment. The results reveal that when choosing for a male target, participants look longer and make more fixations on dark objects, and the same for light objects when choosing for a female target. The implications of these findings, which repeatedly reveal the same data patterns across experiments with Dutch, Portuguese and Turkish samples for the abstract category of gender, are discussed. The discussion attempts to enlarge the subject beyond mainstream models of embodied grounding.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'. © 2018 The Authors.

  8. Moderated histogram equalization, an automatic means of enhancing the contrast in digital light micrographs reversibly.

    PubMed

    Entwistle, A

    2004-06-01

    A means for improving the contrast in the images produced from digital light micrographs is described that requires no intervention by the experimenter: zero-order, scaling, tonally independent, moderated histogram equalization. It is based upon histogram equalization, which often results in digital light micrographs that contain regions that appear to be saturated, negatively biased or very grainy. Here a non-decreasing monotonic function is introduced into the process, which moderates the changes in contrast that are generated. This method is highly effective for all three of the main types of contrast found in digital light micrography: bright objects viewed against a dark background, e.g. fluorescence and dark-ground or dark-field image data sets; bright and dark objects sets against a grey background, e.g. image data sets collected with phase or Nomarski differential interference contrast optics; and darker objects set against a light background, e.g. views of absorbing specimens. Moreover, it is demonstrated that there is a single fixed moderating function, whose actions are independent of the number of elements of image data, which works well with all types of digital light micrographs, including multimodal or multidimensional image data sets. The use of this fixed function is very robust as the appearance of the final image is not altered discernibly when it is applied repeatedly to an image data set. Consequently, moderated histogram equalization can be applied to digital light micrographs as a push-button solution, thereby eliminating biases that those undertaking the processing might have introduced during manual processing. Finally, moderated histogram equalization yields a mapping function and so, through the use of look-up tables, indexes or palettes, the information present in the original data file can be preserved while an image with the improved contrast is displayed on the monitor screen.

  9. The effect of repeated light-dark shifts on uterine receptivity and early gestation in mice undergoing embryo transfer.

    PubMed

    Goldstein, Cathy A; O'Brien, Louise M; Bergin, Ingrid L; Saunders, Thomas L

    2018-04-01

    Female shift workers are at increased risk for negative reproductive outcomes, and animal evidence suggests that manipulation of the light-dark cycle is detrimental to early gestation in female mice. Specifically, failure of implantation may be responsible for these findings. The objective of this study was to better delineate which reproductive processes are vulnerable to detrimental effects of maternal circadian disturbance. We exposed mice undergoing embryo transfer to repetitive phase advances of the photoperiod. Embryos were derived from donor sperm and eggs from mice living in normal light-dark conditions to isolate the effects of photoperiod disruption on uterine receptivity and early gestation. Twenty-eight mice receiving embryo transfer underwent an experimental light-dark condition (advance of lights on and lights off by 6 hours every 4 days). Twenty-eight mice remained in a normal light-dark condition. Animals lived in their assigned light-dark condition beginning 2 weeks prior to embryo transfer and ending the day of uterine necropsy (post-coitus day 14.5). Wilcoxon-Mann-Whitney test demonstrated no significant differences between control and experimental light-dark conditions in pups (Z=0.10, p=.92), resorptions (Z=0.20, p=.84), or implantations (Z=-0.34, p=.73). Pup and placental weights were similar between groups. In this investigation, uterine receptivity and maintenance of early gestation were preserved despite recurrent phase advances in photoperiod. This finding, in the context of the current literature, suggests that the negative effects of circadian disruption are mediated by reproductive processes upstream of implantation.

  10. Perihelion precession from power law central force and magnetic-like force

    NASA Astrophysics Data System (ADS)

    Xu, Feng

    2011-04-01

    By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury’s 43”/century is reproduced, and 2) spherically distributed dark matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.

  11. Evidence of Pulsars Metamorphism and Their Connection to Stellar Black Holes

    NASA Astrophysics Data System (ADS)

    Hujeirat, A. A.

    2018-03-01

    It is agreed that the progenitors of neutron stars (-NSs) and black holes (-BHs) should be massive stars with M > 9 M_{Sun}. Yet none of these objects have ever been found with [2 M_{Sun}< M < 5 M_{Sun}]. Moreover, numerical modelings show that NSs of reasonable masses can be obtained only if the corresponding central density is beyond the nuclear one: an unverifiable density-regime with unknown physics. Here I intend to clarify the reasons underlying the existence of this mass-gap and propose a new class of invisible ultra-compact objects: the end-stage in the cosmological evolution of pulsars and neutron stars in an ever expanding universe. The present study relies on theoretical and experimental considerations as well as on solution of the non-linear TOV equation modified to include a universal scalar field -φ at the background of supranuclear densities. The computer-code is based on finite volume method using both the first-order Euler and fourth-order Rugge-Kutta integration methods. The inclusion of φ at zero-temperature is motivated by recent observations of the short-living pentaquarks at the LHC. Based on these studies, I argue that pulsars must be born with embryonic super-baryons (SBs) that form through merger of individual neutrons at their centers. The cores of SBs are made of purely incompressible superconducting gluon-quark superfluids (henceforth SuSu-fluids). Such quantum fluids have a uniform supranuclear density and governed by the critical EOSs P = E for baryonic matter and for φ-induced dark energy P_{φ}= -E_{φ}. The incompressibility here ensures that particles communicate at the shortest possible time scale, superfluidity and superconductivity enforce SBs to spin-down promptly as dictated by the Onsager-Feynman equation and to expel vortices and magnetic flux tubes, whereas their lowest energy state grants SBs lifetimes that are comparable to those of protons. These extra-ordinary long lifetimes suggest that conglomeration of SuSu-objects would evolve over several big bang events to possibly form dark matter halos that embed the galaxies in the observable universe. Pulsars and young neutron stars should metamorphose into SuSu-objects: a procedure which is predicted to last for one Gyr or even shorter, depending on their initial compactness. Once the process is completed, then they become extraordinary compact and turn invisible. It turns out that recent observations of particle collisions at the LHC and RHIC, observations of glitching pulsars and primordial galaxies remarkably support the present scenario.

  12. Early phases in the stellar and substellar formation and evolution. Infrared and submillimeter data in the Barnard 30 dark cloud

    NASA Astrophysics Data System (ADS)

    Barrado, D.; de Gregorio Monsalvo, I.; Huélamo, N.; Morales-Calderón, M.; Bayo, A.; Palau, A.; Ruiz, M. T.; Rivière-Marichalar, P.; Bouy, H.; Morata, Ó.; Stauffer, J. R.; Eiroa, C.; Noriega-Crespo, A.

    2018-04-01

    Aims: The early evolutionary stage of brown dwarfs (BDs) is not very well characterized, especially during the embedded phase. Our goal is to gain insight into the dominant formation mechanism of very low-mass objects and BDs. Methods: We have conducted deep observations at 870 μm obtained with the LABOCA bolometer at the APEX telescope in order to identify young submillimeter (submm) sources in the Barnard 30 dark cloud. We have complemented these data with multi-wavelength observations from the optical to the far-IR and compiled complete spectral energy distributions in order to identify the counterparts, characterize the sources and to assess their membership to the association and stellar or substellar status based on the available photometric information. Results: We have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified into three distinct groups. First, 15 of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BD candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include BD candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 μm, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects, eight proto-BD candidates (with another three dubious cases), and one very low luminosity objects. Conclusions: Our findings provide additional evidence concerning the BD formation mechanism, which seems to be a downsized version of the stellar formation. Tables 3-7 and reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/vol/page

  13. Monitoring for pests and diseases in native oak woodlands: the case of acute oak decline in the United Kingdom

    Treesearch

    Nathan Brown; Stephen Parnell; Frank van den Bosch; Mike Jeger; Sandra Denman

    2017-01-01

    In recent years, a novel form of decline has been observed in southern and central England. This syndrome has been termed acute oak decline (AOD) and affects native oak, Quercus petraea and Q. robur. Typical symptoms include bark cracks that weep dark exudates, which are caused by necrotic patches in the...

  14. Development of rod function in term born and former preterm subjects.

    PubMed

    Fulton, Anne B; Hansen, Ronald M; Moskowitz, Anne

    2009-06-01

    To provide an overview of some of our electroretinographic (ERG) and psychophysical studies of normal development of rod function and their application to retinopathy of prematurity (ROP). ERG responses to full-field stimuli were recorded from dark adapted subjects. Rod photoreceptor sensitivity (SROD) was calculated by fit of a biochemical model of the activation of phototransduction to the ERG a-wave. Dark adapted psychophysical thresholds for detecting 2 degrees spots in parafoveal (10 degrees eccentric) and peripheral (30 degrees eccentric) retina were measured and the difference between the thresholds, Delta10-30, was examined as a function of age. SROD and Delta10-30 in term born and former preterm subjects were compared. In term born infants, (1) the normal developmental increase in SROD changes proportionately with the amount of rod visual pigment, rhodopsin, and (2) rod-mediated function in central retina is immature compared with that in peripheral retina. In subjects born prematurely, deficits in SROD persist long after active ROP has resolved. Maturation of rod-mediated thresholds in the central retina is prolonged by mild ROP. Characterization of the development of normal rod and rod-mediated function provides a foundation for understanding ROP.

  15. Development of Rod Function in Term Born and Former Preterm Subjects

    PubMed Central

    Fulton, Anne B.; Hansen, Ronald M.; Moskowitz, Anne

    2009-01-01

    Purpose Provide an overview of some of our electroretinographic and psychophysical studies of normal development of rod function and their application to retinopathy of prematurity (ROP). Methods Electroretinographic (ERG) responses to full-field stimuli were recorded from dark adapted subjects. Rod photoreceptor sensitivity, SROD, was calculated by fit of a biochemical model of the activation of phototransduction to the ERG a-wave. Dark adapted psychophysical thresholds for detecting 2° spots in parafoveal (10° eccentric) and peripheral (30° eccentric) retina were measured and the difference between the thresholds, Δ10-30, was examined as a function of age. SROD and Δ10-30 in term born and former preterm subjects were compared. Results In term born infants, (1) the normal developmental increase in SROD changes proportionately with the amount of rod visual pigment, rhodopsin, and (2) rod mediated function in central retina is immature compared to that in peripheral retina. In subjects born prematurely, deficits in rod photoreceptor sensitivity persist long after active ROP has resolved. Maturation of rod mediated thresholds in the central retina is prolonged by mild ROP. Conclusions Characterization of the development of normal rod and rod mediated function provides a foundation for understanding ROP. PMID:19483509

  16. Influence of light/dark, seasonal and lunar cycles on the nuclear size of the pinealocytes of the rat.

    PubMed

    Martínez-Soriano, F; Armañanzas, E; Ruiz-Torner, A; Valverde-Navarro, A A

    2002-01-01

    Morphological and physiological studies suggest a possible division of the pineal parenchyma into an external or "cortical" and another central or "medullar" layer. We have studied the possible influence of the light/dark, seasonal and lunar cycles on the nuclear size of the pinealocytes of the rat in both the hypothetical "cortical" and "medullar" layers. Forty male Wistar rats were used. Experiment was carried out in two seasons, winter and spring, two lunar phases, full moon and new moon, and the two circadian phases, photophase and scotophase. The nuclear volume of the pinealocytes, calculated from the Jacobj's formula, was the karyometric parameter used as measurement of the nuclear size. Main results showed that nuclear volume of the cortical pinealocytes was greater than that of the medullar pinealocytes only during the photophases of winter new-moon days and spring full moon days, whereas in all the remaining situations, the greater nuclear sizes were found in the pinealocytes of the medullar layer. These results support the existence of independent morphological variations of the pinealocyte in the central and peripheral zones of the pineal gland.

  17. Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia

    PubMed Central

    Knight, W. David; Saxena, Ashwini; Shell, Brent; Nedungadi, T. Prashant; Mifflin, Steven W.

    2013-01-01

    Chronic intermittent hypoxia (CIH) increases mean arterial pressure (MAP) and FosB/ΔFosB staining in central autonomic nuclei. To test the role of the brain renin-angiotensin system (RAS) in CIH hypertension, rats were implanted with intracerebroventricular (icv) cannulae delivering losartan (1 μg/h) or vehicle (VEH) via miniosmotic pumps and telemetry devices for arterial pressure recording. A third group was given the same dose of losartan subcutaneously (sc). Two groups of losartan-treated rats served as normoxic controls. Rats were exposed to CIH or normoxia for 7 days and then euthanized for immunohistochemistry. Intracerebroventricular losartan attenuated CIH-induced increases in arterial pressure during CIH exposure (0800-1600 during the light phase) on days 1, 6, and 7 and each day during the normoxic dark phase. FosB/ΔFosB staining in the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), paraventricular nucleus of the hypothalamus (PVN), the rostral ventrolateral medulla (RVLM), and the nucleus of the solitary tract (NTS) was decreased in icv losartan-treated rats. Subcutaneous losartan also reduced CIH hypertension during the last 2 days of CIH and produced bradycardia prior to the effect on blood pressure. Following sc losartan, FosB/ΔFosB staining was reduced only in the OVLT, MnPO, PVN, and NTS. These data indicate that the central and peripheral RAS contribute to CIH-induced hypertension and transcriptional activation of autonomic nuclei and that the contribution of the central RAS is greater during the normoxic dark phase of CIH hypertension. PMID:24026072

  18. Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia.

    PubMed

    Knight, W David; Saxena, Ashwini; Shell, Brent; Nedungadi, T Prashant; Mifflin, Steven W; Cunningham, J Thomas

    2013-11-01

    Chronic intermittent hypoxia (CIH) increases mean arterial pressure (MAP) and FosB/ΔFosB staining in central autonomic nuclei. To test the role of the brain renin-angiotensin system (RAS) in CIH hypertension, rats were implanted with intracerebroventricular (icv) cannulae delivering losartan (1 μg/h) or vehicle (VEH) via miniosmotic pumps and telemetry devices for arterial pressure recording. A third group was given the same dose of losartan subcutaneously (sc). Two groups of losartan-treated rats served as normoxic controls. Rats were exposed to CIH or normoxia for 7 days and then euthanized for immunohistochemistry. Intracerebroventricular losartan attenuated CIH-induced increases in arterial pressure during CIH exposure (0800-1600 during the light phase) on days 1, 6, and 7 and each day during the normoxic dark phase. FosB/ΔFosB staining in the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), paraventricular nucleus of the hypothalamus (PVN), the rostral ventrolateral medulla (RVLM), and the nucleus of the solitary tract (NTS) was decreased in icv losartan-treated rats. Subcutaneous losartan also reduced CIH hypertension during the last 2 days of CIH and produced bradycardia prior to the effect on blood pressure. Following sc losartan, FosB/ΔFosB staining was reduced only in the OVLT, MnPO, PVN, and NTS. These data indicate that the central and peripheral RAS contribute to CIH-induced hypertension and transcriptional activation of autonomic nuclei and that the contribution of the central RAS is greater during the normoxic dark phase of CIH hypertension.

  19. Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan

    2017-12-01

    We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.

  20. Selected-zone dark-field electron microscopy.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1972-01-01

    Description of a new method which makes it possible to reduce drastically the resolution-limiting influence of chromatic aberration, and thus to obtain high-quality images, by selecting the image-forming electrons that have passed through a small annular zone of an objective lens. In addition, the manufacture of special objective-lens aperture diaphragms that are needed for this method is also described.

  1. Playing with Place in Early Childhood: An Analysis of Dark Emotion and Materiality in Children's Play

    ERIC Educational Resources Information Center

    Procter, Lisa; Hackett, Abigail

    2017-01-01

    In this article, the authors bring together the cultural studies of emotion with theories that foreground the agency of place and objects in order to analyse the entanglement of place, children and emotion (particularly fear) in children's play encounters. When children, objects and places come into play with each other, intensities and emotions…

  2. Red Shoe-Blue Shoe: An Acid-Base Demonstration with a Fashionable Twist.

    ERIC Educational Resources Information Center

    Breyer, Arthur C.; Uzelmeier, Calvin E.

    1998-01-01

    Illustrates that acid-base indicators come in many forms and the reversible effects that acids and bases have on the colors of such indicators. An object is dyed in an indicator, which causes the object to turn dark blue at pH less than 3.0 to 5.0. Suggests using dyeable fabric shoes and other cotton articles. (PVD)

  3. Improving the lean muscle color of dark-cutting beef by aging, antioxidant-enhancement, and modified atmospheric packaging.

    PubMed

    Wills, K M; Mitacek, R M; Mafi, G G; VanOverbeke, D L; Jaroni, D; Jadeja, R; Ramanathan, R

    2017-12-01

    The objective was to evaluate the effects of wet-aging, rosemary-enhancement, and modified atmospheric packaging on the color of dark-cutting beef during simulated retail display. No-roll dark-cutting strip loins ( = 12; pH > 6.0) were selected from a commercial packing plant within 3 d postharvest. Using a balanced incomplete block design, dark-cutting loins were sectioned in half, and assigned to 1 of 3 aging periods: 7, 14, or 21 d. After respective aging, each aged section was divided into 3 equal parts, and randomly assigned to 1 of 3 enhancement treatments: nonenhanced dark-cutting, dark-cutter enhanced with 0.1% rosemary, and dark-cutter enhanced with 0.2% rosemary. Following enhancement, steaks were randomly assigned to 1 of 3 packaging treatments: high-oxygen modified atmospheric packaging (HiOx-MAP; 80% O and 20% CO), carbon monoxide modified atmospheric packaging (CO-MAP; 0.4% CO, 69.6% N, and 30% CO), and polyvinyl chloride overwrap (PVC; 20% O). Instrumental and visual color measurements were recorded during 5 d simulated retail display. Lipid oxidation was determined utilizing the thiobarbituric acid reactive substances (TBARS) method. There was a significant packaging × enhancement × display time interaction for values and chroma ( 0.001). On d 0 of display, dark-cutting steaks enhanced with 0.1% and 0.2% rosemary and packaged in HiOx-MAP had greater ( 0.001) values and chroma than other dark-cutting packaging/enhancement treatments. A significant packaging × enhancement × display time interaction resulted for values ( 0.001). Dark-cutting steaks enhanced with 0.2% rosemary and packaged in HiOx-MAP was lighter ( 0.001; greater values) than other dark-cutting treatments on d 5 of display. There were no differences ( 0.34) in discoloration scores on d 5 among different dark-cutting treatments when steaks were packaged in HiOx- and CO-MAP. There was an aging period × enhancement × packaging interaction ( < 0.0033) for lipid oxidation. On d 0 of display, there were no differences ( 0.54) in TBARS values between different aging periods and enhancement treatments. Dark-cutting steaks enhanced with 0.2% rosemary had lower ( 0.001) TBARS values than 0.1% rosemary on d 5 when aged for 21 d and in HiOx-MAP. The results suggest that rosemary enhancement with CO- or HiOx-MAP has the potential to improve the surface color of dark-cutting beef.

  4. 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish

    PubMed Central

    von der Emde, Gerhard; Behr, Katharina; Bouton, Béatrice; Engelmann, Jacob; Fetz, Steffen; Folde, Caroline

    2010-01-01

    Weakly electric fish use active electrolocation for object detection and orientation in their environment even in complete darkness. The African mormyrid Gnathonemus petersii can detect object parameters, such as material, size, shape, and distance. Here, we tested whether individuals of this species can learn to identify 3-dimensional objects independently of the training conditions and independently of the object's position in space (rotation-invariance; size-constancy). Individual G. petersii were trained in a two-alternative forced-choice procedure to electrically discriminate between a 3-dimensional object (S+) and several alternative objects (S−). Fish were then tested whether they could identify the S+ among novel objects and whether single components of S+ were sufficient for recognition. Size-constancy was investigated by presenting the S+ together with a larger version at different distances. Rotation-invariance was tested by rotating S+ and/or S− in 3D. Our results show that electrolocating G. petersii could (1) recognize an object independently of the S− used during training. When only single components of a complex S+ were offered, recognition of S+ was more or less affected depending on which part was used. (2) Object-size was detected independently of object distance, i.e. fish showed size-constancy. (3) The majority of the fishes tested recognized their S+ even if it was rotated in space, i.e. these fishes showed rotation-invariance. (4) Object recognition was restricted to the near field around the fish and failed when objects were moved more than about 4 cm away from the animals. Our results indicate that even in complete darkness our G. petersii were capable of complex 3-dimensional scene perception using active electrolocation. PMID:20577635

  5. Radar-visible wind streaks in the Altiplano of Bolivia

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Christensen, P.

    1984-01-01

    Isolated knobs that are erosional remnants of central volcanoes or of folded rocks occur in several areas of the Altiplano are visible on both optical and images. The optically visible streaks occur in the immediate lee of the knobs, whereas the radar visible streaks occur in the zone downwind between the knobs. Aerial reconnaissance and field studies showed that the optically visible streaks consist of a series of small ( 100 m wide) barchan and barchanoid dunes, intradune sand sheets, and sand hummocks (large shrub coppice dunes) up to 15 m across and 5 m high. On LANDSAT images these features are poorly resolved but combine to form a bright streak. On the radar image, this area also appears brighter than the zone of the radar dark streak; evidently, the dunes and hummocks serve as radar reflectors. The radar dark streak consists of a relatively flat, smooth sand sheet which lacks organized aerolian bedforms, other than occasional ripples. Wind velocity profiles show a greater U value in the optically bright streak zone than in the radar dark streak.

  6. The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams

    NASA Astrophysics Data System (ADS)

    Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei

    2016-08-01

    Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.

  7. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA.

    PubMed

    Wang, Yi; Zhou, Lele; Kang, Qi; Yu, Li

    2018-06-01

    Trypsin plays a central role in catalyzing the hydrolysis of peptide bonds, so a technique with simple operation is needed to monitor the activity of trypsin. Here a simple and label-free senor based on liquid crystals (LCs) was developed by employing bovine serum albumin (BSA) as the enzyme substrate and dodecyl trimethyl ammonium bromide (DTAB) as the controller for the alignment of LC. It was found that DTAB could form a self-assembled monolayer at the aqueous/LC interface to produce the dark optical images of LCs. And the addition of BSA could disturb the monolayer, so that the optical signal of LCs turned bright from dark. But the hydrolysis of BSA by trypsin resulted in the dark appearance. The sensing platform allows detection as low as 1 U/mL under the polarized light microscope based on at least three measurements. Moreover, this method was successfully applied in the detection of trypsin in human urines, suggesting its potential applications in clinic diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Balbinot, Eduardo; Petts, James A.; Read, Justin I.; Gieles, Mark; Collins, Michelle L. M.; Peñarrubia, Jorge; Delorme, Maxime; Gualandris, Alessia

    2018-05-01

    We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint' dwarf Eridanus II (Eri II) that has a lone star cluster ˜45 pc from its centre. Using a grid of collisional N-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a DM core. This implies that either a cold DM cusp was `heated up' at the centre of Eri II by bursty star formation or we are seeing an evidence for physics beyond cold DM.

  9. ASCA observation of NGC 4636: Dark matter and metallicity gradient

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Loewenstein, M.; Awaki, H.; Makishima, K.; Matsushita, K.; Matsumoto, H.

    1994-01-01

    We present our analysis of ASCA PV phase observation of the elliptical galaxy NGC 4636. Solid state imaging spectrometer (SIS) spectra in six concentric annuli centered on NGC 4636 are used to derive temperature, metallicity, and column density profiles for the hot interstellar medium. Outside of the central 3 min the temperature is roughly constant at approximately 0.85 keV, while the metallicity decreases from greater than 0.36 solar at the center to less than 0.12 solar at R approximately 9 min. The implications of this gradient for elliptical galaxy formation and the enrichment of intracluster gas are discussed. We derive a detailed mass profile consistent with the stellar velocity dispersion and with ROSAT position sensitive proportional counter (PSPC) and ASCA SIS X-ray temperature profiles. We find that NGC 4636 becomes dark matter dominated at roughly the de Vaucouleurs radius, and, at r approximately 100 kpc, the ratio of dark to luminous matter density is approximately 80 and solar mass/solar luminosity approximately equal to 150. Evidence for the presence of a cooling flow is also discussed.

  10. Role of Vision and Mechanoreception in Bed Bug, Cimex lectularius L. Behavior

    PubMed Central

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2015-01-01

    The role of olfactory cues such as carbon dioxide, pheromones, and kairomones in bed bug, Cimex lectularius L. behavior has been demonstrated. However, the role of vision and mechanoreception in bed bug behavior is poorly understood. We investigated bed bug vision by determining their responses to different colors, vertical objects, and their ability to detect colors and vertical objects under low and complete dark conditions. Results show black and red paper harborages are preferred compared to yellow, green, blue, and white harborages. A bed bug trapping device with a black or red exterior surface was significantly more attractive to bed bugs than that with a white exterior surface. Bed bugs exhibited strong orientation behavior toward vertical objects. The height (15 vs. 30 cm tall) and color (brown vs. black) of the vertical object had no significant effect on orientation behavior of bed bugs. Bed bugs could differentiate color and detect vertical objects at very low background light conditions, but not in complete darkness. Bed bug preference to different substrate textures (mechanoreception) was also explored. Bed bugs preferred dyed tape compared to painted tape, textured painted plastic, and felt. These results revealed that substrate color, presence of vertical objects, and substrate texture affect host-seeking and harborage-searching behavior of bed bugs. Bed bugs may use a combination of vision, mechanoreception, and chemoreception to locate hosts and seek harborages. PMID:25748041

  11. Role of vision and mechanoreception in bed bug, Cimex lectularius L. behavior.

    PubMed

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2015-01-01

    The role of olfactory cues such as carbon dioxide, pheromones, and kairomones in bed bug, Cimex lectularius L. behavior has been demonstrated. However, the role of vision and mechanoreception in bed bug behavior is poorly understood. We investigated bed bug vision by determining their responses to different colors, vertical objects, and their ability to detect colors and vertical objects under low and complete dark conditions. Results show black and red paper harborages are preferred compared to yellow, green, blue, and white harborages. A bed bug trapping device with a black or red exterior surface was significantly more attractive to bed bugs than that with a white exterior surface. Bed bugs exhibited strong orientation behavior toward vertical objects. The height (15 vs. 30 cm tall) and color (brown vs. black) of the vertical object had no significant effect on orientation behavior of bed bugs. Bed bugs could differentiate color and detect vertical objects at very low background light conditions, but not in complete darkness. Bed bug preference to different substrate textures (mechanoreception) was also explored. Bed bugs preferred dyed tape compared to painted tape, textured painted plastic, and felt. These results revealed that substrate color, presence of vertical objects, and substrate texture affect host-seeking and harborage-searching behavior of bed bugs. Bed bugs may use a combination of vision, mechanoreception, and chemoreception to locate hosts and seek harborages.

  12. Neptune

    NASA Image and Video Library

    1999-08-08

    NASA Voyager 2 obtained these images of satellite 1989N2 and revealed it to be and irregularly shaped, dark object. The satellite appeared to have several craters. The irregular outline suggests that this moon has remained cold and rigid throughout much

  13. Not enough stellar mass objects to fill the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Milsztajn, A.

    2000-05-01

    The Universe contains a lot more than meets the eye. Sophisticated experiments search diligently for this invisible dark matter. Here the author describes the latest results to emerge from the microlensing technique.

  14. Generation of a dark hollow beam by a nonlinear ZnSe crystal and its propagation properties in free space: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Du, Xiangli; Yin, Yaling; Zheng, Gongjue; Guo, Chaoxiu; Sun, Yu; Zhou, Zhongneng; Bai, Shunjie; Wang, Hailing; Xia, Yong; Yin, Jianping

    2014-07-01

    A new nonlinear optical method to generate a dark hollow beam (DHB) with a dielectric ZnSe crystal is proposed. From Huygens-Fresnel diffraction theory, we calculate the intensity distributions of the DHB and its propagating properties in free space, and study the dependences of the optimal propagation position and the dark-spot size (DSS) of the hollow beam on the waist radius of the incident Gaussian laser beam. Our study shows that the intensity distribution of the DHB presents symmetrical distribution with increasing the propagation distance, the optimal distance zopt becomes farther and the DSS becomes larger with the increase of the waist radius w of the incident Gaussian laser beam. This generated DHB will have applications in the optical guiding and trapping of macroscopic objects, atoms or molecules.

  15. Dark matter versus Mach's principle.

    NASA Astrophysics Data System (ADS)

    von Borzeszkowski, H.-H.; Treder, H.-J.

    1998-02-01

    Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.

  16. Mapping Dark Matter in Simulated Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  17. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness

    PubMed Central

    Henry, Clémence; Bledsoe, Samuel W.; Siekman, Allison; Kollman, Alec; Waters, Brian M.; Feil, Regina; Stitt, Mark; Lagrimini, L. Mark

    2014-01-01

    Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed. PMID:25271261

  18. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  19. Routine handling methods affect behaviour of three-spined sticklebacks in a novel test of anxiety

    PubMed Central

    Thompson, Ralph R.J.; Paul, Elizabeth S.; Radford, Andrew N.; Purser, Julia; Mendl, Michael

    2016-01-01

    Fish are increasingly popular subjects in behavioural and neurobiological research. It is therefore important that they are housed and handled appropriately to ensure good welfare and reliable scientific findings, and that species-appropriate behavioural tests (e.g. of cognitive/affective states) are developed. Routine handling of captive animals may cause physiological stress responses that lead to anxiety-like states (e.g. increased perception of danger). In fish, these may be particularly pronounced when handling during tank-to-tank transfer involves removal from water into air. Here we develop and use a new combined scototaxis (preference for dark over light areas) and novel-tank-diving test, alongside conventional open-field and novel-object tests, to measure the effects of transferring three-spined sticklebacks (Gasterosteus aculeatus) between tanks using a box or net (in and out of water respectively). Preference tests for dark over light areas confirmed the presence of scototaxis in this species. Open-field and novel-object tests failed to detect any significant differences between net and box-handled fish. However, the combined diving and scototaxis detected consistent differences between the treatments. Net-handled fish spent less time on the dark side of the tank, less time in the bottom third, and kept a greater distance from the ‘safe’ bottom dark area than box-handled fish. Possible explanations for this reduction in anxiety-like behaviour in net-handled fish are discussed. The combined diving and scototaxis test may be a sensitive and taxon-appropriate method for measuring anxiety-like states in fish. PMID:26965568

  20. Verlinde's emergent gravity versus MOND and the case of dwarf spheroidals

    NASA Astrophysics Data System (ADS)

    Diez-Tejedor, Alberto; Gonzalez-Morales, Alma X.; Niz, Gustavo

    2018-06-01

    In a recent paper, Erik Verlinde has developed the interesting possibility that space-time and gravity may emerge from the entangled structure of an underlying microscopic theory. In this picture, dark matter arises as a response to the standard model of particle physics from the delocalized degrees of freedom that build up the dark energy component of the Universe. Dark matter physics is then regulated by a characteristic acceleration scale a0, identified with the radius of the (quasi)-de Sitter universe we inhabit. For a point particle matter source, or outside an extended spherically symmetric object, MOND's empirical fitting formula is recovered. However, Verlinde's theory critically departs from MOND when considering the inner structure of galaxies, differing by a factor of 2 at the centre of a regular massive body. For illustration, we use the eight classical dwarf spheroidal satellites of the Milky Way. These objects are perfect testbeds for the model given their approximate spherical symmetry, measured kinematics, and identified missing mass. We show that, without the assumption of a maximal deformation, Verlinde's theory can fit the velocity dispersion profile in dwarf spheroidals with no further need of an extra dark particle component. If a maximal deformation is considered, the theory leads to mass-to-light ratios that are marginally larger than expected from stellar population and formation history studies. We also compare our results with the recent phenomenological interpolating MOND function of McGaugh et al., and find a departure that, for these galaxies, is consistent with the scatter in current observations.

  1. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    NASA Astrophysics Data System (ADS)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  2. Pupil miosis within 5 minutes in darkness is a valid and sensitive quantitative measure of alertness: application in daytime sleepiness associated with sleep apnea.

    PubMed

    Bitsios, Panos; Schiza, Sophia E; Giakoumaki, Stella G; Savidou, Kyriaki; Alegakis, Athanasios K; Siafakas, Nikolaos

    2006-11-01

    The regulation of arousal and pupillary functions may be intimately linked via activity in the nucleus locus coeruleus. In this preliminary study, we tested the validity of the gradual pupillary miosis during 5 minutes in darkness, as a quantitative physiologic index of the arousal state of the brain. Cross-sectional assessment of 2 groups with between-group comparison and correlational analyses within the patient group. Eleven unmedicated male patients recently diagnosed with obstructive sleep apnea (OSA) with no comorbid conditions who had undergone polysomnography to assess OSA severity and sleep variables, and 11 sex- and age-matched healthy controls. Sampling of the resting pupil diameter (RPD) over 5 minutes in darkness in the morning and in the afternoon hours, using an infrared video pupillometer. The RPD was smaller, indicating a lower level of arousal, in the patient group compared with controls in both the morning and the afternoon; the RPD showed a significant circadian reduction in the afternoon only in the patient group. Within the patient group, the RPD correlated negatively with Epworth Sleepiness Scale scores and Arousal Index and positively with the lowest oxygen saturation during the night. Controlling for the effect of body mass index, the relationship between RPD and subjective sleepiness was lost, whereas the relationship with most of the objective indexes of OSA severity was improved. The 5-minute pupillary miosis in darkness holds promise as a simple, fast-to-administer, valid, and sensitive test for the objective assessment of excessive daytime sleepiness.

  3. Optical device with conical input and output prism faces

    DOEpatents

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  4. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  5. Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery

    PubMed Central

    Bernard, Guillaume; Pathmanathan, Jananan S; Lannes, Romain; Lopez, Philippe; Bapteste, Eric

    2018-01-01

    Abstract Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms on Earth. However, they have been discovered only 334 years ago, and their diversity started to become seriously investigated even later. For these reasons, microbial studies that unveil novel microbial lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned sequences in environmental genomics data sets, and that of uncultured microbes on the planet, we propose that unraveling the microbial dark matter should be identified as a central priority for biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery with the potential to further highlight the microbial unknowns. PMID:29420719

  6. Tikhonravov's Eyebrows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 January 2004 This red wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows Tikhonravov Crater in central Arabia Terra. The crater is about 386 km (240 mi) in diameter and presents two impact craters at its center that have dark patches of sand in them, giving the impression of pupils in two eyes. North (above) each of these two craters lies a dark-toned patch of surface material, providing the impression of eyebrows. M. K. Tikhonravov was a leading Russian rocket engineer in the 20th Century. The crater named for him, despite its large size, is still partly buried, on its west side, beneath the heavily cratered terrain of Arabia Terra. The center of Tikhonravov is near 13.5oN, 324.2oW. Sunlight illuminates the scene from the upper left.

  7. Observational Evidence for a Dark Side to NGC 5128's Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew A.; Puzia, Thomas H.; Gomez, Matias; Woodley, Kristin A.

    2015-05-01

    We present a study of the dynamical properties of 125 compact stellar systems (CSSs) in the nearby giant elliptical galaxy NGC 5128, using high-resolution spectra (R ≈ 26, 000) obtained with Very Large Telescope/FLAMES. Our results provide evidence for a new type of star cluster, based on the CSS dynamical mass scaling relations. All radial velocity (vr) and line-of-sight velocity dispersion (σlos) measurements are performed with the penalized pixel fitting (ppxf ) technique, which provided σppxf estimates for 115 targets. The σppxf estimates are corrected to the 2D projected half-light radii, σ1/2, as well as the cluster cores, σ0, accounting for observational/aperture effects and are combined with structural parameters, from high spatial resolution imaging, in order to derive total dynamical masses ({{M}dyn}) for 112 members of NGC 5128’s star cluster system. In total, 89 CSSs have dynamical masses measured for the first time along with the corresponding dynamical mass-to-light ratios (\\Upsilon Vdyn). We find two distinct sequences in the \\Upsilon Vdyn-{{M}dyn} plane, which are well approximated by power laws of the forms \\Upsilon Vdyn\\propto Mdyn0.33+/- 0.04 and \\Upsilon Vdyn\\propto Mdyn0.79+/- 0.04. The shallower sequence corresponds to the very bright tail of the globular cluster luminosity function (GCLF), while the steeper relation appears to be populated by a distinct group of objects that require significant dark gravitating components such as central massive black holes and/or exotically concentrated dark matter distributions. This result would suggest that the formation and evolution of these CSSs are markedly different from the “classical” globular clusters in NGC 5128 and the Local Group, despite the fact that these clusters have luminosities similar to the GCLF turnover magnitude. We include a thorough discussion of myriad factors potentially influencing our measurements. Based on observations collected under program 081.D-0651 (PI: Matias Gomez) with FLAMES at the Very Large Telescope of the Paranal Observatory in Chile, operated by the ESO.

  8. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun < Mstar < 10^9.5 Msun) make them excellent testbeds for differing theories of galaxy formation. Additionally, the recent up-tick in the number and detail of Local Group dwarf galaxy observations provides a rich dataset for comparison to simulations that attempt to answer important questions in near field cosmology: why are there so few observed dwarfs compared to the number predicted by simulations? What shuts down star formation in ultra-faint galaxies? Why do dwarfs have inverted age gradients and what does it take to convert a dwarf irregular (dIrrs) into a dwarf spheroidal (dSph) galaxy?We to attempt to answer these questions by running ultra-high resolution cosmological FIRE simulations of isolated dwarf galaxies. We predict that many ultra-faint dwarfs should exist as satellites of more massive isolated Local Group dwarfs. The ultra-faints (Mstar < 10^4 Msun) formed in these simulations have uniformly ancient stellar populations (> 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated dIrrs? Can the bursty star formation that created a dark matter core also match observed stellar gradients in low mass galaxies? Comparisons between our simulations and observed dwarfs should provide an important benchmark for this question going forward.

  9. Size-density relations in dark clouds: Non-LTE effects

    NASA Technical Reports Server (NTRS)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. One way to assess the validity of LTE-derived densities is to construct cloud models and then to interpret them in the same way as the observed data. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T sub R*(13CO)/T sub R*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths (and hence column densities) can be seriously in error due to sub-thermal excitation of the 13CO molecule.

  10. Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography

    PubMed Central

    Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A.; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J.; Noël, Peter B.; Pfeiffer, Franz

    2015-01-01

    Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection. PMID:25873414

  11. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  12. A Dark Asteroid Family in the Phocaea Region

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Tsirvoulis, Georgios; Granvik, Mikael; Todović, Ana

    2017-06-01

    We report the discovery of a new asteroid family among the dark asteroids residing in the Phocaea region the Tamara family. We make use of available physical data to separate asteroids in the region according to their surface reflectance properties, and establish the membership of the family. We determine the slope of the cumulative magnitude distribution of the family, and find it to be significantly steeper than the corresponding slope of all the asteroids in the Phocaea region. This implies that subkilometer dark Phocaeas are comparable in number to bright S-type objects, shedding light on an entirely new aspect of the composition of small Phocaea asteroids. We then use the Yarkovsky V-shape based method and estimate the age of the family to be 264 ± 43 Myr. Finally, we carry out numerical simulations of the dynamical evolution of the Tamara family. The results suggest that up to 50 Tamara members with absolute magnitude H< 19.4 may currently be found in the near-Earth region. Despite their relatively small number in the near-Earth space, the rate of Earth impacts by small, dark Phocaeas is non-negligible.

  13. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter.

    PubMed

    Muñoz, Julian B; Kovetz, Ely D; Dai, Liang; Kamionkowski, Marc

    2016-08-26

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20-100  M_{⊙} window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ∼20  M_{⊙} would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass M_{L} induces two images, separated by a typical time delay ∼few×(M_{L}/30  M_{⊙})  msec. Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 10^{4} FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 10^{4} FRBs would constrain the fraction f_{DM} of dark matter in MACHOs to f_{DM}≲0.08 for M_{L}≳20  M_{⊙}.

  14. Near infrared photographic sky survey - A field index

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Craine, E. R.

    1980-01-01

    The book presents an index of previously cataloged objects located in the fields of the northern sky included in the Steward Observatory Near Infrared Photographic Sky Survey, which was intended to be used for identification purposes in an effort to locate extremely red objects. The objects included in the index were taken from 16 catalogs of bright nebulae, dark nebulae, infrared objects, reflection nebulae, supernova remnants and other objects, and appear with their corresponding field numbers, computed field center coordinates, object name and 1950 epoch equatorial coordinates, as well as supplementary descriptive information as available. An appendix is also provided in which the center coordinates of each field are listed.

  15. DISCOVERY OF A DARK AURORAL OVAL ON SATURN

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The ultraviolet image was obtained by the NASA/ESA Hubble Space Telescope with the European Faint Object Camera (FOC) on June 1992. It represents the sunlight reflected by the planet in the near UV (220 nm). * The image reveals a dark oval encircling the north magnetic pole of Saturn. This auroral oval is the first ever observed for Saturn, and its darkness is unique in the solar system (L. Ben-Jaffel, V. Leers, B. Sandel, Science, Vol. 269, p. 951, August 18, 1995). The structure represents an excess of absorption of the sunlight at 220 nm by atmospheric particles that are the product of the auroral activity itself. The large tilt of the northern pole of Saturn at the time of observation, and the almost perfect symmetry of the planet's magnetic field, made this observation unique as even the far side of the dark oval across the pole is visible! * Auroral activity is usually characterized by light emitted around the poles. The dark oval observed for Saturn is a STUNNING VISUAL PROOF that transport of energy and charged particles from the magnetosphere to the atmosphere of the planet at high latitudes induces an auroral activity that not only produces auroral LIGHT but also UV-DARK material near the poles: auroral electrons are probably initiating hydrocarbon polymer formation in these regions. Credits: L. Ben Jaffel, Institut d'Astrophysique de Paris-CNRS, France, B. Sandel (Univ. of Arizona), NASA/ESA, and Science (magazine).

  16. Clusters, voids and reconstructions of the cosmic web

    NASA Astrophysics Data System (ADS)

    Bos, E. G. Patrick

    2016-12-01

    The Universe is filled for 95% with dark matter and energy that we cannot see. Of the remaining 5% normal matter we can only see a small part. However, if we want to study the Universe as a whole, we will have to get to know it for 100%. We have to uncover indirectly where dark matter is hiding and what is the nature of dark energy. In this thesis we explore two such methods. The first part describes how we can use the large empty regions between galaxies, "voids", to learn more about dark energy. We converted our theoretical simulations to a model of real observations of galaxies. In this model, we perform the same measurements as we would in real observations. This way, we show that it is indeed possible to unravel the nature of dark energy. The second part is based on our computer code: BARCODE. It unites two models: a physical model of the formation of the Cosmic Web, and a description of the observational effects of (clusters of) galaxies, in particular the effect of redshift on distance measurements. It allows us to back-trace our observations to the primordial conditions. These enable us to trace all (dark) matter, also that which we did not directly observe. The result is a reconstruction of the complete Cosmic Web. In these, we studied "filaments". These objects have not yet been extensively studied. BARCODE will enable further study, e.g. by using it to find observable filaments.

  17. The dark side of gloss.

    PubMed

    Kim, Juno; Marlow, Phillip J; Anderson, Barton L

    2012-11-01

    Our visual system relies on the image structure generated by the interaction of light with objects to infer their material properties. One widely studied surface property is gloss, which can provide information that an object is smooth, shiny or wet. Studies have historically focused on the role of specular highlights in modulating perceived gloss. Here we show in human observers that glossy surfaces can generate both bright specular highlights and dark specular 'lowlights', and that the presence of either is sufficient to generate compelling percepts of gloss. We show that perceived gloss declines when the image structure generated by specular lowlights is blurred or misaligned with surrounding surface shading and that perceived gloss can arise from the presence of lowlights in surface regions isolated from highlights. These results suggest that the image structure generated by specular highlights and lowlights is used to construct our experience of surface gloss.

  18. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE PAGES

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; ...

    2018-02-08

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  19. Searching for axion stars and Q -balls with a terrestrial magnetometer network

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; Pospelov, M.; Pustelny, S.; Scholtes, T.; Stadnik, Y. V.; Weis, A.; Wickenbrock, A.

    2018-02-01

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q -balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q -balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q -ball could be detected over a broad range of unexplored parameter space.

  20. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  1. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  2. 75 FR 82127 - Culturally Significant Objects Imported for Exhibition Determinations: “Central Nigeria Unmasked...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... DEPARTMENT OF STATE [Public Notice 7278] Culturally Significant Objects Imported for Exhibition Determinations: ``Central Nigeria Unmasked: Arts of the Benue River Valley'' SUMMARY: Notice is hereby given of... determine that the objects to be included in the exhibition ``Central Nigeria Unmasked: Arts of the Benue...

  3. Photographer : JPL Range : 6 million kilometers (3.7 million miles) Central Longitude 120 degrees

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 6 million kilometers (3.7 million miles) Central Longitude 120 degrees west, North is up. and 3rd from the planet. Photo taken after midnight Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  4. Mass discrepancy-acceleration relation: A universal maximum dark matter acceleration and implications for the ultralight scalar dark matter model

    NASA Astrophysics Data System (ADS)

    Ureña-López, L. Arturo; Robles, Victor H.; Matos, T.

    2017-08-01

    Recent analysis of the rotation curves of a large sample of galaxies with very diverse stellar properties reveals a relation between the radial acceleration purely due to the baryonic matter and the one inferred directly from the observed rotation curves. Assuming the dark matter (DM) exists, this acceleration relation is tantamount to an acceleration relation between DM and baryons. This leads us to a universal maximum acceleration for all halos. Using the latter in DM profiles that predict inner cores implies that the central surface density μDM=ρsrs must be a universal constant, as suggested by previous studies of selected galaxies, revealing a strong correlation between the density ρs and scale rs parameters in each profile. We then explore the consequences of the constancy of μDM in the context of the ultralight scalar field dark matter model (SFDM). We find that for this model μDM=648 M⊙ pc-2 and that the so-called WaveDM soliton profile should be a universal feature of the DM halos. Comparing with the data from the Milky Way and Andromeda satellites, we find that they are all consistent with a boson mass of the scalar field particle of the order of 10-21 eV /c2, which puts the SFDM model in agreement with recent cosmological constraints.

  5. Brown dwarfs: at last filling the gap between stars and planets.

    PubMed

    Zuckerman, B

    2000-02-01

    Until the mid-1990s a person could not point to any celestial object and say with assurance that "here is a brown dwarf." Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.

  6. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE PAGES

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; ...

    2018-01-04

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  7. THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris

    2011-07-15

    We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less

  8. Monumental megalithic burial and rock art tell a new story about the Levant Intermediate Bronze “Dark Ages”

    PubMed Central

    Barash, Alon; Eisenberg-Degen, Davida; Grosman, Leore; Oron, Maya; Berger, Uri

    2017-01-01

    The Intermediate Bronze Age (IB) in the Southern Levant (ca. 2350–2000 BCE) is known as the “Dark Ages,” following the collapse of Early Bronze urban society and predating the establishment of the Middle Bronze cities. The absence of significant settlements and monumental building has led to the reconstruction of IB social organization as that of nomadic, tribal society inhabiting rural villages with no central governmental system. Excavation in the Shamir Dolmen Field (comprising over 400 dolmens) on the western foothills of the Golan Heights was carried out following the discovery of rock art engravings on the ceiling of the central chamber inside one of the largest dolmens ever recorded in the Levant. Excavation of this multi-chambered dolmen, covered by a basalt capstone weighing some 50 tons, revealed a secondary multi-burial (of both adults and children) rarely described in a dolmen context in the Golan. Engraved into the rock ceiling above the multi-burial is a panel of 14 forms composed of a vertical line and downturned arc motif. 3D-scanning by structured-light technology was used to sharpen the forms and revealed the technique employed to create them. Building of the Shamir dolmens required a tremendous amount of labor, architectural mastery, and complex socio-economic organization well beyond the capacity of small, rural nomadic groups. The monumental megalithic burial of the Shamir dolmens indicates a hierarchical, complex, non-urban governmental system. This new evidence supports a growing body of recent criticism stemming from new discoveries and approaches that calls for rethinking our views of the Levantine IB “Dark Ages.” PMID:28253312

  9. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  10. SIDM on FIRE: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Robles, Victor H.; Bullock, James S.; Elbert, Oliver D.; Fitts, Alex; González-Samaniego, Alejandro; Boylan-Kolchin, Michael; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Hayward, Christopher C.

    2017-12-01

    We compare a suite of four simulated dwarf galaxies formed in 1010 M⊙ haloes of collisionless cold dark matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for DM self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (FIRE) project and utilize the FIRE-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in self-interacting dark matter (SIDM) with σ/m = 1 cm2 g-1 are very similar to those in CDM (spanning M⋆ ≈ 105.7-7.0M⊙) and all runs lie on a similar stellar mass-size relation. The logarithmic DM density slope (α = d log ρ/d log r) in the central 250-500 pc remains steeper than α = -0.8 for the CDM-Hydro simulations with stellar mass M⋆ ∼ 106.6 M⊙ and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α > -0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include FIRE-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting that SIDM will be easier to falsify than CDM using low-mass galaxies. Our FIRE simulations predict that galaxies less massive than M⋆ ≲ 3 × 106 M⊙ provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.

  11. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    NASA Astrophysics Data System (ADS)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  12. Monumental megalithic burial and rock art tell a new story about the Levant Intermediate Bronze "Dark Ages".

    PubMed

    Sharon, Gonen; Barash, Alon; Eisenberg-Degen, Davida; Grosman, Leore; Oron, Maya; Berger, Uri

    2017-01-01

    The Intermediate Bronze Age (IB) in the Southern Levant (ca. 2350-2000 BCE) is known as the "Dark Ages," following the collapse of Early Bronze urban society and predating the establishment of the Middle Bronze cities. The absence of significant settlements and monumental building has led to the reconstruction of IB social organization as that of nomadic, tribal society inhabiting rural villages with no central governmental system. Excavation in the Shamir Dolmen Field (comprising over 400 dolmens) on the western foothills of the Golan Heights was carried out following the discovery of rock art engravings on the ceiling of the central chamber inside one of the largest dolmens ever recorded in the Levant. Excavation of this multi-chambered dolmen, covered by a basalt capstone weighing some 50 tons, revealed a secondary multi-burial (of both adults and children) rarely described in a dolmen context in the Golan. Engraved into the rock ceiling above the multi-burial is a panel of 14 forms composed of a vertical line and downturned arc motif. 3D-scanning by structured-light technology was used to sharpen the forms and revealed the technique employed to create them. Building of the Shamir dolmens required a tremendous amount of labor, architectural mastery, and complex socio-economic organization well beyond the capacity of small, rural nomadic groups. The monumental megalithic burial of the Shamir dolmens indicates a hierarchical, complex, non-urban governmental system. This new evidence supports a growing body of recent criticism stemming from new discoveries and approaches that calls for rethinking our views of the Levantine IB "Dark Ages."

  13. Eye Movement Patterns of the Elderly during Stair Descent:Effect of Illumination

    NASA Astrophysics Data System (ADS)

    Kasahara, Satoko; Okabe, Sonoko; Nakazato, Naoko; Ohno, Yuko

    The relationship between the eye movement pattern during stair descent and illumination was studied in 4 elderly people in comparison with that in 5 young people. The illumination condition was light (85.0±30.9 lx) or dark (0.7±0.3 lx), and data of eye movements were obtained using an eye mark recorder. A flight of 15 steps was used for the experiment, and data on 3 steps in the middle, on which the descent movements were stabilized, were analyzed. The elderly subjects pointed their eyes mostly directly in front in the facial direction regardless of the illumination condition, but the young subjects tended to look down under the light condition. The young subjects are considered to have confirmed the safety of the front by peripheral vision, checked the stepping surface by central vision, and still maintained the upright position without leaning forward during stair descent. The elderly subjects, in contrast, always looked at the visual target by central vision even under the light condition and leaned forward. The range of eye movements was larger vertically than horizontally in both groups, and a characteristic eye movement pattern of repeating a vertical shuttle movement synchronous with descent of each step was observed. Under the dark condition, the young subjects widened the range of vertical eye movements and reduced duration of fixation. The elderly subjects showed no change in the range of eye movements but increased duration of fixation during stair descent. These differences in the eye movements are considered to be compensatory reactions to narrowing of the vertical visual field, reduced dark adaptation, and reduced dynamic visual acuity due to aging. These characteristics of eye movements of the elderly lead to an anteriorly leaned posture and lack of attention to the front during stair descent.

  14. Consumption of predefined 'Nordic' dietary items in ten European countries - an investigation in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    PubMed

    Roswall, Nina; Olsen, Anja; Boll, Katja; Christensen, Jane; Halkjær, Jytte; Sørensen, Thorkild I A; Dahm, Christina C; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie C; Cottet, Vanessa; Teucher, Birgit; Kaaks, Rudolf; Boeing, Heiner; von Ruesten, Anne; Trichopoulou, Antonia; Oikonomou, Eleni; Vasilopoulou, Effie; Pala, Valeria; Sacerdote, Carlotta; Mattiello, Amalia; Masala, Giovanna; Peeters, Petra H M; Bueno-de-Mesquita, H Bas; Engeset, Dagrun; Skeie, Guri; Asli, Lene A; Amiano, Pilar; Jakszyn, Paula; Ardanaz, Eva; Huerta, José M; Quirós, José R; Molina-Montes, Esther; Nilsson, Lena M; Johansson, Ingegerd; Wirfält, Elisabet; Drake, Isabel; Mulligan, Angela A; Khaw, Kay T; Romaguera, Dora; Vergnaud, Anne-Claire; Key, Tim; Riboli, Elio; Tjønneland, Anne

    2014-12-01

    Health-beneficial effects of adhering to a healthy Nordic diet index have been suggested. However, it has not been examined to what extent the included dietary components are exclusively related to the Nordic countries or if they are part of other European diets as well, suggesting a broader preventive potential. The present study describes the intake of seven a priori defined healthy food items (apples/pears, berries, cabbages, dark bread, shellfish, fish and root vegetables) across ten countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) and examines their consumption across Europe. Cross-sectional study. A 24 h dietary recall was administered through a software program containing country-specific recipes. Sex-specific mean food intake was calculated for each centre/country, as well as percentage of overall food groups consumed as healthy Nordic food items. All analyses were weighted by day and season of data collection. Multi-centre, European study. Persons (n 36 970) aged 35-74 years, constituting a random sample of 519 978 EPIC participants. The highest intakes of the included diet components were: cabbages and berries in Central Europe; apples/pears in Southern Europe; dark bread in Norway, Denmark and Greece; fish in Southern and Northern countries; shellfish in Spain; and root vegetables in Northern and Central Europe. Large inter-centre variation, however, existed in some countries. Dark bread, root vegetables and fish are strongly related to a Nordic dietary tradition. Apples/pears, berries, cabbages, fish, shellfish and root vegetables are broadly consumed in Europe, and may thus be included in regional public health campaigns.

  15. General Astrophysics with TPF: Not Just Dark Energy

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2006-01-01

    Besides searching for Earth-LIke Planets, TPF can study Jupiters, Neptunes, and all sorts of exotic planets. It can image debris-disks, YSO disks, AGN disks, maybe even AGB disks. And you are probably aware that a large optical space telescope like TPF-C or TPF-O can be a fantastic tool for studying the equation of state of the Dark Energy. I will review some of the future science of TPF-C, TPF-I and TPF-O, focusing on the applications of TPF to the study of objects in our Galaxy: especially circumstellar disks and planets other than exo-Earths.

  16. Dark matter, neutron stars, and strange quark matter.

    PubMed

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  17. Thermal infrared and optical photometry of Asteroidal Comet C/2002 CE10

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Tomohiko; Miyasaka, Seidai; Dermawan, Budi; Mueller, Thomas; Takato, Naruhisa; Watanabe, Junichi; Boehnhardt, Hermann

    2018-04-01

    C/2002 CE10 is an object in a retrograde elliptical orbit with Tisserand parameter - 0.853 indicating a likely origin in the Oort Cloud. It appears to be a rather inactive comet since no coma and only a very weak tail was detected during the past perihelion passage. We present multi-color optical photometry, lightcurve and thermal mid-IR observations of the asteroidal comet. With the photometric analysis in BVRI, the surface color is found to be redder than asteroids, corresponding to cometary nuclei and TNOs/Centaurs. The time-resolved differential photometry supports a rotation period of 8.19 ± 0.05 h. The effective diameter and the geometric albedo are 17.9 ± 0.9 km and 0.03 ± 0.01, respectively, indicating a very dark reflectance of the surface. The dark and redder surface color of C/2002 CE10 may be attribute to devolatilized material by surface aging suffered from the irradiation by cosmic rays or from impact by dust particles in the Oort Cloud. Alternatively, C/2002 CE10 was formed of very dark refractory material originally like a rocky planetesimal. In both cases, this object lacks ices (on the surface at least). The dynamical and known physical characteristics of C/2002 CE10 are best compatible with those of the Damocloids population in the Solar System, that appear to be exhaust cometary nucleus in Halley-type orbits. The study of physical properties of rocky Oort cloud objects may give us a key for the formation of the Oort cloud and the solar system.

  18. 15N fractionation in star-forming regions and Solar System objects

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Milam, Stefanie; Adande, Gilles; Charnley, Steven B.; Cordiner, Martin A.

    2015-08-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristine molecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N/15N ~ 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N/15N < 100.The coherent 15N enrichment in comets from different formation zones suggests that these isotopic enhancements are remnants of the interstellar chemistry in the natal molecular cloud core and the outer protosolar nebula. Indeed, early chemical models of gas-phase ion-molecule nitrogen fractionation showed that HCN and HNC (nitriles) can hold significant 15N enrichments in cold dark clouds where CO is depleted onto dust grains. In addition, 15N fractionation in nitriles and amines (NH2, NH3) follow different chemical pathways. More recently we have shown that once the spin-state dependence in rates of reactions with H2 is included in the models, amines can either be enhanced or depleted in 15N, depending on the core’s evolutionary stage. Observed 15N fractionation in amines and nitriles therefore cannot be expected to be the same, instead their ratio is a potential chemical clock.Observations of molecular isotope ratios in dark cores are challenging. Limited published results in general show higher 15N/14N ratios in HCN and HNC than ammonia, but more measurements are necessary to confirm these trends. We will present recent results from our ongoing observing campaign of 14N/15N isotopic ratios in HCN, HNC and NH3 in dense cores and protostars which seem consistent with significant fractionation in nitriles as compared to other molecules in each object. The few 14N/15N ratios observed in N2H+ are similar to those in NH3, contrary to our model results which predict a significant 15N enhancement in N2 and N2H+. Model upgrades which may address this discrepancy will be presented and discussed.

  19. Science Priorities of the RadioAstron Space VLBI Mission

    NASA Astrophysics Data System (ADS)

    Langston, Glen; Kardashev, N.; International Space VLBI Collaboration

    2006-12-01

    The main scientific goal of the RadioAstron Space VLBI mission is study of Active Galactic Nuclei (AGN), Masers and other astronomical objects with unprecedented angular resolution, up to few millionths of an arc-second. The resolution achieved with RadioAstron will allow study the following phenomena and problems: * Central engine of AGN and physical processes near super massive black holes providing an acceleration of cosmic rays size, velocity and shape of emitting region in the core, spectrum, polarization and variability of emitting components; * Cosmological models, dark matter and dark energy by studying dependence of above mentioned AGN's parameters with redshift, and by observing gravitational lensing; * Structure and dynamics of star and planets forming regions in our Galaxy and in AGN by studying maser and Mega maser radio emission; * Neutron (quark?) stars and black holes in our Galaxy, their structure and dynamics by VLBI and measurements of visibility scintillations, proper motions and parallaxes; * Structure and distribution of interstellar and interplanetary plasma by fringe visibility scintillations of pulsars; The RadioAstron mission uses the satellite SPECTR (astrophysical module), developed by Lavochkin Association of Russian Aviation and Space Agency (RASA). This module will be used in several other scientific missions. The total mass of the scientific payload is about 2500 kg, of which the unfolding parabolic 10-m radio astronomy antenna's mass is about 1500 kg, and scientific package holding the receivers, power supply, synthesizers, control units, frequency standards and data transmission radio system. The mass of the whole system (satellite and scientific payload) to be carried into orbit by the powerful "Zenit-2SB"-"Fregat-2CB" launcher is about 5000 kg. The RadioAstron project is an international collaboration between RASA and ground radio telescope facilities around the world.

  20. Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland.

    PubMed

    Thiem, Dominika; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Alnus glutinosa (black alder) is a mycorrhizal pioneer tree species with tolerance to high concentrations of salt in the soil and can therefore be considered to be an important tree for the regeneration of forests areas devastated by excessive salt. However, there is still a lack of information about the ectomycorrhizal fungi (EMF) associated with mature individuals of A. glutinosa growing in natural saline conditions. The main objective of this study was to test the effect of soil salinity and other physicochemical parameters on root tips colonized by EMF, as well as on the species richness and diversity of an EMF community associated with A. glutinosa growing in natural conditions. We identified a significant effect of soil salinity (expressed as electrical conductivity: EC e and EC 1:5 ) on fungal taxa but not on the total level of EM fungal colonization on roots. Increasing soil salinity promoted dark-coloured EMF belonging to the order Thelephorales ( Tomentella sp. and Thelephora sp.). These fungi are also commonly found in soils polluted with heavy-metal. The ability of these fungi to grow in contaminated soil may be due to the presence of melanine, a natural dark pigment and common wall component of the Thelephoraceae that is known to act as a protective interface between fungal metabolism and biotic and abiotic environmental stressors. Moreover, increased colonization of fungi belonging to the class of Leotiomycetes and Sordiomycetes, known as endophytic fungal species, was observed at the test sites, that contained a larger content of total phosphorus. This observation confirms the ability of commonly known endophytic fungi to form ectomycorrhizal structures on the roots of A. glutinosa under saline stress conditions.

  1. The relationship between change detection and recognition of centrally attended objects in motion pictures.

    PubMed

    Angelone, Bonnie L; Levin, Daniel T; Simons, Daniel J

    2003-01-01

    Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.

  2. The DUNE Mission

    NASA Astrophysics Data System (ADS)

    Castander, F. J.

    The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmological probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, and cluster counts. Besides its observational cosmology goals, the mission capabilities of DUNE allow the study of galaxy evolution, galactic structure and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands. The final data of the DUNE mission will form a unique legacy for the astronomy community. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept which combines wide-field deep imaging with low resolution multi-object spectroscopy.

  3. A study of the stellar population in the Chamaeleon dark clouds

    NASA Technical Reports Server (NTRS)

    Gauvin, Lisa S.; Strom, Karen M.

    1992-01-01

    The properties of the stellar population in the Chamaeleon dark clouds are discussed. Spectral energy distributions, based on the extant photometric and spectroscopic data base and IRAS fluxes measured from coadded data taken at the position of each star, and spectral types allow placement of the stars in an H-R diagram. The age and mass distributions and the luminosity function for the Chamaeleon stars are compared to those in the Taurus-Auriga dark clouds and are found to be similar. A small subsample (eight of 36) of the Chamaeleon stars show unusual spectral energy distributions which seem best interpreted as arising from circumstellar disks whose inner regions (R(in)) is less than 30-50 stellar radii) area devoid of material. The X-ray properties of this sample of premain-sequence objects are compared to those of other premain-sequence samples, as well as to the Hyades and the Pleiades main-sequence stars.

  4. Search for a gamma-ray line feature from a group of nearby galaxy clusters with Fermi LAT Pass 8 data

    NASA Astrophysics Data System (ADS)

    Liang, Yun-Feng; Shen, Zhao-Qiang; Li, Xiang; Fan, Yi-Zhong; Huang, Xiaoyuan; Lei, Shi-Jun; Feng, Lei; Liang, En-Wei; Chang, Jin

    2016-05-01

    Galaxy clusters are the largest gravitationally bound objects in the Universe and may be suitable targets for indirect dark matter searches. With 85 months of Fermi LAT Pass 8 publicly available data, we analyze the gamma-ray emission in the direction of 16 nearby galaxy clusters with an unbinned likelihood analysis. No statistically or globally significant γ -ray line feature is identified and a tentative line signal may present at ˜43 GeV . The 95% confidence level upper limits on the velocity-averaged cross section of dark matter particles annihilating into double γ rays (i.e., ⟨σ v ⟩χχ →γ γ) are derived. Unless very optimistic boost factors of dark matter annihilation in these galaxy clusters have been assumed, such constraints are much weaker than the bounds set by the Galactic γ -ray data.

  5. Lateral masking in cycling displays: the relative importance of separation, flanker duration, and interstimulus interval for object-mediated updating.

    PubMed

    Hein, Elisabeth; Moore, Cathleen M

    2010-01-01

    A central bar repeatedly presented in alternation with two flanking bars can lead to the disappearance of the central bar. Recently it has been suggested that this masking effect could be explained by object-mediated updating: the information from the central bar is integrated into the representation of the flankers, leading not only to the disappearance of the central bar as a separate object, but also to the perception of the flankers in apparent motion between their real position and the position of the central bar. This account suggests that the visibility of the central bar should depend on the same factors as those that influence the construction and maintenance of object representations. Therefore separation between central bar and flankers should not influence visibility as long as the time interval between them is adequate to make an interpretation of the scene in terms of one object moving from one location to the other possible location. We found that if the time interval between the central bar and the flankers is neither too short nor too long, the central bar becomes invisible even at large separations. These findings are inconsistent with traditional accounts of the cycling lateral masking displays in terms of local inhibitory mechanisms.

  6. Light-Induced Alterations in Striatal Neurochemical Profiles

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain that receives a number of dopaminergic and glutamatergic input and is known to be involved in the modulation of locomotor and behavioral responses.

  7. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the dark matter. The suppression of the anisotropy when using the major axis of the light to define the geometry is indicative of a significant misalignment of mass and light in the Illustris-1 galaxies at large physical radii.

  8. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light-dark cycle.

    PubMed

    Welkie, David; Zhang, Xiaohui; Markillie, Meng Lye; Taylor, Ronald; Orr, Galya; Jacobs, Jon; Bhide, Ketaki; Thimmapuram, Jyothi; Gritsenko, Marina; Mitchell, Hugh; Smith, Richard D; Sherman, Louis A

    2014-12-29

    Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions. By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light-dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid. This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements.

  9. Preclinical and Clinical Studies of Unrelieved Aural Fullness following Intratympanic Gentamicin Injection in Patients with Intractable Ménière’s Disease

    PubMed Central

    Zhai, Feng; Zhang, Ru; Zhang, Ting; Steyger, Peter S.; Dai, Chun-Fu

    2014-01-01

    Objective To clarify whether gentamicin affects vestibular dark cells in guinea pigs and relieves patients of aural fullness with intractable Ménière’s disease following intratympanic administration. Materials and Methods Purified gentamicin-Texas Red (GTTR) was injected intratympanically in guinea pigs that were sacrificed at 1, 3, 7, 14 and 28 days. GTTR uptake was examined in hair cells, and transitional cells and dark cells in vestibular end-organs were examined. Specific attention was paid to its distribution in dark cells under confocal microscopy, and the ultrastructure of dark cells using electron microscopy, following intratympanic injection. Results Dark cells in the semicircular canals showed weak GTTR uptake at 1, 3, 7, 14 and 28 days after intratympanic injection, with no significant differences at various time points after injection. However, the adjacent transitional cells demonstrated intense GTTR uptake that was retained for at least 28 days. Ultrastructural studies demonstrated negligible characteristics associated with apoptosis or necrosis in these dark cells. The tight junctions between dark cells showed no signs of disruption at 7 or 28 days after injection. Conclusion Intratympanic gentamicin has little direct impact on vestibular dark cells. Clinical Application A modified low-dose titration intratympanic approach was used in 29 patients with intractable vertigo and the clinical outcomes were followed. Aural fullness following intratympanic gentamicin injection was not relieved based on our subjective scales, demonstrated by no statistically significant difference between preinjection (4.16 ± 3.08) and postinjection (3.58 ± 2.93; p > 0.05) aural fullness scores. Vertigo control was achieved in 88% of patients, with hearing deterioration identified in 16% of patients. Intratympanic gentamicin administration might not lead to relief of aural fullness in patients with intractable vertigo, although it can achieve a high vertigo control rate with some cochleotoxicity. PMID:24008307

  10. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i -band limiting magnitude for extended objects (10 σ ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i -band limiting magnitude for extended objects (10 σ ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified basedmore » on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.« less

  11. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    NASA Astrophysics Data System (ADS)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; da Costa, L. N.; Fausti Neto, A.; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration

    2017-09-01

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median I-band limiting magnitude for extended objects (10σ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an I-band limiting magnitude for extended objects (10σ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.

  12. Possible existence of wormholes in the central regions of halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in; Salucci, P., E-mail: salucci@sissa.it; INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for themore » central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.« less

  13. Characterization of carbon in sediment-hosted disseminated gold deposits, north central Nevada

    USGS Publications Warehouse

    Leventhal, Joel; Hofstra, Albert; ,

    1990-01-01

    The gray, dark gray and black colors of the sediments and the presence of pyrite in the Carlin, Jerritt Canyon, Horse Canyon, Betze, and Gold Acres sediment-hosted disseminated gold (SHDG) deposits indicate that these rocks are not oxidized with respect to carbon and iron sulfide. The organic matter in the host rocks of SHDG deposits in north-central Nevada is cryptocrystalline graphite with dimensions of 30 to 70 A (0.003 to 0.007 ??) that was formed at temperatures of 250 to 300??C. These results indicate that north-central Nevada was subjected to pumpellyite-actinolite to lowermost greenschist facies conditions prior to mineralization. The hydrothermal fluids that produced the gold deposits had little, if any, effect on the thermal maturity and crystallinity of the cryptocrystalline graphite produced by the earlier thermal event.

  14. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  15. Interactions in the Dark Sector of Cosmology

    NASA Astrophysics Data System (ADS)

    Bean, Rachel

    The success of modern cosmology hinges on two dramatic augmentations beyond the minimalist assumption of baryonic matter interacting gravitationally through general relativity. The first assumption is that there must exist either new gravitational dynamics or a new component of the cosmic energy budget - dark matter - that allows structure to form and accounts for weak lensing and galactic rotation curves. The second assumption is that a further dynamical modification or energy component - dark energy - exists, driving late-time cosmic acceleration. The need for these is now firmly established through a host of observations, which have raised crucial questions, and present a deep challenge to fundamental physics. The central theme of this proposal is the detailed understanding of the nature of the dark sector through the inevitable interactions between its individual components and with the visible universe. Such interactions can be crucial to a given model's viability, affecting its capability to reproduce the cosmic expansion history; the detailed predictions or structure formation; the gravitational dynamics on astrophysical and solar system scales; the stability of the microphysical model, and its ultimate consistency. While many models are consistent with cosmology on the coarsest scales, as is often the case, the devil may lie in the details. In this proposal we plan a comprehensive analysis of these details, focusing on the interactions within the dark sector and between it and visible matter, and on how these interactions affect the observational and theoretical consistency of models. Since it is unlikely that there will be a silver bullet allowing us to isolate the cause of cosmic acceleration, it is critical to develop a coherent view of the landscape of proposed models, extract clear predictions, and determine what combination of experiments and observations might allow us to test these predictions.

  16. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness.

    PubMed

    Henry, Clémence; Bledsoe, Samuel W; Siekman, Allison; Kollman, Alec; Waters, Brian M; Feil, Regina; Stitt, Mark; Lagrimini, L Mark

    2014-11-01

    Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Suppression of dark current radiation in step-and-shoot intensity modulated radiation therapy by the initial pulse-forming network.

    PubMed

    Cheng, Chee-Wai; Das, Indra J; Ndlovu, Alois M

    2002-09-01

    The effect of the initial pulse forming network (IPFN) on the suppression of dark current is investigated for a Siemens Primus accelerator. The dark current produces a spurious radiation, which is referred to as dark current radiation (DCR) in this study. In the step-and-shoot delivery of an intensity modulated radiation therapy (IMRT), the DCR could be of some concern for whole body dose along with leakage radiation through collimator jaws or multileaf collimator. By adjusting the IPFN-to-PFN ratio to >0.8, the DCR can be measured with an ion chamber during the "PAUSE" state of the accelerator in the IMRT mode. For 15 MV x rays, the magnitude of the DCR is approximately equal to 0.7% of the dose at dmax for a 10 x 10 cm2 field. The DCR has a similar central axis depth dose as a 15 MV beam as determined from a water phantom scan. When the IPFN-to-PFN ratio is lowered to <0.8, no DCR is detected. For low energy x rays (6 MV), no DCR is detected regardless of the IPFN-to-PFN ratio. Although the DCR is studied only for the Siemens Primus model accelerator, the same precaution applies to other models of modern accelerators from other vendors. Due to the large number of field segments used in a step-and-shoot IMRT, it is imperative therefore, that dark current evaluation be part of machine commissioning and annual calibration for high-energy photon beams. Should DCR be detected, the medical physicist should work with a service engineer to rectify the problem. In view of DCR and whole body dose, low-energy photon beams are advisable for IMRT.

  18. Routine handling methods affect behaviour of three-spined sticklebacks in a novel test of anxiety.

    PubMed

    Thompson, Ralph R J; Paul, Elizabeth S; Radford, Andrew N; Purser, Julia; Mendl, Michael

    2016-06-01

    Fish are increasingly popular subjects in behavioural and neurobiological research. It is therefore important that they are housed and handled appropriately to ensure good welfare and reliable scientific findings, and that species-appropriate behavioural tests (e.g. of cognitive/affective states) are developed. Routine handling of captive animals may cause physiological stress responses that lead to anxiety-like states (e.g. increased perception of danger). In fish, these may be particularly pronounced when handling during tank-to-tank transfer involves removal from water into air. Here we develop and use a new combined scototaxis (preference for dark over light areas) and novel-tank-diving test, alongside conventional open-field and novel-object tests, to measure the effects of transferring three-spined sticklebacks (Gasterosteus aculeatus) between tanks using a box or net (in and out of water respectively). Preference tests for dark over light areas confirmed the presence of scototaxis in this species. Open-field and novel-object tests failed to detect any significant differences between net and box-handled fish. However, the combined diving and scototaxis detected consistent differences between the treatments. Net-handled fish spent less time on the dark side of the tank, less time in the bottom third, and kept a greater distance from the 'safe' bottom dark area than box-handled fish. Possible explanations for this reduction in anxiety-like behaviour in net-handled fish are discussed. The combined diving and scototaxis test may be a sensitive and taxon-appropriate method for measuring anxiety-like states in fish. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Stars Spring up Out of the Darkness

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Stars Spring up Out of the Darkness

    This artist's animation illustrates the universe's early years, from its explosive formation to its dark ages to its first stars and mini-galaxies.

    Scientists using NASA's Spitzer Space Telescope found patches of infrared light splattered across the sky that might be the collective glow of clumps of the universe's first objects. Astronomers do not know if these first objects were stars or 'quasars,' which are black holes voraciously consuming surrounding gas.

    The movie begins with a flash of color that represents the birth of the universe, an explosion called the Big Bang that occurred about 13.7 billion years ago. A period of darkness ensues, where gas begins to clump together.

    The universe's first stars are then shown springing up out of the gas clumps, flooding the universe with light, an event that probably happened about a few hundred million years after the Big Bang. Though these first stars formed out of gas alone, their deaths seeded the universe with the dusty heavy chemical elements that helped create future generations of stars.

    The first stars, called Population III stars (our star is a Population I star), were much bigger and brighter than any in our nearby universe, with masses about 1,000 times that of our sun. They grouped together into mini-galaxies, which then merged to form galaxies like our own mature Milky Way galaxy.

    The first quasars, not shown here, ultimately became the centers of powerful galaxies that are more common in the distant universe.

  20. Reheating and the asymmetric production of matter

    NASA Astrophysics Data System (ADS)

    Adshead, Peter

    The early thermal history of the universe, from the end of inflation until the light elements are produced at big-bang nucleosynthesis, remains one of the most poorly understood periods of our cosmic history. We do not understand how inflation ends, and the connection between the physics that drives inflation and the standard model is poorly constrained. Consequently, the mechanism by which the Universe is reheated from its super-cooled post-inflationary state into a thermalized plasma is unknown. Furthermore, the precise mechanism responsible for the matter-antimatter asymmetry and the detailed particle origin of dark matter are, as yet, unknown. However, it is precisely during this epoch that abundant phenomenology from fundamental physics beyond the standard model is anticipated. The objective of the proposed research is to address this gap in our understanding of the history of the Universe by exploring the connection between the physics that drives the inflationary epoch, and the physics that ignites the hot big-bang. This will be achieved by two detailed studies of the physics of reheating. The first study examines the cosmic history of dark sectors, and addresses the cosmological question of how these sectors are populated in the early universe. The second study examines detailed particle physics models of reheating where the inflaton couples to gauge fields. NASA's strategic objectives in astrophysics are to discover how the universe works and to explore how it began and evolved. The primary goal of this proposal is to address these questions by developing a deeper understanding of the history of the post-inflationary universe through cosmological observations and fundamental theory. Specifically, this proposal will advance NASA's science goal to probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity

Top