Sample records for central mountain system

  1. MX Siting Investigation. MX System Siting Summary Report. General Introduction. Volume I. Part I.

    DTIC Science & Technology

    1982-01-18

    Mountain Spring Peak 1972 Observation Knoll 1971 Pinto Spring 1971 Steamboat Mountain 1971 Steamboat Mountain SW 1971 The Tetons 1971 Zane 1972 MX SITING...Silver Peak 1978 Stoddard Mountain 1978 Water Creek Canyon 1972 Yale Crossing 1971 49 Beaver Dam Mountains NE 1955 Central East 1972 Central West 1972...SHELTER SITE -ORIGINAL ROAD --- RESITED ROAD *• = FOUND 3 1/2" BRASS CAP SET ON 2 1/2" IRON PIPE . U.S DEPARTMENT OF THE INTERIOR. BUREAU OF LAND

  2. HYDROGEOLOGIC SETTING AND CHARACTERISTICS OF RIPARIAN MEADOW COMPLEXES IN THE MOUNTAINS OF CENTRAL NEVADA: A CASE STUDY

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems threatened by stream incision. An interdisciplinary team from government and academia is investigating the origin, setting, and biological--physical interrelations...

  3. Tectonics of the central Andes

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Isacks, Bryan L.; Fielding, Eric J.; Fox, Andrew N.; Gubbels, Timothy L.

    1989-01-01

    Acquisition of nearly complete coverage of Thematic Mapper data for the central Andes between about 15 to 34 degrees S has stimulated a comprehensive and unprecedented study of the interaction of tectonics and climate in a young and actively developing major continental mountain belt. The current state of the synoptic mapping of key physiographic, tectonic, and climatic indicators of the dynamics of the mountain/climate system are briefly reviewed.

  4. Principal facts for gravity profiles collected near the Osgood Mountains and the Slumbering Hills, north-central Nevada

    USGS Publications Warehouse

    Grauch, V.J.; Kucks, Robert P.

    1997-01-01

    This report presents principal facts for gravity stations collected along profiles near the Osgood Mountains and Slumbering Hills, north- central Nevada. These include (1) data collected near the Osgood Mountains by U. S. Geological Survey (USGS) personnel in the years 1989, 1990, and 1993; and (2) data released to the USGS by Battle Mountain Gold (now Battle Mountain Exploration) that were collected in 1989 near the Osgood Mountains and the Slumbering Hills. The digital data, text of this report (figures in separate files) can be downloaded via 'anonymous ftp' from a USGS system named greenwood.cr.usgs.gov (136.177.21.122). The files are located in a directory named /pub/open-file-reports/ofr-97-0085 and are described in an ASCII file named readme.txt. This information is also contained below in Table 1.

  5. High-pressure amphibolite facies dynamic metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east- central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.

    1995-01-01

    Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors

  6. Palaeoglaciology of the Central European Uplands - a link between the former ice masses over the Alps and Scandinavia

    NASA Astrophysics Data System (ADS)

    Hauzenberger, B.; Fickert, T.

    2009-04-01

    The Central European Uplands are located northeast of the Alps along the western edge of the Czech border. A horseshoe shaped range of low mountains contains the Bavarian Forest Mountains, the Fichtel Mountains, the Erz Mountains and the Giant Mountains, with highest summit altitudes ranging from 1051 m a.s.l. (Fichtel Mountains) to 1603 m a.s.l. (Giant Mountains). The location north of the Alps makes these mountains highly interesting as a possible link between the Scandinavian ice sheet and the Alps. Although the glacial traces of the Central European Uplands have been investigated for more than 100 years, the glacial history is still elusive. While the highest mountains (the Bavarian Forest and the Giant Mountains) hold evidence of valley glaciers, the lower mountains (the Fichtel and the Erz Mountains) lack unambiguous glacial traces. As a first step towards a palaeoglaciological reconstruction for the Central European Uplands, we present a digital map of glacier termini with elevation data from the SRTM elevation model, compiled from previous investigations of the area. The glacial map of the Central European Uplands presents the pattern of glacial traces over an extensive area in central Europe and forms the basis for reconstructing the extent of former glaciers. We compare the glacial evidence with modern day climate data (from the high resolution WorldClim database), from which we can estimate the climate change needed to produce Central European Upland glaciers. The glacial traces of the Central European Uplands hold information on past climate of the region and this may be a key to link the glacial record of the Alps with the Scandinavian ice sheet.

  7. Visualization of heterogeneous forest structures following treatment in the southern Rocky Mountains

    Treesearch

    Wade T. Tinkham; Yvette Dickinson; Chad M. Hoffman; Mike A. Battaglia; Seth Ex; Jeffrey Underhill

    2017-01-01

    Manipulation of forest spatial patterns has become a common objective in restoration prescriptions throughout the central and southern Rocky Mountain dry-mixed conifer forest systems. Pre-Euro-American settlement forest reconstructions indicate that frequent-fire regimes developed forests with complex mosaics of individual trees, tree clumps of varying size, and...

  8. Making black cherry blanks from System 6

    Treesearch

    Hugh W. Reynolds; Bruce G. Hansen; Bruce G. Hansen

    1986-01-01

    Low-grade, small-diameter black cherry (Prunus serotina) timber was used to make System 6 cants. Cherry from the Allegheny National Forest (Ludlow, PA), west-central Pennsylvania (Glen Hope, PA), north-central Pennsylvania (Dushore, PA), western Maryland (Oakland, MD), and the Monongahela National Forest (Middle Mountain; WV) was used. The cants were resawed to-414...

  9. Forest ecology and biogeography of the Uinta Mountains, USA

    Treesearch

    John D. Shaw; James N. Long

    2007-01-01

    The Uinta Mountains form a crossroads of forests and woodlands in the central Rocky Mountains. Although no tree species is endemic to the area, all species characteristic of the central Rocky Mountains are found there, and the ranges of several other species terminate in the Uinta Mountains and the surrounding area. The peninsula-like shape, east-west orientation, and...

  10. 49 CFR 71.7 - Boundary line between central and mountain zones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Boundary line between central and mountain zones. 71.7 Section 71.7 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE... mountain standard time zone, except Murdo, S. Dak., which is in the central standard time zone. [Amdt. 71...

  11. Synthesis of lower treeline limber pine (Pinus flexilis) woodland knowledge, research needs, and management considerations

    Treesearch

    Robert E. Means

    2011-01-01

    Lower treeline limber pine woodlands have received little attention in peer-reviewed literature and in management strategies. These ecologically distinct systems are thought to be seed repositories between discontinuous populations in the northern and central Rocky Mountains, serving as seed sources for bird dispersal between distinct mountain ranges. Their position on...

  12. HYDROLOGY OF CENTRAL GREAT BASIN MEADOW ECOSYSTEMS – EFFECTS OF STREAM INCISION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. Our interdisciplinary group has investigated 1) the interrelationships of geomorphology, hydrology, and vegetation; and 2) ...

  13. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Newton, B. Talon

    2016-06-01

    The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

  14. Geology of Tenderfoot Creek Experimental Forest Little Belt Mountains, Meagher County, Montana

    Treesearch

    Mitchell W. Reynolds

    1975-01-01

    The Tenderfoot Creek Experimental Forest in the west-central part of the Little Belt Mountains occupies a transition zone in the west-central part of the Mountains-a transition from rolling mountain parks with rounded peaks that rise about 500 feet above the upland of the range to deeply incised canyons that drain the west end of the Mountains. The Experimental Forest...

  15. Radar Rainfall Statistics During PECAN

    NASA Astrophysics Data System (ADS)

    Romatschke, U.; Weckwerth, T.

    2017-12-01

    The Plains Elevated Convection At Night (PECAN) field campaign, based in Kansas, USA, took place from May to July 2015. It was designed to understand the causes and improve predictions of the central US nocturnal precipitation maximum. Over 100 instruments were utilized to sample the pre-convective and convective conditions within and around unorganized storms and Mesoscale Convective Systems (MCSs). We analyze quantitative precipitation estimates (QPEs) derived from a dense network of NEXRADs which, combined with S-Pol, cover an area extending from the eastern side of the Rocky Mountains over the Central Great Plains. As expected, precipitation maxima occurred during the afternoon and evening over the eastern Rocky Mountains and during the night over the plains. The precipitation over the mountains is almost exclusively associated with smaller scale storms which are triggered by solar heating over the elevated terrain. The mountain triggered storms quickly grow and merge to the size of MCSs and are then advected east over the plains. Storms are also initiated over the plains but at much lower frequency than over the mountains. The diurnal cycle of plain initiation is much less pronounced with a broad peak in the afternoon and evening but also significant convection initiation during the night. The nocturnal precipitation over the plains is primarily associated with the MCSs advected from the mountains which merge with the storms triggered over the plains. Some precipitation over the plains is generated by pristine storms triggered over the plains but their precipitation contribution is mostly secondary compared to the merged systems.

  16. How do American mountains affect tropical Pacific climate?

    NASA Astrophysics Data System (ADS)

    Xie, S.; Okajima, H.; Xu, H.; Small, J.

    2006-12-01

    Mountains on the American continents affect Pacific climate significantly. The gap winds across Central America are a good example, imprinting on the eastern Pacific intertropical convergence zone (ITCZ). The wind curls associated these gap winds maintain a thermocline dome, cooling sea surface temperature and punching a hole in the summer ITCZ west of Central America. In winter, on the other hand, the eastern Pacific ITCZ is known to be displaced south of the eastern Pacific warm pool, almost the only exception of an otherwise close collocation of the SST maximum and ITCZ over the eastern Pacific. Our regional model experiments show that as the northeast trades blow across Central American mountains, the subsidence on the lee side is the cause of the southward displacement of the Pacific ITCZ. A new finding from recent satellite scatterometer observations is that the gap winds, strongest in winter, displays a secondary maximum in July- August. Our diagnostic and model studies show that this summer gap wind is associated with the mid- summer draught over Central America, due to the unsynchronized seasonal march between the Pacific and Atlantic ITCZs. The influence of American mountains is not limited to the vicinity of the continents but spreads over the entire Pacific basin. To assess this basin-scale influence, we remove these mountains in a global coupled general circulation model. The removal of American mountains weakens the latitudinal asymmetry of Pacific climate, with the ITCZ staying longer south of the equator during February-May. Two orographic effects contribute to this basin-scale change in climate: a) the winter northeast trades intensify without the Central American mountain barrier, which cools the SST north of the equator; b) the moisture over the Amazonia spreads to the Southeast Pacific without the Andes, in favor of a southern ITCZ. In a coupled system, both effects would help move the ITCZ south of the equator during boreal spring. This change in climatic asymmetry has an effect on the seasonal variations in the equatorial cold tongue, reducing the annual and increasing the semi-annual cycle.

  17. 49 CFR 71.7 - Boundary line between central and mountain zones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Boundary line between central and mountain zones... BOUNDARIES § 71.7 Boundary line between central and mountain zones. (a) Montana-North Dakota. Beginning at... south along the range line between Rs. 30 and 31 W. to the southwest corner of sec. 19, T. 33 N., R. 30...

  18. 49 CFR 71.7 - Boundary line between central and mountain zones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Boundary line between central and mountain zones... BOUNDARIES § 71.7 Boundary line between central and mountain zones. (a) Montana-North Dakota. Beginning at... south along the range line between Rs. 30 and 31 W. to the southwest corner of sec. 19, T. 33 N., R. 30...

  19. 49 CFR 71.7 - Boundary line between central and mountain zones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Boundary line between central and mountain zones... BOUNDARIES § 71.7 Boundary line between central and mountain zones. (a) Montana-North Dakota. Beginning at... south along the range line between Rs. 30 and 31 W. to the southwest corner of sec. 19, T. 33 N., R. 30...

  20. National Hydroelectric Power Resources Study: Regional Assessment: Volume XXII: Western Systems Coordinating Council, (WSCC). Volume 22

    DTIC Science & Technology

    1981-09-01

    respectively; the Klamath Mountains of Oregon and California; the Basin and Ranges of Nevada, the Teton Range of Wyoming; the Uinta Mountains of Utah...approximately 292,000 square miles, includes all of the Columbia River system in the United States and all other river basins in Idaho, Oregon, and...Central Valley and the Los Angeles Basin of California. The western valleys of the Pacific Northwest, the Denver-Cheyenne area along the Rockies’ eastern

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fecht, K.R.

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending majormore » fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems.« less

  2. Late Oligocene to present contractional structure in and around the Susitna basin, Alaska—Geophysical evidence and geological implications

    USGS Publications Warehouse

    Saltus, Richard W.; Stanley, Richard G.; Haeussler, Peter J.; Jones, James V.; Potter, Christopher J.; Lewis, Kristen A.

    2016-01-01

    The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of Susitna basin, spans a horizontal distance of ∼40 km and straddles the topographic front. The location and shape of the gravity gradient preclude a normal fault geometry; instead, it is best explained by a southwest-dipping thrust fault, with its leading edge located several kilometers to the northeast of the mountain front, concealed beneath the shallow glacial and fluvial cover deposits. Similar contractional fault relationships are observed for other basin-bounding and regional faults as well. Contractional structures are consistent with a regional shortening strain field inferred from differential offsets on the Denali and Castle Mountain right-lateral strike-slip fault systems.

  3. Reconstructing spatial and temporal patterns of paleoglaciation across Central Asia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.

    2014-05-01

    Understanding the behaviour of mountain glaciers and ice caps, the evolution of mountain landscapes, and testing global climate models all require well-constrained information on past spatial and temporal patterns of glacier change. Particularly important are transitional regions that have high spatial and temporal variation in glacier activity and that can provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers that have responded sensitively to variations in major regional climate systems. As an international team, we are reconstructing glacial histories of several areas of the Tibetan Plateau as well as along the Tian Shan, Altai and Kunlun Mountains. Building on previous work, we are using remote sensing-based geomorphological mapping augmented with field observations to map out glacial landforms and the maximum distributions of erratics. We then use cosmogenic nuclide Be-10 and Al-26, optically stimulated luminescence, and electron spin resonance dating of moraines and other landforms to compare dating techniques and to constrain the ages of defined extents of paleo-glaciers and ice caps. Comparing consistently dated glacial histories across central Asia provides an opportunity to examine shifts in the dominance patterns of climate systems over time in the region. Results to date show significant variations in the timing and extent of glaciation, including areas in the southeast Tibetan Plateau and Tian Shan with extensive valley and small polythermal ice cap glaciation during the global last glacial maximum in contrast to areas in central and northeast Tibetan Plateau that had very limited valley glacier expansion then. Initial numerical modelling attempting to simulate mapped and dated paleoglacial extents indicates that relatively limited cooling is sufficient to produce observed past expansions of glaciers across the Tibetan Plateau, and predicts complex basal thermal regimes in some locations that match patterns of past glacial erosion inferred from landform patterns and ages. Future modelling will examine glacier behaviour along major mountain ranges across central Asia.

  4. Earthquake and volcano clustering via stress transfer at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Parsons, T.; Thompson, G.A.; Cogbill, A.H.

    2006-01-01

    The proposed national high-level nuclear waste repository at Yucca Mountain is close to Quaternary cinder cones and faults with Quaternary slip. Volcano eruption and earthquake frequencies are low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a three-dimensional finite-element model on the expectation that faulting and basalt intrusions are sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that Lathrop Wells feeder dike inflation favored renewed fault slip. ?? 2006 Geological Society of America.

  5. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  6. Education in Central West Virginia, 1910-1975.

    ERIC Educational Resources Information Center

    Chapman, Berlin Basil

    Documenting the evolution of the public school system in central West Virginia, this book examines the history of Webster Springs High School, a small rural school. The social and economic history of West Virginia mountain people emerges as the history of this school is traced from its inception in 1910 through consolidation (Webster County High…

  7. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining bend, segmented the >3.0 km deep basin underlying southern Fish Lake Valley, and formed a 2 km wide restraining bend in the FLVF. Part of the left-oblique motion on the Palmetto Mountain fault zone crosses Fish Lake Valley and offsets the FLVF in a 3 km wide restraining bend with the remainder being taken-up by NNW structures along the eastern side of southern Fish Lake Valley.

  8. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    NASA Astrophysics Data System (ADS)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  9. 234U/238U evidence for local recharge and patterns of groundwater flow in the vicinity of Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Paces, J.B.; Ludwig, K. R.; Peterman, Z.E.; Neymark, L.A.

    2002-01-01

    Uranium concentrations and 234U/238U ratios in saturated-zone and perched ground water were used to investigate hydrologic flow and downgradient dilution and dispersion in the vicinity of Yucca Mountain, a potential high-level radioactive waste disposal site. The U data were obtained by thermal ionization mass spectrometry on more than 280 samples from the Death Valley regional flow system. Large variations in both U concentrations (commonly 0.6-10 ??g 1-1) and 234U/238U activity ratios (commonly 1.5-6) are present on both local and regional scales; however, ground water with 234U/238U activity ratios from 7 up to 8.06 is restricted largely to samples from Yucca Mountain. Data from ground water in the Tertiary volcanic and Quaternary alluvial aquifers at and adjacent to Yucca Mountain plot in 3 distinct fields of reciprocal U concentration versus 234U/238U activity ratio correlated to different geographic areas. Ground water to the west of Yucca Mountain has large U concentrations and moderate 234U/238U whereas ground water to the east in the Fortymile flow system has similar 234U/238U, but distinctly smaller U concentrations. Ground water beneath the central part of Yucca Mountain has intermediate U concentrations but distinctive 234U/238U activity ratios of about 7-8. Perched water from the lower part of the unsaturated zone at Yucca Mountain has similarly large values of 234U/238U. These U data imply that the Tertiary volcanic aquifer beneath the central part of Yucca Mountain is isolated from north-south regional flow. The similarity of 234U/238U in both saturated- and unsaturated-zone ground water at Yucca Mountain further indicates that saturated-zone ground water beneath Yucca Mountain is dominated by local recharge rather than regional flow. The distinctive 234U/238U signatures also provide a natural tracer of downgradient flow. Elevated 234U/238U in ground water from two water-supply wells east of Yucca Mountain are interpreted as the result of induced flow from 40 a of ground-water withdrawal. Elevated 234U/238U in a borehole south of Yucca Mountain is interpreted as evidence that natural downgradient flow is more likely to follow southerly paths in the structurally anisotropic Tertiary volcanic aquifer where it becomes diluted by regional flow in the Fortymile system.

  10. Monarch (Danaus plexippus L. Nymphalidae) migration, nectar resources and fire regimes in the Ouachita Mountains of Arkansas

    Treesearch

    D. Craig Rudolph; Charles A. Ely; Richard R. Schaefer; J. Howard Williamson; Ronald E. Thill

    2006-01-01

    Monarchs (Danaus plexippus) pass through the Ouachita Mountains in large numbers in September and October on their annual migration to overwintering sites in the Transvolcanic Belt of central Mexico. Monarchs are dependent on nectar resources to fuel their migratory movements. In the Ouachita Mountains of west-central Arkansas migrating monarchs...

  11. A geographic analysis of the status of mountain lions in Oklahoma

    USGS Publications Warehouse

    Pike, J.R.; Shaw, J.H.; Leslie, David M.; Shaw, M.G.

    1999-01-01

    The geographic distribution of sightings and sign of mountain lions (Puma concolor) in Oklahoma was investigated. Mail survey questionnaires were sent to natural resource professionals throughout Oklahoma to gather temporal and spatial information on sightings of mountain lions from 1985 to 1995. We used a geographic information system (GIS) to compare locations of sightings and sign in the state with ecoregions, deer harvest, human population densities, locations of licensed owners and breeders of mountain lions, and generalized topography. Sightings and sign of mountain lions occurred significantly more often in the Central Rolling Red Plains than elsewhere in the state. Sightings of mountain lions increased with total deer harvest statewide (R2=0.828, P<0.001). Numbers of sightings of mountain lions were correlated negatively with density of the human population (R2=0.885, P=0.017). Surveys are a valuable method to assess the status of rare wildlife species when other methods are not available and when those receiving the survey are qualified.

  12. Geomorphological and sedimentary evidence of probable glaciation in the Jizerské hory Mountains, Central Europe

    NASA Astrophysics Data System (ADS)

    Engel, Zbyněk; Křížek, Marek; Kasprzak, Marek; Traczyk, Andrzej; Hložek, Martin; Krbcová, Klára

    2017-03-01

    The Jizerské hory Mountains in the Czech Republic have traditionally been considered to be a highland that lay beyond the limits of Quaternary glaciations. Recent work on cirque-like valley heads in the central part of the range has shown that niche glaciers could form during the Quaternary. Here we report geomorphological and sedimentary evidence for a small glacier in the Pytlácká jáma Hollow that represents one of the most-enclosed valley heads within the range. Shape and size characteristics of this landform indicate that the hollow is a glacial cirque at a degraded stage of development. Boulder accumulations at the downslope side of the hollow probably represent a relic of terminal moraines, and the grain size distribution of clasts together with micromorphology of quartz grains from the hollow indicate the glacial environment of a small glacier. This glacier represents the lowermost located such system in central Europe and provides evidence for the presence of niche or small cirque glaciers probably during pre-Weichselian glacial periods. The glaciation limit (1000 m asl) and paleo-ELA (900 m asl) proposed for the Jizerské hory Mountains implies that central European ranges lower than 1100 m asl were probably glaciated during the Quaternary.

  13. Timing and magnitude of Broad-winged Hawk migration at Montclair Hawk Lookout, New Jersey, and Hawk Mountain Sanctuary, Pennsylvania

    USGS Publications Warehouse

    Miller, M.W.; Greenstone, E.M.; Greenstone, W.; Bildstein, K.L.

    2002-01-01

    The Broad-winged Hawk (Buteo platypterus) breeds in eastern and central Canada and the United States, and winters in Central America and northern and central South America. Birders and ornithologists count migrating Broad-winged Hawks at dozens of traditional watch sites throughout the northeastern United States. We modeled counts of migrating Broad-winged Hawks from two raptor migration watch sites: Montclair Hawk Lookout, New Jersey, and Hawk Mountain Sanctuary, Pennsylvania, to determine whether annual abundance and trend estimates from individual sites within the mid-Atlantic states are representative of the region as a whole. We restricted ourselves to counts made between 10:00 and 16:00 EST during September to standardize count effort between sites. We created one model set for annual counts and another model set for daily counts. When modeling daily counts we incorporated weather and identity of individual observers. Akaike's Information Criteria were used to select the best model from an initial set of competing models. Annual counts declined at both sites during 1979-1998. Broad-winged Hawk migration began, peaked, and ended later at Montclair than at Hawk Mountain, even though Hawk Mountain is 155 km west-southwest of Montclair. Mean annual counts of hawks at Montclair were more than twice those at Hawk Mountain, but were not correlated. Broad-winged Hawks counted at Montclair may not be the same birds as those counted at Hawk Mountain. Rather, the two sites may be monitoring different regional subpopulations. Broad-winged Hawks counted at the two sites may use different migration tactics, with those counted at Hawk Mountain being more likely to slope soar, and those at Montclair more likely to use thermal soaring. A system of multiple watch sites is needed to monitor various breeding populations of this widely dispersed migrant.

  14. YUCCA MOUNTAIN SITE DESCRIPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.M. Simmons

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work donemore » at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.« less

  15. Skyline Harvesting in Appalachia

    Treesearch

    J. N. Kochenderfer; G. W. Wendel

    1978-01-01

    The URUS, a small standing skyline system, was tested in the Appalachian Mountains of north-central West Virginia. Some problems encountered with this small, mobile system are discussed. From the results of this test and observation of skyline systems used in the western United States, the authors suggest some machine characteristics that would be desirable for use in...

  16. Petrographic and major elements results as indicator of the geothermal potential in Java

    NASA Astrophysics Data System (ADS)

    Indarto, S.; Setiawan, I.; Kausar, A.; Permana, dan H.

    2018-02-01

    Geothermal manifestations existed in West Java (Cilayu, Papandayan Mountain, Telagabodas, Karaha, Tampomas Mountain), Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain) show a difference in their mineral and geochemical compositions. The petrographic analysis of volcanic rocks from Garut (West Java) are basalt, andesite basaltic and andesite. However, based on SiO2 vs K2O value, those volcanic rocks have wide ranges of fractionated magma resulting basalt - basaltic andesite to dacitic in composition rather than those of Slamet Mountain, Dieng, and Argopuro Mountain areas which have a narrower range of fractionation magma resulting andesite basaltic and andesite in compositions. The volcanic rocks from Garut show tholeiitic affinity and calc-alkaline affinity. The geothermal potential of Java is assumed to be related to the magma fractionation level. Geothermal potential of West Java (Garut) is higher than that of Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain).

  17. Plasma cholinesterase levels of mountain plovers (Charadrius montanus) wintering in central California, USA

    USGS Publications Warehouse

    Iko, W.M.; Archuleta, A.S.; Knopf, F.L.

    2003-01-01

    Declines of over 60% in mountain plover (Charadrius montanus) populations over the past 30 years have made it a species of concern throughout its current range and a proposed species for listing under the U.S. Endangered Species Act. Wintering mountain plovers spend considerable time on freshly plowed agricultural fields where they may potentially be exposed to anticholinesterase pesticides. Because of the population status and wintering ecology of plovers, the objectives of our study were to use nondestructive methods to report baseline plasma cholinesterase (ChE) levels in free-ranging mountain plovers wintering in California, USA, and to assess whether sampled birds showed signs of ChE inhibition related to anticholinesterase chemical exposure. We compared plasma ChE activity for mountain plovers sampled from the Carrizo Plain (an area relatively free of anticholinesterase pesticide use) with similar measures for plovers from the Central Valley (where anticholinesterase pesticides are widely used). Analyses for ChE inhibition indicated that none of the plovers had been recently exposed to these chemicals. However, mean ChE levels of plovers from the Central Valley were significantly higher (32%) than levels reported for plovers from the Carrizo Plain. This result differs from our original assumption of higher exposure risk to mountain plovers in the Central Valley but does suggest that some effect is occurring in the ChE activity of mountain plovers wintering in California.

  18. 75 FR 71033 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    .... These include damage to the central nervous system, cardiovascular function, kidneys, immune system, and... growth); (5) Meteorology (weather/transport patterns); (6) Geography/topography (mountain ranges or other... Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards AGENCY...

  19. Subsurface stratigraphic cross sections of cretaceous and lower tertiary rocks in the Wind River Basin, central Wyoming: Chapter 9 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2007-01-01

    The stratigraphic cross sections presented in this report were constructed as part of a project conducted by the U.S. Geological Survey to characterize and evaluate the undiscovered oil and gas resources of the Wind River Basin (WRB) in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic framework and facies relations of Cretaceous and lower Tertiary rocks in this large, intermontane structural and sedimentary basin, which formed in the Rocky Mountain foreland during the Laramide orogeny (Late Cretaceous through early Eocene time). The WRB is nearly 200 miles (mi) long, 70 mi wide, and encompasses about 7,400 square miles (mi2) (fig. 1). The basin is structurally bounded by the Owl Creek and Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and the Wind River Range on the west.

  20. Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran

    NASA Astrophysics Data System (ADS)

    Jones, Stuart J.; Arzani, Nasser; Allen, Mark B.

    2014-04-01

    Late Pleistocene to Holocene fans of the Kohrud mountain belt (Central Iran) illustrate the problems of differentiating tectonic and climatic drivers for the sedimentary signatures of alluvial fan successions. It is widely recognised that tectonic processes create the topography that causes fan development. The existence and position of fans along the Kohrud mountain belt, NE of Esfahan, are controlled by faulting along the Qom-Zefreh fault system and associated fault zones. These faults display moderate amounts of historical and instrumental seismicity, and so may be considered to be tectonically active. However, fluvial systems on the fans are currently incising in response to low Gavkhoni playa lake levels since the mid-Holocene, producing incised gullies on the fans up to 30 m deep. These gullies expose an interdigitation of lake deposits (dominated by fine-grained silts and clays with evaporites) and coarse gravels that characterise the alluvial fan sediments. The boundaries of each facies are mostly sharp, with fan sediments superimposed on lake sediments with little to no evidence of reworking. In turn, anhydrite-glauberite, mirabilite and halite crusts drape over the gravels, recording a rapid return to still water, shallow ephemeral saline lake sedimentation. Neither transition can be explained by adjustment of the hinterland drainage system after tectonic uplift. The potential influence in Central Iran of enhanced monsoons, the northward drift of the Intertopical Convergence Zone (ITCZ) and Mediterranean climates for the early Holocene (~ 6-10 ka) point to episodic rainfall (during winter months) associated with discrete high magnitude floods on the fan surfaces. The fan sediments were deposited under the general influence of a highstand playa lake whose level was fluctuating in response to climate. This study demonstrates that although tectonism can induce fan development, it is the sensitive balance between aridity and humidity resulting from changes in the climate regime of Central Iran that influences the nature of fan sequences and how they interrelate to associated facies.

  1. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachian mountains

    Treesearch

    W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt; Joseph F. Merritt

    2005-01-01

    We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue Ridge, northern Ridge and Valley, southern Ridge and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...

  2. Mountain lions: preliminary findings on home-range use and density, central Sierra Nevada

    Treesearch

    Donald L. Neal; George N. Steger; Ronald C. Bertram

    1987-01-01

    Between August 1983 and December 1985, 19 mountain lions were captured, radio equipped, and monitored daily within a portion of the North Kings deer herd range on the west slope of the central Sierra Nevada in California. The density of adult mountain lions was estimated to be one per 33.3 km²; that of adults and kittens together was estimated to be one per 20...

  3. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachian Mountains

    Treesearch

    W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt

    2006-01-01

    We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue Ridge, northern Ridge and Valley, southern Ridge and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...

  4. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachian mountains

    Treesearch

    W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt

    2005-01-01

    We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue ridge, northern Ridge and Valley, southern Ride and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...

  5. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... broad range of adverse health effects. These may include damage to the central nervous system...) Meteorology (weather/transport patterns); (6) Geography/topography (mountain ranges or other air basin... to the EPA's Air Quality System (AQS), or otherwise available to the EPA, and meeting the...

  6. An evaluation of seven methods for controlling mountain laurel thickets in the mixed-oak forests of the central Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose

    2017-01-01

    In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) thickets in mixed-oak (Quercus spp.) stands can lead to hazardous fuel situations, forest regeneration problems, and possible forest health concerns. Therefore, land managers need techniques to control mountain laurel thickets and limit...

  7. Food Web Topology in High Mountain Lakes

    PubMed Central

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  8. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.

  9. Central nervous system dysfunction associated with Rocky Mountain spotted fever infection in five dogs.

    PubMed

    Mikszewski, Jessica S; Vite, Charles H

    2005-01-01

    Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.

  10. Anaglyph Image of the Mountain-Central Complex in Vesta South Polar Region

    NASA Image and Video Library

    2011-10-11

    The broad morphology of asteroid Vesta mountain/central complex is clear in this image from NASA Dawn spacecraft; it is a roughly circular topographic mound, which is approximately 200km in diameter and has approximately 20km of relief from its base.

  11. System for definition of the central-chest vasculature

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2009-02-01

    Accurate definition of the central-chest vasculature from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. For instance, the aorta and pulmonary artery help in automatic definition of the Mountain lymph-node stations for lung-cancer staging. This work presents a system for defining major vascular structures in the central chest. The system provides automatic methods for extracting the aorta and pulmonary artery and semi-automatic methods for extracting the other major central chest arteries/veins, such as the superior vena cava and azygos vein. Automatic aorta and pulmonary artery extraction are performed by model fitting and selection. The system also extracts certain vascular structure information to validate outputs. A semi-automatic method extracts vasculature by finding the medial axes between provided important sites. Results of the system are applied to lymph-node station definition and guidance of bronchoscopic biopsy.

  12. Management of spruce-fir in even-aged stands in the central Rocky Mountains

    Treesearch

    Robert R. Alexander; Carleton B. Edminster

    1980-01-01

    Potential production of Engelmann spruce and subalpine fir in the central Rocky Mountains is simulated for vario.us combinations of stand density, site quality, ages, and thinning schedules. Such estimates are needed to project future development of stands managed in different ways for various uses.

  13. Active tectonics of the Binalud Mountains, a key puzzle segment to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.

    2010-05-01

    In northeast Iran, the Binalud Mountains accommodate part of active convergence between the Arabian and Eurasian plates. This fault-bounded mountain range has been considered a key region to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision. But, the lack of knowledge on active faulting hampered evaluating the geological reliability of tectonic models describing the kinematics of deformation in northeast Iran. Morphotectonic investigations along both sides of the Binalud Mountains allowed us to characterize the structural and active faulting patterns along the Neyshabur and Mashhad fault systems on the southwest and northeast sides of the mountain range, respectively. We applied combined approaches of morphotectonic analyses based on satellite imageries (SPOT5 and Landsat ETM+), STRM and site-scale digital topographic data, and field surveys complemented with in situ-produced 10Be exposure dating to determine the kinematics and rate of active faulting. Three regional episodes of alluvial surface abandonments were dated at 5.3±1.1 kyr (Q1), 94±5 kyr (Q3), and 200±14 kyr (S3). The geomorphic reconstruction of both vertical and right-lateral fault offsets postdating these surface abandonment episodes yielded Quaternary fault slip rates on both sides of the Binalud Mountains. On the Neyshabur Fault System, thanks to geomorphic reconstructions of cumulative offsets recorded by Q3 fan surfaces, slip rates of 2.7±0.8 mm/yr and 2.4±0.2 mm/yr are estimated for right-lateral and reverse components of active faulting, respectively. Those indicate a total slip rate of 3.6±1.2 mm/yr for the late Quaternary deformation on the southwest flank of the Binalud Mountains. Reconstructing the cumulative right-lateral offset recorded by S3 surfaces, a middle-late Quaternary slip rate of 1.6±0.1 mm/yr is determined for the Mashhad Fault System. Altogether, our geomorphic observations reveal that, on both sides of the Binalud Mountains, the relative motion between central Iran and Eurasia is partly taken-up by dextral-reverse oblique-slip faulting along the Neyshabur and Mashhad fault systems. This faulting mechanism implies a long-term rate of ~4 mm/yr for the range-parallel strike-slip faulting, and an uplift rate of ~2.4 mm/yr due to the range-normal shortening during late Quaternary. Our data provide the first geological constraints on the rate of active faulting on both sides of the Binalud Mountains, and allow us to examine the geological reliability of preexisting tectonic models proposed to describe the kinematics of active deformation at the northeastern boundary of the Arabia-Eurasia collision. Our results favor the northward translation of central Iran with respect to Eurasia through strike-slip faulting localized along distinct crustal scale fault systems rather than systematic block rotations around vertical axes.

  14. Comparison of naturally and synthetically baited spruce beetle trapping systems in the central Rocky Mountains

    Treesearch

    E. Matthew Hansen; Jim C. Vandygriff; Robert J. Cain; David Wakarchuk

    2006-01-01

    We compared naturally baited trapping systems to synthetically baited funnel traps and fallen trap trees for suppressing preoutbreak spruce beetle, Dendroctonus rufipennis Kirby, populations. Lures for the traps were fresh spruce (Picea spp.) bolts or bark sections, augmented by adding female spruce beetles to create secondary attraction. In 2003, we...

  15. Background for AFIS, the Annual Forrest Inventory System

    Treesearch

    Ronald E. McRoberts

    2000-01-01

    The Annual Forest Inventory System. AFIS, was jointly proposed and developed in the early 1990s by the Forest Inventory and Analysis programs of the North Central and Rocky Mountain Research Stations of the USDA Forest Service and the Forestry Division of the Minnesota Department of Natural Resources. The objective of AFIS was to establish the capability of producing...

  16. Model of the porphyry copper and polymetallic vein family of deposits - Applications in Slovakia, Hungary, and Romania

    USGS Publications Warehouse

    Drew, L.J.

    2003-01-01

    A tectonic model useful in estimating the occurrence of undiscovered porphyry copper and polymetallic vein systems has been developed. This model is based on the manner in which magmatic and hydrothermal fluids flow and are trapped in fault systems as far-field stress is released in tectonic strain features above subducting plates (e.g. strike-slip fault systems). The structural traps include preferred locations for stock emplacement and tensional-shear fault meshes within the step-overs that localize porphyry- and vein-style deposits. The application of the model is illustrated for the porphyry copper and polymetallic vein deposits in the Central Slovakian Volcanic Field, Slovakia; the Ma??tra Mountains, Hungary; and the Apuseni Mountains, Romania.

  17. Stratigraphy and structure of the Sevier thrust belt and proximal foreland-basin system in central Utah: A transect from the Sevier Desert to the Wasatch Plateau

    USGS Publications Warehouse

    Lawton, T.F.; Sprinkel, D.A.; Decelles, P.G.; Mitra, G.; Sussman, A.J.; Weiss, M.P.

    1997-01-01

    The Sevier orogenic belt in central Utah comprises four north-northwest trending thrust plates and two structural culminations that record crustal shortening and uplift in late Mesozoic and early Tertiary time. Synorogenic clastic rocks, mostly conglomerate and sandstone, exposed within the thrust belt were deposited in wedge-top and foredeep depozones within the proximal part of the foreland-basin system. The geologic relations preserved between thrust structures and synorogenic deposits demonstrate a foreland-breaking sequence of thrust deformation that was modified by minor out-of-sequence thrust displacement. Structural culminations in the interior part of the thrust belt deformed and uplifted some of the thrust sheets following their emplacement. Strata in the foreland basin indicate that the thrust sheets of central Utah were emplaced between latest Jurassic and Eocene time. The oldest strata of the foredeep depozone (Cedar Mountain Formation) are Neocomian and were derived from the hanging wall of the Canyon Range thrust. The foredeep depozone subsided most rapidly during Albian through Santonian or early Campanian time and accumulated about 2.5 km of conglomeratic strata (Indianola Group). The overlying North Horn Formation accumulated in a wedge-top basin from the Campanian to the Eocene and records propagation of the Gunnison thrust beneath the former foredeep. The Canyon Range Conglomerate of the Canyon Mountains, equivalent to the Indianola Group and the North Horn Formation, was deposited exclusively in a wedge-top setting on the Canyon Range and Pavant thrust sheets. This field trip, a three day, west-to-east traverse of the Sevier orogenic belt in central Utah, visits localities where timing of thrust structures is demonstrated by geometry of cross-cutting relations, growth strata associated with faults and folds, or deformation of foredeep deposits. Stops in the Canyon Mountains emphasize geometry of late structural culminations and relationships of the Canyon Range thrust to growth strata deposited in the wedge-top depozone. Stops in the San Pitch Mountains illustrate deposits of the foredeep depozone and younger, superjacent wedge-top depozone. Stops in the Sanpete Valley and western part of the Wasatch Plateau examine the evolution of the foreland-basin system from foredeep to wedge-top during growth of a triangle zone near the front of the Gunnison thrust.

  18. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    USGS Publications Warehouse

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  19. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of the boundary line between the central and mountain standard time zones described in § 71.7 and east of the...

  20. Cenozoic volcanic centers in the New Mexico segment of the Pedregosa Basin: constraints on oil and gas exploration in southwestern New Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elston, W.E.

    1983-01-01

    Located in the southwestern corner of New Mexico, southern Hidalgo County occupies a segment of the Pedregosa sedimentary basin and is crossed by a belt of Laramide thrust faults. These factors favor accumulations of oil and gas. The present investigation has documented a constraint on probable oil and gas accumulations, the occurrence of major mid-Tertiary Valles-type ash-flow cauldrons and indications of underlying plutons. Indications of cauldrons have been found in the following ranges: in the southern Pyramid Mountains (Muir cauldron), south-central Peloncillo Mountains (Rodeo cauldron), Gaudalupe Mountains (Geronimo Trail cauldron), Sierra San Luis (San Luis cauldron), Southern Animas Mountains (Tullous,more » Animas Peak, Cowboy Rim cauldrons), Central Animas Mountains (Juniper cauldron), and Apache Hills (Apache cauldron). No indications of cauldrons or other major volcanic centers have been found in the southeastern corner of Hidalgo County, including the southern Sierra Rica, Big Hatchet Mountains, Alamo Hueco Mountains, and Dog Mountains. These cauldron-free areas offer the most favorable prospects for petroleum exploration.« less

  1. Powassan encephalitis and Colorado tick fever.

    PubMed

    Romero, José R; Simonsen, Kari A

    2008-09-01

    This article discusses two tick-borne illnesses: Powassan encephalitis, a rare cause of central nervous system infection caused by the Powassan virus, and Colorado tick fever, an acute febrile illness caused by the Colorado tick fever virus common to the Rocky Mountain region of North America.

  2. VERTICAL, LONGITUDINAL, AND TEMPORAL VARIATION IN THE MACROBENTHOS OF AN APPALACHIAN HEADWATER STREAM SYSTEM

    EPA Science Inventory

    We examined vertical, longitudinal, and season variation in the abundance, diversity, variability, and assemblage composition of the epibenthic and hyporheic macrobenthos at Elklick Run, a first-through fourth-order stream continuum in the central Appalachian Mountains in West Vi...

  3. Hydrogeologic data for the northern Rocky Mountains intermontane basins, Montana

    USGS Publications Warehouse

    Dutton, DeAnn M.; Lawlor, Sean M.; Briar, D.W.; Tresch, R.E.

    1995-01-01

    The U.S. Geological Survey began a Regional Aquifer- System Analysis of the Northern Rocky Mountains Intermontane Basins of western Montana and central and central and northern Idaho in 1990 to establish a regional framework of information for aquifers in 54 intermontane basins in an area of about 77,500 square miles. Selected hydrogeologic data have been used as part of this analysis to define the hydro- logic systems. Records of 1,376 wells completed in 31 of the 34 intermontane basins in the Montana part of the study area are tabulated in this report. Data consist of location, alttiude of land surface, date well constructed, geologic unit, depth of well, diameter of casing, type of finish, top of open interval, primary use of water, water level, date water level measured, discharge, specific capacity, source of discharge data, type of log available, date water-quality parameters measured, specific conductance, pH, and temperature. Hydrographs for selected wells also are included. Locations of wells and basins are shown on the accompanying plate.

  4. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    PubMed

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  5. Remnant fire disturbed montane longleaf pine forest in west central georgia

    Treesearch

    Robert Carter; Andrew J. Londo

    2006-01-01

    Fire disturbed ecosystems are characteristic of the Southeastern Coastal Plain of the United States. Less well known are fire disturbed mountainous regions of the Piedmont and Appalachian region that support longleaf pine (Pinus palustris P. Mill.) ecosystems. The Pine Mountain Range in the Piedmont of west central Georgia has remnant longleaf pine...

  6. Mountain building in the central Andes

    NASA Astrophysics Data System (ADS)

    Kono, Masaru; Fukao, Yoshio; Yamamoto, Akihiko

    1989-04-01

    The Central Andes is the middle part of the Andean chain between about 13°S and 27°S, characterized by the parallel running high mountain chains (the Western and Eastern Cordilleras) at the edges of high plateaus with a height of about 4000 m and a width of 200 to 450 km (the Altiplano-Puna). From the examination of geophysical and geological data in this area, including earthquakes, deformation, gravity anomaly, volcanism, uplift history, and plate motion, we conclude that the continued plate subduction with domination of compressive stress over the entire arc system is the main cause of the tectonic style of the Central Andes. We propose that the present cycle of mountain building has continued in the Cenozoic with the most active phase since the Miocene, and that the present subduction angle (30°) is not typical in that period but that subduction with more shallowly dipping oceanic lithosphere has prevailed at least since the Miocene, because of the young and buoyant slab involved. This situation is responsible for the production of a broad zone of partial melt in the mantle above the descending slab. Addition of volcanic materials was not restricted to the western edge (where active volcanoes of the Western Cordillera exist) but extended to the western and central portion of the Altiplano-Puna. The western half of the Central Andes is essentially isostatic because the heat transferred with the volcanic activities softened the crust there. In the eastern edge, the thermal effect is small, and the crust is strongly pushed by the westward moving South American plate. This caused the shortening of crustal blocks due to reverse faulting and folding in the Eastern Cordillera and Amazonian foreland. The magmatism and crustal accretion are dominant at the western end of the mountain system and decrease eastward, while the compression and consequent crustal shortening are strongest at the eastern end and wane toward west. These two processes are superposed between the two mountain chains and form high plateaus there: the Altiplano of Bolivia and Peru and the Puna of Argentina. This interpretation is supported by the observation that (1) Neogene sedimentary formations have been uplifted to high elevations without heavy distortion in the Altiplano and the Western Cordillera, (2) no significant reverse fault systems are observed on the Altiplano, (3) Neogene volcanic rocks and volcanic centers since the Miocene are not restricted to the Western Cordillera but are widely distributed over most of the Altiplano, (4) most of the Altiplano is in a zone of high heat flow values, (5) thick Paleozoic rocks are strongly folded and faulted in the Eastern Cordillera with little volcanism and no large-scale plutonism in the Cenozoic age, (6) crustal earthquakes with reverse fault mechanisms are concentrated on the eastern flank of the Eastern Cordillera and Amazonian foreland, and (7) the crustal thickness suddenly decreases at the junction of the Eastern Cordillera and the Amazon Basin, exactly at the place of reverse earthquakes.

  7. High altitude illness

    PubMed

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  8. Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail

    2014-05-01

    Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and for its west part (the piedmonts of Tien Shan and Pamir Mountains). So it confirms a synchronous aridization in different parts of Central Asia. It was the result of amplification of winter Siberian anticyclone, weakening westerlies and East Asian summer monsoons. The observed discrepancy between vegetation conditions and lake-levels during LGM can be explained by lake-levels dependence on runoff as now from mountains, where snow and glaciers melt. Investigations in the area of Mongun Tayga (Tyva Republic in Russian Federation, Lake Hyargas Nuur basin) suggest that precipitation decreased by 30% during LGM, but at the same time snow accumulation increased due to lower temperature in mountains. Thus, special conditions were provided for climate cryoaridization, when vegetation was degraded due to lowering precipitation, but lake-levels grew due to higher runoff from mountain ranges.

  9. Chemical composition, antioxidant properties and antimicrobial activity of the essential oil of Murraya paniculata leaves from the mountains of Central Cuba.

    PubMed

    Rodríguez, Elisa Jorge; Ramis-Ramos, Guillermo; Heyden, Yvan Vander; Simó-Alfonso, Ernesto F; Lerma-García, María Jesús; Saucedo-Hernández, Yanelis; Monteagudo, Urbano; Morales, Yeni; Holgado, Beatriz; Herrero-Martínez, José Manuel

    2012-11-01

    The essential oil of Murraya paniculata L leaves from the mountains of the Central Region of Cuba, obtained by hydrodistillation, was analyzed by gas chromatography-mass spectrometry. Eighteen compounds, accounting for 95.1% of the oil were identified. The major component was beta-caryophyllene (ca. 30%). The antioxidant activity of essential oil was evaluated against Cucurbita seed oil by peroxide, thiobarbituric acid and p-anisidine methods. The essential oil showed stronger antioxidant activity than that of butylated hydroxyanisole and butylated hydroxytoluene, but lower than that of propyl gallate. Moreover, this antioxidant activity was supported by the complementary antioxidant assay in the linoleic acid system and 2, 2'-diphenyl-1-picrylhydrazyl. The essential oil also showed good to moderate inhibitory effects against Klebsiellapneumoniae and Bacillus subtilis.

  10. Geochemistry and Geochronology of Middle Tertiary Volcanic Rocks of the Central Chiricahua Mountains, Southeast Arizona

    USGS Publications Warehouse

    du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.

    2004-01-01

    Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In contrast, compositions of the ash-flow tuffs, including the Rhyolite Canyon Tuff, vary significantly owing to eruption from compositionally zoned reservoirs. Reservoir zonation is consistent with fractional crystallization of observed phenocryst phases and resulting residual liquid compositional evolution. Rhyolite lavas preserved in the moat of the Turkey Creek caldera depict compositional zonation that is the reverse of that expected of magma extraction from progressively deeper parts of a normally zoned reservoir. Presuming that the source reservoir was sequentially tapped from its top downward, development of reverse zonation in the rhyolite lava sequence may indicate that later erupted, more evolved magma contains systematically less wallrock contamination derived from the geochemically primitive margins of its incompletely mixed reservoir. New 40Ar/39Ar geochronology data indicate that the principal middle Tertiary volcanic rocks in the central Chiricahua Mountains were erupted between about 34.2 and 26.2 Ma, and that the 5.2 m.y. period between 33.3 and 28.1 Ma was amagmatic. The initial phase of eruptive activity in the central Chiricahua Mountains, between 34.2 and 33.3 Ma, was associated with a regional tectonic regime dominated by subduction along the west edge of North America. We infer that the magmatic hiatus, nearly simultaneous with a hiatus of similar duration in parts of the Boot Heel volcanic field east of the central Chiricahua Mountains, is related to a period of more rapid convergence and therefore shallower subduction that may have displaced subduction-related magmatic activity to a position east of the present-day Boot Heel volcanic field. The hiatus also coincides with a major plate tectonic reorganization along the west edge of North America that resulted in cessation of subduction and initiation of transform faulting along the San Andreas fault. The final period of magmatism in the central Chiricahua Mountains, between 28.1 and 23.2 Ma, ap

  11. Remediation System Evaluation, Central City/Clear Creek Superfund Site Argo Tunnel Water Treatment Plant

    EPA Pesticide Factsheets

    Clear Creek originates in the mountains near Colorado's Continental Divide and runs 60 miles east and several thousand feet lower in elevation to Golden, Colorado, a western suburb of Denver, Colorado and then discharges to the South Platte River north...

  12. Origin, development, and impact of mountain laurel thickets on the mixed-oak forests of the central Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose

    2016-01-01

    Throughout forests of the northern hemisphere, some species of ericaceous shrubs can form persistent understories that interfere with forest regeneration processes. In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) may interfere in the regeneration of mixed-oak (Quercus spp.) forests. To...

  13. Carbon dynamics in central US Rockies lodgepole pine type after mountain pine beetle outbreaks

    Treesearch

    E. Matthew Hansen; Michael C. Amacher; Helga Van Miegroet; James N. Long; Michael G. Ryan

    2015-01-01

    Mountain pine beetle-caused tree mortality has substantially changed live tree biomass in lodgepole pine ecosystems in western North America since 2000. We studied how beetle-caused mortality altered ecosystem carbon (C) stocks and productivity using a central US Rockies age sequence of ecosystem recovery after infestation, augmented with growth-and-yield...

  14. Central American Flying Weather

    DTIC Science & Technology

    1985-12-01

    CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic

  15. Spatiotemporal evolution of Calophaca (fabaceae) reveals multiple dispersals in central Asian mountains.

    PubMed

    Zhang, Ming-Li; Wen, Zhi-Bin; Fritsch, Peter W; Sanderson, Stewart C

    2015-01-01

    The Central Asian flora plays a significant role in Eurasia and the Northern Hemisphere. Calophaca, a member of this flora, includes eight currently recognized species, and is centered in Central Asia, with some taxa extending into adjacent areas. A phylogenetic analysis of the genus utilizing nuclear ribosomal ITS and plastid trnS-trnG and rbcL sequences was carried out in order to confirm its taxonomic status and reconstruct its evolutionary history. We employed BEAST Bayesian inference for dating, and S-DIVA and BBM for ancestral area reconstruction, to study its spatiotemporal evolution. Our results show that Calophacais monophyletic and nested within Caragana. The divergence time of Calophaca is estimated at ca. 8.0 Ma, most likely driven by global cooling and aridification, influenced by rapid uplift of the Qinghai Tibet Plateau margins. According to ancestral area reconstructions, the genus most likely originated in the Pamir Mountains, a global biodiversity hotspot and hypothesized Tertiary refugium of many Central Asian plant lineages. Dispersals from this location are inferred to the western Tianshan Mountains, then northward to the Tarbagatai Range, eastward to East Asia, and westward to the Caucasus, Russia, and Europe. The spatiotemporal evolution of Calophaca provides a case contributing to an understanding of the flora and biodiversity of the Central Asian mountains and adjacent regions.

  16. [Genetic structure of people from the Volga-Ural region and Central Asia from data of Alu-polymorphism].

    PubMed

    Khusainova, R I; Akhmetova, V L; Kutuev, I A; Salimova, A Z; Korshunova, T Iu; Lebedev, Iu B; Khusnutdinova, E K

    2004-04-01

    Nine Alu loci (Ya5NBC5, Ya5NBC27, Ya5NBC148, Ya5NBC182, YA5NBC361, ACE, ApoA1, PV92, TPA25) were analyzed in six ethnic populations (Trans-Ural Bashkirs, Tatars-Mishars, Mordovians-Moksha, Mountain Maris, Udmurts, and Komi-Permyaks) of the Volga-Ural region and in three Central Asian populations (Uzbeks, Kazakhs, and Uigurs). All Alu insertions analyzed appeared to be polymorphic in all populations examined. The frequency of insertion varied from 0.110 in Mountain Maris at the Ya5NBC5 locus to 0.914 in Tatars at the ApoA1 locus. The data on the allele frequency distribution at nine loci point to the existence of substantial genetic diversity in the populations examined. The value of the observed heterozygosity averaged over nine Alu insertions varied from 0.326 in Mountain Maris to 0.445 in Kazakhs and Uigurs. The level of the interpopulation genetic differences for the Volga-Ural population (Fst = 0.061) was higher than for the populations of Central Asia (Fst = 0.024), Europe (Fst = 0.02), and Southeastern Asia (Fst = 0.018). The populations examined were highly differentiated both in respect of linguistic characteristics and the geographical position. The data obtained confirmed the effectiveness of the marker system used for the assessment of genetic differentiation and the relationships between the ethnic groups.

  17. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms

    PubMed Central

    Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726

  18. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    PubMed

    Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  19. Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River

    USGS Publications Warehouse

    Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.

    2016-01-01

    Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.

  20. REACH SPECIFIC CHANNEL STABILIZATION BASED ON COMPREHENSIVE EVALUATION OF VALLEY FILL HISTORY, ALLUVIAL ARCHITECTURE AND GROUNDWATER HYDROLOGY IN A MOUNTAIN STREAM IN THE CENTRAL GREAT BASIN, NEVADA

    EPA Science Inventory

    Kingston meadow, located in the Toiyabe Range, is one of many wet meadow complexes threatened by rapid channel incision in the mountain ranges of the central Great Basin. Channel incision can lower the baselevel for groundwater discharge and de-water meadow complexes resulting in...

  1. Global Measurements of Stratospheric Mountain Waves from Space

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Preusse, Peter; Jackman, Charles H. (Technical Monitor)

    1999-01-01

    Temperatures acquired by the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) during shuttle mission STS-66 have provided measurements of stratospheric mountain waves from space. Large-amplitude, long-wavelength mountain waves at heights of 15 to 30 kilometers above the southern Andes Mountains were observed and characterized, with vigorous wave breaking inferred above 30 kilometers. Mountain waves also occurred throughout the stratosphere (15 to 45 kilometers) over a broad mountainous region of central Eurasia. The global distribution of mountain wave activity accords well with predictions from a mountain wave model. The findings demonstrate that satellites can provide the global data needed to improve mountain wave parameterizations and hence global climate and forecast models.

  2. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense.

    PubMed

    Yang, Aihong; Dick, Christopher W; Yao, Xiaohong; Huang, Hongwen

    2016-05-10

    Species ranges are influenced by past climate oscillations, geographical constraints, and adaptive potential to colonize novel habitats at range limits. This study used Liriodendron chinense, an important temperate Asian tree species, as a model system to evaluate the roles of biogeographic history and marginal population genetics in determining range limits. We examined the demographic history and genetic diversity of 29 L. chinense populations using both chloroplast and nuclear microsatellite loci. Significant phylogeographic structure was recovered with haplotype clusters coinciding with major mountain regions. Long-term demographical stability was suggested by mismatch distribution analyses, neutrality tests, and ecological niche models (ENM) and suggested the existence of LGM refuges within mountain regions. Differences in genetic diversity between central and marginal populations were not significant for either genomic region. However, asymmetrical gene flow was inferred from central populations to marginal populations, which could potentially limit range adaptation and expansion of L. chinense.

  3. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    PubMed

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the diminishing barrier effect of mountain ridges. Additionally, a significant decrease in genetic diversity in the peripheral populations supports Mayr's central-peripheral population hypothesis.

  4. Debris-Flow Hazards within the Appalachian Mountains of the Eastern United States

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Morgan, Benjamin A.

    2008-01-01

    Tropical storms, including hurricanes, often inflict major damage to property and disrupt the lives of people living in coastal areas of the Eastern United States. These storms also are capable of generating catastrophic landslides within the steep slopes of the Appalachian Mountains. Heavy rainfall from hurricanes, cloudbursts, and thunderstorms can generate rapidly moving debris flows that are among the most dangerous and damaging type of landslides. This fact sheet explores the nature and occurrence of debris flows in the central and southern Appalachian Mountains, which extend from central Pennsylvania to northern Alabama.

  5. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  6. Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, central New Mexico

    USGS Publications Warehouse

    Anderholm, Scott K.

    2000-01-01

    Mountain-front recharge, which generally occurs along the margins of alluvial basins, can be a large part of total recharge to the aquifer system in such basins. Mountain-front recharge occurs as the result of infiltration of flow from streams that have headwaters in the mountainous areas adjacent to alluvial basins and ground- water flow from the aquifers in the mountainous areas to the aquifer in the alluvial basin. This report presents estimates of mountain-front recharge to the basin-fill aquifer along the eastern side of the Middle Rio Grande Basin in central New Mexico. The basin is a structural feature that contains a large thickness of basin-fill deposits, which compose the main aquifer in the basin. The basin is bounded along the eastern side by mountains composed of crystalline rocks of Precambrian age and sedimentary rocks of Paleozoic age. Precipitation is much larger in the mountains than in the basin; many stream channels debouch from the mountainous area to the basin. Chloride-balance and water-yield regression methods were used to estimate mountain-front recharge. The chloride-balance method was used to calculate a chloride balance in watersheds in the mountainous areas along the eastern side of the basin (subareas). The source of chloride to these watersheds is bulk precipitation (wet and dry deposition). Chloride leaves these watersheds as mountain-front recharge. The water-yield regression method was used to determine the streamflow from the mountainous watersheds at the mountain front. This streamflow was assumed to be equal to mountain-front recharge because most of this streamflow infiltrates and recharges the basin-fill aquifer. Total mountain-front recharge along the eastern side of the Middle Rio Grande Basin was estimated to be about 11,000 acre- feet per year using the chloride-balance method and about 36,000 and 38,000 acre-feet per year using two water-yield regression equations. There was a large range in the recharge estimates in a particular subarea using the different methods. Mountain-front recharge ranged from 0.7 to 15 percent of total annual precipitation in the subareas (percent recharge). Some of the smallest values of percent recharge were in the subareas in the southern part of the basin, which generally have low altitudes. The larger percent-recharge values were from subareas with higher altitudes. With existing information, determining which of the mountain- front recharge estimates is most accurate and the reasons for discrepancies among the different estimates is not possible. The chloride-balance method underestimates recharge if the chloride concentration used in the calculations for precipitation is too small or the chloride concentration in recharge is too large. Water-yield regression methods overestimate recharge if the amount of evapotranspiration of water that infiltrates into the channel bed of arroyos during runoff from summer thunderstorms is large.

  7. Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda

    NASA Astrophysics Data System (ADS)

    Bauer, F. U.; Glasmacher, U. A.; Ring, U.; Schumann, A.; Nagudi, B.

    2010-10-01

    The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U-Th-Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time-temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.

  8. Three-dimensional model of an ultramafic feeder system to the Nikolai Greenstone mafic large igneous province, central Alaska Range

    USGS Publications Warehouse

    Glen, J.M.G.; Schmidt, J.M.; Connard, G.G.

    2011-01-01

    The Amphitheater Mountains and southern central Alaska Range expose a thick sequence of Triassic Nikolai basalts that is underlain by several mafic-ultramafic complexes, the largest and best exposed being the Fish Lake and Tangle (FL-T) mafic-ultramafic sills that flank the Amphitheater Mountains synform. Three-dimensional (3-D) modeling of gravity and magnetic data reveals details of the structure of the Amphitheater Mountains, such as the orientation and thickness of Nikolai basalts, and the geometry of the FL-T intrusions. The 3-D model (50 ?? 70 km) includes the full geographic extent of the FL-T complexes and consists of 11 layers. Layer surfaces and properties (density and magnetic susceptibility) were modified by forward and inverse methods to reduce differences between the observed and calculated gravity and magnetic grids. The model suggests that the outcropping FL-T sills are apparently connected and traceable at depth and reveals variations in thickness, shape, and orientation of the ultramafic bodies that may identify paths of magma flow. The model shows that a significant volume (2000 km3) of ultramafic material occurs in the subsurface, gradually thickening and plunging westward to depths exceeding 4 km. This deep ultramafic material is interpreted as the top of a keel or root system that supplied magma to the Nikolai lavas and controlled emplacement of related magmatic intrusions. The presence of this deep, keel-like structure, and asymmetry of the synform, supports a sag basin model for development of the Amphitheater Mountains structure and reveals that the feeders to the Nikolai are much more extensive than previously known. Copyright 2011 by the American Geophysical Union.

  9. Spatiotemporal Evolution of Calophaca (Fabaceae) Reveals Multiple Dispersals in Central Asian Mountains

    PubMed Central

    Zhang, Ming-Li; Wen, Zhi-Bin; Fritsch, Peter W.; Sanderson, Stewart C.

    2015-01-01

    Background The Central Asian flora plays a significant role in Eurasia and the Northern Hemisphere. Calophaca, a member of this flora, includes eight currently recognized species, and is centered in Central Asia, with some taxa extending into adjacent areas. A phylogenetic analysis of the genus utilizing nuclear ribosomal ITS and plastid trnS-trnG and rbcL sequences was carried out in order to confirm its taxonomic status and reconstruct its evolutionary history. Methodology/Principal Finding We employed BEAST Bayesian inference for dating, and S-DIVA and BBM for ancestral area reconstruction, to study its spatiotemporal evolution. Our results show that Calophacais monophyletic and nested within Caragana. The divergence time of Calophaca is estimated at ca. 8.0 Ma, most likely driven by global cooling and aridification, influenced by rapid uplift of the Qinghai Tibet Plateau margins. Conclusions/Significance According to ancestral area reconstructions, the genus most likely originated in the Pamir Mountains, a global biodiversity hotspot and hypothesized Tertiary refugium of many Central Asian plant lineages. Dispersals from this location are inferred to the western Tianshan Mountains, then northward to the Tarbagatai Range, eastward to East Asia, and westward to the Caucasus, Russia, and Europe. The spatiotemporal evolution of Calophaca provides a case contributing to an understanding of the flora and biodiversity of the Central Asian mountains and adjacent regions. PMID:25849146

  10. A comparison of the status of spruce in high-elevation forests on public and private land in the southern and central Appalachian Mountains

    Treesearch

    Randall S. Morin; Richard H. Widmann

    2010-01-01

    Red spruce (Picea rubens Sarg.) is the most important component of the high-elevation forest ecosystems of the southern and central Appalachian Mountains. These communities are characterized by mixed hardwood/coniferous forests often with overstory dominance by red spruce. Due to their restricted geographic and elevation ranges, all community types...

  11. Effects of Climatic Variability and Change on Upland Vegetation in the Blue Mountains [Chapter 6].

    Treesearch

    Becky K. Kerns; David C. Powell; Sabine Mellmann-Brown; Gunnar Carnwath; John Kim

    2017-01-01

    The Blue Mountains ecoregion (BME) extends from the Ochoco Mountains in central Oregon to Hells Canyon of the Snake River in extreme northeastern Oregon and adjacent Idaho, and then north to the deeply carved canyons and basalt rimrock of southeastern Washington (see fig. 1.1 in chapter 1). The BME consists of a series of mountain ranges occurring in a southwest to...

  12. Changes in Central Asia’s Water Tower: Past, Present and Future

    PubMed Central

    Chen, Yaning; Li, Weihong; Deng, Haijun; Fang, Gonghuan; Li, Zhi

    2016-01-01

    The Tienshan Mountains, with its status as “water tower”, is the main water source and ecological barrier in Central Asia. The rapid warming affected precipitation amounts and fraction as well as the original glacier/snowmelt water processes, thereby affecting the runoff and water storage. The ratio of snowfall to precipitation (S/P) experienced a downward trend, along with a shift from snow to rain. Spatially, the snow cover area in Middle Tienshan Mountains decreased significantly, while that in West Tienshan Mountains increased slightly. Approximately 97.52% of glaciers in the Tienshan Mountains showed a retreating trend, which was especially obvious in the North and East Tienshan Mountains. River runoff responds in a complex way to changes in climate and cryosphere. It appears that catchments with a higher fraction of glacierized area showed mainly increasing runoff trends, while river basins with less or no glacierization exhibited large variations in the observed runoff changes. The total water storage in the Tienshan Mountains also experienced a significant decreasing trend in Middle and East Tienshan Mountains, but a slight decreasing trend in West Tienshan Mountains, totally at an average rate of −3.72 mm/a. In future, water storage levels are expected to show deficits for the next half-century. PMID:27762285

  13. Mountain pine beetle population sampling: inferences from Lindgren pheromone traps and tree emergence cages

    Treesearch

    Barbara J. Bentz

    2006-01-01

    Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...

  14. 27 CFR 9.75 - Central Coast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Mountain, California, scale 1:24,000, dated 1956, Photorevised 1980; (31) Half Moon Bay, California, scale..., Año Nuevo, Franklin Point, Pigeon Point, San Gregorio, Half Moon Bay, Montara Mountain and San...

  15. 27 CFR 9.75 - Central Coast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Mountain, California, scale 1:24,000, dated 1956, Photorevised 1980; (31) Half Moon Bay, California, scale..., Año Nuevo, Franklin Point, Pigeon Point, San Gregorio, Half Moon Bay, Montara Mountain and San...

  16. 27 CFR 9.75 - Central Coast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Mountain, California, scale 1:24,000, dated 1956, Photorevised 1980; (31) Half Moon Bay, California, scale..., Año Nuevo, Franklin Point, Pigeon Point, San Gregorio, Half Moon Bay, Montara Mountain and San...

  17. Structural framework of a major intracontinental orogenic termination zone: The easternmost Tien Shan, China

    USGS Publications Warehouse

    Cunningham, D.; Owen, L.A.; Snee, L.W.; Li, Ji

    2003-01-01

    The Barkol Tagh and Karlik Tagh ranges of the easternmost Tien Shan are a natural laboratory for studying the fault architecture of an active termination zone of a major intracontinental mountain range. Barkol and Karlik Tagh and lesser ranges to the north are bounded by active thrust faults that locally deform Quaternary sediments. Major thrusts in Karlik Tagh connect along strike to the east with the left-lateral Gobi-Tien Shan Fault System in SW Mongolia. From a Mongolian perspective. Karlik Tagh represents a large restraining bend for this regional strike-slip fault system, and the entire system of thrusts and strike-slip faults in the Karlik Tagh region defines a horsetail splay fault geometry. Regionally, there appears to be a kinematic transition from thrust-dominated deformation in the central Tien Shan to left-lateral transpressional deformation in the easternmost Tien Shan. This transition correlates with a general eastward decrease in mountain belt width and average elevation and a change in the angular relationship between the NNE-directed maximum horizontal stress in the region and the pre-existing basement structural grain, which is northwesterly in the central Tien Shan (orthogonal to SHmax) but more east-west in the eastern Tien Shan (acute angular relationship with SHmax . Ar-Ar ages indicate that major range-bounding thrusts in Barkol and Karlik Tagh are latest Permian-Triassic ductile thrust zones that underwent brittle reactivation in the Late Cenozoic. It is estimated that the modern mountain ranges of the extreme easternmost Tien Shan could have been constructed by only 10-15 km of Late Cenozoic horizontal shortening.

  18. Geologic map of the central San Juan caldera cluster, southwestern Colorado

    USGS Publications Warehouse

    Lipman, Peter W.

    2006-01-01

    The San Juan Mountains are the largest erosional remnant of a composite volcanic field that covered much of the southern Rocky Mountains in middle Tertiary time. The San Juan field consists mainly of intermediate-composition lavas and breccias, erupted about 35-30 Ma from scattered central volcanoes (Conejos Formation) and overlain by voluminous ash-flow sheets erupted from caldera sources. In the central San Juan Mountains, eruption of at least 8,800 km3 of dacitic-rhyolitic magma as nine major ash flow sheets (individually 150-5,000 km3) was accompanied by recurrent caldera subsidence between 28.3 Ma and about 26.5 Ma. Voluminous andesitic-dacitic lavas and breccias erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of more silicic explosive volcanism. Exposed calderas vary in size from 10 to 75 km in maximum dimension; the largest calderas are associated with the most voluminous eruptions.

  19. Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow

    USGS Publications Warehouse

    Plummer, Niel; Bexfield, L.M.; Anderholm, S.K.; Sanford, W.E.; Busenberg, E.

    2004-01-01

    Chemical and isotopic data for groundwater from throughout the Middle Rio Grande Basin, central New Mexico, USA, were used to identify and map groundwater flow from 12 sources of water to the basin,evaluate radiocarbon ages, and refine the conceptual model of the Santa Fe Group aquifer system. Hydrochemical zones, representing groundwater flow over thousands to tens of thousands of years, can be traced over large distances through the primarily siliciclastic aquifer system. The locations of the hydrochemical zones mostly reflect the "modern" predevelopment hydraulic-head distribution, but are inconsistent with a trough in predevelopment water levels in the west-central part of the basin, indicating that this trough is a transient rather than a long-term feature of the aquifer system. Radiocarbon ages adjusted for geochemical reactions, mixing, and evapotranspiration/dilution processes in the aquifer system were nearly identical to the unadjusted radiocarbon ages, and ranged from modern to more than 30 ka. Age gradients from piezometer nests ranged from 0.1 to 2 year cm-1 and indicate a recharge rate of about 3 cm year-1 for recharge along the eastern mountain front and infiltration from the Rio Grande near Albuquerque. There has been appreciably less recharge along the eastern mountain front north and south of Albuquerque. ?? Springer-Verlag 2004.

  20. Small-mammal abundance at three elevations on a mountain in central Vermont, USA: a sixteen-year record

    Treesearch

    Robert T. Brooks; Harvey R. Smith; William M. Healy

    1998-01-01

    As part of a study of forest resilience to gypsy moth (Lymantria dispar) defoliation, small mammals were sampled with live (box) and pitfall traps for 16 years at three elevations on a mountain in west-central Vermont, USA. The more mesic, lowerslope location had the most diverse small-mammal community. White-footed mice (Peromyscus leucopus) were the most commonly...

  1. A method for estimating white pine blister rust canker age on limber pine in the central Rocky Mountains

    Treesearch

    Holly S. J. Kearns; William R. Jacobi; Brian W. Geils

    2009-01-01

    Epidemiological studies of white pine blister rust on limber pine require a temporal component to explain variations in incidence of infection and mortality. Unfortunately, it is not known how long the pathogen has been present at various sites in the central Rocky Mountains of North America. Canker age, computed from canker length and average expansion rate, can be...

  2. Mountain pine beetles: A century of knowledge, control attempts, and impacts central to the Black Hills

    Treesearch

    Russell T. Graham; Lance A. Asherin; Michael A. Battaglia; Terrie Jain; Stephen A. Mata

    2016-01-01

    This publication chronicles the understanding, controlling, and impacts of mountain pine beetles (MPB) central to the Black Hills of South Dakota and Wyoming from the time they were described by Hopkins in 1902, through the presentation of data from work started by Schmid and Mata in 1985. The plots established by these two men from 1985 through 1994 were subjected to...

  3. Insight into Central Asian flora from the Cenozoic Tianshan montane origin and radiation of Lagochilus (Lamiaceae).

    PubMed

    Zhang, Ming-Li; Zeng, Xiao-Qing; Sanderson, Stewart C; Byalt, Vyacheslav V; Sukhorukov, Alexander P

    2017-01-01

    The Tianshan Mountains play a significant role in the Central Asian flora and vegetation. Lagochilus has a distribution concentration in Tianshan Mountains and Central Asia. To investigate generic spatiotemporal evolution, we sampled most Lagochilus species and sequenced six cpDNA locations (rps16, psbA-trnH, matK, trnL-trnF, psbB-psbH, psbK-psbI). We employed BEAST Bayesian inference for dating, and S-DIVA, DEC, and BBM for ancestral area/biome reconstruction. Our results clearly show that the Tianshan Mountains, especially the western Ili-Kirghizia Tianshan, as well as Sunggar and Kaschgar, was the ancestral area. Ancestral biome was mainly in the montane steppe zone of valley and slope at altitudes of 1700-2700 m, and the montane desert zone of foothill and front-hill at 1000-1700 m. Here two sections Inermes and Lagochilus of the genus displayed "uphill" and "downhill" speciation process during middle and later Miocene. The origin and diversification of the genus were explained as coupled with the rapid uplift of the Tianshan Mountains starting in late Oligocene and early Miocene ca. 23.66~19.33 Ma, as well as with uplift of the Qinghai-Tibetan Plateau (QTP) and Central Asian aridification.

  4. Slylab (SL)-3 View - North Central Wyoming (WY) - Southern Montana (MT)

    NASA Image and Video Library

    1973-08-15

    S73-35081 (July-September 1973) --- A view of approximately 3,600 square miles of north central Wyoming and southern Montana is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The Big Horn River following northward crosses between the northwest trending Big Horn Mountains and the Pryor Mountains. Yellowtail Reservoir, named after a former chief of the Crow Indian tribe in the center of the picture is impounded by a dam across the small rectangular crop area along the Big Horn River (upper right) and the strip farming (yellow) practiced on the rolling hill along the Big Horn River and its tributaries (upper left corner and right edge). The low sun angle enhances the structural features of the mountains as well as the drainage patterns in the adjacent basins. Rock formation appears in this color photograph as they would to the eye from this altitude. The distinctive redbeds can be traced along the front of the Pryor Mountains and indicate the folding that occurred during mountain building. EREP investigators, Dr. Houston of the University of Wyoming and Dr. Hoppin of the University of Iowa, will analyze the photograph and use the results in geological mapping and mineral resource studies. Lowell, Wyoming (lower left corner) and Hardin, Montana (upper right corner) can be recognized. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. (Alternate number SL3-86-337) Photo credit: NASA

  5. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  6. A measurement of the experience preferences of central Appalachian mountain bicyclists

    Treesearch

    Roy Ramthun; Jefferson D. Armistead

    2001-01-01

    As the sport of mountain biking has grown in popularity, many localities have begun to develop facilities and promote cycling based tourism. Unfortunately, these promotional efforts often occur with little knowledge of the characteristics and preferences of mountain bikers. This study was an initial effort to collect descriptive data on the riding, travel and spending...

  7. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Treesearch

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  8. Tectonic Control of the Acid and Alkalinity Budgets of Chemical Weathering

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Dellinger, M.; Clark, K. E.; West, A. J.; Paris, G.; Bouchez, J.; Ponton, C.; Feakins, S. J.; Galy, V.; Hilton, R. G.; Adkins, J. F.

    2016-12-01

    The exchange of carbon between the rock reservoir and the ocean/atmosphere system modulates Earth's climate over geologic timescales. Central to our current conceptualization of this geologic C cycle is a mechanistic link between input and output fluxes that limits imbalances and prevents extreme variations in atmospheric pCO2. However, a quantitative understanding of how C cycle balance is maintained remains elusive due to the competition and co-variation between many distinct biogeochemical reactions. Here, we turn to river systems draining Andes/Amazon and other modern mountain ranges to inform our understanding of how major orogenies affect key C cycle fluxes.Globally, rivers draining active mountain ranges transport massive quantities of sulfate, alkalinity, and particulate organic carbon. Consequently, defining the exact effect of tectonic uplift on both atmospheric pCO2 and pO2 requires the careful partitioning of these fluxes between competing C and O cycle reactions. Using a suite of isotopic and trace element proxies, we find that the large mass fluxes exported by mountain rivers do not necessarily translate into a large C sink due to the oxidative weathering of trace reactive phases (e.g., pyrite). Our results also imply that mountain weathering may be an important O2 sink. The applicability and implications of these results are explored using reactive-transport modeling and a new carbonate-system framework for the links between C cycle reactions and atmospheric pCO2.

  9. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    magmatic Ni-Cu-Co-PGE system in the Talkeetna Mountains, central Alaska (poster): Society of Economic Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of

  10. The Climate Effect of the Topographies at the Northern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sha, Y.; Shi, Z.; Liu, X.

    2017-12-01

    The Tibetan Plateau play a crucial role in the formation and evolution of the Asian monsoon-interior aridity climate system. However, the climate effect of other relatively smaller topographies receives less attention. Based on high-resolved general circulation models, we conducted a series of sensitive experiments as with/without mountains, which include the Mongolian Plateau and the Tian Shan Mountains. The numerical simulations reveal the important impacts of the mountain ranges at the northern margins of the Tibetan Plateau. Compared to the main body of the Tibetan Plateau, the uplift of the Mongolian Plateau is essential for the establishment of the strong Siberian High. The East Asian winter monsoon and the westerly jet over the North Pacific Ocean are also significantly strengthened. At present, the Tian Shan Mountains geographically separate the arid interior Asia to the west and east sub-regions. However, the arid west sub-region (Central Asia) and the east sub-region (arid northwestern China) was connected as one large arid region before the uplift of the Tian Shan Mountains. The large arid interior land shares the same precipitation seasonality, with most rains fall in spring and winter while lowest precipitation in summer. After the uplift of the Tian Shan, the large arid region is divided into the west and east sub-regions by the wetter uplifted mountain ranges. More importantly, the precipitation seasonality in the east of the Tian Shan is reversed to be the summer-peak type, which is opposite to that in the Central Asia. The precipitation alteration corresponds well with the change of vertical motion. By the conservation of potential vorticity, the atmosphere stationary waves are modulated. Thus, the remote East Asian monsoon is also modulated. Though enhanced southerly wind blows over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean is significantly reduced as an anticyclonic circulation appears. The Tian Shan also contributes to the intensification of the East Asian winter monsoon.

  11. Tectonic evolution of the central Brooks Range mountain front: Evidence from the Atigun Gorge region

    USGS Publications Warehouse

    Mull, C.G.; Glenn, R.K.; Adams, K.E.

    1997-01-01

    Atigun Gorge, at the northern front of the eastern Endicott Mountains, contains well-exposed rocks of the upper part of the Endicott Mountains allochthon and rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. These allochthons contain rocks as young as Early Cretaceous (Valanginian) and are separated by a nearly vertical fault zone that contains exotic blocks of Triassic and Jurassic chert and silicified mudstone. Siliceous rocks of this type are not present in the Endicott Mountains allochthon but are characteristic of the Picnic Creek, Ipnavik River, and some of the other allochthons that structurally overlie the Endicott Mountains allochthon in the central and western Brooks Range. These exotic blocks, therefore indicate that structurally higher rocks of either the Picnic Creek or Ipnavik River allochthon were emplaced during the Early Cretaceous and are preserved along the northern flank of the eastern Endicott Mountains. The deformed thickness of this higher allochthon in the subsurface north of the mountains is unknown but probably exceeds 2 kilometers. Similar relations are mapped east of Atigun Gorge in an area of structural transition from the eastern Endicott Mountains into the northern Philip Smith Mountains, which are formed by the parautochthonous North Slope stratigraphic assemblage. The allochthonous rocks at the mountain front are regionally unconformably overlain by proximal Lower Cretaceous (Albian) foredeep conglomerate at the southern flank of the Colville basin, but at Atigun Gorge, the base of these deposits is interpreted as a possible back thrust at a triangle zone. Conglomerate clasts in the foredeep deposits are dominantly chert, mafic igneous rock, and other lithologies characteristic of the Picnic Creek and Ipnavik River allochthons and scattered clasts from the Endicott Mountains allochthon. The conglomerates show that the chert-rich allochthonous rocks and the Endicott Mountains allochthon were emplaced in the north-central Brooks Range by large-scale crustal shortening (>300 km) between the Valanginian and Albian (??135 to ??112 Ma). This orogenic event significantly postdates early stages of Brooks Range orogeny but predates later stages of orogeny documented by stratigraphic and apatite fission-track data. These relations reduce the magnitude of shortening inferred at the triangle zone at the Brooks Range mountain front. The outcrop data suggest that some of the strata preserved at a structurally low level north of the mountain front and visible in the seismic data of the Trans-Alaska Crustal Transect (TACT) may consist of clastic sedimentary rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. Copyright 1997 by the American Geophysical Union.

  12. 1. BUILDING 321. VIEW TO NORTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 321. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  13. 2. BUILDING 321. VIEW TO NORTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 321. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  14. 3. BUILDING 321. VIEW TO SOUTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 321. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  15. A Model Simulation of Mountain Waves in the Middle Atmosphere and Its Comparison with Microwave Limb Sounder Observations

    NASA Astrophysics Data System (ADS)

    Jiang, J. H.; Eckermann, S. D.; Wu, D. L.; Ma, J.; Wang, D. Y.

    2003-04-01

    Topography-related wintertime stratospheric gravity waves in both Northern and Southern Hemisphere are simulated using the Naval Research Laboratory Mountain Wave Forecast Model (MWFM). The results agree well with the observations from Upper Atmospheric Research Satellite Microwave Limb Sounder (MLS). Both the MWFM simulation and MLS observations found strong wave activities over the high-latitude mountain ridges of Scandinavia, Central Eurasia, Alaska, southern Greenland in Northern Hemisphere, and Andes, New Zealand, Antarctic rim in Southern Hemisphere. These mountain waves are dominated by wave modes with downward phase progression and horizontal phase velocities opposite to the stratospheric jet-stream. Agreements of minor wave activities are also found at low- to mid-latitudes over Zagros Mountains of Middle East, Colorado Rocky Mountains, Appalachians, and Sierra Madres of Central America. Some differences between the MWFM results and MLS data are explained by different horizontal resolution between the model and observation, and the fact that MLS may also see the non-orographic wave sources, such as mesoscale storms and jet-stream instabilities. The findings from this model-measurement comparison study demonstrate that satellite instruments such as MLS can provide global data needed to characterize mountain wave sources, their inter-annual variations, and to improve gravity wave parameterizations in global climate and forecast models.

  16. 49 CFR 71.6 - Central zone.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... States that is west of the boundary line between the eastern and central standard time zones described in... between the central and mountain time zones. The Chicago, Rock Island and Gulf Railway Company and the...

  17. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits - applications to Central Europe

    USGS Publications Warehouse

    Drew, Lawrence J.

    2006-01-01

    A structural-tectonic model, which was developed to assess the occurrence of undiscovered porphyry copper deposits and associated polymetallic vein systems for the Matra Mountains, Hungary, has been expanded here and applied to other parts of central Europe. The model explains how granitoid stocks are emplaced and hydrothermal fluids flow within local strain features (duplexes) within strike-slip fault systems that develop in continental crust above subducting plates. Areas of extension that lack shear at the corners and along the edges of the fault duplexes are structural traps for the granitoid stocks associated with porphyry copper deposits. By contrast, polymetallic vein deposits are emplaced where shear and extension are prevalent in the interior of the duplexes. This model was applied to the Late Cretaceous-age porphyry copper and polymetallic vein deposits in the Banat-Timok-Srednogorie region of Romania-Serbia-Bulgaria and the middle Miocene-age deposits in Romania and Slovakia. In the first area, porphyry copper deposits are most commonly located at the corners, and occasionally along the edges, of strike-slip fault duplexes, and the few polymetallic vein deposits identified are located at interior sites of the duplexes. In the second area, the model accounts for the preferred sites of porphyry copper and polymetallic vein deposits in the Apuseni Mountains (Romania) and central Slovakian volcanic field (Slovakia).

  18. Publications - PIR 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PIR 2015-6 Publication Details Title: Geologic map of the Talkeetna Mountains C-4 Quadrangle ., Freeman, L.K., and Lande, L.L., 2015, Geologic map of the Talkeetna Mountains C-4 Quadrangle and adjoining Sheets Sheet 1 Geologic map of the Talkeetna Mountains C-4 Quadrangle and adjoining areas, central Alaska

  19. Andean Mountain Building: An Integrated Topographic, GPS, Seismological and Numerical Study

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Stein, Seth

    2003-01-01

    The main objective of this project was to better understand the geodynamics controlling the mountain building and topographic evolution in the central Andes using an integrated approach that combines GPS, seismological, and numerical studies.

  20. Field-trip guide to volcanic and volcaniclastic deposits of the lower Jurassic Talkeetna formation, Sheep Mountain, south-central Alaska

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Blodgett, Robert B.

    2006-01-01

    This guide provides information for a one-day field trip in the vicinity of Sheep Mountain, just north of the Glenn Highway in south-central Alaska. The Lower Jurassic Talkeetna Formation, consisting of extrusive volcanic and volcaniclastic sedimentary rocks of the Talkeetna arc complex, is exposed on and near Sheep Mountain. Field-trip stops within short walking distance of the Glenn Highway (approximately two hours’ drive from Anchorage) are described, which will be visited during the Geological Society of America Penrose meeting entitled Crustal Genesis and Evolution: Focus on Arc Lower Crust and Shallow Mantle, held in Valdez, Alaska, in July 2006. Several additional exposures of the Talkeetna Formation on other parts of Sheep Mountain that would need to be accessed with longer and more strenuous walking or by helicopter are also mentioned.

  1. Selected Field Parameters from Streams and Analytical Data from Water and Macroinvertebrate Samples, Central Colorado Assessment Project, Environmental Assessment Task, 2004 and 2005

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Schmidt, Travis S.; Wanty, Richard B.; Verplanck, Philip L.; Lamothe, Paul J.; Adams, Monique; Anthony, Michael W.

    2007-01-01

    The U.S. Geological Survey (USGS) Central Colorado Assessment Project (CCAP) began in October 2003 and is planned to last through September 2008. One major goal of this project is to compare the relationships between surface-water chemistry and aquatic fauna in mined and unmined areas. To accomplish this goal, we are conducting a State-scale reconnaissance sampling program, in which we are collecting water and macroinvertebrate samples. Selected results from the first two years of project analyses are reported here. We plan to develop statistical models and use geographic information system (GIS) technology to quantify the relationships between ecological indicators of metal contamination in Rocky Mountain streams and water quality, landscape and land-use characteristics (for example, mine density, geology, geomorphology, vegetation, topography). Our research will test the hypothesis that physicochemical variables and ecological responses to metal concentrations in stream water in Rocky Mountain streams are ultimately determined largely by historical land uses.

  2. Regional reconstruction of flash flood history in the Guadarrama range (Central System, Spain).

    PubMed

    Rodriguez-Morata, C; Ballesteros-Cánovas, J A; Trappmann, D; Beniston, M; Stoffel, M

    2016-04-15

    Flash floods are a common natural hazard in Mediterranean mountain environments and responsible for serious economic and human disasters. The study of flash flood dynamics and their triggers is a key issue; however, the retrieval of historical data is often limited in mountain regions as a result of short time series and the systematic lack of historical data. In this study, we attempt to overcome data deficiency by supplementing existing records with dendrogeomorphic techniques which were employed in seven mountain streams along the northern slopes of the Guadarrama Mountain range. Here we present results derived from the tree-ring analysis of 117 samples from 63 Pinus sylvestris L. trees injured by flash floods, to complement existing flash flood records covering the last ~200years and comment on their hydro-meteorological triggers. To understand the varying number of reconstructed flash flood events in each of the catchments, we also performed a comparative analysis of geomorphic catchment characteristics, land use evolution and forest management. Furthermore, we discuss the limitations of dendrogeomorphic techniques applied in managed forests. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia

    PubMed Central

    Spengler, Robert; Frachetti, Michael; Doumani, Paula; Rouse, Lynne; Cerasetti, Barbara; Bullion, Elissa; Mar'yashev, Alexei

    2014-01-01

    Archaeological research in Central Eurasia is exposing unprecedented scales of trans-regional interaction and technology transfer between East Asia and southwest Asia deep into the prehistoric past. This article presents a new archaeobotanical analysis from pastoralist campsites in the mountain and desert regions of Central Eurasia that documents the oldest known evidence for domesticated grains and farming among seasonally mobile herders. Carbonized grains from the sites of Tasbas and Begash illustrate the first transmission of southwest Asian and East Asian domesticated grains into the mountains of Inner Asia in the early third millennium BC. By the middle second millennium BC, seasonal camps in the mountains and deserts illustrate that Eurasian herders incorporated the cultivation of millet, wheat, barley and legumes into their subsistence strategy. These findings push back the chronology for domesticated plant use among Central Eurasian pastoralists by approximately 2000 years. Given the geography, chronology and seed morphology of these data, we argue that mobile pastoralists were key agents in the spread of crop repertoires and the transformation of agricultural economies across Asia from the third to the second millennium BC. PMID:24695428

  4. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia.

    PubMed

    Spengler, Robert; Frachetti, Michael; Doumani, Paula; Rouse, Lynne; Cerasetti, Barbara; Bullion, Elissa; Mar'yashev, Alexei

    2014-05-22

    Archaeological research in Central Eurasia is exposing unprecedented scales of trans-regional interaction and technology transfer between East Asia and southwest Asia deep into the prehistoric past. This article presents a new archaeobotanical analysis from pastoralist campsites in the mountain and desert regions of Central Eurasia that documents the oldest known evidence for domesticated grains and farming among seasonally mobile herders. Carbonized grains from the sites of Tasbas and Begash illustrate the first transmission of southwest Asian and East Asian domesticated grains into the mountains of Inner Asia in the early third millennium BC. By the middle second millennium BC, seasonal camps in the mountains and deserts illustrate that Eurasian herders incorporated the cultivation of millet, wheat, barley and legumes into their subsistence strategy. These findings push back the chronology for domesticated plant use among Central Eurasian pastoralists by approximately 2000 years. Given the geography, chronology and seed morphology of these data, we argue that mobile pastoralists were key agents in the spread of crop repertoires and the transformation of agricultural economies across Asia from the third to the second millennium BC.

  5. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    USGS Publications Warehouse

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  6. Regional-Scale Climate Change: Observations and Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less

  7. Soil physical and chemical properties associated with flat rock and riparian forest communities

    Treesearch

    David O. Mitchem; James E. Johnson; Laura S. Gellerstedt

    2006-01-01

    Flat Rock forest communities are unique ecosystems found adjacent to some large rivers in the Central and Southern Appalachian Mountains. Characterized by thin, alluvial soils overlying flat, resistant sandstone, these areas are maintained by severe flooding and have unique associated plant systems. With the advent of dams to control flooding in the 20th century, many...

  8. Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M. R.; Kouhpeyma, M.

    2012-10-01

    The Binalud Mountains are situated in the south of the Kopeh Dagh as a transitional zone between the Alborz and Central Iran zones. The Palaeotethys suture of the north Iran is located in this area. The Binalud Mountains consists of relatively thick successions of sedimentary, metamorphic and igneous rocks. The earliest deformation, a polyphase synmetamorphic deformation which occurred entirely in ductile conditions, is distinguished in the metamorphic rocks of the eastern part. D1, D2 and D3 deformation phases are related to this deformation. The D4 deformation affected the area after a period of sedimentation and erosion. The thrust faults of the central and southern part of the eastern Binalud were classified as structures related to the D5 tectonic event. From the geodynamic point of view, in Late Palaeozoic times the studied area formed an oceanic trench generated by the subduction of the Palaeotethys oceanic lithosphere beneath the Turan Plate. In the Late Triassic, the Early Cimmerian Event resulted in a collisional type orogeny generating a transpression polyphase deformation and the metamorphism of Permian and older sediments. Following this collision, granite intrusions were emplaced in the area and caused contact metamorphism. The exhumation and erosion of the rocks deformed and metamorphosed during Early Cimmerian Event caused the formation of molassic type sediments in a Rhaetian-Lias back arc basin. The continuation of convergence between the Turan and Iran Plates caused the metamorphism of these sediments and their transformation to phyllite and meta-sandstone. During Late Mesozoic and Early Cenozoic times, the convergence between Central Iran and Turan Plates continued and a NE compression caused folding of the Cretaceous and older rocks in the Kopeh Dagh area. In the Binalud area this deformation caused the generation of several thrust fault systems with S to SW vergence, resulting in a thrusting of Palaeozoic and Mesozoic successions on each other and on the Neogene sediments at the southern border of the Binalud Mountains.

  9. Measurement of ridge-spreading movements (Sackungen) at Bald Eagle Mountain, Lake County, Colorado, II : continuation of the 1975-1989 measurements using a Global Positioning System in 1997 and 1999

    USGS Publications Warehouse

    Varnes, David J.; Coe, J.A.; Godt, J.W.; Savage, W.Z.; Savage, J.E.

    2000-01-01

    Measurements of ridge-spreading movements at Bald Eagle Mountain in north-central Colorado were reported in USGS Open-File Report 90-543 for the years 1975-1989. Measurements were renewed in 1997 and 1999 using the Global Positioning System (GPS). Movements are generally away from a ridge-top graben and appear to be concentrated along 3 or 4 trenches with uphill facing scarps that are parallel with slope contours. A point just below the lowest trench has moved the most? a total of 8.3 cm horizontally and slightly downward from 1977 to 1999 relative to an assumed stable point on the periphery of the graben. Movements from 1997 to 1999 are less than 1 cm or within the error of measurement.

  10. Assessing the Priority Area of Mountainous Tourism Using Geospatial Approach in Kendal Regency, Central Java

    NASA Astrophysics Data System (ADS)

    Riwayatiningsih; Purnaweni, Hartuti

    2018-02-01

    Kendal is one of 35 regencies in Central Java which has diverse topographies, from low land, hilly, to mountainous areas. Mountainous area of Kendal with numerous unique and distinct natural environments, supported by various unique and distinct culture of its community can be used for tourism activities. Kendal has natural and sociocultural resources for developing tourism that must be considered by the local government. Therefore, nature based tourism resources assessment is important in order to determine the appropriate area in the planning of sustainable tourism destination. The objectives of this study are to assess and prioritize the potential area of mountainous tourism object in Kendal using geospatial approach based on criteria attractiveness, accessibility and amenity of the tourism object. Those criteria are modification of ADO-ODTWA guidelines and condition of the study location. There are 16 locations of tourism object that will be assessed. The result will be processed using ArcMap 10.3. The result will show the most potential tourism object that could become priority for mountainous tourism development in Kendal.

  11. Structural geology of the proposed site area for a high-level radioactive waste repository, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.

    2004-01-01

    Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of sequential formation of tectonic joints, in the context of regional paleostress studies, indicate that north- and northwest-striking joint sets formed coevally with the main faulting episode during regional east-northeast-west-southwest extension and that a prominent northeast-striking joint set formed later, probably after 9 Ma. These structural analyses contribute to the understanding of several important issues at Yucca Mountain, including potential hydrologic pathways, seismic hazards, and fault-displacement hazards. ?? 2004 Geological Society of America.

  12. Building for the Future by Expatiating the Past: High Drama from the Summit of China's Learning Mountain

    ERIC Educational Resources Information Center

    Boshier, Roger; Huang, Yan

    2006-01-01

    As part of a large-scale learning initiative, the Chinese Communist Party has declared Lushan to be a "learning mountain". There have been people learning at Lushan Mountain for 2000 years. In 1959 there was a Central Committee meeting at Lushan, where Mao Zedong purged his widely respected comrade Peng Dehuai for daring to say people…

  13. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Treesearch

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  14. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Treesearch

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  15. Population Declines of Mountain Coqui (Eleutherodactylus portoricensis) in the Cordillera Central of Puerto Rico

    PubMed Central

    Barker, Brittany S.; Ríos-Franceschi, Alejandro

    2014-01-01

    The Mountain Coqui (Eleutherodactylus portoricensis) is a frog endemic to montane rainforests in the Cordillera Central and Luquillo Mountains of Puerto Rico. Classified as endangered by the IUCN Red List and as vulnerable by the Department of Natural and Environmental Resources of Puerto Rico, this species has undergone considerable decline in the Luquillo Mountains. To evaluate the population status of E. portoricensis across its entire range, we conducted ~87 hours of surveys at 18 historical localities and 25 additional localities that we considered suitable for this species. We generated occupancy models to estimate the probability of occurrence at surveyed sites and to identify geographic and climatic factors affecting site occupancy. We also constructed a suitability map to visualize population status in relation to the presence of land cover at elevations where the species has been documented, and determined the dates when populations were last detected at historical localities. Eleutherodactylus portoricensis was detected at 14 of 43 localities, including 10 of 18 historical localities, but it was not detected at any localities west of Aibonito (western Cordillera Central). Occupancy models estimated the probability of occurrence for localities in the western Cordillera Central as zero. Site occupancy was positively associated with montane cloud forest, and negatively associated with the western Cordillera Central, maximum temperature, and precipitation seasonality. The suitability map suggests that declines have occurred despite the presence of suitable habitat. We suggest upgrading the extinction risk of E. portoricensis and potentially developing a captive breeding program for this species. PMID:25685250

  16. New Insights into the Provenance of the Southern Junggar Basin in the Jurassic from Heavy Mineral Analysis and Sedimentary Characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, T. Q.; Wu, C.; Zhu, W.

    2017-12-01

    Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed in Badaowan formation indicating that the provenance of sediments mainly derived from the Kelameili Mountains. During the late Jurassic, the rapid uplift of Bogda Mountains could result into the distinct difference in heavy mineral assemblages between the eastern segment and the central segments.

  17. The interplay of fold mechanisms and basement weaknesses at the transition between Laramide basement-involved arches, north-central Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Neely, Thomas G.; Erslev, Eric A.

    2009-09-01

    Horizontally-shortened, basement-involved foreland orogens commonly exhibit anastomosing networks of bifurcating basement highs (here called arches) whose structural culminations are linked by complex transition zones of diversely-oriented faults and folds. The 3D geometry and kinematics of the southern Beartooth arch transition zone of north-central Wyoming were studied to understand the fold mechanisms and control on basement-involved arches. Data from 1581 slickensided minor faults are consistent with a single regional shortening direction of 065°. Evidence for oblique-slip, vertical axis rotations and stress refraction at anomalously-oriented folds suggests formation over reactivated pre-existing weaknesses. Restorable cross-sections and 3D surfaces, constrained by surface, well, and seismic data, document blind, ENE-directed basement thrusting and associated thin-skinned backthrusting and folding along the Beartooth and Oregon Basin fault systems. Between these systems, the basement-cored Rattlesnake Mountain backthrust followed basement weaknesses and rotated a basement chip toward the basin before the ENE-directed Line Creek fault system broke through and connected the Beartooth and Oregon Basin fault systems. Slip was transferred at the terminations of the Rattlesnake Mountain fault block by pivoting to the north and tear faulting to the south. In summary, unidirectional Laramide compression and pre-existing basement weaknesses combined with fault-propagation and rotational fault-bend folding to create an irregular yet continuous basement arch transition.

  18. Central Asian mountain Rhithrogenini (Ephemeroptera: Heptageniidae) with pointed and ephemeropteroid claws in the winged stages.

    PubMed

    Kluge, Nikita J

    2015-08-03

    Among mountain species of Heptageniidae from Central Asia, six species belonging to the taxa Cinygmula McDunnough 1933, Himalogena Kluge 2004 and Caucasiron Kluge 1997 have all claws of the winged stages (subimago and imago) pointed. In this area Cinygmula is represented by two species: C. hutchinsoni (Traver 1939) (with pointed claws) and C. joosti Braasch 1977 (with the more typical ephemeropteroid claws); for both species all stages of both sexes associated by rearing are redescribed. The Central Asian mountain taxon Himalogena includes seven species: Rhithrogena (Himalogena) tianshanica Brodsky 1930, Rh. (H.) pamirica sp. n., Rh. (H.) carnivora sp. n., Rh. (H.) semicarnivora sp. n., Rh. (H.) stackelbergi Sinitshenkova 1973, Rh. (H.) gunti sp. n. and Rh. (H.) nepalensis Braasch 1984; for five of them, all stages of both sexes associated by rearing are redescribed; Rh. (H.) semicarnivora is known as male imagoes reared from larvae; Rh. (H.) nepalensis formerly known only as larvae, is redescribed based on an anomalous female imago (with gynandromorphism caused by helminth in abdomen) reared from the larval stage. Among these species, Rh. (H.) tianshanica, Rh. (H.) pamirica, Rh. (H.) carnivora and Rh. (H.) semicarnivora have mandibles and the labrum modified for carnivorism, while the other three species have the usual Rhithrogena mouth apparatus. Imagoes and subimagoes of Rh. (H.) pamirica, Rh. (H.) carnivora, Rh. (H.) gunti and Rh. (H.) nepalensis, have both claws of each leg pointed, while the other species have ephemeropteroid claws. Corrections to the description of Rh. minima Sinitshenkova 1973 claw denticulation and to original figure references are given. The taxon Ironopsis/g1 is represented by two species in the Central Asian mountains: Epeorus (Caucasiron) guttatus (Braasch & Soldán 1979) (with pointed claws) and Epeorus (Ironopsis) rheophilus (Brodsky 1930) (with ephemeropteroid claws); for both species all stages of both sexes associated by rearing are redescribed. The character distribution patterns of pointed and ephemeropteroid claws within mayfly phylogeny leads one to assume that both types of claws repeatedly change back and forth within Ephemeroptera. However, within Heptageniidae, those species whose winged stages have pointed claws have overlapping ranges of distribution limited to high mountain systems of Central Asia; their larvae inhabit the same biotopes (stones in rapid streams), have the same habitat and can come into contact with one another when they aggregate on a stone. These observations allow for a hypothesis that explains the repeated change to pointed claws from ephemeropteroid claws among various Heptageniidae species via horizontal transfer of some hereditary factor during the evolutionary history of each of those species with the peculiar claw morphology.

  19. Horticulture of Ribes

    USDA-ARS?s Scientific Manuscript database

    The genus Ribes L., known as currants and gooseberries, contains more than 150 diverse species indigenous throughout the northern hemisphere and along the Rocky Mountain, Sierra Nevada, and Sierra Madres in North America through mountain ranges of Central America to the Andes in South America. Begin...

  20. Recent changes in the spatial distribution of annual precipitation in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberger, E.H.; Gazit-Yaari, N.

    1996-12-01

    Analysis of rainfall series in Israel during the period 1960-1990 for 99 stations has revealed that precipitation amounts have decreased in the northern and central coastal areas and in the northern mountain area. In the southern coastal area and the western slopes of the central mountains precipitation increased. There are indications that the observed trends may be the outcome of changes in the synoptic climate during the winter in the Eastern Mediterranean region. 8 refs., 12 figs., 1 tab.

  1. Sedimentology and sequence stratigraphy of the Cretaceous Nanushuk, Seabee, and Tuluvak formations exposed on Umiat Mountain, north-central Alaska

    USGS Publications Warehouse

    Houseknecht, David W.; Schenk, Christopher J.

    2005-01-01

    Upper Cretaceous strata of the upper part of the Nanushuk Formation, the Seabee Formation, and the lower part of the Tuluvak Formation are exposed along the Colville River on the east flank of Umiat Mountain in north-central Alaska. The Ninuluk sandstone, which is the uppermost unit of the Nanushuk Formation, displays a vertical succession of facies indicative of deposition in an upward-deepening estuarine through shoreface setting. A marine-flooding surface lies between the Ninuluk sandstone and organic-rich shale of the basal part of the Seabee Formation. The Ninuluk sandstone and the lower part of the Seabee Formation are interpreted as components of a transgressive-systems tract. The lowest, well-exposed strata in the Seabee Formation are a succession of shoreface sandstone beds in the middle of the formation. Integration of outcrop information and the Umiat No. 11 well log suggests that this sandstone succession rests on a sequence boundary and is capped by a marine-flooding surface. The sandstone succession is interpreted as a lowstand-systems tract. The upper part of the Seabee Formation includes a thick interval of organic-rich shale deposited in a dysaerobic offshore environment, and the gradational Seabee-Tuluvak contact is a coarsening-upward shale-to-sandstone succession deposited in a prodelta/delta-front environment. The observation that the upper part of the Seabee Formation correlates with seismic clinoforms suggests that dysaerobic conditions extended well up onto the prodelta slope during intervals of transgression and highstand. Correlation of the Umiat Mountain outcrop section with well logs and seismic data suggests that sequence boundaries and lowstand shoreface deposits may be common in the Seabee Formation and that wave action may have been important in transporting sand to the paleoshelf margin. These conclusions may contribute to an enhanced understanding of sand distribution in prospective lowstand turbidite deposits in the subsurface of the central North Slope of Alaska.

  2. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance

    NASA Astrophysics Data System (ADS)

    Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao

    2018-06-01

    The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of the Yili-Central Tianshan Block were suggested to be the causes for extensive emplacements of the igneous products, which may be in an association with synchronous subduction of the South Tianshan and the North Tianshan oceanic plates, respectively. In this tectonic context, the Carboniferous magmatic rocks of the Wusun Mountain may be a tectonic response to the change in magma sources due to back-arc propagation in the western Chinese Tianshan.

  3. Nevada Monitoring System to Assess Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Devitt, D. A.; Arnone, J.; Biondi, F.; Fenstermaker, L. F.; Saito, L.; Young, M.; Riddle, B.; Strachan, S. D.; Bird, B.; McCurdy, G.; Lyles, B. F.

    2010-12-01

    The Nevada System of Higher Education (University of Nevada Las Vegas, University of Nevada Reno and the Desert Research Institute) was awarded a multiyear NSF EPSCoR grant to support infrastructure associated with regional climate change research. The overall project is comprised of 5 components: education, cyberinfrastructure, policy, climate modeling and water/ecology. The water and ecology components are using their infrastructure funding for the assessment of climate variability and change on ecosystem function and hydrologic services. A series of 10 m tall towers are under construction and are being equipped with a wide array of sensors to monitor atmospheric, soil and plant parameters over time. The towers are located within the Mojave and Great Basin Deserts in two transects; the Mojave Desert transect is located in the southern Nevada Sheep Mountain Range and the Great Basin transect is located in the east central Nevada Snake Mountain Range. The towers are centrally positioned in well-defined vegetation zones. In southern Nevada these zones are represented by the following plant species: Creosote/Bursage (Creosotebush scrub zone); Blackbrush/Joshua Tree (Blackbrush zone); Pinyon/ Juniper (pygmy conifer zone), Ponderosa Pine (montane zone) and Bristlecone Pine (subalpine zone). The Snake Mountain transect incorporates the eastern and western valleys on both sides of the mountain range. The vegetation zones are represented by: Greasewood and mixed shrub (salt desert zone); Big Sage (sagebrush zone); Pinyon/Juniper (pygmy conifer zone); White/Douglas Fir, Ponderosa Pine and Aspen (montane zone); and Bristlecone/Limber Pine and Engelmann Spruce (subalpine zone). We are currently in the third year of funding with a goal of having the majority of towers fully operational by winter 2010. In close collaboration with our cyberinfrastructure component team, all data acquired from the transect monitoring stations will be made available to other researchers and the public in Nevada and elsewhere, cooperating agencies and organizations, and State of Nevada land managers.

  4. Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations

    NASA Astrophysics Data System (ADS)

    Norris, Jesse; Carvalho, Leila M. V.; Jones, Charles; Cannon, Forest

    2018-02-01

    Glaciers over the central Himalaya have retreated at particularly rapid rates in recent decades, while glacier mass in the Karakoram appears stable. To address the meteorological factors associated with this contrast, 36 years of Climate Forecast System Reanalyses (CFSR) are dynamically downscaled from 1979 to 2015 with the Weather Research and Forecasting (WRF) model over High Mountain Asia at convection permitting grid spacing (6.7 km). In all seasons, CFSR shows an anti-cyclonic warming trend over the majority of High Mountain Asia, but distinctive differences are observed between the central Himalaya and Karakoram in winter and summer. In winter and summer, the central Himalaya has been under the influence of an anti-cyclonic trend, which in summer the downscaling shows has reduced cloud cover, leading to significant warming and reduced snowfall in recent years. Contrastingly, the Karakoram has been near the boundary between large-scale cyclonic and anti-cyclonic trends and has not experienced significant snowfall or temperature changes in winter or summer, despite significant trends in summer of increasing cloud cover and decreasing shortwave radiation. This downscaling does not identify any trends over glaciers in closer neighboring regions to the Karakoram (e.g., Hindu Kush and the western Himalaya) where glaciers have retreated as over the central Himalaya, indicating that there are other factors driving glacier mass balance that this downscaling is unable to capture. While this study does not fully explain the Karakoram anomaly, the identified trends detail important meteorological contributions to the observed differences between central Himalaya and Karakoram glacier evolution in recent decades.

  5. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    NASA Astrophysics Data System (ADS)

    Löffler, J.; Rössler, O.

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where pro- cess dynamics of water and energy fluxes are analysed due to its effects on ecosys- tem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER WUN- DRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high moun- tain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation re- gions (JUNG et al. 1997, LÖFFLER WUNDRAM 1997). Moreover, spatial differ- entiations of groundwater level, soil moisture and temperature profiles have been in- vestigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the different altitudinal belts. The local differences of temperature dynamics are illustrated in a map as an example of the low alpine al- titudinal belt showing a 4-dimensional characterization (in space and time) of high mountain ecosystem functioning. Hydrological aspects derived from those results are presented showing the large-scaled hydrological dynamics of high mountain catch- ment basins in central Norway. The results of the process analysis of hydrological dynamics in the central Norwegian high mountains are discussed within the frame of 1 investigations on altitudinal changes of mountain ecosystem structure and function- ing (LÖFFLER WUNDRAM [in print]). The poster illustrates the theoretical and methodological conception, methods and techniques, examples from complex data material as well as general outcomes of the project (RÖSSLER [in prep.]. 2

  6. 2. View of chapel with the recreation supply building on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of chapel with the recreation supply building on the left and air refueling hangar in right central area of photograph, facing southwest - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID

  7. Two new species of Neoperla (Plecoptera, Perlidae) from Dabie Mountains of China.

    PubMed

    Li, Wei-Hai; Zhang, Sheng-Quan

    2014-01-01

    Two new species of the stonefly genus Neoperla, N. nigromarginata sp. n. and N. similiflavescens sp. n., are described from Dabie Mountains of Central China in the Liankangshan National Nature Reserve. The new species are compared with related congeners.

  8. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Treesearch

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  9. Model-based calculations of surface mass balance of mountain glaciers for the purpose of water consumption planning: focus on Djankuat Glacier (Central Caucasus)

    NASA Astrophysics Data System (ADS)

    Rybak, O. O.; Rybak, E. A.

    2018-01-01

    Mountain glaciers act as regulators of run-off in the summer period, which is very crucial for economy especially in dynamically developing regions with rapidly growing population, such as Central Asia or the Northern Caucasus in Russia. In overall, glaciers stabilize water consumption in comparatively arid areas and provide conditions for sustainable development of the economy in mountainous regions and in the surrounding territories. A proper prediction of the glacial run-off is required to elaborate strategies of the regional development. This goal can be achieved by implementation of mathematical modeling methods into planning methodologies. In the paper, we consider one of the first steps in glacier dynamical modeling - surface mass balance simulation. We focus on the Djankuat Glacier in the Central Caucasus, where regular observations have been conducted during the last fifty years providing an exceptional opportunity to calibrate and to validate a mathematical model.

  10. Mountain Meadows Dacite: Oligocene intrusive complex that welds together the Los Angeles Basin, northwestern Peninsular Ranges, and central Transverse Ranges, California

    USGS Publications Warehouse

    McCulloh, Thane H.; Beyer, Larry A.; Morin, Ronald W.

    2001-01-01

    Dikes and irregular intrusive bodies of distinctive Oligocene biotite dacite and serially related hornblende latite and felsite occur widely in the central and eastern San Gabriel Mountains, southern California, and are related to the Telegraph Peak granodiorite pluton. Identical dacite is locally present beneath Middle Miocene Topanga Group Glendora Volcanics at the northeastern edge of the Los Angeles Basin, where it is termed Mountain Meadows Dacite. This study mapped the western and southwestern limits of the dacite distribution to understand the provenance of derived redeposited clasts, to perceive Neogene offsets on several large strike-slip faults, to test published palinspastic reconstructions, and to better understand the tectonic boundaries that separate contrasting pre-Tertiary rock terranes where the Peninsular Ranges meet the central and western Transverse Ranges and the Los Angeles Basin. Transported and redeposited clasts of dacite-latite occur in deformed lower Miocene and lower middle Miocene sandy conglomerates (nonmarine, nearshore, and infrequent upper bathyal) close to the northern and northeastern margins of the Los Angeles Basin for a distance of nearly 60 km. Tie-lines between distinctive source suites and clast occurrences indicate that large tracts of the ancestral San Gabriel Mountains were elevated along range-bounding faults as early as 16–15 Ma. The tie-lines prohibit very large strike-slip offsets on those faults. Transport of eroded dacite began south of the range as early as 18 Ma. Published and unpublished data about rocks adjacent to the active Santa Monica-Hollywood-Raymond oblique reverse left-lateral fault indicate that cumulative left slip totals 13–14 km and total offset postdates 7 Ma. This cumulative slip, with assembly of stratigraphic and paleogeographic data, invalidates prior estimates of 60 to 90 km of left slip on these faults beginning about 17–16 Ma. A new and different palinspastic reconstruction of a region southwest of the San Andreas Fault Zone is proposed. Our reconstruction incorporates 20° of clockwise rotation of tracts north of the Raymond Fault from the easternmost Santa Monica Mountains to the Vasquez Creek Fault (San Gabriel south branch). We interpret the Vasquez Creek Fault as a reverse and right-lateral tear fault. Right slip on the tear becomes reverse dip slip on the northeast-striking Clamshell-Sawpit fault complex, interpreted as an offset part of the Mount Lukens Fault. This explains the absence of evidence for lateral offset of the Glendora Volcanics and associated younger marine strata where those are broken farther east by the eastern Sierra Madre reverse fault system. About 34 km of right slip is suggested for all breaks of the San Gabriel fault system. New paleogeographic maps of the Paleogene basin margin and of a Middle Miocene marine embayment and strandline derive in part from our palinspastic reconstruction. These appealingly simple maps fit well with data from the central Los Angeles Basin to the south and southwest.

  11. Extraction and visualization of the central chest lymph-node stations

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Merritt, Scott A.; Higgins, William E.

    2008-03-01

    Lung cancer remains the leading cause of cancer death in the United States and is expected to account for nearly 30% of all cancer deaths in 2007. Central to the lung-cancer diagnosis and staging process is the assessment of the central chest lymph nodes. This assessment typically requires two major stages: (1) location of the lymph nodes in a three-dimensional (3D) high-resolution volumetric multi-detector computed-tomography (MDCT) image of the chest; (2) subsequent nodal sampling using transbronchial needle aspiration (TBNA). We describe a computer-based system for automatically locating the central chest lymph-node stations in a 3D MDCT image. Automated analysis methods are first run that extract the airway tree, airway-tree centerlines, aorta, pulmonary artery, lungs, key skeletal structures, and major-airway labels. This information provides geometrical and anatomical cues for localizing the major nodal stations. Our system demarcates these stations, conforming to criteria outlined for the Mountain and Wang standard classification systems. Visualization tools within the system then enable the user to interact with these stations to locate visible lymph nodes. Results derived from a set of human 3D MDCT chest images illustrate the usage and efficacy of the system.

  12. Genetic diversity and seed production in Santa Lucia fir (Abies bracteata),a relict of the Miocene broadleaved evergreen forest

    Treesearch

    F. Thomas Ledig; Paul D. Hodgskiss; David R. Johnson

    2006-01-01

    Santa Lucia fir (Abies bracteata), is a unique fir, the sole member of the subgenus Pseudotorreya. It is a relict of the Miocene broadleaved evergreen sclerophyll forest, and is now restricted to a highly fragmented range in the Santa Lucia Mountains of central coastal California. Expected heterozygosity for 30 isozyme loci in 18 enzyme systems...

  13. Bedload transport rates in a step-pool channel at near-bankfull flows

    Treesearch

    Daniel A. Marion

    2001-01-01

    This paper examines unit bedload transport rates (BTRs) at near-bankfull flows within a small step-pool channel in the Ouachita Mountains of central Arkansas. For this study, five runoff events with peak discharges between 0.25 and 1.34 cms (1.0- to 1.6-yr recurrence intervals) were produced in a natural channel using a streamflow simulation system. BTRs range from...

  14. Silvicultural systems and cutting methods for ponderosa pine forests in the Front Range of the central Rocky Mountains

    Treesearch

    Robert R. Alexander

    1986-01-01

    Guidelines are provided to help forest managers and silviculturists develop even- and/or uneven-aged cutting practices needed to convert old-growth and mixed ponderosa pine forests in the Front Range into managed stands for a variety of resource needs. Guidelines consider stand conditions, and insect and disease susceptibility. Cutting practices are designed to...

  15. Earthquakes: Risk, Monitoring, Notification, and Research

    DTIC Science & Technology

    2007-02-02

    Global Seismic Network (GSN). The GSN is a system of broadband digital seismographs arrayed around the globe and designed to collect high-quality...39 states face some risk from earthquakes. Seismic hazards are greatest in the western United States, particularly California, Alaska, Washington...Oregon, and Hawaii. The Rocky Mountain region, a portion of the central United States known as the New Madrid Seismic Zone, and portions of the eastern

  16. Riparian-fisheries habitat responses to late spring cattle grazing

    Treesearch

    Warren P. Clary; John W. Kinney

    2000-01-01

    A grazing study was conducted on a cold, mountain meadow riparian system in central Idaho in response to cattle grazing-salmonid fisheries conflicts. Six pastures were established along a 3rd order, 2 to 3 m wide stream to study the effects on fisheries habitat of no grazing, light grazing (20 to 25% use), and medium grazing (35 to 50%) during late June. Most...

  17. Thumping the Hive: Russian Neocortical Warfare in Chechnya

    DTIC Science & Technology

    2004-09-01

    against the determined, resourceful Muslim tribes of the mountains and forests of the Central Caucasus, Russia’s military forces compiled a frustrating...warfare against minds and envisioning weapons as any means used to change the enemy’s will.” The merging of these two hemispheric approaches produces... single adviser in the Soviet system 40 Ibid., 5. 41 Szafranski, 409. 19 can allow himself to

  18. Inability of Ceratitis capitata (Diptera: Tephritidae) to overwinter in the Judean hills.

    PubMed

    Israely, Nimrod; Ritte, Uzi; Oman, Samuel D

    2004-02-01

    The overwintering potential of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in cold winter areas within its northern distribution is a key element in understanding its ecology. Recent studies have suggested that although originating in tropical Africa, the fly has become adapted to the cold weather that prevails within its northernmost areas of distribution. We address the question of whether the Mediterranean fruit fly has expanded its overwintering range to include the mountains of central Israel. Doing so would imply that the fly has developed either a behavioral or a physiological mechanism to cope with low temperature and/or damp conditions in combination with cold. We monitored adult populations year round, sampling fruit, calculating expected emergence days for overwintering flies, and studying adults captured within dense and sparse apple orchards. We also performed several manipulative experiments to study preimago ability to survive the winter under natural or seminatural conditions. The study was conducted in the central mountains of Israel at 700-m altitude from 1994 to 2003. Comparison experiments also were conducted at 400 m and at sea level. Our results show 1) no adults captured during the winter and spring, 2) an absence of new infestations during the winter and spring, and 3) inability of preimago stages to overwinter in the central mountains of Israel. Thus, we conclude that the fly does not overwinter in the central mountains of Israel. We discuss the ecological and applied significance of our findings.

  19. Miocene calc-alkaline magmatism, calderas, and crustal extension in the Kofa and Castle Dome Mountains, southwestern Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubensky, M.J.; Bagby, W.C.

    1990-11-10

    Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less

  20. Aeromagnetic measurements in the Cascade Range and Modoc Plateau of northern California; report on work done from December 1, 1980, to May 31, 1981

    USGS Publications Warehouse

    Couch, Richard W.; Gemperle, Michael

    1982-01-01

    Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.

  1. Recent trends (2003-2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-12-01

    Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.

  2. Mineralogy, mineral chemistry, and paragenesis of gold, silver, and base-metal ores of the North Amethyst vein system, San Juan Mountains, Mineral County, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Caddey, Stanton W.; Byington, Craig B.; Vardiman, David M.

    1993-01-01

    Mineralogic, lead-isotopic, and fluid-inclusion characteristics of the younger association are similar to those of ores of the southern and central parts of the Creede mining district. In contrast, the gold and manganese-silicate assemblages of the older association are rare to absent in the southern and central parts of the district. The local and early occurrence of the manganese and gold assemblages may indicate that they formed in a small hydrothermal cell that predated the extensive hydrothermal system from which ores of the central and southern parts of the Creede district are proposed to have been deposited (Bethke, 1988). If similar early-stage cells were present in the southern and central parts of the district, they may have been replaced or overprinted by later assemblages, and they may remain to be discovered. In the latter case, mineral assemblages that formed at early stages in the paragenesis hold the most promise for gold exploration.

  3. Aeromagnetic and gravity data over the Central Transantarctic Mountains (CTAM), Antarctica: a website for the distribution of data and maps

    USGS Publications Warehouse

    Anderson, E.D.; Finn, C.A.; Damaske, D.; Abraham, J.D.; Goldmann, F.; Goodge, J.W.; Braddock, P.

    2006-01-01

    Near complete coverage of the East Antarctic Shield by ice hampers geological study of crustal architecture important for understanding global tectonic and climate history. Limited exposures in the central Transantarctic Mountains (CTAM), however, show that Archean and Proterozoic rocks of the shield as well as Neoproterozoic-lower Paleozoic sedimentary successions were involved in oblique convergence associated with Gondwana amalgamation. Subsequently, the area was overprinted by Jurassic magmatism and Cenozoic uplift. To extend the known geology of the region to ice-covered areas, we conducted an aeromagnetic survey flown in draped mode by helicopters over the Central Transantarctic Mountains and by fixed-wing aircraft over the adjacent polar plateau. We flew more than 32,000 line km covering an area of nearly 60,000 km2 at an average altitude of 600 m, with average line spacing 2.5 km over most areas and 1.25 km over basement rocks exposed in the Miller and Geologists ranges. Additional lines flown to the north, south, and west extended preliminary coverage and tied with existing surveys. Gravity data was collected on the ground along a central transect of the helicopter survey area.

  4. Andean Mountain Building Did not Preclude Dispersal of Lowland Epiphytic Orchids in the Neotropics.

    PubMed

    Pérez-Escobar, Oscar Alejandro; Gottschling, Marc; Chomicki, Guillaume; Condamine, Fabien L; Klitgård, Bente B; Pansarin, Emerson; Gerlach, Günter

    2017-07-07

    The Andean uplift is one of the major orographic events in the New World and has impacted considerably the diversification of numerous Neotropical lineages. Despite its importance for biogeography, the specific role of mountain ranges as a dispersal barrier between South and Central American lowland plant lineages is still poorly understood. The swan orchids (Cycnoches) comprise ca 34 epiphytic species distributed in lowland and pre-montane forests of Central and South America. Here, we study the historical biogeography of Cycnoches to better understand the impact of the Andean uplift on the diversification of Neotropical lowland plant lineages. Using novel molecular sequences (five nuclear and plastid regions) and twelve biogeographic models, we infer that the most recent common ancestor of Cycnoches originated in Amazonia ca 5 Mya. The first colonization of Central America occurred from a direct migration event from Amazonia, and multiple bidirectional trans-Andean migrations between Amazonia and Central America took place subsequently. Notably, these rare biological exchanges occurred well after major mountain building periods. The Andes have limited plant migration, yet it has seldom allowed episodic gene exchange of lowland epiphyte lineages such as orchids with great potential for effortless dispersal because of the very light, anemochorous seeds.

  5. Unraveling the diversification history of grasshoppers belonging to the “Trimerotropis pallidipennis” (Oedipodinae: Acrididae) species group: a hotspot of biodiversity in the Central Andes

    PubMed Central

    Pietrokovsky, Silvia Mónica; Cigliano, Maria Marta; Confalonieri, Viviana Andrea

    2017-01-01

    The Andean Mountain range has been recognized as one of the biodiversity hotspots of the world. The proposed mechanisms for such species diversification, among others, are due to the elevation processes occurring during the Miocene and the intensive glacial action during the Pleistocene. In this study we investigated the diversification history of the grasshopper Trimerotropis pallidipennis species complex which shows a particularly wide latitudinal and altitudinal distribution range across the northern, central and southern Andes in South America. Many genetic lineages of this complex have been so far discovered, making it an excellent model to investigate the role of the central Andes Mountains together with climatic fluctuations as drivers of speciation. Phylogenetics, biogeographic and molecular clock analyses using a multi-locus dataset revealed that in Peru there are at least two, and possibly four genetic lineages. Two different stocks originated from a common ancestor from North/Central America—would have dispersed toward southern latitudes favored by the closure of the Panama Isthmus giving rise to two lineages, the coastal and mountain lineages, which still coexist in Peru (i.e., T. pallidipennis and T. andeana). Subsequent vicariant and dispersal events continued the differentiation process, giving rise to three to six genetic lineages (i.e., clades) detected in this study, which were geographically restricted to locations dispersed over the central Andes Mountains in South America. Our results provide another interesting example of “island diversification” motored by the topography plus unstable climatic conditions during the Pleistocene, pointing out the presence of a hotspot of diversification in the Andean region of Peru. PMID:28975055

  6. Decadal and Seasonal Variations of Alpine Lakes in Glacierized areas of Central Asia during 1990-2015

    NASA Astrophysics Data System (ADS)

    Li, J.; Warner, T.; Chen, X.; Bao, A.

    2016-12-01

    Central Asia is one of the world's most vulnerable areas responding to global change. Glacier lakes in the alpine regions remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study shows that glaciers in Central Asia have retreated dramatically, leading to the expansion of the existing glacial lakes and the emergence of many new glacier lakes. The existence of these lakes increases the possibility of outburst flood during the ice melting season, which can bring a disaster to the downstream area. Mapping glacial lakes and monitoring their changes would improve our understanding of regional climate change and glacier-related hazards. Glacial lakes in Central Asia are mainly located at the Tianshan Mountains, the Altai Mountains, the Kunlun Mountains and the Pamirs with average elevation more than 1500 meters. Most of these lakes are supplied with the glaciers or snowmelt water during the summer seasons. Satellite remote sensing provides an efficient and objective tool to analyze the status and variations of glacial lakes. The increased availability of remote sensing sensors with appropriate spatial and temporal resolutions, broad coverage makes lake investigations more feasible and cost-effective. The paper intends to map glacier lake changes in glacierized alpine mountains with Landsat TM/ETM+ imagery. More than 600 scenes of Landsat images in circa 1990, circa 2000, circa 2010 and circa 2015 are used to map the decadal glacial lake changes over the Central Asia, and about 8 expanding glacial lakes are selected to map seasonal changes. Over 12000 glacial lakes were mapped in circa 1990, and in 2015, lake number are more than 16000, most of these new lakes are emerging in the last 10 years. The result shows that the number and area of the glacial lakes in the Altain Mountain remain stable, while the Tianshan Mountain have experienced expanding changes in the last two decades, and about a half number of lake areas are increased by 10% since the circa 1990. The glacier data, air temperature and precipitation data are also used explorer the relations between glacial lake changes and regional climate change. The result showed that glacier recession brings newly emerging glacial lakes, and precipitation increases are the main factors of lake expanding.

  7. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  8. Timescales of orogeny: Jurassic construction of the Klamath Mountains

    NASA Astrophysics Data System (ADS)

    Hacker, Bradley R.; Donato, Mary M.; Barnes, Calvin G.; McWilliams, M. O.; Ernst, W. G.

    1995-06-01

    An electronic supplement of this material may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GET and the name of the file to get it. Finally, type EXIT to leave the system.) (Paper 94YCJ2454, Timescales of orogeny: Jurassic construction of the Klamath Mountains, B.R. Hacker, M.M. Donato, C.G. Barnes, M.O. McWilliams, and W.G. Ernst). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009; $15.00. Payment must accompany order. Classical interpretations of orogeny were based on relatively imprecise biostratigraphic and isotopic age determinations that necessitated grouping apparently related features that may in reality have been greatly diachronous. Isotopic age techniques now have the precision required to resolve the timing of orogenic events on a scale much smaller than that of entire mountain belts. Forty-five new 40Ar/39Ar ages from the Klamath Mountains illuminate the deformation, metamorphism, magmatism, and sedimentation involved in the Jurassic construction of that orogen, leading to a new level of understanding regarding how preserved orogenic features relate to ancient plate tectonic processes. The new geochronologic relationships show that many Jurassic units of the Klamath Mountains had 200 Ma or older volcanoplutonic basement. Subsequent formation of a large ˜170 Ma arc was followed by contractional collapse of the arc. Collision with a spreading ridge may have led to large-scale NW-SE extension in the central and northern Klamaths from 167 to ˜155 Ma, coincident with the crystallization of voluminous plutonic and volcanic suites. Marked cooling of a large region of the central Klamath Mountains to below ˜350°C at ˜150 Ma may have occurred as the igneous belt was extinguished by subduction of colder material at deeper structural levels. These data demonstrate that the Klamath Mountains—and perhaps other similar orogens—were constructed during areally and temporally variant episodes of contraction, extension, and magmatism that do not fit classical definitions of orogeny.

  9. Water Resources by 2100 in Mountains with Declining Glaciers

    NASA Astrophysics Data System (ADS)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a more integrated and comprehensive approach to water use and management. In particular, beyond the conventional water basin management perspective, there is a need to consider other socio-economic factors and the manner in which water policies interact with, or are affected by, other policies at the local, national, and supra-national levels.

  10. Inherited crustal features and tectonic blocks of the Transantarctic Mountains: An aeromagnetic perspective (Victoria Land, Antarctica)

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Bozzo, E.

    1999-11-01

    Aeromagnetic images covering a sector of the Transantarctic Mountains in Victoria Land as well as the adjacent Ross Sea are used to study possible relationships between tectonic blocks along the Cenozoic and Mesozoic West Antarctic rift shoulder and prerift features inherited mainly from the Paleozoic terranes involved in the Ross Orogen. The segmentation between the Prince Albert Mountains block and the Deep Freeze Range-Terra Nova Bay region is related to an inherited NW to NNW ice-covered boundary, which we name the "central Victoria Land boundary." It is interpreted to be the unexposed, southern continuation of the Ross age back arc Exiles thrust system recognized at the Pacific coast. The regional magnetic high to the west of the central Victoria Land boundary is attributed to Ross age calc-alkaline back arc intrusives forming the in-board Wilson "Terrane," thus shifting the previously interpreted Precambrian "shield" at least 100 km farther to the west. The high-frequency anomalies of the Prince Albert Mountains and beneath the Polar Plateau show that this region was extensively effected by Jurassic tholeiitic magmatism; NE to NNE trending magnetic lineations within this pattern could reflect Cretaceous and/or Cenozoic faulting. The western and eastern edges of the Deep Freeze Range block, which flanks the Mesozoic Rennick Graben, are marked by two NW magnetic lineaments following the Priestley and Campbell Faults. The Campbell Fault is interpreted to be the reactivated Wilson thrust fault zone and is the site of a major isotopic discontinuity in the basement. To the east of the Campbell Fault, much higher amplitude magnetic anomalies reveal mafic-ultramafic intrusives associated with the alkaline Meander Intrusive Group (Eocene-Miocene). These intrusives are likely genetically linked to the highly uplifted Southern Cross Mountains block. The NW-SE trends crossing the previously recognized ENE trending Polar 3 Anomaly offshore of the Southern Cross Mountains are probably linked to Cenozoic reactivation of the Paleozoic Wilson-Bowers suture zone as proposed from recent seismic interpretations. The ENE trend of the anomaly may also be structural, and if so, it could reflect an inherited fault zone of the cratonal margin.

  11. Preliminary report on engineering geology of thirteen tunnel sites, Nevada Test Site

    USGS Publications Warehouse

    Wilmarth, Verl Richard; McKeown, Francis Alexander; Dobrovolny, Ernest

    1958-01-01

    Reconnaissance of 13 areas in and adjacent to Nevada Test Site was completed. Of the 13 areas, Forty Mile Canyon, South-central Shoshone Mountain, and Southeast Shoshone Mountain named in order of preference, offer many advantages for carrying on future underground nuclear explosions.

  12. Two new species of Neoperla (Plecoptera, Perlidae) from Dabie Mountains of China

    PubMed Central

    Li, Wei-Hai; Zhang, Sheng-Quan

    2014-01-01

    Abstract Two new species of the stonefly genus Neoperla, N. nigromarginata sp. n. and N. similiflavescens sp. n., are described from Dabie Mountains of Central China in the Liankangshan National Nature Reserve. The new species are compared with related congeners. PMID:25197218

  13. Mineral Resources of the Black Mountains North and Burns Spring Wilderness Study Areas, Mohave County, Arizona

    USGS Publications Warehouse

    Conrad, James E.; Hill, Randall H.; Jachens, Robert C.; Neubert, John T.

    1990-01-01

    At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-02D-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area. An area surrounding the Portland mine and including the southern part of the Black Mountains North Wilderness Study Area and the extreme northwestern part of the Burns Spring Wilderness Study Area has high resource potential for gold and moderate resource potential for silver, lead, and mercury. The area surrounding this and including much of the northern part of the Burns Spring Wilderness Study Area has moderate potential for gold, silver, and lead. The northeastern corner of the Black Mountains North Wilderness Study Area has moderate potential for gold and low potential for silver, copper, and molybdenum resources. The central part, including the narrow strip of land just west of the central part, of the Black Mountains North Wilderness Study Area and the southern and extreme eastern parts of the Burns Spring Wilderness Study Area have low resource potential for gold. The central and southern parts of the Black Mountains North Wilderness Study Area and all but the southwestern part of the Burns Spring Wilderness Study Area have moderate resource potential for perlite. Moderate resource potential for zeolites is assigned to a large area around the Portland mine that includes parts of both study areas, to a narrow strip of land just west of the central part of the Black Mountains North Wilderness Study Area, and to all but the southwest corner of the Burns Spring Wilderness Study Area. There is no potential for oil and gas in either study area. Sand and gravel are present in both study areas, but abundant quantities of these resources are available closer to existing markets.

  14. Hydrogeochemical investigations in the Osgood mountains, north-central Nevada. Chapter B.

    USGS Publications Warehouse

    Wanty, Richard B.; Berger, Byron R.; Tuttle, Michele L.W.; Briggs, Paul H.; Meier, Allen L.; Crock, James G.; Stillings, Lisa L.

    2006-01-01

    Field investigations performed in the Osgood Mountains during the summers of 1999 and 2000 were designed to test methods of combining geologic, hydrologic, and geochemical investigations. The goals were to develop a more thorough understanding of the movement of water through the study area and to understand the water-rock reactions that may occur along flow paths. The Osgood Mountains were chosen for study because they represent a well-defined geologic system, based on existing and new field data. New work in the area focused on gathering more data about fractures, faults, and joints and on collecting water samples to evaluate the role of geologic structures on hydrologic and geochemical properties of the ground-water/surface-water system. Chemical methods employed in the study included measuring traditional field parameters (e.g., pH, temperature, conductivity, dissolved oxygen) as well as Fe2+ and collecting a variety of samples that were preserved for later laboratory analysis. Hydrologic methods included closely spaced evaluations of substream hydraulic head to define ground-water discharge and recharge zones as well as some measurements of stream discharge. Geologic investigations focused on the locations and orientations of fractures and kinematic indicators of slip observable in outcrops.

  15. Mineral resources of the San Rafael Swell Wilderness Study Areas, including Muddy Creek, Crack Canyon, San Rafael Reef, Mexican Mountain, and Sids Mountain Wilderness Study Areas, Emery County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch-Winkler, S.; Dickerson, R.P.; Barton, H.W.

    1990-09-01

    This paper reports on the San Rafael Swell Wilderness Study areas, which includes the Muddy Creek, Crack Canyon, San Rafael Reef, Mexican Mountain, and Sids Mountain Wilderness Study Areas, in Emery County, south-central Utah. Within and near the Crack Canyon Wilderness Study Area are identified subeconomic uranium and vanadium resources. Within the Carmel Formation are inferred subeconomic resources of gypsum in the Muddy Creek, San Rafael Reef, and Sids Mountain Wilderness Study Areas. Other commodities evaluated include geothermal energy, gypsum, limestone, oil and gas, sand and gravel, sandstone, semiprecious gemstones, sulfur petrified wood, and tar sand.

  16. Preliminary Study of Pesticide Drift into the Maya Mountain Protected Areas of Belize

    PubMed Central

    2010-01-01

    In Belize, Central America, many farms surrounding the Protected Areas of the Maya Mountains rely heavily on the application of agrochemicals. The purpose of this study was to test whether orographic drift of glyphosate and organophosphates into the nearby Maya Mountain Protected Areas occurred by collecting phytotelmic water from seven sites over 3 years. Regardless of location within the Maya Mountain Protected Areas, glyphosate was present; organophosphates were more common at ridge sites. Although glyphosate concentrations were low, due to the number of threatened species and the human use of stream water outside the Maya Mountain Protected Areas, better understanding of these effects is warranted. PMID:21153805

  17. Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model

    NASA Astrophysics Data System (ADS)

    Hu, Shanshan; Ma, Jianyong; Shugart, Herman H.; Yan, Xiaodong

    2018-03-01

    Mountain forests provide the main water resources and lumber for Northwest China. The understanding of the differences in forests growing among individual slope aspects in mountainous regions is of great significance to the wise management and planning of these natural systems. The aim of this study was to investigate the impacts of slope aspect on forest dynamic succession in Northwest China by using the dynamic forest succession model (FAREAST). First, the simulated forest composition and vertical forest zonation produced by the model were compared against recorded data in three sub-regions of the Altai Mountains. The FAREAST model accurately reproduced the vertical zonation, forest composition, growth curves of the dominant species (Larix sibirica), and forest biomass in the Altai Mountains. Transitions along the forest zones of the Altai Mountains averaged about a 400 m difference between the northern and southern sites. Biomass for forests on north-facing slopes were 11.0, 15.3 and 55.9 t C ha-1 higher than for south-facing slopes in the Northeast, Central and Southeast sub-regions, respectively. Second, our analyses showed that the FAREAST model can be used to predict dynamic forest succession in Northwest China under the influence of slope and aspect. In the Altai Mountains, the north-facing slopes supported the best forest growth, followed by the west- and east-facing slopes. South-facing slopes consistently exhibited the lowest growth, biomass storage and forest diversity.

  18. Surficial Geologic Map of the Death Valley Junction 30' x 60' Quadrangle, California and Nevada

    USGS Publications Warehouse

    Slate, Janet L.; Berry, Margaret E.; Menges, Christopher M.

    2009-01-01

    This surficial geologic map of the Death Valley Junction 30' x 60' quadrangle was compiled digitally at 1:100,000 scale. The map area covers the central part of Death Valley and adjacent mountain ranges - the Panamint Range on the west and the Funeral Mountains on the east - as well as areas east of Death Valley including some of the Amargosa Desert, the Spring Mountains and Pahrump Valley. Shaded relief delineates the topography and appears as gray tones in the mountain ranges where the bedrock is undifferentiated and depicted as a single unit.

  19. Synchronous partial melting, deformation, and magmatism: evidence from in an exhumed Proterozoic orogen

    NASA Astrophysics Data System (ADS)

    Levine, J. S. F.; Mosher, S.

    2017-12-01

    Older orogenic belts that now expose the middle and lower crust record interaction between partial melting, magmatism, and deformation. A field- and microstructural-based case study from the Wet Mountains of central Colorado, an exhumed section of Proterozoic rock, shows structures associated with anatexis and magmatism, from the grain- to the kilometer-scale, that indicate the interconnection between deformation, partial melting, and magmatism, and allow reconstructions of the processes occurring in hot active orogens. Metamorphic grade, along with the degree of deformation, partial melting, and magmatism increase from northwest to southeast. Deformation synchronous with this high-grade metamorphic event is localized into areas with greater quantities of former melt, and preferential melting occurs within high-strain locations. In the less deformed northwest, partial melting occurs dominantly via muscovite-dehydration melting, with a low abundance of partial melting, and an absence of granitic magmatism. The central Wet Mountains are characterized by biotite dehydration melting, abundant former melt and foliation-parallel inferred melt channels along grain boundaries, and the presence of a nearby granitic pluton. Rocks in the southern portion of the Wet Mountains are characterized by partial melting via both biotite dehydration and granitic wet melting, with widespread partial melting as evidenced by well-preserved former melt microstructures and evidence for back reaction between melt and the host rocks. The southern Wet Mountains has more intense deformation and widespread plutonism than other locations and two generations of dikes and sills. Recognition of textures and fabrics associated with partial melting in older orogens is paramount for interpreting the complex interplay of processes occurring in the cores of orogenic systems.

  20. Kyanite-bearing migmatites in the central Adirondack Mountains: Implications for late to post-orogenic metamorphism and melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Reeder, J.; Metzger, E. P.; Bickford, M. E.; Leech, M. L.

    2016-12-01

    Sillimanite-rich felsic migmatites exposed at Ledge Mountain in the Central Adirondack Highlands (AH) represent the only location in the AH where kyanite is found. The texturally young kyanite is overprinted on sillimanite in largely undeformed pegmatitic leucosomes, suggesting a late episode of melting taking place deeper than previously thought, and requiring a counter-clockwise P-T path. A final phase of anatexis ca. 1050 Ma in the Eastern AH is consistent with an influx of fluid or decompression from extension in sillimanite-bearing migmatites. Temperatures both from this study and previous work are consistent with granulite-facies metamorphism; however, the presence of kyanite requires higher pressure conditions corresponding to deeper burial of rocks exposed in the central Adirondacks. The Adirondacks are associated with the Grenville Province of eastern North America, that formed during four orogenic events. The most recent (Grenville) orogeny consisted of two stages: crustal thickening and granulite facies metamorphism during the Ottawan phase (ca 1090-1020) then metamorphism and melting in the kyanite field during the much shorter Rigolet pulse (ca 1005-980 Ma). Preliminary U-Pb SHRIMP zircon ages from Ledge Mountain kyanite-bearing migmatites suggest that melting in the Central AH persisted into the Rigolet phase. On the basis of mineral composition and chemistry and the presence of distinctive quartz-sillimanite nodules, the Ledge Mountain migmatites closely resemble the K-rich phase of the Ottawan-age Lyon Mountain granite (LMG) and may represent LMG that was metamorphosed to sillimanite grade and then overprinted by a higher pressure, lower temperature assemblage. Kyanite-bearing felsic anatectites of Rigolet age have previously been observed only in the western portion of the Grenville Province. Documentation of a counterclockwise P-T path and post-Ottawan melting in the Ledge Mountain migmatites requires re-evaluation of current tectonic models for the Grenville Province and its Adirondacks outlier. Further analysis of age, geochemical, and petrographic data will help develop a better-defined P-T-t path and may lead to the development of a new tectonic model to be compared with other collisional orogens such as Himalaya or the Bohemian Massif of the Variscan orogenic belt.

  1. Post-orogenic evolution of mountain ranges and associated foreland basins: Initial investigation of the central Pyrenees

    NASA Astrophysics Data System (ADS)

    Bernard, Thomas; Sinclair, Hugh; Ford, Mary; Naylor, Mark

    2017-04-01

    Mountain topography, including surrounding foreland basins, results from the long-term competition between tectonic and surface processes linked to climate. Numerous studies on young active mountain ranges such as the Southern Alps, New Zealand and Taiwan, have investigated the interaction between tectonics, climate and erosion on the topographic landscape. However most of the mountain ranges in the world are in various stages of post-orogenic decay, such as the European Alps, Urals, Caledonides, Appalachians and Pyrenees. The landscape evolution of these decaying mountains, which involve relatively inactive tectonics, should appear simple with progressive and relatively uniform erosion resulting in a general lowering of both elevation and topographic relief. However, in a number of examples, post-orogenic systems suggest a complex dynamism and interactions with their associated foreland basins in term of spatio-temporal variations in erosion and sedimentary flux. The complexity and transition to post-orogenesis is a function of multiple processes. Underpinning the transition to a post-orogenic state is the competition between erosion and crustal thickening; the balance of these processes determines the timing and magnitude of isostatic rebound and hence subsidence versus uplift of the foreland basin. It is expected that any change in the parameters controlling the balance of erosion versus crustal thickening will impact the topographic evolution and sediment flux from the mountain range and foreland basin to the surrounding continental margin. This study will focus on the causes and origins of the processes that define post-orogenesis. This will involve analyses of low-temperature thermochronological and topographic data, geodynamical modelling and sedimentological analyses (grainsize distribution). The Pyrenees and its associated northern retro-foreland basin, the Aquitaine basin, will form the natural laboratory for the project as it is one of the best documented mountain range/foreland basin systems in the world. Initial results of a review of the low-temperature thermochronological data using inverse modelling, illustrates the asymmetric exhumation of the mountain range, and the diachronous timing of decelerated exhumation linked to the transition to post-orogenesis. This study is part of the Orogen project, an academic-industrial collaboration (CNRS-BRGM-TOTAL).

  2. Rocky Mountain spotted fever, Panama.

    PubMed

    Estripeaut, Dora; Aramburú, María Gabriela; Sáez-Llorens, Xavier; Thompson, Herbert A; Dasch, Gregory A; Paddock, Christopher D; Zaki, Sherif; Eremeeva, Marina E

    2007-11-01

    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America.

  3. Growth response of suppressed true fir and mountain hemlock after release.

    Treesearch

    K.W. Seidel

    1985-01-01

    The diameter and height growth of advance reproduction of suppressed true fir (Abies spp.) and mountain hemlock (Tsuga mertensiana (Bong.) Carr.) was measured in south-central Oregon after release by overstory removal in clearcuttings, shelterwood units, and uncut stands. Postrelease growth was greatest in clearcuttings,...

  4. TEMPORAL PATTERNS OF AIRBORNE PESTICIDES IN THE HABITATE OF THE MOUNTAIN YELLOW-LEGGED FROG IN THE SOUTHERN SIERRA NEVADA

    EPA Science Inventory

    Airborne agricultural pesticides from the Central Valley of California have been implicated as a possible cause for recent, dramatic population declines of several amphibian species in remote mountain locations. To determine the temporal variation of pesticide levels in the habit...

  5. Chapter 4: Managing chaparral in Yavapai County

    Treesearch

    Leonard F. DeBano; Malchus B. Baker; Steven T. Overby

    1999-01-01

    Yavapai County in central Arizona supports extensive stands of chaparral in the Bradshaw Mountains, Mingus Mountain, and the Santa Maria Range. Chaparral occupies about 400,300 acres of the Prescott National Forest (Anderson 1986). These chaparral communities provide a wide range of benefits including watershed protection, grazing for wildlife and domestic animals,...

  6. Ordovician sponges from west-central and east-central Alaska and western Yukon Territory, Canada

    USGS Publications Warehouse

    Rigby, J.K.; Blodgett, R.B.; Britt, B.B.

    2008-01-01

    Moderate collections of fossil sponges have been recovered over a several-year period from a few scattered localities in west-central and east-central Alaska, and from westernmost Yukon Territory of Canada. Two fragments of the demosponge agelasiid cliefdenellid, Cliefdenella alaskaensis Stock, 1981, and mostly small unidentifiable additional fragments were recovered from a limestone debris flow bed in the White Mountain area, McGrath A-4 Quadrangle in west-central Alaska. Fragments of the agelasiid actinomorph girtyocoeliids Girtyocoeliana epiporata (Rigby & Potter, 1986) and Girtyocoelia minima n. sp., plus a specimen of the vaceletid colospongiid Corymbospongia amplia Rigby, Karl, Blodgett & Baichtal, 2005, were collected from probable Ashgillian age beds in the Livengood B-5 Quadrangle in east-central Alaska. A more extensive suite of corymbospongiids, including Corymbospongia betella Rigby, Potter & Blodgett, 1988, C. mica Rigby & Potter, 1986, and C.(?) perforata Rigby & Potter, 1986, along with the vaceletiid colospongiids Pseudo-imperatoria minima? (Rigby & Potter, 1986), and Pseudoimperatoria media (Rigby & Potter, 1986), and with the heteractinid Nucha naucum? Pickett & Jell, 1983, were recovered from uppermost part of the Jones Ridge Limestone (Ashgillian), on the south flank of Jones Ridge, in the Sheep Mountain Quadrangle, in westernmost Yukon Territory, Canada. The fossil sponges from the McGrath A-4 and Livengood B-5 quadrangles were recovered from attached Siberian terranes, and those from the Sheep Mountain Quadrangle were recovered from an allochthonous Laurentian terrane in the Yukon Territory.

  7. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...

  8. The gravitational extension in the Central Range of Taiwan induced by the instability of intrinsic buoyancy

    NASA Astrophysics Data System (ADS)

    Lo, C.; Kuo-Chen, H.; Hsu, S.

    2013-12-01

    The active Taiwan orogen is situated in the tectonic convergence between the Philippine Sea plate and Eurasian passive margin. The thick crust under the Central Range of Taiwan was demonstrated by the results from the TAIGER project during 2004-2009. The results show that the deepest moho (~60 km thickness) is located at the eastern flank of the Central Range, while the averaged crust thickness is over 50 km beneath the whole mountain ranges from south to north. Physically the thickened crust provides an excess of the gravitational potential energy (GPE) with respect to the vicinity, implying that the Central Range itself behaves intrinsic extension stress environment. However, due to limited geophysical information such a phenomenon was not well evaluated and not considered to be one of the important factors for the Taiwan mountain building process. In this study, we calculate the GPE of the whole Taiwan region from recent Vp tomography via seismic velocity-rock density empirical relationship. From the catalogue of the earthquake focal mechanisms of Broadband Array in Taiwan for Seismology (BATS), a quite number of extensional earthquakes are distributed in the 10-40 km deep in and around the Central Range, where the crustal potential energy is distinctively higher. Besides, the principal axes of these extensional earthquakes are mainly normal to the large gradient of crust ΔGPE at the edge of Central Range. Accordingly, we conclude that the Central Range is undergoing the mountain building by the strong plate collision; meanwhile it is also bearing the gravitationally instable extension due to inherent buoyant thickening crust.

  9. [The prospects for the development of therapeutic and health-promoting tourism in Gorny Altai].

    PubMed

    Dzhabarova, N K; Iakovenko, É S; Sidorina, N G; Firsova, I A

    2014-01-01

    The present balneological survey made it possible to identify the promising areas with a high potential for the health resort, recreational and touristic activities including the foothill, low-mountain, mid-mountain valleys and hollows of Northern, Northwestern, Central and Eastern bioclimatic provinces of Mountainous Altai. Recommendations have been proposed for the development of therapeutic and health-improving tourism in the Shebalinsk, Ust'-Kansk and Ulagansk districts of the Altai Republic.

  10. Mediterranean California, Chapter 13

    Treesearch

    M.E. Fenn; E.B. Allen; L.H. Geiser

    2011-01-01

    The Mediterranean California ecoregion (CEC 1997; Fig 2.2) encompasses the greater Central Valley, Sierra foothills, and central coast ranges of California south to Mexico and is bounded by the Pacific Ocean, Sierra Nevada Mountains and Mojave Desert.

  11. Space Radar Image of Tuva, Central Asia

    NASA Image and Video Library

    1999-04-15

    This spaceborne radar image shows part of the remote central Asian region of Tuva, an autonomous republic of the Russian Federation. Tuva is a mostly mountainous region that lies between western Mongolia and southern Siberia.

  12. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    USGS Publications Warehouse

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  13. Middle to late Cenozoic basin evolution in the western Alborz Mountains: Implications for the onset of collisional deformation in northern Iran

    NASA Astrophysics Data System (ADS)

    Guest, Bernard; Horton, Brian K.; Axen, Gary J.; Hassanzadeh, Jamshid; McIntosh, William C.

    2007-12-01

    Oligocene-Miocene strata preserved in synclinal outcrop belts of the western Alborz Mountains record the onset of Arabia-Eurasia collision-related deformation in northern Iran. Two stratigraphic intervals, informally named the Gand Ab and Narijan units, represent a former basin system that existed in the Alborz. The Gand Ab unit is composed of marine lagoonal mudstones, fluvial and alluvial-fan clastic rocks, fossiliferous Rupelian to Burdigalian marine carbonates, and basalt flows yielding 40Ar/39Ar ages of 32.7 ± 0.3 and 32.9 ± 0.2 Ma. The Gand Ab unit is correlated with the Oligocene-lower Miocene Qom Formation of central Iran and is considered a product of thermal subsidence following Eocene extension. The Narijan unit unconformably overlies the Gand Ab unit and is composed of fluvial-lacustrine and alluvial fan sediments exhibiting contractional growth strata. We correlate the Narijan unit with the middle to upper Miocene Upper Red Formation of central Iran on the basis of lithofacies similarities, stratigraphic position, and an 8.74 ± 0.15 Ma microdiorite dike (40Ar/39Ar) that intruded the basal strata. Deformation timing is constrained by crosscutting relationships and independent thermochronological data. The Parachan thrust system along the eastern edge of the ancestral Taleghan-Alamut basin is cut by dikes dated at 8.74 ± 0.15 Ma to 6.68 ± 0.07 Ma (40Ar/39Ar). Subhorizontal gravels that unconformably overlie tightly folded and faulted Narijan strata are capped by 2.86 ± 0.83 Ma (40Ar/39Ar) andesitic lava flows. These relationships suggest that Alborz deformation had migrated southward into the Taleghan-Alamut basin by late Miocene time and shifted to its present location along the active range front by late Pliocene time. Data presented here demonstrate that shortening in the western Alborz Mountains had started by late middle Miocene time. This estimate is consistent with recent thermochronological results that place the onset of rapid exhumation in the western Alborz at ˜12 Ma. Moreover, nearly synchronous Miocene contraction in the Alborz, Zagros Mountains, Turkish-Iranian plateau, and Anatolia suggests that the Arabia-Eurasia collision affected a large region simultaneously, without a systematic outward progression of mountain building away from the collision zone.

  14. A Massive Central Peak and a Low Peak Ring in Gale Crater - Important Influences on the Formation of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2015-01-01

    The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's high central mound. This study addresses the central peak and proposed peak ring, and their influence on the overall morphology of the mountain.

  15. Mineralogy, paragenesis, and mineral zoning of the Bulldog Mountain vein system, Creede District, Colorado

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Heald Whitehouse-Veaux, Pamela

    1994-01-01

    The Bulldog Mountain vein system, Creede district, Colorado, is one of four major epithermal vein systems from which the bulk of the district's historical Ag-Pb-Zn-Cu production has come. Ores deposited along the vein system were discovered in 1965 and were mined from 1969 to 1985.Six temporally gradational mineralization stages have been identified along the Bulldog Mountain vein system, each with a characteristic suite of minerals deposited or leached and a characteristic distribution within the vein system; some of these stages are also strongly zoned within the vein system. Stage A was dominated by deposition of rhodochrosite along the lower levels of the Bulldog Mountain ore zone. Stage B in the northern parts of the ore zone is characterized by abundant fine-grained sphalerite and galena, with lesser tetrahedrite and minor chlorite and hematite. With increasing elevation to the south, stage B ores become progressively more barite and silver rich, with alternating barite and fine-grained sphalerite + galena generations; native silver + or - acanthite assemblages are also locally abundant within southern stage B barite sulfide ores, whereas chalcopyrite and other Cu and Ag sulfides and sulfosalts are present erratically in minor amounts. Stage C in the upper and northern portions of the ore zone is characterized by abundant quartz and fluorite, minor adularia, hematite, Mn siderite, sphalerite, and galena, and major leaching of earlier barite; to the south, some barite and sulfides may have been deposited. Stage D sphalerite and galena were deposited in the upper and northern portions of the ore zone; a barite- and silver-rich facies of this stage may also be present in the southern portions of the vein system. Late in stage D, mineralogically complex assemblages containing chalcopyrite, tetrahedrite, polybasite, bornite, pyrargyrite, and a variety of other sulfides and sulfosalts were deposited in modest amounts throughout the vein system. This complex assemblage marked the transition to stage E. During stage E, the final sulfide stage, abundant botryoidal pyrite and marcasite with lesser stibnite, sphalerite, and sulfosalts were deposited primarily along the top of the Bulldog Mountain ore zone. Stage F, the final mineralization stage along the vein system, is marked by wire silver and concurrent leaching of earlier sulfides and sulfosalts; this stage may reflect the transition to a supergene environment.The sequence of mineralization stages identified in this study along the Bulldog Mountain system can be correlated with corresponding stages identified by other researchers along the OH and P veins, and the southern Amethyst vein system. Mineral zoning patterns identified along the Bulldog Mountain vein system also parallel larger scale zoning patterns across the central and southern Creede district.The complex variations in mineral assemblages documented in time and space along the Bulldog Mountain vein system were produced by the combined effects of many processes. Large-scale changes in vein mineralogy over time produced discrete mineralization stages. Short-term mineralogical fluctuations produced complex interbanding of mineralogically distinct generations. Fluid chemistry evolution within the vein system produced large-scale lateral zoning patterns within certain stages. Hypogene leaching substantially modified the distributions of some minerals. Finally, structural activity, mineral deposition, and mineral leaching modified fluid flow pathways repeatedly during mineralization, and so added to the complex mineral distribution patterns within the vein system.

  16. Appendix 3: Western mountain initiative synthesis. Response of western mountain ecosystems to climatic variability and change: a synthesis from the western mountain initiative

    Treesearch

    Crystal L. Raymond

    2012-01-01

    Alaskan forests cover one-third of the state’s 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the world’s boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...

  17. Snow in southwestern Europe

    NASA Image and Video Library

    2015-02-18

    In February 2015, New England was not alone in dealing with the wrath of Old Man Winter. Thick snow blanketed mountain ranges in southwestern Europe after a winter storm pushed through the region in early February. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the snow-covered peaks of the Cantabrian Mountains, the Pyrenees, the Alps, and Massif Central on February 9, 2015. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Analysis of ERTS imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.

    1972-01-01

    The author has identified the following significant results. The Wyoming ERTS investigation has been hindered only slightly by incomplete ERTS data sets and lack of coverage. Efforts to map cultural development, vegetation distributions, and various geomorphologic features are underway. Tectonic analysis of the Rock Springs area has isolated two linear features that may be very significant with regard to the regional structure of central Wyoming. Studies of the fracture systems of the Wind River Mountains are being completed. The fracture map, constructed from ERTS-1 interpretations, contains a great deal of structural information which was previously unavailable. Mapping of the Precambrian metasedimentary and metavolcanic terrain of the Granite Mountains is nearing completion, and interpretation of ERTS supporting aircraft data has revealed deposits of iron formation.

  19. Simulation and spatiotemporal pattern of air temperature and precipitation in Eastern Central Asia using RegCM.

    PubMed

    Meng, Xianyong; Long, Aihua; Wu, Yiping; Yin, Gang; Wang, Hao; Ji, Xiaonan

    2018-02-26

    Central Asia is a region that has a large land mass, yet meteorological stations in this area are relatively scarce. To address this data issues, in this study, we selected two reanalysis datasets (the ERA40 and NCEP/NCAR) and downscaled them to 40 × 40 km using RegCM. Then three gridded datasets (the CRU, APHRO, and WM) that were extrapolated from the observations of Central Asian meteorological stations to evaluate the performance of RegCM and analyze the spatiotemporal distribution of precipitation and air temperature. We found that since the 1960s, the air temperature in Xinjiang shows an increasing trend and the distribution of precipitation in the Tianshan area is quite complex. The precipitation is increasing in the south of the Tianshan Mountains (Southern Xinjiang, SX) and decreasing in the mountainous areas. The CRU and WM data indicate that precipitation in the north of the Tianshan Mountains (Northern Xinjiang, NX) is increasing, while the APHRO data show an opposite trend. The downscaled results from RegCM are generally consistent with the extrapolated gridded datasets in terms of the spatiotemporal patterns. We believe that our results can provide useful information in developing a regional climate model in Central Asia where meteorological stations are scarce.

  20. Production of deerbrush and mountain whitethorn related to shrub volume and overstory crown closure

    Treesearch

    John G. Kie

    1985-01-01

    Annual production by deerbrush (Ceanothus integerrimus) and mountain whitethorn shrubs (C. cordulatus) in the south-central Sierra Nevada of California was related to shrub volume, volume squared, and overstory crown closure by regression models. production increased as shrub volume and volume squared increased, and decreased as...

  1. Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation

    Treesearch

    Gene D. Amman; Kevin C. Ryan

    1994-01-01

    The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the...

  2. Look to the hardwoods!

    Treesearch

    W. E. McQuilken

    1957-01-01

    The northeast is hardwood country. To be sure, central and northern Maine and the higher elevations of the Green Mountains, White Mountains, and Adirondacks have their spruce-fir; cool, moist sites throughout the region typically support some hemlock; and white pine - the original foundation of the lumber industry in North America - is widely represented by scattered...

  3. Rocky Mountain Spotted Fever, Panama

    PubMed Central

    Estripeaut, Dora; Aramburú, María Gabriela; Sáez-Llorens, Xavier; Thompson, Herbert A.; Dasch, Gregory A.; Paddock, Christopher D.; Zaki, Sherif

    2007-01-01

    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America. PMID:18217566

  4. Spatial Patterns of Airborne Pesticides in the Alpine Habitat of a Declining Calfornia Amphibian, The Mountain Yellow-Legged Frog

    EPA Science Inventory

    The mountain yellow-legged frog complex (Rana muscosa complex) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distributions and conce...

  5. Spatial Patterns of Airborne Pesticides in the Alpine Habitat of a Declining California Amphibian, The Mountain Yellow-Legged Frog

    EPA Science Inventory

    The mountain yellow-legged frog complex (Rana muscosa complex) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distributions and conce...

  6. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Treesearch

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  7. Characteristics of endemic-level mountain pine beetle populations in south-central Wyoming

    Treesearch

    Dale L. Bartos; Richard F. Schmitz

    1998-01-01

    This study was conducted to evaluate the dynamics of endemic populations of mountain pine beetle (Dendroctonus ponderosae Hopkins). In addition, we extended the geographical range of an existing data base recorded in Utah with similar data from Wyoming. This work was accomplished in lodgepole pine (Pinus contorta Dougl. Var.

  8. Factors influencing avian communities in high-elevation southern Allegheny mountain forests

    Treesearch

    Harry A. Kahler; James T. Anderson

    2010-01-01

    Myriad factors may influence bird community characteristics among subalpine, central, and northern hardwood forest cover types of the southern Allegheny Mountains. Differences in forest cover types may result from natural characteristics, such as tree species composition, topography, or elevation, as well as from past influences, such as poor logging practices. Our...

  9. Characteristics, histories, and future succession of northern Pinus pugens stands

    Treesearch

    Patrick Brose

    2017-01-01

    Pinus pungens (Table Mountain pine) stands are rare conifer-dominated communities that occur on xeric ridges and upper slopes throughout the central and southern Appalachian Mountains. At the northern end of this range, this uncommon forest community is essentially unstudied. Therefore, in 2006 I initiated a dendroecology study of three ...

  10. Does WEPP meet the specificity of soil erosion in steep mountain regions?

    USDA-ARS?s Scientific Manuscript database

    We chose the USDA-ARS-WEPP model (Water Erosion Prediction Project) to describe the soil erosion in the Urseren valley (Central Switzerland) as it seems to be one of the most promising models for steep mountain environments. Crucial model parameters were determined in the field (slope, plant species...

  11. 4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN 'B'; PIPE, WOOD, STOVE MATERIALS, AND COLLAPSED ROOT CELLAR IN CENTRAL AREA. VERTICAL, DARK PIPE IS VISIBLE IN CENTER/UPPER THIRD. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID

  12. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  13. Recognition of late Precambrian glaciogenic sediments in Liberia

    NASA Astrophysics Data System (ADS)

    Magee, A. W.; Culver, S. J.

    1986-11-01

    Late Precambrian glaciation in West Africa is now suggested to have extended as far south as Gibi Mountain in west-central Liberia, 200 km farther south than previously recognized glacial deposits in central Sierra Leone. The Gibi Mountain Formation includes a basal diamictite, interpreted as a probable tillite, and overlying shallow-marine laminites containing isolated, ice-rafted dropstones and dropgrains. These rocks rest on Late Archean age gneisses and are overlain by Late Archean? age quartzite klippen emplaced during the pan-African orogeny (ca. 550 Ma). *Present address: School of Geography, University of Oxford, Mansfield Road, Oxford OKI 3TB, England

  14. Stratigraphic framework of upper Paleozoic rocks, southeastern Sangre de Cristo Mountains, New Mexico

    USGS Publications Warehouse

    Baltz, E.H.; Myers, D.A.

    1999-01-01

    The Sangre de Cristo Mountains of south-central Colorado and north-central New Mexico are the physiographic expression of a southerly trending Cenozoic structural uplift that plunges gently south to die out in the Great Plains south of Santa Fe and Las Vegas, New Mexico. The uplift is bounded on the west by Neogene downfaulted and downwarped basins of the Rio Grande depression and, on the east, by broad Laramide basins that have sharply folded western limbs. The uplift was modified in Neogene time by local igneous-intrusive doming and normal faulting related to the Rio Grande rift.

  15. The Imperial Valley of California is critical to wintering Mountain Plovers

    USGS Publications Warehouse

    Wunder, Michael B.; Knopf, F.L.

    2003-01-01

    We surveyed Mountain Plovers (Charadrius montanus) wintering in the Imperial Valley of California in January 2001, and also recorded the types of crop fields used by plovers in this agricultural landscape. We tallied 4037 plovers in 36 flocks ranging in size from 4 to 596 birds. Plovers were more common on alfalfa and Bermudagrass fields than other field types. Further, most birds were on alfalfa fields that were currently being (or had recently been) grazed, primarily by domestic sheep. Plovers used Bermudagrass fields only after harvest and subsequent burning. Examination of Christmas Bird Count data from 1950–2000 indicated that the Mountain Plover has abandoned its historical wintering areas on the coastal plains of California. Numbers in the Central Valley seem to have undergone recent declines also. We believe that the cultivated landscape of the Imperial Valley provides wintering habitats for about half of the global population of Mountain Plovers. We attribute the current importance of the Imperial Valley for Mountain Plovers to loss of native coastal and Central Valley habitats rather than to a behavioral switching of wintering areas through time. Future changes in specific cropping or management practices in the Imperial Valley will have a major impact on the conservation status of this species.

  16. Epidemiology of vampire bat-transmitted rabies virus in Goiás, central Brazil: re-evaluation based on G-L intergenic region

    PubMed Central

    2010-01-01

    Background Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region. Findings The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges. Conclusions This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations. PMID:21059233

  17. Groundwater resources of the East Mountain area, Bernalillo, Sandoval, Santa Fe, and Torrance Counties, New Mexico, 2005

    USGS Publications Warehouse

    Bartolino, James R.; Anderholm, Scott K.; Myers, Nathan C.

    2010-01-01

    The groundwater resources of about 400 square miles of the East Mountain area of Bernalillo, Sandoval, Santa Fe, and Torrance Counties in central New Mexico were evaluated by using groundwater levels and water-quality analyses, and updated geologic mapping. Substantial development in the study area (population increased by 11,000, or 50 percent, from 1990 through 2000) has raised concerns about the effects of growth on water resources. The last comprehensive examination of the water resources of the study area was done in 1980-this study examines a slightly different area and incorporates data collected in the intervening 25 years. The East Mountain area is geologically and hydrologically complex-in addition to the geologic units, such features as the Sandia Mountains, Tijeras and Gutierrez Faults, Tijeras syncline and anticline, and the Estancia Basin affect the movement, availability, and water quality of the groundwater system. The stratigraphic units were separated into eight hydrostratigraphic units, each having distinct hydraulic and chemical properties. Overall, the major hydrostratigraphic units are the Madera-Sandia and Abo-Yeso; however, other units are the primary source of supply in some areas. Despite the eight previously defined hydrostratigraphic units, water-level contours were drawn on the generalized regional potentiometric map assuming all hydrostratigraphic units are connected and function as a single aquifer system. Groundwater originates as infiltration of precipitation in upland areas (Sandia, Manzano, and Manzanita Mountains, and the Ortiz Porphyry Belt) and moves downgradient into the Tijeras Graben, Tijeras Canyon, San Pedro synclinorium, and the Hagan, Estancia, and Espanola Basins. The study area was divided into eight groundwater areas defined on the basis of geologic, hydrologic, and geochemical information-Tijeras Canyon, Cedar Crest, Tijeras Graben, Estancia Basin, San Pedro Creek, Ortiz Porphyry Belt, Hagan Basin, and Upper Sandia Mountains. View report for unabridged abstract.

  18. Composite Sunrise Butte pluton: Insights into Jurassic–Cretaceous collisional tectonics and magmatism in the Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.

    2015-01-01

    The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that shortening and deformation were diachronous, progressing from north to south. We envision that Late Jurassic deformation may have collapsed a Gulf of California–style oceanic extensional basin that extended from the Klamath Mountains (e.g., Josephine ophiolite) to the central Blue Mountains Province, and possibly as far north as the North Cascades (i.e., the coeval Ingalls ophiolite).

  19. Hissar-Alai and the Pamirs: Junction and Position in the System of Mobile Belts of Central Asia

    NASA Astrophysics Data System (ADS)

    Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.

    2018-01-01

    The position of the Pamirs and the Hissar-Alai mountainous system in the structure of Central Asia and features of their junction are considered. It is shown that their outer contours and tectonic infrastructure are significantly distinct in the planar pattern: latitudinally linear and arched for the Hissar-Alai and the Pamirs, respectively. These structures logically match those of the Central Asian and Alpine-Himalayan belts, respectively. The Pamir orogen is a relatively autonomous structural element of the crust, which is located discordantly relative to the country lithospheric blocks. Most of the Pamirs (at least, the Northern and Central) probably form a giant allochthon on the ancient basement of the Tarim and Afghan-Tajik blocks. The junction zone of these two "hard" crustal segments is reflected in the transverse Transpamir threshold, which is expressed in the relief, deep structure, and seismicity. The specific geological structure of the junction zone of the Pamirs and Hissar-Alai (systems of the Tarim, Alai, and Afghan-Tajik troughs) is shown. It suggested that this zone is a damper, which significantly neutralizes the dynamic influence of the Pamir and the southernmost elements of the Pamir-Punjab syntax on Hissar-Alai structures.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yan; Fan, Jiwen; Leung, L. Ruby

    Significant reduction in precipitation in the past decades has been documented over many mountain ranges such as those in central and eastern China. Consistent with the increase of air pollution in these regions, it has been argued that the precipitation trend is linked to aerosol microphysical effect on suppressing warm rain. Rigorous quantitative investigations on the reasons responsible for the precipitation reduction are lacking. Here in this study, we employed an improved Weather Research and Forecasting (WRF) model with online coupled chemistry (WRF-Chem) and conducted simulations at the convection-permitting scale to explore the major mechanisms governing changes in precipitation frommore » orographic clouds in the Mountain (Mt.) Hua area in Central China. We find that anthropogenic pollution contributes to a ~ 40% reduction of precipitation over Mt. Hua during the one-month summer time period. The reduction is mainly associated with precipitation events associated with valleymountain circulation and a mesoscale cold front event. In this Part I paper, we scrutinize the mechanism leading to significant reduction for the cases associated with valley-mountain circulation. We find that the valley breeze is weakened by aerosols due to absorbing aerosol induced warming aloft and cooling near the surface as a result of aerosol-radiation interaction (ARI). The weakened valley breeze along with reduced water vapor in the valley due to reduced evapotranspiration as a result of surface cooling significantly reduce the transport of water vapor from the valley to mountain and the relative humidity over the mountain, thus suppressing convection and precipitation in the mountain.« less

  1. Genetic variation in Great Plains Juniperus

    Treesearch

    David F. Van Haverbeke; Rudy M. King

    1990-01-01

    Fifth-year analyses of Great Plains Juniperus seed sources indicate eastern redcedar should be collected in east-central Nebraska for use throughout the Great Plains; Rocky Mountain juniper seed should be collected from northwest Nebraska, or central Montana, for planting southward through the Great Plains into west-central Kansas west of the 100th meridian.

  2. Palinspastic reconstruction of southeastern California and southwestern Arizona for the middle Miocene

    NASA Technical Reports Server (NTRS)

    Richard, Stephen M.

    1992-01-01

    A paleogeographic reconstruction of southeastern California and southwestern Arizona at 10 Ma was made based on available geologic and geophysical data. Clockwise rotation of 39 deg was reconstructed in the eastern Transverse Ranges, consistent with paleomagnetic data from late Miocene volcanic rocks, and with slip estimates for left-lateral faults within the eastern Transverse Ranges and NW-trending right lateral faults in the Mojave Desert. This domain of rotated rocks is bounded by the Pinto Mountain fault on the north. In the absence of evidence for rotation of the San Bernardino Mountains or for significant right slip faults within the San Bernardino Mountains, the model requires that the late Miocene Pinto Mountain fault become a thrust fault gaining displacement to the west. The Squaw Peak thrust system of Meisling and Weldon may be a western continuation of this fault system. The Sheep Hole fault bounds the rotating domain on the east. East of this fault an array of NW-trending right slip faults and south-trending extensional transfer zones has produced a basin and range physiography while accumulating up to 14 km of right slip. This maximum is significantly less than the 37.5 km of right slip required in this region by a recent reconstruction of the central Mojave Desert. Geologic relations along the southern boundary of the rotating domain are poorly known, but this boundary is interpreted to involve a series of curved strike slip faults and non-coaxial extension, bounded on the southeast by the Mammoth Wash and related faults in the eastern Chocolate Mountains. Available constraints on timing suggest that Quaternary movement on the Pinto Mountain and nearby faults is unrelated to the rotation of the eastern Transverse Ranges, and was preceded by a hiatus during part of Pliocene time which followed the deformation producing the rotation. The reconstructed Clemens Well fault in the Orocopia Mountains, proposed as a major early Miocene strand of the San Andreas fault, projects eastward towards Arizona, where early Miocene rocks and structures are continuous across its trace. The model predicts a 14 deg clockwise rotation and 55 km extension along the present trace of the San Andreas fault during late Miocene and early Pliocene time. Palinspastic reconstructions of the San Andreas system based on this proposed reconstruction may be significantly modified from current models.

  3. Geology and mineral deposits of Churchill County, Nevada

    USGS Publications Warehouse

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  4. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Langenheim, V.E.

    1995-12-31

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flankmore » of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting.« less

  5. Permian deposition in the north central Brooks Range, Alaska Constraints for tectonic reconstructions

    USGS Publications Warehouse

    Adams, K.E.; Mull, C.G.; Crowder, R.K.

    1997-01-01

    Two opposing tectonic models have been offered to explain the regional structural relations in the north central Brooks Range fold-thrust belt of northern Alaska. The first suggests that rocks of the northern Endicott Mountains were thrust from south to north over the area of the present Mount Doonerak high and are therefore highly allochthonous. The second implies that the rocks of the northern Endicott Mountains were deposited in a basin that lay north of the Mount Doonerak high and later were thrust a short distance southward onto the northern flank of the high and are thus parautochthonous. To provide stratigraphic constraints for these models, this study examines Permian facies of the north central Brooks Range. Permian rocks in the north central Brooks Range comprise a thin (40 to 160 m thick), fining-upward succession of clastic, storm-influenced shelf deposits. When the rocks of the northern Endicott Mountains are restored south of the Mount Doonerak area, a minimum distance of 80 km, the Permian deposits grade systematically from distal facies (Siksikpuk Formation) in the southwest to proximal facies (Echooka Formation) in the northeast. Facies trends in the reconstructed Permian basin include, from southwest to northeast, (1) an increase in carbonate content and corresponding decrease in silica content, (2) a general darkening and thickening of shaley intervals, (3) an increase in proximal features of storm beds, including coarser, thicker, more abundant, and more closely spaced beds, and (4) an increase in abundance and diversity of the faunal assemblage with a corresponding decrease in age. These stratigraphic relations imply that rocks of the northern Endicott Mountains are allochthonous and structurally overlie a proximal stratigraphic succession similar to that exposed in the Mount Doonerak area and northeastern Brooks Range. Copyright 1997 by the American Geophysical Union.

  6. 9. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 321 - BOILER HOUSE LOOKING N.WEST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  7. Breeding Bird Communities On Four Watersheds Under Different Forest Management Scenarios in the Ouachita Mountains Of Arkansas

    Treesearch

    Philip A. Tappe; Ronald E. Thill; M. Anthony Melchiors; T. Bently Wigley

    2004-01-01

    Abstract - Concern for many migratory landbird species has led to an increased emphasis on managing ecosystems at scales beyond the stand level. We characterized breeding bird numbers, species richness, diversity, and evenness on four watersheds in the Ouachita Mountains of west-central Arkansas. These four watersheds represented different ownerships...

  8. Alaska research natural areas: 1. Mount Prindle.

    Treesearch

    G.P. Juday

    1988-01-01

    The 2412-hectare Mount Prindle Research Natural Area is located in central Alaska on the border of the Steese National Conservation Area and White Mountains National Recreation Area. It is managed by the U.S. Department of the Interior, Bureau of Land Management, Steese-White Mountains District. Mount Prindle was selected as a Research Natural Area (RNA) because it...

  9. Visions and Vanities: John Andrew Rice of Black Mountain College. Southern Biography Series.

    ERIC Educational Resources Information Center

    Reynolds, Katherine Chaddock

    This biography presents the life of John Andrew Rice, who founded Black Mountain College (North Carolina) in 1933 to implement his philosophy of education, including the centrality of artistic experience and emotional development to learning in all disciplines and the need for democratic governance shared between faculty and students. Born in…

  10. Impact of climate change on projected runoff from mountain snowpack of the King’s Rivershed in California

    USDA-ARS?s Scientific Manuscript database

    The Central Valley of California, like most dryland agricultural areas in the Southwest United States, relies heavily on winter snowpack for water resources. Projections of future climate in the Sierra Mountains of California calls for a warmer climate regime that will impact the snowpack in the Sie...

  11. Fire effects assessment using FIA data in the northern and central Rocky Mountains

    Treesearch

    Theresa B. Jain; Ralph Their; Wilson Michael

    2003-01-01

    Wildfires of 2000 and 2001 burned thousands of hectares in the Northern Rocky Mountains. Within the fire parameters, 162 Forest Inventory and Analysis (FIA) plots burned in Idaho and Montana where pre-wildfire information on forest structure, vegetation composition, soil productivity, and surface fuels was documented; thus providing a unique opportunity to assess...

  12. Decay of aspen in Colorado

    Treesearch

    Ross W. Davidson; Thomas E. Hinds; Frank G. Hawksworth

    1959-01-01

    Quaking aspen (Populus tremuloides Michx.) stands are extensive in the central Rocky Mountains. The species reaches its maximum development in the mountains and high mesas west of the Continental Divide in Colorado (Baker, 1925). On the better sites aspen yields a greater volume of wood in a shorter period than most of the conifers growing at comparable elevations. The...

  13. Shortleaf pine-bluestem restoration for red-cockaded woodpeckers in the Ouachita Mountains: Implications for other taxa

    Treesearch

    Ronald E. Thill; D. Craig Rudolph; Nancy E. Koerth

    2004-01-01

    The more xeric south- and west-facing slopes of the Ouachita Mountains of west-central Arkansas once supported fire-maintained shortleaf pine (Pinus echinata) forests with a well-developed herbaceous understory. Fire suppression following the original harvest of these forests resulted in forests with increasingly abundant woody vegetation in the...

  14. Alaska research natural areas: 3. Serpentine slide.

    Treesearch

    G.P. Juday

    1992-01-01

    The 1730-ha Serpentine Slide Research Natural Area (RNA) is located in central Alaska in the White Mountains National Recreation Area. It is managed by the U.S. Department of the Interior, Bureau of Land Management, Steese-White Mountains District. Serpentine Slide was selected as a Research Natural Area (RNA) because it contains an alpine exposure of serpentinite; a 9...

  15. TEMPORAL AND SPATIAL PATTERNS OF AIRBORNE PESTICIDES IN THE ALPINE ENVIRONMENT OF A DECLINING CALIFORNIA AMPHIBIAN, THE MOUNTAIN YELLOW-LEGGED FROG

    EPA Science Inventory

    The mountain yellow-legged frog (Rana muscosa) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distribution and temporal variation of...

  16. Short-term responses of the kidney to high altitude in mountain climbers

    PubMed Central

    Goldfarb-Rumyantzev, Alexander S.; Alper, Seth L.

    2014-01-01

    In high-altitude climbers, the kidneys play a crucial role in acclimatization and in mountain sickness syndromes [acute mountain sickness (AMS), high-altitude cerebral edema, high-altitude pulmonary edema] through their roles in regulating body fluids, electrolyte and acid–base homeostasis. Here, we discuss renal responses to several high-altitude-related stresses, including changes in systemic volume status, renal plasma flow and clearance, and altered acid–base and electrolyte status. Volume regulation is considered central both to high-altitude adaptation and to maladaptive development of mountain sickness. The rapid and powerful diuretic response to the hypobaric hypoxic stimulus of altitude integrates decreased circulating concentrations of antidiuretic hormone, renin and aldosterone, increased levels of natriuretic hormones, plasma and urinary epinephrine, norepinephrine, endothelin and urinary adrenomedullin, with increased insensible fluid losses and reduced fluid intake. The ventilatory and hormonal responses to hypoxia may predict susceptibility to AMS, also likely influenced by multiple genetic factors. The timing of altitude increases and adaptation also modifies the body's physiologic responses to altitude. While hypovolemia develops as part of the diuretic response to altitude, coincident vascular leak and extravascular fluid accumulation lead to syndromes of high-altitude sickness. Pharmacological interventions, such as diuretics, calcium blockers, steroids, phosphodiesterase inhibitors and β-agonists, may potentially be helpful in preventing or attenuating these syndromes. PMID:23525530

  17. In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk.

    PubMed

    Selariu, Anca; Powers, Jenny G; Nalls, Amy; Brandhuber, Monica; Mayfield, Amber; Fullaway, Stephenie; Wyckoff, Christy A; Goldmann, Wilfred; Zabel, Mark M; Wild, Margaret A; Hoover, Edward A; Mathiason, Candace K

    2015-11-01

    The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam-calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations.

  18. In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk

    PubMed Central

    Selariu, Anca; Powers, Jenny G.; Nalls, Amy; Brandhuber, Monica; Mayfield, Amber; Fullaway, Stephenie; Wyckoff, Christy A.; Goldmann, Wilfred; Zabel, Mark M.; Wild, Margaret A.; Hoover, Edward A.

    2015-01-01

    The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam–calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations. PMID:26358706

  19. Crustal and lithospheric imaging of the Atlas Mountains of Morocco inferred from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Hogg, C.; Ledo, J.; Sinischalchi, A.; Campanya, J.; Picasso Phase II Team

    2010-12-01

    The Atlas System of Morocco is an intra-continental mountain belt extending for more than 2,000 km along the NW African plate with a predominant NE-SW trend. The System comprises three main branches: the High Atlas, the Middle Atlas, and the Anti Atlas. We present the results of a very recent multi-institutional magnetotelluric (MT) experiment across the Atlas Mountains region that started in September, 2009 and ended in February, 2010, comprising acquisition of broadband and long-period MT data. The experiment consisted of two profiles: (1) a N-S oriented profile crossing the Middle Atlas through the Central High Atlas to the east and (2) a NE-SW profile crossing the western High Atlas towards the Anti Atlas to the west. The MT measurements are part of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROCORES TOPO-EUROPE project) projects, to develop a better understanding of the internal structure and evolution of the crust and lithosphere of the Atlas Mountains. The MT data have been processed with robust remote reference methods and submitted to comprehensive strike and dimensionality analysis. Two clearly depth-differentiated strike directions are apparent for crustal (5-35 km) and lithospheric (50-150 km) depth ranges. These two orientations are roughly consistent with the NW-SE Africa-Eurasia convergence acting since the late Cretaceous, and the NNE-SSW Middle Atlas, where Miocene to recent Alkaline volcanism is present. Two-dimensional (2-D) smooth electrical resistivity models were computed independently for both 50 degrees and 20 degrees E of N strike directions. At the crustal scale, our preliminary results reveal a middle to lower-crustal conductive layer stretching from the Middle Atlas southward towards the High Moulouya basin. The most resistive (and therefore potentially thickest) lithosphere is found beneath the Central High Atlas. The inversion results are to be tested against other geophysical observables (i.e. topography, geoid and gravity anomalies, surface heat flow and seismic velocities) using the software package LitMod. This software combines petrological and geophysical modelling of the lithosphere and sub-lithospheric upper mantle within an internally consistent thermodynamic-geophysical framework, where all relevant properties are functions of temperature, pressure and composition.

  20. Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies

    USGS Publications Warehouse

    Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.

    2004-01-01

    Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.

  1. Between the high mountains and the deserts: reconstructing palaeoenvironments in the Arid Central Asian loess

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Kathryn; Sprafke, Tobias; Deom, Jean-Marc; Sala, Renato; Nigmatova, Saida

    2017-04-01

    Central Asia lies at the arid core of the largest and most populous continent on Earth - Eurasia - and at the intersection between the major climatic drivers of the North Atlantic westerlies, the polar front and the Asian monsoon. It furthermore represents a global "hotspot" for future desertification, facing a potent combination of sensitive climate dynamics and intensive land use. However, we know little about the role of Central Asia in global climate dynamics past and present. This is largely because we have yet to realise the full potential of the widespread loess archives which extend across the semi-arid piedmonts to the north of the Asian high mountains, at the southern margins of the Silk Road deserts. These records have been largely overlooked by scientific investigation, despite correlations between the well-studied loess archives of Europe and China. In spite of its key position in the northern hemisphere climate circulation systems, the climatic history - and trajectory - of arid Central Asia remains largely unknown. Here we reconstruct palaeoenvironmental change over the last 40 ky from three sites in the loess foothills of the northern Tien Shan. Our emerging sedimentological, palaeopedological, geochemical and geochronological datasets suggest that aeolian deposition in this semi-arid region responds in a more complex way to climate than the classical sequences of the Chinese Loess Plateau and Danube basin. In arid Central Asia, landscapes appear to have responded not only to the cooler and warmer conditions of the glacial and interglacial periods respectively, but also to the availability of moisture. Variations in precipitation patterns may have been out of phase with the ice ages, and the impact of precipitation regime change may have been intensified by an extreme continental climate. Emerging data from the Central Asian loess suggest that past climates may not only have been subject to spatial migration, expansion and contraction of the major climate subsystems, but also the compression and the blockage of system teleconnections. These hypotheses set the scene for future, targeted research based on quantitative palaeoclimate reconstruction from loess records in the heart of Eurasia.

  2. Plan for a Sierra Nevada Hydrologic Observatory: Science Aims, Measurement Priorities, Research Opportunities and Expected Impacts

    NASA Astrophysics Data System (ADS)

    Bales, R.; Dozier, J.; Famiglietti, J.; Fogg, G.; Hopmans, J.; Kirchner, J.; Meixner, T.; Molotch, N.; Redmond, K.; Rice, R.; Sickman, J.; Warwick, J.

    2004-12-01

    In response to NSF's plans to establish a network of hydrologic observatories, a planning group is proposing a Sierra Nevada Hydrologic Observatory (SNHO). As argued in multiple consensus planning documents, the semi-arid mountain West is perhaps the highest priority for new hydrologic understanding. Based on input from over 100 individuals, it is proposed to initiate a mountain-range-scale study of the snow-dominated hydrology of the region, focusing on representative 1,000-5,000 km2 river basins originating in the Sierra Nevada and tributary to the Sacramento-San-Joaquin Delta. The SNHO objective is to provide the necessary infrastructure for improved understanding of surface-water and ground-water systems, their interactions and their linkages with ecosystems, biogeochemistry, agriculture, urban areas and water resources in semi-arid regions. The SNHO will include east-west transects of hydrological observations across the Sierra Nevada and into the basin and range system, in four distinct latitude bands that span much of the variability found in the semi-arid West. At least one transect will include agricultural and urban landscapes of the Great Central Valley. Investments in measurement systems will address scales from the mountain range down to the basin, headwater catchment and study plot. The intent is to provide representative measurements that will yield general knowledge as opposed to site-specific problem solving of a unique system. The broader, general science question posed by the planning group is: How do mountain hydrologic processes vary across landscapes, spanning a range of latitudes, elevations and thus climate, soils, geology and vegetation zones?\\" Embodied are additional broad questions for the hydrologic science community as a whole: (i) How do hydrologic systems that are subjected to multiple perturbations respond? (ii) How do pulses and changes propagate through the hydrologic system? (iii) What are the time lags and delays of stresses in different systems? (iv) How can the predictive ability for these responses be improved? The water resources question is then "how can new information inform decision-making aimed at achieving water resources sustainability?" The planning group is soliciting participation from the wider community with a stake in mountain hydrology and related fields, in order to develop a focused yet broadly useful infrastructure that will accelerate science scientific progress for years and decades to come.

  3. Measurement and Estimation of Riverbed Scour in a Mountain River

    NASA Astrophysics Data System (ADS)

    Song, L. A.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Mountains are steep with rapid flows in Taiwan. After installing a structure in a mountain river, scour usually occurs around the structure because of the high energy gradient. Excessive scouring has been reported as one of the main causes of failure of river structures. The scouring disaster related to the flood can be reduced if the riverbed variation can be properly evaluated based on the flow conditions. This study measures the riverbed scour by using an improved "float-out device". Scouring and hydrodynamic data were simultaneously collected in the Mei River, Nantou County located in central Taiwan. The semi-empirical models proposed by previous researchers were used to estimate the scour depths based on the measured flow characteristics. The differences between the measured and estimated scour depths were discussed. Attempts were then made to improve the estimating results by developing a semi-empirical model to predict the riverbed scour based on the local field data. It is expected to setup a warning system of river structure safety by using the flow conditions. Keywords: scour, model, float-out device

  4. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  5. Compilation of historical water-quality data for selected springs in Texas, by ecoregion

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Williams, Iona P.

    2006-01-01

    Springs are important hydrologic features in Texas. A database of about 2,000 historically documented springs and available spring-flow measurements previously has been compiled and published, but water-quality data remain scattered in published sources. This report by the U.S. Geological Survey, in cooperation with the Texas Parks and Wildlife Department, documents the compilation of data for 232 springs in Texas on the basis of a set of criteria and the development of a water-quality database for the selected springs. The selection of springs for compilation of historical water-quality data in Texas was made using existing digital and hard-copy data, responses to mailed surveys, selection criteria established by various stakeholders, geographic information systems, and digital database queries. Most springs were selected by computing the highest mean spring flows for each Texas level III ecoregion. A brief assessment of the water-quality data for springs in Texas shows that few data are available in the Arizona/New Mexico Mountains, High Plains, East Central Texas Plains, Western Gulf Coastal Plain, and South Central Plains ecoregions. Water-quality data are more abundant for the Chihuahuan Deserts, Edwards Plateau, and Texas Blackland Prairies ecoregions. Selected constituent concentrations in Texas springs, including silica, calcium, magnesium, sodium, potassium, strontium, sulfate, chloride, fluoride, nitrate (nitrogen), dissolved solids, and hardness (as calcium carbonate) are comparatively high in the Chihuahuan Deserts, Southwestern Tablelands, Central Great Plains, and Cross Timbers ecoregions, mostly as a result of subsurface geology. Comparatively low concentrations of selected constituents in Texas springs are associated with the Arizona/New Mexico Mountains, Southern Texas Plains, East Central Texas Plains, and South Central Plains ecoregions.

  6. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  7. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  8. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium and bicarbonate. Dissolved-solids concentration increases in the central and northern parts of Tooele Valley, at the distal ends of the ground-water flow paths. Increased concentration is due mainly to greater amounts of sodium and chloride. Deuterium and oxygen-18 values indicate water recharged primarily from precipitation occurs throughout the ground-water basin. Ground water with the highest percentage of recharge from irrigation exists along the eastern margin of Tooele Valley, indicating negligible recharge from the adjacent consolidated rock. Tritium and tritiogenic helium-3 concentrations indicate modern water exists along the flow paths originating in the Oquirrh Mountains between Settlement and Pass Canyons and extending between the steep hydraulic gradient areas at Tooele Army Depot and Erda. Pre-modern water exists in areas east of Erda and near Stansbury Park. Using the change in tritium along the flow paths originating in the Oquirrh Mountains, a first-order estimate of average linear ground-water velocity for the general area is roughly 2 to 5 feet per day. A numerical ground-water flow model was developed to simulate ground-water flow in the Tooele Valley ground-water basin and to test the conceptual understanding of the ground-water system. Simulating flow in consolidated rock allows recharge and withdrawal from wells in or near consolidated rock to be simulated more accurately. In general, the model accurately simulates water levels and water-level fluctuations and can be considered an adequate tool to help determine the valley-wide effects on water levels of additional ground-water withdrawal and changes in water use. The simulated increase in storage during a projection simulation using 2003 withdrawal rates and average recharge indicates that repeated years of average precipitation and recharge conditions do not completely restore the system after multiple years of below-normal precipitation. In the similar case where precipitation is 90

  9. Oil and gas resources of the Cheat Mountain Further Planning Area (RARE II), Randolph County, West Virginia

    USGS Publications Warehouse

    Weed, E.G.

    1981-01-01

    Cheat Mountain Further Planning Area comprises about 7,720 acres in the Monongahela National Forest in east-central West Virginia, southeast of Elkins. The study area lies on a northeast-trending linear ridge bordered on the west by the Right Fork of Tygart River and on the east by Shavers Fork. It averages about 2 mi in length and 1½ mi in width. Altitudes on Cheat Mountain range from about 2,550 to 3,900 ft. 

  10. Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, from the SCSI-LR Seismic Survey

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Gandhok, G.

    2006-01-01

    Introduction: The Santa Clara Valley is located in the southern San Francisco Bay area of California and generally includes the area south of the San Francisco Bay between the Santa Cruz Mountains on the southwest and the Diablo Ranges on the northeast. The area has a population of approximately 1.7 million including the city of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley. Major active strands of the San Andreas Fault system bound the Santa Clara Valley, including the San Andreas fault to the southwest and the Hayward and Calaveras faults to the northeast; related faults likely underlie the alluvium of the valley. This report focuses on subsurface structures of the western Santa Clara Valley and the northeastern Santa Cruz Mountains and their potential effects on earthquake hazards and ground-water resource management in the area. Earthquake hazards and ground-water resources in the Santa Clara Valley are important considerations to California and the Nation because of the valley's preeminence as a major technical and industrial center, proximity to major earthquakes faults, and large population. To assess the earthquake hazards of the Santa Clara Valley better, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential earthquake sources and potential effects of strong ground shaking within the valley. As part of that program, and to better assess water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began conducting collaborative studies to characterize the faults, stratigraphy, and structures beneath the alluvial cover of the Santa Clara Valley in the year 2000. Such geologic features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local or regional earthquakes sources. As one component of these joint studies, the U. S. Geological Survey acquired more than 28 km of combined seismic reflection/refraction data from the Santa Cruz Mountains to the central Santa Clara Valley in December 2000. The seismic investigation included both high-resolution (~5-m shot and sensor spacing) and relatively lower-resolution (~50-m sensor) seismic surveys from the central Santa Cruz Mountains to the central part of the valley. Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI).

  11. Ethnobotanical study on the medicinal plants in the Mainarde Mountains (central-southern Apennine, Italy).

    PubMed

    Fortini, P; Di Marzio, P; Guarrera, P M; Iorizzi, M

    2016-05-26

    New documentation of the uses of plants in the popular medicine of the Mainarde Mountain, a protected area of the central-southern Apennine characterised by a high floristic richness, is here reported. Field data were collected through semi-structured and open interviews with native People between 2011 and 2014. The plants were identified and vouchers specimens were scanned to create a Virtual Herbarium. The Ethnobotanicity Index (EI), the Relative Importance Index (RI) and the Fidelity Level Index (FL) were calculated. The plant uses surveyed in the study area were compared with those described in medical and ethnobotanical literature. Seventy-one interviews were conducted, the age range of the informants was between 21 and 98 years. The inventory included 106 taxa belonging to 45 families; among these, 87 were wild species and 20 were cultivated species. The uses recorded were 429, among these, 69.1% of the uses concerned internal applications to treat digestive system disorders, infections and respiratory system disorders mainly, while 31.9% concerned external applications, especially to treat skin/subcutaneous cellular tissue disorders and injuries. In particular, 17 new uses and 16 unusual and rarely mentioned plants are documented. The data collected support evidence on traditional uses for plant in the Apennine. Findings from medical flora and from new or rare medical uses reinforce the usefulness of such research efforts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The US Geological Survey's national coal resource assessment: The results

    USGS Publications Warehouse

    Ruppert, Leslie F.; Kirschbaum, Mark A.; Warwick, Peter D.; Flores, Romeo M.; Affolter, Ronald H.; Hatch, Joseph R.

    2002-01-01

    The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.

  13. Geologic map of the South Jackson Mountains Wilderness Study Area, Humboldt County, Nevada

    USGS Publications Warehouse

    Sorensen, Martin L.

    1986-01-01

    The South Jackson Mountains Wilderness Study Area is in south-central Humboldt County, approximately 50 miles northwest of Winnemucca, Nevada. The boundaries originally specified for the wilderness study area encompassed an area of 60,211 acres. The draft Environmental Impact Statement issued in 1983 by the U.S. Bureau of Land Management (BLM) identified 20,094 acres within the wilderness study area as potentially suitable for inclusion into the National Wilderness Preservation System. Subsequent (August 27, 1984) deletions by the BLM have resulted in the present study area of approximately 10,300 acres. The boundaries of the study area are approximated by the range crestline to the east and the 4,400-ft contour along the west side of the range from King Lear Peak north to the divide between Hobo and Christiorsson Canyons.

  14. Rock Uplift above the Yakutat Megathrust on Montague Island, Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Ferguson, K.; Armstrong, P. A.; Haeussler, P. J.; Arkle, J. C.

    2011-12-01

    The Yakutat microplate is subducting shallowly (~6°) beneath the North American Plate at a rate of approximately 53 mm/yr to the northwest. Deformation from this flat- slab subduction extends >600 km inland and has resulted in regions of focused rock uplift and exhumation in the Alaska Range, central Chugach Mountains, and St. Elias Mountains. Many questions still remain about how strain is partitioned between these regions of focused uplift, particularly in the Prince William Sound (southern Chugach Mountains) on Montague Island. Montague Island (and adjacent Hinchinbrook Island) are ~20 km above the megathrust where there is a large degree of coupling between the subducting Yakutat microplate and overriding North American Plate. Montague Island is of particular interest because it lies between two areas of rapid rock uplift focused in the St. Elias/eastern Chugach Mountains and the western Chugach Mountains. In the St. Elias/eastern Chugach Mountains, faulting related to collisional processes and bending of fault systems causes rapid rock uplift. About 200 km farther northwest in the western Chugach Mountains, recent rock uplift is caused by underplating along the megathrust that is focused within a syntaxial bend of major fault systems and mountain ranges. Montague Island bounds the southern margin of Prince William Sound, and is steep, narrow, and elongate (81 km long and ~15 km wide). The maximum relief is 914 m, making for very steep, mountainous topography considering the narrow width of the island. During the Mw 9.2 earthquake in 1964, the Patton Bay and Hanning Bay reverse faults were reactivated, with 7 and 5 m of vertical offset, respectively. Both faults dip ~60° NW and strike NE-SW parallel to the long-axis of the island and parallel to geomorphic features including lineaments, elongate valleys, and escarpments. Prominent ~450 m high escarpments are present along the SE-facing side of the island, which suggests rapid and sustained uplift. New apatite (U-Th)/He (AHe) and fission-track (AFT) ages are 1.3 - 1.5 Ma and 4.4 Ma, respectively, at the SW end of Montague Island and AHe ages are 4.4 - 4.6 Ma at the NE end. These age and geomorphic constraints indicate that Montague Island marks a narrow zone of intense deformation probably related to thin-skinned thrust faulting and/or pop-up structures above the megathrust. The youngest AHe ages from Montague Island are similar to those from farther east along the St. Elias - Bagley fault systems implying that the south and east sides of Montague Island, and perhaps the along-trend eastern part of Hinchinbrook Island, may be the westward extension of these fault systems. Additional cooling ages will help constrain the spatial extent of this zone of deformation and potential links with other structural zones caused by Yakutat collision and subduction.

  15. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    EPA Science Inventory

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  16. Environmental Considerations for a Geothermal Development in the Jemez Mountains of Central New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabo, David G.

    The demonstration nature of the Baca Geothermal Project and the contractual arrangements between Public Service Company of New Me (PNM) and Union Geothermal Company of New Mexico (Union) with the Department of Energy mandate on environmental monitoring effort previously not seen for an energy development of this size. One of the most often stated goals of the Baca Project is to demonstrate the acceptability and viability of geothermal energy in an environmentally responsible manner. If this statement is to be followed, then a program would have to be developed which would (1) identify all the environmental baseline parameters, (2) monitormore » them during construction and operation, and (3) alleviate any possible negative impacts. The situation of the Baca project in the Jemez Mountains of north-central New Mexico offers a challenging vehicle with which to demonstrate the acceptability of geothermal energy. A few of the reasons for this are: these mountains are one of the most heavily used recreational resource areas in the state, numerous prehistoric people utilized the canyons and have left considerable archeological resources, the mountains are home for a number of individuals who prefer their serenity to the hustle and bustle of urban dwelling, and finally, the mountains are considered sacred by a number of local Indian tribes, a few of which use the mountaintop as religious sites.« less

  17. Morphological variation and zoogeography of racers (Coluber constrictor) in the central Rocky Mountains

    USGS Publications Warehouse

    Corn, Paul Stephen; Bury, R. Bruce

    1986-01-01

    We examined 63 specimens of Coluber constrictor from Colorado and Utah using eight external morphological characters that have been used to distinguish C. c. mormon from C. c. flaviventris. We grouped the snakes into three Operational Taxonomic Units (OTU's) in a transect across the Rocky Mountains: the eastern Front Range foothills in Colorado; the inter-mountain region (western slope of Colorado and northeastern Utah); and the western foothills of the Wasatch Mountains in Utah. Statistically significant variation among the OTU's was discovered for ration of tail length to total length, number of central and subcaudal scales, and number of dentary teeth. However, variation is clinal with nearly complete overlap from one end f the transect to the other for each character, suggesting a wide zone of intergradiation in the inter-mountain region. We do not believe reported differences in reproductive parameters between Great Plains and Great Basin racers are sufficient grounds for recognition of species, because clutch size is both geographically variable and dependent on the environment. The distribution of C. constrictor is similar to that of other reptiles with transmontane distributions in the western United States, and we suggest two possible routes of dispersal across the Continental Divide in southwestern Wyoming. Thus, elevation of C. c. mormon to species status is not supported by morphological, reproductive, or zoogeographic evidence.

  18. The Diana fritillary (Speyeria diana) and great spangled fritillary (S. cybele): dependence on fire in the Ouachita Mountains of Arkansas

    Treesearch

    D. Craig Rudolph; Charles A. Ely; Richard R. Schaefer; J. Howard Williamson; Ronald E. Thill

    2006-01-01

    The Diana fritillary (Speyerio diana), a species of conservation concern throughout its range, and the great spangled fritillary (S. cybele) both occur in the Ouachita Mountains of west-central Arkansas and eastern Oklahoma. Both species depend on abundant, high quality nectar resources to support populations. Decades of intense...

  19. Mountain Pine Beetles and Invasive Plant Species Findings from a Survey of Colorado Community Residents

    Treesearch

    Courtney Flint; Hua Qin; Michael Daab

    2008-01-01

    The US Forest Service, Pacific Northwest Research Station funded research to assess community responses to forest disturbance by mountain pine beetles (Dendroctonus ponderosae) and public reaction to invasive plants in north central Colorado. In the Spring of2007, 4,027 16-page questionnaires were mailed to randomly selected households with addresses in Breckenridge,...

  20. 13. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 321 - BOILER HOUSE 3rd FL. LOOKING WEST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  1. 8. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 321 & 325 - BOILER & POWER HOUSE LOOKING SO. WEST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  2. 10. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 321 - BOILER HOUSE 1st FL. - LOOKING EAST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  3. 11. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 321 - BOILER HOUSE 2nd FL. LOOKING WEST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  4. 12. Photocopy of photograph, U.S. Army, ca. 1943 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph, U.S. Army, ca. 1943 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). R.M.A. - 321 - BOILER HOUSE 2nd FL. LOOKING EAST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  5. The Misplaced Mountain: Maps, Memory, and the Yakama Reservation Boundary Dispute

    ERIC Educational Resources Information Center

    Fisher, Andrew

    2012-01-01

    Visitors to the Yakama Indian Reservation in south-central Washington State can't help but notice Mount Adams. Known as Patu, or snowtopped mountain, and Xwayama, or golden eagle, in the Sahaptin language of the Columbia Plateau, the 12,276-foot peak stretches more than a mile above the forested ridges of the Cascade Range. Images of the mountain…

  6. A habitat model for the Virginia northern flying squirrel (Glaucomys sabrinus fuscus) in the central Appalachian Mountains

    Treesearch

    J.M. Menzel; W.M. Ford; J.W. Edwards; L.J. Ceperley; L.J. Ceperley

    2006-01-01

    The Virginia northern flying squirrel (Glaucomys sabrinus fuscus) is an endangered sciurid that occurs in the Allegheny Mountains of Virginia and West Virginia. Despite its status, few of its ecological requirements have been synthesized for landscape-level predictive distributions to facilitate habitat delineation efforts. Using logistic regression, we developed a GIS...

  7. A comprehensive guide to fuel management practices for dry mixed conifer forests in the northwestern United States

    Treesearch

    Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist

    2012-01-01

    This guide describes the benefits, opportunities, and trade-offs concerning fuel treatments in the dry mixed conifer forests of northern California and the Klamath Mountains, Pacific Northwest Interior, northern and central Rocky Mountains, and Utah. Multiple interacting disturbances and diverse physical settings have created a forest mosaic with historically low- to...

  8. Definition of spatial patterns of bark beetle Ips typographus (L.) outbreak spreading in Tatra Mountains (Central Europe), using GIS

    Treesearch

    Rastislav Jakus; Wojciech Grodzki; Marek Jezik; Marcin Jachym

    2003-01-01

    The spread of bark beetle outbreaks in the Tatra Mountains was explored by using both terrestrial and remote sensing techniques. Both approaches have proven to be useful for studying spatial patterns of bark beetle population dynamics. The terrestrial methods were applied on existing forestry databases. Vegetation change analysis (image differentiation), digital...

  9. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    Treesearch

    R. A. Short Bull; Samuel Cushman; R. Mace; T. Chilton; K. C. Kendall; E. L. Landguth; Michael Schwartz; Kevin McKelvey; Fred W. Allendorf; G. Luikart

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation,...

  10. For Sale--Scotland's Most Famous Mountain Range: Land "Ownership" in Scotland

    ERIC Educational Resources Information Center

    Slattery, Deirdre

    2005-01-01

    The nature of land ownership is infrequently discussed by practitioners of outdoor education, though it is often central to the way they work. The recent controversy over the proposed sale of the Cuillin mountain range on the Isle of Skye in Scotland provoked heated discussion over rights to and benefits of this important place. The main point at…

  11. Effects of salvage logging on fire risks after bark beetle outbreaks in Colorado lodgepole pine forests

    Treesearch

    Bryon J. Collins; Chuck C. Rhoades; Michael A. Battaglia; Robert M. Hubbard

    2012-01-01

    Most mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests in the central and southern Rocky Mountains originated after stand-replacing wildfires or logging (Brown 1975, Lotan and Perry 1983, Romme 1982). In recent years, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have created a widespread, synchronous disturbance (i.e.,...

  12. Displacement and Revitalization of the Nahuatl Language in the High Mountains of Veracruz, Mexico

    ERIC Educational Resources Information Center

    Sandoval Arenas, Carlos O.

    2017-01-01

    This article focuses on language displacement in the High Mountains of Central Veracruz. It begins by presenting a brief historical account of the Nahuatl presence in the region in order to distinguish this group from other Nahuatl-speaking groups. Later, it describes the situation of language loss that is currently underway and argues that the…

  13. Patterns of resistance to Cronartium ribicola in Pinus aristata, Rocky Mountain bristlecone pine

    Treesearch

    A. W. Schoettle; R. A. Sniezko; A. Kegley; R. Danchok; K. S. Burns

    2012-01-01

    The core distribution of Rocky Mountain bristlecone pine, Pinus aristata Engelm., extends from central Colorado into northern New Mexico, with a disjunct population on the San Francisco Peaks in northern Arizona. Populations are primarily at high elevations and often define the alpine treeline; however, the species can also be found in open mixed conifer stands with...

  14. Ancient DNA confirms native Rocky Mountain fisher (Martes pennanti) avoided early 20th century extinction

    Treesearch

    Michael K. Schwartz

    2007-01-01

    Until recently it was assumed that fishers (Martes pennanti) in the Rocky Mountains all were descended from reintroduced stocks. However, a recent study reported that mitochondrial DNA (cytochrome-b and control region) haplotypes of fishers found only in west-central Montana are likely derived from a relic population of fishers that escaped harvests conducted in the...

  15. The Legend of Jump Mountain: Narrative Dispossession of the Monacan in Postcolonial Virginia

    ERIC Educational Resources Information Center

    Vest, Jay Hansford C.

    2012-01-01

    In north central Virginia there is a local tale--The Legend of Jump Mountain, which purports to explain the origins of the Hayes Creek Indian Burial Mound. A highly romantic legend, it immortalizes post colonial intertribal warfare during the early nineteenth century while ignoring the antiquity of the mound and the local descendants of its…

  16. 77 FR 59679 - Central Vermont Public Service Corporation (Millstone Power Station, Unit 3); Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Mountain Power Corporation (GMP). Both GMP and CVPS are wholly owned subsidiaries of Gaz M[eacute]tro, as a... for approval filed by CVPS in connection with the merger of CVPS and GMP, CVPS will merge with and into GMP, with GMP being the surviving company called Green Mountain Power Corporation. The GMP will...

  17. The relationship between whitebark pine health, cone production, and nutcracker occurrence across four National Parks

    Treesearch

    Lauren E. Barringer; Diana F. Tomback; Michael B. Wunder

    2011-01-01

    Whitebark pine (Pinus albicaulis) is declining in the central and northern Rocky Mountains from infection by the exotic pathogen Cronartium ribicola, which causes white pine blister rust, and from outbreaks of mountain pine beetle (Dendroctonus ponderosae). White pine blister rust has been present in Glacier and Waterton Lakes National Parks (NP) about two decades...

  18. Equal-mobility bed load transport in a small, step-pool channel in the Ouachita Mountains

    Treesearch

    Daniel A. Marion; Frank Weirich

    2003-01-01

    Abstract: Equal-mobility transport (EMT) of bed load is more evident than size-selective transport during near-bankfull flow events in a small, step-pool channel in the Ouachita Mountains of central Arkansas. Bed load transport modes were studied by simulating five separate runoff events with peak discharges between 0.25 and 1.34 m3...

  19. Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of global warming.

    PubMed

    Sanz-Elorza, Mario; Dana, Elías D; González, Alberto; Sobrino, Eduardo

    2003-08-01

    Aerial images of the high summits of the Spanish Central Range reveal significant changes in vegetation over the period 1957 to 1991. These changes include the replacement of high-mountain grassland communities dominated by Festuca aragonensis, typical of the Cryoro-Mediterranean belt, by shrub patches of Juniperus communis ssp. alpina and Cytisus oromediterraneus from lower altitudes (Oro-Mediterranean belt). Climatic data indicate a shift towards warmer conditions in this mountainous region since the 1940s, with the shift being particularly marked from 1960. Changes include significantly higher minimum and maximum temperatures, fewer days with snow cover and a redistribution of monthly rainfall. Total yearly precipitation showed no significant variation. There were no marked changes in land use during the time frame considered, although there were minor changes in grazing species in the 19th century. It is hypothesized that the advance of woody species into higher altitudes is probably related to climate change, which could have acted in conjunction with discrete variations in landscape management. The pronounced changes observed in the plant communities of the area reflect the susceptibility of high-mountain Mediterranean species to environmental change.

  20. Two new species of Pterostichus Bonelli subgenus Pseudoferonina Ball (Coleoptera, Carabidae, Pterostichini) from the mountains of central Idaho, U.S.A.

    PubMed

    Bergdahl, James C; Kavanaugh, David H

    2011-01-01

    Two new species of Pterostichus Bonelli subgenus Pseudoferonina Ball, are described from the mountains of central Idaho: Pterostichus bousqueti Bergdahl [type locality = small tributaries of South Fork of Payette River watershed, ca. 1170 m (3840 ft), 44.0675°; -115.6822°, near Lowman, Salmon River Mountains, Boise County, Idaho, U.S.A.] and Pterostichus lolo Bergdahl [type locality = Cottonwood/Orogrande Creek, ca. 870 m (2850 ft), 46.5528°; -115.5522°, North Fork of Clearwater River watershed, Clearwater Mountains, near Bungalow, Clearwater County, Idaho, U.S.A.]. Males of Pterostichus bousqueti and Pterostichus lolo are easily distinguished from each other and the seven previously described Pseudoferonina species by the form of the median lobe of the aedeagus, and from most individuals of the other species of Pseudoferonina in Idaho by features of pronotal shape and macrosculpture. Both species appear to be obligate ripicolous hygrophiles, restricted in distribution primarily to the margins of small montane streams in forested areas. Widespread intensive stream surveys for Pseudoferonina over many years indicate the geographic ranges of both species are highly localized, and additional undescribed species may occur in Idaho.

  1. Variation in annual run-off in the Rocky Mountain region: Chapter A in Contributions to the hydrology of the United States, 1923-1924

    USGS Publications Warehouse

    Follansbee, Robert

    1925-01-01

    Records of run-off in the Rocky Mountain States since the nineties and for a few stations since the eighties afford a means of studying the variation in the annual run-off in this region. The data presented in this report show that the variation in annual run-off differs in different areas in the Rocky Mountain region, owing to the differences in the sources of the precipitation in these areas. Except in the drainage basins of streams in northern Montana the year of lowest run-off shown by the records was 1902, when the run-ff at one station was only 36 per cent of the mean run-ff for the periods covered by the several records available. The percentage variation of run-ff for streams in different parts of Colorado is less for any one year than that for streams in the mountain region as a whole, and for streams in the same major drainage basin the annual variation is markedly similar. The influence of topography upon variation in annual run-ff for streams in Colorado is marked, the streams that rise in the central mountain region having a smaller range in variation than the streams that rise on the eastern or western edges of the central mountain mass. The streams that rise on the plains just east of the mountains have a greater variation than those of any of the mountain groups. The ratio of any 10-year mean to the mean for the entire period covered by the records ranges from 72 to 133 per cent. For the South Platte, Arkansas, and Rio Grande the run-off during the nineties was below the normal, but since about 1903 it has been above normal. For the Cache la Poudre low-water periods occurred during the eighties and from 1905 to 1922, but during the nineties the run-off was above the normal.

  2. Aspects of late Quaternary geomorphological development in the Khangai Mountains and the Gobi Altai Mountains (Mongolia)

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Frank; Nottebaum, Veit; Hülle, Daniela

    2018-07-01

    The reconstruction of geomorphological processes as a result of environmental change is approached by investigating and dating some fluvial, aeolian and lacustrine archives at specific locations that form a N-S basin and range transect across the Khangai Mountains south to the eastern Gobi Altai mountains in Mongolia. Geomorphological processes varied a) spatially with different climatic conditions and vegetation cover in relation to different elevation and latitude and b) temporally due to climatic shifts during the late Quaternary. In total, 15 sections from three distinct sub-regions along that transect were dated by 22 OSL ages. The Khangai Mountain sub-region exhibits mainly late Glacial to Holocene aeolian silty to sandy cover sediments mainly in the upper catchment reaches (>1800 m a.s.l.). Sections in the northern and central Gobi represent river terraces and alluvial fans in basin areas as well as aeolian sediments in the mountains above 2200 m a.s.l. The oldest terrace surface found in this study (T2; NGa1) dates to the penultimate Glacial cycle. The T1 terrace surfaces, on the northern Khangai Mountain front and in the central Gobi sub-region yield a maximum accumulation during the global Last Glacial Maximum (gLGM) and late Glacial time. During the gLGM phase represents rather sheetflow dominated transport built the alluvial fans and in late Glacial times the sediments exhibit more debrisflow controlled accumulation. Incision, forming the T1-terrace edges is therefore, supposed for the Pleistocene-Holocene transition and subsequent early Holocene. The geomorphic evidence is interpreted as stronger fluvial morphodynamics induced by enhanced humidity under beginning interglacial conditions. These processes coincided with the development of aeolian mantles at higher altitudes in the Khangai and Gobi Altai mountains where higher temperatures and humidities supported the formation of a vegetation cover, that served as a dust trap at least since late Glacial times and reduced the sediment supply on the alluvial fans.

  3. Metallogeny of the nikolai large igneous province (LIP) in southern alaska and its influence on the mineral potential of the talkeetna mountains

    USGS Publications Warehouse

    Schmidt, J.M.; Rogers, R.K.

    2007-01-01

    Recent geologic mapping has identified areas of extrusive basalts of the Middle to Late Triassic Nikolai Greenstone within the Wrangellia terrane that extend at least 80 km southwest of their previously known extent. Abundant dolerite sills of similar composition intrude Paleozoic and Mesozoic stratigraphy below the Nikolai throughout the central Talkeetna Mountains. The Talkeetna Mountains, therefore, have newly identified potential for copper, nickel, and platinum-group elements (PGEs) as disseminated, net-textured, or massive magmatic sulfide deposits hosted in mafic and ultramafic sill-form complexes related to emplacement of the Nikolai. Because of their potential high grades, similar magmatic sulfide targets have been the focus of increasing mineral exploration activity over the last decade in the Amphitheater Mountains and central Alaska Range, 100-200 km to the northeast. The Nikolai Greenstone, associated intrusions, and their metamorphosed equivalents also have potential to host stratabound disseminated "basaltic copper" deposits. Sedimentary and metasedimentary rocks overlying the Nikolai have the potential to host stratabound, disseminated, or massive "reduced-facies" type Cu-Ag deposits. Ultramafic rocks have been identified only in the extreme northeastern Talkeetna Mountains to date. However, coincident gravity and magnetic highs along the leading (northwestern) edge of and within Wrangellia in the Talkeetna and Clearwater Mountains suggest several areas that are highly prospective for ultramafic rocks related to extrusion of Nikolai lavas. In particular, the distribution, geometry, and composition of sills within the pre-Nikolai stratigraphy and the structural and tectonic controls on intrusive versus extrusive rock distribution deserve serious examination. Copyright ?? 2007 The Geological Society of America.

  4. 40Ar/39Ar dates from alkaline intrusions of the northern Crazy Mountains, south-central Montana

    NASA Astrophysics Data System (ADS)

    Harlan, S. S.

    2005-05-01

    The Crazy Mountains basin of south-central Montana is a complex foreland basin that formed during the interaction of thin-skinned, decollement-style folds of the Montana thrust belt and the basement-involved folds and thrust faults of the Rocky Mountain foreland province. Near the depositional center of the basin, synorogenic strata of the Paleocene Fort Union Formation have been intruded and locally thermally metamorphosed by strongly alkaline to subalkaline Tertiary intrusive rocks. The subalkaline rocks are found mostly in the southern Crazy Mountains and form stocks (Big Timber stock, Loco Mountain stock), radiating dikes and sills. With the exception of the Ibex Mountain sill (?), the alkaline rocks are restricted to the northern Crazy Mountains. New 40Ar/39Ar dates are reported from the strongly alkaline rocks, including the Comb Creek stock and dike swarm, the Ibex Mountain sill(?), and sills from the Robinson anticline intrusive complex. The alkaline rocks of the Robinson anticline intrusive complex are exposed in the easternmost folds of the Cordilleran fold and thrust belt, but despite their arcuate and apparently folded map geometry they have been shown to post-date folding. Hornblende from a trachyte sill in the Robinson anticline intrusive complex yielded a relatively simple age spectrum with a weighted mean of 50.61 ± 0.14 Ma (2σ), which probably records the age of sill emplacement. Nepheline syenite and mafic nepheline syenites of the Comb Creek stock and a dike from its radial dike swarm, two sills from the Robinson antlicline intrusive complex, and the Ibex Mountains sill(?) gave biotite plateau dates ranging from 50.03 to 50.22 Ma, with 2σ errors of ± 0.11 to 0.19 Ma. Because these dates are from fairly small, hypabyssal intrusions, they must have cooled quickly and thus these dates closely approximate the emplacement age of the intrusions. These data indicate that the strongly alkaline intrusions were emplaced during a fairly restricted interval of time at about 50.1 Ma. The dates from the alkaline rocks are somewhat older than dates from the subalkaline Big Timber stock in the southern Crazy Mountains, which gave biotite 40Ar/39Ar dates of about 49.3 Ma (du Bray and Harlan, 1996). However, because these dates represent cooling through closure temperatures of about 350° C, they are minimum estimates for the age of the stock. The limited span of 40Ar/39Ar dates between the alkaline and subalkaline rocks of the Crazy Mountains intrusions (i.e., 50.6 to 49.2 Ma) indicates that the magmas represented by these different geochemical groups were closely associated in both time and space, with emplacement occurring in as little as 1.5 Ma. On a regional scale, the 49-51 Ma age is similar to that of most of the igneous centers of the Central Montana alkalic province and is coeval with the peak of widespread volcanism in the Absaroka-Gallatin volcanic field immediately to the south of the Crazy Mountains Basin.

  5. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia

    NASA Astrophysics Data System (ADS)

    Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan

    2017-04-01

    The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (<50 to 80 km). The Central Taurus Mountains, which have experienced 2 km of uplift in the past 6 Ma, are underlain by the fastest shear velocities in the region (>4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (<4.2 km/s) beneath the Central Anatolian Volcanic Province. These slow velocities are interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian Volcanic Province. Finally, we present a model for the evolution of central Anatolia that brings together the volcanism, extension in the Kirsehir Block, uplift of the southern margin of central Anatolia, and our seismic images.

  6. Castro ring zone: a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho.

    USGS Publications Warehouse

    Criss, R.E.; Ekren, E.B.; Hardyman, R.F.

    1984-01-01

    The largest fossil hydrothermal system occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-hydrothermal system are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and hydrothermally metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal systems are surprisingly insensitive to the circulation scale.-L.-di H.

  7. Correlation of the Klamath Mountains and Sierra Nevada

    USGS Publications Warehouse

    Irwin, William P.

    2003-01-01

    This report graphically portrays the broadly parallel tectonic development of the Klamath Mountains and Sierra Nevada from early Paleozoic to Early Cretaceous time. It is dedicated to J.S. Diller of the U.S. Geological Survey who, during his pioneer field studies a century ago, recognized significant similarities between these two important provinces. The report is based mainly on the numerous published reports of the field and laboratory studies by various geologists and students during the last century, and to a lesser extent on my own field work which has been substantial in the Klamath Mountains but minimal in the Sierra Nevada. For brevity, required by the format of this report, little of the extensive literature pertaining to these two provinces is referenced. This report is preliminary in nature and was prepared as an aid to further study of the tectonic relations between the Klamath Mountains and Sierra Nevada. This report consists of two sheets: Sheet 1, Map showing accreted terranes and plutons of the Klamath Mountains and Sierra Nevada, and Sheet 2, Successive accretionary episodes of the Klamath mountains and northern part of Sierra Nevada, showing related plutonic, volcanic, and metamorphic events. The map on Sheet 1 was compiled and modified from two Open-File maps (Irwin and Wooden, 1999 and 2001) which had been compiled and modified mainly from Jennings (1977), Harwood (1992), Irwin (1994), Jayko (1988), Graymer and Jones (1994), Edelman and Sharp (1989), Schweickert and others (1999), Saucedo and Wagner(1992), Saleeby and Sharp (1980), Wagner and others (1981), and various other sources. For detailed lists of the sources for the isotopic age data used in Sheets 1 and 2, see Irwin and Wooden (1999 and 2001). On Sheet 2, the accretionary episodes are shown sequentially from left to right in two tiers of figures. Episodes for the Klamath Mountains are in the upper tier; correlative episodes of the Sierra Nevada are directly below in the lower tier. The sequence shown for the Klamath Mountains is modified from Irwin and Mankinen (1998) and Irwin and Wooden (1999). The episodes are named for the accreting terranes of the Klamath Mountains, but those names may not be suitable for reference to the correlative episodes of the Sierra Nevada. In the figure for each episode, a heavy black line represents the active suture that separated oceanic crustal rocks on the left from the earlier accreted terranes on the right. Plutons are particularly useful for timing the accretionary episodes. The preaccretionary plutons, which commonly represent the roots of oceanic volcanic arcs, are shown in the accreting oceanic crustal rocks to the left of the heavy black line. The accretionary plutons consist of rock that has been subducted and remobilized as magma during the accretionary process and injected into an overlying earlier accreted terrane on the right of the heavy black line. Thus, isotopic dating of the accretionary plutons (preferably U/Pb dates measured on zircon extracted from the plutonic rock) provides a useful basis for assigning ages to the accretionary episodes. Many plutons are rootless at depth, as they tend to be truncated by the subduction zone sutures of younger accreting terranes. Volcanic deposits resulting from accretionary episodes apparently are uncommon except for those deposited on the backstop terranes. In the Klamath Mountains, the Eastern Klamath terrane, which consists of the Yreka, Trinity and Redding subterranes, was the backstop for the Central Metamorphic and younger accretionary episodes, and displays a remarkable record of sedimentation, volcanism and plutonism from Silurian-Devonian to Jurassic time. In the Sierra Nevada, the correlative backstop was the Northern Sierra terrane which shows a similar long record of volcanism in the Taylorsville, Permian, and Jurassic volcanic arc sequences. During some accretionary episodes the subducting oceanic rocks were dynamically metamorphosed to schist along the suture zone beneath the overriding accreted terranes. Examples of this in the Klamath Mountains are the Devonian Salmon and Abrams Schists of the Central Metamorphic terrane, the Triassic(?) schist of the Fort Jones terrane , and the Early Cretaceous South Fork Mountain Schist that structurally underlies Klamath Mountains terranes along much of the western edge of the province. The Fort Jones terrane and South Fork Mountains Schist were metamorphosed under blueschist-facies conditions. In the Sierra Nevada, schist that is correlative with the Central Metamorphic terrane is present in patches along the Feather River terrane (see Hacker and Peacock, 1990); the Triassic(?) Red Ant Schist is correlative with the Fort Jones terrane; but a correlative of the South Fork Mountain Schist is not present. In addition to the similarities in the sequences of accretion, plutonism, volcanism, and metamorphism, strong ties between the two provinces are also provided by paleontologic data. The Permian McCloud fusulinid fauna of the Redding subterrane also is present in the Northern Sierra terrane. Rare Tethyan fusulinids are found in Permian limestone of the Eastern Hayfork terrane of the Klamath Mountains and also in limestone blocks in the Central Belt of the Sierra Nevada. Ichthyosaur fossils have been collected from the Triassic of both the Redding subterrane and Northern Sierra terrane. Jurassic ammonites and the pelecypod Buchia concentrica occur in both the Galice Formation of the western Klamath Mountains and the Mariposa Formation of the western Sierra Nevada. Events that preceded the Central Metamorphic episode prior to Silurian-Devonian time are not clearly understood and are not shown in the succession of diagrams on Sheet 2. The oldest rocks of the Klamath Mountains are Neoproterozic and they predate the Central Metamorphic episode by possibly a hundred million years or more. They include ophiolitic rocks of the Trinity subterrane and the Antelope Mountain Quartzite of the Yreka subterrane (see Mankinen and others, 2002). In the Sierra Nevada, correlatives of the ancient ophiolitic rocks may be part of the Feather River terrane. Although Neoproterozoic fossils have not yet been found in the Sierra Nevada, petrologic study shows the quartzite of the Lang sequence is closely similar to the Antelope Mountain Quartzite (see Bond and Devay, 1980). Correlation of the two quartzite formations is also suggested by the similarity of their positions in the accretionary sequence.

  8. Extent and timing of paleoglaciation in the Kanas Valley, Altai Mountains, China, based on remote sensing, field investigations and multiple dating methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Harbor, Jon; Cui, Zhijiu; Liu, Liang; Liu, Beibei; Fu, Yanjing; Shi, Yuanhuang; Gribenski, Natacha; Blomdin, Robin; Stroeven, Arjen; Caffee, Marc; Jansson, Krister

    2014-05-01

    Reconstructions of the timing and extent of past glaciation provide key constraints for paleoclimate and numerical modeling of past glacier behavior. As part of the multinational Central Asian Paleoglaciology Project we are reconstructing the timing and extent of past glaciation along and across a series of mountain ranges in central Asia using consistent methods for mapping, field investigations and numerical dating. Here we report on new findings for the Kanas Valley in northwest China, a large glaciated valley system on the south side of the Altai Mountains. Previous studies have concluded that the Kanas Valley has been shaped by a series of major glacial advances that produced overdeepened basins, a U-shaped valley cross profile, and extensive glacial and glaciofluvial deposits. Existing Optically Stimulated Luminescence (OSL) and Electron Spin Resonance (ESR) dating results suggest major glaciation in the Kanas Valley during Marine Oxygen Isotope Stages (MIS) 3, 5, and 6, but very limited MIS 2 glaciation. Limited MIS 2 glaciation has also been suggested for other parts of central Asia, and this contrasts with extensive MIS 2 glaciation in Europe and North America. Field studies in 2013 provided new evidence for the highest elevation extent of glaciation in the Kanas Valley in the vicinity of the 20-km long Lake Kanas, with the upper limit of distinct erratics on the valley sidewalls indicating past ice thicknesses here up to 1000 m. Upper limits of erratics extending from Lake Kanas to the mapped maximum down-valley extent of glaciation suggest an ice surface slope of 1.8 degrees for the lower half of the paleoglacier in the Kanas Valley, assuming that all the erratics were deposited at the same time. Systematic sampling of glacial erratics, basal till, terminal moraines, glacially eroded bedrock, and glaciofluvial deposits provided material that is being used for cosmogenic radionuclide, OSL and ESR dating of the glacial chronology, and for dating intercomparisons.

  9. Influence of spatial resolution on precipitation simulations for the central Andes Mountains

    NASA Astrophysics Data System (ADS)

    Trachte, Katja; Bendix, Jörg

    2013-04-01

    The climate of South America is highly influenced by the north-south oriented Andes Mountains. Their complex structure causes modifications of large-scale atmospheric circulations resulting in various mesoscale phenomena as well as a high variability in the local conditions. Due to their height and length the terrain generates distinctly climate conditions between the western and the eastern slopes. While in the tropical regions along the western flanks the conditions are cold and arid, the eastern slopes are dominated by warm-moist and rainy air coming from the Amazon basin. Below 35° S the situation reverses with rather semiarid conditions in the eastern part and temperate rainy climate along southern Chile. Generally, global circulation models (GCMs) describe the state of the global climate and its changes, but are disabled to capture regional or even local features due to their coarse resolution. This is particularly true in heterogeneous regions such as the Andes Mountains, where local driving features, e. g. local circulation systems, highly varies on small scales and thus, lead to a high variability of rainfall distributions. An appropriate technique to overcome this problem and to gain regional and local scale rainfall information is the dynamical downscaling of the global data using a regional climate model (RCM). The poster presents results of the evaluation of the performance of the Weather Research and Forecasting (WRF) model over South America with special focus on the central Andes Mountains of Ecuador. A sensitivity study regarding the cumulus parametrization, microphysics, boundary layer processes and the radiation budget is conducted. With 17 simulations consisting of 16 parametrization scheme combinations and 1 default run a suitable model set-up for climate research in this region is supposed to be evaluated. The simulations were conducted in a two-way nested mode i) to examine the best physics scheme combination for the target and ii) to analyze the impact of spatial resolution and thus, the representation of the terrain on the result.

  10. Nonmarine facies in the Late Triassic(?) to Early Jurassic Horn Mountain Tuff member of the Talkeetna Formation, Horn Mountain, lower Cook Inlet basin, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.

    2016-01-01

    The Talkeetna Formation is a prominent lithostratigraphic unit in south-central Alaska. In the Iniskin–Tuxedni area, Detterman and Hartsock (1966) divided the formation into three mappable units including, from oldest to youngest, the Marsh Creek Breccia, the Portage Creek Agglomerate, and the Horn Mountain Tuff Members. The Horn Mountain Tuff Member was thought to include rocks deposited in a nonmarine setting based on the presence of “tree stumps in an upright position” (Detterman and Hartsock, 1966, p. 19) near the top of the type section at Horn Mountain. Bull (2015) recognized possible nonmarine volcaniclastic rocks in the member during the 2014 field season in a saddle on the north side of Horn Mountain (figs. 2-1 and 2-2). The authors visited this location in 2015 and measured a short stratigraphic section to document facies, interpret depositional setting, and constrain age. This report summarizes our field observations and presents preliminary interpretations.

  11. Intraplate mountain building in response to continent continent collision—the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Dickerson, Patricia Wood

    2003-04-01

    The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent-continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults. Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe-Carrizalillo, Ojinaga-Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America. Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia-Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.

  12. Ridgetop fire history of an oak-pine forest in the Ozark Mountains of Arkansas

    Treesearch

    Bear L. Engbring; Eric Heitzman; Martin A. Spetich

    2008-01-01

    A total of 53 fire-scarred Pinus echinata (shortleaf pine) trees were examined to reconstruct a ridgetop fi re chronology of an oak-pine forest in the Ozark Mountains of north-central Arkansas. This process yielded 104 fire scars dating to 61 separate fire years. Fire frequency was greatest during the Euro-American Settlement Period (1820–1900), when...

  13. Roost tree selection by northern myotis (Myotis septentrionalis) maternity colonies following prescribed fire in a Central Appalachian Mountains hardwood forest

    Treesearch

    Joshua B. Johnson; John W. Edwards; W. Mark Ford; J. Edward Gates

    2009-01-01

    Following decades of fire suppression in eastern forests, prescribed fire as a tool to restore or enhance oak (Quercus spp.)-dominated communities is gaining widespread acceptance in the Appalachian Mountains and elsewhere. However, the interactions of fire with biotic components such as wildlife that might be impacted by prescribed fire are poorly...

  14. Watershed-management aspects of thinned young lodgepole pine stands

    Treesearch

    B. C. Goodell

    1952-01-01

    The central section of the Rocky Mountains within Colorado and Wyoming is an important water-yielding area. Stream flow which originates in the mountains supplies water for irrigation, power generation, and domestic use. The actual source of most of this water is located above 8,000 feet in elevation. Here snows are heavy and water yields run as high as 24 inches per...

  15. Landscape-Scale Research In The Ouachita Mountains Of West-Central Arkansas: General Study Design

    Treesearch

    James M. Guldin

    2004-01-01

    Abstract A landscape-scale study on forest ecology and management began in 1995 in the eastern Ouachita Mountains. Of four large watersheds, three were within the Winona Ranger District of the Ouachita National Forest, and a major forest industry landowner largely owned and managed the fourth. These watersheds vary from 3,700 to 9,800 acres. At this...

  16. 77 FR 43521 - Final Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Nonattainment 6/13/12 Subpart 2/Marginal. the Sutter Buttes mountain range at or above 2,000 feet in elevation...., CA: (Central Mountain Cos.) Amador County Nonattainment 6/13/12 Subpart 2/Moderate. Calaveras County... Grant to the point of intersection with the range line common to Range 16 West and Range 17 West, San...

  17. Status and conservation of northern goshawks in the central Appalachian mountains: has the population trend reversed since 2001?

    Treesearch

    David F. Brinker; Kevin P. Boyle

    2010-01-01

    Prior to European settlement, northern goshawks (Accipiter gentilis) were a regular component of the high-elevation Appalachian breeding bird fauna, possibly as far south as the Great Smoky Mountains in North Carolina. As a result of extensive 19th century logging in the Appalachians, goshawks were extirpated from Maryland south by the beginning of...

  18. Microclimatic Conditions After Reproduction Cutting in Shortleaf Pine Stands in the Ouachita Mountains

    Treesearch

    James M. Guldin; James P. Barnett

    2004-01-01

    Automated weather stations collected microclimatic data over a 4.75-year period in six reproduction cutting treatments—a clearcut, two shelterwoods, a group selection, a single-tree selection, and an unmanaged control—in shortleaf pine stands in the Ouachita Mountains of west-central Arkansas. Treatment means for air temperature at 15 cm, soil temperature, solar...

  19. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China

    Treesearch

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li

    2017-01-01

    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  20. Erosion of mountain hiking trail over a seven-year period in Daisetsuzan National Park, central Hokkaido, Japan

    Treesearch

    Akemi Yoda; Teiji Watanabe

    2000-01-01

    Erosion of mountain hiking trails was investigated in Daisetsuzan National Park over a seven-year period. The amount and rate of erosion were different in the two typical landscape components. Cross-section diagrams revealed that trail depth became deeper in snowy vegetated areas than in wind-beaten bare ground areas. The existence and timing of runoff from snowmelt...

  1. Geophysical studies in the vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, north-central Nevada

    USGS Publications Warehouse

    Ponce, David A.

    2012-01-01

    From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in general, have implications for mineral- and geothermal-resource investigations throughout the Great Basin.

  2. Synoptic variability of extreme snowfall in the St. Elias Mountains, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Andin, Caroline; Zdanowicz, Christian; Copland, Luke

    2015-04-01

    Glaciers in the Wrangell and St. Elias Mountains (Alaska and Yukon) are presently experiencing some of the highest regional wastage rates worldwide. While the effect of regional temperatures on glacier melt rates in this region has been investigated, comparatively little is known about how synoptic climate variations, for example in the position and strength of the Aleutian Low, modulate snow accumulation on these glaciers. Such information is needed to accurately forecast future wastage rates, glacier-water resource availability, and contributions to sea-level rise. Starting in 2000, automated weather stations (AWS) were established in the central St-Elias Mountains (Yukon) at altitudes ranging from 1190 to 5400 m asl, to collect climatological data in support of glaciological research. These data are the longest continuous year-round observations of surface climate ever obtained from this vast glaciated region. Here we present an analysis of snowfall events in the icefields of the St-Elias Mountains based on a decade-long series of AWS observations of snow accumulation. Specifically, we investigated the synoptic patterns and air mass trajectories associated with the largest snowfall events (> 25 cm/12 hours) that occurred between 2002 and 2012. Nearly 80% of these events occurred during the cold season (October-March), and in 74 % of cases the precipitating air masses originated from the North Pacific south of 50°N. Zonal air mass advection over Alaska, or from the Bering Sea or the Arctic Ocean, was comparatively rare (20%). Somewhat counter-intuitively, dominant surface winds in the St. Elias Mountains during high snowfall events were predominantly easterly, probably due to boundary-layer frictional drag and topographic funneling effects. Composite maps of sea-level pressure and 700 mb winds reveal that intense snowfall events between 2002 and 2012 were associated with synoptic situations characterized by a split, eastwardly-shifted or longitudinally-stretched Aleutian Low (AL) having an easternmost node near the Kenai Peninsula, conditions that drove a strong southwesterly upper airstream across the Gulf of Alaska towards the coast. Situations with a single-node, westerly-shifted AL were comparatively rare. The spatial configuration of the synoptic AL pressure pattern appears to play a greater role in determining snowfall amount in the central St. Elias Mountains than do pressure anomalies within the AL. The estimated snowfall gradient from coastal Alaska to the central St. Elias Mountains during intense snowfall events averaged +2.0 ± 0.7 mm/km (SWE), while the continental-side gradient from the mountains towards the Yukon plateau averaged -3.3 ± 0.9 mm/km (SWE). The findings presented here can better constrain the climatic interpretation of long proxy records of snow accumulation variations developed from glacier cores drilled in the St. Elias Mountains or nearby regions.

  3. Change in Total Water in California's Mountains and Groundwater in Central Valley During the 2011-2014 Drought From GPS, GRACE, and InSAR

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Fu, Y.; Landerer, F. W.; Farr, T.; Watkins, M. M.; Famiglietti, J. S.

    2014-12-01

    Changes in total water thickness in most of California are being estimated using GPS measurements of vertical ground displacement. The Sierra Nevada each year subsides about 12 mm in the fall and winter due to the load of rain and snow, then rises about the same amount in the spring and summer when the snow melts, water runs off, and soil moisture evaporates. Earth's elastic response to a surface load is well known (except at thick sedimentary basins). Changes in equivalent water thickness can thus be inferred [Argus Fu Landerer 2014]. The average seasonal change in total water thickness is found to be 0.5 meters in the Sierra Nevada and Klamath Mountains and 0.1 meters in the Great Basin. The average seasonal change in the Sierra Nevada Mountains estimated with GPS is 35 Gigatons. GPS vertical ground displacements are furthermore being used to estimate changes in water in consecutive years of either drought or heavy precipitation. Changes in the sum of snow and soil moisture during California's drought from June 2011 to June 2014 are estimated from GPS in this study. Changes in water in California's massive reservoirs are well known and removed, yielding an estimate of change in the thickness of snow plus soil moisture. Water loss is found to be largest near the center of the southern Sierra Nevada (0.8 m equivalent water thickness) and smaller in the northern Sierra Nevada and southern Klamath Mountains (0.3 m). The GPS estimates of changes in the sum of snow and soil moisture complement GRACE observations of water change in the Sacramento-San Joaquin River basin. Whereas GPS provides estimates of water change at high spatial resolution in California's mountains, GRACE observes changes in groundwater in the Central Valley. We will further compare and contrast the GPS and GRACE measurements, and also evaluate the finding of Amos et al. [2014] that groundwater loss in the southern Central Valley (Tulare Basin) is causing the mountains on either side to rise at 1 to 3 mm/yr.

  4. Structural profile reconstructions and thermal metamorphic evolution in the slate belt of southern Hsuehshan Range in the active Taiwan mountain belt

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Chen, Chih-Tung; Lee, Jian-Cheng; Shyu, J. Bruce H.

    2017-04-01

    The fate of passive continental margin in collisional orogens is crucial in understanding tectonic evolution of mountain belts. The active arc-continent collision of Taiwan is considered as a model case in studying mountain building processes, and largely consists of deformed margin basement and cover series. Among the whole orogeny belt, the slate belt of the Hsuehshan Range (HR) is a prominent large-scale pop-up structural on the prowedge part of the orogen, and is composed of metamorphosed Eocene to Miocene sediments which experienced only the Neogene Taiwan orogeny after diagenesis in margin graben. Characterizing the metamorphic history of the HR is essential for reconstructing its geological evolution during the mountain building processes. However, previous studies were mostly focused on northern and central HR, structural investigation coupled with metamorphic documentation in the southern part of HR, which is the most active part of the orogeny belt, is therefore targeted in this work. Since carbonaceous material is common in pelitic protolith of HR slates, the Raman spectrum of carbonaceous material (RSCM) measuring the rock peak temperature is chosen for quantitative thermal metamorphic documentation. In this study, we reconstruct a geological structural profile in western central Taiwan across the prowedge part of the mountain belt containing the southern HR by combining the surface geological data, well log records and published seismic reflection profiles. Although most of the existing data are concentrated in the fold-and-thrust belt, they are now reinforced by new field structural measurements and RSCM samples in the southern HR. In total 27 RSCM samples were collected along 2 transects perpendicular to the average strike with a dense interval about 2 km. The results allow us to map peak temperature distribution across southern HR, and provide new constraints for structural profile reconstruction and reappraisal of the structural evolution of the HR and neighboring fold-and-thrust belt. As shown in the previous thermal metamorphic investigation, we expected that southern HR strata acquired highest temperature during its burial stage than the orogenic stage like their central HR counterparts, thus experiencing mostly retrograde metamorphism in the entire mountain building processes.

  5. Preliminary Geologic Map of the Southern Funeral Mountains and Adjacent Ground-Water Discharge Sites, Inyo County, California, and Nye County, Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.; Slate, Janet L.; Berry, M.E.; Machette, Michael N.

    2008-01-01

    This map covers the southern part of the Funeral Mountains, and adjacent parts of four structural basins - Furnace Creek, Amargosa Valley, Opera House, and central Death Valley. It extends over three full 7.5-minute quadrangles, and parts of eleven others - a total area of about 950 square kilometers. The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of ground water that discharges from the springs of the Furnace Creek wash area, in the west-central part of the map. These springs provide the major potable water supply for Death Valley National Park.

  6. Report upon United States geological surveys west of the one hundredth meridian, Volume III: Supplement -- geology

    USGS Publications Warehouse

    Wheeler, George Montague; Stevenson, John J.

    1881-01-01

    The region examined during the seasons of 1878 and 1879 extends north to north latitude 37° 20, and embraces parts of North Central New Mexico, and South Central Colorado. It lies wholly east from the canon of the Rio Grande, includes the mountain area of the Spanish ranges to their southern termination, and takes in the eastern plains to west longitude 104° 7' 30". But of this region a strip between the Rio Grande and the mountains, lying south from north latitude 36° 40" was not visited; and the total area colored on the maps is not far from 10,000 square miles.

  7. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Li, Shuangying; Jin, Fuquan; Wan, Yusheng; Zhang, Shukun

    2004-04-01

    A suite of slightly metamorphosed Carboniferous sedimentary strata occurs in the northern margin of the Dabie Mountains, central China. It consists, in ascending order, of the upper Huayuanqiang Formation (C 1), the Yangshan Formation (C 1), the Daorenchong Formation (C 1-2), the most widely distributed Huyoufang Formation (C 2) and the Yangxiaozhuang Formation (C 2). The provenance of the Carboniferous sedimentary rocks is constrained by the integration of trace elements, detrital mineral chemistry and sensitive high resolution ion microprobe (SHRIMP) dating of detrital zircons, which can help to understand the connection between the provenance and the Paleozoic tectonic evolution of the Qinling-Dabie Orogen. The trace element compositions indicate that the source terrain was probably a continental island arc. Detrital tourmalines were mainly derived from aluminous and Al-poor metapelites and metapsammites, and some are sourced from Li-poor granitoids, pegmatites and aplites. Detrital garnets, found only in the uppermost Huyoufang Formation, are almandine and Mn-almandine garnets, indicating probable sources mainly from garnetiferous schists, and partly from granitoid rocks. The detrital white K-micas are muscovitic in the Huayuanqiang, Daorenchong and Huyoufang Formations, and phengitic with Si contents (p.f.u.) from 3.20 up to max. 3.47-3.53 in the uppermost Huyoufang and the Yangxiaozhuang Formations, a meta-sedimentary source. Major components in the detrital zircon age structure for the Huyoufang Formation range from 506 to 363 Ma, centering on ˜400 and ˜480 Ma, which is characteristic of the Qinling and Erlangping Groups in the Qinling and Tongbai Mountains, central China. Evidently, the major source of the Carboniferous sedimentary rocks in the northern margin of Dabie Mountains was from the southern margin of the Sino-Korean Craton represented by the Qinling and Erlangping Groups. The source area was an island-arc system during the Early Paleozoic that collided with the Sino-Korea plate towards the end of the Early Paleozoic or during the Devonian. A prominent feature in the detrital zircon age structure of the Huyoufang Formation is the Neoproterozoic detritus, which could be derived only from the Yangtze Craton. Reasonable interpretation of the two distinct source materials for the Huyoufang Formation is that the two plates were juxtaposed through collision before the late Carboniferous.

  8. Updated azca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region

    NASA Astrophysics Data System (ADS)

    Somoza, R.

    1998-05-01

    Recently published seafloor data around the Antarctica plate boundaries, as well as calibration of the Cenozoic Magnetic Polarity Time Scale, allow a reevaluation of the Nazca (Farallon)-South America relative convergence kinematics since late Middle Eocene time. The new reconstruction parameters confirm the basic characteristics determined in previous studies. However, two features are notable in the present data set: a strong increase in convergence rate in Late Oligocene time, and a slowdown during Late Miocene time. The former is coeval with the early development of important tectonic characteristics of the present Central Andes, such as compressional failure in wide areas of the region, and the establishment of Late Cenozoic magmatism. This supports the idea that a relationship exists between strong acceleration of convergence and mountain building in the Central Andean region.

  9. Assessment of diabetes care and the healthcare system in economically and transport underdeveloped rural mountain areas of western China: A cross-sectional survey.

    PubMed

    Ke, Linqiu; Zhang, Yuwei; Wang, Xiaoqian; Li, Shengyong; Yang, Wei; Tong, Nanwei

    2017-05-01

    The aim of the present study was to assess the quality of diabetes care and characteristics of the healthcare system in underdeveloped rural mountain areas of western China. Questionnaires were used to collect data from 288 diabetic patients with a multistage cluster sampling method in Zhongjiang County (Sichuan Province) between October 2009 and April 2010. Sixty-two village clinics, 23 town health centers, and a county central hospital were included to assess the availability of diabetes-related medical resources, in addition to diabetes-related medical insurance, reimbursement policies, and manpower. Of 288 patients, 38.2 % monitored their blood glucose regularly. Targets for fasting blood glucose (≤7 mmol/L) and blood pressure (≤130/80 mmHg) were achieved by 7.6 % and 9.7 % of patients, respectively. On average, each patient paid US$120 out of pocket annually for out-patient diabetes care, with a maximum US$86 reimbursed. The county central hospital was the only healthcare facility in the county that could provide all essential diabetes-related drugs and process-of-care measures and tests, except measures of HbA1c and the urinary albumin: creatinine ratio. Insulin was not available at village clinics, and only 29 % of village clinics had glucometers. "Certified" doctors were not available to provide primary care in village clinics. The quality of diabetes care was quite poor in underdeveloped rural mountain areas of western China. Recommendations for further intervention research to improve diabetes healthcare include increasing investment in medical infrastructure, improving the availability of essential drugs and process measures, organizing regular diabetes patient education, and recruiting village doctors. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  10. Characterization of ten microsatellite loci in the Broad-tailed hummingbird (Selasphorus platycercus)

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Fike, Jennifer A.; Talley-Farnham, Tiffany; Engelman, Tena; Engelman, Fred

    2011-01-01

    The Broad-tailed Hummingbird (Selaphorus platycercus) breeds at higher elevations in the central and southern Rockies, eastern California, and Mexico and has been studied for 8 years in Rocky Mountain National Park, Colorado. Questions regarding the relatedness of Broad-tailed Hummingbirds banded together and then recaptured in close time proximity in later years led us to isolate and develop primers for 10 polymorphic microsatellite loci. In a screen of 25 individuals from a population in Rocky Mountain National Park, the 10 loci were found to have levels of variability ranging from two to 16 alleles. No loci were found to depart from linkage disequilibrium, although two loci revealed significant departures from Hardy–Weinberg equilibrium. These 10 microsatellite loci will be applicable for population genetic analyses, investigation of mating systems and relatedness, and may help gain insight into the migration timing and routes for this species.

  11. Aptian-Albian boundary in Central Southern Atlas of Tunisia: New tectono-sedimentary facts

    NASA Astrophysics Data System (ADS)

    Ghanmi, Mohamed Abdelhamid; Barhoumi, Amine; Ghanmi, Mohamed; Zargouni, Fouad

    2017-08-01

    The Aptian-Albian boundary preserves one of the most important events in Central-Southern Atlas of Tunisia, which belongs to the Southern Tethyan margin. A major sedimentary break was recorded between Early Aptian and Albian series in Bouhedma-Boudouaou Mountains. This major hiatus probably linked to the ''Austrian phase'' and to the Aptian and Albian ''Crisis'' testify a period of major tectonic events. In this paper, field observations on the Mid-Cretaceous stratigraphy combined with seismic profile interpretation were used for the first time to characterize the Aptian-Albian boundary in Central-Southern Atlas of Tunisia. Our new results reveal that Aptian-Albian boundary marks a critical interval not only in Maknassy-Mezzouna orogenic system but also in the Tunisian Atlas. Furthermore, Aptian-Albian series outcrop is marked by the important sedimentary gaps as well as a dramatic thickness change from West to East and predominately from North to South. This is linked to the extensional tectonic features which characterize all the Central-Southern Atlas of Tunisia.

  12. Experiences with a Decade of Wireless Sensor Networks in Mountain Cryosphere Research

    NASA Astrophysics Data System (ADS)

    Beutel, Jan

    2017-04-01

    Research in geoscience depends on high-quality measurements over long periods of time in order to understand processes and to create and validate models. The promise of wireless sensor networks to monitor autonomously at unprecedented spatial and temporal scale motivated the use of this novel technology for studying mountain permafrost in the mid 2000s. Starting from a first experimental deployment to investigate the thermal properties of steep bedrock permafrost in 2006 on the Jungfraujoch, Switzerland at 3500 m asl using prototype wireless sensors the PermaSense project has evolved into a multi-site and multi-discipline initiative. We develop, deploy and operate wireless sensing systems customized for long-term autonomous operation in high-mountain environments. Around this central element, we develop concepts, methods and tools to investigate and to quantify the connection between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics. In this presentation, we describe the concepts and system architecture used both for the wireless sensor network as well as for data management and processing. Furthermore, we will discuss the experience gained in over a decade of planning, installing and operating large deployments on field sites spread across a large part of the Swiss and French Alps and applications ranging from academic, experimental research campaigns, long-term monitoring and natural hazard warning in collaboration with government authorities and local industry partners. Reference http://www.permasense.ch Online Open Data Access http://data.permasense.ch

  13. Active mountain building and the distribution of “core” Maxillariinae species in tropical Mexico and Central America

    USGS Publications Warehouse

    Kirby, Stephen H.

    2011-01-01

    The observation that southeastern Central America is a hotspot for orchid diversity has long been known and confirmed by recent systematic studies and checklists. An analysis of the geographic and elevation distribution demonstrates that the most widespread species of “core” Maxillariinae are all adapted to life near sea level, whereas the most narrowly endemic species are largely distributed in wet highland environments. Drier, hotter lowland gaps exist between these cordilleras and evidently restrict the dispersal of the species adapted to wetter, cooler conditions. Among the recent generic realignments of “core” Maxillariinae based on molecular phylogenetics, the Camaridium clade is easily the most prominent genus in Central America and is largely restricted to the highlands of Costa Rica and Panama, indicating that this region is the ancestral home of this genus and that its dispersal limits are drier, lowland cordilleran gaps. The mountains of Costa Rica and Panama are among the geologically youngest topographic features in the Neotropics, reflecting the complex and dynamic interactions of numerous tectonic plates. From consideration of the available geological evidence, I conclude that the rapid growth of the mountain ranges in Costa Rica and Panama during the late Cenozoic times created, in turn, very rapid ranges in ecological life zones and geographic isolation in that part of the isthmus. Thus, I suggest that these recent geologic events were the primary drivers for accelerated orchid evolution in southeastern Central America.

  14. Active mountain building and the distribution of core Maxillariinae species in tropical Mexico and Central America

    USGS Publications Warehouse

    Kirby, Stephen H.

    2011-01-01

    The observation that southeastern Central America is a hotspot for orchid diversity has long been known and confirmed by recent systematic studies and checklists. An analysis of the geographic and elevation distribution demonstrates that the most widespread species of “core” Maxillariinae are all adapted to life near sea level, whereas the most narrowly endemic species are largely distributed in wet highland environments. Drier, hotter lowland gaps exist between these cordilleras and evidently restrict the dispersal of the species adapted to wetter, cooler conditions. Among the recent generic realignments of “core” Maxillariinae based on molecular phylogenetics, the Camaridium clade is easily the most prominent genus in Central America and is largely restricted to the highlands of Costa Rica and Panama, indicating that this region is the ancestral home of this genus and that its dispersal limits are drier, lowland cordilleran gaps. The mountains of Costa Rica and Panama are among the geologically youngest topographic features in the Neotropics, reflecting the complex and dynamic interactions of numerous tectonic plates. From consideration of the available geological evidence, I conclude that the rapid growth of the mountain ranges in Costa Rica and Panama during the late Cenozoic times created, in turn, very rapid ranges in ecological life zones and geographic isolation in that part of the isthmus. Thus, I suggest that these recent geologic events were the primary drivers for accelerated orchid evolution in southeastern Central America.

  15. THE EXTENT OF MINE DRAINAGE INTO STREAMS OF THE CENTRAL APPALACHIAN AND ROCKY MOUNTAIN REGIONS

    EPA Science Inventory

    Runoff and drainage from active and inactive mines are contaminating streams throughout the United States with acidic and metal contaminated waters and sediments. The extent of mining impacts on streams of the coal bearing region of the Central Appalachians and the metal bearing...

  16. Characterization of high elevation central Appalachian wetlands

    Treesearch

    K.E. Francl; W.M. Ford; S.B. and Castleberry

    2004-01-01

    We characterized 20 high elevation wetlands in the central Appalachian Mountains in West Virginia and Maryland, in terms of vegetation, soils, hydrology, and geology. Plant species were distributed along soil chemical (pH, conductivity) and physical (organic matter depth) gradients across sites. Topography and geology appear to explain differences among these wetlands...

  17. Age Distribution of Oak Forests in North-Central Arkansas

    Treesearch

    Rick Soucy; Eric Heitzman; Martin A. Spetich

    2004-01-01

    We used tree ring analysis to reconstruct the tree establishment patterns in four mature white oak (Quercus alba L.)-northern red oak (Quercus rubra L.)-hickory (Carya spp.) forests in the Ozark Mountains of north-central Arkasas. Cross sections were removed from the stumps of 321 recently harvested trees and...

  18. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Fuquan; Geng, Xinxia; Wang, Rui; Zhang, Zhixin; Guo, Xuji

    2018-06-01

    The Altay Mountains within the Xinjiang region of northwestern China hosts major metallic ore deposits. Here we review the geological characteristics, metallogenic features and tectonic settings of these deposits. The metallic ore deposits in the Altay Mountains occur mainly within four regions: North Altay, Central Altay, South Altay and Erqis. We recognize seven types of metallic ore deposits in the Altay Mountains: VMS, submarine volcanogenic iron, magmatic, skarn, pegmatite, hydrothermal vein (Cu-Zn, Fe) and orogenic gold. Among these types, the VMS, pegmatite, orogenic gold and skarn deposits are the most common. Most of the rare metal pegmatite deposits are distributed in Central Altay, with only a few in South Altay. The VMS, submarine volcanogenic type iron and skarn-type deposits are distributed in South Altay, whereas the orogenic-type gold deposits are distributed in the Erqis Fault belt. The hydrothermal vein-type deposits occur in the Erqis Fault belt and Chonghu'er Basin in South Altay. Magmatic-type deposits are mostly in the Erqis Fault belt and Central Altay. Based on isotopic age data, the VMS, submarine volcanogenic-type Fe and skarn-type Cu, Pb, Zn, Fe mineralization occurred during Early-Middle Devonian (∼410-377 Ma), orogenic-type Au, magmatic-type Cu-Ni, and a small number of skarn-type Fe, hydrothermal vein-type Cu-Zn, pegmatite-type rare-metal deposits in Early-Middle Permian (293-261 Ma), pegmatite-type rare-metal deposits, few skarn-type Fe deposit in Early-Middle Triassic (248-232 Ma), and dominantly represented by pegmatite-type rare-metal deposits in Late Triassic-Early Jurassic (223-180 Ma). The metallic ore deposits in the Altay Mountains formed in various tectonic settings, such as the Early-Middle Devonian continental arc and oceanic island arc, Early-Middle Permian post-collisional extensional setting, and Triassic-Early Jurassic intracontinental setting.

  19. 3. VIEW OF CENTRAL AVENUE LOOKING WEST FROM JUST EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF CENTRAL AVENUE LOOKING WEST FROM JUST EAST OF THE INTERSECTION OF CENTRAL AVENUE AND THE EAST PERIMETER ROAD. THE ROCKY FLATS PLANT IS ABOUT 16 MILES NORTHWEST OF DENVER ON A PLATEAU AT THE EASTERN EDGE OF THE FRONT RANGE OF THE ROCKY MOUNTAINS. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  20. Isostatic Gravity Map of the Battle Mountain 30 x 60 Minute Quadrangle, North Central Nevada

    USGS Publications Warehouse

    Ponce, D.A.; Morin, R.L.

    2000-01-01

    Introduction Gravity investigations of the Battle Mountain 30 x 60 minute quadrangle were begun as part of an interagency effort by the U.S. Geological Survey (USGS) and the Bureau of Land Management to help characterize the geology, mineral resources, hydrology, and ecology of the Humboldt River Basin in north-central Nevada. The Battle Mountain quadrangle is located between 40?30' and 41?N. lat. and 116? and 117?W. long. This isostatic gravity map of the Battle Mountain quadrangle was prepared from data from about 1,180 gravity stations. Most of these data are publicly available on a CD-ROM of gravity data of Nevada (Ponce, 1997) and in a published report (Jewel and others, 1997). Data from about 780 gravity stations were collected by the U.S. Geological Survey since 1996; data from about 245 of these are unpublished (USGS, unpub. data, 1998). Data collected from the 400 gravity stations prior to 1996 are a subset of a gravity data compilation of the Winnemucca 1:250,000-scale quadrangle described in great detail by Wagini (1985) and Sikora (1991). This detailed information includes gravity meters used, dates of collection, sources, descriptions of base stations, plots of data, and a list of principal facts. A digital version of the entire data set for the Battle Mountain quadrangle is available on the World Wide Web at: http://wrgis.wr.usgs.gov/docs/gump/gump.html

  1. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    PubMed

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.

  2. From nappe stacking to extensional detachments at the contact between the Carpathians and Dinarides - The Jastrebac Mountains of Central Serbia

    NASA Astrophysics Data System (ADS)

    Erak, Dalibor; Matenco, Liviu; Toljić, Marinko; Stojadinović, Uroš; Andriessen, Paul A. M.; Willingshofer, Ernst; Ducea, Mihai N.

    2017-07-01

    Reactivation of inherited nappe contacts is a common process in orogenic areas affected by back-arc extension. The amount of back-arc extension is often variable along the orogenic strike, owing to the evolution of arcuated mountain chains during stages of rapid slab retreat. This evolution creates low rates of extension near rotation poles, where kinematics and interplay with the pre-existing orogenic structure are less understood. The amount of Miocene extension recorded by the Pannonian Basin of Central Europe decreases SE-wards along the inherited Cretaceous - Paleogene contact between the Dinarides and Carpathian Mountains. Our study combines kinematic data obtained from field and micro-structural observations assisted with fission track thermochronological analysis and U-Pb zircon dating to demonstrate a complex poly-phase evolution in the key area of the Jastrebac Mountains of Serbia. A first event of Late Cretaceous exhumation was followed by latest Cretaceous - Eocene thrusting and magmatism related to a continental collision that sutured the accretionary wedge containing contractional trench turbidites. The suture zone was subsequently reactivated and exhumed by a newly observed Miocene extensional detachment that lasted longer in the Jastrebac Mountains when compared with similar structures situated elsewhere in the same structural position. Such extensional zones situated near the pole of extensional-driven rotation favour late stage truncations and migration of extension in a hanging-wall direction, while directions of tectonic transport show significant differences in short distances across the strike of major structures.

  3. Differentiation of flea communities infesting small mammals across selected habitats of the Baltic coast, central lowlands, and southern mountains of Poland.

    PubMed

    Kowalski, Krzysztof; Eichert, Urszula; Bogdziewicz, Michał; Rychlik, Leszek

    2014-05-01

    Only a few studies comparing flea composition on the coast and in the mountains have been conducted. We investigated differences in flea communities infesting small mammals in selected habitats in northern, central, and southern Poland. We predicted (1) a greater number of flea species in the southeastern Poland and a lower number in the north, (2) a greater number of flea species in fertile and wet habitats than in poor and arid habitats, and (3) a low similarity of flea species between flea communities in western and eastern Poland. We found a negative effect of increasing latitude on flea species richness. We suppose that the mountains providing a variety of environments and the limits of the geographic ranges of several flea subspecies in southeastern Poland result in a higher number of flea species. There was a positive effect of increasing wetness of habitat on flea species richness. We found a high diversity in flea species composition between western and eastern Poland (beta diversity = 11) and between central and eastern Poland (beta diversity = 12). Re-colonization of Poland by small mammals and their ectoparasites from different (western and eastern) refugees can affect on this high diversity of flea species.

  4. Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia

    PubMed Central

    Seim, Andrea; Omurova, Gulzar; Azisov, Erlan; Musuraliev, Kanaat; Aliev, Kumar; Tulyaganov, Timur; Nikolyai, Lyutsian; Botman, Evgeniy; Helle, Gerd; Dorado Liñan, Isabel; Jivcov, Sandra; Linderholm, Hans W.

    2016-01-01

    Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935–2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia. PMID:27100092

  5. Lithologic discrimination of volcanic and sedimentary rocks by spectral examination of Landsat TM data from the Puma, Central Andes Mountains

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.

    1986-01-01

    The Central Andes are widely used as a modern example of noncollisional mountain-building processes. The Puna is a high plateau in the Chilean and Argentine Central Andes extending southward from the altiplano of Bolivia and Peru. Young tectonic and volcanic features are well exposed on the surface of the arid Puna, making them prime targets for the application of high-resolution space imagery such as Shuttle Imaging Radar B and Landsat Thematic Mapper (TM). Two TM scene quadrants from this area are analyzed using interactive color image processing, examination, and automated classification algorithms. The large volumes of these high-resolution datasets require significantly different techniques than have been used previously for the interpretation of Landsat MSS data. Preliminary results include the determination of the radiance spectra of several volcanic and sedimentary rock units and the use of the spectra for automated classification. Structural interpretations have revealed several previously unknown folds in late Tertiary strata, and key zones have been targeted to be investigated in the field. The synoptic view of space imagery is already filling a critical gap between low-resolution geophysical data and traditional geologic field mapping in the reconnaissance study of poorly mapped mountain frontiers such as the Puna.

  6. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-03-16

    ISS027-E-005274 (16 March 2011) --- Central Tien Shan in the People?s Republic of China is featured in this image photographed by an Expedition 27 crew member on the International Space Station (ISS). The Tien Shan (or ?celestial mountains? in Chinese) is one of the largest continuous mountain ranges in the world, extending approximately 2,500 kilometers roughly east-west across Central Asia. This photograph provides a detailed view of part of the central Tien Shan, located approximately 64 kilometers east of a point where the borders of China, Kyrgyzstan, and Kazakhstan meet. While the image looks like it might have been taken from an airplane, it was taken from the space station at an altitude of 341 kilometers. The distance between the ISS ground track position (approximately 304 kilometers to the southwest) and the imaged area produces an oblique ? looking outwards an angle, rather than straight down ? view that, together with shadowing of valleys, accentuates the mountainous topography. Like the Himalayas to the south, the uplift of the Tien Shan results from the ongoing collision between the Eurasian and Indian continental tectonic plates. The rugged topography of the range is the result of subsequent erosion by water, wind, and in the highest parts of the range, active glaciers. Two types of glaciers are visible in the image; cirque glaciers occupy amphitheater-like depressions on the upper slopes of the mountains, and feed ice downslope to aggregate into large valley glaciers such as the one visible at center. Low clouds obscure an adjacent valley and glaciers to the north (upper left). Two high peaks of the central Tien Shan are identifiable in the image. Xuelian Feng has a high summit of 6,527 meters above sea level. To the east, the aptly-named Peak 6231 has summit of 6,231 meters above sea level.

  7. Determining the population boundaries of a narrowly endemic perennial plant, Lane Mountain milk-vetch, in San Bernardino County, California

    Treesearch

    David Charlton

    2007-01-01

    The Lane Mountain milk-vetch (Astragalus jaegerianus) is a federally endangered species. It was first discovered in 1939 by Edmund Jaeger in the central Mojave Desert of California. This plant species was not collected again until the army became interested in expanding Fort Irwin’s western boundary in the 1980’s. Following its rediscovery,...

  8. Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystems

    Treesearch

    Andrzej Bytnerowicz; Michael J. Arbaugh; Susan L. Schilling

    1998-01-01

    Industrial air pollution has been identified as one of the primary causes of severe damage to forests of central Europe in the past 30 to 40 years. The mountain forest ecosystems have been affected considerably, resulting in extensive areas of severely deteriorated forest stands (e.g., the Krusne Hory of the Czech Republic or the Izerske and Sudety Mountains along the...

  9. Heart Rots of Engelmann Spruce and Subalpine Fir in the Central Rocky Mountain Region (FIDL)

    Treesearch

    T.E. Hinds

    1977-01-01

    Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forests are widely distributed in western North America--from the northern Rocky Mountains of British Columbia and Alberta southward into Arizona and New Mexico. They occur at elevations of 2,000 to 7,000 feet in their northern range whereas they are found from about 8,000 to 12,000 feet in the south...

  10. Effects of reproduction cutting method and hardwood retention on shortleaf pine seed production in natural stands of the Ouachita Mountains

    Treesearch

    Robert F. Wittwer; Micahel G. Shelton; James M. Guldin

    2003-01-01

    Shortleaf pine (Pinus echinata Mill.) seed production was monitored for 4 yr in stands harvested by a range of even- and uneven-aged reproduction cutting methods. The fifty-two 35–40 ac stands were distributed throughout the Ouachita Mountains from central Arkansas to eastern Oklahoma. Seed crops were characterized as good, poor, poor, and bumper,...

  11. Five-year operational trial of verbenone to deter mountain pine beetle (Dendroctonus ponderosae); Coleoptera: Scolytidae) attack of lodgepole pine (Pinus contorta).

    Treesearch

    R.A. Progar

    2005-01-01

    The antiaggregation pheromone verbenone was operationally tested for 5 yr to deter mass attack by the mountain pine beetle on lodgepole pine in campgrounds and administrative areas surrounding Redfish and Little Redfish Lakes at the Sawtooth National Recreation Area in central Idaho. Each year, five-gram verbenone pouches were evenly distributed (-10 m apart) within...

  12. Fire and stand history in two limber pine (Pinus flexilis) and Rocky Mountain bristlecone pine (Pinus aristata) stands in Colorado

    Treesearch

    Peter M. Brown; Anna W. Schoettle

    2008-01-01

    We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest...

  13. Potential climatic refugia in semi-arid, temperate mountains: plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA

    Treesearch

    Constance I. Millar; Robert D. Westfall; Angela Evenden; Jeffrey G. Holmquist; Jutta Schmidt-Gengenbach; Rebecca S. Franklin; Jan Nachlinger; Diane L. Delany

    2015-01-01

    Unique thermal and hydrologic regimes of rock-glacier and periglacial talus environments support little-studied mountain ecosystems. We report the first studies of vascular plant and arthropod diversity for these habitats in the central Sierra Nevada, California, USA. Surfaces of active rock glaciers develop scattered islands of soil that provide habitat for vegetation...

  14. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  15. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  16. Earth Observations taken by the STS-112 crew

    NASA Image and Video Library

    2002-10-12

    STS112-708-002 (7-18 October 2002) --- This image, photographed from the Earth-orbiting Space Shuttle Atlantis, covers parts of Utah, Colorado, Wyoming and Idaho. The Front Range of the Rockies is the dark range crossing the bottom of the view, with Denver and neighboring cities (grays) situated in the gentle embayment of the mountains (bottom center of the view). Great Salt Lake in Utah appears as two colors of blue top left, with the snow-covered Uinta Mountains just below, in this northwesterly view. Most of the view encompasses the brown plains of western Wyoming (center) and the cluster of mountains around Yellowstone (top center, top right, with snow). Beyond the brown Snake River Plain, black rocks of the Sawtooth Mountains and neighboring ranges of central Idaho appear top center.

  17. Characteristics of Precipitation Features and Annual Rainfall during the TRMM Era in the Central Andes

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Slayback, Daniel; Yager, Karina

    2014-01-01

    The central Andes extends from 7 deg to 21 deg S, with its eastern boundary defined by elevation (1000m and greater) and its western boundary by the coastline. The authors used a combination of surface observations, reanalysis, and the University of Utah Tropical Rainfall Measuring Mission (TRMM) precipitation features (PF) database to understand the characteristics of convective systems and associated rainfall in the central Andes during the TRMM era, 1998-2012. Compared to other dry (West Africa), mountainous (Himalayas), and dynamically linked (Amazon) regions in the tropics, the central Andes PF population was distinct from these other regions, with small and weak PFs dominating its cumulative distribution functions and annual rainfall totals. No more than 10% of PFs in the central Andes met any of the thresholds used to identify and define deep convection (minimum IR cloud-top temperatures, minimum 85-GHz brightness temperature, maximum height of the 40-dBZ echo). For most of the PFs, available moisture was limited (less than 35mm) and instability low (less than 500 J kg(exp -1)). The central Andes represents a largely stable, dry to arid environment, limiting system development and organization. Hence, primarily short-duration events (less than 60 min) characterized by shallow convection and light to light-moderate rainfall rates (0.5-4.0 mm h(exp -1)) were found.

  18. Fuzzy-based assessment of groundwater intrinsic vulnerability of a volcanic aquifer in the Chilean Andean Valley.

    PubMed

    Duhalde, Denisse J; Arumí, José L; Oyarzún, Ricardo A; Rivera, Diego A

    2018-06-11

    A fuzzy logic approach has been proposed to face the uncertainty caused by sparse data in the assessment of the intrinsic vulnerability of a groundwater system with parametric methods in Las Trancas Valley, Andean Mountain, south-central Chile, a popular touristic place in Chile, but lacking of a centralized drinking and sewage water public systems; this situation is a potentially source of groundwater pollution. Based on DRASTIC, GOD, and EKv and the expert knowledge of the study area, the Mamdani fuzzy approach was generated and the spatial data were processed by ArcGIS. The groundwater system exhibited areas with high, medium, and low intrinsic vulnerability indices. The fuzzy approach results were compared with traditional methods results, which, in general, have shown a good spatial agreement even though significant changes were also identified in the spatial distribution of the indices. The Mamdani logic approach has shown to be a useful and practical tool to assess the intrinsic vulnerability of an aquifer under sparse data conditions.

  19. Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2014-01-01

    The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine shales in the Bighorn Basin.

  20. Preliminary Geologic Map of the White Sulphur Springs 30' x 60' Quadrangle, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2006-01-01

    The geologic map of the White Sulphur Springs quadrangle, scale 1:100,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of the geologically complex area in west-central Montana. The quadrangle encompasses about 4,235 km2 (1,635 mi2), across part of the Smith River basin, the west end of the Little Belt Mountains, the Castle Mountains, and the upper parts of the basins of the North Forks of the Smith and Musselshell Rivers and the Judith River. Geologically the quadrangle extends across the eastern part of the Helena structural salient in the Rocky Mountain thrust belt, a segment of the Lewis and Clark tectonic zone, west end of the ancestral central Montana uplift, and the southwest edge of the Judith basin. Rocks and sediments in the White Sulphur Springs quadrangle are assigned to 88 map units on the basis of rock or sediment type and age. The oldest rock exposed is Neoarchean diorite that is infolded with Paleoproterozoic metamorphic rocks including gneiss, diorite, granite, amphibolite, schist, and mixed metamorphic rock types. A thick succession of the Mesoproterozoic Belt Supergroup unconformably overlies the metamorphic rocks and, in turn, is overlain unconformably by Phanerozoic sedimentary and volcanic rocks. Across most of the quadrangle, the pre-Tertiary stratigraphic succession is intruded by Eocene dikes, sills, and plutons. The central part of the Little Belt Mountains is generally underlain by laccoliths and sheet-like bodies of quartz monzonite or dacite. Oligocene andesitic basalt flows in the western and southern part of the quadrangle document both the configuration of the late Eocene erosional surfaces and the extent of extensional faulting younger than early Oligocene in the area. Pliocene, Miocene, and Oligocene strata, mapped as 11 units, consist generally of interbedded sand, gravel, and tuffaceous sedimentary rock. Quaternary and Quaternary-Tertiary sediments rest across the older Cenozoic deposits and across all older rocks. The Quaternary and Quaternary-Tertiary deposits generally are gravels that mantle broad erosional surfaces on the flanks of the mountains, gravels in stream channels, and colluvium and landslide deposits on hill sides. Glacial deposits, representing at least two stages of glaciation, are present in the northern part of the Little Belt Mountains. The geologic structure of much of the northwest part of the quadrangle is a broad uplift, in the core of which the Paleoproterozoic and Neoarchean metamorphic rocks are exposed. Down plunge to the east, the succession of Phanerozoic sedimentary rocks define an east-trending arch, cored locally by Mesoproterozoic strata of the Belt Supergroup. The north flank of the arch dips steeply north as a monocline. Stratigraphic relations among Mississippian, Pennsylvanian, and Jurassic strata document the recurrent uplift and erosion on that north flank. The broader arch of the Little Belt Mountains reflects the west plunge of the ancestral Central Montana uplift. The eastern extension of the Lewis and Clark tectonic zone is exposed in the southern half of the quadrangle where the Volcano Valley fault zone curves from west to southeast as a reverse fault along which the latest movement is up on the south side. The fault zone ends in an anticline in the south-central margin of the quadrangle. Stratigraphic overlap of Phanerozoic strata over the truncated edges of Mesoproterozoic units documents that the area of the eastern terminus of the fault zone was tectonically recurrently active. Northeast trending strike-slip faults displace Mesoproterozoic rocks in the northwest and south-central parts of the quadrangle. Several of those faults are overlain unconformably by the Middle Cambrian Flathead Sandstone. Other north-east and west-trending faults across the central part of the quadrangle are intruded by middle Eocene plutons. You

  1. Paleoglaciology of the Tian Shan and Altai Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Blomdin, Robin

    Central Asia is home to some of the highest and most spectacular mountain ranges in the world, including the Tian Shan and Altai Mountains, and plays a major role in global and regional climate and hydrology. Understanding the glacial history of this vast region is important for several reasons, but in particular there is a general lack of paleoclimatic data from this highly continental region, at the confluence of major climate systems, and glaciers are sensitive monitors of climate change. This thesis examines the pattern and history of glacial deposition and erosion in the Tian Shan and Altai Mountains using a combined approach including 1) geomorphological mapping, 2) spatial analysis of glacial geomorphology, 3) hypsometry, 4) Equilibrium Line Altitudes (ELA), and 5) 10Be exposure dating of erratic boulders on glacial landforms. Preliminary mapping of the Altai Mountains suggests the area mainly experienced alpine style glaciations, with glacial centers as ice caps and ice fields located around the higher mountainous areas. This is consistent with previous work on the Tian Shan. For the Tian Shan we have new apparent minimum 10Be exposure ages from ~0.2 ka to ~ 180 ka, with large site-specific scatter. Most of our apparent exposure ages come from boulders with an age range between 30 ka to 0.2 ka. Although we recognize that more studies combining mapping, dating and modeling are needed to understand the full history of past glaciation in this region, our conclusions to date include: 1) The oldest recorded glacial event occurred in the Taragay Basin in the Tian Shan, dated to 92.1+/-11.4 ka, and two MIS 2 glacial advances have been recorded on opposite sides of the Ak-Shyrak Range, dated to 16.0+/-3.4 and 17.3+/-4.7 ka respectively. 2) Remote-sensing-based mapping and cosmogenic nuclide dating indicate that Pleistocene glaciations were restricted to the mountains and plateau areas of the Tian Shan. 3) Glaciation ages indicate that glacial events occurred during, MIS 2, 3 and 5. 4) There are no regional spatial trends in changes in ELA (DeltaELA) however, when comparing the distribution of ELAs to the hypsometric signature (area elevation relationship) of individual catchments across the Tian Shan, there is a range of cases from valleys experiencing "typical" or "extensive" modes of glaciation, where paleo ELAs coincide with hypsometric maxima (peaks in area-elevation curves), to valleys with more complicated signatures, either reflecting "dynamic" or "limited" glaciations at H MAX. This suggests that in future work "typical" catchments should be targeted for geochronological studies and paleo-ELA reconstructions. 5) Finally, when comparing deglaciation ages to global and regional climate records we observe both northern hemispheric and monsoonal signatures as potential drivers behind glacial expansions in the Tian Shan.

  2. Selected geohydrologic data from a regional aquifer-system analysis of the Northern Rocky Mountains intermontane basins in Idaho

    USGS Publications Warehouse

    Stone, M.A.; Parliman, D.J.; Schaefer, J.L.

    1996-01-01

    The U.S. Geological Survey began a regional aquifer-system analysis of the Northern Rocky Mountains of northern and central Idaho and western Montana in 1990. The analysis helped establish a regional framework of information for aquifers in about 70 ntermontane basins in an area of 80,000 square miles. In many areas, ground water is the only suitable source of supply, yet little information is available about this resource. Selected geohydrologic data from 1,004 wells in 19 intermontane basins in Idaho were compiled as part of the regional analysis. Data consist of basin name and well number, altitude of land surface, date of well construction, geologic unit, depth of well, diameter of casing, type of finish, top of open interval, primary use of water, date of water level measurement, water level, discharge, specific capacity, source of discharge data, type of log available, date of water-quality constituent measurement, specific conductance, pH, and temperature. A similar report for intermontane basins in Montana has been published by the U.S. Geologcial Survey in Montana. (USGS)

  3. Geologic map of the Alamosa 30’ × 60’ quadrangle, south-central Colorado

    USGS Publications Warehouse

    Thompson, Ren A.; Shroba, Ralph R.; Michael N. Machette,; Fridrich, Christopher J.; Brandt, Theodore R.; Cosca, Michael A.

    2015-10-15

    The Alamosa 30'× 60' quadrangle is located in the central San Luis Basin of southern Colorado and is bisected by the Rio Grande. The Rio Grande has headwaters in the San Juan Mountains of Colorado and ultimately discharges into the Gulf of Mexico 3,000 kilometers (km) downstream. Alluvial floodplains and associated deposits of the Rio Grande and east-draining tributaries, La Jara Creek and Conejos River, occupy the north-central and northwestern part of the map area. Alluvial deposits of west-draining Rio Grande tributaries, Culebra and Costilla Creeks, bound the Costilla Plain in the south-central part of the map area. The San Luis Hills, a northeast-trending series of flat-topped mesas and hills, dominate the landscape in the central and southwestern part of the map and preserve fault-bound Neogene basin surfaces and deposits. The Precambrian-cored Sangre de Cristo Mountains rise to an elevation of nearly 4,300 meters (m), almost 2,000 m above the valley floor, in the eastern part of the map area. In total, the map area contains deposits that record surficial, tectonic, sedimentary, volcanic, magmatic, and metamorphic processes over the past 1.7 billion years.

  4. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain)

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Díez-Herrero, Andrés; Stoffel, Markus; Bollschweiler, Michelle; Bodoque, José M.; Ballesteros, Juan A.

    2010-06-01

    Flash floods represent one of the most significant natural hazards with serious death tolls and economic damage at a worldwide level in general and in Mediterranean mountain catchments in particular. In these environments, systematic data is often lacking and analyses have to be based on alternative approaches such as dendrogeomorphology. In this study, we focus on the identification of flash floods based on growth disturbances (GD) observed in 98 heavily affected Mediterranean pine trees ( Pinus pinaster Ait.) located in or next to the torrential channel of the Pelayo River in the Spanish Central System. Flash floods are quite common in this catchment and are triggered by heavy storms, with high discharge and debris transport rates favoured by high stream gradients. Comparison of the anomalies in tree morphology and the position of the trees in the channel showed that the intensity of the disturbance clearly depends on geomorphology. The dating of past flash flood events was based on the number and intensity of GD observed in the tree-ring series and on the spatial distribution of affected trees along the torrent, thus allowing seven flash flood events during the last 50 years to be dated, namely in 1963, 1966, 1973, 1976, 1996, 2000, and 2005.

  5. Dendrogeomorphic analysis of Flash Floods in a small ungauged mountain catchment (Central Spain)

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Díez-Herrero, Andrés.; Stoffel, Markus; Bollschweiler, Michelle; María Bodoque, José; Ballesteros, Juan Antonio

    2010-05-01

    Flash floods represent one of the most significant natural hazards with serious death tolls and economic damage at a worldwide level in general and in Mediterranean mountain catchments in particular. In these environments, systematic data is often lacking and analyses have to be based on alternative approaches such as dendrogeomorphology. In this study, we focus on the identification of flash floods based on growth disturbances (GD) observed in 98 heavily affected Mediterranean pine trees (Pinus pinaster Ait.) located in or next to the torrential channel of the Pelayo River in the Spanish Central System. Flash floods are quite common in this catchment and are triggered by heavy storms, with high discharge and debris transport rates favoured by high stream gradients. Comparison of the anomalies in tree morphology and the position of the trees in the channel showed that the intensity of the disturbance clearly depends on geomorphology. The dating of past flash-flood events was based on the number and intensity of GD observed in the tree-ring series, and on the spatial distribution of affected trees along the torrent, thus allowing seven flash-flood events during the last ~50 years to be dated, namely in 1963, 1966, 1973, 1976, 1996, 2000, and 2005.

  6. Spatiotemporal evolution of Calophaca (Fabaceae) reveals multiple dispersals in the Central Asian mountains and adjacent regions

    Treesearch

    Ming-Li Zhang; Zhi-Bin Wen; Peter W. Fritsch; Stewart C. Sanderson

    2015-01-01

    The Central Asian flora plays a significant role in Eurasia and the Northern Hemisphere. Calophaca, a member of this flora, includes eight currently recognized species, and is centered in Central Asia, with some taxa extending into adjacent areas. A phylogenetic analysis of the genus utilizing nuclear ribosomal ITS and plastid trnS-trnG and rbcL sequences was carried...

  7. Integration of new geologic mapping and satellite-derived quartz mapping yields insights into the structure of the Roberts Mountains allochthon applicable to assessments for concealed Carlin-type gold deposits

    USGS Publications Warehouse

    Holm-Denoma, Christopher S.; Hofstra, Albert H.; Rockwell, Barnaby W.; Noble, Paula J.

    2012-01-01

    Geologic mapping and remote sensing across north-central Nevada enable recognition of a thick sheet of Middle and Upper Ordovician Valmy Formation quartzite that structurally overlies folded and faulted Ordovician through Devonian stratigraphic units of the Roberts Mountains allochthon. In the northern Independence Mountains and nearby Double Mountain area, the Valmy Formation is in fault contact with Ordovician through Silurian, predominantly clastic, sedimentary rocks of the Roberts Mountains allochthon that were deformed prior to, or during, emplacement of the Valmy thrust sheet. Similar structural relations are recognized discontinuously for 200 kilometers along the strike of the Roberts Mountains allochthon in mapping guided by regional remote-sensing-based (ASTER) quartz maps. Overall thicknesses of deformed Roberts Mountains allochthon units between the base of the Valmy and the top of underlying carbonate rocks that host large Carlin-type gold deposits varies on the order of hundreds of meters but is not known to exceed 700 meters. The base of the Valmy thrust sheet is a complimentary datum in natural resource exploration and mineral resource assessment for concealed Carlin-type gold deposits.

  8. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    USGS Publications Warehouse

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  9. A new species of earth snake (Dipsadidae, Geophis) from Mexico.

    PubMed

    Canseco-Márquez, Luis; Pavón-Vázquez, Carlos J; López-Luna, Marco Antonio; Nieto-Montes de Oca, Adrián

    2016-01-01

    A new species of the Geophis dubius group is described from the mountains of the Sierra Zongolica in west-central Veracruz and the Sierra de Quimixtlán in central-east Puebla. The new species is most similar to Geophis duellmani and Geophis turbidus, which are endemic to the mountains of northern Oaxaca and the Sierra Madre Oriental of Puebla and Hidalgo, respectively. However, the new species differs from Geophis duellmani by the presence of postocular and supraocular scales and from Geophis turbidus by having a bicolor dorsum. With the description of the new species, the species number in the genus increases to 50 and to 12 in the Geophis dubius group. Additionally, a key to the species of the Geophis dubius group is provided.

  10. Exploring the Abundance and Diversity of Bacterial Communities and Quantifying Antibiotic-Related Genes Along an Elevational Gradient in Taibai Mountain, China.

    PubMed

    Peng, Chu; Wang, He; Jiang, Yingying; Yang, Jinhua; Lai, Hangxian; Wei, Xiaomin

    2018-05-10

    Thus far, no studies have investigated the soil microbial diversity over an elevational gradient in Taibai Mountain, the central massif of the Qinling Mountain Range. Here, we used Illumina sequencing and quantitative PCR of the 16S rRNA gene to assess the diversity and abundance of bacterial communities along an elevational gradient in representative vegetation soils in Taibai Mountain. We identified the soil, climate, and vegetation factors driving the variations in soil bacterial community structure by Pearson correlation and redundancy analysis. We also evaluated the potential for antibiotic discovery by quantitative PCR of the PKS-I, PKS-II, and NRPS genes from Actinobacteria. The results showed that soil bacterial alpha diversity increased first and then decreased with an elevational rise in both the northern and southern slopes of Taibai Mountain. The bacterial abundance was significantly correlated with soil organic matter and nitrate nitrogen. The average relative abundance of Actinobacteria in Taibai Mountain was markedly higher than those in other mountain forest soils. The absolute abundance of PKS and NPRS gene was significantly higher in the tested soils compared with the gene copy numbers reported in tropical urban soils. Taibai Mountain is rich in actinomycete resources and has great potential for antibiotic excavation.

  11. Natural communities of the central Appalachian red spruce ecosystem and their conservation significance

    Treesearch

    Elizabeth A. Byers

    2010-01-01

    Natural communities within the red spruce ecosystem of the central Appalachians are characterized by exceptionally high biodiversity and conservation value. This ecosystem stretches in a southwest - northeast trending band for 250 km along the high elevations of the Allegheny Mountains, from Greenbrier County, WV to Garrett County, MD.

  12. Genetic relationships of meadow vole (Microtus pennsylvanicus) populations in central Appalachian wetlands

    Treesearch

    K. E. Francl; T. C. Glenn; S. B. Castleberry; W. M. Ford

    2008-01-01

    We sequenced and compared variation within a 375-base-pair segment of the mitochondrial DNA control region of 323 meadow voles (Microtus pennsylvanicus (Ord. 1815)) among 14 populations to determine the influence of past and present landscape connectivity among isolated wetlands in the central Appalachian Mountains. To best explain observed...

  13. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    EPA Science Inventory

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  14. 28. VIEW OF CENTRAL SECTION OF MILL FROM NORTH. COMPRESSOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF CENTRAL SECTION OF MILL FROM NORTH. COMPRESSOR ROOM BELOW PRECIPITATION FLOOR IS VISIBLE AT LOWER LEFT; THE SECONDARY THICKENER ADDITION IS TO THE RIGHT WITH SECONDARY THICKENER No. 7 OFF VIEW TO RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  15. Woodland salamander response to two prescribed fires in the central Appalachians

    Treesearch

    W. Mark Ford; Jane L. Rodrigue; Ella L. Rowan; Steven B. Castleberry; Thomas M. Schuler

    2010-01-01

    Using coverboard arrays, we monitored woodland salamanders on the Fernow Experimental Forest in the central Appalachian Mountains, West Virginia, USA prior to and following two prescribed fires in mixed oak (Quercus spp.) forest stands. Treatments were burn plots on upper slopes or lower slopes fenced to prevent white-tailed deer (Odocoileus...

  16. Isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica.

    PubMed

    Sánchez-Murillo, Ricardo; Esquivel-Hernández, Germain; Sáenz-Rosales, Oscar; Piedra-Marín, Gilberto; Fonseca-Sánchez, Alicia; Madrigal-Solís, Helga; Ulloa-Chaverri, Franz; Rojas-Jiménez, Luis D; Vargas-Víquez, José A

    2017-03-01

    The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18 O/ 16 O and 2 H/H ratios. A parsimonious four-variable regression model (r 2  = 0.52) was able to predict daily δ 18 O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.

  17. [Source identification and potential ecological hazards assessment of trace metalloid/heavy metals in the soil of Tianshan Mountains, Xinjiang, China].

    PubMed

    Zhang, Zhao-Yong; Jilili, Abuduwailil; Jiang, Feng-Qing

    2014-11-01

    In this study, the contents of ten metalloid/heavy metals (As, Pb, Ni, Cd, Co, Hg, Cu, Mn, Zn and Cr) in soil samples collected from three sections including the central Urumqi-Akesu, eastern Blikun-Yiwu and western Zhaosu-Tekesi in Tianshan Mountains were determined, and their sources were identified by using typical statistical and multivariate statistical methods. The potential ecological risks of these heavy metals were assessed by employing pollution index method, potential ecological risk index and the background values of Tianshan Mountains, and Xinjiang, and also the Second National Standard of the Soil Qualities of China. The results showed that the contents of the heavy metals (Pb, Ni, Cd, Co, Hg, Cu, Mn Zn and Cr) and metalloid As were all higher than the soil background values of the Tianshan Mountain or Xinjiang, and their variation co- efficients belonged to the medium variation. In general, the contents of the ten metalloid/heavy metals in the soil of Tianshan Mountains were low. Principal component analysis showed that the ten metalloid/heavy metals could be identified as two principal components, among which PC1 (Cd, Pb, Hg, Mn and Zn) could be seen as 'human influence sources factor', PC2 (Cu, Ni, Cr, Co and As) as 'natural sources factor'. Mn and As had larger loads both in PC1 and PC2, and they could be co-influenced by human and natural sources. The pollution assessment showed that Hg and Cd in central Urumuqi-Akesu section and As in western Zhaosu-Tekesi section were all at alert level, while the other heavy metals in other sections were all at security level. From the comprehensive pollution indices (P(z)) of heavy metals, it was found that the ten metalloid/heavy metals in the soils of central Urumqi-Akesu section were at low pollution level, but those in the other two sections were at clean level. The potential ecological risk assessment showed that the potential ecological risk coefficient (E(i)r) and the ecological damage index (RI) of Hg and Cd in central Urumqi-Akesu section and that of As in western Zhaosu-Tekesi section were relatively high.

  18. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  19. Early Paleozoic development of the Maine-Quebec boundary Mountains region

    USGS Publications Warehouse

    Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.

    2006-01-01

    Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.

  20. Eemian and post-Eemian fluvial dynamics in the Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Zielhofer, Christoph; Faust, Dominik

    2018-07-01

    Mountain regions such as the Lesser Caucasus are a focus of ongoing environmental changes. To understand their future evolution, information about their former geomorphic and environmental dynamics is required. The former fluvial dynamics derived from fluvial sediment archives can offer such insights. However, the fluvial dynamics of the Lesser Caucasus since the Eemian interglacial have not been systematically investigated so far. Thus, we have studied late Pleistocene and Holocene sediments of several rivers originating from the central Lesser Caucasus. The studied rivers show a mostly coherent record of fluvial dynamics: Minor aggradation occurred during early Marine Isotope Stage (MIS) 5, incision during late MIS 5 or early MIS 4, intensive silty aggradation at least during late MIS 3, incision during early MIS 2, coarse-grained aggradation probably during some millenia until ca. 19 ka, and aggradation ca. 14-13 ka. Following incision around the Pleistocene/Holocene transition, aggradation resumed around 6.0, 3.4 - 2.0 and 0.5 - 0.15 cal. ka BP. Generally, periods of aggradation, incision and stability could be linked with regional climatic or anthropogenic influences on regional landscape stability and water availability. The fluvial dynamics of the central Lesser Caucasus mostly differed even between neighbouring regions, and only in cases of significant hemispheric climatic fluctuations as around 20 ka, during the Pleistocene/Holocene transition or the Little Ice Age, were similar over-regional fluvial patterns observed. This demonstrates the individual character of river systems especially in mountain regions such as the southern Caucasus with strong geoecological gradients. Thus, to understand the former landscape dynamics of mountain landscapes, investigations of fluvial sediment archives on a regional to sub-regional scale are necessary.

  1. Integrating phylogeography and species distribution models: cryptic distributional responses to past climate change in an endemic rodent from the central Chile hotspot

    PubMed Central

    GUTIÉRREZ-TAPIA, PABLO; PALMA, R. EDUARDO

    2016-01-01

    Aim Biodiversity losses under the species level may have been severely underestimated in future global climate change scenarios. Therefore, it is important to characterize the diversity units at this level, as well as to understand their ecological responses to climatic forcings. We have chosen an endemic rodent from a highly endangered ecogeographic area as a model to look for distributional responses below the species level: Phyllotis darwini. Location The central Chile biodiversity hotspot: This area harbours a high number of endemic species, and it is known to have experienced vegetational displacements between two mountain systems during and after the Last Glacial Maximum. Methods We have characterized cryptic lineages inside P. darwini in a classic phylogeographic approach; those intraspecific lineages were considered as relevant units to construct distribution models at Last Glacial Maximum and at present, as border climatic conditions. Differences in distribution between border conditions for each lineage were interpreted as distributional responses to post-glacial climate change. Results The species is composed of two major phylogroups: one of them has a broad distribution mainly across the valley but also in mountain ranges, whereas the other displays a disjunct distribution across both mountain ranges and always above 1500 m. The lineage distribution model under LGM climatic conditions suggests that both lineages were co-distributed in the southern portion of P. darwini’s current geographic range, mainly at the valley and at the coast. Main conclusions Present distribution of lineages in P. darwini is the consequence of a cryptic distributional response to climate change after LGM: postglacial northward colonization, with strict altitudinal segregation of both phylogroups. PMID:27453686

  2. New summer areas and mixing of two greater sandhill crane populations in the Intermountain West

    USGS Publications Warehouse

    Collins, Daniel P.; Grisham, Blake A.; Conring, Courtenay M.; Knetter, Jeffrey M.; Conway, Warren C.; Carleton, Scott A.; Boggie, Matthew A.

    2016-01-01

    Population delineation throughout the annual life cycle for migratory birds is needed to formulate regional and national management and conservation strategies. Despite being well studied continentally, connectivity of sandhill crane Grus canadensis populations throughout the western portion of their North American range remains poorly described. Our objectives were to 1) use global positioning system satellite transmitter terminals to identify summer distributions for the Lower Colorado River Valley Population of greater sandhill cranes Grus canadensis tabida and 2) determine whether intermingling occurs among any of the western greater sandhill crane populations: Rocky Mountain Population, Lower Colorado River Valley Population, and Central Valley Population. Capture and marking occurred during winter and summer on private lands in California and Idaho as well as on two National Wildlife Refuges: Cibola and Sonny Bono Salton Sea National Wildlife Refuges. A majority of marked greater sandhill cranes summered in what is established Lower Colorado River Valley Population breeding areas in northeastern Nevada and southwestern Idaho. A handful of greater sandhill cranes summered outside of traditional breeding areas in west-central Idaho around Cascade Reservoir near Donnelly and Cascade, Idaho. For example, a greater sandhill crane colt captured near Donnelly in July 2014 survived to winter migration and moved south to areas associated with the Rocky Mountain Population. The integration of the greater sandhill crane colt captured near Donnelly provides the first evidence of potential intermingling between the Lower Colorado River Population and Rocky Mountain Population. We suggest continued marking and banding efforts of all three western populations of greater sandhill cranes will accurately delineate population boundaries and connectivity and inform management decisions for the three populations.

  3. Earth Observation

    NASA Image and Video Library

    2013-08-18

    ISS036-E-032853 (18 Aug. 2013) --- Central Idaho wildfires are featured in this image photographed by an Expedition 36 crew member on the International Space Station. Taken with a short lens (50 mm), this west-looking image covers much of forested central Idaho?the dark areas are all wooded mountains. The image highlights part of the largest single wilderness area in the contiguous United States (the Frank Church-River of No Return Wilderness). Within this mountainous region, several fires can be seen producing extensive smoke plumes. Some fires had been named by Aug. 20, 2013, two days after the image was taken. The densest smoke on that day appears to be generated by a combination of the Little Queens and Leggit fires (left, within the Salmon River Mountains). The named fires were mostly set by lightning, and on Aug. 20 totaled 53,000 acres of burned forest south of the Salmon River, and many more if the unnamed fires are included. The Gold Pan fire north of the Salmon River had burned 27,000 acres. For a sense of scale in this oblique view, the Gold Pan fire lies about 125 miles north of the Little Queens fire. This image shows the common pattern of westerly winds transporting smoke in an easterly direction, as seen during the wildfire season of one year ago. Ten days before this image was taken, fires in central Idaho near Boise were aggravated by southerly winds. Some of the fires began to burn in July but were quelled and remain under observation for new flare-ups. Smoke from fires in the south partly obscures the black lava flows of the Craters of the Moon National Monument (lower left). The Beaverhead Mountains mark the eastern boundary of Idaho with Montana.

  4. Spatial and seasonal patterns of particulate matter less than 2.5 microns in the Sierra Nevada Mountains, California

    Treesearch

    Ricardo Cisneros; Don Schweizer; Haiganoush Preisler; Deborah H. Bennett; Glenn Shaw; Andrzej Bytnerowicz

    2014-01-01

    This paper presents particulate matter data collected in the California southern Sierra Nevada Mountains (SNM) during 2002 to 2009 from the Central Valley (elevation 91 m) into the SNM (elevation 2,598 m). Annual average concentrations of particles smaller than 2.5 µm in diameter (PM2.5) for all sites during this study ranged from 3.1 to 22.2 µg...

  5. Ponderosa pine mortality resulting from a mountain pine beetle outbreak

    Treesearch

    William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut

    1982-01-01

    From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...

  6. Comparison of preliminary herpetofaunas of the Sierras la Madera (Oposura) and Bacadehuachi with the mainland Sierra Madre Occidental in Sonora, Mexico

    Treesearch

    Thomas R. Van Devender; Erik F. Enderson; Dale S. Turner; Roberto A. Villa; Stephen F. Hale; George M. Ferguson; Charles Hedgcock

    2013-01-01

    Amphibians and reptiles were observed in the Sierra La Madera (59 species), an isolated Sky Island mountain range, and the Sierra Bacadéhuachi (30 species), the westernmost mountain range in the Sierra Madre Occidental (SMO) range in east-central Sonora. These preliminary herpetofaunas were compared with the herpetofauna of the Yécora area in eastern Sonora in the main...

  7. Estimating the use of morphometric measurements from museum specimens for sex determination in Mountain Plovers (Charadrius montanus)

    USGS Publications Warehouse

    Iko, W.M.; Dinsmore, S.J.; Knopf, F.L.

    2004-01-01

    The Mountain Plover (Charadrius montanus) is a shorebird species endemic to the dry, terrestrial ecosystems of the Great Plains and southwestern United States. Breeding Bird Survey data suggest that Mountain Plover populations have declined by >60% in the last 30 years. A better understanding of the population dynamics of the Mountain Plover is important in determining future management goals for this species. However, this effort is hampered by the inability to determine the sex of Mountain Plovers accurately under field conditions. In an effort to develop a simple method for sexing plovers in the hand, we measured external morphometric characteristics from 190 museum specimens of adult Mountain Plovers in alternate (breeding) plumage. Logistic regression and discriminant function analyses were performed on 10 external morphometric measurements (lengths of unflattened wing chord, 10th primary, central rectrix, outer rectrix, total head length, exposed culmen, culmen, bill depth, bill width, and tarsus). The results of these analyses indicated that Mountain Plover sexes were similar for all measures except culmen length. However, further analysis determined that culmen length accurately predicted sex in less than two-thirds of the specimens, suggesting that this measure is a poor predictor of sex in Mountain Plovers. Structurally, Mountain Plovers appear to be nearly identical between the sexes, and other methods of sexing birds (e.g., plumage characteristics, behavioral observations, or molecular markers) should be further assessed for devising a simple method for sexing Mountain Plovers under field conditions.

  8. Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders

    PubMed Central

    Goldberg, Caren S.; Pilliod, David S.; Arkle, Robert S.; Waits, Lisette P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research. PMID:21818382

  9. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    PubMed

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  10. Molecular detection of vertebrates in stream water: A demonstration using rocky mountain tailed frogs and Idaho giant salamanders

    USGS Publications Warehouse

    Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  11. Calculation of regional geomorphic indices to constrain the mechanisms of tectonic uplift and active deformation of the Island of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Martinez, S.

    2016-12-01

    The island of Puerto Rico in the northern Caribbean covers an area of about 14,000 km2 and is 180 km long and 65 km wide and is densely populated by 3.4 million persons. The island is mountainous with an east-west-trending, central mountain range with its highest point of 1338 m in the geographic center of the island. Previous workers have suggested that the origin of this east-west, Central Cordillera is active uplift and folding of a large, east-west-trending anticline whose fold axis is coincident with the topographic crest of the Cordillera Central. The folding mechanism has been attributed by previous workers to obliquely-subducting slabs of the North American and Caribbean plates beneath the island. To test the hypothesis that this topographic and structural axis is also the axis of active topographic uplift, I created a knickpoint density map for the island based on over 50 different river systems to reveal areas of active uplift. The knickpoint map shows an excellent correlation with the proposed arch both in width and trend of the axis and supports the conclusion that the arch is the main axis of active uplift on the Island. I also calculated geomorphic indices for 21 different watersheds of the island that include the Hypsometric Integral and a Stream Length Gradient Index that both assess tectonic activity based on stream and watershed behaviors. The Hack index and Hypsometric Integral show that the most active area of uplift is located in the central and north-central parts of the island that include about one half of the length of the proposed, east-west-trending arch. The two topographically-elevated ends of the arch in the western and eastern parts of the island are less active, according to the indices. Lower values in these areas may be influenced by higher amounts of precipitations in these areas.

  12. Thorium concentrations in the lunar surface. V - Deconvolution of the central highlands region

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Etchegaray-Ramirez, M. I.; Haines, E. L.

    1982-01-01

    The distribution of thorium in the lunar central highlands measured from orbit by the Apollo 16 gamma-ray spectrometer is subjected to a deconvolution analysis to yield improved spatial resolution and contrast. Use of two overlapping data fields for complete coverage also provides a demonstration of the technique's ability to model concentrations several degrees beyond the data track. Deconvolution reveals an association between Th concentration and the Kant Plateau, Descartes Mountain and Cayley plains surface formations. The Kant Plateau and Descartes Mountains model with Th less than 1 part per million, which is typical of farside highlands but is infrequently seen over any other nearside highland portions of the Apollo 15 and 16 ground tracks. It is noted that, if the Cayley plains are the result of basin-forming impact ejecta, the distribution of Th concentration with longitude supports an origin from the Imbrium basin rather than the Nectaris or Orientale basins. Nectaris basin materials are found to have a Th concentration similar to that of the Descartes Mountains, evidence that the latter may have been emplaced as Nectaris basin impact deposits.

  13. Using a Convection Model to Predict Altitudes of White Stork Migration Over Central Israel

    NASA Astrophysics Data System (ADS)

    Shamoun-Baranes, Judy; Liechti, Olivier; Yom-Tov, Yoram; Leshem, Yossi

    Soaring migrants such as storks, pelicans and large birds of prey rely on thermal convection during migration. The convection model ALPTHERM was designed to predict the onset, strength, duration and depth of thermal convection for varying topographies for glider pilots, based on atmospheric conditions at midnight. We tested ALPTHERM predictions as configured for two topographies of central Israel, the Coastal Plains and the Judean and Samarian Mountains in order to predict altitudes of migrating white storks (Ciconia ciconia). Migrating flocks of white storks were tracked with a motorized glider, to measure maximum altitudes of migration during spring 2000. A significant positive correlation was found between the maximum daily altitudes of migration measured and the predicted upper boundary of thermal convection for the Coastal Plains and Samarian Mountains. Thirty-minute predictions for the Coastal Plains and Samarian Mountains correlated positively with measured maximum migration altitudes per thermal. ALPTHERM forecasts can be used to alter flight altitudes in both civil and especially military aviation and reduce the hazard of serious aircraft collisions with soaring migrants.

  14. Chronology of processes in high-gradient channels of medium-high mountains and their influence on the properties of alluvial fans

    NASA Astrophysics Data System (ADS)

    Šilhán, Karel

    2014-02-01

    High-gradient channels are the locations of the greatest geomorphological activity in medium-high mountains. The channels' frequency and character influence the contemporary morphology and morphometry of alluvial fans. There is currently no detailed information regarding the frequency of these processes in high-gradient channels and the evolution of alluvial fans in medium-high mountains in Central Europe. This study in the Moravskoslezské Beskydy Mts. analysed 22 alluvial fans (10 debris flow fans and 12 fluvial fans). The processes occurring on the fans were dated using dendrogeomorphological methods. A total of 748 increment cores were taken from 374 trees to reconstruct 153 geomorphological process events (60 debris flow and 93 floods). The frequency of the processes has been considerably increasing in the last four decades, which can be related to extensive tree cutting since the 1970s. Processes in high-gradient channels in the region (affecting the alluvial fans across the mountain range) are predominantly controlled by cyclonal activity during the warm periods of the year. Probable triggers of local events are heavy downpours in the summer. In addition, spring snowmelt has been identified as occasionally important. This study of the relations affecting the type and frequency of the processes and their effect on the properties of alluvial fans led to the creation of a universal framework for the medium-high flysch mountains of Central Europe. The framework particularly reflects the influence of the character of hydrometeorological extremes on the frequency and type of processes and their reflection in the properties of alluvial fans.

  15. Discovery, Controls, and Hazards of Widespread Deep-Seated Gravitational Slope Deformation in the Etsumi Mountains, Central Japan

    NASA Astrophysics Data System (ADS)

    Kaneda, Heitaro; Kono, Taiyo

    2017-12-01

    Deep-seated gravitational slope deformation (DSGSD) is a largely unnoticed but important long-term mass wasting process that may result in catastrophic failure of mountain slopes. Manifested by small topographic irregularities such as ridge-parallel scarps and linear depressions, it has been predominantly reported in alpine landscapes above timber lines. On the basis of area-wide high-resolution topographic data acquired by light detection and ranging (lidar) surveys, we here show that 96% of existing gravitational scarps have been hidden under forest canopies in the Etsumi Mountains, central Japan. The scarps are surprisingly widespread over the mountains with a mean line density of as large as 0.87 km/km2. Our analyses of the scarp distribution suggest that uphill-facing scarps are primary geomorphic signals of DSGSD with a destabilized rock mass larger than 105 m2, whereas downhill-facing scarps principally occur in response to more localized slope deformation. In terms of controls, topography is by far the most influential factor in triggering and promoting DSGSD. Despite the M 7.5 earthquake in 1891, impact of large local earthquakes proves to be not very strong. Comparison with preexisting landslide maps further suggests that DSGSD and large-scale landslides are not different slope processes but represent different stages of the same process. Our results highlight limitations of aerial-photograph interpretation in forest-covered mountains and the need for lidar-assisted mapping for deeper understanding of this long-term process and interactions between surface and tectonic processes.

  16. Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994

    USGS Publications Warehouse

    Lasker, A. Dwight

    1995-01-01

    Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).

  17. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    NASA Astrophysics Data System (ADS)

    Löffler, Jörg; Rößler, Ole

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where process dynamics of water and energy fluxes are analysed due to its effects on ecosystem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER &WUNDRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high mountain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation regions ( JUNGet al. 1997, LÖFFLER &WUNDRAM 1997). Moreover, spatial differentiations of groundwater level, soil moisture and temperature profiles have been investigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the different altitudinal belts. The local differences of temperature dynamics are illustrated in a map as an example of the low alpine altitudinal belt showing a 4-dimensional characterization (in space and time) of high mountain ecosystem functioning. Hydrological aspects derived from those results are presented showing the large- scaled hydrological dynamics of high mountain catchment basins in central Norway. The results of the process analysis of hydrological dynamics in the central Norwegian high mountains are discussed within the frame of investigations on altitudinal changes of mountain ecosystem structure and functioning (LÖFFLER &WUNDRAM [in print]). The poster illustrates the theoretical and methodological conception, methods and techniques, examples from complex data material as well as general outcomes of the project (RÖßLER [in prep.]. JUNG, G., J. LÖFFLER &D. WUNDRAM (1997): Untersuchungen zur Struktur, Funktion und Dynamik mittelnorwegischer Hochgebirgsökosysteme. Forschungsansatz. Oldenburger Geoökologisches Kolloquium 3: 4-36. Oldenburg. KÖHLER, B., J. LÖFFLER &D. WUNDRAM (1994): Probleme der kleinräumigen Geoökovarianz im mittelnorwegischen Gebirge. Norsk geogr. Tidsskr. 48: 99- 111. LÖFFLER, J. (1997): Großmaßstäbige geoökologische Kartierungen in den Höhenstufen des mittelnorwegischen Gebirges. NORDEN 12: 205-228. Bremen. LÖFFLER, J. (1998): Geoökologische Untersuchungen zur Struktur mittelnorwegischer Hochgebirgsökosysteme. Oldenburger Geoökologische Studien 1. Oldenburg. LÖFFLER, J., O.-D. FINCH, J. NAUJOK &R. PAPE (2001): Möglichkeiten der Integration zoologischer Aspekte in die landschaftsökologische Untersuchung von Hochgebirgen. Methodendiskussion am Beispiel ökologischer Prozesssysteme und Biozönosen. Naturschutz u. Landschaftsplanung 33 (11): 351-357. LÖFFLER, J. &D. WUNDRAM (1997): Klimatische Phänomene in mittelnorwegischen Hochgebirgslandschaften und ihre ökosystemare Bedeutung. Oldenburger Geoökologisches Kolloquium 3: 37-86. Oldenburg. LÖFFLER, J. &D. WUNDRAM (1999): Kleinräumige Klimavarianz im mittelnorwegischen Hochgebirgsraum Vågå/Oppland. NORDEN 13: 267 -276. Bremen. LÖFFLER, J. &D. WUNDRAM (2000) : Temperature Dynamics of Ecotopes in small Catchment Areas. In: C. BEIERKUHNLEIN et al. (Hrsg.): Zukunft mitteleuropäischer Kulturlandschaft. Analyse - Planung - Management. Tagungsband mit Kurzfassungen der Beiträge zur 1. Jahrestagung der IALE- Region Deutschland: 76, Nürtingen. LÖFFLER, J. &D. WUNDRAM (2001): Räumliche und zeitliche Differenzierung des Temperaturhaushalts von Hochgebirgsökosystemen. NORDEN 14: 85 -102. Bremen. LÖFFLER, J. &D. WUNDRAM (in print): Geoökologische Untersuchungen zur Prozessdynamik mittelnorwegischer Hochgebirgsökosysteme. Oldenburger Geoökologische Studien 2. Oldenburg. MOSIMANN, T. (1984): Landschaftsökologische Komplexanalyse. Wiesbaden. MOSIMANN, T. (1985): Untersuchungen zur Funktion subarktischer und alpiner Geoökosysteme (Finnmark [Norwegen] und Schweizer Alpen). Physiogeographica 7. Basel. RÖßLER, O. (in prep.): Modelling the Water Balance of Central Norwegian High Mountain Ecosystems. University of Oldenburg.

  18. Biogeographical and evolutionary importance of the European high mountain systems

    PubMed Central

    Schmitt, Thomas

    2009-01-01

    Europe is characterised by several high mountain systems dominating major parts of its area, and these structures have strongly influenced the evolution of taxa. For species now restricted to these high mountain systems, characteristic biogeographical patterns of differentiation exist. (i) Many local endemics are found in most of the European high mountain systems especially in the Alps and the more geographically peripheral regions of Europe. Populations isolated in these peripheral mountain ranges often have strongly differentiated endemic genetic lineages, which survived and evolved in the vicinity of these mountain areas over long time periods. (ii) Populations of taxa with wide distributions in the Alps often have two or more genetic lineages, which in some cases even have the status of cryptic species. In many cases, these lineages are the results of several centres of glacial survival in the perialpine areas. Similar patterns also apply to the other geographically extended European high mountain systems, especially the Pyrenees and Carpathians. (iii) Populations from adjoining high mountain systems often show similar genetic lineages, a phenomenon best explained by postglacial retreat to these mountains from one single differentiation centre between them. (iv) The populations of a number of species show gradients of genetic diversity from a genetically richer East to a poorer West. This might indicate better glacial survival conditions for this biogeographical group of species in the more eastern parts of Europe. PMID:19480666

  19. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    USGS Publications Warehouse

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  20. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes.

    PubMed

    Hauer, F Richard; Locke, Harvey; Dreitz, Victoria J; Hebblewhite, Mark; Lowe, Winsor H; Muhlfeld, Clint C; Nelson, Cara R; Proctor, Michael F; Rood, Stewart B

    2016-06-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  1. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    PubMed Central

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria J.; Hebblewhite, Mark; Lowe, Winsor H.; Muhlfeld, Clint C.; Nelson, Cara R.; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth. PMID:27386570

  2. Southern Rockies Ecoregion: Chapter 8 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Drummond, Mark A.

    2012-01-01

    The Southern Rockies Ecoregion is a high-elevation mountainous ecoregion that covers approximately 138,854 km2 (53,612 mi2), including much of central Colorado and parts of southern Wyoming and northern New Mexico (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). It abuts six other ecoregions: the Wyoming Basin and Colorado Plateaus Ecoregions on the north and west, the Arizona/New Mexico Plateau Ecoregion on the south, and the Northwestern Great Plains, Western High Plains, and Southwestern Tablelands Ecoregions on the east (fig. 1). The ecoregion receives most of its annual precipitation (25–100 cm) as snowfall, which provides a significant amount of high-elevation snowpack that is an important water source for surrounding ecoregions. The Southern Rockies Ecoregion has a steep elevation gradient from low foothills to high peaks, with several hundred summits higher than 3,660 m (12,000 ft). As a southern extension of the larger RockyMountain system, it is composed primarily of seven main north-south trending mountain ranges that are separated by four large intermontane basins. A fifth basin, the San Luis Valley, is outside the ecoregion, forming a northern finger of the Arizona/New Mexico Plateau Ecoregion that lies mostly to the south. To the east, late Tertiary sand and gravel deposits that were eroded from the relatively young Rocky Mountains were carried eastward by streams, forming the nearby Western High Plains Ecoregion and its underlying Ogallala aquifer.

  3. Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

    2009-01-01

    From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

  4. Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30'-22°S

    NASA Astrophysics Data System (ADS)

    Hoke, Gregory D.; Isacks, Bryan L.; Jordan, Teresa E.; Blanco, NicoláS.; Tomlinson, Andrew J.; Ramezani, Jahandar

    2007-10-01

    The western Andean mountain front forms the western edge of the central Andean Plateau. Between 18.5° and 22°S latitude, the mountain front has ˜3000 m of relief over ˜50 km horizontal distance that has developed in the absence of major local Neogene deformation. Models of the evolution of the plateau, as well as paleoaltimetry estimates, all call for continued large-magnitude uplift of the plateau surface into the late Miocene (i.e., younger than 10 Ma). Longitudinal river profiles from 20 catchments that drain the western Andean mountain front contain several streams with knickpoint-bounded segments that we use to reconstruct the history of post-10 Ma surface uplift of the western flank of the central Andean Plateau. The generation of knickpoints is attributed to tectonic processes and is not a consequence of base level change related to Pacific Ocean capture, eustatic change, or climate change as causes for creating the knickpoint-bounded stream segments observed. Minor valley-filling alluvial gravels intercalated with the 5.4 Ma Carcote ignimbrite suggest uplift related river incision was well under way by 5.4 Ma. The maximum age of river incision is provided by the regionally extensive, approximately 10 Ma El Diablo-Altos de Pica paleosurface. The river profiles reveal that relative surface uplift of at least1 km occurred after 10 Ma.

  5. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.

  6. Groundwater Quality in the Central Eastside San Joaquin Valley, California

    USGS Publications Warehouse

    Belitz, Kenneth; Landon, Matthew K.

    2010-01-01

    The Central Eastside study unit is located in California's San Joaquin Valley. The 1,695 square mile study unit includes three groundwater subbasins: Modesto, Turlock, and Merced (California Department of Water Resources, 2003). The primary water-bearing units consist of discontinuous lenses of gravel, sand, silt, and clay, which are derived largely from the Sierra Nevada Mountains to the east. Public-supply wells provide most of the drinking water supply in the Central Eastside. Consequently, the primary aquifer in the Central Eastside study unit is defined as that part of the aquifer corresponding to the perforated interval of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 350 feet, consist of solid casing from the land surface to a depth of about 100 to 200 feet, and they are perforated below the solid casing. Water quality in the shallower and deeper parts of the aquifer system may differ from that in the primary aquifer. The Central Eastside study unit has hot and dry summers and cool, moist, winters. Average annual rainfall ranges from 11 to 15 inches. The Stanislaus, Tuolumne, and Merced Rivers, with headwaters in the Sierra Nevada Mountains, are the primary streams traversing the study unit. Land use in the study unit is approximately 59 percent (%) agricultural, 34% natural (primarily grassland), and 7% urban. The primary crops are almonds, walnuts, peaches, grapes, grain, corn, and alfalfa. The largest urban areas (2003 population in parentheses) are the cities of Modesto (206,872), Turlock (63,467), and Merced (69,512). Municipal water use accounts for about 5% of the total water use in the Central Eastside study unit, with the remainder used for irrigated agriculture. Groundwater accounts for about 75% of the municipal supply, and surface water accounts for about 25%. Recharge to the groundwater flow system is primarily from percolation of irrigation return, precipitation, seepage from reservoirs and rivers, and urban return (Burow and others, 2004; Phillips and others, 2007). The primary sources of discharge are pumping for irrigation and municipal supply, evaporation from areas with a shallow depth to water, and discharge to streams. Recharge at shallow depths and pumping from wells at greater depths causes downward movement of groundwater in the aquifer in the Central Eastside. This vertical movement of water has the potential to carry chemical constituents from shallow depths to the greater depths where supply wells commonly are perforated.

  7. Stand hazard rating for central Idaho forests

    Treesearch

    Robert Steele; Ralph E. Williams; Julie C. Weatherby; Elizabeth D. Reinhardt; James T. Hoffman; R. W. Thier

    1996-01-01

    Growing concern over sustainability of central ldaho forests has created a need to assess the health of forest stands on a relative basis. A stand hazard rating was developed as a composite of 11 individual ratings to compare the health hazards of different stands. The composite rating includes Douglas-fir beetle, mountain pine beetle, western pine beetle, spruce...

  8. The isolated red spruce communities of Virginia and West Virginia

    Treesearch

    Harold S. Adams; Steven Stephenson; Adam W. Rollins; Mary Beth Adams

    2010-01-01

    Quantitative data on the composition and structure of coniferous forests containing red spruce in the mountains of central and southwestern Virginia and eastern central West Virginia, based on sampling carried out in 67 stands during the 1982 to 1984 field seasons, are provided. The average importance value ([relative basal area + relative density/2]) of red spruce was...

  9. Geologic map of the Cochetopa Park and North Pass Calderas, northeastern San Juan Mountains, Colorado

    USGS Publications Warehouse

    Lipman, Peter W.

    2012-01-01

    The San Juan Mountains in southwestern Colorado have long been known as a site of exceptionally voluminous mid-Tertiary volcanism, including at least 22 major ignimbrite sheets (each 150-5,000 km3) and associated caldera structures active at 33-23 Ma. Recent volcanologic and petrologic studies in the San Juan region have focused mainly on several ignimbrite-caldera systems: the southeastern area (Platoro complex), western calderas (Uncompahgre-Silverton-Lake City), and the central cluster (La Garita-Creede calderas). Far less studied has been the northeastern San Juan region, which occupies a transition between earlier volcanism in central Colorado and large-volume younger ignimbrite-caldera foci farther south and west. The present map is based on new field coverage of volcanic rocks in seventeen 7.5' quadrangles in northeastern parts of the volcanic field, high-resolution age determinations for 120 new sites, and petrologic studies involving several hundred new chemical analyses. This mapping and the accompanying lab results (1) document volcanic evolution of the previously unrecognized North Pass caldera and the morphologically beautifully preserved but enigmatic Cochetopa basin, including unique features not previously described from ignimbrite calderas elsewhere; (2) provide evidence for a more rapid recurrence of large ignimbrite eruptions than previously known elsewhere; (3) quantify the regional time-space-volume progression from the earlier Sawatch magmatic trend southward into the San Juan region; and (4) permit more rigorous comparison between the broad mid-Tertiary magmatic belt in the western U.S. Cordillera and the type continental-margin arc volcanism in the central Andes.

  10. The Influence of Intensifying Irrigation on Glacier Mass Balances in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    de Kok, R.; Tuinenburg, O.; Bonekamp, P. N. J.; Immerzeel, W. W.

    2017-12-01

    Melt water from snow and glaciers in High Mountain Asia provide a major source of water for millions of inhabitants in the downstream low lying plains. This densely populated region also hosts some of the largest areas of irrigated land in the world. Not only is the water from High Mountain Asia important as a source of irrigation water, the irrigation itself might also change the regional, and even global, climate by increasing atmospheric moisture and by cooling the surface through evapotranspiration. We explore the effect of irrigation in the region on the synoptic climate patterns in High Mountain Asia using the WRF regional climate model. By studying the changes in the energy balance, temperatures and precipitation, we assess how the changes in irrigation patterns may have contributed to the observed trends in mountain climates and associated glacier mass balances. Initial results show that the intensifying irrigation during the last decades causes an increase in summer snowfall in the mountains in Central Karakoram and Kunlun Shan, which are the regions where slight positive mass balances have been observed in recent years. A moisture tracking model confirms that the irrigated areas are a significant moisture source for summer precipitation in High Mountain Asia. These results thus suggest that irrigation may significantly influence glaciers in High Mountain Asia, especially in the regions of observed anomalous mass balance.

  11. Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U-Th/He thermochronometry: Evidence for the Arabia-Eurasia collision in the NW Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Madanipour, Saeed; Ehlers, Todd A.; Yassaghi, Ali; Enkelmann, Eva

    2017-08-01

    The Talesh Mountains at the NW margin of the Iranian Plateau curve around the southwestern corner of the South Caspian Block and developed in response to the collision of the Arabian-Eurasian Plates. The timing, rates, and regional changes in late Cenozoic deformation of the Talesh Mountains are not fully understood. In this study, we integrate 23 new apatite and zircon bedrock U-Th/He ages and structurally restored geologic cross sections with previously published detrital apatite fission track data to reconstruct the deformation history of the Talesh Mountains. Our results reveal that slow rock exhumation initiated during the late Oligocene ( 27-23 Ma) and then accelerated in the middle Miocene ( 12 Ma). These events resulted in the present-day high-elevation and curved geometry of the mountains. The spatial and temporal distribution of cooling ages suggest that the Oligocene bending of the Talesh Mountains was earlier than in the eastern Alborz, Kopeh Dagh, and central Alborz Mountains that initiated during the late Cenozoic. Late Oligocene and middle Miocene deformation episodes recorded in the Talesh Mountains can be related to the collisional phases of the Arabian and Eurasian Plates. The lower rate of exhumation recorded in the Talesh Mountains occurred during the initial soft collision of the Arabian-Eurasian Plates in the late Oligocene. The accelerated exhumation that occurred during final collision since the middle Miocene resulted from collision of the harder continental margin.

  12. Elk reintroductions

    USGS Publications Warehouse

    Allen, Craig D.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    Rocky Mountain elk are native to northcentral New Mexico, including the Jemez Mountains, whereas a different subspecies, Merriam’s elk, inhabited southern New Mexico, east-central Arizona, and the Mexican border region (Hall 1981). Merriam’s elk went extinct around 1900 in New Mexico, and native Rocky Mountain elk were extirpated by 1909 (Findley et al. 1975). Although elk were known to early inhabitants of the Jemez Mountains (Fig. 1), elk remains are seldom found in archaeological sites there. Indeed, two of three known elk remains from the Jemez Mountains (Table) came from archaeological sites dating to the late 1880’s, while the third is represented by a single bone tool dated at A.D. 1390 to 1520. This scarcity of elk in archaeological remains suggests that only small, local elk populations were present between A.D. 1150 and A.D. 1600. Elk numbers may have been suppressed by the many ancestral Pueblo people who inhabited the area, as suggested for nearby Arroyo Hondo by Lang and Harris (1984) and for the intermountain West by Kay (1994). The gray wolf, the most important natural predator of elk in the Jemez Mountains, was extirpated from the area by the 1940’s (Findley et al. 1975). Hunting has reduced local populations of another elk predator, the mountain lion (Allen 1989).

  13. Quantification of Juniperus Ashei Pollen Production for the Development of Forecasting Models

    NASA Technical Reports Server (NTRS)

    Bunderson, L. D.; Levetin, E.

    2010-01-01

    Juniperus ashei pollen is considered one of the most allergenic species of Cupressaceae in North America. Juniperus ashei is distributed throughout central Texas, Northern Mexico, the Arbuckle Mountains of south central Oklahoma, and the Ozark Mountains of northern Arkansas and southwestern Missouri. The large amount of airborne pollen that J. ashei produces affects inhabitants of cities and towns adjacent to juniper woodland areas and because juniper pollen can be transported over long distances, it affects populations that are far away. In order to create a dynamic forecast system for allergy and asthma sufferers, pollen production must be estimated. Estimation of pollen production requires the estimation of male cone production. Two locations in the Arbuckle Mountains of Oklahoma and 4 locations in the Edwards Plateau region of Texas were chosen as sampling sites. Trees were measured to determine approximate size. Male to female ratio was determined and pollen cone production was estimated using a qualitative scale from 0 to 2. Cones were counted from harvested 1/8 sections of representative trees. The representative trees were measured and approximate surface area of the tree was calculated. Using the representative tree data, the number of cones per square meter was calculated for medium production (1) and high production (2) trees. These numbers were extrapolated to calculate cone production in other trees sampled. Calibration was achieved within each location's sub-plot by counting cones on 5 branches collected from 5 sides of both high production and medium production trees. The total area sampled in each location was 0.06 hectare and total cone production varied greatly from location to location. The highest production area produced 5.8 million cones while the lowest production area produced 72,000 cones. A single representative high production tree in the Arbuckle Mountains produced 1.38 million cones. The number of trees per location was relatively uniform, but the number of high cone production trees varied greatly. Although there is great diversity in the locations making it difficult to determine which factors are most important, cone production was well correlated with certain stand characteristics including trunk diameter.

  14. ALPINE LAKES WILDERNESS STUDY AREA, WASHINGTON.

    USGS Publications Warehouse

    Gualtieri, J.L.; Thurber, H.K.

    1984-01-01

    The Alpine Lakes Wilderness study area, located in the central part of the Cascade Mountains of Washington was examined for its mineral-resource potential. On the basis of that study the area was found to contain deposits of copper, other base metals, and gold and silver. Probable or substantiated mineral-resource potential exists for these commodities in the southwest-central, northwest, and southeast-central parts of the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  15. Mapping geodiversity and cultural heritage; a case study: Aït Bou Oulli valley in central High-Atlas, Morocco.

    NASA Astrophysics Data System (ADS)

    Bouzekraoui, Hicham; Barakat, Ahmed; El Youssi, Mohammed; El Khalki, Yahia; Hafid, Abdelatif; Mouaddine, Atika

    2016-04-01

    Central High-Atlas mountain in the centre of Morocco, contains an exceptional geodiversity. Some geomorphological and geological objects of it are included and protected recently by the World Heritage list. The valley of Aït Bou Oulli is located in the heart of the Moroccan central High-Atlas, whose height is 4068 m in Ighil M'goun and 3800 m in Rat Mountain. The mountain areas are characterized by higher geodiversity in comparison with other areas. The valley possesses a geological and geomorphological heritage which is very rich, much diversified and exceptional landscapes of high mountains. It is part of geopark M'Goun; the valley attracts a number of tourists every year. However, this number remains restricted because of the lack of the tools of promotion, valuation and mediation of this geoheritage. Moreover, the touristic infrastructure is modest. Regarding this situation, the geotouristic map appears as a tool of promotion of the geotourism and diversification of the regional and national tourist product. This work aims at elaborating new maps of geomorphosites, cultural sites, and geomonuments in high Mountain landscapes of the valley, suggested in geotourism circuits. The first results reveal the low exploitation of the geodiversity of this valley-oasis: the spectacular waterfalls, water sources, canyons, glacial cirques and U-shaped valleys, superficial karstic forms (sinkholes and swallow-holes), high-Atlas peaks and cliffs, spectacular scree slopes, badlands landscapes, fairy chimneys, and the geological history dating back to the Paleozoic and angular unconformity. In addition, the valley has diverse tangible cultural heritage spanning hundreds of years such as the enigmatic rock engravings (dating from 2000 to 3000 years), troglodyte caves and terraced agriculture landscapes, geomonuments (old cooperative storage, Kasbah, traditional water mills) and the architecture of the villages. It has also an intangible cultural heritage such as folklore. This cultural heritage, however, remains low valued. This richness was the object of 3 geodidactic and geotouristic circuits and itineraries that will be proposed at the end of this work. Keywords: geomorphosites, geoheritage, cultural heritage, circuits, geotouristic map, geotourism.

  16. Central Basin and Range Ecoregion: Chapter 20 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Soulard, Christopher E.

    2012-01-01

    This chapter has been modified from original material published in Soulard (2006), entitled “Land-cover trends of the Central Basin and Range Ecoregion” (U.S. Geological Survey Scientific Investigations Report 2006–5288). The Central Basin and Range Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997) encompasses approximately 343,169 km² (132,498 mi2) of land bordered on the west by the Sierra Nevada Ecoregion, on the east by the Wasatch and Uinta Mountains Ecoregion, on the north by the Northern Basin and Range and the Snake River Basin Ecoregions, and on the south by the Mojave Basin and Range and the Colorado Plateaus Ecoregions (fig. 1). Most of the Central Basin and Range Ecoregion is located in Nevada (65.4 percent) and Utah (25.1 percent), but small segments are also located in Idaho (5.6 percent), California (3.7 percent), and Oregon (0.2 percent). Basin-and-range topography characterizes the Central Basin and Range Ecoregion: wide desert valleys are bordered by parallel mountain ranges generally oriented northsouth. There are more than 33 peaks within the Central Basin and Range Ecoregion that have summits higher than 3,000 m (10,000 ft), but valleys in the ecoregion are also high, most having elevations above 1,200 m (4,000 ft) (Grayson, 1993).

  17. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils

    NASA Astrophysics Data System (ADS)

    Hemingway, Jordon D.; Hilton, Robert G.; Hovius, Niels; Eglinton, Timothy I.; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V.

    2018-04-01

    Lithospheric organic carbon (“petrogenic”; OCpetro) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO2) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO2 emission fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by silicate weathering and biospheric OC burial.

  18. Near-Surface Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, From Seismic Imaging

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Steedman, Clare

    2007-01-01

    Introduction The Santa Clara Valley (SCV) is located in the southern San Francisco Bay area of California and is bounded by the Santa Cruz Mountains to the southwest, the Diablo Ranges to the northeast, and the San Francisco Bay to the north (Fig. 1). The SCV, which includes the City of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley, has a population in excess of 1.7 million people (2000 U. S. Census;http://quickfacts.census.gov/qfd/states/06/06085.html The SCV is situated between major active faults of the San Andreas Fault system, including the San Andreas Fault to the southwest and the Hayward and Calaveras faults to the northeast, and other faults inferred to lie beneath the alluvium of the SCV (CWDR, 1967; Bortugno et al., 1991). The importance of the SCV as a major industrial center, its large population, and its proximity to major earthquake faults are important considerations with respect to earthquake hazards and water-resource management. The fault-bounded alluvial aquifer system beneath the valley is the source of about one-third of the water supply for the metropolitan area (Hanson et al., 2004). To better address the earthquake hazards of the SCV, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential seismic sources, the effects of strong ground shaking, and stratigraphy associated with the regional aquifer system. As part of that program and to better understand water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began joint studies to characterize the faults, stratigraphy, and structures beneath the SCV in the year 2000. Such features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local and regional earthquakes sources that may affect reservoirs, pipelines, and flood-protection facilities maintained by SCVWD. As one component of these joint studies, the USGS acquired an approximately 10-km-long, high-resolution, combined seismic reflection/refraction transect from the Santa Cruz Mountains to the central SCV in December 2000 (Figs. 1 and 2a,b). The overall seismic investigation of the western Santa Clara Valley also included an ~18-km-long, lower-resolution (~50-m sensor) seismic imaging survey from the central Santa Cruz Mountains to the central part of the valley (Fig. 1). Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI). Results of the high-resolution investigation, referred to as SCSI-HR, are presented in this report, and Catchings et al. (2006) present results of the low-resolution investigation (SCSI-LR) in a separate report. In this report, we present data acquisition parameters, unprocessed and processed seismic data, and interpretations of the SCSI-HR seismic transect.

  19. Developing the OORCC: A Multifaceted Astronomical Research and Outreach Facility at the University of Oregon

    NASA Astrophysics Data System (ADS)

    Kwan, Teiler J.; Bullis, Jeremy; Gustafsson, Annika; Fisher, Robert Scott

    2015-01-01

    The University of Oregon (UO) owns and operates Pine Mountain Observatory (PMO), located in central Oregon on the summit of Pine Mountain at an elevation of 1980 meters. PMO consists of four telescopes ranging in size from 0.35 - 0.8 meters. The Oregon Observatory Remote Control Center (OORCC) is a remote-observing center within the Department of Physics on the UO campus (~140 miles from the observatory) that has a direct connection to PMO through a dedicated fiber-optic cable. With this facility, we will enable UO undergraduate student researchers, UO faculty, and the non-scientific community to fully control and operate a newly installed robotic telescope on the summit of Pine Mountain from Eugene, or any other authorized site in Oregon. In addition to providing undergraduates with instrumentation and engineering experience, we will implement research by photometrically monitoring bright and variable astronomical sources including main belt comets, Herbig Ae/Be stars, and active galactic nuclei in extragalactic systems. The primary objective with the OORCC is to manage a multifaceted astronomy and astrophysics research facility, extending as a state-wide resource for K-12 STEM activities and public outreach programs. With the OORCC, we intend to bring unique and enriching astronomy exposure to many different groups of people throughout the state of Oregon.

  20. Unveiling the Hidden Bat Diversity of a Neotropical Montane Forest

    PubMed Central

    Chaverri, Gloriana; Garin, Inazio; Alberdi, Antton; Jimenez, Lide; Castillo-Salazar, Cristian; Aihartza, Joxerra

    2016-01-01

    Mountain environments, characterized by high levels of endemism, are at risk of experiencing significant biodiversity loss due to current trends in global warming. While many acknowledge their importance and vulnerability, these ecosystems still remain poorly studied, particularly for taxa that are difficult to sample such as bats. Aiming to estimate the amount of cryptic diversity among bats of a Neotropical montane cloud forest in Talamanca Range—south-east Central America—, we performed a 15-night sampling campaign, which resulted in 90 captured bats belonging to 8 species. We sequenced their mitochondrial cytochrome c oxidase subunit I (COI) and screened their inter- and intraspecific genetic variation. Phylogenetic relations with conspecifics and closely related species from other geographic regions were established using Maximum Likelihood and Bayesian inference methods, as well as median-joining haplotype networks. Mitochondrial lineages highly divergent from hitherto characterized populations (> 9% COI dissimilarity) were found in Myotis oxyotus and Hylonycteris underwoodi. Sturnira burtonlimi and M. keaysi also showed distinct mitochondrial structure with sibling species and/or populations. These results suggest that mountains in the region hold a high degree of endemicity potential that has previously been ignored in bats. They also warn of the high extinction risk montane bats may be facing due to climatic change, particularly in isolated mountain systems like Talamanca Range. PMID:27706168

  1. Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.

    PubMed

    Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song

    2018-01-23

    The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.

  2. Paleomagnetic Data Bearing on the Eastern and Southern Boundaries of the Walker Lane Belt Transfer System

    NASA Astrophysics Data System (ADS)

    Grow, J. S.; Geissman, J. W.; Oldow, J. S.

    2007-12-01

    In west-central Nevada, a transfer zone, which initiated in the mid-Miocene, presently links, via the Mina Deflection, right-lateral faults of the Eastern California Shear Zone to the south and the Central Nevada Seismic Belt and Walker Lane to the north. This transfer zone, the early inception of which is characterized by moderate (20-30°) clockwise crustal rotations previously identified (e.g., Candelaria Hills and surrounding ranges), along with right-lateral structures to the south and north, are part of a diffuse zone of intracontinental deformation that accommodates some 25 percent of the motion between the Pacific and North American plates. Although the northern and western boundaries of the transfer zone are relatively well defined by paleomagnetic data, the eastern and southeastern boundaries remain poorly constrained. Additional paleomagnetic data are being obtained from mid-to-late Tertiary volcanic rocks, presumably lying within (e.g., Montezuma Range, Palmetto Mountains, Monte Cristo Range) and outside (e.g., Goldfield Hills, San Antonio Mountains, Slate Ridge) of the transfer zone. Areas outside of the transfer zone are inferred to have not undergone any appreciable rotation since its inception. Volcanic rocks as well as shallow intrusions ranging in age from Oligocene to mid-Pliocene have been sampled (N=187) from inside and outside of the inferred southern and eastern boundaries of the transfer zone. Overall, the collection responds very favorably to progressive demagnetization; initial results are tentatively interpreted as suggesting the absence of appreciable rotation of the San Antonio Range (Tonopah, Nevada area and farther north). The extent to which areas near the eastern and southeastern boundaries have been rotated is under investigation. These data will aid in a better understanding of differential block rotation and tilting throughout the development of the west-central Nevada transfer system from the mid-Miocene to late Pliocene.

  3. Woodland salamander responses to a shelterwood harvest-prescribed burn silvicultural treatment within Appalachian mixed-oak forests

    USGS Publications Warehouse

    Ford, W. Mark; Mahoney, Kathleen R.; Russell, Kevin R.; Rodrigue, Jane L.; Riddle, Jason D.; Schuler, Thomas M.; Adams, Mary Beth

    2015-01-01

    Forest management practices that mimic natural canopy disturbances, including prescribed fire and timber harvests, may reduce competition and facilitate establishment of favorable vegetative species within various ecosystems. Fire suppression in the central Appalachian region for almost a century has contributed to a transition from oak-dominated to more mesophytic, fire-intolerant forest communities. Prescribed fire coupled with timber removal is currently implemented to aid in oak regeneration and establishment but responses of woodland salamanders to this complex silvicultural system is poorly documented. The purpose of our research was to determine how woodland salamanders respond to shelterwood harvests following successive burns in a central Appalachian mixed-oak forest. Woodland salamanders were surveyed using coverboard arrays in May, July, and August–September 2011 and 2012. Surveys were conducted within fenced shelterwood-burn (prescribed fires, shelterwood harvest, and fencing to prevent white-tailed deer [Odocoileus virginianus] herbivory), shelterwood-burn (prescribed fires and shelterwood harvest), and control plots. Relative abundance was modeled in relation to habitat variables measured within treatments for mountain dusky salamanders (Desmognathus ochrophaeus), slimy salamanders (Plethodon glutinosus), and eastern red-backed salamanders (Plethodon cinereus). Mountain dusky salamander relative abundance was positively associated with canopy cover and there were significantly more individuals within controls than either shelterwood-burn or fenced shelterwood-burn treatments. Conversely, habitat variables associated with slimy salamanders and eastern red-backed salamanders did not differ among treatments. Salamander age-class structure within controls did not differ from shelterwood-burn or fenced shelterwood-burn treatments for any species. Overall, the woodland salamander assemblage remained relatively intact throughout the shelterwoodburn silvicultural treatment compared to previous research within the same study area that examined pre-harvest fire effects. However, because of the multi-faceted complexities of this specific silvicultural system, continued research is warranted that evaluates long-term, additive impacts on woodland salamanders within managed central Appalachian deciduous forests.

  4. Dynamics and timing of paleoglaciation on opposite flanks of the Ikh-Turgen Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Blomdin, Robin; Stroeven, Arjen P.; Harbor, Jonathan M.; Gribenski, Natacha; Caffee, Marc W.; Heyman, Jakob; Rogozhina, Irina; Ivanov, Mikhail N.; Petrakov, Dmitry A.; Walther, Michael; Rudoy, Alexei N.; Zhang, Wei; Alexander, Orkhonselenge; Hättestrand, Clas; Lifton, Nathaniel A.; Jansson, Krister N.

    2017-04-01

    Spanning a northern sector of continental Central Asia, the Altai Mountains contains a rich record of glaciation. Still, there are few studies reconstructing the dynamics and timing of former glaciers in the region. We investigated the glacial history of two paleoglaciers, residing on opposite flanks of the Ikh-Turgen Mountains, straddling the border between Russia and Mongolia, using a combination of remote sensing, terrain analysis, field investigations and 10Be surface exposure dating. On the eastern side (Mongolia) of Ikh-Turgen, mean arithmetic exposure ages from a latero-frontal moraine indicate deglaciation during Marine Isotope Stage (MIS) 3 (45.3±2.7 ka, n=5) and MIS 2 (22.8±3.5 ka, n=4). These age constraints are consistent with other paleoclimate records from the region. Cold and wet conditions during early MIS 2 and MIS 3 likely triggered glacier expansions but the transition to a drier climate resulted in more restricted paleoglacier extents during MIS 2 than during MIS 3. Well-constrained MIS 3 glacier expansions in Central Asia are rare. We therefore speculate whether the climatic and topographic setting of the eastern flank of the Ikh-Turgen Mountains has allowed for a better preservation potential of these moraines, making them more suitable for surface exposure dating than other regions of Central Asia, or whether MIS 3 moraines occur more widespread but await to be robustly dated. Corresponding surface exposure ages, from the western side (Russia) of Ikh-Turgen, indicate a more complex story with large scatter ( 14-53 ka, n=8) making paleoclimate inference and comparison to other proxies difficult. Owing to their proximity, the paleoglaciers of Ikh-Turgen, should have responded similarly to climate forcing, yet they exhibited distinctly different behaviours. We discuss the connection between paleoglacier dynamics and style of moraine deposition and propose that differences in glacier dynamics caused differences in ice-marginal depositional environments, explaining the scatter in exposure ages on the western side. This study shows the importance of style of deposition in chronological studies of glacial landforms and demonstrates that certain moraine types can be difficult to use as paleoclimate proxies.

  5. Geologic setting and characteristic of mineral deposits in the central Wasatch Mountains, Utah

    USGS Publications Warehouse

    John, David A.

    1997-01-01

    Base- and precious-metal deposits in the central Wasatch Mountains southeast of Salt Lake City were mined for more than 100 years beginning in 1868. Deposits present in the Park City, Little Cottonwood, and Big Cottonwood mining districts include Ag-Pb-Zn ± Cu ± Au replacement and veins, a low-grade porphyry Cu-Au deposit, Cu-bearing skarns, a quartz monzonite-type (low F) porphyry Mo deposit, and high sulfidation (quartz-alunite) Au deposits. Most production came from polymetallic replacement and vein deposits in the Park City mining district, which has a recorded production of more than 1.4 million oz Au , 253 million oz Ag, 2.7 billion lbs Pb, 1.5 billion lbs Zn, and 129 million lbs Cu from 1872 to 1978. Production in the Little and Big Cottonwood districts, mostly from Pb-Ag replacement deposits, was much smaller. Most mineral deposits in the central Wasatch Mountains are genetically related to the Wasatch igneous belt, a series of high-K calc-alkaline stocks and cogenetic volcanic rocks that formed about 41(?) to 30 Ma. The mineral deposits mostly formed near the end of magmatic activity between about 36 to 31.4 Ma. A subeconomic porphyry Mo deposit in the Little Cottonwood stock is notably younger having formed about 26 to 23.5 Ma. The intrusive rocks were emplaced mostly along the westward extension of the west-trending Uinta arch during a period of NW-SE-directed extension, and much of the mineralization in the Park City district controlled by ENE-striking normal faults. About 15 degrees of eastward tilting of the central Wasatch Mountains during Late Cenozoic Basin and Range extension has resulted in progressively deeper levels of exposure from <1 km on the east to about 11 km on the west and in profound variations in the types of minerals deposits exposed in different parts of the range. Most deposits formed at paleodepths ≤5 km, and the most productive deposits in the Park City district formed at depths of 1 to 2 km. The prophyry Mo deposit in the Little Cottonwood stock formed at greater depths of about 6 km.

  6. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.

  7. Investigation into seed collection practices and shrub manipulations to improve sustainable seed yield in wildland stands of bitterbrush (Purshia tridentata)

    Treesearch

    F. Leland Roberts

    2007-01-01

    The Great Basin is a series of unique ecosystems. Starting at the western edge of the Sierra Nevada mountain range in California it stretches east to the Wasatch Mountains of Utah. In the north it starts in central Oregon and Idaho and stretches south through out most of Nevada. In all the Great Basin is found in five states of the western U.S. The Great Basin supports...

  8. Perspectives on managing multi-cultural landscapes: Use, access, and fire/fuels management attitudes and preferences of user groups concerning the Valles Caldera National Preserve (VCNP) and adjacent areas

    Treesearch

    Kurt F. Anschuetz

    2014-01-01

    The Valles Caldera National Preserve (VCNP), which consists of a large, 1.2- to 1.6-million-year-old volcanic caldera, forms the heart of the Jemez Mountains in north-central New Mexico (Figure 1). Known as the Valles Caldera, this bowl-shaped hollow is an especially treasured place within this beloved mountainous landscape for many residents of the region. Its valles...

  9. Geochemical and petrographic data for intrusions peripheral to the Big Timber Stock, Crazy Mountains, Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Van Gosen, Bradley S.

    2015-01-01

    The Paleocene Fort Union Formation hosts a compositionally diverse array of Eocene plugs, dikes, and sills arrayed around the Eocene Big Timber stock in the Crazy Mountains of south-central Montana. The geochemistry and petrography of the sills have not previously been characterized or interpreted. The purpose of this report is (1) to present available geochemical and petrographic data for several dozen samples of these rocks and (2) to provide a basic interpretive synthesis of these data.

  10. Energy Smart Colorado, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitchell, John M.; Palmer, Adam L.

    2014-03-31

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions tomore » their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.« less

  11. The ground-water system and possible effects of underground coal mining in the Trail Mountain area, central Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1985-01-01

    The ground-water system was studied in the Trail Mountain area in order to provide hydrologic information needed to assess the hydrologic effects of underground coal mining. Well testing and spring data indicate that water occurs in several aquifers. The coal-bearing Blackhawk-Star Point aquifer is regional in nature and is the source of most water in underground mines in the region. One or more perched aquifers overlie the Blackhawk-Star Point aquifer in most areas of Trail Mountain.Aquifer tests indicate that the transmissivity of the Blackhawk-Star Point aquifer, which consists mainly of sandstone, siltstone, and shale, ranges from about 20 to 200 feet squared per day in most areas of Trail Mountain. The specific yield of the aquifer was estimated at 0.05, and the storage coefficient is about IxlO"6 per foot of aquifer where confined.The main sources of recharge to the multiaquifer system are snowmelt and rain, and water is discharged mainly by springs and by leakage along streams. Springs that issue from perched aquifers are sources of water for livestock and wildlife on Trail Mountain.Water in all aquifers is suitable for most uses. Dissolved solids concentrations range from about 250 to 700 milligrams per liter, and the predominant dissolved constituents generally are calcium, magnesium, and bicarbonate. Future underground coal mines will require dewatering when they penetrate the Blackhawk-Star Point aquifer. A finitedifference, three-dimensional computer model was used to estimate the inflow of water to various lengths and widths of a hypothetical dewatered mine and to estimate drawdowns of potentiometric surfaces in the partly dewatered aquifer. The estimates were made for a range of aquifer properties and premining hydraulic gradients that were similar to those on Trail Mountain. The computer simulations indicate that mine inflows could be several hundred gallons per minute and that potentiometric surfaces of the partly dewatered aquifer could be drawn down by several hundred feet during a reasonable life span of a mine. Because the Blackhawk-Star Point aquifer is separated from overlying perched aquifers by an unsaturated zone, mine dewatering alone would not affect perched aquifers. Mine dewatering would not significantly change water quality in the Blackhawk-Star Point aquifer. Subsidence will occur above future underground mines, but the effects on the ground-water system cannot be quantified. Subsidence fractures possibly could extend from the roof of a mine into a perched aquifer several hundred feet above. Such fractures would increase down ward percolation of water through the perching bed, and spring discharge from the perched aquifer could decrease. Flow through subsidence fractures also could increase recharge to the Blackhawk-Star Point aquifer and increase inflows to underground mines.

  12. Lead isotope compositions as guides to early gold mineralization: The North Amethyst vein system, Creede district, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    1994-01-01

    Pb isotope compositions from the late stage of the North Amethyst vein system and from the Bondholder and central and southern Creede mining districts are more radiogenic than the host volcanic rocks of the central cluster of the San Juan volcanic field. Our Pb isotope results indicate that early Au mineralization of the North Amethyst area may represent the product of an older and relatively local hydrothermal system distinct from that of the younger base metal and Ag mineralization found throughout the region. Fluids that deposited Au minerals may have derived their Pb isotope composition by a greater degree of interaction with shallow, relatively less radiogenic volcanic wall rocks. The younger, base metal and Ag-rich mineralization that overprints the Au mineralization in the North Amethyst area clearly has a more radiogenic isotopic signature, which implies that the later mineralization derived a greater component of its Pb from Proterozoic source rocks, or sediments derived from them.Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area.

  13. Seroprevalence of Toxoplasma gondii in American Black Bears ( Ursus americanus ) of the Central Appalachians, USA.

    PubMed

    Cox, John J; Murphy, Sean M; Augustine, Ben C; Guthrie, Joseph M; Hast, John T; Maehr, Sutton C; McDermott, Joseph

    2017-07-01

    We assessed Toxoplasma gondii seroprevalence in 53 free-ranging American black bears ( Ursus americanus ) in the Central Appalachian Mountains, US. Seroprevalence was 62% with no difference between males and females or between juvenile and adult bears. Wildlife agencies should consider warnings in hunter education programs to reduce the chances for human infection from this source.

  14. Chapter 7: Fire and nonnative invasive plants in the Central bioregion

    Treesearch

    James B. Grace; Kristin Zouhar

    2008-01-01

    The Central bioregion is a vast area, stretching from Canada to Mexico and from the eastern forests to the Rocky Mountains, dominated by grasslands and shrublands, but inclusive of riparian and other forests. This bioregion has been impacted by many human-induced changes, particularly relating to agricultural practices, over the past 150 years. Also changed are fire...

  15. Abundance of red spruce regeneration across spruce-hardwood ecotones at Gaudineer Knob, West Virginia

    Treesearch

    Albert E. Mayfield; Ray R. Hicks

    2010-01-01

    The abundance of red spruce (Picea rubens Sarg.) in the Central Appalachian Mountains has been drastically reduced over the past 100 to 150 years. The purpose of this study was to examine the potential for increases in the relative abundance of overstory red spruce in a Central Appalachian, high-elevation forest by measuring the abundance of red...

  16. A resource at the crossroads: a history of the central hardwoods

    Treesearch

    Ray R., Jr. Hicks

    1997-01-01

    The Central Hardwood Forest is an oak dominated deciduous forest that stretches from Massachusetts to Arkansas and occurs in hilly to mountainous terrain. It is the largest and most extensive temperate deciduous forest in the world. During the past 20 million years or so, angiosperms have been gradually replacing gymnosperms as the dominant plant form on earth, and...

  17. Habitat characteristics of the endangered Virginia northern flying squirrel (Glaucomys sabrinus fuscus) in the central Appalachian mountains

    Treesearch

    W. Mark Ford; Steven L. Stephenson; Jennifer M. Menzel; Dawn R. Black; John W. Edwards

    2004-01-01

    We compared 11 ecological variables thought to be important for assessing the habitat of the endangered Virginia northern flying squirrel (Glaucomys sabrinus fuscus) at 11 occupied and 9 unoccupied sires within northern hardwood-montane conifer forests in the central Appalachians of West Virginia. Forest stands at sites occupied by G. s....

  18. Miocene−Pleistocene deformation of the Saddle Mountains: Implications for seismic hazard in central Washington, USA

    USGS Publications Warehouse

    Staisch, Lydia; Kelsey, Harvey; Sherrod, Brian; Möller, Andreas; Paces, James B.; Blakely, Richard J.; Styron, Richard

    2017-01-01

    The Yakima fold province, located in the backarc of the Cascadia subduction zone, is a region of active strain accumulation and deformation distributed across a series of fault-cored folds. The geodetic network in central Washington has been used to interpret large-scale N-S shortening and westward-increasing strain; however, geodetic data are unable to resolve shortening rates across individual structures in this low-strain-rate environment. Resolving fault geometries, slip rates, and timing of faulting in the Yakima fold province is critically important to seismic hazard assessment for nearby infrastructure and population centers.The Saddle Mountains anticline is one of the most prominent Yakima folds. It is unique within the Yakima fold province in that the syntectonic strata of the Ringold Formation are preserved and provide a record of deformation and drainage reorganization. Here, we present new stratigraphic columns, U-Pb zircon tephra ages, U-series caliche ages, and geophysical modeling that constrain two line-balanced and retrodeformed cross sections. These new constraints indicate that the Saddle Mountains anticline has accommodated 1.0−1.3 km of N-S shortening since 10 Ma, that shortening increases westward along the anticline, and that the average slip rate has increased 6-fold since 6.8 Ma. Provenance analysis suggests that the source terrane for the Ringold Formation was similar to that of the modern Snake River Plain. Using new slip rates and structural constraints, we calculate the strain accumulation time, interpretable as a recurrence interval, for earthquakes on the Saddle Mountains fault and find that large-magnitude earthquakes could rupture along the Saddle Mountains fault every 2−11 k.y.

  19. Discussing the Future of U. S. Western Mountains, Climate Change, and Ecosystems

    Treesearch

    Henry F. Diaz; Constance I. Millar

    2004-01-01

    Mountain regions are uniquely sensitive to changes in climate, and are especially vulnerable to climate effects acting on many biotic systems and the physical settings. Because mountain regions serve as sources of needed natural resources (e.g.,water, forests) and as foundations for desired human activities (e.g., tourism, places to live),changes in mountain systems...

  20. Looking at the roots of the highest mountains: the lithospheric structure of the Himalaya-Tibet and the Zagros orogens. Results from a geophysical-petrological study

    NASA Astrophysics Data System (ADS)

    Tunini, L.; Jimenez-Munt, I.; Fernandez, M.; Villasenor, A.; Afonso, J. C.; Verges, J.

    2013-12-01

    The Himalaya-Tibet and Zagros orogens are the two most prominent mountain belts built by continental collision. They are part of a huge belt of Cenozoic age which runs from the Pyrenees to Burma. In its central sector, the collision with the southern margin of the Eurasian plate has resulted not only in the building of mountain ranges over the north-eastern edges of the Arabian and Indian plates but also in widespread deformation 1000-3000 km from the suture zones. Zagros and Himalaya-Tibet orogens share many geodynamic processes but at different rates, amount of convergence and stage of development. The study of their present-day structures provides new insights into their quasi coeval collisional event pointing out differences and similarities in the mountain building processes. We present 2D crust and upper mantle cross-sections down to 400 km depth, along four SW-NE trending profiles. Two profiles cross the Zagros Mountains, running from the Mesopotamian Foreland Basin up to the Alborz and Central Iran. Two other profiles run through the Himalaya-Tibetan orogen: the western transect crosses the western Himalaya, Tarim Basin, Tian Shan Mountains and Junggar Basin; the eastern transect runs from the Indian shield to the Beishan Basin, crossing the eastern Himalaya, Tibetan Plateau, Qaidam Basin and Qilian Mountains. We apply the LitMod-2D code which integrates potential fields (gravity and geoid), isostasy (elevation) and thermal (heat flow and temperature distribution) equations, and mantle petrology. The resulting crust and upper mantle structure is constrained by available data on elevation, Bouguer anomaly, geoid height, surface heat flow and seismic data including P- and S-wave tomography models. Our results show distinct deformation patterns between the crust and the lithospheric mantle beneath the Zagros and Himalaya-Tibetan orogens, indicating a strong strain partitioning in both areas. At crustal level, we found a thickening beneath the Zagros and the Alborz ranges, more pronounced in the southern profile. At sub-crustal level, a lithospheric mantle thinning affects the whole area beneath the Zagros range extending to the north through the zone below the Alborz and the central Iran. In the Himalaya-Tibet region our results show stronger strain partitioning in the horizontal (east-west) direction than in the vertical (depth) direction. At crustal level, the Tibetan Plateau extends more than 1000 km in the eastern profile, whereas it is squeezed between the Himalayan Mountains and the Tarim Basin along the western profile (~600 km). At sub-crustal level, the lithospheric mantle is more homogeneous in thickness and mineral composition along the western profile than the eastern one. Finally, our results on mineral composition show that both collisional regions are characterised by a predominant lherzolitic lithospheric mantle, whereas we observe compositional variations around the suture zones, probably related to subduction and mantle delamination processes.

  1. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  2. Khyber Pass, Afghanistan-Pakistan

    NASA Image and Video Library

    2010-11-08

    The ASTER instrument onboard NASA Terra spacecraft imaged the Khyber Pass, a mountain pass that links Afghanistan and Pakistan. Throughout its history it has been an important trade route between Central Asia and South Asia.

  3. Latest Pleistocene to Holocene Thrusting Recorded by a Flight of Strath Terraces in the Eastern Qilian Shan, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xiong, Jianguo; Li, Youli; Zhong, Yuezhi; Lu, Honghua; Lei, Jinghao; Xin, Weilin; Wang, Libo; Hu, Xiu; Zhang, Peizhen

    2017-12-01

    At the eastern Qilian Shan mountain front in the NE Tibetan Plateau, the Minle-Damaying Fault (MDF), the southernmost fault of the North Frontal Thrust (NFT) system, has previously been proposed as an inactive structure during the Holocene. Here we present a detailed record of six strath terraces of the Xie River that document the history of active deformation of the MDF. One optically stimulated luminescence dating sample constrains abandonment of the highest terrace T6 at 12.7 ± 1.4 ka. The formation ages of the lower terraces (T4-T1) are dated by AMS 14C dating. The cumulative vertical offsets of the MDF recorded by these terraces are determined as 12.2 ± 0.4 m (T6), 8.0 ± 0.4 m (T5), 6.4 ± 0.4 m (T4), 4.6 ± 0.1 m (T3), and 3.2 ± 0.2 m (T1c) by an unmanned aerial vehicle system, respectively. A long-term vertical slip rate of the MDF of 0.9 ± 0.2 mm/yr is then estimated from the above data of terrace age and vertical offset by a linear regression. Assuming that the fault dip of 35 ± 5° measured at the surface is representative for the depth-averaged fault dip, horizontal shortening rates of 0.83-1.91 mm/yr are inferred for the MDF. Our new data show that the proximal fault (the MDF) of the NFT system at the eastern Qilian Shan mountain front has remained active when the deformation propagated basinward, a different scenario from that observed at both the western and central Qilian Shan mountain front.

  4. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  5. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    NASA Astrophysics Data System (ADS)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC the water retention effect decreases. The second factor is the hydraulic behavior of soils. The initial properties of the SRC soils (pore volume, field capacity, hydraulic conductivity etc.) shortly after implementation of the plantation can be assumed to be similar to arable land if there is no prior conditioning such as deep tilling. However with increasing age of the plantation the properties are expected to converge to forest soils with their higher water retention capacities. Accordingly the infiltration potentials of the plantation strongly depends on the development of soil properties underneath. In general it can be concluded that short rotation coppices cannot solve flood problems in mountain areas solely. However together with other natural and distributed measures (e.g. retention basins, reforestation, conservation tillage etc.) they can be interesting elements of flood retention strategies in mountain areas.

  6. Super Blood Moon Lunar Eclipse

    NASA Image and Video Library

    2017-12-08

    What time will you be able to view the Super Moon Eclipse? The images below show times to view it for Eastern Daylight Time (EDT), Central Daylight Time (CDT), Mountain Daylight Time (MDT) and Pacific Daylight Time (PDT). All of South America and most of North and Central America will see the entire eclipse, while those west of roughly 120°W will see it in progress at moonrise. You won’t need special equipment to see it. Just go outside and look up! NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Nutrient enhanced short rotation coppice for biomass in central Wales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodson, R.W.; Slater, F.M.; Lynn, S.F.

    1993-12-31

    Two projects involving short rotation willow coppice are taking place on the eastern side of the Cambrian Mountains in central Wales. One project examines, as an alternative land use, the potential of short rotation willow coppice variously enhanced by combinations of lime, phosphorous and potassium fertilizers and also digested sewage sludge on an acidic upland site at an altitude of 260m. The first year results of this project are described in detail, showing the necessity for limestone additions and also demonstrating that of the four willow varieties established, Salix dasyclados is the only possible, profitable fuel crop. The other projectmore » involving willow in a filter bed system is outlined along with an additional project investigating the effect of sewage sludge additions on the Rubus fruticosus production in a birch dominated mixed deciduous woodland.« less

  8. Interaction between active tectonics, erosion and diapirism, a case study from Habble-Rud in Southern Central Alborz (Northern Iran)

    NASA Astrophysics Data System (ADS)

    Jaberi, Maryam; Ghassemi, Mohammad R.; Shayan, Siavosh; Yamani, Mojtaba; Zamanzadeh, Seyed Mohammad

    2018-01-01

    The Alborz mountain chain is a region of active deformation within the Arabia-Eurasia continental collision zone. The southern part of central Alborz Mountains, in the north of Iran, represents complex tectonics because it is located at the border of two developing continental sedimentary basins between southern central Alborz and Central Iran. An arid and semi-arid climate, a large extent of Quaternary sediments, rugged topography, salt domes and faults with historical seismicity influence the Habble-Rud River catchment. In the present research, a number of tectonic geomorphologic indices were extracted from satellite imagery and 10 m DEM (digital elevation model) data in order to identify relative tectonic activity within the basin. The indices include: stream length-gradient index (Sl), drainage basin asymmetry (Af), index of mountain front sinuosity (Smf), hypsometric integral (Hi), index of drainage basin shape (Bs), ratio of valley-floor width to valley height (Vf), and fault density (Fd). Due to the presence of heterogeneous indices for all sections of the catchment causing large extension of Habble-Rud (3260 km2), all of the variables such as extremely erodible formations, faults and folds and salt tectonics on the Southern part; were put into a matrix table. As a new approach, the variables were put into the SAW (simple additive model) model as one of MADM (multi-attribute decision-making models) techniques. The study area was divided into four regions according to the values of SAW. These classes include very high (%11), high (48.3%), moderate (34.7%), and low activity (3.4%). The result of the model suggests that the study area is located on a changing tectonic trend in central Alborz from NW-SE to NE-SW. The regions with high relative tectonic activity in HR catchment correspond to the active Garmsar and Sorkhe-Kalout faults and diapirs.

  9. Late Wisconsin and early holocene glacial history, inner Ross Embayment, Antarctica

    NASA Technical Reports Server (NTRS)

    Denton, George H.; Bockheim, James G.; Wilson, Scott C.; Stuiver, Minze

    1991-01-01

    Lateral drift sheets of outlet glaciers that pass through the Transantarctic Mountains constrain past changes of the huge Ross ice drainage system of the Antarctic Ice Sheet. Drift stratigraphy suggests correlation of Reedy III (Reedy Glacier), Beardmore, Britannia (Hatherton/Darwin Glaciers), Ross Sea (McMurdo Sound), and younger (Terra Nova Bay) drifts; radiocarbon dates place the outer limits of Ross Sea drift in late Wisconsin time at 24,000 to 13,000 yr B.P. Outlet glacier profiles from these drifts constrain late Wisconsin ice sheet surface elevations. Within these constraint, two extreme late Wisconsin reconstructions are given of the Ross ice drainage system. Both show little elevation change of the polar plateau coincident with extensive ice shelf grounding along the inner Ross Embayment. However, in the central Ross Embayment, one reconstruction shows floating shelf ice, where as the other shows a grounded ice sheet. Massive late Wisconsin/Holocene recession of grounded ice from the western Ross Embayment, which was underway at 13,040 yr B.P. and completed by 6600 to 6020 yr B.P., was accompanied by little change in plateau ice levels inland of the Transantarctic Mountains.

  10. Estimates of ground-water recharge rates for two small basins in central Nevada

    USGS Publications Warehouse

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins. two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. The first model uses a traditional approach to quantify watershed hydrology through a precipitation-runoff modeling system that accounts for the spatial variability of hydrologic inputs, processes, and responses (outputs) using a dailycomputational time step. The second model is based on the conservative nature of the dissolved chloride ion in selected hydrologic environments, and its use as a natural tracer allows the computation of acoupled, water and chloride-ion, mass-balance system of equations to estimate available water (sum ofsurface runoff and groundwater recharge). Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry.

  11. Using Geomorphologic Data and Numerical Hydrodynamic Models To Delineate Flood Hazards On Alluvial Fans

    NASA Astrophysics Data System (ADS)

    Hamilton, D.; Shaller, P.; Cattarossi, A.

    The 100-year flood hazard was reappraised for a parcel of land in the central Coachella Valley of southern California, USA, by use of geologic mapping, geomorphic analy- sis, analysis of historical aerial photos, and computer-aided hydrologic modeling. An- nual precipitation is only about 6 inches, but the area is subject to rare but extreme rainfall events resulting from thunderstorms and hurricanes. The principal flooding hazard at the parcel is from nearby Thousand Palms Wash, which transmits drainage directly from the Little San Bernardino Mountains into the central Coachella Valley. A perceived secondary flood hazard originates from several drainage basins in the Little San Bernardino Mountains northwest of the Indio Hills. This source was the subject of this investigation. The San Andreas fault, which consists of two major active strands in the upper Coachella Valley area, dominates the geology, landforms, groundwater conditions and surface hydrology in the study area. Gouge associated with the faults impedes groundwater flow, resulting in shallow groundwater levels, lush vegetation, and the stabilization of large masses of sand dunes along the fault traces. Sand forms dominate the surface of the Coachella Valley and pose two barriers to storm water flow: a physical barrier created by their height, and a hydrologic barrier caused by their high infiltration rate. Probable routes of future storm water flows in the study area were evaluated using historical aerial photos of flood events that struck the area between 1974 and 1991. The Willow Hole gap is the most direct route for storm waters from the Little San Bernardino Mountains to the central Coachella Valley. Historical air photo data indicate that storm water from the Little San Bernardino Mountains does not normally flow through the gap, but rather is shunted around a large shutter ridge associated with the San Andreas fault. Two FLO-2D hydrologic models were developed to evaluate the 100-year flooding potential at the subject property from sources in the Little San Bernardino Mountains. The upstream model, which was run assuming no infiltration, was used as input to the downstream model, which was run using three different values for infiltration. Where infiltration was considered at all (even at a level much lower than the minimum predicted from soils mapping of the area), no storm water from the Little San Bernardino Mountains was able reach the 1 subject property whatsoever. The subject property therefore does not appear to be at risk from secondary flooding sources in the Little San Bernardino Mountains in the 100-year storm. This case study was performed in accordance with new guidelines for flood hazards on alluvial fans issued by the Federal Emergency Management Agency who is the lead agency in the USA that identifies flood prone areas. 2

  12. Geological and Geographical Atlas of Colorado and portions of adjacent territory

    USGS Publications Warehouse

    Hayden, Ferdinand Vandeveer; Bien, Julius

    1881-01-01

    Sheets I-IV are triangulations, drainage, land classification, and geologic maps of Colorado west of longitude 102°, on the scale of 12 miles to the inch. Sheets V-XVI are topographic (contour) and geologic maps of Colorado and adjacent States, between meridians 104° 30' and 109° 30' and parallels 36° 45' and 40° 30', on the scale of 4 miles to the inch. Sheets XVII and XVIII contain three geologic sections across the State, west of the longitude 104° 30'. Sheets XIX and XX are panoramic views of the Pikes Peak group, Sawatch Range, central portion of West Elk Mountains, Twin Lakes, southwestern border of the Mesa Verde, San Juan Mountains, and La Plata Mountains.

  13. Geological and Geographical Atlas of Colorado and portions of adjacent territory

    USGS Publications Warehouse

    Hayden, Ferdinand Vandeveer; Bien, Julius

    1877-01-01

    Sheets I-IV are triangulations, drainage, land classification, and geologic maps of Colorado west of longitude 102°, on the scale of 12 miles to the inch. Sheets V-XVI are topographic (contour) and geologic maps of Colorado and adjacent States, between meridians 104° 30' and 109° 30' and parallels 36° 45' and 40° 30', on the scale of 4 miles to the inch. Sheets XVII and XVIII contain three geologic sections across the State, west of the longitude 104° 30'. Sheets XIX and XX are panoramic views of the Pikes Peak group, Sawatch Range, central portion of West Elk Mountains, Twin Lakes, southwestern border of the Mesa Verde, San Juan Mountains, and La Plata Mountains.

  14. Earth Observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2013-12-26

    ISS038-E-021397 (24 Dec. 2013) --- The Caribbean country of Cuba is pictured in this nadir image, photographed by one of the Expedition 38 crew members aboard the International Space Station. (Note: North is at the top of the picture.) Cuba is an archipelago of islands in the northern Caribbean Sea at the confluence with the Gulf of Mexico and the Atlantic Ocean. In the southeast, the dark coastal area is home to the Sierra Maestra mountains. It is the highest mountain range on the island, with Pico Turquino reaching nearly 2000 meters. On the central southern coast of the island is the Sierra Del Escambray mountain range, including the 1160 meter-high Pico San Juan, Cuba's second highest peak.

  15. Geochronology and geology of late Oligocene through Miocene volcanism and mineralization in the western San Juan Mountains, Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Hon, Ken; Budding, Karin E.; Slack, John F.; Snee, Lawrence W.; Yeoman, Ross A.

    2001-01-01

    This paper presents 25 new 40Ar/39Ar dates from the main calc-alkaline ash-flow sheets and related younger plutons of the western San Juan volcanic field, the ash-flow sheets of the Lake City caldera cycle, and veins and other altered rocks in the Lake City region. The goal of the study was to produce similar quality 40Ar/39Ar ages to those currently published for the eastern and central San Juan Mountains. These new data provide a much more precise chronological framework for interpreting durations of events and their relationship to mineralization than do previously published conventional K-Ar dates for the western San Juan Mountains.

  16. Vitrinite Reflectance Data for the Wind River Basin, Central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Roberts, Laura N.R.; Pawlewicz, Mark J.

    2006-01-01

    Introduction: The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 mi2 in central Wyoming. The basin boundaries are defined by fault-bounded Laramide uplifts that surround it, including the Owl Creek and Bighorn Mountains to the north, Wind River Range to the west, Granite Mountains to the south, and Casper Arch to the east. The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Wind River Basin. One hundred and nineteen samples were collected from Jurassic through Tertiary rocks, mostly coal-bearing strata, in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks.

  17. Heavy Metals in Spring and Bottled Drinking Waters of Sibylline Mountains National Park (Central Italy).

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe

    2018-02-01

    Heavy metal concentrations (cadmium, lead, and copper) in spring, tap, and bottled waters of the Sibylline Mountains National Park (central Italy) were investigated using square wave anodic stripping voltammetry from 2004 to 2011. The mean (±SD) concentrations detected (1.3 ± 0.4 ng L -1 cadmium, 14 ± 6 ng L -1 lead, and 0.16 ± 0.10 μg L -1 copper) were below the limits stipulated by Italian and European legislation for drinking and natural mineral water. In the three studied areas of the park (Mount Bove north, Mount Bove south, and springs of River Nera) with very few exceptions, both mineral waters bottled in the area and aqueduct waters from public fountains had approximately the same metal concentrations as did the spring waters from which they were derived. Conversely, substantially higher metal concentrations were found at some sites in private houses, which may be due to release of metals from old metal pipes. At the time of this study, waters of Sibylline Mountains National Park were of good quality, and no influence of the bottling process on heavy metal concentrations was found.

  18. Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona

    USGS Publications Warehouse

    Beard, Sue; Campagna, David J.; Anderson, R. Ernest

    2010-01-01

    The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.

  19. Earth observations of the Andes Mountains taken during the STS-97 mission

    NASA Image and Video Library

    2000-12-10

    STS097-715-061 (10 December 2000) This view over the Central Andes Mountains in Argentina and Chile was taken on December 10, 2000 by one of the astronauts aboard the Earth-orbiting Space Shuttle Endeavour. Extending 5500 miles (8850 kilometers) along the western coast of South America from northern Colombia to Cape Horn in southern Chile, the Andes are the longest mountain range, above sea level, and the second highest range in the world. According to NASA scientists studying the STS-97 photo collection, this immense system came into existence nearly 70 million years ago. With numerous active volcanoes and a slow uplift, the building of the Andes Mountains continues today rising four inches (10 centimeters) per century, the scientists say. In this north-looking view, snow covers the higher peaks of the range, some of which rise to over 20000 feet (6100 meters) above sea level. Along the left or western portion of the view, clouds can be seen along coastal areas of Chile. In the bottom left quadrant of the scene, the blue waters of the Paloma Reservoir, a recreational lake, are visible. The folded Tontal Range (bottom center) and the Valle Fertil Range (upper right quadrant and partially cloud covered) of western Argentina can be seen. The rocks of these ranges, the scientists point out, are ancient compared to the younger volcanic peaks and ranges of the Andes. The city of San Juan, Argentina is visible on the eastern (right) base of the Tontal Range in the lower right quadrant of the view.

  20. Crustal-scale tilting of the central Salton block, southern California

    USGS Publications Warehouse

    Dorsey, Rebecca; Langenheim, Victoria

    2015-01-01

    The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.

  1. [Premises to the transboundary environmental crisis in the water tract on the example of water tract of the Kuban-Manych].

    PubMed

    Dementieva, D M; Dementiev, M S

    As a result, of the management of the irrigation system the most part of the runoff headwaters of the river Kuban was transferred to the arid plains of the Stavropol Territory, Rostov Region and Kalmykia Gravity Water via the water tract of the Kuban-Manych. This system was assumed to be supplied by pure mountain water. In fact, 3-4 class contaminated water currently passes to the water intake of the irrigation system (Nevinnomyssky channel). There is a tendency to the further deterioration in the quality of surface waters. It was determined that in the last decades in the catchment area of the upper reaches of the Kuban (Karachaevo-Cherkessia) the population was determined to increase sharply. As a result the discharge of industrial, agricultural, domestic and recreational waste into the river significantly increased. In that in catchment areas there is practically no infrastructure of the acquisition, processing and recycling of waste for the irrigation system. Intensive recreational and transport development of mountainous areas of Karachay-Cherkessia aggravates the situation and may lead to the need for deep water purification for subsequent consumption already in the vast territories of the Central Caucasus. Due to lack of the infrastructure for the water treatment in the upper reaches of the Kuban, it can lead to the serious systemic crisis. It is proposed to start to create in the catchment areas the cost-based system of recycling waste on the base of their processing by pyrolysis.

  2. Tectonics of the Jemez Lineament in the Jemez Mountains and Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Aldrich, M. J., Jr.

    1986-02-01

    The Jemez lineament is a NE trending crustal flaw that controlled volcanism and tectonism in the Jemez Mountains and the Rio Grande rift zone. The fault system associated with the lineament in the rift zone includes, from west to east, the Jemez fault zone southwest of the Valles-Toledo caldera complex, a series of NE trending faults on the resurgent dome in the Valles caldera, a structural discontinuity with a high fracture intensity in the NE Jemez Mountains, and the Embudo fault zone in the Española Basin. The active western boundary faulting of the Española Basin may have been restricted to the south side of the lineament since the mid-Miocene. The faulting apparently began on the Sierrita fault on the east side of the Nacimiento Mountains in the late Oligocene and stepped eastward in the early Miocene to the Canada de Cochiti fault zone. At the end of the Miocene (about 5 Ma) the active boundary faulting again stepped eastward to the Pajarito fault zone on the east side of the Jemez Mountains. The north end of the Pajarito fault terminates against the Jemez lineament at a point where it changes from a structural discontinuity (zone of high fracture intensity) on the west to the Embudo fault zone on the east. Major transcurrent movement occurred on the Embudo fault zone during the Pliocene and has continued at a much slower rate since then. The relative sense of displacement changes from right slip on the western part of the fault zone to left slip on the east. The kinematics of this faulting probably reflect the combined effects of faster spreading in the Española Basin than the area north of the lineament (Abiquiu embayment and San Luis Basin), the right step in the rift that juxtaposes the San Luis Basin against the Picuris Mountains, and counterclockwise rotation of various crustal blocks within the rift zone. No strike-slip displacements have occurred on the lineament in the central and eastern Jemez Mountains since at least the mid-Miocene, although movements on the still active Jemez fault zone, in the western Jemez Mountains, may have a significant strike-slip component. Basaltic volcanism was occurring in the Jemez Mountains at four discrete vent areas on the lineament between about 15 Ma and 10 Ma and possibly as late as 7 Ma, indicating that it was being extended during that time.

  3. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22269 (13 Aug. 2007) --- The crew aboard the International Space Station provided this image of the wide-spread forest fires in the Payette National Forest, Central Idaho within the Salmon River Mountains. North is toward the left of the image. The Salmon River is the feature in the bottom central part of the frame. Lake Cascade is seen at the lower right.

  4. Change in extent of meadows and shrub fields in the central western cascade Range, Oregon

    Treesearch

    Sadao Takaoka; Frederick J. Swanson

    2008-01-01

    We examined change in areal extent of mountain meadows and fields of deciduous shrubs and conifer saplings in the central western Cascade Range of Oregon, based on analysis of aerial photographs taken in 1946 and 2000. These nonforest vegetation patches are distinctive habitats in dominantly forested landscapes, such as the Cascades, and change in extent of these...

  5. Home range and habitat use of the Vulnerable Virginia northern flying squirrel Glaucomys sabrinus fuscus in the Central Appalachian Mountains, USA

    Treesearch

    Jennifer M. Menzel; W. Mark Ford; John W. Edwards; Tamara M. Terry

    2006-01-01

    The Virginia northern flying squirrel Glaucomys sabrinus fuscus is a Vulnerable sciurid that has experienced a 90% reduction of suitable high elevation boreal montane forest habitat over the last century in the central Appalachians of West Virginia and Virginia, USA. Using radiotelemetry and GIs analyses we examined the species' home range size...

  6. Quantifying geological structures of the Nigde province in central Anatolia, Turkey using SRTM DEM data

    NASA Astrophysics Data System (ADS)

    Demirkesen, A. C.

    2009-01-01

    A digital terrain model and a 3D fly-through model of the Nigde province in central Anatolia, Turkey were generated and quantitatively analyzed employing the shuttle radar topographic mission (SRTM) digital elevation model (DEM). Besides, stream drainage patterns, lineaments and structural-geological features were extracted and analyzed. In the process of analyzing and interpreting the DEM for landforms, criteria such as color and color tones (attributes of heights), topography (shaded DEM and 3D fly-through model) and stream drainage patterns were employed to acquire geo-information about the land, such as hydrologic, geomorphologic, topographic and tectonic structures. In this study, the SRTM DEM data of the study region were experimentally used for both DEM classification and quantitative analysis of the digital terrain model. The results of the DEM classification are: (1) low plain including the plains of Bor and Altunhisar (20.7%); (2) high plain including the Misli (Konakli) plain (28.8%); (3) plateau plain including the Melendiz (Ciftlik) plateau plain (1.0%); (4) mountain including the Nigde massif (33.3%); and (5) high mountain (16.2%). High mountain areas include a caldera complex of Mt Melendiz, Mt Hasan and Mt Pozanti apart from the Ala mountains called Aladaglar and the Bolkar mountains called Bolkarlar in the study region (7,312 km2). Analysis of both the stream drainage patterns and the lineaments revealed that the Nigde province has a valley zone called Karasu valley zone (KVZ) or Nigde valley zone (NVZ), where settlements and agricultural plains, particularly the Bor plain in addition to settlements of the Bor town and the central city of Nigde have the most flooding risk when a heavy raining occurs. The study revealed that the NVZ diagonally divides the study region roughly into two equal parts, heading from northeast to southwest. According to the map created in this study, the right side of the NVZ has more mountainous area, where the Aladaglar is a wildlife national park consisting of many species of fauna and flora whereas the left side of the NVZ has more agricultural plain, with exception of a caldera complex of Mt Melendiz and volcanic Mt Hasan. The south of the study region includes the Bolkarlar. In addition, the Ecemis fault zone (EFZ) lying along the Ecemis rivulet, running from north to south at the west side of the Aladaglar, forms the most important and sensitive location in the region in terms of the tectonics.

  7. Influence of orographic precipitation on the incision within a mountain-piedmont system

    NASA Astrophysics Data System (ADS)

    Zavala, Valeria; Carretier, Sébastien; Bonnet, Stephane

    2017-04-01

    The geomorphological evolution of a mountain-piedmont system depends both on tectonics and climate, as well as on couplings between the mountain and its piedmont. Although the interactions between climate and tectonics are a fundamental point for understanding the landscape evolution, the erosion of a mountain range and the sediment deposition at the mountain front, or piedmont, have been poorly studied as a coupled system. Here we focus on the conditions driving an incision within such a system. Classically, it is thought that incision results from a change in climate or uplift rates. However, it is not clear which are the specific conditions that favor the occurrence of river incision in the piedmont. In particular, studies have shown that the presence of a piedmont can modify the incision patterns, and even drive autogenic incision, without any change in external forcings. This is a crucial issue in order to interpret natural incisions in terms of uplift or climatic modifications. Such a problem is further complicated by the modification of local precipitations and temperatures during uplift, because the progressive effect of climate change may superimpose to uplift. In this work we explore the hypothesis that a mountain-piedmont coupled system may develop incision in its piedmont as a result of enhanced orographic precipitations during surface uplift. We use a landscape evolution model, Cidre, in order to explore the response of a mountain-piemont system in which the mountain is continuously uplifted but in which precipitation rates depend on elevations. Thus precipitation amounts change during the mountain uplift. We test different peaks and amplitudes of the orographic precipitation pattern, maintaining the other conditions constant. Preliminary results show that elevation-dependent precipitations drive temporary but pronounced incisions of the main rivers within the piedmont, contrary to experiments without orographic precipitations.

  8. Determining the upper mantle seismic structure beneath the northern Transantarctic Mountains, Antarctica, from regional P- and S-wave tomography

    NASA Astrophysics Data System (ADS)

    Brenn, Gregory Randall

    Stretching 3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional continental mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; deltaVP ≈ -2.0%; deltaV S ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; deltaVP ≈ -1.5% to -2.0%; deltaVS ≈ -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (deltaVP ≈ 0.5% to 2%; deltaV S ≈ 1.5% to 4.0%). A low velocity region (deltaVP ≈ -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.

  9. Timing and Spatial Distribution of Loess in Xinjiang, NW China.

    PubMed

    Li, Yun; Song, Yougui; Yan, Libin; Chen, Tao; An, Zhisheng

    2015-01-01

    Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess-paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm) grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin.

  10. Rainfall-runoff-soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.

    2004-06-01

    The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.

  11. Description and validation of an automated methodology for mapping mineralogy, vegetation, and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2012-01-01

    The efficacy of airborne spectroscopic, or "hyperspectral," remote sensing for geoenvironmental watershed evaluations and deposit-scale mapping of exposed mineral deposits has been demonstrated. However, the acquisition, processing, and analysis of such airborne data at regional and national scales can be time and cost prohibitive. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried by the NASA Earth Observing System Terra satellite was designed for mineral mapping and the acquired data can be efficiently used to generate uniform mineral maps over very large areas. Multispectral remote sensing data acquired by the ASTER sensor were analyzed to identify and map minerals, mineral groups, hydrothermal alteration types, and vegetation groups in the western San Juan Mountains, Colorado, including the Silverton and Lake City calderas. This mapping was performed in support of multidisciplinary studies involving the predictive modeling of surface water geochemistry at watershed and regional scales. Detailed maps of minerals, vegetation groups, and water were produced from an ASTER scene using spectroscopic, expert system-based analysis techniques which have been previously described. New methodologies are presented for the modeling of hydrothermal alteration type based on the Boolean combination of the detailed mineral maps, and for the entirely automated mapping of alteration types, mineral groups, and green vegetation. Results of these methodologies are compared with the more detailed maps and with previously published mineral mapping results derived from analysis of high-resolution spectroscopic data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Such comparisons are also presented for other mineralized and (or) altered areas including the Goldfield and Cuprite mining districts, Nevada and the central Marysvale volcanic field, Wah Wah Mountains, and San Francisco Mountains, Utah. The automated mineral group mapping products described in this study are ideal for application to mineral resource and mineral-environmental assessments at regional and national scales.

  12. A Few Issues on the Peat Research in the Altai Mountains

    NASA Astrophysics Data System (ADS)

    Inisheva, Lydia I.; Larina, Galina; Shurova, Maya

    2010-05-01

    At the present time we carry out complex research of marsh ecosystems in various areas of Gorny Altai to reveal the perspective deposits of peat in the Altai Mountains with the purpose of its use in the medical and recreational spheres. The peat deposits of the Northeastern Altai, Central Altai, and Southeastern Altai are surveyed; the selective chemical analysis of peat and marsh waters is carried out. The group structure of organic substance of various samples of peat is investigated by the method of Institutes of Peat. The toxic metals of Cd, Pb, Hg, Cu, Zn, and As were defined by the method of stripping voltammetry. The region of the Altai Mountains is characterized by the contrastive distribution of some heavy metals and arsenic in a soil cover. This is caused by a variety of petrography and granulometry of soil forming material, and also by a landscape and geochemical situation in the system of vertical zoning. The sources of natural accumulation of heavy metals in the ground might be the deposits of polymetals. In this connection the content of the specified toxic elements in the peat under research has been identified. The peat of the Turochak deposit is characterized by a significant ash content - up to 41,9%; the increased ash content is typical of the Kutyush deposit: from 6,1% up to 19, %. The peat of the Northeastern Altai is referred to non-bitumunous: the content of bitumen makes up less than 5%. In comparison with the European peat the peat under study of the transitive and lowland type is characterized by the significant content of easy hydrolysable substances in the amount of 24,8-41,1%. The amount of the non-hydrolysable rest makes up around 4,3 - 7,4 %. The total content of fulvic acids is less than the content of humic acids by 2,9 - 5,8 times. The high content of humic acids which can reach up to 58 % is characteristic of certain deposits. Humic acids extracted from the peat are characterized, as a rule, by similar IR-spectra. The distinctions are shown in an unequal intensity of characteristic absorption bands, in their spreading and some shifts. It is revealed that humic acids of peat with the increase in a degree of decomposition are exposed to transformation; therefore the increase in their structure of functional groups is observed. As a result of the research which was carried out the following elements among heavy metals in the lowland peat of the Altai Mountains are revealed: Cd (2,7 - 30)> Hg (0,67)> Zn (0,22) ~Pb (0,21)> Cu (0,13)> As (0,03). The degree of mobility of chemical elements in the peat varies within the limits of 1,3 - 36%. According to the degree of their mobility these elements form the following line: Zn (36 %)> Pb (18,1 %)> Cd (9,6 %)> Cu (1,3 %). The content and the character of distribution of the heavy metals under study and arsenic in the peat of the Altai Mountains have their unique features in comparison with the same valley analogues. The mountain peat of the Central Altai contains much less Hg than the West Siberian one: 0,078 mg/g and 0,69 mg/g accordingly. Cd represents itself as the concentrator in the lowland peat of the Northeastern and Central Altai, its content is actually the same and makes up approximately 0,3 mg/kg. The lowland Altai and West Siberian peat has the same amount of Pb: 4-5 mg/kg; they have smaller amounts of Zn and Cu in comparison with the European and West Siberian peat. The revealed features of distribution of some toxic metals are the display of specificity of peat genesis in the conditions of a mountain relief. The complex of the data received by us allows to consider the peat of the Altai Mountains as a non-polluting raw source concerning the amount of some natural toxic substances. The possible perspective directions of practical application of the mountain peat can be medicine, veterinary science, and agriculture.

  13. 10 CFR 963.16 - Postclosure suitability evaluation method.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 963.16 Energy DEPARTMENT OF ENERGY YUCCA MOUNTAIN SITE SUITABILITY GUIDELINES Site Suitability... assessment to evaluate the ability of the Yucca Mountain disposal system to limit radiological doses and... the performance of the Yucca Mountain disposal system using the method described in paragraph (b) of...

  14. Southern and Central California Chaparral and Oak Woodlands Ecoregion: Chapter 19 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Napton, Darrell E.

    2012-01-01

    The Southern and Central California Chaparral and Oak Woodlands Ecoregion, which covers approximately 102,110 km2 (39,425 mi2), is characterized by a Mediterranean climate with cool, moist winters and hot, dry summers (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Natural vegetation includes chaparral (for example, manzanita, Arctostaphylos spp.) and oak (Quercus spp.) woodlands with extensive grassland and shrubland cover. The low mountains and foothills of the ecoregion border or parallel the Pacific Ocean from Mexico to Point Reyes, California, and continue inland surrounding the Central California Valley Ecoregion (fig. 1). These mountains and hills are interrupted by limited areas of flat land generally used for development or agriculture. The largest developed area in the ecoregion is the Los Angeles Basin, followed by the San Francisco Bay area and the San Diego metropolitan area (fig. 1). The largest agricultural area is the Salinas River valley south of Monterey, California. Most of the ecoregion consists of rangelands classified as grassland/ shrubland and forest land covers (figs. 1,2).

  15. Quantifying present and future glacier melt-water contribution to runoff in a Central Himalayan river basin

    NASA Astrophysics Data System (ADS)

    Prasch, M.; Mauser, W.; Weber, M.

    2012-10-01

    Water supply of most lowland cultures heavily depends on rain and melt-water from the upstream mountains. Especially melt-water release of alpine mountain ranges is usually attributed a pivotal role for the water supply of large downstream regions. Water scarcity is assumed as consequence of glacier shrinkage and possible disappearance due to Global Climate Change, particular for large parts of Central and South East Asia. In this paper, the application and validation of a coupled modeling approach with Regional Climate Model outputs and a process-oriented glacier and hydrological model is presented for a Central Himalayan river basin despite scarce data availability. Current and possible future contributions of ice-melt to runoff along the river network are spatially explicitly shown. Its role among the other water balance components is presented. Although glaciers have retreated and will continue to retreat according to the chosen climate scenarios, water availability is and will be primarily determined by monsoon precipitation and snow-melt. Ice-melt from glaciers is and will be a minor runoff component in summer monsoon-dominated Himalayan river basins.

  16. Chlorine-36 and 14C chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet

    USGS Publications Warehouse

    Brigham-Grette, J.; Gualtieri, L.M.; Glushkova, O.Y.; Hamilton, T.D.; Mostoller, D.; Kotov, A.

    2003-01-01

    The Pekulney Mountains and adjacent Tanyurer River valley are key regions for examining the nature of glaciation across much of northeast Russia. Twelve new cosmogenic isotope ages and 14 new radiocarbon ages in concert with morphometric analyses and terrace stratigraphy constrain the timing of glaciation in this region of central Chukotka. The Sartan Glaciation (Last Glacial Maximum) was limited in extent in the Pekulney Mountains and dates to ???20,000 yr ago. Cosmogenic isotope ages > 30,000 yr as well as non-finite radiocarbon ages imply an estimated age no younger than the Zyryan Glaciation (early Wisconsinan) for large sets of moraines found in the central Tanyurer Valley. Slope angles on these loess-mantled ridges are less than a few degrees and crest widths are an order of magnitude greater than those found on the younger Sartan moraines. The most extensive moraines in the lower Tanyurer Valley are most subdued implying an even older, probable middle Pleistocene age. This research provides direct field evidence against Grosswald's Beringian ice-sheet hypothesis. ?? 2003 Elsevier Science (USA). All rights reserved.

  17. Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from?

    USGS Publications Warehouse

    Lipman, P.W.; McIntosh, W.C.

    2008-01-01

    The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass caldera that has little surviving topographic expression, no voluminous tuffs vented directly from the adjacent Cochetopa Park caldera, which is morphologically beautifully preserved. Instead, Cochetopa Park subsided passively as the >500 km3 Nelson Mountain Tuff vented at 26.9 Ma from an "underfit" caldera (youngest of the San Luis complex) 30 km to the SW. Three separate regional ignimbrites were erupted sequentially from San Luis calderas within an interval of less than 50-100 k.y., a more rapid recurrence rate for large explosive eruptions than previously documented elsewhere. In eruptive processes, volcanic compositions, areal extent, duration of activity, and magmatic production rates and volumes, the Southern Rocky Mountains Volcanic Field represents present-day erosional remnants of a composite volcanic field, comparable to younger ignimbrite terranes of the Central Andes. ?? 2008 Geological Society of America.

  18. Interactions between mafic eruptions and glacial ice or snow: implications of the 2010 Eyjafjallajökull, Iceland, eruption for hazard assessments in the central Oregon Cascades

    NASA Astrophysics Data System (ADS)

    McKay, D.; Cashman, K. V.

    2010-12-01

    The 2010 eruption of Eyjafjallajökull, Iceland, demonstrated the importance of addressing hazards specific to mafic eruptions in regions where interactions with glacial ice or snow are likely. One such region is the central Oregon Cascades, where there are hundreds of mafic vents, many of which are Holocene in age. Here we present field observations and quantitative analyses of tephra deposits from recent eruptions at Sand Mountain, Yapoah Cone, and Collier Cone (all <4 ka). These deposits differ from typical Cascade cinder cone deposits in several ways. Most significantly, the Sand Mountain eruption produced a relatively large tephra blanket (~1 km3) that is unusually fine-grained: average clast size is 0.063 - 0.5 mm, in contrast to tephra from typical Cascade cinder cones, which are dominated by small lapilli-sized clasts rather than ash. The eruption of Eyjafjallajökull earlier this year prompted us to investigate the role that ice or snow may have played in the production of unusually fine-grained tephra during the Sand Mountain eruption. The eruption date of Sand Mountain is not well constrained, but it likely occurred during the Neoglacial phase of ice advance, which lasted from ~2 to 8 ka in the central Oregon Cascades (Marcott et al., 2009). During the Neoglacial, winter snowfall was likely ~23% greater and summer temperatures ~1.4°C cooler than present (Marcott, 2009). Although ice did not advance to the elevation of the Sand Mountain vents during this time, the eruption could have occurred through several meters of snow. We have also seen very fine-grained tephra at Yapoah Cone, which is located at a higher elevation and may have interacted with glacial ice. In addition to being characterized by unusually fine grainsize, the Yapoah tephra blanket is deposited directly on top of hyaloclastite in several locations. Tephra from Collier Cone is not characterized by unusually fine grainsize, but several sections of the deposit exhibit features that suggest deposition on top of, or interbedding with, snow that later melted away. Identification of features in mafic tephra that suggest interactions with glacial ice or snow has significant implications for regional volcanic hazard assessments. Specifically, the unique hazards posed by Eyjafjallajökull, especially hazards to air travel caused by unusually fine-grained tephra, could be repeated in the Cascades. Although glacial ice is presently limited to elevations above ~2300 m in the central Oregon Cascades, winter snowpack can exceed 5 m at elevations of ~1800 m and above. If a cinder cone eruption were to occur during winter months, interaction with snow could generate phreatomagmatic activity and outburst flooding similar to the 2010 eruption of Eyjafjallajökull, along with similar hazards to regional air travel and nearby infrastructure. For this reason, we suggest that seasonality should be an important consideration in volcanic hazard assessments for the central Oregon Cascades.

  19. Turtle Mtns., ND

    NASA Image and Video Library

    2015-04-24

    This image from NASA Terra spacecraft shows the Turtle Mountains, which straddle the US-Canada border in central North Dakota. Underlain by 55 million year old sandstones and shales of the Cannonball Formation, the upland surface was sculpted by glaciations. Due to the mountain's 150m elevation above the surrounding lowlands, glacial ice tended to stagnate, forming thousands of lakes and sloughs. The image was acquired May 19, 2006, covers an area of 43.5 x 53.1 km, and is located at 49 degrees north, 100.1 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19435

  20. Constraints on the tectonics of the Mule Mountains Thrust System, southeast California and southwest Arizona

    NASA Astrophysics Data System (ADS)

    Tosdal, Richard M.

    1990-11-01

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015° to 035°) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79±2 Ma and 70±4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.

  1. Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico

    USGS Publications Warehouse

    Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.

    2000-01-01

    The Jemez Mountains in north-central New Mexico are volcanic in origin and have a large central caldera known as Valles Caldera. The mountains contain the Valles geothermal system, which was investigated during 1970-82 as a source of geothermal energy. This report describes the geothermal hydrology of the Jemez Mountains and presents results of an earlier 1972-75 U.S. Geological Survey study of the area in light of more recent information. Several distinct types of thermal and nonthermal ground water are recognized in the Jemez Mountains. Two types of near-surface thermal water are in the caldera: thermal meteoric water and acid sulfate water. The principal reservoir of geothermal fluids is at depth under the central and western parts of the caldera. Nonthermal ground water in Valles Caldera occurs in diverse perched aquifers and deeper valley-fill aquifers. The geothermal reservoir is recharged by meteorically derived water that moves downward from the aquifers in the caldera fill to depths of 6,500 feet or more and at temperatures reaching about 330 degrees Celsius. The heated geothermal water rises convectively to depths of 2,000 feet or less and mixes with other ground water as it flows away from the geothermal reservoir. A vapor zone containing steam, carbon dioxide, and other gases exists above parts of the liquid-dominated geothermal zone. Two subsystems are generally recognized within the larger geothermal system: the Redondo Creek subsystem and the Sulphur Creek subsystem. The permeability in the Redondo Creek subsystem is controlled by stratigraphy and fault-related structures. Most of the permeability is in the high-angle, normal faults and associated fractures that form the Redondo Creek Graben. Faults and related fractures control the flow of thermal fluids in the subsystem, which is bounded by high-angle faults. The Redondo Creek subsystem has been more extensively studied than other parts of the system. The Sulphur Springs subsystem is not as well defined. The upper vapor-dominated zone in the Sulphur Creek subsystem is separated from the liquid-dominated zone by about 800 feet of sealed caldera-fill rock. Acid springs occur at the top of the vapor zone in the Sulphur Springs area. Some more highly permeable zones within the geothermal reservoir are interconnected, but the lack of interference effects among some wells during production tests suggests effective hydraulic separation along some subsystem boundaries. Chemical and thermal evidence suggests that the Sulphur Springs subsystem may be isolated from the Redondo Creek subsystem and each may have its own zone of upflow and lateral outflow. The area of the entire geothermal reservoir is estimated to be about 12 to 15 square miles; its western limit generally is thought to be at the ring-fracture zone of the caldera. The top of the reservoir is generally considered to be the bottom of a small- permeability 'caprock' that is about 2,000 to 3,000 feet below land surface. Estimated thicknesses to the bottom of the reservoir range from 2,000 to 6,000 feet. Reservoir temperatures measured in exploration wells range from 225 degrees Celsius just below the caprock to about 330 degrees Celsius in deeper drill holes. Pressures measured in exploration wells in the Redondo Creek area ranged from 450 to 1,850 pounds per square inch. Steam-producing zones have been encountered above the liquid- dominated zones in wells, but the extent of steam zones is not well defined. The reservoir contains a near-neutral, chloride-type water containing about 7,000 milligrams per liter dissolved solids. No thermal springs in the caldera have geochemical characteristics similar to those of the geothermal reservoir fluids sampled in wells. Oxygen-18 and deuterium isotope concentrations of geothermal reservoir fluid indicate a meteoric origin. The moat valleys in

  2. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.

    PubMed

    Hemingway, Jordon D; Hilton, Robert G; Hovius, Niels; Eglinton, Timothy I; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V

    2018-04-13

    Lithospheric organic carbon ("petrogenic"; OC petro ) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO 2 ) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OC petro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO 2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OC petro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO 2 emission fluxes that increase with erosion rate, thereby counteracting CO 2 drawdown by silicate weathering and biospheric OC burial. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. 29. VIEW OF MILL FROM WEST. SHOWS SECONDARY THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF MILL FROM WEST. SHOWS SECONDARY THICKENER No. 7 TANK FLOOR FRAMING AND CENTRAL MECHANISM AT CENTER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  4. Bat activity in harvested and intact forest stands in the allegheny mountains

    USGS Publications Warehouse

    Owen, S.F.; Menzel, M.A.; Edwards, J.W.; Ford, W.M.; Menzel, J.M.; Chapman, B.R.; Wood, P.B.; Miller, K.V.

    2004-01-01

    We used Anabat acoustical monitoring devices to examine bat activity in intact canopy forests, complex canopy forests with gaps, forests subjected to diameter-limit harvests, recent deferment harvests, clearcuts and unmanaged forested riparian areas in the Allegheny Mountains of West Virginia in the summer of 1999. We detected eight species of bats, including the endangered Indiana bat (Myotis sodalis). Most bat activity was concentrated in forested riparian areas. Among upland habitats, activity of silver-haired bats (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) was higher in open, less cluttered vegetative types such as recent deferment harvests and clearcuts. Our results suggest that bat species in the central Appalachians partially segregate themselves among vegetative conditions based on differences in body morphology and echolocation call characteristics. From the standpoint of conserving bat foraging habitat for the maximum number of species in the central Appalachians, special emphasis should be placed on protecting forested riparian areas.

  5. Microfacies and diagenesis of the reefal limestone, Callovian Tuwaiq Mountain Limestone Formation, central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    EL-Sorogy, Abdelbaset S.; Almadani, Sattam A.; Al-Dabbagh, Mohammad E.

    2016-03-01

    In order to document the microfacies and diagenesis of the reefal limestone in the uppermost part of the Callovian Tuwaiq Mountain Limestone Formation at Khashm Al-Qaddiyah area, central Saudi Arabia, scleractinian corals and rock samples were collected and thin sections were prepared. Coral framestone, coral floatstone, pelloidal packstone, bioclastic packstone, bioclastic wacke/packstone, algal wackestone and bioclastic foraminiferal wacke/packstone were the recorded microfacies types. Cementation, recrystallization, silicification and dolomitization are the main diagenetic alterations affected the aragonitic skeletons of scleractinian corals. All coral skeletons were recrystallized, while some ones were dolomitized and silicified. Microfacies types, as well as the fossil content of sclearctinian corals, bivalves, gastropods, brachiopods and foraminifera indicated a deposition in environments ranging from shelf lagoon with open circulation in quiet water below wave base to shallow reef flank and organic build up for the uppermost reefal part of the Tuwaiq Formation in the study area.

  6. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    PubMed

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  7. Hydrologic, chemical, and isotopic characterization of two small watersheds on Catoctin Mountain, north-central Maryland, U.S.A.

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, O.P.

    1993-01-01

    Two small (100 ha) watersheds located on Catoctin Mountain in north-central Maryland were intensively instrumented in 1990 and have been hydrologically, chemically, and isotopically monitored for 3 years. Dissolved concentrations of major ions (Ca2+, Mg2+, Na+, K+, total AI, CI-, NO3-, SO42- , HCO3-, and SiO2) and stable isotopic (D and 18O) values have been analyzed for most types of water (precipitation, throughfall, two depths of soil water, shallow groundwater, and streamwater) that enter, travel through, and exit each watershed. The major objectives of the study were to characterize the chemical and isotopic signatures of all aqueous components of the watersheds and to interpret the causes of the changes in chemical and isotopic compositions of streamwater during storm runoff. This paper describes selected results of the study.

  8. Processing and interpretation of aeromagnetic data for the Santa Cruz Basin - Patagonia Mountains area, south-central Arizona

    USGS Publications Warehouse

    Phillips, Jeffrey D.

    2002-01-01

    In 1997, the U.S. Geological Survey (USGS) contracted with Sial Geosciences Inc. for a detailed aeromagnetic survey of the Santa Cruz basin and Patagonia Mountains area of south-central Arizona. The contractor's Operational Report is included as an Appendix in this report. This section describes the data processing performed by the USGS on the digital aeromagnetic data received from the contractor. This processing was required in order to remove flight line noise, estimate the depths to the magnetic sources, and estimate the locations of the magnetic contacts. Three methods were used for estimating source depths and contact locations: the horizontal gradient method, the analytic signal method, and the local wavenumber method. The depth estimates resulting from each method are compared, and the contact locations are combined into an interpretative map showing the dip direction for some contacts.

  9. Climate change and livestock system in mountain: Understanding from Gandaki River basin of Nepal Himalaya.

    NASA Astrophysics Data System (ADS)

    Dahal, P.; Shrestha, N. S.; Krakauer, N.; Lakhankar, T.; Panthi, J., Sr.; Pradhanang, S.; Jha, A. K.; Shrestha, M.; Sharma, M.

    2015-12-01

    In recent years climate change has emerged as a source of vulnerability for agro-livestock smallholders in Nepal where people are mostly dependent on rain-fed agriculture and livestock farming for their livelihoods. There is a need to understand and predict the potential impacts of climate change on agro-livestock farmer to develop effective mitigation and adaptation strategies. To understand dynamics of this vulnerability, we assess the farmers' perceptions of climate change, analysis of historical and future projections of climatic parameters and try to understand impact of climate change on livestock system in Gandaki River Basin of Central Nepal. During the period of 1981-2012, as reported by the mountain communities, the most serious hazards for livestock system and agriculture are the increasing trend of temperature, erratic rainfall patterns and increase in drought. Poor households without irrigated land are facing greater risks and stresses than well-off people. Analysis of historical climate data also supports the farmer perception. Result shows that there is increasing trend of temperature but no consistent trend in precipitation but a notable finding is that wet areas are getting wetter and dry areas getting drier. Besides that, there is increase in percentage of warm days and nights with decrease in the cool nights and days. The magnitude of the trend is found to be higher in high altitude. Trend of wet days has found to be increasing with decreasing in rainy days. Most areas are characterized by increases in both severity and frequency of drought and are more evident in recent years. The summers of 2004/05/06/09 and winters of 2006/08/09 were the worst widespread droughts and have a serious impact on livestock since 1981. Future projected change in temperature and precipitation obtained from downscaling the data global model by regional climate model shows that precipitation in central Nepal will change by -8% to 12% and temperature will change by 1.9 0C to 3 0C in 2031-2060 compared to the baseline period 1970-2000. Since there will be an increase in temperature and most of the area will experience decreasing rainfall we can predict that there will be increasing vulnerability on livestock system in central Nepal in future which is already facing a serious impact.

  10. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voegele, Michael; McCracken, Robert; Herrera, Troy

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening withmore » the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)« less

  11. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  12. Review of paleomagnetic data from the Klamath Mountains, Blue Mountains, and Sierra Nevada; Implications for paleogeographic reconstructions

    USGS Publications Warehouse

    Mankinen, Edward A.; Irwin, William P.

    1990-01-01

    Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.

  13. West Meets East in Central Asia: Competing Discourses on Secondary Education Reform in the Kyrgyz Republic.

    ERIC Educational Resources Information Center

    De Young, Alan J.

    The Kyrgyz Republic--a remote mountainous region--is one of five former Soviet states in central Asia. This case study begins with a brief overview of the political and economic situation of the Kyrgyz Republic and its relation to aims of Soviet schooling in the 20th century. A critique of the Soviet schooling model by foreign academics before and…

  14. History of Forest Service Research in the Central and Southern Rocky Mountain Regions, 1908-1975

    Treesearch

    Raymond Price

    1976-01-01

    The first forest research area established by the Forest Service was in 1908­the Fort Valley Experimental Forest near Flagstaff, Arizona. In 1909, the Fremont Experiment Station near Colorado Springs was begun, as well as the Wagon Wheel Gap watershed experiment in the central Rockies. The Santa Rita Range Reserve, begun in 1903, was transferred to the Forest Service...

  15. JPRS Report, Latin America.

    DTIC Science & Technology

    1987-08-07

    for Ucayali and Madre de Dios . These projects are: Jaen-San Ignacio, Huallaga Central and Bajo Mayo, Alto Huallaga, Pichis-Palcazu, Emergency Jungle...Project, and Madre de Dios Project. Moreover, the INADE is involved in a special project called the Central South Mountain Project, which involves...lack of space for storing them. At Unit 303-30 in Zone 7 of Old Havana, located on San Juan de Dios between Villegas and Monserrate, there is enough

  16. Ozone exposures and implications for vegetation in rural areas of the central Appalachian Mountains, U.S.A.

    Treesearch

    Pamela Edwards; Cindy Huber; Frederica Wood

    2004-01-01

    The United States is making the transition from the 1979 1 hr maximum ozone standard to the newly adopted 8 hr ozone standard (3 yr average of the 4th highest maximum 8 hr ozone concentration). Consequently, we analyzed and compared ozone concentrations under both standards from a variety of monitoring sites throughout the central Appalachian region of Kentucky (KY),...

  17. Resistivity structures across the Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Williams, Jackie M.

    2002-01-01

    Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.

  18. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-05

    ISS013-E-77377 (5 Sept. 2006) --- Bernese Alps, Switzerland is featured in this image photographed by an Expedition 13 crewmember onboard the International Space Station. The formidable mountain system of the Alps stretches across much of central Europe, with seven countries claiming portions of the mountains within their borders (Germany, France, Switzerland, Italy, Liechtenstein, Austria, and Slovenia). The glacial landscape of the Bernese Alps, located in southwestern Switzerland, is well illustrated by this view. The image was taken by a crewmember looking north-northwest while the station was located over the Mediterranean Sea between Corsica and Italy -- this oblique viewing angle imparts a sense of perspective to the image. This type of viewing angle complements more nadir (downward)--viewing imagery of the region. Three of the higher peaks of the central Alps are visible--Jungfrau (4,158 meters), Moench (4,089 meters), and Eiger (3,970 meters). To the east and south of the Jungfrau is the Aletsch Glacier, clearly marked by dark medial moraines extending along the glacier's length parallel to the valley axis. The moraines are formed from rock and soil debris collected along the sides of three mountain glaciers located near the Jungfrau and Moench peaks -- as these flowing ice masses merge to form the Aletsch Glacier, the debris accumulates in the middle of the glacier and is carried along the flow direction. According to geologists, Lake Brienz to the northwest was formed by the actions of both glacial ice and the flowing waters of the Aare and Lutschine rivers, and has a maximum depth of 261 meters. The lake has a particularly fragile ecosystem, as demonstrated by the almost total collapse of the whitefish population in 1999. Possible causes for the collapse, according to the scientists, include increased water turbidity associated with upstream hydropower plant operations, and reduction of phosphorus (a key nutrient for lake algae, a basic element of the local food web) due to water quality concerns.

  19. Quantification of Glacier Depletion in the Central Tibetan Plateau by Using Integrated Satellite Remote Sensing and Gravimetry

    NASA Astrophysics Data System (ADS)

    Tseng, K.-H.; Liu, K. T.; Shum, C. K.; Jia, Y.; Shang, K.; Dai, C.

    2016-06-01

    Glaciers over the Tibetan Plateau have experienced accelerated depletion in the last few decades due primarily to the global warming. The freshwater drained into brackish lakes is also observed by optical remote sensing and altimetry satellites. However, the actual water storage change is difficult to be quantified since the altimetry or remote sensing only provide data in limited dimensions. The altimetry data give an elevation change of surface while the remote sensing images provide an extent variation in horizontal plane. Hence a data set used to describe the volume change is needed to measure the exact mass transition in a time span. In this study, we utilize GRACE gravimetry mission to quantify the total column mass change in the central Tibetan Plateau, especially focused on the lakes near Tanggula Mountains. By removing these factors, the freshwater storage change of glacier system at study area can be potentially isolated.

  20. La province magmatique de l'Atlantique central dans le bassin des Ksour (Atlas saharien, Algérie)

    NASA Astrophysics Data System (ADS)

    Meddah, Amar; Bertrand, Hervé; Elmi, Serge

    2007-01-01

    The volcanic succession from the Triassic basin of the Ksour Mountains is formed by three basaltic units, interlayered with siliciclastic to evaporitic sedimentary levels and overlain by Rhaetian-Hettangian limestones. These basalts are low-Ti continental tholeiites that show, from bottom to top, the same chemical evolution as the basalts from the Triassic basins in the Moroccan High Atlas. This volcanism represents the easternmost witness of the central Atlantic magmatic province (CAMP) associated with the central Atlantic rifting, at the Triassic-Jurassic (Tr-J) boundary.

  1. Climate along the crest of the US Rocky Mountains during the last glaciation: preliminary insights from numerical modeling of paleoglaciers

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J.; Plummer, M. A.; Huss, E.; Spiess, V. M.; Mackall, B. T.; Jacobsen, R. E.; Quirk, B.

    2012-12-01

    Climate conditions at the time of the local Last Glacial Maximum (LGM) in the US Rocky Mountains were assessed using a 2-d coupled glacier energy/mass-balance and ice-flow model (Plummer and Phillips, 2003). The model was employed to understand the conditions that would be necessary to sustain valley glaciers and small mountain icecaps at their maximum extents in eight areas distributed along the crest of the range from northern New Mexico (35.8oN) to northern Montana (48.6oN). For each setting, model experiments yield a set of temperature and precipitation combinations that may have accompanied the local LGM. If the results of global and regional climate models are used to constrain temperature depression estimates from our model experiments, the following precipitation pattern emerges for the local LGM. In the northern Rocky Mountains in Montana and northern Wyoming, model results suggest a strong reduction in precipitation of 50% or more. In the central Rocky Mountains of southern Wyoming and Colorado, precipitation appears to have been 50-90% of modern. By contrast, precipitation appears to have been strongly enhanced in the southern Rocky Mountains of New Mexico. These results are broadly consistent with a pattern of precipitation observed in global and regional climate simulations of the LGM in the western U.S., in which precipitation was reduced in the northern Rocky Mountains but increased in the southern Rocky Mountains. This pattern may reflect a southward displacement of mean position the Pacific Jet Stream in western North America during and possibly following the LGM.

  2. Geohydrology and water quality of the Inyan Kara, Minnelusa, and Madison aquifers of the northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Kyllonen, D.P.; Peter, K.D.

    1987-01-01

    The Inyan Kara, Minnelusa, and Madison aquifers are the principal sources of ground water in the northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming. The aquifers are exposed in the Bear Lodge Mountains and the Black Hills and are about 3,000 to 5,000 ft below the land surface in the northeast corner of the study area. The direction of groundwater movement is from the outcrop area toward central South Dakota. Recharge is by infiltration of precipitation and streamflow is by springs and well withdrawals. All three aquifers yield water to flowing wells in some part of the area. Measured and reported well yields in each of the three aquifers exceed 100 gal/min (gpm). A well open to the Minnelusa Formation and the upper part of the Madison Limestone yielded more than 2 ,000 gpm. Water from the Inyan Kara aquifer may require treatment for gross alpha radiation, iron, manganese, sulfate, and hardness before use in public water systems. Water from the Minnelusa aquifer in the northern one-half of the study area may require treatment for sulfate and hardness before use in public water systems. Water from the Madison aquifer in the northern one-half of the study area may require treatment of fluoride, gross alpha radiation, sulfate, and hardness before use in public water systems. Water from the Minnelusa and Madison aquifers in the southern one-half of the study area, though very hard (more than 180 mg/L hardness as calcium carbonate), is suitable for public water systems and irrigation. Flow between the Minnelusa and the Inyan Kara aquifers appears to be insignificant, based on the results of a digital model results. The model indicated there may be significant recharge to the Minnelusa and Madison aquifers by leakage between these two aquifers and perhaps deeper aquifers. (Author 's abstract)

  3. Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    NASA Astrophysics Data System (ADS)

    Paxman, G. J. G.; Watts, A. B.; Ferraccioli, F.; Jordan, T. A.; Bell, R. E.; Jamieson, S. S. R.; Finn, C. A.

    2016-10-01

    The relative roles of climate and tectonics in mountain building have been widely debated. Central to this debate is the process of flexural uplift in response to valley incision. Here we quantify this process in the Gamburtsev Subglacial Mountains, a paradoxical tectonic feature in cratonic East Antarctica. Previous studies indicate that rifting and strike-slip tectonics may have provided a key trigger for the initial uplift of the Gamburtsevs, but the contribution of more recent valley incision remains to be quantified. Inverse spectral (free-air admittance and Bouguer coherence) methods indicate that, unusually for continents, the coherence between free-air gravity anomalies and bedrock topography is high (>0.5) and that the elastic thickness of the lithosphere is anomalously low (<15 km), in contrast to previously reported values of up to ∼70 km. The isostatic effects of two different styles of erosion are quantified: dendritic fluvial incision overprinted by Alpine-style glacial erosion in the Gamburtsevs and outlet glacier-type selective linear erosion in the Lambert Rift, part of the East Antarctic Rift System. 3D flexural models indicate that valley incision has contributed ca. 500 m of peak uplift in the Gamburtsevs and up to 1.2 km in the Lambert Rift, which is consistent with the present-day elevation of Oligocene-Miocene glaciomarine sediments. Overall, we find that 17-25% of Gamburtsev peak uplift can be explained by erosional unloading. These relatively low values are typical of temperate mountain ranges, suggesting that most of the valley incision in the Gamburtsevs occurred prior to widespread glaciation at 34 Ma. The pre-incision topography of the Gamburtsevs lies at 2-2.5 km above sea-level, confirming that they were a key inception point for the development of the East Antarctic Ice Sheet. Tectonic and/or dynamic processes were therefore responsible for ca. 80% of the elevation of the modern Gamburtsev Subglacial Mountains.

  4. Discovery and description of a new trichostrongyloid species (Nematoda: Ostertagiinae), abomasal parasites in mountain goat, Oreamnos americanus, from the Western Cordillera of North America.

    PubMed

    Hoberg, Eric P; Abrams, Arthur; Pilitt, Patricia A; Jenkins, Emily J

    2012-08-01

    Marshallagia lichtenfelsi sp. n. is a dimorphic ostertagiine nematode occurring in the abomasum of mountain goats, Oreamnos americanus, from the Western Cordillera of North America. Major and minor morphotype males and females are characterized and distinguished relative to the morphologically similar Marshallagia marshalli / Marshallagia occidentalis from North America and Marshallagia dentispicularis, along with other congeners, from the Palearctic region. The configuration of the convoluted and irregular synlophe in the cervical region of males and females of M. lichtenfelsi is apparently unique, contrasting with a continuous and parallel system of ridges among those species of Marshallagia, including M. marshalli/M. occidentalis, which have been evaluated. Specimens of M. lichtenfelsi are further defined by the rectangular form of the accessory bursal membrane (width > length) in the major morphotype and by the trapezoidal Sjöberg's organ in the minor morphotype, in addition to specific attributes of the spicules and spicule tips. We regard 12 species, including the proposed new taxon, to be valid. Primary diagnostic characters are reviewed for Marshallagia and a framework is presented for standardization of future descriptions incorporating the synlophe in males and females and the structure of the spicules and genital cone in major and minor morphotype males. The center of diversity for species of Marshallagia is the mountain-steppe region of central Eurasia where 11 species (including the Holarctic M. marshalli) are recognized in association with Caprini, Rupicaprini, and Antelopinae; only 2 species occur in the Nearctic. In this assemblage, M. lichtenfelsi is endemic to North America and limited in host distribution to mountain goats. An intricate history for refugial isolation and population fragmentation demonstrated for mountain goats and wild sheep indicates the potential for considerable cryptic diversity for Marshallagia and other nematodes. Shifting patterns of contact and sympatry among assemblages of ungulates during the Pleistocene are consistent with geographic and host colonization as a process involved in diversification of these parasites.

  5. Study on Rainfall Forecasting by Using Weather Satellite Imagery in a Small Watershed Located at Mountainous Area of Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, C.; Cheng, K. S.

    Using meteorological radar and satellite imagery had become an efficient tool for rainfall forecasting However few studies were aimed to predict quantitative rainfall in small watersheds for flood forecasting by using remote sensing data Due to the terrain shelter and ground clutter effect of Central Mountain Ridges the application of meteorological radar data was limited in mountainous areas of central Taiwan This study devises a new scheme to predict rainfall of a small upstream watershed by combing GOES-9 geostationary weather satellite imagery and ground rainfall records which can be applied for local quantitative rainfall forecasting during periods of typhoon and heavy rainfall Imagery of two typhoon events in 2004 and five correspondent ground raingauges records of Chitou Forest Recreational Area which is located in upstream region of Bei-Shi river were analyzed in this study The watershed accounts for 12 7 square kilometers and altitudes ranging from 1000 m to 1800 m Basin-wide Average Rainfall BAR in study area were estimated by block kriging Cloud Top Temperature CTT from satellite imagery and ground hourly rainfall records were medium correlated The regression coefficient ranges from 0 5 to 0 7 and the value decreases as the altitude of the gauge site increases The regression coefficient of CCT and next 2 to 6 hour accumulated BAR decrease as the time scale increases The rainfall forecasting for BAR were analyzed by Kalman Filtering Technique The correlation coefficient and average hourly deviates between estimated and observed value of BAR for

  6. Middle Rockies Ecoregion: Chapter 5 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Taylor, Janis L.

    2012-01-01

    The Middle Rockies Ecoregion—characterized by steep, high-elevation mountain ranges and intermountain valleys—is a disjunct ecoregion composed of three distinct geographic areas: the Greater Yellowstone area in northwest Wyoming, southwest Montana, and eastern Idaho; the Bighorn Mountains in north-central Wyoming and south-central Montana; and the Black Hills in western South Dakota and eastern Wyoming (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion covers approximately 90,160 km2 (34,881 mi2), and its three distinct geographic sections are bordered by several other ecoregions (fig. 1). The Yellowstone section abuts the Montana Valley and Foothill Prairies and the Northern Rockies Ecoregions to the north, the Snake River Basin and the Central Basin and Range Ecoregions to the west, and the Wyoming Basin Ecoregion to the south and east. The Bighorn Mountains section lies between the Wyoming Basin Ecoregion to the west and the Northwestern Great Plains Ecoregion to the east, and it abuts the Montana Valleys and Foothill Prairies Ecoregion to the north. The Black Hills section is entirely surrounded by the Northwestern Great Plains Ecoregion. The Continental Divide crosses the ecoregion from the southeast along the Wind River Range, through Yellowstone National Park, and west along the Montana-Idaho border. On both sides of the divide, topographic relief causes local climate variability, particularly the effects of aspect, exposure to prevailing wind, thermal inversions, and rain-shadow effects, that are reflected in the wide variety of flora and fauna within the ecoregion (Ricketts and others, 1999).

  7. Deep intraspecific DNA barcode splits and hybridisation in the Udea alpinalis group (Insecta, Lepidoptera, Crambidae) – an integrative revision

    PubMed Central

    Mally, Richard; Huemer, Peter; Nuss, Matthias

    2018-01-01

    Abstract The analysis of mitochondrial COI data for the European-Centroasian montane Udea alpinalis species group finds deep intraspecific splits. Specimens of U. austriacalis and U. rhododendronalis separate into several biogeographical groups. These allopatric groups are not recovered in the analyses of the two nuclear markers wingless and Elongation factor 1-alpha, except for U. austriacalis from the Pyrenees and the French Massif Central. The latter populations are also morphologically distinct and conspecific with Scopula donzelalis Guenée, 1854, which is removed from synonymy and reinstated as Udea donzelalis (Guenée, 1854) stat. rev. Furthermore, Udea altaica (Zerny, 1914), stat. n. from the Mongolian central Altai mountains, U. juldusalis (Zerny, 1914), stat. n. from the Tian Shan mountains of Kazakhstan, Kyrgyzstan and NW China, and U. plumbalis (Zerny, 1914), stat. n. from the Sayan Mountains of Northern Mongolia are raised to species level, and lectotypes are designated. Evidence of introgression of U. alpinalis into U. uliginosalis at three localities in the Central Alps is presented. A screening for Wolbachia using the markers wsp, gatB and ftsZ was negative for the U. alpinalis species group, but Wolbachia was found in single specimens of U. fulvalis and U. olivalis (both in the U. numeralis species group). We do not find evidence for the conjecture of several authors of additional subspecies in U. rhododendronalis, and synonymise U. rhododendronalis luquetalis Leraut, 1996, syn. n. and U. r. ventosalis Leraut, 1996, syn. n. with the nominal U. rhododendronalis (Duponchel, 1834). PMID:29674896

  8. Correlation, sedimentology, structural setting, chemical composition, and provenance of selected formations in Mesoproterozoic Lemhi Group, central Idaho

    USGS Publications Warehouse

    Tysdal, Russell G.; Lindsey, David A.; Taggart, Joseph E.

    2003-01-01

    A unit of the Mesoproterozoic Apple Creek Formation of the Lemhi Range previously was correlated with part of the lower subunit of the Mesoproterozoic Yellowjacket Formation in the Salmon River Mountains. Strata currently assigned to the middle subunit of the Yellowjacket Formation lie conformably above the Apple Creek unit in the Salmon River Mountains, and are here renamed the banded siltite unit and reassigned to the Apple Creek Formation. Almost all of the banded siltite unit is preserved within the Salmon River Mountains, where it grades upward into clastic rocks that currently are assigned to the upper subunit of the Yellowjacket Formation and that here are reassigned to the Gunsight Formation. The banded siltite unit of the Apple Creek Formation is composed of a turbidite sequence, as recognized by previous workers. Uppermost strata of the unit were reworked by currents, possibly storm generated, and adjusted to a high water content by developing abundant soft-sediment deformation features. Basal strata of the overlying Gunsight Formation in the Salmon River Mountains display abundant hummocky crossbeds, storm-generated features deposited below fair-weather wave base, that are conformable above the storm-reworked deposits. The hummocky crossbedded strata grade upward into marine shoreface strata deposited above fair-weather wave base, which in turn are succeeded by fluvial strata. Hummocky and shoreface strata are absent from the Gunsight Formation in the Lemhi Range. The major thickness of the Gunsight Formation in both the Salmon River Mountains and the Lemhi Range is composed of fluvial rocks, transitional in the upper part into marine rocks of the Swauger Formation. The fluvial strata are mainly characterized by stacked sheets of metasandstone and coarse siltite; they are interpreted as deposits of braided rivers. The Poison Creek thrust fault of the Lemhi Range extends northwestward through the study area in the east-central part of the Salmon River Mountains. The Apple Creek and Gunsight Formations on the southwest side of the thrust fault were transported to the northeast as part of the Poison Creek thrust sheet. A segment of the thrust fault within the Gunsight Formation in the Salmon River Mountains subsequently underwent normal displacement. Along this segment, lower Gunsight strata on the southwest were juxtaposed against upper Gunsight and Swauger strata on the northeast.

  9. Evaluation of a low cost wireless heat ratio method system for measuring transpiration

    NASA Astrophysics Data System (ADS)

    Eiriksson, D.; Boyer, B.; Aishlin, P. S.; Bowling, D. R.

    2016-12-01

    For decades, environmental measurements in remote locations have consisted of sensors hard wired to loggers that send data to central servers via radio, satellite, or cellular telemetry. This model of data collection is effective when all sensors are located in close proximity to the central data logger, such as on a weather station. Frequently, however, in order to adequately capture the spatial heterogeneity associated with environmental processes (e.g., transpiration, soil moisture, or snow depth), it is necessary to install many sensors 10's to 100's of meters from a central data logging station. This presents a practical and financial obstacle when considering the cost of cabling and conduit, in addition to the potential data collection and data quality problems associated with long cable runs. We offer a solution to this persistent challenge with a hybrid datalogging system that combines the power and reliability of Campbell Scientific logging and telemetry equipment with low cost Xbee radios and Arduino based data logging platforms. To evaluate the promise of this hybrid datalogging concept we developed a new generation of low cost, homemade heat ratio sapflux sensors and tested them at a forested site in the Wasatch Mountains, near Salt Lake City, Utah. We present data from this test site, heat ratio method sensor construction details, and example code that merges the capabilities of Arduino and Campbell Scientific datalogging systems.

  10. Using 10Be to quantify rates of landscape change in 'dead' orogens - millennial scale rates of bedrock and basin-scale erosion in the southern and central Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Bierman, P. R.; Reusser, L.; Portenga, E.

    2011-12-01

    The Appalachian Mountain chain stretches north-south along the eastern margin of North America, in places rising a thousand meters and more above the adjacent piedmont. Here, Davis built his paradigm of landscape evolution, seeing landscape rejuvenation and dissected peneplains, a transient landscape. Hack saw the Appalachians as a dynamic system where topography was adjusted to rock strength, a steady-state landscape. Neither had quantitative data by which to test their theories. Today, we approach landscapes of the Appalachian Mountains quite differently. Over the past decade, we and others have measured in situ-produced 10Be in more than 300 samples of quartz isolated from Appalachian drainage basin sediments and in more than 100 samples from exposed Appalachian bedrock outcrops, most of which are on ridgelines. Samples have been collected from the Susquehanna, Potomac, and Shenandoah drainage basins as well as from the area around the Great Smoky Mountain National Park and the Blue Ridge escarpment, and from rivers draining from the Appalachians across the southeastern United States Piedmont. Most areas of the Appalachian Mountains are eroding only slowly; the average for all drainage basin samples analyzed to date is ~18 m/My (n=328). The highest basin-scale erosion rates, 25-70 m/My are found in the Appalachian Plateau and in the Great Smoky Mountains. Lower rates, on the order on 10-20 m/My, characterize the Shenandoah, Potomac, and Blue Ridge escarpment areas. There is a significant, positive relationship between basin-scale erosion rates and average basin slope. Steeper basins are in general eroding more rapidly than less steep basins. On the whole, the erosion rates of bedrock outcrops are either lower than or similar to those measured at a basin scale. The average erosion rate for samples of outcropping bedrock collected from the Appalachians is ~15 m/My (n=101). In the Potomac River Basin and the Great Smoky Mountains, bedrock and basin-scale erosion rates are similar implying long-term steady erosion consistent with dynamic steady state as advocated by Hack. However, in the Susquehanna drainage, basin scale erosion rates are significantly higher than those measured from outcrops suggesting that over time, relief is increasing. The Susquehanna River basin appears to be responding to a transient perturbation, ala Davis.

  11. Ecological wisdom of Hindu-Javanese community settlement in Cetho Hamlet, Lawu Mountains, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ikhsan, Fauzan Ali; Setioko, Bambang; Suprapti, Atiek

    2017-12-01

    Dwelling culture of Java community has a long history. In Javanese community point of view, Javanese culture is not a homogeneous entity. There is a diversity characteristic of a regional nature of Javanese culture, which is caused by differences in the natural environment on the island of Java. Dwelling Culture settled in the mountains is a variant form of Javanese culture that has its own uniqueness. This study aimed to describe the local values of the rural settlement structure of in Lawu mountains with Hindu-Javanese culture background. This study used a qualitative approach with case study strategy. The locus of research is in the Cetho hamlet on the slopes of Mount Lawu Karanganyar, Central Java. The results showed that local values in the neighborhoods of Cetho hamlet is based on the Memayu Hayuning Bawana philosophy. These concepts are abstracted into various aspects of settlements in Cetho hamlet such as aspects of dwelling house setting, water management, and ritual activities related to environmental management. Memayu Hayuning Bawana philosophy becomes a cultural space coloring the ecological action of the population of Cetho hamlet. The comprehensive motivation of ecological action ultimately leads to one final goal, namely the desire to maintain a harmonic atmosphere with the surroundings.

  12. Dental fluorosis in the Blue Mountains and Hawkesbury, New South Wales, Australia: policy implications.

    PubMed

    Bal, Ikreet S; Dennison, Peter J; Evans, R Wendell

    2015-02-01

    The aim of the present study was to determine whether the adjustment of the fluoride concentration to 1 ppm in the drinking water supplied to the Blue Mountains, New South Wales, Australia in 1993 was associated with fluorosis incidence. In 2003, children attending schools in the Blue Mountains and a control region (fluoridated in 1967) that had been randomly selected at baseline in 1992 were examined for dental fluorosis (maxillary central incisors only) using Dean's index. A fluoride history for each child was obtained by questionnaire. Associations between fluorosis and 58 potential explanatory variables were explored. The response rate was 63%. A total of 1138 children aged from 7 to 11 years with erupted permanent central incisors were examined for dental fluorosis. Fluorosis prevalence was the same in both regions. The Community Index of Dental Fluorosis values were slightly different, but were both above 0.6, indicative of public health concern. For the group as a whole, we concluded that: (a) fluorosis prevalence (0.39) in both regions was similar; and (b) the higher-than-expected prevalence and severity of fluorosis was due mainly to two factors: (a) the higher-than-optimal fluoride level in drinking water; and (b) swallowing of fluoride toothpaste in early childhood. © 2014 Wiley Publishing Asia Pty Ltd.

  13. Energy and Power Spectra of Thunder in the Magdalena Mountains, Central New Mexico

    NASA Astrophysics Data System (ADS)

    Johnson, R. L.; Johnson, J. B.; Arechiga, R. O.; Michnovicz, J. C.; Edens, H. E.; Rison, W.

    2011-12-01

    Thunder is generated primarily by heating and expansion of the atmosphere around a lightning channel and by charge relaxation within a cloud. Broadband acoustic studies are important for inferring dynamic charge behavior during and after lightning events. During the Summer monsoon seasons of 2009-2011, we deployed networks of 3-5 stations consisting of broadband (0.01 to 500 Hz) acoustic arrays and audio microphones in the Magdalena Mountains in central New Mexico. We utilize Lightning Mapping Array (LMA) data for accurate timing of lightning events within a 10 km radius of our network. Unlike the LMA, which detects VHF signals from breakdown processes, thunder signals may be used to observe charge dynamics and thermal shocking of the atmosphere. Previous investigations show that thunder spectral content may distinguish between electrostatic and thermal heating processes. We collected extensive datasets in terms of number of independent broadband sensors (up to 20), number of observed flashes (hundreds from multiple storms), and available coincident LMA data. We use infrasound and audio data to quantify total acoustic energy produced at lightning sources in various frequency bands. We attribute the spectral content and intensity of thunder signals to source characteristics, sensor locations, propagation effects, and noise. We observe variations in acoustic energy for both entire storm systems and individual lightning flashes. We propose that some variations may be related to the type of lightning flash and that spectral content is important for distinguishing between thunder generation mechanisms.

  14. WRF Simulation of the Genesis of Hurricane Javier (2004) in the Eastern Pacific

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.

    2005-01-01

    The Eastern Pacific has the highest frequency of genesis events per unit area of any region worldwide (Elsberry et al 1987). African easterly waves, mesoscale convective systems (MCSs), and topographic effects are thought to play roles in the genesis of tropical cyclones there (Frank and Clark 1980, Velasco and Fritsch 1987, Zehnder 1991, Zehnder and Gall 1991; Farfan and Zehnder 1997). Mozer and Zehnder (1996), using dry, idealized simulations of flow past a large-scale three-dimensional mountain range comparable to the Sierra Madre Mountains of Mexico, showed that upstream flow blocking led to diversion of the flow primarily to the south of the mountains. This flow diversion led to the formation of a low-level, barotropically unstable jet (at a location comparable to the Isthmus of Tehuantepec) and the continuous formation of synoptic-scale vorticity maxima, which they suggested may play a role in tropical cyclogenesis. Farfan and Zehnder (1 997) examined the synoptic-scale circulations that led to the formation of Hurricane Guillermo (1991). Using numerical simulations, they found that flow blocking led to the formation of a low-level easterly jet south of the mountains of Central America and a northeasterly (gap flow) jet over the Gulf of Tehuantepec, which combined with the flow associated with the Intertropical Convergence Zone (ITCZ) to produce a closed cyclonic circulation in the location of Guillermo s formation. As will be discussed in this paper, the evolution of the flow field that was associated with the genesis of Hurricane Javier was similar to that described in Farfan and Zehnder (1997), with well-defined topographic flow features. Here, using a high- resolution simulation with the WRF model, we investigate whether these topographically induced flows played a significant role in the genesis of Javier.

  15. Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman

    USGS Publications Warehouse

    Müller, Th.; Osenbrück, K.; Strauch, G.; Pavetich, S.; Al-Mashaikhi, K.-S.; Herb, C.; Merchel, S.; Rugel, G.; Aeschbach, W.; Sanford, Ward E.

    2016-01-01

    Multiple age tracers were measured to estimate groundwater residence times in the regional aquifer system underlying southwestern Oman. This area, known as the Najd, is one of the most arid areas in the world and is planned to be the main agricultural center of the Sultanate of Oman in the near future. The three isotopic age tracers 4He, 14C and 36Cl were measured in waters collected from wells along a line that extended roughly from the Dhofar Mountains near the Arabian Sea northward 400 km into the Empty Quarter of the Arabian Peninsula. The wells sampled were mostly open to the Umm Er Radhuma confined aquifer, although, some were completed in the mostly unconfined Rus aquifer. The combined results from the three tracers indicate the age of the confined groundwater is < 40 ka in the recharge area in the Dhofar Mountains, > 100 ka in the central section north of the mountains, and up to and > one Ma in the Empty Quarter. The 14C data were used to help calibrate the 4He and 36Cl data. Mixing models suggest that long open boreholes north of the mountains compromise 14C-only interpretations there, in contrast to 4He and 36Cl calculations that are less sensitive to borehole mixing. Thus, only the latter two tracers from these more distant wells were considered reliable. In addition to the age tracers, δ2H and δ18O data suggest that seasonal monsoon and infrequent tropical cyclones are both substantial contributors to the recharge. The study highlights the advantages of using multiple chemical and isotopic data when estimating groundwater travel times and recharge rates, and differentiating recharge mechanisms.

  16. Design and Implementation of a Set-Top Box-Based Homecare System Using Hybrid Cloud.

    PubMed

    Lin, Bor-Shing; Hsiao, Pei-Chi; Cheng, Po-Hsun; Lee, I-Jung; Jan, Gene Eu

    2015-11-01

    Telemedicine has become a prevalent topic in recent years, and several telemedicine systems have been proposed; however, such systems are an unsuitable fit for the daily requirements of users. The system proposed in this study was developed as a set-top box integrated with the Android™ (Google, Mountain View, CA) operating system to provide a convenient and user-friendly interface. The proposed system can assist with family healthcare management, telemedicine service delivery, and information exchange among hospitals. To manage the system, a novel type of hybrid cloud architecture was also developed. Updated information is stored on a public cloud, enabling medical staff members to rapidly access information when diagnosing patients. In the long term, the stored data can be reduced to improve the efficiency of the database. The proposed design offers a robust architecture for storing data in a homecare system and can thus resolve network overload and congestion resulting from accumulating data, which are inherent problems in centralized architectures, thereby improving system efficiency.

  17. Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: implications for soil acidification

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995-1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65%-100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of < 4.2, acid loading of up to 7 keqH+.ha-1.yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.

  18. Late Holocene expansion of Ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains, USA

    USGS Publications Warehouse

    Norris, Jodi R; Betancourt, Julio L.; Jackson, Stephen T.

    2016-01-01

    Main conclusions: P. ponderosa expanded its range across large parts of northern Wyoming and central Montana during the late Holocene, probably in response to both northward and westward increases in summer temperature and rainfall. The underlying climatic driver may be the same as for the contemporaneous expansion of J. osteosperma, but will remain undetermined without focused development and integration of independent palaeoclimate records in the region."

  19. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska.

    PubMed

    Dial, Roman J; Smeltz, T Scott; Sullivan, Patrick F; Rinas, Christina L; Timm, Katriina; Geck, Jason E; Tobin, S Carl; Golden, Trevor S; Berg, Edward C

    2016-05-01

    Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y(-1). In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y(-1) and climate velocity 1.3 m y(-1). In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1-1.1 m y(-1), indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance. © 2015 John Wiley & Sons Ltd.

  20. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    PubMed

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in this new host.

Top