Science.gov

Sample records for central muscarinic effects

  1. Effects of central galanin administration on muscarinic cholinergic and galanin receptor G protein coupling.

    PubMed

    Barreda-Gómez, G; Giralt, M T; Rodríguez-Puertas, R

    2005-06-01

    The neuropeptide galanin is expressed in the mammalian central nervous system and has been implicated in neurotrophic actions. Central galanin administration induces cognitive deficits in rodents and inhibits the release of acetylcholine in the hippocampus. In addition, a galanin hyperinnervation of the basal forebrain cholinergic cells in Alzheimer's disease patients has been reported. To evaluate the effect of galanin treatment on galanin and muscarinic cholinergic receptor G protein coupling, galanin was administered into the lateral ventricle of rats via an implanted cannula. Galanin or muscarinic receptor functional coupling to G proteins was quantified by galanin or carbachol stimulation of guanosine 5'-(gamma-[35S]thio)triphosphate binding in rat brain slices. Guanosine 5'-(gamma-[35S]thio)triphosphate basal binding in nucleus basalis of Meynert and thalamic nuclei was increased in the vehicle treated group. This effect was reverted by galanin treatment and indicates that the surgery increased receptor functional coupling to G proteins, which is restored by a possible neurotrophic action mediated by galanin. In addition, in galanin administered animals, galanin-stimulated binding was increased in the amygdala but decreased in the diagonal band, whilst binding stimulation mediated by carbachol was found to be increased in the amygdala, thalamic nuclei and diagonal band. These findings indicate that galanin treatment modulates the coupling of galanin and muscarinic cholinergic receptors to G proteins in specific regions of the rat central nervous system.

  2. Ventilatory effects of low-dose paraoxon result from central muscarinic effects

    SciTech Connect

    Houze, Pascal; Pronzola, Laetita; Kayouka, Maya; Villa, Antoine; Debray, Marcel; Baud, Frederic J.

    2008-12-01

    Paraoxon induces respiratory toxicity. Atropine completely reversed parathion- and paraoxon-induced respiratory toxicity. The aim of this study was to assess the peripheral or central origin of ventilatory effects of low-dose paraoxon. Male Sprague-Dawley rats were given paraoxon 0.215 mg/kg subcutaneously and treated with either atropine (10 mg/kg sc) or ascending doses of methylatropine of 5.42 (equimolar to that of atropine), 54.2, and 542 mg/kg administered subcutaneously 30 min after paraoxon. Ventilation at rest was assessed using whole-body plethysmography and rat temperature using infra-red telemetry. Results are expressed as mean {+-} SE. Statistical analysis used two-way ANOVA for repeated measurements. Paraoxon induced a significant decrease in temperature 30 min after injection lasting the 90 min of the study period. This effect was partially corrected by atropine, but not by methylatropine whatever the dose. Paraoxon induced a decrease in respiratory rate resulting from an increase in expiratory time associated with an increase in tidal volume. Atropine completely reversed the ventilatory effects of low-dose paraoxon while the equimolar dose of methylatropine had no significant effects. The 54.2 and 542 mg/kg doses of methylatropine had no significant effects. Atropine crosses the blood-brain barrier and reverses peripheral and central muscarinic effects. In contrast, methylatropine does not cross the blood-brain barrier. Atropine completely reversed the ventilatory effects of low-dose paraoxon, while methylatropine had no significant effects at doses up to 100-fold the equimolar dose of atropine. We conclude that the ventilatory effects of low-dose paraoxon are mediated by disrupted muscarinic signaling in the central nervous system.

  3. Effect of central muscarinic receptors on passive-avoidance learning deficits induced by prenatal pentylenetetrazol kindling in male offspring.

    PubMed

    Pourmotabbed, A; Mahmoodi, G; Mahmoodi, S; Mohammadi-Farani, A; Nedaei, S E; Pourmotabbed, T; Pourmotabbed, T

    2014-10-24

    Occurrence of the epileptic seizures during gestation might affect the neurodevelopment of the fetus resulting in cognitive problems for the child later in life. We have previously reported that prenatal pentylenetetrazol (PTZ)-kindling induces learning and memory deficits in the children born to kindled mothers, later in life but the mechanisms involved in this processes are unknown. The cholinergic system plays a major role in learning and memory. The present study was performed to investigate the possible involvement of central muscarinic cholinergic receptors on learning and memory deficits induced by prenatal PTZ-kindling in male offspring. Pregnant Wistar rats were kindled by repetitive i.p. injection of 25mg/kg of PTZ on day 13 of their pregnancy. The effect of intracerebroventricular (ICV) microinjection of scopolamine and pilocarpine, muscarinic cholinergic receptors antagonist and agonist, respectively on passive-avoidance learning of pups were tested at 12weeks of age using shuttle-box apparatus. Our data showed that the retention latencies of pups that received scopolamine (2 or 3μg) were significantly reduced compared to those received normal saline (p<0.05). Interestingly, post training ICV administration of pilocarpine (2μg) retrieved pups' memory deficits (p<0.001). These results demonstrate for the first time, the importance of the central muscarinic cholinergic receptors in learning and memory deficits in pups born to kindled dams and suggest a central mechanism for the cognitive and memory dysfunction, associated with seizures during pregnancy.

  4. Analgesic Effects Mediated by Muscarinic Receptors: Mechanisms and Pharmacological Approaches.

    PubMed

    De Angelis, Federica; Tata, Ada Maria

    2016-01-01

    Chronic pain represents a research field on great clinical relevance and social impactful. It is associated to a variety of pathological events causing un altered excitability of peripheral nerves derived by tissue damage depending on physical, biological and chemical injury. In the last years much attention has been paid in the identification of novel molecules involved in mediating pain sensation useful as therapeutic tools for the development of new analgesic drugs. Muscarinic receptors are widely distributed both in the central and peripheral nervous system. It is known that muscarinic agonists cause analgesic effects via spinal and supraspinal mechanisms. Considering that the analgesia induced by cholinergic agonists is comparable to that observed with morphine, the identification of receptor subtypes involved and the identification of the muscarinic ligands capable of selectively activate these receptors, is of considerable interest for potential therapeutic application. In the present review we describe the role of muscarinic receptors in mediating central and peripheral pain and the mechanisms downstream these receptors responsible of the modulation of nociceptive stimuli. Moreover the therapeutic perspectives and the identification of potential drugs binding muscarinic receptors involved in pain modulation will also be discussed.

  5. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice. [Ethanol effects

    SciTech Connect

    Watson, M.; Ming, X.; McArdle, J.J. )

    1989-02-09

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p<.01) greater. Binding assays for ({sup 3}H)(-) quinuclidinylbenzilate (({sup 3}H)(-)QNB), a specific but nonsubtype selective mAChR antagonist, ({sup 3}H)pirenzepine (({sup 3}H)PZ), a specific M1 mAChR antagonist and ({sup 3}H)11-2-((2-((diethylamino) methyl)-1-piperidinyl) acetyl)-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, (({sup 3}H)AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (K{sub d}) and density (B{sub max}) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) ({sup 3}H)(-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity.

  6. Muscarinic Receptor Antagonists: Effects on Pulmonary Function

    PubMed Central

    Buels, Kalmia S.

    2014-01-01

    In healthy lungs, muscarinic receptors control smooth muscle tone, mucus secretion, vasodilation, and inflammation. In chronic obstructive pulmonary disease (COPD) and asthma, cholinergic mechanisms contribute to increased bronchoconstriction and mucus secretion that limit airflow. This chapter reviews neuronal and nonneuronal sources of acetylcholine in the lung and the expression and role of M1, M2, and M3 muscarinic receptor subtypes in lung physiology. It also discusses the evidence for and against the role of parasympathetic nerves in asthma, and the current use and therapeutic potential of muscarinic receptor antagonists in COPD and asthma. PMID:22222705

  7. Central activation of the sympathetic nervous system including the adrenals in anaesthetized guinea pigs by the muscarinic agonist talsaclidine.

    PubMed

    Walland, A; Pieper, M P

    1998-04-01

    Talsaclidine, a novel M1-receptor selective muscarinic agonist for cholinergic substitution therapy of Alzheimer's disease, activates the sympathetic nervous system in guinea pigs and dogs at the orthosympathic ganglia and the paraganglionic adrenals. Results from guinea pigs provide indirect evidence for an additional central site of action. The present investigation in anaesthetized and vagotomized guinea pigs intended to demonstrate central activation of the sympathetic nervous system directly by comparing the blood pressure effects of intracerebroventricular and intravenous injections of small doses of talsaclidine. Increasing doses of 0.2 and 0.6 mg/kg talsaclidine were injected alternately into the third cerebral ventricle and intravenously in 6 guinea pigs before and after blockade of peripheral muscarinic receptors with 1 mg/kg ipratropium bromide i.v. In another group of 6 animals the injections were given into the cisterna cerebellomedullaris using the same protocol. In both groups central administration of talsaclidine caused dose-related hypertension while intravenous injections were hypotensive. Ipratropium bromide, a peripheral antimuscarinic drug, reversed this hypotensive action of intravenous talsaclidine into hypertension, but did not inhibit the effects of central administration. In contrast, atropine, an antimuscarinic drug which passes the blood-brain barrier, abolished the effect of 0.6 mg/kg talsaclidine injected into the cisterna cerebellomedullaris of 8 guinea pigs. The hypertensive effect of a first injection of 0.6 mg/kg talsaclidine into the cisterna cerebellomedullaris of 6 guinea pigs was approximately twice as large as that of a second given 90 min after bilateral adrenalectomy. Sham operation in another 6 animals was not inhibitory. The results demonstrate that talsaclidine, a selective muscarinic M1-receptor agonist, activates central parts of the sympathetic nervous system, including central projections of the adrenals by an action

  8. Muscarinic agonists and antagonists: effects on the urinary bladder.

    PubMed

    Sellers, Donna J; Chess-Williams, Russ

    2012-01-01

    Voiding of the bladder is the result of a parasympathetic muscarinic receptor activation of the detrusor smooth muscle. However, the maintenance of continence and a normal bladder micturition cycle involves a complex interaction of cholinergic, adrenergic, nitrergic and peptidergic systems that is currently little understood. The cholinergic component of bladder control involves two systems, acetylcholine (ACh) released from parasympathetic nerves and ACh from non-neuronal cells within the urothelium. The actions of ACh on the bladder depend on the presence of muscarinic receptors that are located on the detrusor smooth muscle, where they cause direct (M₃) and indirect (M₂) contraction; pre-junctional nerve terminals where they increase (M₁) or decrease (M₄) the release of ACh and noradrenaline (NA); sensory nerves where they influence afferent nerve activity; umbrella cells in the urothelium where they stimulate the release of ATP and NO; suburothelial interstitial cells with unknown function; and finally, other unidentified sites in the urothelium from where prostaglandins and inhibitory/relaxatory factors are released. Thus, the actions of muscarinic receptor agonists and antagonists on the bladder may be very complex even when considering only local muscarinic actions. Clinically, muscarinic antagonists remain the mainstay of treatment for the overactive bladder (OAB), while muscarinic agonists have been used to treat hypoactive bladder. The antagonists are effective in treating OAB, but their precise mechanisms and sites of action (detrusor, urothelium, and nerves) have yet to be established. Potentially more selective agents may be developed when the cholinergic systems within the bladder are more fully understood.

  9. Selective blockade of central m1 muscarinic cholinergic receptors with pirenzepine impairs cardiovascular and respiratory function in rats with acute hemorrhage.

    PubMed

    Kovalenko, N Ya; Matsievskii, D D

    2006-09-01

    Ultrasound studies showed that selective antagonist of central M1 muscarinic cholinergic receptors pirenzepine (50 mg/kg intravenously) causes transitory hypotension and respiratory depression in anesthetized intact rats. The M1 receptor antagonist had no effect on cardiac output and portal blood flow. Pretreatment with pirenzepine increased the sensitivity of rats with acute massive hemorrhage to circulatory hypoxia. After blockade of central M1 muscarinic cholinergic receptors, the posthemorrhagic period was characterized by primary decompensation of blood pressure, portal blood flow, and respiration and development of low cardiac output syndrome. The animals died over the first minutes after bleeding arrest. Our results indicate that central M1 muscarinic cholinergic receptors act as shock-limiting cholinergic structures under conditions of posthemorrhagic changes in systemic and portal blood flow, as well as during respiratory dysfunction.

  10. The M4 muscarinic receptor-selective effects on keratinocyte crawling locomotion.

    PubMed

    Chernyavsky, Alex I; Nguyen, Vu Thuong; Arredondo, Juan; Ndoye, Assane; Zia, Shaheen; Wess, Jürgen; Grando, Sergei A

    2003-03-28

    We have investigated how the cholinergic system of epidermal keratinocytes (KC) controls migratory function of these cells. Several molecular subtypes of muscarinic acetylcholine receptors (mAChRs) have been detected in KC. Early results suggested that M(4) is the predominant mAChR regulating cell motility. To determine muscarinic effects on lateral migration of KC, we used an agarose gel keratinocyte outgrowth system (AGKOS) which provides for measurements of the response of large cell populations (> 10(4) cells). Muscarine produced a dose-dependent stimulatory effect on cell migration (p < 0.05). This activity was abolished by atropine, which decreased migration distance when given alone. To identify the mAChR subtype(s) mediating these muscarinic effects, we substituted atropine with subtype-selective antagonists. Tropicamide (M(4)-selective) was more effective at decreasing the migration distance than pirenzepine and 4-DAMP at nanomolar concentrations. We then compared lateral migration of KC obtained from M(4) mAChR knockout mice with that of wild-type murine KC, using AGKOS. In the absence of M(4) mAChR, the migration distance of KC was significantly (p < 0.05) decreased. These results indicate that the M(4) mAChR plays a central role in mediating cholinergic control of keratinocyte migration by endogenous acetylcholine produced by these cells.

  11. Muscarinic Receptors and Their Antagonists in COPD: Anti-Inflammatory and Antiremodeling Effects

    PubMed Central

    Karakiulakis, George; Roth, Michael

    2012-01-01

    Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine. Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung, muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of chronic obstructive pulmonary disease and asthma. PMID:23226927

  12. Muscarinic receptors and their antagonists in COPD: anti-inflammatory and antiremodeling effects.

    PubMed

    Karakiulakis, George; Roth, Michael

    2012-01-01

    Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine. Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung, muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of chronic obstructive pulmonary disease and asthma.

  13. Stereochemical requirements for central and peripheral muscarinic and antimuscarinic activity of some acetylenic compounds related to oxotremorine.

    PubMed Central

    Dahlbom, R.; Jenden, D. J.; Resul, B.; Ringdahl, B.

    1982-01-01

    1 The enantiomers of some analogues of the central muscarinic agent, oxotremorine, were prepared and investigated for tremorogenic and tremorolytic activity in intact mice and for muscarinic and antimuscarinic activity on the isolated ileum of the guinea-pig. 2 The R-isomers were more potent than the S-isomers both in vivo and in vitro regardless of whether the compounds are agonists, partial agonists or competitive antagonists. 3 It is suggested that in the oxotremorine series, agonists and antagonists interact with a common receptor site, in contrast to classical muscarinic antagonists which are believed to bind also to accessory receptor areas, located close to the agonist binding site. PMID:7093587

  14. A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight.

    PubMed

    Buhl, Edgar; Schildberger, Klaus; Stevenson, Paul A

    2008-07-01

    A central question in behavioural control is how central pattern generators (CPGs) for locomotion are activated. This paper disputes the key role generally accredited to octopamine in activating the CPG for insect flight. In deafferented locusts, fictive flight was initiated by bath application of the muscarinic agonist pilocarpine, the acetylcholine analogue carbachol, and the acetylcholinesterase blocker eserine, but not by nicotine. Furthermore, in addition to octopamine, various other amines including dopamine, tyramine and histamine all induced fictive flight, but not serotonin or the amine-precursor amino acid tyrosine. However, flight initiation was not reversibly blocked by aminergic antagonists, and was still readily elicited by both natural stimulation (wind) and pilocarpine in reserpinized, amine-depleted locusts. By contrast, the muscarinic antagonists atropine and scopolamine reversibly blocked flight initiated by wind, cholinergic agonists, octopamine, and by selective stimulation of a flight-initiating interneurone (TCG). The short delay from TCG stimulation to flight onset suggests that TCG acts directly on the flight CPG, and accordingly that TCG, or its follower cell within the flight generating circuit, is cholinergic. We conclude that acetylcholine acting via muscarinic receptors is the key neurotransmitter in the mechanism underlying the natural activation of the locust flight CPG. Amines are not essential for this, but must be considered as potential neuromodulators for facilitating flight release and tuning the motor pattern. We speculate that muscarinic activation coupled to aminergic facilitation may be a general feature of behavioural control in insects for ensuring conditional recruitment of individual motor programs in accordance with momentary adaptive requirements.

  15. Repeated effects of asenapine on adrenergic and cholinergic muscarinic receptors.

    PubMed

    Choi, Yong Kee; Wong, Erik H F; Henry, Brian; Shahid, Mohammed; Tarazi, Frank I

    2010-04-01

    Adrenergic (alpha1 and alpha2) and cholinergic muscarinic (M1-M5) receptor binding in rat forebrain was quantified after 4 wk of twice-daily subcutaneous administration of asenapine or vehicle. Asenapine (0.03, 0.1, and 0.3 mg/kg) produced increases in [3H]prazosin binding to alpha1-adrenergic receptors in the medial prefrontal cortex (mPFC: 30%, 39%, 57%) and dorsolateral frontal cortex (DFC: 27%, 37%, 53%) and increased [3H]RX821002 binding to alpha2-adrenergic receptors in mPFC (36%, 43%, 50%) and DFC (41%, 44%, 52%). Despite showing no appreciable affinity for muscarinic receptors, asenapine produced regionally selective increases in binding of [3H]QNB to M1-M5 receptors in mPFC (26%, 31%, 43%), DFC (27%, 34%, 41%), and hippocampal CA1 (40%, 44%, 42%) and CA3 (25%, 52%, 48%) regions. These regionally selective effects of asenapine on adrenergic and cholinergic muscarinic receptor subtypes may contribute to its beneficial clinical effects in the treatment of schizophrenia and bipolar disorder.

  16. Muscarinic receptors: their roles in disorders of the central nervous system and potential as therapeutic targets.

    PubMed

    Scarr, Elizabeth

    2012-05-01

    Phylogenetically, acetylcholine is an ancient neurochemical. Therefore, it is not surprising that cholinergic neurons project extensively throughout the central nervous system, innervating a wide range of structures within the brain. In fact, acetylcholine is involved in processes that underpin some of our most basic central functions. Both muscarinic and nicotinic receptor families, which mediate cholinergic transmission, have been implicated in the pathophysiology of psychiatric and neurological disorders. The question that remains to be definitively answered is whether or not these receptors are viable targets for the development of future therapeutic agents.

  17. Central muscarinic receptor subtypes involved in pilocarpine-induced salivation, hypertension and water intake.

    PubMed

    Borella, T L; De Luca, L A; Colombari, D S A; Menani, J V

    2008-12-01

    Recent evidence has suggested that pilocarpine (ACh receptor agonist) injected peripherally may act centrally producing salivation and hypertension. In this study, we investigated the effects of specific M(1) (pirenzepine), M(2)/M(4) (methoctramine), M(1)/M(3) (4-DAMP) and M(4) (tropicamide) muscarinic receptor subtype antagonists injected into the lateral cerebral ventricle (LV) on salivation, water intake and pressor responses to peripheral pilocarpine. Male Holtzman rats with stainless steel cannulae implanted in the LV were used. Salivation was measured in rats anaesthetized with ketamine (100 mg per kg body weight) and arterial pressure was recorded in unanaesthetized rats. Salivation induced by i.p. pilocarpine (4 micromol per kg body weight) was reduced only by 4-DAMP (25-250 nmol) injected into the LV, not by pirenzepine, methoctramine or tropicamide at the dose of 500 nmol. Pirenzepine (0.1 and 1 nmol) and 4-DAMP (5 and 10 nmol) injected into the LV reduced i.p. pilocarpine-induced water intake, whereas metoctramine (50 nmol) produced nonspecific effects on ingestive behaviours. Injection of pirenzepine (100 nmol) or 4-DAMP (25 and 50 nmol) into the LV reduced i.v. pilocarpine-induced pressor responses. Tropicamide (500 nmol) injected into the LV had no effect on pilocarpine-induced salivation, pressor responses or water intake. The results suggest that central M(3) receptors are involved in peripheral pilocarpine-induced salivation and M(1) receptors in water intake and pressor responses. The involvement of M(3) receptors in water intake and pressor responses is not clear because 4-DAMP blocks both M(1) and M(3) receptors.

  18. The Mechanism of Interaction of Oximes with the Muscarinic-Cholinergic Complex in the Central Nervous System

    DTIC Science & Technology

    1983-11-03

    suggest that bisquaternary oximes are allosteric inhibitors of the scarinic receptors, and may induce irreversible effect on the muscarinic inding sites...muscarinic ACh receptor, and are capable of distin- guishing between receptor states and inducing specific irreversible effects . They also point out...membranes, however, Co2+ could no longer induce its effect (Fig. 17B, Table VI), although the apparent affinity of carbamylcholine was not changed . (Fig

  19. Systemic administration of arecoline reduces ethanol-induced sleeping through activation of central muscarinic receptor in mice.

    PubMed

    Sun, Yan-Ping; Liu, Qing; Luo, Juan; Guo, Ping; Chen, Feng; Lawrence, Andrew J; Liang, Jian-Hui

    2010-01-01

    Epidemiological evidence of co-use of alcohol and areca nuts suggests a potential central interaction between arecoline, a major alkaloid of areca and a muscarinic receptor agonist, and ethanol. Moreover, the central cholinergic system plays an important role in the depressant action of ethanol and barbiturates. The purpose of this study was to investigate the effects of arecoline on pentobarbital- and ethanol-induced hypnosis in mice. Male ICR mice were tested for locomotor activity following acute systemic administration of ethanol alone, arecoline alone, or ethanol plus arecoline. For the loss of the righting reflex (LORR) induced by pentobarbital and ethanol, sleep latency and sleeping duration were evaluated in mice treated with arecoline alone or the combination of arecoline and scopolamine or methscopolamine. Ethanol (1.0 to 3.0 g/kg, i.p.) reduced locomotor activity significantly and a declining trend was observed after treatment with arecoline (0.25 to 1.0 mg/kg, i.p.), but there were no synergistic effects of ethanol and arecoline on locomotor activity. The experiments on LORR demonstrated that arecoline (0.125 to 1.0 mg/kg, s.c.) shortened the duration of sleeping induced by ethanol (4.0 g/kg, i.p.), but not pentobarbital (45 mg/kg, i.p.). In addition, alterations of sleep latency were not obvious in both pentobarbital- and ethanol-induced LORR. Statistical analyses revealed that scopolamine (centrally acting), but not methscopolamine (peripherally acting), could antagonize the effect of arecoline on the duration of ethanol-induced LORR in mice. These results suggest that central muscarinic receptor is a pharmacological target for the action of arecoline to modulate ethanol-induced hypnosis.

  20. Comparative evaluation of central muscarinic receptor binding activity by oxybutynin, tolterodine and darifenacin used to treat overactive bladder.

    PubMed

    Oki, Tomomi; Kageyama, Aiko; Takagi, Yukiko; Uchida, Shinya; Yamada, Shizuo

    2007-02-01

    We characterized muscarinic receptor binding in the mouse cerebral cortex after oral administration of anticholinergic agents used to treat overactive bladder. Muscarinic receptors in the mouse cerebral cortex and bladder after oral administration of anticholinergic agents were measured using [(3)H]N-methylscopolamine. In vitro binding affinities of tolterodine and its metabolite 5-hydroxymethyl metabolite in the mouse cerebral cortex and bladder were considerably greater than those of oxybutynin and darifenacin. Also, muscarinic receptor binding affinity of oxybutynin and its metabolite N-desethyl-oxybutynin in the cerebral cortex compared with that in the bladder was 2 to 3 times higher, whereas that of tolterodine and 5-hydroxymethyl metabolite was approximately 2 times lower. Oral administration of oxybutynin (76.1 micromol/kg), tolterodine (6.31 micromol/kg) and darifenacin (59.1 micromol/kg) showed binding activity that was approximately equal to that of bladder muscarinic receptors. Oral administration of oxybutynin (76.1 micromol/kg) showed significant binding of cerebral cortical muscarinic receptors in mice, as indicated by about a 2-fold increase in K(d) values for specific [(3)H]N-methylscopolamine binding 0.5 and 2 hours later. On the other hand, tolterodine and darifenacin given at oral doses that would exert a similar extent of bladder receptor binding activity as oxybutynin showed only a low level of binding activity of central muscarinic receptors in mice. Significant binding of brain muscarinic receptors in mice was observed by the oral administration of oxybutynin but not tolterodine and darifenacin.

  1. Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones.

    PubMed Central

    Brown, D. A.; Constanti, A.

    1980-01-01

    1 Responses of single neurones in isolated superior cervical ganglia of the rat to muscarinic agonists were recorded with intracellular microelectrodes. 2 (+/-)-Muscarine (1 to 10 microM) and methylfurmethide (1 to 3 microM) produced reversible membrane depolarizations (less than or equal to 15 mV) accompanied by a fall in input conductance and an increased tendency toward repetitive spike discharges. The spike configuration was unchanged. 3 Analysis of steady-state current/voltage curves revealed the most consistent muscarinic effect to be a large reduction (approximately 50% at 10 microM muscarine) in input slope conductance around rest potential. This conductance decrease diminished as the membrane was hyperpolarized, and the normal increase in slope conductance with membrane depolarization was depressed. The current/voltage curves in the between -65 and -88 mV (i.e. 9 to 28 mV hyperpolarized to rest potential). 4 Divalent cations (10 mM [Ca2+] or [Mg2+]) showed a small muscarine-like effect on the current/voltage and slope conductance/voltage curves, but did not affect the action of muscarine itself. 5 Tetraethylammonium (TEA, 5 mM) also had a small muscarine-like effect, and depressed or reversed the action of muscarine. However, TEA differed from muscarine in blocking orthodromic transmission and prolonging direct spike repolarization. 6 It is concluded that the primary effect of muscarinic agonists is to alter the rectifying properties of the cell within the potential range -80 to -40 mV. PMID:7470731

  2. Effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart

    SciTech Connect

    Klangkalya, B.; Chan, A.

    1988-01-01

    The in vitro and in vivo effects of estrogen and progesterone on muscarinic and ..beta..-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for ..beta..-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, (/sup 3/H)-dihydroalprenolol, to ..beta..-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, (/sup 3/H)-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor. Progesterone was found to decrease the apparent affinity of muscarinic receptors for (/sup 3/H)(-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate or progesterone for 4 days had no effect on the muscarinic or ..beta..-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of ..beta..-adrenergic receptors.

  3. Cardiac effects of muscarinic receptor antagonists used for voiding dysfunction

    PubMed Central

    Andersson, Karl-Erik; Campeau, Lysanne; Olshansky, Brian

    2011-01-01

    Antimuscarinic agents are the main drugs used to treat patients with the overactive bladder (OAB) syndrome, defined as urgency, with or without urgency incontinence, usually with increased daytime frequency and nocturia. Since the treatment is not curative and since OAB is a chronic disease, treatment may be life-long. Antimuscarinics are generally considered to be ‘safe’ drugs, but among the more serious concerns related to their use is the risk of cardiac adverse effects, particularly increases in heart rate (HR) and QT prolongation and induction of polymorphic ventricular tachycardia (torsade de pointes). An elevated resting HR has been linked to overall increased morbidity and mortality, particularly in patients with cardiovascular diseases. QT prolongation and its consequences are not related to blockade of muscarinic receptors, but rather linked to inhibition of the hERG potassium channel in the heart. However, experience with terodiline, an antimuscarinic drug causing torsade de pointes in patients, has placed the whole drug class under scrutiny. The potential of the different antimuscarinic agents to increase HR and/or prolong the QT time has not been extensively explored for all agents in clinical use. Differences between drugs cannot be excluded, but risk assessments based on available evidence are not possible. PMID:21595741

  4. Beneficial effect of muscarinic-2 antagonist on dilated cardiomyopathy induced by autoimmune mechanism against muscarinic-2 receptor.

    PubMed

    Matsui, S; Fu, M L; Hayase, M; Katsuda, S; Yamaguchi, N; Teraoka, K; Kurihara, T; Takekoshi, N

    2001-10-01

    We have previously shown that a peptide corresponding to the sequence of the second extracellular loop of the human muscarinic-2 (M2) receptor (M2-peptide) was able to induce an autoimmune cardiomyopathy in rabbits. In this study, we investigated the effect of M2-antagonist (otenzepad) on M2-peptide-induced cardiomyopathy in rabbits. New Zealand White rabbits were divided into four groups: 1) control group, saline injection; 2) M2-peptide group, M2-peptide injection; 3) M2-antagonist group, otenzepad (30 mg/day) orally and saline injection; and (4) M2-antagonist + M2-peptide group, otenzepad (30 mg/day) orally and M2-peptide injection. The study duration was 1 year. Saline or peptide was injected once a month. All rabbits in both the M2-peptide group and the M2-antagonist + M2-peptide group had high titers of anti-M2-autoantibodies in their sera. Rabbits in the M2-peptide group showed an increase in heart weight, wall thinning and dilatation of the right ventricle. On the contrary, rabbits in the M2-antagonist + M2-peptide group had normal heart weight and shape. All rabbits in the M2-peptide group showed multifocal degeneration and necrosis of myocardial cells with moderate infiltration of inflammatory cells, while four rabbits in the M2-antagonist + M2-peptide group showed slight infiltration of inflammatory cells with normal myocardial cells and interstitium, and another three showed no histological changes in the hearts. In conclusion, M2-antagonist protects the myocardium from injury induced by autoimmune mechanism against M2-muscarinic receptor.

  5. Effect of pirenzepine and gallamine on cardiac and pulmonary muscarinic receptors in the rabbit.

    PubMed Central

    Maclagan, J.; Faulkner, D.

    1989-01-01

    1. The effect of muscarinic antagonists considered to be selective for M1 receptors (pirenzepine) and for M2 receptors (gallamine) were studied on bronchoconstriction and bradycardia elicited by stimulation of the vagal nerves and by i.v. acetylcholine (ACh) in anaesthetized rabbits. 2. Pirenzepine was equipotent as an antagonist of ACh-induced responses at postjunctional muscarinic receptors in the heart, lung and blood vessels, whereas gallamine was at least ten times less potent at pulmonary and vascular muscarinic receptors. Thus, gallamine never caused complete inhibition of bronchoconstrictor or hypotensive responses to i.v. ACh, whereas doses of pirenzepine in excess of 1 mumol kg-1 abolished all muscarinic responses. 3. In the lung, both antagonists inhibited bronchoconstriction caused by vagal stimulation and ACh-induced bronchoconstriction to the same extent (pirenzepine, mean ED50 65 +/- 22 and, 130 +/- 28 nmol kg-1 respectively; gallamine, ED50 greater than 10,000 nmol kg-1 for both responses). Enhancement of vagally-induced bronchoconstriction was never observed. 4. In the heart, however, both pirenzepine and gallamine were ten times less potent as antagonists of vagally-induced bradycardia than of ACh-induced bradycardia. This differential blockade was unaltered by propranolol (1 mg kg-1) pretreatment. 5. It is concluded that there is no evidence for M1 or M2 muscarinic receptors in the pulmonary innervation of the rabbit and the potency of the antagonists in abolishing in abolishing vagally-induced bronchoconstriction was consistent with blockade of M3 muscarinic receptors on airway smooth muscle. 6. The results suggest that M2 muscarinic receptors may exert an inhibitory effect on transmission in the parasympathetic nerves innervating the heart in the rabbit.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2758229

  6. Central muscarinic cholinergic involvement in serial pattern learning: Atropine impairs acquisition and retention in a serial multiple choice (SMC) task in rats.

    PubMed

    Chenoweth, Amber M; Fountain, Stephen B

    2015-09-01

    Atropine sulfate is a muscarinic cholinergic antagonist which impairs acquisition and retention performance on a variety of cognitive tasks. The present study examined the effects of atropine on acquisition and retention of a highly-structured serial pattern in a serial multiple choice (SMC) task. Rats were given daily intraperitoneal injections of either saline or atropine sulfate (50mg/kg) and trained in an octagonal operant chamber equipped with a lever on each wall. They learned to press the levers in a particular order (the serial pattern) for brain-stimulation reward in a discrete-trial procedure with correction. The two groups learned a pattern composed of eight 3-element chunks ending with a violation element: 123-234-345-456-567-678-781-818 where the digits represent the clock-wise positions of levers in the chamber, dashes indicate 3-s pauses, and other intertrial intervals were 1s. Central muscarinic cholinergic blockade by atropine caused profound impairments during acquisition, specifically in the encoding of chunk-boundary elements (the first element of chunks) and the violation element of the pattern, but had a significant but negligible effect on the encoding of within-chunk elements relative to saline-injected rats. These effects persisted when atropine was removed, and similar impairments were also observed in retention performance. The results indicate that intact central muscarinic cholinergic systems are necessary for learning and producing appropriate responses at places in sequences where pattern structure changes. The results also provide further evidence that multiple cognitive systems are recruited to learn and perform within-chunk, chunk-boundary, and violation elements of a serial pattern.

  7. Muscarinic effect of atrial natriuretic peptide on rabbit airways.

    PubMed

    Robichaud, A; Saunier, C; Michoud, M C; du Souich, P

    1993-10-01

    1. The aim of the present work was to investigate under which circumstances atrial natriuretic peptide (ANP) modulates airway resistance. 2. Of the six groups of rabbits (n = 5) studied, three received an infusion of ANP (80 ng min-1 kg-1 i.v.) for a period of 100 min, while the other three were infused with the vehicle. Before receiving the infusion of ANP or the vehicle, the animals were pretreated with atropine (0.5 mg kg-1 i.v.), propranolol (2 mg kg-1 i.v.) or not pretreated. After 75 min of infusion of ANP, bronchoconstriction was induced by inhalation of histamine. Respiratory resistance (Rrs) was measured before and 3, 5, 10, 15 and 20 min post-histamine challenge. 3. Following 75 min of ANP infusion, plasma ANP concentration increased from 153 +/- 52 (mean +/- s.e.mean) to 1441 +/- 203 pg ml-1 (P < 0.05) without affecting baseline Rrs. Control Rrs values (12.5-20.4 cmH2O l-1 s) were significantly increased following the inhalation of histamine (P < 0.001). By themselves, atropine, propranolol or ANP did not modify the histamine-induced increase in Rrs. However, when the animals were pretreated with atropine, ANP infusion significantly reduced the increase in Rrs induced by histamine (30 +/- 2 vs 51 +/- 6 cmH2O l-1 s; P < 0.05). 4. These data suggest that ANP has an indirect modulating effect on the airway smooth muscle and will decrease Rrs when muscarinic receptors are blocked.

  8. Cholinergic submandibular effects and muscarinic receptor expression in blood vessels of the rat.

    PubMed

    Ryberg, Anders T; Selberg, Hanna; Soukup, Ondrej; Gradin, Kathryn; Tobin, Gunnar

    2008-07-01

    In order to functionally characterise the muscarinic vasodilator responses, effects of cholinergic agonists were studied on isolated preparations of the rat submandibular artery and vein and carotid and jugular vessels. Tentatively, a cholinergic regulatory mechanism having different effects on the arterial and venous vessels would enhance vascular fluid recruitment for the secretory response. In vitro functional findings were correlated to the expression and cellular location of the different receptors that were assessed by immunohistochemistry. In order to find in vivo correlates to the in vitro findings, the influence of muscarinic receptors on permeability was studied on the vasculature of the submandibular gland in anaesthetised rats. Staining for muscarinic M1 receptors occurred in the endothelium, and muscarinic M5 receptors, and possibly M3 also, were detected in the arterial smooth muscle. In venous endothelium, muscarinic M1 and M4 receptors occurred. In the jugular smooth muscle layer, staining for M1, and possibly also for M3, appeared. Muscarinic agonists caused arteries to relax and veins to contract. The nitric oxide synthase inhibitor Nomega-nitro-L-arginine (L-NNA; 10(-4)M) markedly reduced the cholinergic-evoked relaxation of pre-contracted carotid arterial preparations. In the presence of 4-DAMP (10(-7)M), the relaxation to cholinergic agonists was inhibited. Pirenzepine (10(-5)M) did not only inhibit the relaxatory effects, but even reversed the effects, while it in the jugular vein abolished the cholinergic effects. The arterial nitric oxide-dependent response to muscarinic receptor stimulation consisted of two parts -- one sensitive to pirenzepine and 4-DAMP and the other to 4-DAMP only. Inhibition of the former part only, resulted in cholinergic arterial contraction. Also, the submandibular artery and vein responses to muscarinic receptor stimulation show a resemblance with those of the carotid and jugular vessels, i.e. a pronounced arterial

  9. Central Muscarinic Cholinergic Activation Alters Interaction between Splenic Dendritic Cell and CD4+CD25- T Cells in Experimental Colitis

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.; Khafipour, Ehsan; Ghia, Jean-Eric

    2014-01-01

    Background The cholinergic anti-inflammatory pathway (CAP) is based on vagus nerve (VN) activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR) signaling. Inflammatory bowel disease (IBD) patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs) and sequential CD4+/CD25−T cell activation in the context of experimental colitis. Methods The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP)-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25−T cell co-culture were determined. Results McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25−T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. Conclusions Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD. PMID:25295619

  10. Muscarinic Receptor Agonists and Antagonists: Effects on Cancer

    PubMed Central

    2012-01-01

    Many epithelial and endothelial cells express a cholinergic autocrine loop in which acetylcholine acts as a growth factor to stimulate cell growth. Cancers derived from these tissues similarly express a cholinergic autocrine loop and ACh secreted by the cancer or neighboring cells interacts with M3 muscarinic receptors expressed on the cancer cells to stimulate tumor growth. Primary proliferative pathways involve MAPK and Akt activation. The ability of muscarinic agonists to stimulate, and M3 antagonists to inhibit tumor growth has clearly been demonstrated for lung and colon cancer. The ability of muscarinic agonists to stimulate growth has been shown for melanoma, pancreatic, breast, ovarian, prostate and brain cancers, suggesting that M3 antagonists will also inhibit growth of these tumors as well. As yet no clinical trials have proven the efficacy of M3 antagonists as cancer therapeutics, though the widespread clinical use and low toxicity of M3 antagonists support the potential role of these drugs as adjuvants to current cancer therapies. PMID:22222710

  11. Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors

    PubMed Central

    2009-01-01

    Background Many neuromuscular blockers act as negative allosteric modulators of muscarinic acetylcholine receptors by decreasing affinity and potency of acetylcholine. The neuromuscular blocker rapacuronium has been shown to have facilitatory effects at muscarinic receptors leading to bronchospasm. We examined the influence of rapacuronium on acetylcholine (ACh) binding to and activation of individual subtypes of muscarinic receptors expressed in Chinese hamster ovary cells to determine its receptor selectivity. Results At equilibrium rapacuronium bound to all subtypes of muscarinic receptors with micromolar affinity (2.7-17 μM) and displayed negative cooperativity with both high- and low-affinity ACh binding states. Rapacuronium accelerated [3H]ACh association with and dissociation from odd-numbered receptor subtypes. With respect to [35S]GTPγS binding rapacuronium alone behaved as an inverse agonist at all subtypes. Rapacuronium concentration-dependently decreased the potency of ACh-induced [35S]GTPγS binding at M2 and M4 receptors. In contrast, 0.1 μM rapacuronium significantly increased ACh potency at M1, M3, and M5 receptors. Kinetic measurements at M3 receptors showed acceleration of the rate of ACh-induced [35S]GTPγS binding by rapacuronium. Conclusions Our data demonstrate a novel dichotomy in rapacuronium effects at odd-numbered muscarinic receptors. Rapacuronium accelerates the rate of ACh binding but decreases its affinity under equilibrium conditions. This results in potentiation of receptor activation at low concentrations of rapacuronium (1 μM) but not at high concentrations (10 μM). These observations highlight the relevance and necessity of performing physiological tests under non-equilibrium conditions in evaluating the functional effects of allosteric modulators at muscarinic receptors. They also provide molecular basis for potentiating M3 receptor-mediated bronchoconstriction. PMID:20038295

  12. Muscarinic activation enhances the anti-proliferative effect of paclitaxel in murine breast tumor cells.

    PubMed

    Español, Alejandro Javier; Jacob, Guillermina; Dmytrenko, Ganna; Sales, María Elena

    2013-10-01

    Muscarinic acetylcholine receptors (mAChR) are expressed in cells without nervous origin. mAChR are up-regulated in tumor cells and their stimulation can modulate tumor growth. In this work we investigated the ability of mAChR activation to induce tumor cell death. We studied the action of a combination of low doses of the muscarinic agonist carbachol plus paclitaxel, a chemotherapeutic agent frequently used in breast cancer treatment, in terms of effectiveness. Long term treatment with carbachol exerted anti-proliferative actions on LM2 and LM3 murine mammary adenocarcinoma cells, similarly to paclitaxel. The combination of carbachol with paclitaxel at submaximal concentrations, added during 20 h decreased tumor cell proliferation in a more potent manner than each drug added separately. This effect was reverted by the muscarinic antagonist atropine, and was due to a potentiation of tumor cell apoptosis tested by TUNEL assay. This treatment did not affect the proliferation of the non tumorigenic mammary cell line NMuMG. In conclusion, the combination of a muscarinic agonist plus paclitaxel should be tested as a useful therapeutic tool in breast cancer treatment.

  13. Effect of paraoxon on muscarinic, dopamine and. gamma. -aminobutyric acid receptors of brain and sensitivity to muscarinic antagonists

    SciTech Connect

    Fernando, J.C.R.; Hoskins, B.; Ho, I.K.

    1986-03-05

    Several acetylcholinesterase (AChE) inhibitors decrease muscarinic cholinergic (mACh) receptors in the brain, alteration of dopamine (DA) and ..gamma..-aminobutyric acid (GABA) receptors after AChE inhibition was also reported. In view of the important interactions among DA, GABA and ACh systems, whether this is a common effect of AChE inhibitors should be established. They report the effect of the AChE inhibitor, paraoxon, on DA, GABA and mACh receptors in the rat. The binding of /sup 3/H-QNB (for mACh), /sup 3/H-spiperone (for DA) and /sup 3/H-muscimol (for GABA) to striatal and hippocampal membranes was analyzed. Also, behavioral sensitivity to atropine was studied. Twenty-four hr after a single dose (0.75 mg/kg, s.c.) of paraoxon, the density of mACh receptors in the striatum was decreased but, at 3 days, no change was seen. In the hippocampus, the mACh receptors were not affected. Repeated treatment with paraoxon (0.3 mg/kg, 48 hourly) for 2 weeks reduced the mACh receptor density in both regions. Neither single nor repeated paraoxon treatment had an effect on DA or GABA receptors. After single or repeated dosing with paraoxon, myoclonus induced by atropine (10 mg/kg, i.p.) was enhanced. The results show rapid downregulation of mACh receptors by paraoxon. DA or GABA, however, appear not to be affected under these treatment regimens.

  14. Effects of the M1 muscarinic antagonist dicyclomine on emotional memory retrieval.

    PubMed

    Soares, Juliana Carlota Kramer; Perfetto, Juliano Genaro; Antonio, Bruno Brito; Oliveira, Maria Gabriela Menezes

    2016-02-01

    Extensive research has shown the involvement of the central cholinergic system in the acquisition and consolidation of tasks involving conditioned fear responses, such as those observed in contextual fear conditioning (CFC), tone fear conditioning (TFC) and inhibitory avoidance (IA). However, there are few data concerning the role of this system in the memory retrieval process. Therefore, the present study aimed to compare the effects of the administration of an M1 antagonist on retrieval during these tasks. For each behavioral procedure, groups of male Wistar rats were trained. Twenty-four hr later, they were treated with different doses of dicyclomine (16, 32, or 64 mg/kg, i.p.) or with saline 30 min before the test session. The results showed that dicyclomine at doses of 16 and 32 mg/kg impaired CFC without interfering with IA performance. Moreover, only 64 mg/kg impaired TFC. These data suggest that M1 muscarinic receptors contribute to memory retrieval in CFC and TFC but are not essential for retrieval in IA.

  15. Effects of the muscarinic antagonists atropine and pirenzepine on olfactory conditioning in the honeybee.

    PubMed

    Cano Lozano, V; Gauthier, M

    1998-04-01

    One-trial conditioning of the proboscis extension reflex (PER) in honeybees was used to examine the qualitative effects of two muscarinic antagonists, atropine and pirenzepine, on the acquisition and retrieval of memory following intracranial injection. The main result of this study is that atropine, at a relatively high concentration of 10(-2) M, impairs memory retrieval but not acquisition of memory after a single olfactory conditioning trial (at this concentration, there is no effect of atropine on the sensorimotor components of the PER). This result is in agreement with the effects of scopolamine, reported in a previously published article. Pirenzepine, at the same concentration as atropine, had no effect on either acquisition or retrieval of memory. These results suggest that blockade of muscarinic-like receptors, except those that bind to pirenzepine, induces solely an impairment of memory retrieval.

  16. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review.

    PubMed

    Drevets, Wayne C; Zarate, Carlos A; Furey, Maura L

    2013-06-15

    The muscarinic cholinergic receptor system has been implicated in the pathophysiology of depression, with physiological evidence indicating this system is overactive or hyperresponsive in depression and with genetic evidence showing that variation in genes coding for receptors within this system are associated with higher risk for depression. In studies aimed at assessing whether a reduction in muscarinic cholinergic receptor function would improve depressive symptoms, the muscarinic receptor antagonist scopolamine manifested antidepressant effects that were robust and rapid relative to conventional pharmacotherapies. Here, we review the data from a series of randomized, double-blind, placebo-controlled studies involving subjects with unipolar or bipolar depression treated with parenteral doses of scopolamine. The onset and duration of the antidepressant response are considered in light of scopolamine's pharmacokinetic properties and an emerging literature that characterizes scopolamine's effects on neurobiological systems beyond the cholinergic system that appear relevant to the neurobiology of mood disorders. Scopolamine infused at 4.0 μg/kg intravenously produced robust antidepressant effects versus placebo, which were evident within 3 days after the initial infusion. Placebo-adjusted remission rates were 56% and 45% for the initial and subsequent replication studies, respectively. While effective in male and female subjects, the change in depression ratings was greater in female subjects. Clinical improvement persisted more than 2 weeks following the final infusion. The timing and persistence of the antidepressant response to scopolamine suggest a mechanism beyond that of direct muscarinic cholinergic antagonism. These temporal relationships suggest that scopolamine-induced changes in gene expression and synaptic plasticity may confer the therapeutic mechanism.

  17. Muscarinic receptors mediate the endocrine-disrupting effects of an organophosphorus insecticide in zebrafish.

    PubMed

    Santos da Rosa, João Gabriel; Alcântara Barcellos, Heloísa Helena de; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Kalichak, Fabiana; Koakoski, Gessi; Acosta Oliveira, Thiago; Idalencio, Renan; Frandoloso, Rafael; Piato, Angelo L; José Gil Barcellos, Leonardo

    2017-07-01

    The glucocorticoid cortisol, the end product of hypothalamus-pituitary-interrenal axis in zebrafish (Danio rerio), is synthesized via steroidogenesis and promotes important physiological regulations in response to a stressor. The failure of this axis leads to inability to cope with environmental challenges preventing adaptive processes in order to restore homeostasis. Pesticides and agrichemicals are widely used, and may constitute an important class of environmental pollutants when reach aquatic ecosystems and nontarget species. These chemical compounds may disrupt hypothalamus-pituitary-interrenal axis by altering synthesis, structure or function of its constituents. We present evidence that organophosphorus exposure disrupts stress response by altering the expression of key genes of the neural steroidogenesis, causing downregulation of star, hsp70, and pomc genes. This appears to be mediated via muscarinic receptors, since the muscarinic antagonist scopolamine blocked these effects. © 2017 Wiley Periodicals, Inc.

  18. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates.

    PubMed

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte; Werge, Thomas; Bymaster, Frank P; Felder, Christian C; Fink-Jensen, Anders

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia.

  19. Muscarinic Receptor Antagonists.

    PubMed

    Matera, Maria Gabriella; Cazzola, Mario

    2017-01-01

    Parasympathetic activity is increased in patients with chronic obstructive pulmonary disease (COPD) and asthma and appears to be the major reversible component of airway obstruction. Therefore, treatment with muscarinic receptor antagonists is an effective bronchodilator therapy in COPD and also in asthmatic patients. In recent years, the accumulating evidence that the cholinergic system controls not only contraction by airway smooth muscle but also the functions of inflammatory cells and airway epithelial cells has suggested that muscarinic receptor antagonists could exert other effects that may be of clinical relevance when we must treat a patient suffering from COPD or asthma. There are currently six muscarinic receptor antagonists licenced for use in the treatment of COPD, the short-acting muscarinic receptor antagonists (SAMAs) ipratropium bromide and oxitropium bromide and the long-acting muscarinic receptor antagonists (LAMAs) aclidinium bromide, tiotropium bromide, glycopyrronium bromide and umeclidinium bromide. Concerns have been raised about possible associations of muscarinic receptor antagonists with cardiovascular safety, but the most advanced compounds seem to have an improved safety profile. Further beneficial effects of SAMAs and LAMAs are seen when added to existing treatments, including LABAs, inhaled corticosteroids and phosphodiesterase 4 inhibitors. The importance of tiotropium bromide in the maintenance treatment of COPD, and likely in asthma, has spurred further research to identify new LAMAs. There are a number of molecules that are being identified, but only few have reached the clinical development.

  20. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  1. Quantitative ARG microimaging studies of two muscarinic antagonist isomers: Blocking and the effects of cocaine

    SciTech Connect

    Som, P.; Wang, G.J.; Oster, Z.H.

    1994-05-01

    The distribution of the racemic mixture of IQNP(1-Azabicyclo [2-2-2] oct-3-yl alpha-hydroxy-alpha-(1-iodo-propen-3-yl)-alpha-phenylacetate), a muscarinic antagonist was described earlier. Recently, the radioiodinated Z and E-(R,R) IQNP isomers have been prepared. Quantitative ARG studies using the Z and E isomers were performed in control rats and after pretreatment with ({plus_minus}) QNB or cocaine. High uptake of (Z)-IQNP was seen in the heart and brain with GI and urinary excretion. Lung uptake was lower than with the racemic IQNP. (Z)-IQNP uptake was maximal at 15 min p.i. with homogeneous distribution in the heart. In the brain, highest uptake was in the caudate, cortex, hippocampus, pons and thalamus. (Z)-IQNP showed higher cerebellar uptake and lower cortical uptake compared to (E)-IQNP. Clearance from brain was slower than bean. Heart and brain uptake of (E)-IQNP were markedly lower than the Z isomer. After QNB pretreatment, almost complete blocking of (Z)-IQNP uptake in heart and brain occurred. Cocaine did not significantly affect the distribution of IQNP. These data indicate that (Z)-IQNP has high affinity for the M2 muscarinic receptor with potential for brain and heart imaging. Cocaine appears to have little effect on the muscarinic-cholinergic receptors in the brain and heart.

  2. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Urinary Excretion Contributes to Long-Lasting Blockade of Bladder Muscarinic Receptors by Imidafenacin: Effect of Bilateral Ureteral Ligation.

    PubMed

    Ito, Yoshihiko; Kuraoka, Shiori; Endo, Soma; Takahashi, Ayaka; Onoue, Satomi; Yamada, Shizuo

    2017-01-01

    Imidafenacin is a potent and selective antagonist of M1 and M3 muscarinic receptors that is safe, efficacious, and well tolerated for controlling the symptoms of overactive bladder (OAB). However, the precise mechanisms responsible for the bladder-selective pharmacological effects of this agent remain unclear. The in vivo pharmacologic effects of imidafenacin result from receptor occupancy. Therefore, the present study was performed to characterize in vivo muscarinic receptor binding by tritium-labeled imidafenacin with high specific activity ([(3)H]imidafenacin) in the bladder and other tissues of mice, and to clarify the mechanisms underlying selective binding of imidafenacin to bladder muscarinic receptors. After intravenous injection of [(3)H]imidafenacin, its binding to muscarinic receptors in the bladder and other tissues of mice was assessed by a radioligand binding assay. [(3)H]Imidafenacin showed a significantly longer duration of binding to muscarinic receptors in the bladder than in other tissues, and muscarinic receptor binding of [(3)H]imidafenacin was markedly suppressed in the bladder alone after bilateral ligation of the ureters. After intravenous injection, the [(3)H]imidafenacin concentration was markedly higher in the urine than in the plasma, suggesting that urinary excretion may contribute significantly to the selective and long-lasting binding of imidafenacin to bladder muscarinic receptors. These findings suggest that the intravesicular concentration of an antimuscarinic agent and its active metabolites may have a substantial influence on its pharmacological effect and duration of action in patients with OAB. In addition, factors that modulate urine production may influence the efficacy and safety of antimuscarinic agents. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100.

    PubMed

    Byun, Nellie E; Grannan, Michael; Bubser, Michael; Barry, Robert L; Thompson, Analisa; Rosanelli, John; Gowrishankar, Raajaram; Kelm, Nathaniel D; Damon, Stephen; Bridges, Thomas M; Melancon, Bruce J; Tarr, James C; Brogan, John T; Avison, Malcolm J; Deutch, Ariel Y; Wess, Jürgen; Wood, Michael R; Lindsley, Craig W; Gore, John C; Conn, P Jeffrey; Jones, Carrie K

    2014-06-01

    Accumulating evidence suggests that selective M4 muscarinic acetylcholine receptor (mAChR) activators may offer a novel strategy for the treatment of psychosis. However, previous efforts to develop selective M4 activators were unsuccessful because of the lack of M4 mAChR subtype specificity and off-target muscarinic adverse effects. We recently developed VU0152100, a highly selective M4 positive allosteric modulator (PAM) that exerts central effects after systemic administration. We now report that VU0152100 dose-dependently reverses amphetamine-induced hyperlocomotion in rats and wild-type mice, but not in M4 KO mice. VU0152100 also blocks amphetamine-induced disruption of the acquisition of contextual fear conditioning and prepulse inhibition of the acoustic startle reflex. These effects were observed at doses that do not produce catalepsy or peripheral adverse effects associated with non-selective mAChR agonists. To further understand the effects of selective potentiation of M4 on region-specific brain activation, VU0152100 alone and in combination with amphetamine were evaluated using pharmacologic magnetic resonance imaging (phMRI). Key neural substrates of M4-mediated modulation of the amphetamine response included the nucleus accumbens (NAS), caudate-putamen (CP), hippocampus, and medial thalamus. Functional connectivity analysis of phMRI data, specifically assessing correlations in activation between regions, revealed several brain networks involved in the M4 modulation of amphetamine-induced brain activation, including the NAS and retrosplenial cortex with motor cortex, hippocampus, and medial thalamus. Using in vivo microdialysis, we found that VU0152100 reversed amphetamine-induced increases in extracellular dopamine levels in NAS and CP. The present data are consistent with an antipsychotic drug-like profile of activity for VU0152100. Taken together, these data support the development of selective M4 PAMs as a new approach to the treatment of psychosis

  5. Antipsychotic Drug-Like Effects of the Selective M4 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator VU0152100

    PubMed Central

    Byun, Nellie E; Grannan, Michael; Bubser, Michael; Barry, Robert L; Thompson, Analisa; Rosanelli, John; Gowrishankar, Raajaram; Kelm, Nathaniel D; Damon, Stephen; Bridges, Thomas M; Melancon, Bruce J; Tarr, James C; Brogan, John T; Avison, Malcolm J; Deutch, Ariel Y; Wess, Jürgen; Wood, Michael R; Lindsley, Craig W; Gore, John C; Conn, P Jeffrey; Jones, Carrie K

    2014-01-01

    Accumulating evidence suggests that selective M4 muscarinic acetylcholine receptor (mAChR) activators may offer a novel strategy for the treatment of psychosis. However, previous efforts to develop selective M4 activators were unsuccessful because of the lack of M4 mAChR subtype specificity and off-target muscarinic adverse effects. We recently developed VU0152100, a highly selective M4 positive allosteric modulator (PAM) that exerts central effects after systemic administration. We now report that VU0152100 dose-dependently reverses amphetamine-induced hyperlocomotion in rats and wild-type mice, but not in M4 KO mice. VU0152100 also blocks amphetamine-induced disruption of the acquisition of contextual fear conditioning and prepulse inhibition of the acoustic startle reflex. These effects were observed at doses that do not produce catalepsy or peripheral adverse effects associated with non-selective mAChR agonists. To further understand the effects of selective potentiation of M4 on region-specific brain activation, VU0152100 alone and in combination with amphetamine were evaluated using pharmacologic magnetic resonance imaging (phMRI). Key neural substrates of M4-mediated modulation of the amphetamine response included the nucleus accumbens (NAS), caudate-putamen (CP), hippocampus, and medial thalamus. Functional connectivity analysis of phMRI data, specifically assessing correlations in activation between regions, revealed several brain networks involved in the M4 modulation of amphetamine-induced brain activation, including the NAS and retrosplenial cortex with motor cortex, hippocampus, and medial thalamus. Using in vivo microdialysis, we found that VU0152100 reversed amphetamine-induced increases in extracellular dopamine levels in NAS and CP. The present data are consistent with an antipsychotic drug-like profile of activity for VU0152100. Taken together, these data support the development of selective M4 PAMs as a new approach to the treatment of psychosis

  6. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  7. Effects of novel muscarinic M3 receptor ligand C1213 in pulmonary arterial hypertension models.

    PubMed

    Ahmed, Mohamed; VanPatten, Sonya; Lakshminrusimha, Satyan; Patel, Hardik; Coleman, Thomas R; Al-Abed, Yousef

    2016-12-01

    Pulmonary hypertension (PH) is a complex disease comprising a pathologic remodeling and thickening of the pulmonary vessels causing an after load on the right heart ventricle that can result in ventricular failure. Triggered by oxidative stress, episodes of hypoxia, and other undetermined causes, PH is associated with poor outcomes and a high rate of morbidity. In the neonate, this disease has a similar etiology but is further complicated by the transition to breathing after birth, which requires a reduction in vascular resistance. Persistent pulmonary hypertension of the newborn (PPHN) is one form of PH that is frequently unresponsive to current therapies including inhaled nitric oxide (due to lack of proper absorption and diffusion), and other therapeutics targeting signaling mediators in vascular endothelium and smooth muscle. The need for novel agents, which target distinct pathways in pulmonary hypertension, remains. Herein, we investigated the therapeutic effects of novel muscarinic receptor ligand C1213 in models of PH We demonstrated that via M3 muscarinic receptors, C1213 induced activating- eNOS phosphorylation (serine-1177), which is known to lead to nitric oxide (NO) production in endothelial cells. Using signaling pathway inhibitors, we discovered that AKT and calcium signaling contributed to eNOS phosphorylation induced by C1213. As expected for an eNOS-stimulating agent, in ex vivo and in vivo models, C1213 triggered pulmonary vasodilation and induced both pulmonary artery and systemic blood pressure reductions demonstrating its potential value in PH and PPHN In brief, this proof-of-concept study provides evidence that an M3 muscarinic receptor functionally selective ligand stimulates downstream pathways leading to antihypertensive effects using in vitro, ex vivo, and in vivo models of PH.

  8. M1 and m2 muscarinic receptor subtypes regulate antidepressant-like effects of the rapidly acting antidepressant scopolamine.

    PubMed

    Witkin, J M; Overshiner, C; Li, X; Catlow, J T; Wishart, G N; Schober, D A; Heinz, B A; Nikolayev, A; Tolstikov, V V; Anderson, W H; Higgs, R E; Kuo, M-S; Felder, C C

    2014-11-01

    Scopolamine produces rapid and significant symptom improvement in patients with depression, and most notably in patients who do not respond to current antidepressant treatments. Scopolamine is a nonselective muscarinic acetylcholine receptor antagonist, and it is not known which one or more of the five receptor subtypes in the muscarinic family are mediating these therapeutic effects. We used the mouse forced-swim test, an antidepressant detecting assay, in wild-type and transgenic mice in which each muscarinic receptor subtype had been genetically deleted to define the relevant receptor subtypes. Only the M1 and M2 knockout (KO) mice had a blunted response to scopolamine in the forced-swim assay. In contrast, the effects of the tricyclic antidepressant imipramine were not significantly altered by gene deletion of any of the five muscarinic receptors. The muscarinic antagonists biperiden, pirenzepine, and VU0255035 (N-[3-oxo-3-[4-(4-pyridinyl)-1-piper azinyl]propyl]-2,1,3-benzothiadiazole-4-sulfonamide) with selectivity for M1 over M2 receptors also demonstrated activity in the forced-swim test, which was attenuated in M1 but not M2 receptor KO mice. An antagonist with selectivity of M2 over M1 receptors (SCH226206 [(2-amino-3-methyl-phenyl)-[4-[4-[[4-(3 chlorophenyl)sulfonylphenyl]methyl]-1-piperidyl]-1-piperidyl]methanone]) was also active in the forced-swim assay, and the effects were deleted in M2 (-/-) mice. Brain exposure and locomotor activity in the KO mice demonstrated that these behavioral effects of scopolamine are pharmacodynamic in nature. These data establish muscarinic M1 and M2 receptors as sufficient to generate behavioral effects consistent with an antidepressant phenotype and therefore as potential targets in the antidepressant effects of scopolamine.

  9. Effects of Anticholinesterase Exposure on Transport and Distribution of High vs. Low Affinity Muscarinic Cholinergic Receptors.

    DTIC Science & Technology

    1983-11-11

    atypical antagonist pirenzepine . Thus, it will be possible to localize several different muscarinic cholinergic receptor subtypes in animals chronically... pirenzepine . These results indicate the presence of two distinct muscarinic receptor subtypes (M1 and M2 ) in the brain. The data suggest that these two...defined by direct labeling for receptor autoradiography. The discovery of the atypical muscarinic antagonist pirenzepine has prompted the definition of

  10. Knife cuts of entorhinal cortex: effects on development of amygdaloid kindling and seizure-induced decrease of muscarinic cholinergic receptors

    SciTech Connect

    Savage, D.D.; Rigsbee, L.C.; McNamara, J.O.

    1985-02-01

    This report examines the effect of transection of the entorhinal hippocampal projection on amygdaloid kindling. We found that: bilateral knife cuts of entorhinal cortex but not of dorsal neocortex antagonize the development of amygdaloid kindling; and bilateral knife cuts of entorhinal cortex eliminate the seizure-induced decrease in number of muscarinic receptors of dentate granule cells. We suggest the following interpretations of these data: the hippocampal formation circuitry facilitates the development of amygdaloid kindling; and the decline of muscarinic receptors after kindled seizures is due to excessive activation of granule cells by axons from entorhinal cortex, a noncholinergic afferent.

  11. Effect of muscarinic and nicotinic receptor antagonism on rat gastric motor activity.

    PubMed

    Janssen, Pieter; Karlsson, Lisa K C; Nielsen, Maria Astin; Gillberg, Per-Göran; Hultin, Leif

    2010-01-01

    Our aim was to investigate whether muscarinic and nicotinic receptors mediate nitric oxide release during motor events in the rat stomach. Isolated rat stomach volume changes were monitored in an organ bath setup with an intragastric balloon coupled to a barostat and studied in basal conditions and during electrical vagal stimulation (EVS). In conscious rats, the intragastric pressure (IGP) was measured during test meal infusion. In the presence of N(G)-nitro-L-arginine methyl ester (L-NAME; 0.1 mmol/l), EVS induced significant gastric contractions (mean +/- SEM = 0.27 +/- 0.04 ml; n = 6) that could be blocked by atropine (3 micromol/l) and hexamethonium (0.1 mmol/l). In the presence of atropine and/or hexamethonium, EVS-induced relaxations could not be blocked by L-NAME, while exogenous nitric oxide could still relax the stomach. In conscious rats, atropine (1 mg kg(-1)) initially decreased IGP, while during further distension it increased IGP. In the presence of L-NAME (30 mg kg(-1)) atropine consistently decreased IGP. L-NAME alone significantly increased IGP during the test meal infusion, but this effect was reduced in the presence of atropine. These findings indicate a role for nicotinic and muscarinic receptors in the vagal-stimulation-induced activation of nitrergic nerves in the rat stomach. Copyright 2010 S. Karger AG, Basel.

  12. Amnesic effects of the anticholinergic drugs, trihexyphenidyl and biperiden: differences in binding properties to the brain muscarinic receptor.

    PubMed

    Kimura, Y; Ohue, M; Kitaura, T; Kihira, K

    1999-07-10

    An amnesic effect of anticholinergic drugs was previously described from several behavioral studies. We examined this effect induced by trihexyphenidyl and biperiden, clinically used in the parkinsonism and schizophrenic patients, by using passive avoidance tasks. Both of these drugs (0.1-10 mg/kg, s.c.) showed dose-dependent amnesic effects in the acquisition and retrieval phases. However, the effect induced by trihexyphenidyl was transient, whereas that of biperiden was long-lasting. To clarify the reason for the different duration of the amnesic activity, binding to the muscarinic receptor was examined. In the Scatchard analysis, trihexyphenidyl competed with [(3)H]quinuclidinyl benzilate ([(3)H]QNB) on the muscarinic receptor (showed increased K(d) and unchanged B(max) value), while biperiden decreased [(3)H]QNB binding (B(max) value) significantly. Furthermore, in an exchange assay for receptor inactivation, trihexyphenidyl binding to muscarinic receptors was exchanged by [(3)H]QNB completely, but biperiden decreased the exchangeable binding of [(3)H]QNB in a dose dependent manner (0.1-100 nM). These results suggested that the binding of trihexyphenidyl and biperiden to muscarinic receptor might be completely reversible and partially irreversible, respectively, whereas the K(i) values of these two drugs were similar. In conclusion, this difference in binding property may explain the difference in the time-course of the amnesic effect induced by trihexyphenidyl and biperiden.

  13. Muscarinic receptor activation determines the effects of store-operated Ca(2+)-entry on excitability and energy metabolism in pyramidal neurons.

    PubMed

    Kann, Oliver; Taubenberger, Nando; Huchzermeyer, Christine; Papageorgiou, Ismini E; Benninger, Felix; Heinemann, Uwe; Kovács, Richard

    2012-01-01

    In various cell types, depletion of intracellular Ca(2+)-stores results in store-operated Ca(2+)-entry (SOCE) across the cellular membrane. However, the effects of SOCE on neuronal membrane excitability and mitochondrial functions in central neurons are not well defined. We investigated such cellular downstream effects in pyramidal neurons of rat organotypic hippocampal slice cultures by applying electrophysiological and fluorescence imaging techniques. We report that SOCE is associated with (i) elevations of Ca(2+)-concentration in individual neuronal mitochondria ([Ca(2+)](m)). In addition, SOCE can result in (ii) hyperpolarizing neuronal membrane currents, (iii) increase in extracellular K(+)-concentration ([K(+)](o)), (iv) mitochondrial membrane depolarization, and (v) changes in intracellular redox state (NAD(P)H and FAD fluorescence), the latter reflecting responses of energy metabolism. These additional downstream effects of SOCE required concomitant muscarinic receptor activation by carbachol or acetylcholine, and were suppressed by agonist washout or application of antagonist, atropine. We conclude that muscarinic receptor activation determines the downstream effects of SOCE on neuronal membrane excitability and energy metabolism. This mechanism might have significant impact on information processing and neurometabolic coupling in central neurons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of the muscarinic agonist, 5-methylfurmethiodide, on contraction and electrophysiology of Ascaris suum muscle

    PubMed Central

    Trailovic, Sasa M.; Verma, Saurabh; Clark, Cheryl L.; Robertson, Alan P.; Martin, Richard J.

    2008-01-01

    Contraction and electrophysiological effects of 5-methylfurmethiodide (MFI), a selective muscarinic agonist in mammals, were tested on Ascaris suum muscle strips. In a contraction assay, MFI produced weak contraction and was less potent than levamisole and acetylcholine. Atropine (3 µM) a non-selective muscarinic antagonist in mammalian preparations, did not affect contractions produced by MFI. Mecamylamine (3 µM) a nicotinic antagonist in A. suum preparations, blocked the MFI contractions indicating that MFI had weak nicotinic agonist actions. In two-micropipette current-clamp experiments MFI, at concentrations greater than 10 µM, produced concentration-dependent depolarizations and small increases in membrane conductance. The depolarizing effects were not abolished by perfusing the preparation in a calcium-free Ascaris Ringer solution to block synaptic transmission, suggesting that MFI effects were mediated by receptors on the muscle and were calcium-independent. A high concentration of mecamylamine, 30 µM, only reduced the depolarizing responses by 42%, indicating that MFI also had effects on non-nicotinic receptors. Three non-nicotinic effects in the presence of 30 µM mecamylamine were identified using voltage-clamp techniques: i) MFI produced opening of mecamylamine-resistant non-selective-cation channel currents; ii) MFI inhibited opening of voltage-activated potassium currents; and iii) MFI increased the threshold of voltage-activated calcium currents. We suggest that a drug that is more selective for voltage-activated potassium currents, without effects on other channels like MIF, may be exploited pharmacologically as a novel anthelmintic or as an agent to potentiate the action of levamisole. In a larval migration assay we demonstrated that 4-aminopyridine (4-AP: a potassium channel blocker) potentiated the effects of levamisole but MFI did not. PMID:18206155

  15. Cholinergic stimulation of pancreatic amylase release and muscarinic receptors: effect of ionophore A23187

    SciTech Connect

    Larose, L.; Morisset, J.

    1985-07-22

    Dispersed rat pancreatic acini were incubated in 0.5 mM calcium medium with increasing concentrations of carbamylcholine, with or without the ionophore A23187 (10/sup -6/M). Addition of the ionophore reduced maximal amylase release, increased the maximal effective concentration of carbamylcholine and dramatically impaired the agonist's capacity to induce enzyme secretion at low concentration. The ionophore also abolished the inhibition of secretion observed at high carbamylcholine concentrations. These effects of the ionophore on the cholinergic secretory response cannot be explained by interaction at the muscarinic receptor since neither the Bmax, the affinity of the receptor for the (/sup 3/H)QNB nor the binding of carbamylcholine were affected by the ionophore. It is suggested that for the conditions studied, the ionophore can interact with the secretory process at one or several points ulterior to the initial recognition site of carbamylcholine on its receptor. 30 references, 3 figures.

  16. Effects of selective activation of M1 and M4 muscarinic receptors on object recognition memory performance in rats.

    PubMed

    Galloway, Claire R; Lebois, Evan P; Shagarabi, Shezza L; Hernandez, Norma A; Manns, Joseph R

    2014-01-01

    Acetylcholine signaling through muscarinic receptors has been shown to benefit memory performance in some conditions, but pan-muscarinic activation also frequently leads to peripheral side effects. Drug therapies that selectively target M1 or M4 muscarinic receptors could potentially improve memory while minimizing side effects mediated by the other muscarinic receptor subtypes. The ability of three recently developed drugs that selectively activate M1 or M4 receptors to improve recognition memory was tested by giving Long-Evans rats subcutaneous injections of three different doses of the M1 agonist VU0364572, the M1 positive allosteric modulator BQCA or the M4 positive allosteric modulator VU0152100 before performing an object recognition memory task. VU0364572 at 0.1 mg/kg, BQCA at 1.0 mg/kg and VU0152100 at 3.0 and 30.0 mg/kg improved the memory performance of rats that performed poorly at baseline, yet the improvements in memory performance were the most statistically robust for VU0152100 at 3.0 mg/kg. The results suggested that selective M1 and M4 receptor activation each improved memory but that the likelihood of obtaining behavioral efficacy at a given dose might vary between subjects even in healthy groups depending on baseline performance. These results also highlighted the potential of drug therapies that selectively target M1 or M4 receptors to improve memory performance in individuals with impaired memory.

  17. Striatal Input- and Rate-Dependent Effects of Muscarinic Receptors on Pallidal Firing

    PubMed Central

    Querejeta, Enrique; Alatorre, Alberto; Ríos, Alain; Barrientos, Rafael; Oviedo-Chávez, Aldo; Bobadilla-Lugo, Rosa Amalia; Delgado, Alfonso

    2012-01-01

    The globus pallidus (GP) plays a key role in the overall basal ganglia (BG) activity. Despite evidence of cholinergic inputs to GP, their role in the spiking activity of GP neurons has not received attention. We examine the effect of local activation and blockade of muscarinic receptors (MRs) in the spontaneous firing of GP neurons both in normal and ipsilateral striatum-lesioned rats. We found that activation of MRs produces heterogeneous responses in both normal and ipsilateral striatum-lesioned rats: in normal rats the response evoked by MRs depends on the predrug basal firing rate; the inhibition evoked by MRs is higher in normal rats than in striatum-lesioned rats; the number of neurons that undergo inhibition is lower in striatum-lesioned rats than in normal rats. Our data suggest that modulation of MRs in the GP depends on the firing rate before their activation and on the integrity of the striato-pallidal pathway. PMID:22654627

  18. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    SciTech Connect

    Lee, Haesung; Yee, S.; Geddes, J.; Choi, Byung, H. Univ. of California, Irvine )

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({sup 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.

  19. Alterations of muscarinic receptor subtypes in pathways relating to memory: Effects of lesions and transplants

    SciTech Connect

    Dawson, V.L.

    1989-01-01

    Muscarinic cholinergic receptors have been classified pharmacologically into two distinct populations designated muscarinic type-one (M-1) and mscarinic type-two (M-2). The semiquantitative technique of receptor autoradiography was used to examine the anatomical and cellular distribution, and densities of M-1 and M-2 receptors in the rate brain. Muscarinic receptors were labeled with the classical antagonist ({sup 3}H)quinuclidinyl benzilate (QNB). Differentiation of the muscarinic subtypes was accomplished by competition studies of ({sup 3}H)QNB against the relatively selective M-1 antagonist pirenzepine (PZ), and the relatively selective M-2 antagonist, AFDX-116. In addition, M-1 and M-2 receptors were directly labeled with ({sup 3}H)PZ and ({sup 3}H)AFDX-116, respectively. Cholinergic pathways from the large cholinergic neurons in the nucleus basalis magnocellularis (NBM) to the cortex and from the medial septum (MS) to the hippocampus were examined by lesioning with the selective cholinergic neurotoxin, AF64A. Bilateral cerebral cortical infarction was performed in order to analyze potential changes in muscarinic receptor populations in subcortical structures that are sensitive to cortical infarction. Finally, the response of muscarinic receptors to fetal septodiagonal band transplants in the deafferentated hippocampus was examined.

  20. Effects of the muscarinic antagonists pirenzepine and gallamine on spontaneous and evoked responses of rat cerebral cortical neurones.

    PubMed Central

    Swanson, T. H.; Phillis, J. W.

    1988-01-01

    1. The muscarinic receptor antagonists gallamine and pirenzepine were iontophoretically applied to rat cerebral cortical cholinoceptive neurones, including corticospinal neurones, to assess their effects on spontaneous firing, and firing induced by: stimulation of the nucleus basalis magnocellularis (NBM); contralateral hindpaw stimulation; application of acetylcholine (ACh); and application of glutamate. 2. Both compounds potently inhibited firing induced by ACh iontophoresis, whilst neither compound consistently altered firing induced by application of glutamate. 3. Gallamine was very effective and pirenzepine less effective, at inhibiting both spontaneous firing and the delayed firing induced by NBM stimulation. The short-latency excitations elicited by NBM stimulation were enhanced by these muscarinic antagonists. 4. Gallamine and pirenzepine enhanced cortical cholinoceptive cell firing induced by contralateral hindpaw stimulation. 5. It is concluded that gallamine depresses spontaneous activity more than pirenzepine, and that both compounds can affect the cortical cell firing evoked by stimulation of the NBM and of thalamo-cortical afferent fibres. PMID:3401638

  1. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice.

    PubMed

    Siegel, Jessica A; Craytor, Michael J; Raber, Jacob

    2010-10-01

    Exposure to methamphetamine during brain development impairs cognition in humans and rodents. In mice, these impairments are more severe in females than males. Genetic factors, such as apolipoprotein E genotype, may modulate the cognitive effects of methamphetamine. Methamphetamine-induced alterations in the brain acetylcholine system may contribute to the cognitive effects of methamphetamine and may also be modulated by apolipoprotein E isoform. We assessed the long-term effects of methamphetamine exposure during brain development on cognitive function and muscarinic acetylcholine receptors in mice, and whether apolipoprotein E isoform modulates these effects. Mice expressing human apolipoprotein E3 or E4 were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal days 11-20 and behaviorally tested in adulthood. Muscarinic acetylcholine receptor binding was measured in the hippocampus and cortex. Methamphetamine exposure impaired novel location recognition in female, but not male, mice. Methamphetamine-exposed male and female mice showed impaired novel object recognition and increased number of muscarinic acetylcholine receptors in the hippocampus. The cognitive and cholinergic effects of methamphetamine were similar in apolipoprotein E3 and E4 mice. Thus, the cholinergic system, but not apolipoprotein E isoform, might play an important role in the long-term methamphetamine-induced cognitive deficits in adulthood.

  2. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice

    PubMed Central

    Siegel, Jessica A.; Craytor, Michael J.; Raber, Jacob

    2010-01-01

    Exposure to methamphetamine during brain development impairs cognition in humans and rodents. In mice, these impairments are greater in females than males. Genetic factors, such as apolipoprotein E genotype, may modulate the cognitive effects of methamphetamine. Methamphetamine-induced alterations in the brain acetylcholine system may contribute to the cognitive effects of methamphetamine and may also be modulated by apolipoprotein E isoform. We assessed the long-term effects of methamphetamine exposure during brain development on cognitive function and muscarinic acetylcholine receptors in mice, and whether apolipoprotein E isoform modulates these effects. Mice expressing human apolipoprotein E3 or E4 were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal day 11-20 and behaviorally tested in adulthood. Muscarinic acetylcholine receptor binding was measured in the hippocampus and cortex. Methamphetamine exposure impaired novel location recognition in female, but not male, mice. Methamphetamine-exposed male and female mice showed impaired novel object recognition and increased number of muscarinic acetylcholine receptors in the hippocampus. The cognitive and cholinergic effects of methamphetamine were similar in apolipoprotein E3 and E4 mice. Thus, the cholinergic system, but not apolipoprotein E isoform, might play an important role in the long-term methamphetamine-induced cognitive deficits in adulthood. PMID:20729719

  3. Endosulfan and cholinergic (muscarinic) transmission: effect on electroencephalograms and (/sup 3/H)quinuclidinyl benzilate in pigeon brain

    SciTech Connect

    Anand, M.; Agrawal, A.K.; Gopal, K.; Sur, R.N.; Seth, P.K.

    1986-08-01

    Single exposure of endosulfan (5 mg/kg) to pigeons (Columbia livia) caused neuronal hyperexcitability as evidence by spike discharges of 200-500 ..mu..V in the electroencephalograms (EEG) from the telencephalon and hyperstriatum, but there was not effect on the ectostriatal area. Cholinergic (muscarinic) receptor binding study using (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) as a specific ligand indicated that a single exposure to 5 mg/kg of endosulfan caused a significant increase in (/sup 3/H)QNB binding to the striatal membrane. Behavior study further indicated that a single dose of 200 ..mu..g/kg of oxotremorine produced a significant induction in the tremor in endosulfan-pretreated pigeons. The results of this behavioral and biochemical study indicate the involvement of a cholinergic (muscarinic) transmitter system in endosulfan-induced neurotoxicity.

  4. Human electrophysiological correlates of learned irrelevance: effects of the muscarinic M1 antagonist biperiden.

    PubMed

    Klinkenberg, Inge; Blokland, Arjan; Riedel, Wim; Sambeth, Anke

    2012-11-01

    Learned irrelevance (LIrr) refers to a reduction in associative learning after pre-exposure of the conditioned and unconditioned stimulus in a non-contingent fashion. This paradigm might serve as a translational model for (pre)attentive information processing deficits in schizophrenia. This is the first study to investigate the event-related potentials (ERPs) of a within-subject LIrr paradigm in humans. Furthermore, the effects of the muscarinic M1 antagonist biperiden on LIrr were assessed. As expected, LIrr was found to be intact in young healthy volunteers after placebo. Furthermore, in the placebo condition P3b latency was decreased for target stimuli, which were pre-cued. This suggests that the predictability of the occurrence of these stimuli is mainly reflected by this ERP component. Biperiden had no effect on the behavioural LIrr measures, although prolonged reaction times were evident. Biperiden increased the N1 amplitude of the pre-exposed predictor letters, suggesting an effect of this drug on early perceptual processing. In conclusion, the within-subject paradigm used in the current study in combination with electroencephalography can reveal brain mechanisms involved in LIrr. M1 antagonism did not affect LIrr performance but seemed to influence early information processing.

  5. CDP-choline prevents cardiac arrhythmias and lethality induced by short-term myocardial ischemia-reperfusion injury in the rat: involvement of central muscarinic cholinergic mechanisms.

    PubMed

    Yilmaz, M Sertac; Coskun, Cenk; Yalcin, Murat; Savci, Vahide

    2008-09-01

    induced by CDP-choline. Neither of these pretreatments except mecamylamine affected the pressor effect of CDP-choline. Intracerebroventricular mecamylamine attenuated the increase in blood pressure induced by CDP-choline. In conclusion, intravenously injected CDP-choline prevents cardiac arrhythmias and death induced by short-term myocardial ischemia-reperfusion injury. Activation of central muscarinic receptors and vagal pathways mediates the protective effect of CDP-choline. The protective effect of CDP-choline is not related to its pressor effect.

  6. Differential effects of M1 muscarinic receptor blockade and nicotinic receptor blockade in the dorsomedial striatum on response reversal learning

    PubMed Central

    Tzavos, Arianna; Jih, Jane; Ragozzino, Michael E.

    2011-01-01

    The present studies determined whether blockade of M1-like muscarinic or nicotinic cholinergic receptors in the dorsomedial striatum affects acquisition or reversal learning of a response discrimination. Testing occurred in a modified cross-maze across two consecutive sessions. In the acquisition phase, a rat learned to turn to the left or to the right. In the reversal learning phase, a rat learned to turn in the opposite direction as required during acquisition. Experiment 1 investigated the effects of the M1-like muscarinic receptor antagonist, pirenzepine infused into the dorsomedial striatum on acquisition and reversal learning. Experiment 2 examined the effects of the nicotinic cholinergic antagonist, mecamylamine injected into the dorsomedial striatum on acquisition and reversal learning. Bilateral injections of pirenzepine at 10 µg, but not 1 µg, selectively impaired reversal learning. Analysis of the errors indicated that pirenzepine treatment did not impair the initial shift, but increased reversions back to the original response choice following the initial shift. Bilateral injections of mecamylamine, 6 or 18 µg, did not affect acquisition or reversal learning. The results suggest that activation of M1 muscarinic cholinergic receptors, but not nicotinic cholinergic receptors, in the dorsomedial striatum is important for facilitating the flexible shifting of response patterns. PMID:15302131

  7. Identification of M(1) muscarinic receptor subtype in rat stomach using a tissue segment binding method, and the effects of immobilization stress on the muscarinic receptors.

    PubMed

    Anisuzzaman, Abu Syed Md; Morishima, Shigeru; Suzuki, Fumiko; Tanaka, Takashi; Muramatsu, Ikunobu

    2008-12-03

    Distinct muscarinic acetylcholine receptor subtypes widely distribute in stomach tissues and are involved in many physiological functions. Although mRNA of M(1) subtype was found in gastric mucosa, the M(1) subtype has not been detected by conventional membrane binding assays. In the present study, muscarinic receptor subtypes in the rat stomach were reevaluated by using the tissue segment binding technique recently developed to recognize the inherent/native profiles of receptors without receptor environment perturbation. [(3)H]-N-methylscopolamine (NMS) bound to muscarinic receptors in the intact segments of rat gastric mucosa and muscle layers. The muscarinic receptors in the mucosal segments were composed of M(1), M(2) and M(3) subtypes, among which the M(1) subtype selectively showed high affinity for pirenzepine. However, in the membrane preparations, binding sites with high affinity for pirenzepine could not be detected. In the muscle layer, M(2) and M(3) subtypes, but not M(1), were identified in tissue segment and conventional membrane binding assays. Western blotting analysis recognized the M(1) subtype in the membrane preparations of mucosal but not muscle layers. Chronic immobilization stress increased the M(3) subtype in mucosal and muscle layers and decreased the M(2) subtype in the muscle layer, whereas M(1) and M(2) subtypes in mucosal layer did not change after the stress. The current study shows that M(1) subtype occurs as a pirenzepine-high affinity entity in intact segments of rat gastric mucosa, but that it loses the affinity for pirenzepine upon homogenization. Careful identification of native in vivo muscarinic receptors may further elucidate their functions in stomach.

  8. Effect of propylbenzilylcholine mustard on contraction and radioligand binding parameters of muscarinic receptors in guinea pig ileum

    SciTech Connect

    Rodrigues de Miranda, J.; Salden, H.J.M.; van Ginneken C.A.M.

    1987-10-26

    The receptor occupancy-biological effect relationship for muscarinic receptors in guinea pig ileal smooth muscle has been studied by comparison of radioligand binding and contractile response. Muscarinic receptors in homogenates of ileal smooth muscle were labeled with (/sub 3/H)-1-Quinuclidinyl benzilate. Treatment with propylbenzilylcholine mustard (PrBCM), to inactivate irreversibly muscarinic receptors, caused a large dose dependent rightward shift of the dose-response curve to three agonistic furtrethonium derivatives with a concomitant decrease in maximal response. Using those data, the fraction of receptors remaining unoccupied (q-values) and true affinity constants (-log K/sub A/-values) were calculated. Exposure to 20 or 60 nM PrBCM for 15 minutes resulted in a 39% and a 61% reduction in specific (/sup 3/H)-1-Quinuclidinyl benzilate binding sites respectively to be compared with a 62% and a 85% decrease expected from calculated q-values. K/sub A/-values for the methyl and ethyl derivative agreed well with the dissociation constants for the high affinity agonist sites determined from displacement of (/sup 3/H-)-1-Quinuclidinyl benzilate. The K/sub A/-value for the propylfurtrethonium corresponds to the low affinity agonist dissociation constant. The fraction of receptors in the high affinity agonist state differs considerably for the three furtrethonium derivatives investigated. Neither the fraction of receptors in the high affinity agonist state, nor the ratio of dissociation constants for these states is affected by the alkylation of 85% of the functional muscarinic receptors. The inactivation of components of the effector system by PrBCM seems unlikely. 22 references, 3 figures, 3 tables.

  9. Model of rapid gastrointestinal transit in dogs: effects of muscarinic antagonists and a nitric oxide synthase inhibitor.

    PubMed

    Chiba, T; Bharucha, A E; Thomforde, G M; Kost, L J; Phillips, S F

    2002-10-01

    Our aims were to establish a canine model of rapid gastrointestinal transit, and to test the effects of muscarinic receptor antagonists (atropine, pirenzepine, AF-DX116, and darifenacin), and an NOS inhibitor, L-nitro-N-arginine (L-NNA) in this model. For gastric emptying and small bowel transit, 99mTc-labelled DTPA were added to a meal of skimmed milk (236 mL) that contained 2.4 g of magnesium hydroxide. Regional colonic transit was measured by111In-labelled beads placed in a capsule that released isotope in the proximal colon. Scintiscans were taken at regular intervals and indices of transit were calculated. Drugs were administrated intravenously. Gastric emptying, small bowel and colonic transit were rapid. Atropine and darifenacin (a selective M3 antagonist) delayed gastric emptying and colonic transit, the selective M1 and M2 muscarinic antagonists did not. The muscarinic blockers did not slow small bowel transit. L-NNA delayed small bowel and colonic transit but did not slow gastric emptying. A model suitable for the preclinical study of antidiarrhoeals was established. M3 receptors are important in the control of gastric emptying and colonic transit, and NOS inhibition slowed small bowel and colonic transit.

  10. Evaluation of levetiracetam effects on pilocarpine-induced seizures: cholinergic muscarinic system involvement.

    PubMed

    Oliveira, A A; Nogueira, C R A; Nascimento, V S; Aguiar, L M V; Freitas, R M; Sousa, F C F; Viana, G S B; Fonteles, M M F

    2005-09-16

    Levetiracetam (LEV) is a new antiepileptic drug effective as adjunctive therapy for partial seizures. It displays a unique pharmacological profile against experimental models of seizures, including pilocarpine-induced seizures in rodents. Aiming to clarify if anticonvulsant activity of LEV occurs due to cholinergic alterations, adult male mice received LEV injections before cholinergic agonists' administration. Pretreatment with LEV (30-200 mg/kg, i.p.) increased the latencies of seizures, but decreased status epilepticus and death on the seizure model induced by pilocarpine, 400 mg/kg, s.c. (P400). LEV (LEV200, 200 mg/kg, i.p.) pretreatment also reduced the intensity of tremors induced by oxotremorine (0.5 mg/kg, i.p). [3H]-N-methylscopolamine-binding assays in mice hippocampus showed that LEV200 pretreatment reverts the downregulation on muscarinic acetylcholine receptors (mAChR), induced by P400 administration, bringing back these density values to control ones (0.9% NaCl, i.p.). However, subtype-specific-binding assays revealed that P400- and LEV-alone treatments result in M1 and M2 subtypes decrease, respectively. The agonist-like behavior of LEV on the inhibitory M2 mAChR subtype, observed in this work, could contribute to explain the reduction on oxotremorine-induced tremors and the delay on pilocarpine-induced seizures, by an increase in the attenuation of neuronal activity mediated by the M1 receptors.

  11. Differential effects of acidosis, high potassium concentrations, and metabolic inhibition on noradrenaline release and its presynaptic muscarinic regulation.

    PubMed

    Haunstetter, Armin; Schulze Icking, Babette; Backs, Johannes; Krüger, Carsten; Haass, Markus

    2002-03-01

    It was the aim of the present study to characterize the effect of single components of ischaemia, such as inhibition of aerobic and anaerobic energy production by combined anoxic and glucose-free perfusion (metabolic inhibition), high extracellular potassium concentrations (hyperkalaemia), and acidosis, on (1). the stimulated release of noradrenaline from the in situ perfused guinea-pig heart and (2). its presynaptic modulation by the muscarinic agonist carbachol. The release of endogenous noradrenaline from efferent cardiac sympathetic nerve endings was induced by electrical stimulation of the left stellate ganglion (1 min, 5 V, 12 Hz) and quantified in the coronary venous effluent by high-performance liquid chromatography. Under control conditions, two consecutive electrical stimulations (S1, S2) elicited a similar noradrenaline overflow (S2/S1: 0.98 plus minus 0.05). After 10 min of global myocardial ischaemia overflow of endogenous noradrenaline was significantly reduced (S2/S1: 0.18 plus minus 0.03; P< 0.05). When studied separately, metabolic inhibition, hyperkalaemia (16 mM), and acidosis (pH 6.0) each markedly attenuated stimulated noradrenaline overflow (S2/S1: 0.65 plus minus 0.05, 0.43 plus minus 0.14, and 0.37 plus minus 0.09, respectively; P< 0.05). The muscarinic agonist carbachol (10 microM) inhibited stimulated noradrenaline release under normoxic conditions (S2/S1: 0.41 plus minus 0.07; P< 0.05). However, after 10 min of global myocardial ischaemia the inhibitory effect of carbachol on noradrenaline overflow was completely lost. Single components of ischaemia had a differential effect on presynaptic muscarinic modulation. Whereas hyperkalaemia (8-16 mM) did not affect muscarinic inhibition of noradrenaline release, carbachol lost its inhibitory effect during acidosis and metabolic inhibition. In conclusion, hyperkalaemia, metabolic inhibition, and severe acidosis each contribute to reduced overflow of noradrenaline after 10 min of myocardial

  12. Muscarinic acetylcholine receptor-mediated effects in slices from human epileptogenic cortex.

    PubMed

    Gigout, S; Wierschke, S; Lehmann, T-N; Horn, P; Dehnicke, C; Deisz, R A

    2012-10-25

    Acetylcholine has been implicated in higher cortical functions such as learning, memory and cognition, yet the cellular effects of muscarinic acetylcholine receptor (mAChR) activation are poorly understood in the human cortex. Here we investigated the effect of the mAChR agonist carbachol (CCh) and various mAChR antagonists in human cortical slices (from tissue removed during neurosurgical treatment of epilepsy) by intracellular and extracellular recordings. CCh increased neuronal firing, which was antagonised by atropine (non-selective mAChR antagonist) and pirenzepine (M(1)/M(4) mAChRs antagonist) when applied before or after CCh application. AF-DX 116 (M(2)/M(4) mAChRs antagonist) had no effect on CCh-induced increase of firing. CCh also reduced evoked excitatory postsynaptic potentials (EPSP), and the CCh-induced depression of EPSP was fully reversed by atropine. Pirenzepine reversed the depression of CCh on EPSP, but failed to prevent the depression when applied before CCh. AF-DX 116 prevented the CCh-induced depression of evoked EPSP when applied before CCh. CCh also depressed GABAergic transmission and this effect was antagonised by AF-DX 116. Xanomeline (M(1)/M(4) mAChR agonist) increased neuronal firing and decreased EPSP, but had no effect on GABAergic transmission. Reduction (with linopirdine) and enhancement (with retigabine) of the M-current (mediated by K(V)7 channels), increased and decreased neuronal firing, respectively, but had marginal effects on the evoked EPSP. Our results indicate that three pharmacologically distinct mAChRs modulate neuronal firing, glutamatergic and GABAergic transmissions in the human epileptogenic neocortex. The data are discussed towards possible implications of altered mAChR signalling in hyperexcitability and cognitive functions in the human neocortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. The muscarinic system, cognition and schizophrenia.

    PubMed

    Carruthers, Sean P; Gurvich, Caroline T; Rossell, Susan L

    2015-08-01

    An increasing body of evidence has implicated the central muscarinic system as contributing to a number of symptoms of schizophrenia and serving as a potential target for pharmaceutical interventions. A theoretical review is presented that focuses on the central muscarinic system's contribution to the cognitive symptoms of schizophrenia. The aim is to bridge the void between pertinent neuropsychological and neurobiological research to provide an explanatory account of the role that the central muscarinic system plays in the symptoms of schizophrenia. First, there will be a brief overview of the relevant neuropsychological schizophrenia literature, followed by a concise introduction to the central muscarinic system. Subsequently, we will draw from animal, neuropsychological and pharmacological literature, and discuss the findings in relation to cognition, schizophrenia and the muscarinic system. Whilst unifying the multiple domains of research into a concise review will act as a useful line of enquiry into the central muscarinic systems contribution to the symptoms of schizophrenia, it will be made apparent that more research is needed in this field.

  14. The effect of the muscarinic M1 receptor antagonist biperiden on cognition in medication free subjects with psychosis.

    PubMed

    Vingerhoets, Claudia; Bakker, Geor; van Dijk, Jelske; Bloemen, Oswald J N; Wang, Ya; Chan, Raymond C K; Booij, Jan; van Amelsvoort, Therese A M J

    2017-09-01

    The acetylcholine muscarinic M1 receptor has been implicated in both psychosis and cognition. Post-mortem research has shown reduced muscarinic M1 receptor density in 25% of chronic patients with schizophrenia. It is unknown whether reduced M1 receptor density is related to cognitive symptoms of psychosis. We investigated the role of the M1 receptor in separate cognitive domains in subjects with a psychotic disorder using a muscarinic M1 antagonist as an acute pharmacological challenge. 33 young subjects with a psychotic disorder and 30 gender, age and IQ matched healthy controls were enrolled. All participants completed a comprehensive cognitive test battery twice: once after placebo and once after oral administration of 4mg. biperiden (M1 antagonist). The order of drug administration was counterbalanced. Biperiden significantly negatively influenced both verbal (p< 0.001 and p=0.032) and visual learning and memory (p=0.028) in both groups. A medication x group interaction effect was found for reasoning and problem solving (p=0.005). No main or interaction effects were found for other cognitive domains. These results provide further in-vivo evidence that the M1 receptor is involved in cognitive functioning, particularly verbal and visual memory processes. Lack of differential effects of biperiden between psychotic subjects and healthy controls may suggest that decreased M1 receptor density is only present in chronic, older schizophrenia patients. However, it remains possible that differential effects of biperiden would be present in more severe cognitive impaired subjects with psychosis after several doses of biperiden instead of a single administration. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  15. The effect of hydro-ethanolic extract of Achillea millefolium on muscarinic receptors of guinea pig tracheal smooth muscle

    PubMed Central

    Feizpour, Azadeh; Boskabady, Mohammad Hossein; Byrami, Goltaj; Golamnezhad, Zahra; Shafei, Mohammad Naser

    2013-01-01

    Objective: To investigate one possible mechanism for the observed relaxant effect of A. millefolium (Achillea millefolium), in the present study the inhibitory effect of the extract of this plant on muscarinic receptors was examined. Materials and Methods: The effects of three concentrations of aqueous-ethanolic extract, 10 nM atropine, and saline on muscarinic receptors were tested in three conditions: In non incubated tracheal smooth muscle (group 1), tracheal chain incubated with propranolol and chlorpheniramine (group 2), and the one incubated with propranolol (group 3). Results: The EC50 obtained in the presence of all three concentrations of the extract were significantly higher compared to saline in groups 2 and 3 (P < 0.001and P < 0.01 in group 2 and 3 respectively). The EC50 obtained in the presence of all concentrations of the extract in group 2 were significantly improved compared to groups 1 and 3 (P < 0.05 to P < 0.001). The maximum responses to methacholine in presence of only the higher concentration of the extract (0.8mg/ml) was significantly lower than that of saline in groups 1 (P < 0.05). There was neither significant difference between slopes of methacholine-response curves obtained in the presence of different concentrations of the extract and that of saline nor between the three groups. The values of (CR-1), obtained in the presence of all concentrations of the extract, were significantly lower compared to atropine in the first group but were not significantly different in other groups. The values of (CR-1) obtained in the presence of all concentrations of the extract were significantly improved in groups 2, compared to groups 1 and 3 (P < 0.05 to P < 0.001). Conclusion: These results showed an inhibitory effect for the extract of A. millefolium on muscarinic receptors of tracheal smooth muscle. A histamine (H1) receptor blockade was also suggested for the extract. PMID:23543621

  16. The effect of hydro-ethanolic extract of Achillea millefolium on muscarinic receptors of guinea pig tracheal smooth muscle.

    PubMed

    Feizpour, Azadeh; Boskabady, Mohammad Hossein; Byrami, Goltaj; Golamnezhad, Zahra; Shafei, Mohammad Naser

    2013-01-01

    To investigate one possible mechanism for the observed relaxant effect of A. millefolium (Achillea millefolium), in the present study the inhibitory effect of the extract of this plant on muscarinic receptors was examined. The effects of three concentrations of aqueous-ethanolic extract, 10 nM atropine, and saline on muscarinic receptors were tested in three conditions: In non incubated tracheal smooth muscle (group 1), tracheal chain incubated with propranolol and chlorpheniramine (group 2), and the one incubated with propranolol (group 3). The EC₅₀ obtained in the presence of all three concentrations of the extract were significantly higher compared to saline in groups 2 and 3 (P < 0.001 and P < 0.01 in group 2 and 3 respectively). The EC₅₀ obtained in the presence of all concentrations of the extract in group 2 were significantly improved compared to groups 1 and 3 (P < 0.05 to P < 0.001). The maximum responses to methacholine in presence of only the higher concentration of the extract (0.8 mg/ml) was significantly lower than that of saline in groups 1 (P < 0.05). There was neither significant difference between slopes of methacholine-response curves obtained in the presence of different concentrations of the extract and that of saline nor between the three groups. The values of (CR-1), obtained in the presence of all concentrations of the extract, were significantly lower compared to atropine in the first group but were not significantly different in other groups. The values of (CR-1) obtained in the presence of all concentrations of the extract were significantly improved in groups 2, compared to groups 1 and 3 (P < 0.05 to P < 0.001). These results showed an inhibitory effect for the extract of A. millefolium on muscarinic receptors of tracheal smooth muscle. A histamine (H₁) receptor blockade was also suggested for the extract.

  17. Activations of muscarinic M1 receptors in the anterior cingulate cortex contribute to the antinociceptive effect via GABAergic transmission

    PubMed Central

    Matsuzaki, Yu; Honda, Kenji; Eto, Fumihiro; Furukawa, Tomonori; Migita, Keisuke; Irie, Keiichi; Mishima, Kenichi; Ueno, Shinya

    2017-01-01

    Background Cholinergic systems regulate the synaptic transmission resulting in the contribution of the nociceptive behaviors. Anterior cingulate cortex is a key cortical area to play roles in nociception and chronic pain. However, the effect of the activation of cholinergic system for nociception is still unknown in the cortical area. Here, we tested whether the activation of cholinergic receptors can regulate nociceptive behaviors in adult rat anterior cingulate cortex by integrative methods including behavior, immunohistochemical, and electrophysiological methods. Results We found that muscarinic M1 receptors were clearly expressed in the anterior cingulate cortex. Using behavioral tests, we identified that microinjection of a selective muscarinic M1 receptors agonist McN-A-343 into the anterior cingulate cortex dose dependently increased the mechanical threshold. In contrast, the local injection of McN-A-343 into the anterior cingulate cortex showed normal motor function. The microinjection of a selective M1 receptors antagonist pirenzepine blocked the McN-A-343-induced antinociceptive effect. Pirenzepine alone into the anterior cingulate cortex decreased the mechanical thresholds. The local injection of the GABAA receptors antagonist bicuculline into the anterior cingulate cortex also inhibited the McN-A-343-induced antinociceptive effect and decreased the mechanical threshold. Finally, we further tested whether the activation of M1 receptors could regulate GABAergic transmission using whole-cell patch-clamp recordings. The activation of M1 receptors enhanced the frequency of spontaneous and miniature inhibitory postsynaptic currents as well as the amplitude of spontaneous inhibitory postsynaptic currents in the anterior cingulate cortex. Conclusions These results suggest that the activation of muscarinic M1 receptors in part increased the mechanical threshold by increasing GABAergic transmitter release and facilitating GABAergic transmission in the anterior

  18. Nicotine effects on muscarinic receptor-mediated free Ca[Formula: see text] level changes in the facial nucleus following facial nerve injury.

    PubMed

    Sun, Dawei; Zhou, Rui; Dong, Anbing; Sun, Wenhai; Zhang, Hongmei; Tang, Limin

    2016-06-01

    It was suggested that muscarinic, and nicotinic receptors increase free Ca[Formula: see text] levels in the facial nerve nucleus via various channels following facial nerve injury. However, intracellular Ca[Formula: see text] overload can trigger either necrotic or apoptotic cell death. It is assumed that, following facial nerve injury, the interactions of nicotinic and muscarinic acetylcholine receptors in facial nerve nucleus may negatively regulate free Ca[Formula: see text] concentrations in the facial nerve nucleus, which provide important information for the repair and regeneration of the facial nerve. The present study investigated the regulatory effects of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus in a rat model of facial nerve injury at 7, 30, and 90 days following facial nerve injury using laser confocal microscopy. The dose-dependent regulation of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus may decrease the range of free Ca[Formula: see text] increases following facial nerve injury, which is important for nerve cell regeneration. It is concluded that the negative effects of nicotine on muscarinic receptors are related to the [Formula: see text] subtype of nicotinic receptors.

  19. Anticholinergics for overactive bladder therapy: central nervous system effects.

    PubMed

    Chancellor, Michael; Boone, Timothy

    2012-02-01

    The mainstay of pharmacological treatment of overactive bladder (OAB) is anticholinergic therapy using muscarinic receptor antagonists (tertiary or quaternary amines). Muscarinic receptors in the brain play an important role in cognitive function, and there is growing awareness that antimuscarinic OAB drugs may have adverse central nervous system (CNS) effects, ranging from headache to cognitive impairment and episodes of psychosis. This review discusses the physicochemical and pharmacokinetic properties of OAB antimuscarinics that affect their propensity to cause adverse CNS effects, as observed in phase III clinical trials and in specific investigations on cognitive function and sleep architecture. PubMed/MEDLINE was searched for "OAB" plus "muscarinic antagonists" or "anticholinergic drug." Additional relevant literature was identified by examining the reference lists of papers identified through the search. Preclinical and clinical trials in adults were assessed, focusing on the OAB antimuscarinics approved in the United States. The blood-brain barrier (BBB) plays a key role in protecting the CNS, but it is penetrable. The lipophilic tertiary amines, particularly oxybutynin, are more likely to cross the BBB than the hydrophilic quaternary amine trospium chloride, for which there are very few reports of adverse CNS effects. In fact, in 2008 the US product labels for oral oxybutynin were modified to include the potential for anticholinergic CNS events and a warning to monitor patients for adverse CNS effects. Even modest cognitive impairment in the elderly may negatively affect independence; therefore, selection of an antimuscarinic OAB drug with reduced potential for CNS effects is advisable. © 2011 Blackwell Publishing Ltd.

  20. Muscarinic acetylcholine receptor-interacting proteins (mAChRIPs): targeting the receptorsome.

    PubMed

    Borroto-Escuela, D O; Agnati, Luigi F; Fuxe, Kjell; Ciruela, F

    2012-01-01

    Muscarinic acetylcholine receptors comprise a large family of G protein-coupled receptors that are involved in the regulation of many important functions of the central and peripheral nervous system. To achieve such a large range of physiological effects, these receptors interact with a large array of accessory proteins including scaffold molecules, ion channels and enzymes that operate as molecular transducers of muscarinic function in addition to the canonical heterotrimeric G proteins. Interestingly, as demonstrated for others G protein-coupled receptors, this type of receptor is also able to oligomerise, a fact that has been shown to play a critical role in their subcellular distribution, trafficking, and fine tuning of cholinergic signalling. On the other hand, the specificity of these receptor interactions may be largely determined by the occurrence of precise protein-interacting motifs, posttranslational modifications, and the differential tissue distribution and stoichiometry of the receptor-interacting proteins. Thus, the exhaustive cataloguing and documentation of muscarinic acetylcholine receptor-interacting proteins and the grasp of their specific function will explain key physiological differences in muscarinic-mediated cholinergic transmission. Overall, a better comprehension of the muscarinic receptor interactome will have a significant impact on the cholinergic pharmacology and thus provide previously unrealised opportunities to achieve greater specificity in muscarinic-related drug discovery and diagnostics.

  1. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model

    PubMed Central

    Kang, Ji Young; Lee, Sook Young; Rhee, Chin Kook; Kim, Seung Joon; Kwon, Soon Seog; Kim, Young Kyoon

    2013-01-01

    Background and objectives The influence of aging on the development of asthma has not been studied thoroughly. The aim of this study was to investigate age-related airway responses involving lung histology and expression of muscarinic receptors in a murine model of acute asthma. Methods Female BALB/c mice at the ages of 6 weeks and 6, 9, and 12 months were sensitized and challenged with ovalbumin (OVA) for 1 month (n = 8–12 per group). We analyzed inflammatory cells and T-helper (Th)2 cytokines in bronchoalveolar lavage (BAL) fluid and parameters of airway remodeling and expression of muscarinic receptors in lung tissue. Results Among the OVA groups, total cell and eosinophil numbers in BAL fluid were significantly higher in the older (6-, 9-, and 12-month-old) mice than in the young (6-week-old) mice. Interleukin (IL) 4 (IL-4) concentration increased, but IL-5 and IL-13 concentrations showed a decreased tendency, with age. IL-17 concentration tended to increase with age, which did not reach statistical significance. Periodic acid-Schiff (PAS) staining area, peribronchial collagen deposition, and area of α-smooth muscle staining were significantly higher in the 6-month older OVA group than in the young OVA group. The expression of the M3 and M2 muscarinic receptors tended to increase and decrease, respectively, with age. Conclusion The aged mice showed an active and unique pattern not only on airway inflammation, but also on airway remodeling and expression of the muscarinic receptors during the development of acute asthma compared with the young mice. These findings suggest that the aging process affects the pathogenesis of acute asthma and age-specific approach might be more appropriate for better asthma control in a clinical practice. PMID:24204129

  2. Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system.

    PubMed

    Corbel, Vincent; Stankiewicz, Maria; Bonnet, Julien; Grolleau, Françoise; Hougard, Jean Marc; Lapied, Bruno

    2006-07-01

    Although synergism between pesticides has been widely documented, the physiological mechanisms by which an insecticide synergizes another remains unclear. Toxicological and electrophysiological studies were carried out on two susceptible pest species (the mosquito Culex quinquefasciatus and the cockroach Periplaneta americana) to understand better the physiological process involved in pyrethroid and carbamate interactions. Larval bioassays were conducted with the susceptible reference strain SLAB of C. quinquefasciatus to assess the implication of multi-function oxidases and non-specific esterases in insecticide detoxification and synergism. Results showed that the general theory of synergism (competition between pesticides for a common detoxification enzyme) was unlikely to occur in the SLAB strain since the level of synergy recorded between permethrin and propoxur was unchanged in the presence of piperonyl butoxide and tribufos, two inhibitors of oxidases and esterases, respectively (synergism ratios were similar with and without synergists). We also showed that addition of a sub-lethal concentration of nicotine significantly increased the toxicity of permethrin and propoxur at the lower range of the dose-mortality regression lines, suggesting the manifestation of important physiological disruptions at synaptic level. The effects of both permethrin and propoxur were studied on the cercal-afferent giant-interneuron synapses in the terminal abdominal ganglion of the cockroach P. americana using the single-fibre oil-gap method. We demonstrated that permethrin and propoxur increased drastically the ACh concentration within the synaptic cleft, which thereby stimulated a negative feedback of ACh release. Atropine, a muscarinic receptor antagonist, reversed the effect of permethrin and propoxur mixtures. This demonstrates the implication of the presynaptic muscarinic receptors in the negative feedback regulation process and in synergism. Based on these findings, we

  3. Muscarinic effects of the Caribbean ciguatoxin C-CTX-1 on frog atrial heart muscle.

    PubMed

    Sauviat, Martin-Pierre; Marquais, Michel; Vernoux, Jean-Paul

    2002-08-01

    The effects of Caribbean ciguatoxin (C-CTX-1) isolated from horse-eye jack (Caranx latus) on the electrical and mechanical activities of frog auricle were studied. C-CTX-1 (1 pM-50 nM) dose-dependently shortened the duration of the plateau and the repolarizing phase of the action potential (AP). The AP shortening induced by C-CTX-1 (50 nM) was suppressed or prevented either by tetrodotoxin (TTX; 0.6 nM) or by atropine (0.1mM). C-CTX-1 (50 nM) prolonged the TTX (0.6 nM)-sensitive electrical response of the vagus nerve branches, which innervate the auricle. The C-CTX-1 (50 nM)-induced shortening of the plateau and of the repolarization phase were prevented or reversed by gallamine (20 microM) and pirenzepine (0.5 microM), respectively. C-CTX-1 (50 nM) decreased the amplitude of the peak contraction and shortened its duration. In the presence of gallamine (20 microM), C-CTX-1 decreased the amplitude of the peak contraction and shortened its duration in the presence of pirenzepine (0.5 microM). C-CTX-1 (50 nM) decreased the time constant of the relaxation phase of the peak contraction suggesting that it increased the Na(+)/Ca(2+) exchange activity. Acetylcholine (ACh; 1 pM) shortened APD, decreased the peak contraction and mimics the effects of C-CTX-1. In conclusion, the presented data show that C-CTX-1 released ACh from atrial cholinergic nerve terminals which activated M(1) and M(2) muscarinic receptors subtype (mAChR). Our findings suggest that M(1) and M(2) mAChR are present in frog atrial tissue and play a previously unrecognized role in the modulation of the AP duration and of the mechanical activity of cardiac tissue.

  4. Effects of a centipede venom fraction on insect nervous system, a native Xenopus oocyte receptor and on an expressed Drosophila muscarinic receptor.

    PubMed

    Stankiewicz, M; Hamon, A; Benkhalifa, R; Kadziela, W; Hue, B; Lucas, S; Mebs, D; Pelhate, M

    1999-10-01

    Centipede venoms are complex protein mixtures; very few is known about their pharmacological actions. Application of a Scolopendra sp. venom fraction (SC1) on the cockroach giant axon induced an increase in the leak current correlated with a decrease in the membrane resistance, suggesting the presence in SC1 of components opening non-specific pores in the axonal membrane. On a cockroach central cholinergic synapse, microinjection of SC1 induced a small transient depolarization of the postsynaptic membrane, followed by a slow stable depolarization and a drastic decrease in the evoked subthreshold excitatory postsynaptic potential amplitude. A pretreatment of the ganglion with atropine or scopolamine reduced the amplitude of the SC1-induced depolarizing wave, suggesting a possible cholinergic muscarinic target. On control Xenopus oocytes, SC1 induced an inward oscillatory Ca2(+)-dependent Cl- current mediated through the activation of native lysophosphatidic acid receptors (LPAr). Indeed, pretreatment of oocytes with 1 microM N-palmitoyl-tyrosine phosphoric acid, a selective competitive antagonist of LPAr, decreased responses to SC1 by 70%. Application of SC1 to oocytes expressing a cloned Drosophila muscarinic receptor (Dml) induced a biphasic response comprising: (1) a large fast Cl- current that was abolished by pretreatment with atropine and scopolamine and (2) a slow and small oscillating Cl- current corresponding to the response observed in control oocytes. These observations confirm the presence of muscarinic agonists in SCI and reveal their direct action on an insect muscarinic receptor subtype homologous to mammalian M1-M3 receptors.

  5. Effect of pirenzepine, a muscarinic M1 receptor antagonist, on amygdala kindling in rat.

    PubMed

    Eşkazan, E; Aker, R; Onat, F; Köseoğlu, S; Gören, M Z; Hasanoğlu, A

    1999-11-01

    Kindling, an animal model of complex partial seizures with secondary generalization, is performed by daily application of low-intensity electrical brain stimulation. The purpose of this study was to investigate the role of muscarinic M1 receptors on amygdala kindling in the rat. Bipolar nichrome stimulation and recording electrodes were stereotaxically implanted into the right and left basolateral amygdala. Extradural recording electrodes were also placed bilaterally in the skull over the cortex. Amygdala stimulation was applied twice daily at the current intensity of afterdischarge threshold. Seizure intensity was graded by using Racine's standard five-stage scale. In the first group of experiments, saline or pirenzepine (10, 25, 50 and 100 nmol), a muscarinic M1 receptor antagonist, was injected intracerebroventricularly 1 h before the electrical stimulation. In the second group of experiments, rats were kindled to full stage 5 seizures. After a recovery period, 50 nmol of pirenzepine was administered intracerebroventricularly to kindled animals. In the first group of experiments, none of the animals pretreated with the doses of 50 and 100 nmol of pirenzepine reached a stage 5 seizure. Pirenzepine significantly retarded kindling seizure development and increased the total number of stimulations required to reach the first stage 5 seizure. Afterdischarge duration was also reduced in the pirenzepine 10 nmol group as compared with that in the saline-pretreated group. In the second group, seizure stage and afterdischarge duration were not affected by pirenzepine in fully-kindled animals. The findings of this study suggest that muscarinic M1 receptors may have a critical role in the development of kindling epileptic activity, but not in already kindled seizures.

  6. Effects of absolute configuration of IQNP on muscarinic receptor subtype selectivity in vitro and in vivo

    SciTech Connect

    McPherson, D.W.; Lambert, C.R.; Knapp, F.F.

    1994-05-01

    IQNP, a high affinity muscarinic ligand with high cerebral uptake and long retention, contains two chiral centers in addition to vinyl iodide sterochemistry. The various diastereomers, in which the 3-quinuclidinyl moiety has the R configuration, have been prepared and evaluated in vitro and in vivo. These data show that muscarinic receptor subtype selectivity is dramatically affected by the configuration of the acetate center and vinyl iodide. In vitro studies show that E-(R,R)-IQNP is 100 times more selective for ml than m2 subtype as compared to E-(R,S), which was confirmed by in vivo results. In contrast, in vivo, Z-(R,R) has high uptake in m2 rich tissues (heart and cerebellum). In vitro studies are being performed on the Z isomers. Blocking studies with subtype-specific ligands confirm these data which illustrate the importance of molecular configuration on receptor subtype selectivity. These combined studies demonstrate that these isomers of IQNP are good candidates for future studies of receptor subtypes.

  7. Darifenacin: a novel M3 muscarinic selective receptor antagonist for the treatment of overactive bladder.

    PubMed

    Chapple, Christopher R

    2004-11-01

    Darifenacin is a novel M3 muscarinic selective receptor antagonist for once-daily treatment of overactive bladder (OAB), a highly prevalent, chronic and debilitating disease defined by urinary urgency with or without urge incontinence, usually with increased frequency of micturition and nocturia. In vitro, darifenacin is a potent and specific muscarinic receptor antagonist with muscarinic M3 receptors relative to other muscarinic receptor subtypes. This profile may, therefore, confer clinical efficacy in the treatment of OAB, with a lower propensity for adverse effects and safety issues related to blockade of other muscarinic receptor subtypes. Indeed, consistent with its low relative affinity for M1 and M2 receptors, no effects on cognitive function and heart-rate variability, respectively, have been observed with darifenacin. Subsequent large-scale clinical trials have confirmed that darifenacin (at doses of 7.5 and 15 mg/day) results in central nervous system and cardiac adverse events comparable to placebo, and provides early and meaningful improvement across a range of OAB symptoms including incontinence episodes, urgency and urinary frequency. On the basis of such findings, darifenacin would appear to meet the current need for an effective OAB pharmacotherapy that is efficacious, well-tolerated and, more importantly, minimises the risk of safety-related adverse effects.

  8. The muscarinic acetylcholine receptor agonist BuTAC mediates antipsychotic-like effects via the M4 subtype.

    PubMed

    Watt, Marla L; Rorick-Kehn, Linda; Shaw, David B; Knitowski, Karen M; Quets, Anne T; Chesterfield, Amy K; McKinzie, David L; Felder, Christian C

    2013-12-01

    The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist 'BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2(-/-), M4(-/-), and M2/M4 (M2/M4(-/-)) mice found that the effects of BuTAC were near completely lost in M2/M4(-/-) double-knockout mice and potency of BuTAC was right-shifted in M4(-/-) as compared with wild-type and M2(-/-) mice. The M2/M4(-/-) mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms associated with

  9. The Muscarinic Acetylcholine Receptor Agonist BuTAC Mediates Antipsychotic-Like Effects via the M4 Subtype

    PubMed Central

    Watt, Marla L; Rorick-Kehn, Linda; Shaw, David B; Knitowski, Karen M; Quets, Anne T; Chesterfield, Amy K; McKinzie, David L; Felder, Christian C

    2013-01-01

    The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist ‘BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2−/−, M4−/−, and M2/M4 (M2/M4−/−) mice found that the effects of BuTAC were near completely lost in M2/M4−/− double-knockout mice and potency of BuTAC was right-shifted in M4−/− as compared with wild-type and M2−/− mice. The M2/M4−/− mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms

  10. Comparison of the effect of anti-muscarinic agents on bladder activity, urinary ATP level, and autonomic nervous system in rats.

    PubMed

    Nishijima, Saori; Sugaya, Kimio; Kadekawa, Katsumi; Naka, Hidekatsu; Miyazato, Minoru

    2009-04-01

    We compared the effect of 4 anti-muscarinic agents on bladder activity, urinary ATP levels, and autonomic nervous system in rats. Rats were divided into the following 5 groups (control group, oxybutynin group, propiverine group, tolterodine group, imidafenacin group), and were administered daily the designated anti-muscarinic agent or distilled water into the stomach. After 2 weeks, we performed 1) continuous cystometry with physiological saline and 0.1% acetic acid solution, 2) measurement of urinary ATP level before and after bladder stimulation, and 3) measurement of the heart rate, blood pressure and plasma catecholamines. The maximum bladder contraction pressure increased and the interval between contractions became shorter during cystometry with acetic acid solution in the control group, but not in the 4 anti-muscarinic agent groups. The urinary ATP level increased after bladder stimulation in all groups, but the increase was smaller in the propiverine and imidafenacin groups. The plasma noradrenaline and dopamine levels of the propiverine group were higher. Taken together, all anti-muscarinic agents inhibited the bladder activity without changing the heart rate and blood pressure. Especially, the inhibitory effect of propiverine and imidafenacin on bladder activity may be partly due to blocking an increase of ATP release from the bladder urothelium.

  11. Use of intact rat brain cells as a model to study regulation of muscarinic acetylcholine receptors

    SciTech Connect

    Lee, J.H.; El-Fakahany, E.E.

    1985-08-12

    Intact rat brain cells were dissociated and used to study the regulation of muscarinic acetylcholine receptors upon exposure to muscarinic receptor agonists. Incubation of cells with carbamylcholine resulted in a time-dependent decrease in subsequent (/sup 3/H)N-methylscopolamine specific binding, an effect which reached a steady state after 3 hr at 37/sup 0/C. This effect of carbamylcholine was dependent on the concentration of the agonist in the incubation medium and was due to a reduction in the maximal binding capacity of the receptor with no decrease in the affinity of the remaining receptors. This preparation might be useful in future studies to elucidate the mechanisms underlying the regulation of muscarinic acetylcholine receptors in the central nervous system. 20 references, 3 tables.

  12. Effects of sex steroids on muscarinic sties in the rat brain

    SciTech Connect

    Al-Dahan, M.I.

    1986-03-01

    The level of binding sites for (/sup 3/H)scopolamine in the rat hypothalamus and amygdala (but not elsewhere in the brain) is modified by hormonal status. In females, there is an inverse relation between the level of sites and estrogen (E/sub 2/) and progesterone (P) concentration. Binding is high in metoestrous (Met) and in ovariectomized (Ovx) animals but low in proestrous (Pro). Hormone replacement in ovariectomized animals lowers the level of the sites. Castration (Cast) of males reduces the level of sites but subsequent testosterone (T) treatment restores normal levels. The results support a role of hormones in sexual behavior via alteration in levels of muscarinic receptors: male hormone increases and female hormones decrease receptor levels.

  13. The effect of indomethacin on the muscarinic induced contractions in the isolated normal guinea pig urinary bladder

    PubMed Central

    2013-01-01

    Background To investigate the effect of prostaglandin depletion by means of COX-inhibition on cholinergic enhanced spontaneous contractions. Methods The urethra and bladder of 9 male guinea pigs (weight 270–300 g) were removed and placed in an organ bath with Krebs’ solution. A catheter was passed through the urethra through which the intravesical pressure was measured. The muscarinic agonist arecaidine, the non-selective COX inhibitor indomethacin, and PGE2 were subsequently added to the organ bath. The initial average frequency and amplitude of spontaneous contractions in the first 2 minutes after arecaidine application were labelled Fini and Pini, respectively. The steady state frequency (Fsteady) and amplitude (Psteady) were defined as the average frequency and amplitude during the 5 minutes before the next wash out. Results Application of 1 μM PGE2 increased the amplitude of spontaneous contractions without affecting frequency. 10 μM of indomethacin reduced amplitude but not frequency. The addition of indomethacin did not alter Fini after the first application (p = 0.7665). However, after the second wash, Fini was decreased (p = 0.0005). Fsteady, Psteady and Pini were not significantly different in any of the conditions. These effects of indomethacin were reversible by PGE2 addition.. Conclusions Blocking PG synthesis decreased the cholinergically stimulated autonomous contractions in the isolated bladder. This suggests that PG could modify normal cholinergically evoked response. A combination of drugs inhibiting muscarinic receptors and PG function or production can then become an interesting focus of research on a treatment for overactive bladder syndrome. PMID:23388044

  14. Effects of Selective M1 Muscarinic Receptor Activation on Hippocampal Spatial Representations and Neuronal Oscillations.

    PubMed

    Lebois, Evan P; Trimper, John B; Hu, Chun; Levey, Allan I; Manns, Joseph R

    2016-10-19

    The muscarinic M1 acetylcholine receptor is a key target for drugs aimed at treating cognitive dysfunction, including the memory impairment in Alzheimer's disease. The overall question of the current study was to ask how systemic administration of the bitopic M1 agonist VU0364572, the M1 positive allosteric modulator BQCA, and the acetylcholinesterase inhibitor donepezil (current standard of care for Alzheimer's disease), would impact spatial memory-related hippocampal function in rats. Hippocampal pyramidal neuron spiking and local field potentials were recorded from regions CA1 and CA3 as rats freely foraged in a recording enclosure. To assess the relative stability versus flexibility of the rats' spatial representations, the walls of the recording enclosure were reshaped in 15-m intervals. As compared to the control condition, systemic administration of VU0364572 increased spatial correlations of CA1 and CA3 pyramidal neuron spiking across all enclosure shape comparisons, whereas BQCA and donepezil appeared to decrease these spatial correlations. Further, both VU0364572 and BQCA increased intrahippocampal synchrony as measured by CA3-CA1 field-field coherence in frequency ranges that tended to align with the prominence of those oscillations for the behavioral state (i.e., theta during locomotion and slow gamma during stationary moments). The results indicated that VU0364572 and BQCA influenced hippocampal function differently but in ways that might both be beneficial for treating memory dysfunction.

  15. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  16. Activation of muscarinic receptors by ACh release in hippocampal CA1 depolarizes VIP but has varying effects on parvalbumin-expressing basket cells

    PubMed Central

    Bell, L Andrew; Bell, Karen A; McQuiston, A Rory

    2015-01-01

    We investigated the effect of acetylcholine release on mouse hippocampal CA1 perisomatically projecting interneurons. Acetylcholine was optogenetically released in hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated virally mediated transfection. The effect of optogenetically released acetylcholine was assessed on interneurons expressing Cre recombinase in vasoactive intestinal peptide (VIP) or parvalbumin (PV) interneurons using whole cell patch clamp methods. Acetylcholine released onto VIP interneurons that innervate pyramidal neuron perisomatic regions (basket cells, BCs) were depolarized by muscarinic receptors. Although PV BCs were also excited by muscarinic receptor activation, they more frequently responded with hyperpolarizing or biphasic responses. Muscarinic receptor activation resulting from ACh release increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in downstream hippocampal CA1 pyramidal neurons with peak instantaneous frequencies occurring in both the gamma and theta bandwidths. Both PV and VIP BCs contributed to the increased sIPSC frequency in pyramidal neurons and optogenetic suppression of PV or VIP BCs inhibited sIPSCs occurring in the gamma range. Therefore, we propose acetylcholine release in CA1 has a complex effect on CA1 pyramidal neuron output through varying effects on perisomatically projecting interneurons. PMID:25556796

  17. Are muscarinic receptors involved in the effect of serotonin on gastrointestinal electrical activity in the conscious piglet?

    PubMed

    Wechsung, E; Houvenaghel, A

    1994-08-01

    In conscious piglets provided chronically with electrodes in the wall of the antrum pylori, duodenum, jejunum and ileum, the effect of intravenous infusion of 5-HT, 4 micrograms/kg/min for 2 h, with and without pre-treatment with atropine, 0.5 mg/kg, on gastrointestinal myoelectrical activity was studied. In the antrum, fast oscillations were partially inhibited by 5-HT and nearly completely blocked by the atropine/5-HT combination and by atropine alone. In the small intestine 5-HT induced a decrease in MMC interval, an increase in phase III activity in duodenum and jejunum and an acceleration of propagation velocity as measured for the jejunum. These effects were not influenced by atropine. Following atropine, phase II activity in the jejunum was significantly inhibited by 5-HT. The ileum was rather insensitive to 5-HT. It is concluded that the inhibitory effect of 5-HT on antral electrical activity is enhanced by atropine, and that 5-HT has a stimulatory effect on small intestinal activity which is not dependent on a muscarinic action.

  18. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    PubMed

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders.

  19. [Effect of microinjections of a selective blocker of M1-muscarinic receptors pirenzepine into the neostriatum on the rat motor activity].

    PubMed

    Shapovalova, K B; Kamkina, Iu V; Mysovskiĭ, D A

    2004-02-01

    In simulated discrimination conditioned reflex of active avoidance (CRAA) in T-maze, the effect of bilateral microinjections of the muscarinic receptor M1 selective blocker pirenzepine on the CRAA formation and behaviour in the "open filed" test, was studied in rats. A sharp worsening of the CRAA learning and a significant increase in the motor activity were shown to occur in rats following the microinjections as compared with control rats. The change in the motor responses seems to account for the worsening of the CRAA learning. Another reason of the phenomenon could involve a disorder in perception of conditioned signals and their poor differentiation. The data obtained and the literature data suggest a complex character of changes induced by the blockade of the M1 muscarinic receptors of the neostriatum.

  20. Acute Effects of Muscarinic M1 Receptor Modulation on AβPP Metabolism and Amyloid-β Levels in vivo: A Microdialysis Study.

    PubMed

    Welt, Tobias; Kulic, Luka; Hoey, Sarah E; McAfoose, Jordan; Späni, Claudia; Chadha, Antonella Santuccione; Fisher, Abraham; Nitsch, Roger M

    2015-01-01

    Indirect modulation of cholinergic activity by cholinesterase inhibition is currently a widely established symptomatic treatment for Alzheimer's disease (AD). Selective activation of certain muscarinic receptor subtypes has emerged as an alternative cholinergic-based amyloid-lowering strategy for AD, as selective muscarinic M1 receptor agonists can reduce amyloid-β (Aβ) production by shifting endoproteolytic amyloid-β protein precursor (AβPP) processing toward non-amyloidogenic pathways. In this study, we addressed the hypothesis that acute stimulation of muscarinic M1 receptors can inhibit Aβ production in awake and freely moving AβPP transgenic mice. By combining intracerebral microdialysis with retrodialysis, we determined hippocampal Aβ concentrations during simultaneous pharmacological modulation of brain M1 receptor function. Infusion with a M1 receptor agonist AF102B resulted in a rapid reduction of interstitial fluid (ISF) Aβ levels while treatment with the M1 antagonist dicyclomine increased ISF Aβ levels reaching significance within 120 minutes of treatment. The reduction in Aβ levels was associated with PKCα and ERK activation resulting in increased levels of the α-secretase ADAM17 and a shift in AβPP processing toward the non-amyloidogenic processing pathway. In contrast, treatment with the M1 receptor antagonist dicyclomine caused a decrease in levels of phosphorylated ERK that was independent of PKCα, and led to an elevation of β-secretase levels associated with increased amyloidogenic AβPP processing. The results of this study demonstrate rapid effects of in vivo M1 receptor modulation on the ISF pool of Aβ and suggest that intracerebral microdialysis with retrodialysis is a useful technical approach for monitoring acute treatment effects of muscarinic receptor modulators on AβPP/Aβ metabolism.

  1. Effects of toluene exposure on signal transduction: toluene reduced the signaling via stimulation of human muscarinic acetylcholine receptor m2 subtypes in CHO cells.

    PubMed

    Tsuga, Hirofumi; Haga, Tatsuya; Honma, Takeshi

    2002-07-01

    The organic solvent toluene is used widely in industry and is toxic to the central nervous system (CNS). To clarify the mechanisms of CNS toxicity following toluene exposure, especially with respect to the G protein-coupling of receptors, we determined the effects of toluene on the activation of Gi by stimulating human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) expressed in Chinese hamster ovary (CHO) cells. We first examined whether toluene affects the inhibition of adenylyl cyclase by Gi. The attenuation of forskolin-stimulated cAMP formation by the stimulation of hm2 receptors was reduced in a medium containing toluene. Next, we determined the effects of toluene on carbamylcholine-stimulated [35S]GTPgammaS binding using membrane fractions of CHO cell expressing hm2 receptors. Carbamylcholine-stimulated [35S]GTPgammaS binding activity was markedly reduced when assayed using reaction buffers containing toluene. However, carbamylcholine-stimulated [35S]GTPgammaS binding activity was essentially unchanged following pretreatment of the cells with a toluene-saturated medium prior to membrane isolation. Toluene pretreatment and the toluene itself did not alter the characteristics of the binding of carbamylcholine and [3H]N-methylscopolamine to hm2 receptors. On the contrary of the effect of toluene for [35S]GTPgammaS binding, the effect of toluene for attenuation of forskolin-stimulated cAMP formation by the stimulation of hm2 receptors was irreversible. These observations indicate that toluene acts as an inhibitor of the signal transduction via hm2 receptor stimulation in CHO cells, and at least two mechanisms exist in the inhibition mechanisms by toluene.

  2. Muscarinic type 1 receptors mediate part of nitric oxide's vagal facilitatory effect in the isolated innervated rat right atrium.

    PubMed

    Hogan, K; Markos, F

    2007-02-01

    We investigated whether vagal cardiac cholinergic facilitation by nitric oxide (NO) is mediated by cardiac muscarinic receptor subtypes in the vagally innervated rat right atrium in vitro. Experiments were carried out in the presence of atenolol (4 microM). The right vagus was stimulated at 4, 8, 16, 32 Hz; pulse duration 1 ms at 20 V for 20s; vagal postganglionic activation was achieved using nicotine (0.1, 0.3, 0.5, 1mM) and the effect on cardiac interval (ms) assessed. Pirenzepine (1 microM), a M1 antagonist, attenuated vagally induced increase in cardiac interval. L-Arginine (0.34 mM) superfused with pirenzepine failed to reverse this attenuation, however, L-arginine applied alone reversed the reduction vagal cardiac slowing. Similarly, sodium nitroprusside (10 microM) applied alone, and not together with pirenzepine, was able to reverse the attenuation of vagal effects caused by pirenzepine. Synthetic MT7 (1 nM) toxin, a selective M1 antagonist confirmed these results. M3 antagonism using para-fluorohexahydrosiladifenidol (p-F-HHSiD) (300 nM) and M4 antagonism with PD 102807 (200 nM) did not affect the vagally induced increase in cardiac interval. Nicotine induced increase in cardiac interval was not altered by pirenzepine. These results show that antagonism of M1 receptors on cardiac vagal preganglionic fibres reduces vagal efficacy which can be recovered by either a nitric oxide synthase substrate or a NO donor.

  3. Effects of muscarinic receptor modulators on ocular biometry of guinea pigs.

    PubMed

    Fang, Fang; Huang, Furong; Xie, Ruozhong; Li, Cheng; Liu, Yin; Zhu, Ying; Qu, Jia; Zhou, Xiangtian

    2015-01-01

    This study investigated whether pilocarpine and cyclopentolate induce changes in ocular biometry of guinea pigs, in order to understand if guinea pigs have a similar response to these two agents as humans do. Under general anaesthesia, refraction, axial components and surface curvature in various optical interfaces of the eye were measured in 10 guinea pigs (age of 2 weeks) at baseline (0 min) and different time points (5, 10, 20, 30, 60, 90 min) after topical administration of pilocarpine or cyclopentolate. The interval between the two drug treatments for the same animals was at least 24 h. Eyes treated with pilocarpine developed approximately 6D myopia (p < 0.001 from 0 to 90 min) with a decrease in anterior lens radius of curvature (ALRC) (p < 0.001 from 0 to 90 min, repeated measures anova). This myopic shift was moderately correlated to the decreased ALRC (r(2)  = 0.48, p < 0.001). Furthermore, a small but significant increase in the VCD (p < 0.001 from 0 to 30 min, repeated measures anova) with an unchanged AL (p = 0.85 from 0 to 90 min, repeated measures anova) after the drug treatment suggested a transient and mild forward movement of the lens. Cyclopentolate dilated the pupil in all eyes (p < 0.001 from 0 to 90 min, repeated measures anova) but did not change other ocular parameters. The muscarinic agonist, pilocarpine induced a myopic shift mainly due to a decrease in ALRC, suggesting that guinea pigs have an accommodative mechanism similar to that in humans. The minimal changes produced by cyclopentolate could be due to the use of general anaesthesia, which may have reduced the susceptibility of the eye to topical cyclopentolate in the induction of cycloplegia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  4. Type 3 Muscarinic Receptors Contribute to Clearance of Citrobacter rodentium

    USDA-ARS?s Scientific Manuscript database

    Although the alpha 7 nicotinic receptor exerts anti-inflammatory effects on immune cells, the role of muscarinic receptors in mucosal homeostasis, response to enteric pathogens, and modulation of immune cell function is undefined. The contribution of type 3 muscarinic receptor (M3R) to mucosal homeo...

  5. The interaction of trazodone with rat brain muscarinic cholinoceptors.

    PubMed Central

    Hyslop, D. K.; Taylor, D. P.

    1980-01-01

    The muscarinic receptor binding of trazodone, a new nontricyclic antidepressant, was compared with established tricyclic antidepressants. The ability to inhibit the binding of [3H]-quinuclidinyl benzilate in vitro was used for comparing atropine-like effects. Trazodone was found to have essentially no activity at the muscarinic acetylcholine binding site in comparison to the tricyclic antidepressants. PMID:7470750

  6. Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels.

    PubMed

    Weston-Green, Katrina; Huang, Xu-Feng; Lian, Jiamei; Deng, Chao

    2012-05-01

    The second generation antipsychotic drug (SGA) olanzapine has an efficacy to treat schizophrenia, but can cause obesity and type II diabetes mellitus. Cholinergic muscarinic M3 receptors (M3R) are expressed on pancreatic β-cells and in the brain where they influence insulin secretion and may regulate other metabolic hormones via vagal innervation of the gastrointestinal tract. Olanzapine's M3R antagonism is an important risk factor for its diabetogenic liability. However, the effects of olanzapine on central M3Rs are unknown. Rats were treated with 0.25, 0.5, 1.0 or 2.0 mg olanzapine/kg or vehicle (3×/day, 14-days). M3R binding densities in the hypothalamic arcuate (Arc) and ventromedial nuclei (VMH), and dorsal vagal complex (DVC) of the brainstem were investigated using [3H]4-DAMP plus pirenzepine and AF-DX116. M3R binding correlations to body weight, food intake, insulin, ghrelin and cholecystokinin (CCK) were analyzed. Olanzapine increased M3R binding density in the Arc, VMH and DVC, body weight, food intake, circulating plasma ghrelin and CCK levels, and decreased plasma insulin and glucose. M3R negatively correlated to insulin, and positively correlated to ghrelin, CCK, food intake and body weight. Increased M3R density is a compensatory up-regulation in response to olanzapine's M3R antagonism. Olanzapine acts on M3R in regions of the brain that control food intake and insulin secretion. Olanzapine's M3R blockade in the brain may inhibit the acetylcholine pathway for insulin secretion. These findings support a role for M3Rs in the modulation of insulin, ghrelin and CCK via the vagus nerve and provide a mechanism for olanzapine's diabetogenic and weight gain liability.

  7. Disease-Modifying Effects of M1 Muscarinic Acetylcholine Receptor Activation in an Alzheimer's Disease Mouse Model.

    PubMed

    Lebois, Evan P; Schroeder, Jason P; Esparza, Thomas J; Bridges, Thomas M; Lindsley, Craig W; Conn, P Jeffrey; Brody, David L; Daniels, J Scott; Levey, Allan I

    2017-03-07

    Alzheimer's disease (AD) is the leading cause of dementia worldwide, and currently no disease-modifying therapy is available to slow or prevent AD, underscoring the urgent need for neuroprotective therapies. Selective M1 muscarinic acetylcholine receptor (mAChR) activation is an attractive mechanism for AD therapy since M1 mediates key effects on memory, cognition, and behavior and has potential for disease-modifying effects on Aβ formation and tau phosphorylation. To validate M1 as a neuroprotective treatment target for AD, the M1-selective agonist, VU0364572, was chronically dosed to 5XFAD mice from a young age preceding Aβ pathology (2 months) to an age where these mice are known to display memory impairments (6 months). Chronic M1 activation prevented mice from becoming memory-impaired, as measured by Morris water maze (MWM) testing at 6 months of age. Additionally, M1 activation significantly reduced levels of soluble and insoluble Aβ40,42 in the cortex and hippocampus of these animals, as measured by ELISA and immunohistochemistry. Moreover, soluble hippocampal Aβ42 levels were strongly correlated with MWM memory impairments and M1 activation with VU0364572 abolished this correlation. Finally, VU0364572 significantly decreased oligomeric (oAβ) levels in the cortex, suggesting one mechanism whereby VU0364572 may be exerting its neuroprotective effects is by reducing the available oAβ pool in the brain. These findings suggest that chronic M1 activation has neuroprotective potential for preventing memory impairments and reducing neuropathology in AD. M1 activation therefore represents a promising avenue for preventative treatment, as well as a promising opportunity to combine symptomatic and disease-modifying effects for early AD treatment.

  8. Characterization of the muscarinic cholinoceptors in the human detrusor

    SciTech Connect

    Nilvebrant, L.; Andersson, K.E.; Mattiasson, A.

    1985-08-01

    Contractions of the human detrusor are thought to be mediated mainly via cholinergic muscarinic receptors. In the present study, the authors used a receptor-binding technique with 1-quinuclidinyl(phenyl 4-/sup 3/H)benzilate ((-)/sup 3/H-QNB) as radioligand to directly demonstrate the presence of muscarinic receptors in homogenates of the human detrusor. The binding of (-)/sup 3/H-QNB was of high affinity (KD = (1.2 +/- 0.1) X 10(-10) M), saturable (Ro = 160 +/- 15 fmol./mg. protein) and possessed the pharmacological specificity expected of an interaction with muscarinic receptors. Muscarinic receptor antagonists were bound to a virtually uniform population of sites, whereas muscarinic receptor agonists recognized more than one population of muscarinic binding sites. The affinities of a series of antimuscarinic drugs, determined in competition experiments with (-)/sup 3/H-QNB, were found to correlate with the capacity to inhibit carbachol-induced contractions in isolated human bladder muscle. Binding data together with the functional data indicated that the human detrusor does not contain any significant number of muscarinic spare receptors. The results suggest that a selective effect on the muscarinic receptors of human bladder is not possible to obtain with presently available antimuscarinic agents.

  9. Pharmacological characteristics of catalepsy induced by intracerebroventricular administration of histamine in mice: the importance of muscarinic step in central cholinergic neurons.

    PubMed

    Onodera, K; Shinoda, H

    1991-05-01

    Histamine-induced catalepsy was antagonized potently by scopolamine, an antimuscarinic drug, and partially blocked by sparteine. Neither methylatropine nor antinicotinic drugs could reverse histamine-induced catalepsy. These results indicate the greater importance of muscarinic receptors rather than their nicotinic counterparts in histamine-induced catalepsy. Various antiparkinson drugs, i.e. biperiden and trihexyphenidyl, which have antimuscarinic activity or dopamine agonists, i.e. L-dopa, amantadine and bromocriptine, could antagonize the histamine-induced catalepsy to various degrees. Thus, catalepsy induced by icv histamine can be evoked not only by an activation of the histamine receptor, but also indirectly due to cholinergic and dopaminergic imbalance.

  10. Effect of training on beta1 beta2 beta3 adrenergic and M2 muscarinic receptors in rat heart.

    PubMed

    Barbier, Julie; Rannou-Bekono, Françoise; Marchais, Jérome; Berthon, Phanélie-Marie; Delamarche, Paul; Carré, François

    2004-06-01

    Physical training is known to alter several cardiovascular parameters. These adaptations are for a great part linked to an alteration of the myocardial responses to its autonomic nervous regulation. To further explain the parasympathetic and catecholamine effects, we hypothesized that endurance training could modify rat myocardial beta1, beta2, beta3 adrenoreceptors (AR) and M2 muscarinic cholinergic receptor (AchR) densities. Two groups of adults female Wistar rats were studied: controls (C) (N = 7) and trained (T) (N = 9). An 8-wk treadmill training protocol was performed, 5 d x wk and of 1 h x d. At the end of the training session, left ventricle and atria muscle were isolated and weighed. Then, quantification of beta1, beta2, beta3 AR and M2 AchR was performed using Western blot analysis. M2 AchR densities were not modified in left ventricle or in atria by training (respectively, 100 +/- 22%, C vs 101 +/- 14%, T and 100 +/- 23%, C vs 119 +/- 30%, T). Concerning the left ventricle beta AR isoforms, beta1AR density was decreased in T (80 +/- 10% T vs 100 +/- 14% C, P = 0.01), beta2AR was unaltered (102 +/- 12%, T vs 100 +/- 17%, C), and beta3 AR density was increased in T (139 +/- 38% T vs 100 +/- 15% C; P < 0.05). Our results show for the first time that in female rats an 8-wk treadmill training protocol alters specifically the left ventricle beta AR isoforms densities but not the M2 AchR one. These results could explain some of the beneficial cardiovascular adaptations of the physically trained heart.

  11. Molecular mechanism of the effects of guanine nucleotide and sulfhydryl reagent on muscarinic receptors in smooth muscles studied by radiation inactivation

    SciTech Connect

    Uchida, S.; Matsumoto, K.; Takeyasu, K.; Higuchi, H.; Yoshida, H.

    1982-07-01

    The molecular sizes of the units concerned in 3-quinuclidinyl benzilate (QNB) binding and in the effects of guanine nucleotide and sulfhydryl reagent on the inhibition of QNB binding by carbachol in smooth muscle of guinea pig ileum were determined to be 76,000, 179,000 and 107,000, respectively by the radiation inactivation method. One or more subunits (GTP subunit) other than the receptor subunit in a muscarinic receptor appeared to be involved in the effect of guanine nucleotide. When guanine nucleotide was present, the receptor subunit seemed to be dissociated from the GTP subunit.

  12. [Muscarinic modulation of cardiac activity].

    PubMed

    Sauviat, M P

    1999-01-01

    The goal of the present review is to report information concerning cardiac innervation or more precisely to approach the modulation of cardiac electrical and mechanical activity by parasympathetic innervation. Acetylcholine (ACh) release by nerve endings from the vagus nerve hyperpolarizes the membrane, shortens action potential (AP) duration and has a negative inotropic effect on cardiac muscle. Toxins are usefull tools in the study of membrane signals. The Caribbean ciguatoxin (C-CTX-1) has a muscarinic effect on frog atrial fibres. The toxin evokes the release of ACh from motoneuron nerve terminals innervating this tissue which allows us to propose a model, similar to the one of the neuromuscular junction (nmj), to describe the events occurring during the triggering and release of ACh. Trachynilysin (TLY) is a proteic toxin which causes an influx of Ca2+ into the cells and releases ACh from nmj synaptic vesicles. TLY has a muscarinic effect on atrial fibres which is explicated in the release of neurotransmitter from the nerve endings generated by the TLY-induced Ca2+ influx. It is known that ACh release from nmj is known to be due to exocytosis of synaptic vesicles via the activation of a proteic complex blocked by botulinum toxins. One of these proteins SNAP-25 is the target of type A botulinum toxin (BoNT/A). The study of hearts isolated from BoNT/A poisoned frogs show that atrial AP is lengthened and reveals the presence of SNAP-25 in nerve endings of this tissue. Moreover, the electrical activity of ventricular muscle is markedly altered; in BoNT/A treated frog, an important outward current activated by internal Ca2+ develops. ACh released from nerve terminals binds to a G protein coupled membrane receptor and activates a K+ channel and other effectors. Five subtypes of muscarinic receptors have been cloned from different tissue (M1, M2, M3, M4) subtypes have been identified in cardiac tissues throughout many species. These receptors coupled with different G

  13. Arachidonic acid metabolites alter G protein-mediated signal transduction in heart. Effects on muscarinic K+ channels

    PubMed Central

    1990-01-01

    The muscarinic acetylcholine receptor (mAChR)-stimulated, inwardly rectifying K+ current (IK [ACh]) was examined in single bullfrog atrial cells using the whole-cell patch clamp technique. IK[ACh] was activated either by bath addition of 1 microM ACh or via activation of the G protein, Gk, with guanosine-gamma-thiotriphosphate (GTP gamma S). Arachidonic acid (AA) modulated IK[ACh] under both conditions. AA decreased mAChR-stimulated IK[ACh] and increased the rate of decay from the peak current (desensitization). In addition, AA affected GTP gamma S-activated IK[ACh] by modulation of Gk. The effects of AA and its metabolites on Gk were assessed by examining their effects on both the basal rate of Gk activation by GTP gamma S, and the mAChR-mediated increase in activation rate produced by nanomolar ACh. AA increased the basal rate of GTP gamma S-mediated IK[ACh] activation, but reduced the ACh-induced augmentation of this rate. All of the effects of AA on GTP gamma S-mediated IK[ACh] activation were produced by metabolites. A lipoxygenase inhibitor, nordihydroguaiaretic acid (NDGA), decreased the basal and ACh-enhanced rate of IK[ACh] activation in both the presence and absence of exogenous AA. In contrast, indomethacin (INDO), a cyclooxygenase inhibitor, increased the basal rate of IK[ACh] activation by GTP gamma S in both the presence and absence of exogenous AA, and reversed the effects of AA on the ACh-augmented basal rate. AA metabolites produced via lipoxygenase and cyclooxygenase pathways thus have opposing effects on the signal transduction pathway from mAChR to IK[ACh]. We directly tested a lipoxygenase pathway metabolite, LTC4, on GTP gamma S-mediated IK[ACh] activation and found that it not only overcame the inhibitory effects of NDGA, but also increased both the basal and ACh-augmented rate of IK[ACh] activation. From these data, we propose that AA metabolites modulate the function of Gk by altering its kinetic properties. PMID:2124257

  14. Autoantibodies against Muscarinic Receptors in Breast Cancer: Their Role in Tumor Angiogenesis

    PubMed Central

    Lombardi, María Gabriela; Negroni, María Pía; Pelegrina, Laura Tatiana; Castro, María Ester; Fiszman, Gabriel L.; Azar, María Eugenia; Morgado, Carlos Cresta; Sales, María Elena

    2013-01-01

    The presence of autoantibodies in cancer has become relevant in recent years. We demonstrated that autoantibodies purified from the sera of breast cancer patients activate muscarinic acetylcholine receptors in tumor cells. Immunoglobulin G (IgG) from breast cancer patients in T1N0Mx stage (tumor size≤2 cm, without lymph node metastasis) mimics the action of the muscarinic agonist carbachol stimulating MCF-7 cell proliferation, migration and invasion. Angiogenesis is a central step in tumor progression because it promotes tumor invasion and metastatic spread. Vascular endothelial growth factor-A (VEGF-A) is the main angiogenic mediator, and its levels have been correlated with poor prognosis in cancer. The aim of the present work was to investigate the effect of T1N0Mx-IgG on the expression of VEGF-A, and the in vivo neovascular response triggered by MCF-7 cells, via muscarinic receptor activation. We demonstrated that T1N0Mx-IgG (10−8 M) and carbachol (10−9 M) increased the constitutive expression of VEGF-A in tumor cells, effect that was reverted by the muscarinic antagonist atropine. We also observed that T1N0Mx-IgG and carbachol enhanced the neovascular response produced by MCF-7 cells in the skin of NUDE mice. The action of IgG or carbachol was reduced in the presence of atropine. In conclusion, T1N0Mx-IgG and carbachol may promote VEGF-A production and neovascularization induced by breast tumor cells via muscarinic receptors activation. These effects may be accelerating breast tumor progression. PMID:23460876

  15. Autoantibodies against muscarinic receptors in breast cancer: their role in tumor angiogenesis.

    PubMed

    Lombardi, María Gabriela; Negroni, María Pía; Pelegrina, Laura Tatiana; Castro, María Ester; Fiszman, Gabriel L; Azar, María Eugenia; Morgado, Carlos Cresta; Sales, María Elena

    2013-01-01

    The presence of autoantibodies in cancer has become relevant in recent years. We demonstrated that autoantibodies purified from the sera of breast cancer patients activate muscarinic acetylcholine receptors in tumor cells. Immunoglobulin G (IgG) from breast cancer patients in T1N0Mx stage (tumor size≤2 cm, without lymph node metastasis) mimics the action of the muscarinic agonist carbachol stimulating MCF-7 cell proliferation, migration and invasion. Angiogenesis is a central step in tumor progression because it promotes tumor invasion and metastatic spread. Vascular endothelial growth factor-A (VEGF-A) is the main angiogenic mediator, and its levels have been correlated with poor prognosis in cancer. The aim of the present work was to investigate the effect of T1N0Mx-IgG on the expression of VEGF-A, and the in vivo neovascular response triggered by MCF-7 cells, via muscarinic receptor activation. We demonstrated that T1N0Mx-IgG (10(-8) M) and carbachol (10(-9) M) increased the constitutive expression of VEGF-A in tumor cells, effect that was reverted by the muscarinic antagonist atropine. We also observed that T1N0Mx-IgG and carbachol enhanced the neovascular response produced by MCF-7 cells in the skin of NUDE mice. The action of IgG or carbachol was reduced in the presence of atropine. In conclusion, T1N0Mx-IgG and carbachol may promote VEGF-A production and neovascularization induced by breast tumor cells via muscarinic receptors activation. These effects may be accelerating breast tumor progression.

  16. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  17. Current excitement from insect muscarinic receptors.

    PubMed

    Trimmer, B A

    1995-02-01

    Recent electrophysiological, pharmacological and molecular studies suggest that muscarinic ACh receptors (mAChRs) in insects are related to, but distinct from, their mammalian counterparts. Insect mAChRs perform two primary roles that are distinguished by their locations. Presynaptic mAChRs, present on sensory terminals, inhibit transmitter release, thereby reducing the effectiveness of specific afferent inputs. In contrast, postsynaptic mAChRs depolarize and increase the excitability of motoneurons and interneurons, thereby acting as dynamic-gain controls. This postsynaptic modulation is achieved in different ways in specific neurons but generally results from the activation of persistent inward and outward currents. At the level of neural processing, these distinct roles enable insect mAChRs to regulate the transfer of sensory information, and modulate the contributions of central neurons to central pattern generators and reflexes. Because these phenomena can be studied in identified neurons, a combination of physiological and molecular studies of mAChRs in insects should help to elucidate some of their behavioral roles. Furthermore, such studies could lead to the identification of general mechanisms of functional plasticity in neuronal networks.

  18. The Beneficial Effect of Fesoterodine, a Competitive Muscarinic Receptor Antagonist on Erectile Dysfunction in Streptozotocin-induced Diabetic Rats.

    PubMed

    Yilmaz-Oral, Didem; Bayatli, Nur; Gur, Serap

    2017-09-01

    To investigate the possible role of fesoterodine (a competitive muscarinic receptor antagonist) on erectile dysfunction in streptozotocin-induced diabetic rats. A total of 16 adult male Sprague-Dawley rats were equally divided into control and diabetic groups. Diabetes was induced by a single intravenous injection of streptozotocin (25-35 mg/kg). In vivo erectile responses were evaluated by the stimulation of cavernosal nerves, and measurements were repeated after the intracavernosal injection of fesoterodine (1 µM) in rats. The relaxation responses to fesoterodine were examined via incubation with various inhibitors. The relaxant responses of corpus cavernosum (CC) strips were observed in the presence or the absence of fesoterodine (10 µM). Intracavernous administration of fesoterodine restored in vivo erectile response at 5.0- and 7.5-V levels, except for 2.5 V in diabetic rats. Basal intracavernosal pressure (5.4 ± 0.9 mm Hg) in diabetic rats was markedly increased after injection of fesoterodine (33.9 ± 7.9 mm Hg, P <.001). In bath studies, fesoterodine resulted in a relaxation of CC in a concentration-dependent manner, which was reduced in diabetic rats. Nifedipine (l-type Ca(2+) channel blocker) inhibited maximum fesoterodine-induced relaxation by 58%. The nonselective K(+) channel blocker tetraethylammonium and glibenclamide incubation did not change the relaxant response to fesoterodine. The relaxant responses to acetylcholine (10 µM), electrical field stimulation (10 Hz), and sodium nitroprusside (0.01 µM) in diabetic rats were increased after incubation with fesoterodine (10 µM). Fesoterodine improved erectile function and relaxation of isolated strips of rat CC. The underlying mechanism of fesoterodine is likely due to the blocking of l-type calcium channels independent of the nitric oxide-cyclic guanosine monophosphate pathway. Further investigations are warranted to fully elucidate the restorative effects of

  19. Anticholinesterase Effects on Number and Function of Brain Muscarinic Receptors and Central Cholinergic Activity: Drug Intervention.

    DTIC Science & Technology

    1986-04-11

    still unresolved problem connected with the mechanisms by which the anticholinesterases affect cholinergic nerves which should lead to a more thorough...understanding of their most adverse reactions, i.e the generalized cholinergic stimulation, convulsions and neuromuscular paralysis. This may lead to...which the anticholinesterases affect cholinergic nerves which should lead to a more thorough understanding of their most adverse reactions, i.e the

  20. Agonist-independent effects of muscarinic antagonists on Ca2+ and K+ currents in frog and rat cardiac cells.

    PubMed

    Hanf, R; Li, Y; Szabo, G; Fischmeister, R

    1993-02-01

    1. The whole-cell patch clamp and intracellular perfusion techniques were used for studying the effects of atropine and other muscarinic acetylcholine receptor (mAChR) antagonists on the L-type calcium currents (ICa) in frog and rat ventricular myocytes, and on the mAChR-activated K+ current (IK(ACh)) in frog atrial myocytes. 2. In frog ventricular myocytes, atropine (0.1 nM to 1 microM) reversed the inhibitory effect of acetylcholine (ACh, 1 nM) on ICa previously stimulated by isoprenaline (Iso, 2 microM), a beta-adrenergic agonist. However, in the concomitant presence of Iso, ACh and atropine, ICa was > 50% larger than in Iso alone. 3. The effects of atropine were then examined in the absence of mAChR agonists. After a preliminary stimulation of ICa with Iso (0.1 or 2 microM), atropine induced a dose-dependent stimulation of ICa. EC50 (i.e. the concentration of atropine at which the response was 50% of the maximum) and Emax (i.e. maximal stimulation of ICa expressed as percentage increase in ICa with respect to the level in Iso alone) were respectively 0.6 nM and 35%. The stimulatory effect of atropine on ICa was not voltage dependent. 4. Atropine (1 microM) had no effect on frog ICa (i) under basal conditions, (ii) upon stimulation of ICa by the dihydropyridine agonist (-)-Bay K 8644 (1 microM), or (iii) when ICa had been previously stimulated by intracellular perfusion with cyclic AMP (3 microM). However, atropine increased ICa after a stimulation by forskolin (0.3 microM). Therefore, an increased adenylyl cyclase activity was required for atropine to produce its stimulatory effect on ICa. 5. The order of potency of mAChR antagonists to reverse the inhibitory effect of ACh on Iso elevated ICa in frog ventricle was atropine > AF-DX 116 > pirenzepine. In the absence of ACh, mAChR antagonists produced their stimulatory effect on Iso elevated ICa with the same order of potency. 6. Intracellular substitution of Gpp(NH)p (5'-guanylylimidiphosphate) for GTP (420 micro

  1. Muscarinic presynaptic modulation in GABAergic pallidal synapses of the rat.

    PubMed

    Hernández-Martínez, Ricardo; Aceves, José J; Rueda-Orozco, Pavel E; Hernández-Flores, Teresa; Hernández-González, Omar; Tapia, Dagoberto; Galarraga, Elvira; Bargas, José

    2015-02-01

    The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently. Copyright © 2015 the American Physiological Society.

  2. Effects of age on muscarinic agonist-induced contraction an IP accumulation in airway smooth muscle

    SciTech Connect

    Wills-Karp, M. )

    1991-01-01

    The effects of age on carbachol-stimulated force development and ({sup 3}H)inositol phosphate production was studied in tracheal rings from guinea pigs aged 1 month and 25 months of age. The pD{sub 2} for the contractile response to carbachol was significantly reduced in tracheal tissues from old animals as compared to that of the young tissues, respectively. In contrast, inositol phosphate formation was not altered with increasing age when stimulated by carbachol or NaF, a direct activator of G proteins. Carbachol-induced inositol phosphate accumulation was inhibited by treatment with 1{mu}g/ml pertussis toxin, suggesting that IP1 accumulation is coupled to a pertussis-toxin-sensitive protein. The pD{sub 2} values for contraction were significantly different from the pD{sub 2} values for IP1 accumulation, in both young and old tissues, respectively. These data suggest that IP1 accumulation is not responsible for the decreased contractile ability in tracheal smooth muscle during aging.

  3. The effects of microinjection of the selective blocker of muscarinic M1 receptors pirenzepine into the neostriatum on the motor behavior of rats.

    PubMed

    Shapovalova, K B; Kamkina, Yu V; Mysovskii, D A

    2005-07-01

    A discrimination conditioned active avoidance reflex (CAAR) model in a T maze was used in 18 rats to study the effects of bilateral microinjections of the selective muscarinic M1 receptor blocker pirenzepine into the neostriatum on the acquisition of the CAAR and behavior in an open field test. There was sharp degradation of learning of the CAAR and a significant improvement in motor activity both in the open field test and in the maze itself in rats given bilateral microinjections (pirenzepine, 0.004 mg) into the neostriatum as compared with intact controls. This suggests that changes in motor behavior (a sharp increase in locomotor activity) may be among the reasons for difficulty in learning the CAAR in rats after pirenzepine microinjections. Another reason for difficulty in learning the CAAR in these animals may be impairment of the perception of the conditioned signals (a flashing light) and poor differentiation. This is particularly indicated by the delay in the start chamber (double that seen in intact animals) on presentation of conditioned signals despite the high level of motor activity. These results and published data provide evidence for the complex nature of changes induced by blockade of muscarinic M1 receptors in the neostriatum.

  4. Effect of phospholipid hydrolysis by phospholipase A2 on the kinetics of antagonist binding to cardiac muscarinic receptors.

    PubMed

    Rauch, B; Niroomand, F; Messineo, F C; Weis, A; Kübler, W; Hasselbach, W

    1994-09-15

    Activation of phospholipases during prolonged myocardial ischemia could contribute to the functional derangement of myocardial cells by altering the phospholipid environment of a number of membrane bound proteins including receptors. The present study examined the kinetics of muscarinic receptor antagonist [3H]quinuclidinyl benzilate binding ([3H]QNB) to muscarinic receptors of highly purified sarcolemmal membranes under control conditions and after treatment with phospholipase A2 (PLA2; EC 3.1.1.4). Initial binding rates of QNB exhibited saturation kinetics, when plotted against the ligand concentration in control and PLA2 treated sarcolemmal membranes. This kinetic behaviour of QNB-binding is consistent with at least a two step binding mechanism. According to this two step binding hypothesis an unstable intermediate receptor-QNB complex (R*QNB) forms rapidly, and this form undergoes a slow conversion to the high affinity ligand-receptor complex R-QNB. The Michaelis constant Km of R-QNB formation was 1.8 nM, whereas the dissociation constant Kd obtained from equilibrium measurements was 0.062 nM. After 5 min exposure of sarcolemmal membranes to PLA2QNB binding capacity (Bmax) was reduced by 62%, and the affinity of the remaining receptor sites was decreased by 47% (Kd = 0.116 nM). This PLA2-induced increase of Kd was accompanied by a corresponding increase of Km, whereas the rate constants k2 and k-2 of the hypothetical slow conversion step (second reaction step) remained unchanged. These results suggest that binding of QNB to cardiac muscarinic receptors induces a transition in the receptor-ligand configuration, which is necessary for the formation of the final high affinity R-QNB complex. PLA2-induced changes of the lipid environment result in the inability of a part of the receptor population to undergo this transition, thereby inhibiting high affinity QNB-binding.

  5. Non-muscarinic therapeutic targets for acute organophosphorus poisoning.

    PubMed

    Rosenbaum, Christopher; Bird, Steven B

    2010-12-01

    Organophosphorus (OP) pesticides are a broad class of acetylcholinesterase inhibitors that are responsible for tremendous morbidity and mortality worldwide, contributing to an estimated 300,000 deaths annually. Current pharmacotherapy for acute OP poisoning includes the use of atropine, an oxime, and benzodiazepines. However, even with such therapy, the mortality from these agents is as high as 40%. It is increasingly recognized that not all OPs are the same. Significant differences exist in their toxicity, lipophilicity, and response to oxime therapy. Other non-muscarinic effects of OP pesticides exist, such as acute and chronic neuromuscular junction failure and central respiratory failure. In part because most of the mortality from these chemicals takes place in the developing world, little National Institutes of Health (NIH) research has been directed towards these agents. However, the similar mechanism of action of OP pesticides and the military nerve agents, along with increasing concerns about chemical terrorism has lead to the formation of the NIH Countermeasures Against Chemical Threats (CounterACT) Program. As part of the CounterACT Program, the NIH has recently designated six OP pesticides as "threat agents". This concept paper describes some of the knowledge gaps related to non-muscarinic effects of OP pesticides and highlights needed areas of further research. Leveraging the current NIH interest in these chemicals to medical necessities in the developing world offers the possibility of delivering new therapeutics where they are needed on a daily basis.

  6. Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx

    PubMed Central

    You, Young-jai; Kim, Jeongho; Cobb, Melanie; Avery, Leon

    2012-01-01

    Summary Starvation activates MAPK in the pharyngeal muscles of C. elegans through a muscarinic acetylcholine receptor, Gqα, and nPKC as shown by the following results: (1) Starvation causes phosphorylation of MAPK in pharyngeal muscle. (2) In a sensitized genetic background in which Gqα signaling cannot be downregulated, activation of the pathway by a muscarinic agonist causes lethal changes in pharyngeal muscle function. Starvation has identical effects. (3) A muscarinic antagonist blocks the effects of starvation on sensitized muscle. (4) Mutations and drugs that block any step of signaling from the muscarinic receptor to MAPK also block the effects of starvation on sensitized muscle. (5) Overexpression of MAPK in wild-type pharyngeal muscle mimics the effects of muscarinic agonist and of starvation on sensitized muscle. We suggest that, during starvation, the muscarinic pathway to MAPK is activated to change the pharyngeal muscle physiology to enhance ingestion of food when food becomes available. PMID:16581001

  7. Acute and chronic effects of the M1/M4-preferring muscarinic agonist xanomeline on cocaine vs. food choice in rats.

    PubMed

    Thomsen, Morgane; Fulton, Brian S; Caine, S Barak

    2014-02-01

    We previously showed that the M1/M4-preferring muscarinic agonist xanomeline can acutely attenuate or eliminate cocaine self-administration in mice. Medications used to treat addictions will arguably be administered in (sub)chronic or repeated regimens. Tests of acute effects often fail to predict chronic effects, highlighting the need for chronic testing of candidate medications. Rats were trained to lever press under a concurrent FR5 FR5 schedule of intravenous cocaine and food reinforcement. Once baseline behavior stabilized, the effects of 7 days once-daily injections of xanomeline were evaluated. Xanomeline pretreatment dose-dependently (1.8-10 mg/kg/day) shifted the dose-effect curve for cocaine rightward (up to 5.6-fold increase in A 50), with reallocation of behavior to the food-reinforced lever. There was no indication of tolerance, rather effects grew over days. The suppression of cocaine choice appeared surmountable at high cocaine doses, and xanomeline treatment did not significantly decrease total-session cocaine or food intake. In terms of xanomeline's potential for promoting abstinence from cocaine in humans, the findings were mixed. Xanomeline did produce reallocation of behavior from cocaine to food with a robust increase in food reinforcers earned at some cocaine/xanomeline dose combinations. However, effects appeared surmountable, and food-maintained behavior was also decreased at some xanomeline/cocaine dose combinations, suggesting clinical usefulness may be limited. These data nevertheless support the notion that chronic muscarinic receptor stimulation can reduce cocaine self-administration. Future studies should show whether ligands with higher selectivity for M1 or M1/M4 subtypes would be less limited by undesired effects and can achieve higher efficacy.

  8. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase.

    PubMed

    Español, Alejandro Javier; Salem, Agustina; Rojo, Daniela; Sales, María Elena

    2015-11-01

    Breast cancer is the most common type of cancer in women and represents a major issue in public health. The most frequent methods to treat these tumors are surgery and/or chemotherapy. The latter can exert not only beneficial effects by reducing tumor growth and metastasis, but also toxic actions on normal tissues. Metronomic therapy involves the use of low doses of cytotoxic drugs alone or in combination to improve efficacy and to reduce adverse effects. We have previously reported that breast tumors highly express functional muscarinic acetylcholine receptors (mAChRs) that regulate tumor progression. For this reason, mAChRs could be considered as therapeutic targets in breast cancer. In this paper, we investigated the ability of a combination of the cytotoxic drug paclitaxel plus carbachol, a cholinergic agonist, at low doses, to induce death in breast tumor MCF-7 cells, via mAChR activation, and the role of nitric oxide synthase (NOS) and arginase in this effect. We observed that the combination of carbachol plus paclitaxel at subthreshold doses significantly increased cytotoxicity in tumor cells without affecting MCF-10A cells, derived from human normal mammary gland. This effect was reduced in the presence of the muscarinic antagonist atropine. The combination also increased nitric oxide production by NOS1 and NOS3 via mAChR activation, concomitantly with an up-regulation of NOS3 expression. The latter effects were accompanied by a reduction in arginase II activity. In conclusion, our work demonstrates that mAChRs expressed in breast tumor cells could be considered as candidates to become targets for metronomic therapy in cancer treatment.

  9. The facilitating effect of systemic administration of Kv7/M channel blocker XE991 on LTP induction in the hippocampal CA1 area independent of muscarinic activation.

    PubMed

    Song, Ming-Ke; Cui, Yong-Yao; Zhang, Wei-Wei; Zhu, Liang; Lu, Yang; Chen, Hong-Zhuan

    2009-09-11

    A large amount of in vitro studies demonstrate suppression of M-current in hippocampal neurons by Kv7/M channel blocker results in depolarization of membrane potential and release of neurotransmitters, such as acetylcholine and glutamate, suggesting that Kv7/M channel may play important roles in regulating synaptic plasticity. In the present study, we examined the in vivo effect of Kv7/M channel inhibition on the long-term potentiation (LTP) induction at basal dendrites in hippocampal CA1 area of urethane-anaesthetized rats. The Kv7/M channel was inhibited by intraperitoneal injection of XE991 (10mg/kg) and the LTP of field excitatory postsynaptic potential (fEPSP) was induced by supra-threshold high frequency stimulation (S1 HFS). A weak protocol which was just below the threshold for evoking LTP was used as sub-threshold high frequency stimulation (S2 HFS). XE991 did not significantly alter the slope of fEPSP and the magnitude of LTP induced by S1 HFS, suggesting that Kv7/M channel inhibition had little or no effect on glutamatergic transmission under basal conditions. However, XE991 could make S2 HFS evoke LTP even after the application of the muscarinic cholinergic (mACh) receptor antagonist scopolamine, suggesting that Kv7/M channel inhibition lowered the threshold for LTP induction and the effect was independent of muscarinic activation. Based on the above findings, we concluded that the facilitating effect of XE991 on LTP induction is not mediated by its ability to enhance the release of acetylcholine; therefore, Kv7/M channel blockers may provide a therapeutic benefit to cholinergic deficiency-related cognitive impairment, e.g., Alzheimer's disease.

  10. Central effects of fingolimod.

    PubMed

    Cruz, Vítor T; Fonseca, Joaquim

    2014-08-01

    Introduccion. El fingolimod, un modulador del receptor de la esfingosina-1-fosfato (S1P) dotado de un mecanismo de accion novedoso, fue el primer tratamiento oral aprobado para la esclerosis multiple remitente recurrente. Su union a los receptores S1P1 de los linfocitos promueve la retencion selectiva de los linfocitos T virgenes y de memoria central en los tejidos linfoides secundarios, lo que impide su salida hacia el sistema nervioso central (SNC). Asimismo, el fingolimod atraviesa con facilidad la barrera hematoencefalica, y diversos estudios le atribuyen un efecto neuroprotector directo en el SNC. Objetivo. Revisar la informacion disponible acerca de los efectos centrales del fingolimod. Desarrollo. El desequilibrio entre los procesos lesivos y reparadores constituye un reflejo de la desmielinizacion cronica, la degeneracion axonal y la gliosis, y parece contribuir a la discapacidad que la esclerosis multiple acarrea. La facilidad con la que el fingolimod atraviesa la barrera hematoencefalica le permite actuar directamente sobre los receptores S1P localizados en las celulas del SNC. Una vez en el interior del SNC, ocupa los receptores S1P de los oligodendrocitos y de sus celulas precursoras, de los astrocitos, los microgliocitos y las neuronas, fomentando la remielinizacion, la neuroproteccion y los procesos endogenos de regeneracion. La eficacia evidenciada en los ensayos clinicos concuerda con un mecanismo de accion que incluiria efectos directos sobre las celulas del SNC. Conclusiones. Los datos disponibles indican que la eficacia del fingolimod en el tratamiento de la esclerosis multiple se debe a su ambivalencia como molecula inmunomoduladora y moduladora directa de los receptores S1P del SNC. Tanto es asi que estudios recientes le atribuyen efectos neuroprotectores en varios modelos que suscitan expectativas en torno a su posible aplicacion terapeutica en la enfermedad de Alzheimer, el paludismo cerebral y el neuroblastoma, asi como en la neuroproteccion

  11. Muscarinic acetylcholine receptor X-ray structures: potential implications for drug development.

    PubMed

    Kruse, Andrew C; Hu, Jianxin; Kobilka, Brian K; Wess, Jürgen

    2014-06-01

    Muscarinic acetylcholine receptor antagonists are widely used as bronchodilating drugs in pulmonary medicine. The therapeutic efficacy of these agents depends on the blockade of M3 muscarinic receptors expressed on airway smooth muscle cells. All muscarinic antagonists currently used as bronchodilating agents show high affinity for all five muscarinic receptor subtypes, thus increasing the likelihood of unwanted side effects. Recent X-ray crystallographic studies have provided detailed structural information about the nature of the orthosteric muscarinic binding site (the conventional acetylcholine binding site) and an 'outer' receptor cavity that can bind allosteric (non-orthosteric) drugs. These new findings should guide the development of selective M3 receptor blockers that have little or no effect on other muscarinic receptor subtypes.

  12. Ameliorative effect of tacrine on spatial memory deficit in chronic two-vessel occluded rats is reversible and mediated by muscarinic M1 receptor stimulation.

    PubMed

    Murakami, Y; Ikenoya, M; Matsumoto, K; Li, H; Watanabe, H

    2000-04-01

    Our previous study demonstrated that permanent two-vessel occlusion (2VO)-induced working memory deficit was improved by daily administration of tacrine, a cholinesterase inhibitor. In this study, we investigated the mechanism underlying the effects of tacrine in 2VO rats using the eight-arm radial maze task. Daily administration of tacrine (0.1 or 0.3 mg/kg i.p.) started 5 weeks after the 2VO operation significantly improved the maze performance. In the delay-interposition task, a significant impairment of maze performance was observed in the tacrine (0.3 mg/kg, i.p.)-treated rats at a delay of 90 min but not delays of 5 or 30 min. Sham-operated rats were not affected by delay. After leaving animals with no further treatment for 4 weeks, the tacrine-pretreated 2VO rats showed significantly impaired performance compared to the sham-operated control animals. However, the performance of the tacrine-pretreated 2VO rats was significantly improved by restarting the daily administration of tacrine (0.3 mg/kg, i.p.). The effect of tacrine was reversed by the muscarinic antagonist scopolamine and the selective M1 antagonist pirenzepine. Moreover, a microdialysis study revealed that tacrine (1 or 3 mg/kg, i.p.) increased the extracellular acetylcholine (ACh) level for a period of over 3 h in the cerebral cortex of 2VO rats. These findings suggest that the ameliorative effect of tacrine on the spatial memory deficit in 2VO rats is reversible and may be mediated by stimulating the muscarinic M1 receptor via elevation of the extracellular ACh level in the brain.

  13. The binding of some antidepressant drugs to brain muscarinic acetylcholine receptors.

    PubMed Central

    Golds, P. R.; Przyslo, F. R.; Strange, P. G.

    1980-01-01

    1 The binding of some antidepressant drugs, including some new drugs of atypical structure (flupenthixol, iprindole, maprotiline, mianserin, nomifensine, tofenacine and viloxazine) to muscarinic acetylcholine receptors in the brain has been studied by displacement of [3H]-atropine. 2 Many of the drugs are potent muscarinic antagonists. 3 Some correlation can be made between the affinity for binding to the muscarinic acetylcholine receptor and the incidence of anticholinergic side effects in clinical usage. PMID:7052344

  14. Sequestration of human muscarinic acetylcholine receptor hm1-hm5 subtypes: effect of G protein-coupled receptor kinases GRK2, GRK4, GRK5 and GRK6.

    PubMed

    Tsuga, H; Okuno, E; Kameyama, K; Haga, T

    1998-03-01

    Sequestration of porcine muscarinic acetylcholine receptor m2 subtypes (m2 receptors) expressed in COS-7 cells is facilitated by coexpression of G protein-coupled receptor kinases 2 (GRK2). We examined the effect of coexpression of GRK2, GRK4 delta, GRK5 and GRK6 on sequestration of human m1-m5 receptors expressed in COS-7 cells, which was assessed as loss of [3H]N-methylscopolamine binding activity from the cell surface. Sequestration of m4 receptors as well as m2 receptors was facilitated by coexpression of GRK2 and attenuated by coexpression of the dominant negative form of GRK2 (DN-GRK2). Sequestration of m3 and m5 receptors also was facilitated by coexpression of GRK2 but not affected by coexpression of DN-GRK2. On the other hand, proportions of sequestered m1 receptors were not significantly different with coexpression of GRK2 and DN-GRK2. GRK4 delta, GRK5 and GRK6 did not facilitate sequestration of m1-m5 receptors in COS-7 cells, except that the sequestration of m2 receptors tended to be facilitated by coexpression of GRK4 delta, GRK5 and GRK6. However, coexpression of GRK4 delta, GRK5, but not GRK6, in BHK-21 cells facilitated sequestration of m2, but not m3, receptors. These results indicate that the effect of GRK2 to facilitate receptor sequestration is not restricted to m2 receptors but is generalized to other muscarinic receptors except m1 receptors and that other kinases, including GRK4 delta, GRK5 and endogenous kinase(s) in COS-7 cells, also contribute to sequestration of m2 and m4 receptors.

  15. Characterization of muscarinic cholinergic receptor subtypes in human peripheral lung

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Yamamura, H.I.

    1988-02-01

    The authors have characterized the muscarinic cholinergic receptor subtypes in human peripheral lung membranes using the selective muscarinic antagonist (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and the classical muscarinic antagonist (/sup 3/H)(-)-quinuclidinyl benzilate. High-affinity binding with pharmacologic specificity was demonstrated for both radioligands. The high affinity Kd for (/sup 3/H)PZ binding determined from saturation isotherms was 5.6 nM, and the Kd for (/sup 3/H)(-)-quinuclidinyl benzilate binding was 14.3 pM. Approximately 62% of the total muscarinic binding sites in human peripheral lung bind (/sup 3/H)PZ with high affinity. There was no significant effect of the guanine nucleotide, guanyl-5'-yl imidodiphosphate, on the inhibition of (/sup 3/H)(-)-quinyclidinyl benzilate binding by the muscarinic agonist carbachol in peripheral lung membranes. If the muscarinic receptor with high affinity for PZ has an important role in bronchoconstriction, its characterization could result in the development of more selective bronchodilators.

  16. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Miyata, Hironori; Matsui, Minoru; Inoue, Masumi

    2015-01-01

    Background and Purpose Activation of muscarinic receptors results in catecholamine secretion in adrenal chromaffin cells in many mammals, and muscarinic receptors partly mediate synaptic transmission from the splanchnic nerve, at least in guinea pigs. To elucidate the physiological functions of muscarinic receptors in chromaffin cells, it is necessary to identify the muscarinic receptor subtypes involved in excitation. Experimental Approach To identify muscarinic receptors, pharmacological tools and strains of mice where one or several muscarinic receptor subtypes were genetically deleted were used. Cellular responses to muscarinic stimulation in isolated chromaffin cells were studied with the patch clamp technique and amperometry. Key Results Muscarinic M1, M4 and M5 receptors were immunologically detected in mouse chromaffin cells, and these receptors disappeared after the appropriate gene deletion. Mouse cells secreted catecholamines in response to muscarinic agonists, angiotensin II and a decrease in external pH. Genetic deletion of M1, but not M3, M4 or M5, receptors in mice abolished secretion in response to muscarine, but not to other stimuli. The muscarine-induced secretion was suppressed by MT7, a snake peptide toxin specific for M1 receptors. Similarly, muscarine failed to induce an inward current in the presence of MT7 in mouse and rat chromaffin cells. The binding affinity of VU0255035 for the inhibition of muscarine-induced currents agreed with that for the M1 receptor. Conclusions and Implications Based upon the effects of genetic deletion of muscarinic receptors and MT7, it is concluded that the M1 receptor alone is responsible for muscarine-induced catecholamine secretion. PMID:25393049

  17. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia

    SciTech Connect

    Weiner, D.M. Howard Hughes Medical Inst., Bethesda, MD ); Levey, A.I. Johns Hopkins Univ., Baltimore, MD ); Brann, M.R. )

    1990-09-01

    Within the basal ganglia, acetylcholine and dopamine play a central role in the extrapyramidal control of motor function. The physiologic effects of these neurotransmitters are mediated by a diversity of receptor subtypes, several of which have now been cloned. Muscarinic acetylcholine receptors are encoded by five genes (m1-m5), and of the two known dopamine receptor subtypes (D1 and D2) the D2 receptor gene has been characterized. To gain insight into the physiological roles of each of these receptor subtypes, the authors prepared oligodeoxynucleotide probes to localize receptor subtype mRNAs within the rat striatum and substantia nigra by in situ hybridization histochemistry. Within the striatum, three muscarinic (m1, m2, m4) receptor mRNAs and the D2 receptor mRNA were detected. The m1 mRNA was expressed in most neurons; the m2 mRNA, in neurons which were both very large and rare; and the m4 and D2 mRNAs, in 40-50% of the neurons, one-third of which express both mRNAs. Within the substantia nigra, pars compacta, only the m5 and D2 mRNAs were detected, and most neurons expressed both mRNAs. These data provide anatomical evidence for the identity of the receptor subtypes which mediate the diverse effects of muscarinic and dopaminergic drugs on basal ganglia function.

  18. LY2033298, a positive allosteric modulator at muscarinic M₄ receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2012-11-01

    Entrainment of circadian rhythms to the light-dark cycle is essential for restorative sleep, and abnormal sleep timing is implicated in central nervous system (CNS) disorders like depression, schizophrenia, and Alzheimer's disease. Many transmitters, including acetylcholine, that exerts its actions via muscarinic receptors modulate the suprachiasmatic nucleus, the master pacemaker. Since positive allosteric modulators of muscarinic M(4) receptors are candidates for treatment of mood and cognitive deficits of CNS disorders, it is important to evaluate their circadian actions. The effects of intraperitoneally applied muscarinic agents on circadian wheel-running rhythms were measured employing hamsters, a model organism for studying activity rhythms. Systemic administration of the muscarinic receptor agonist oxotremorine (0.01-0.04 mg/kg) inhibited light-induced phase delays and advances of hamster circadian wheel-running rhythms. The M₄ positive allosteric modulator, LY2033298 (10-40 mg/kg), had no effect on light-induced phase shifts when administered alone, yet significantly enhanced (at 20 mg/kg) the inhibitory influence of oxotremorine on light-induced phase delays. In addition, the muscarinic receptor antagonist, scopolamine, which was without effect on light-induced phase shifts when administered alone (0.001-0.1 mg/kg), antagonized (at 0.1 mg/kg) the inhibitory effect of oxotremorine and LY2033298 on light-induced phase delays. These results are the first to demonstrate that systemically applied muscarinic receptor agonists modulate circadian activity rhythms, and they also reveal a specific role for M₄ receptors. It will be of importance to evaluate circadian actions of psychotropic drugs acting via M₄ receptors, since they may display beneficial properties under pathological conditions.

  19. Effects of adjunct galantamine to risperidone, or haloperidol, in animal models of antipsychotic activity and extrapyramidal side-effect liability: involvement of the cholinergic muscarinic receptor.

    PubMed

    Wadenberg, Marie-Louise G; Fjällström, Ann-Kristin; Federley, Malin; Persson, Pernilla; Stenqvist, Pia

    2011-06-01

    The acetylcholine esterase inhibitor/cholinergic nicotinic receptor (nAChR) allosteric modulator galantamine (Gal) is used against cognitive impairment in Alzheimer's disease. Negative/cognitive and psychotic symptom improvement in schizophrenia by adjunct Gal to antipsychotic drugs (APDs) has been reported. Cognitive symptoms in schizophrenia may involve brain prefrontal hypo-dopaminergia. Experimental data by others indicate nAChR involvement in animal pro-cognitive effects of Gal. The role of nAChRs in antipsychotic effects by Gal has, however, not been elucidated. Using the conditioned avoidance response (CAR) and the catalepsy tests for antipsychotic activity and extrapyramidal side-effect (EPS) liability, respectively, we here investigated the effects of adjunct Gal (1.25 mg/kg) to the typical APD haloperidol (Hal) (0.05 mg/kg), or the atypical APD risperidone (Ris) (0.2 mg/kg), in rats. Adjunct Gal significantly enhanced APD-like effects by low doses of Hal or Ris, but showed a safe EPS liability profile only in combination with Ris. Pretreatment with the muscarinic receptor (mAChR) antagonist scopolamine, but not the nAChR antagonist mecamylamine, completely reversed the enhancing effects of adjunct Gal to Hal treatment, in the CAR test. While the nAChR-modulating properties of Gal probably contribute to pro-cognitive activity, as shown by others, the present data suggest that any contribution to antipsychotic activity by Gal is mediated primarily via mAChRs. This property combination of Gal may offer a unique, favourable therapeutic profile for schizophrenia treatment.

  20. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  1. Synthesis and muscarinic activity of quinuclidinyl- and (1-azanorbornyl)pyrazine derivatives.

    PubMed

    Street, L J; Baker, R; Book, T; Reeve, A J; Saunders, J; Willson, T; Marwood, R S; Patel, S; Freedman, S B

    1992-01-24

    The synthesis and cortical muscarinic activity of a novel series of pyrazine-based agonists is described. Quinuclidine and azanorbornane derivatives were prepared either by reaction of lithiated pyrazines with azabicyclic ketones, followed by chlorination and reduction, or by reaction of the lithium enolate of the azabicyclic ester with 2-chloropyrazines followed by ester hydrolysis and decarboxylation. Substitution at all three positions of the heteroaromatic ring has been explored. Optimal muscarinic agonist activity was observed for unsubstituted pyrazines in the azanorbornane series. The exo-1-azanorbornane 18a is one of the most efficacious and potent centrally active muscarinic agonists known. Studies on the 3-substituted derivatives have provided evidence of the preferred conformation of these ligands for optimal muscarinic activity. Substitution at C6 gave ligands with increased affinity and reduced efficacy. Moving the position of the diazine ring nitrogens to give pyrimidine and pyridazine derivatives resulted in a significant loss of muscarinic activity.

  2. Muscarinic M1 receptor and cannabinoid CB1 receptor do not modulate paraoxon-induced seizures

    PubMed Central

    Kow, Rebecca L; Cheng, Eugene M; Jiang, Kelly; Le, Joshua H; Stella, Nephi; Nathanson, Neil M

    2015-01-01

    One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon. PMID:25692018

  3. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  4. IN VITRO EFFECTS OF CHLORPYRIFOS, PARATHION, METHYL PARATHION AND THEIR OXONS ON CARDIAC MUSCARINIC RECEPTOR BINDING IN NEONATAL AND ADULT RATS. (R825811)

    EPA Science Inventory

    Organophosphorus insecticides elicit toxicity by inhibiting acetylcholinesterase. Young animals are generally more sensitive than adults to these toxicants. A number of studies reported that some organophosphorus agents also bind directly to muscarinic receptors, in particular...

  5. Pharmacological effects of turmeric on learning, memory and expression of muscarinic receptor genes (M1, M3 and M5) in stress-induced mouse model.

    PubMed

    Khalid¥, Aliya; Shakeel¥, Rabia; Justin, Saira; Iqbal, Ghazala; Shah, Syed Adnan Ali; Zahid, Saadia; Ahmed, Touqeer

    2017-03-15

    Stress is involved in memory impairment by multiple mechanisms including activation of Hypothalamic-Pituitary Axis, which in turn activates release of corticosterone in blood. Cholinergic system blockade by muscarinic antagonist like scopolamine, also impairs memory.

  6. Widespread decreases in cortical muscarinic receptors in a subset of people with schizophrenia.

    PubMed

    Gibbons, Andrew Stuart; Scarr, Elizabeth; Boer, Simone; Money, Tammie; Jeon, Won-Je; Felder, Chris; Dean, Brian

    2013-02-01

    These studies were undertaken to investigate the selectivity of cortical muscarinic receptor radioligand binding in muscarinic M(1) and M(4) receptor knockout mice and to determine whether a marked decrease in [(3)H]pirenzepine binding in Brodmann's area (BA) 9 from a subset of people with schizophrenia was predictive of decreased muscarinic receptors in other central nervous system (CNS) regions. Our data show that, under the conditions used, [(3)H]pirenzepine binding was highly selective for the muscarinic M(1) receptor whereas both [(3)H]AF-DX 386 and [(3)H]4DAMP had less discriminatory power. In addition, the data suggest that a marked decrease in [(3)H]pirenzepine binding in BA 9 from a subset of people with schizophrenia is predictive of decreases in muscarinic receptors in other CNS regions. However, there were some region-specific decreases in muscarinic receptors in tissue from people with schizophrenia who were outside this subset. These data add to a growing body of evidence suggesting there are widespread decreases in muscarinic receptors in the CNS of some subjects with schizophrenia, as demonstrated by neuroimaging. Our data have implications for understanding the potential clinical utility of drugs directed at the orthosteric and allosteric sites of muscarinic receptors to treat schizophrenia.

  7. The Effects of Repeated Low-Level Sarin Exposure on Muscarinic M1 Receptor Binding, Amyloid Precursor Protein Levels and Neuropathology

    DTIC Science & Technology

    2005-08-01

    Muscarinic; Nerve agents; Organophosphorus; Pirenzepine ; Receptor Binding; Sarin 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...either Bmax (receptor density) or Kd (receptor affinity) following cortical M1 muscarinic receptor binding using [3H]- Pirenzepine , across all five...binding assays using [3H]- Pirenzepine (m1AChR ligand; Hammer et al., 1980), Western blotting using an antibody to APP in cortex, and neuropathological

  8. Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane .

    PubMed

    Bymaster, F P; Shannon, H E; Rasmussen, K; Delapp, N W; Mitch, C H; Ward, J S; Calligaro, D O; Ludvigsen, T S; Sheardown, M J; Olesen, P H; Swedberg, M D; Sauerberg, P; Fink-Jensen, A

    1998-09-04

    (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3 .2.1]octane (PTAC) is a potent muscarinic receptor ligand with high affinity for central muscarinic receptors and no or substantially less affinity for a large number of other receptors or binding sites including dopamine receptors. The ligand exhibits partial agonist effects at muscarinic M2 and M4 receptors and antagonist effects at muscarinic M1, M3 and M5 receptors. PTAC inhibited conditioned avoidance responding, dopamine receptor agonist-induced behavior and D-amphetamine-induced FOS protein M5 expression in the nucleus accumbens without inducing catalepsy, tremor or salivation at pharmacologically relevant doses. The effect of PTAC on conditioned avoidance responding and dopamine receptor agonist-induced behavior was antagonized by the acetylcholine receptor antagonist scopolamine. The compound selectively inhibited dopamine cell firing (acute administration) as well as the number of spontaneously active dopamine cells (chronic administration) in the limbic ventral tegmental area (A10) relative to the non-limbic substantia nigra, pars compacta (A9). The results demonstrate that PTAC exhibits functional dopamine receptor antagonism despite its lack of affinity for the dopamine receptors and indicate that muscarinic receptor partial agonists may be an important new approach in the medical treatment of schizophrenia.

  9. Pharmacological characteristics of Sho-seiryu-to, an antiallergic Kampo medicine without effects on histamine H1 receptors and muscarinic cholinergic system in the brain.

    PubMed

    Sakaguchi, M; Iizuka, A; Yuzurihara, M; Ishige, A; Komatsu, Y; Matsumiya, T; Takeda, H

    1996-01-01

    The pharmacological characteristics of Sho-seiryu-to, an antiallergic Kampo medicine, were investigated. Forty-eight-hour passive cutaneous anaphylactic (PCA) reaction was significantly inhibited in rats orally administered Sho-seiryu-to (1000 mg/kg). Sho-seiryu-to significantly inhibited increase in vascular permeability induced by histamine. These data confirm previous findings that Sho-seiryu-to has antiallergic activity in animals and suggest that the antagonism of histamine may be an antiallergic mechanism of Sho-seiryu-to. Sho-seiryu-to did not affect locomotor activity or motor coordination in mice. Although ketotifen prolonged sleeping time induced by pentobarbital, Sho-seiryu-to had no such effect. Nor was there any effect on oxotremorine-induced tremor and [3H]-mepyramine binding to histamine H1 receptors in rat brain. Thus, Sho-seiryu-to appears to be useful for treating type I allergy, with relatively few side effects such as sedation and drowsiness due mainly to blockade of histamine H1 and muscarinic receptors in the brain.

  10. Regional development of muscarinic cholinergic binding sites in the prenatal rat brain.

    PubMed

    Schlumpf, M; Palacios, J M; Cortes, R; Lichtensteiger, W

    1991-01-01

    The ontogeny of muscarinic cholinergic binding sites was studied in rat fetal central nervous system by in vitro autoradiographic techniques using [3H]N-methyl scopolamine as ligand (1 nM). Nonspecific binding was determined after the addition of 1 microM atropine. The main findings of this study are the early appearance of muscarinic cholinergic binding sites in fetal rat central nervous system before gestational day 14, their subsequent spread in a caudofrontal direction and the rapid change of patterns within individual brain regions. Muscarinic cholinergic sites are present shortly after cell birth, though the time-lag between cell generation and expression of muscarinic sites differs between neuronal cell populations. High receptor densities are noted in certain brainstem nuclei that are important for early fetal and neonatal behaviors.

  11. Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development

    PubMed Central

    Klein, Maike K.; Haberberger, Rainer V.; Hartmann, Petra; Faulhammer, Petra; Lips, Katrin S.; Krain, Benjamin; Wess, Jürgen; Kummer, Wolfgang; König, Peter

    2014-01-01

    Ciliary beating of airway epithelial cells drives the removal of mucus and particles from the airways. Mucociliary transport and possibly airway epithelial development are governed by muscarinic acetylcholine receptors but the precise roles of the subtypes involved are unknown. This issue was addressed by determining cilia-driven particle transport, ciliary beat frequency, and the composition and ultrastructural morphology of the tracheal epithelium in M1–M5 muscarinic receptor gene-deficient mice. Knockout of M3 muscarinic receptors prevented an increase in particle transport speed and ciliary beat frequency in response to muscarine. Furthermore, the ATP response after application of muscarine was blunted. Pretreatment with atropine before application of muscarine restored the response to ATP. Additional knockout of the M2 receptor in these mice partially restored the muscarine effect most likely through the M1 receptor and normalized the ATP response. M1, M4, and M5 receptor deficient mice exhibited normal responses to muscarine. None of the investigated mutant mouse strains had any impairment of epithelial cellular structure or composition. In conclusion, M3 receptors stimulate whereas M2 receptors inhibit cilia-driven particle transport. The M1 receptor increases cilia-driven particle transport if the M3 and M2 receptor are missing. None of the receptors is necessary for epithelial development. PMID:19213795

  12. Effects of imidafenacin (KRP-197/ONO-8025), a new anti-cholinergic agent, on muscarinic acetylcholine receptors. High affinities for M3 and M1 receptor subtypes and selectivity for urinary bladder over salivary gland.

    PubMed

    Kobayashi, Fumiyoshi; Yageta, Yuichi; Segawa, Mitsuru; Matsuzawa, Shigeki

    2007-01-01

    Imidafenacin (CAS 170105-16-5, KRP-197, ONO-8025) is an antagonist for the muscarinic acetylcholine (ACh) receptor currently under development for the treatment of overactive bladder. Affinities of imidafenacin and other drugs for muscarinic ACh receptor subtypes were investigated by examining inhibitory effects on ACh release in the rat urinary bladder and K+ efflux in the rat salivary gland in functional and binding assays. In the functional assay, imidafenacin had higher affnities for M3 and M1 receptors than for the M2 receptor. In contrast, metabolites of imidafenacin (M-2, M-4 and M-9) had low affinities for muscarinic ACh receptor subtypes. Darifenacin had selectivity for the M3 receptor, while propiverine, tolterodine and oxybutynin had no selectivity for muscarinic ACh receptors. In carbamylcholine (CCh)-induced contraction in the urinary bladder, imidafenacin, propiverine, tolterodine and oxybutynin had affinities similar to those for the M3 receptor in the ileum. In the binding assay for human muscarinic ACh receptor subtypes, imidafenacin had higher affinities for m3 and m1 receptors than for m2 receptor, but tolterodine had no selectivity for m1, m2 and m3 receptors. In ACh release in the urinary bladder, inhibitory effects of imidafenacin, tolterodine, oxybutynin and darifenacin seemed to be partially mediated by the M1 receptor. In ACh-induced and electrical stimulation-induced K+ efflux from the salivary gland, inhibitory effects (IC50) of imidafenacin, propiverine, tolterodine, oxybutynin and darifenacin might be closely related to those for the M3 receptor in the ileum. These results suggest that imidafenacin more strongly antagonizes cholinomimetics on M3 and M1 receptors than on the M2 receptor. Moreover, imidafenacin seems to inhibit the contraction of the bladder smooth muscle by mediating antagonism to the M3 receptor and to regulate ACh release by mediating prejunctional facilitatory M1 receptor. Imidafenacin also inhibited K+ efflux from

  13. Cardiac Muscarinic Receptor Overexpression in Sudden Infant Death Syndrome

    PubMed Central

    Livolsi, Angelo; Niederhoffer, Nathalie; Dali-Youcef, Nassim; Rambaud, Caroline; Olexa, Catherine; Mokni, Walid; Gies, Jean-Pierre; Bousquet, Pascal

    2010-01-01

    Background Sudden infant death syndrome (SIDS) remains the leading cause of death among infants less than 1 year of age. Disturbed expression of some neurotransmitters and their receptors has been shown in the central nervous system of SIDS victims but no biological abnormality of the peripheral vago-cardiac system has been demonstrated to date. The present study aimed to seek vago-cardiac abnormalities in SIDS victims. The cardiac level of expression of muscarinic receptors, as well as acetylcholinesterase enzyme activity were investigated. Methodology/Principal Findings Left ventricular samples and blood samples were obtained from autopsies of SIDS and children deceased from non cardiac causes. Binding experiments performed with [3H]NMS, a selective muscarinic ligand, in cardiac membrane preparations showed that the density of cardiac muscarinic receptors was increased as shown by a more than doubled Bmax value in SIDS (n = 9 SIDS versus 8 controls). On average, the erythrocyte acetylcholinesterase enzyme activity was also significantly increased (n = 9 SIDS versus 11 controls). Conclusions In the present study, it has been shown for the first time that cardiac muscarinic receptor overexpression is associated with SIDS. The increase of acetylcholinesterase enzyme activity appears as a possible regulatory mechanism. PMID:20209124

  14. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  15. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  16. The double-H maze test, a novel, simple, water-escape memory task: acquisition, recall of recent and remote memory, and effects of systemic muscarinic or NMDA receptor blockade during training.

    PubMed

    Pol-Bodetto, Sarah; Jeltsch-David, Hélène; Lecourtier, Lucas; Rusnac, Nathalia; Mam-Lam-Fook, Célia; Cosquer, Brigitte; Geiger, Karin; Cassel, Jean-Christophe

    2011-03-17

    To explore spatial cognition in rodents, research uses maze tasks, which differ in complexity, number of goals and pathways, behavioural flexibility, memory duration, but also in the experimenter's control over the strategy developed to reach a goal (e.g., allocentric vs. egocentric). This study aimed at validating a novel spatial memory test: the double-H maze test. The transparent device made of an alley with two opposite arms at each extremity and two in its centre is flooded. An escape platform is submerged in one arm. For experiments 1-3, rats were released in unpredictable sequences from one of both central arms to favour an allocentric approach of the task. Experiment 1 (3 trials/day over 6 days) demonstrated classical learning curves and evidence for recent and nondegraded remote memory performance. Experiment 2 (2 days, 3 trials/day) showed a dose-dependent alteration of task acquisition/consolidation by muscarinic or NMDA receptor blockade; these drug effects vanished with sustained training (experiment 3; 4 days, 3 trials/day). Experiment 4 oriented rats towards a procedural (egocentric) approach of the task. Memory was tested in a misleading probe trial. Most rats immediately switched from response learning-based to place learning-based behaviour, but only when their initial view on environmental cues markedly differed between training and probe trials. Because this simple task enables the formation of a relatively stable memory trace, it could be particularly adapted to study consolidation processes at a system level or/and the interplay between procedural and declarative-like memory systems.

  17. A pilot study comparing the antispasmodic effects of inhaled salmeterol, salbutamol and ipratropium bromide using different aerosol devices on muscarinic bronchoconstriction in healthy cats.

    PubMed

    Leemans, Jérôme; Kirschvink, Nathalie; Bernaerts, Frédérique; Clercx, Cécile; Cambier, Carole; Gustin, Pascal

    2009-05-01

    This study compared the duration and magnitude of the antispasmodic effects of salmeterol (SLM), salbutamol (SAL), ipratropium bromide (IB) and the combination of SAL and IB (SAL/IB) against carbachol-induced bronchoconstriction in healthy cats, and investigated the gain in efficacy using a two or fourfold increase in drug dosages. The drug regimens used were: (1) SLM 25 microg, SAL 100 microg, IB 20 microg and SAL/IB 100 microg/20 microg for bronchodilators delivered by a metered-dose inhaler (MDI); (2) SAL 3.75 mg and IB 62.5 microg for nebulised (NEB) medications. To monitor the bronchodilator effect, airway responsiveness was assessed at different time points using barometric whole-body plethysmography and calculation of the concentration of inhaled carbachol inducing a 300% increase of baseline Penh (enhanced pause), an estimator of airflow limitation. Maximum C-Penh300 was recorded 15 min after NEB SAL, IB MDI, NEB IB and 1h after SAL MDI and 4h after SLM MDI, respectively. C-Penh300 was significantly different from control values (without treatment) up to 24h for SLM MDI, 8h for IB MDI and 4h for other drugs. In terms of efficacy, SAL/IB MDI showed a synergistic antispasmodic effect at 15 min, 4h and 8h after administration. A fourfold increase of the initial dose of IB MDI and NEB IB significantly increased C-Penh300. Despite a fourfold dose increase, SLM displayed the weakest degree of bronchoprotection compared to other bronchodilators. The study provides evidence that inhaled bronchodilators are efficient at preventing muscarinic-induced bronchospasm in healthy cats and that SAL and IB appear to be short-acting bronchodilators in contrast to SLM.

  18. Muscarinic responses of gastric parietal cells

    SciTech Connect

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.; Hersey, S.J.; Sachs, G. )

    1991-06-01

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the (Ca)i transient.

  19. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex.

    PubMed

    Di Liberto, Valentina; Frinchi, Monica; Verdi, Vincenzo; Vitale, Angela; Plescia, Fulvio; Cannizzaro, Carla; Massenti, Maria F; Belluardo, Natale; Mudò, Giuseppa

    2017-02-01

    In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.

  20. The Role of Muscarinic Receptors in the Pathophysiology of Mood Disorders: A Potential Novel Treatment?

    PubMed Central

    Jeon, Won Je; Dean, Brian; Scarr, Elizabeth; Gibbons, Andrew

    2015-01-01

    The central cholinergic system has been implicated in the pathophysiology of mood disorders. An imbalance in central cholinergic neurotransmitter activity has been proposed to contribute to the manic and depressive episodes typical of these disorders. Neuropharmacological studies into the effects of cholinergic agonists and antagonists on mood state have provided considerable support for this hypothesis. Furthermore, recent clinical studies have shown that the pan-CHRM antagonist, scopolamine, produces rapid-acting antidepressant effects in individuals with either major depressive disorder (MDD) or bipolar disorder (BPD), such as bipolar depression, contrasting the delayed therapeutic response of conventional mood stabilisers and antidepressants. This review presents recent data from neuroimaging, post-mortem and genetic studies supporting the involvement of muscarinic cholinergic receptors (CHRMs), particularly CHRM2, in the pathophysiology of MDD and BPD. Thus, novel drugs that selectively target CHRMs with negligible effects in the peripheral nervous system might produce more rapid and robust clinical improvement in patients with BPD and MDD. PMID:26630954

  1. Noninvasive evaluation of brain muscarinic receptor occupancy of oxybutynin, darifenacin and imidafenacin in rats by positron emission tomography.

    PubMed

    Yoshida, Akira; Maruyama, Shuji; Fukumoto, Dai; Tsukada, Hideo; Ito, Yoshihiko; Yamada, Shizuo

    2010-07-31

    The current study was conducted to evaluate, by the noninvasive positron emission tomography (PET), the binding of antimuscarinic agents used to treat overactive bladder (OAB) to muscarinic receptors in rat brain. Muscarinic receptor occupancy in the rat brain after the intravenous (i.v.) injection of oxybutynin, darifenacin and imidafenacin was evaluated by using a small animal PET system, and compared with the results by ex vivo autoradiographic and ex vivo radioligand binding experiments. In PET study, the i.v. injection of oxybutynin but not darifenacin or imidafenacin at pharmacological doses decreased significantly binding potential (BP) of (+)N-[(11)C]methyl-3-piperidyl benzilate ([(11)C](+)3-MPB) in the rat cerebral cortex and corpus striatum in a dose-dependent manner. Similarly, in the in vivo autoradiographic experiment, oxybutynin dose-dependently reduced binding of [(11)C](+)3-MPB in the brain, whereas darifenacin and imidafenacin did not. Following the i.v. injection of oxybutynin, darifenacin and imidafenacin, there was a similar degree of binding to muscarinic receptors in the bladder as demonstrated by a significant increase in apparent dissociation constant (K(d)) values for specific [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS) binding. Significant binding of muscarinic receptors in the brain was observed after the injection of oxybutynin but not darifenacin or imidafenacin. Oxybutynin but not darifenacin or imidafenacin has potential side effects on the central nervous system (CNS) in patients with OAB. The results reveal the noninvasive characterization of brain receptor occupancy by PET to be a powerful tool for precise evaluation of adverse CNS effects of antimuscarinic agents in pre-clinical and clinical evaluations. Copyright 2010 Elsevier Inc. All rights reserved.

  2. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.

  3. Functional characterization of muscarinic receptors in murine airways.

    PubMed Central

    Garssen, J.; Van Loveren, H.; Gierveld, C. M.; Van der Vliet, H.; Nijkamp, F. P.

    1993-01-01

    1. The effects of muscarinic receptor antagonists considered to be selective for M1 receptors (pirenzepine; PZ), M2 receptors (AFDX-116), and for M3 receptors (4-diphenyl acetoxy N-methyl-piperidine (4-DAMP)) were used to investigate the existence of muscarinic receptors subtypes in murine airways. Atropine was used as a nonselective antagonist. The effects of these antagonists were studied upon tracheal contractions induced either by EFS (electric field stimulation) or by application of an exogenous cholinoceptor agonist (arecoline). 2. The muscarinic receptor antagonists tested inhibited arecoline-induced tracheal contractions with the following rank order of potency: 4-DAMP = atropine > pirenzepine = AFDX-116. The rank order of potency of the muscarinic antagonists used in inhibiting EFS-induced tracheal contractions was: 4-DAMP = atropine > PZ > AFDX-116. The pA2 values for these antagonists were similar when compared to the pA2 values determined in guinea-pig and bovine airway smooth muscle. 3. In addition to in vitro studies, the effects of inhalation of the different muscarinic antagonists on lung function parameters in vivo were investigated. Inhalation of 4-DAMP induced a decrease in airway resistance and an increase in lung compliance. In contrast, inhalation of AFDX-116 induced an increase in airway resistance and almost no change in lung compliance. Apart from some minor effects of atropine on airway resistance, atropine, PZ, and pilocarpine failed to induce changes in lung mechanics as determined by in vivo lung function measurements. 4. The results provide evidence for the existence of M3 receptors on murine tracheae that are involved in the contraction of tracheal smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 Figure 7 PMID:8495246

  4. Muscarinic receptor heterogeneity in follicle-enclosed Xenopus oocytes

    PubMed Central

    Arellano, Rogelio O; Garay, Edith; Miledi, Ricardo

    1999-01-01

    Ionic current responses elicited by acetylcholine (ACh) in follicle-enclosed Xenopus oocytes (follicles) were studied using the two-electrode voltage-clamp technique. ACh generated a fast chloride current (Fin) and inhibited K+ currents gated by cAMP (IK,cAMP) following receptor activation by adenosine, follicle-stimulating hormone or noradrenaline. These previously described cholinergic responses were confirmed to be of the muscarinic type, and were independently generated among follicles from different frogs.Inhibition of IK,cAMP was about 100 times more sensitive to ACh than Fin activation; the half-maximal effective concentrations (EC50) were 6.6 ± 0.4 and 784 ± 4 nm, respectively.Both responses were blocked by several muscarinic receptor antagonists. Using the respective EC50 concentrations of ACh as standard, the antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide blocked the two effects with very different potencies. Fin was blocked with a half-maximal inhibitory concentration (IC50) of 2.4 ± 0.07 nm, whilst the IC50 for IK,cAMP inhibition was 5.9 ± 0.2 μm.Oxotremorine, a muscarinic agonist, preferentially stimulated IK,cAMP inhibition (EC50= 15.8 ± 1.4 μm), whilst Fin was only weakly activated. In contrast, oxotremorine inhibited Fin generated by ACh with an IC50 of 2.3 ± 0.7 μm.Fin elicited via purinergic receptor stimulation was not affected by oxotremorine, indicating that the inhibition produced was specific to the muscarinic receptor, and suggesting that muscarinic actions do not exert a strong effect on follicular cell-oocyte coupling.Using reverse transcription-PCR, transcripts of a previously cloned muscarinic receptor from Xenopus (XlmR) were amplified from the RNA of both the isolated follicular cells and the oocyte. The pharmacological and molecular characteristics suggest that XlmR is involved in IK,cAMP inhibition.In conclusion, follicular cells possess two different muscarinic receptors, one resembling the M2 (or M4) subtype

  5. Comparison of anti-M2-muscarinic effect of AF-DX 116 on atrioventricular nodal conduction with those of pirenzepine and atropine as antibradyarrhythmic drugs.

    PubMed

    Sasaki, S; Motomura, S

    1999-06-01

    Selectivity of antimuscarinic actions of AF-DX 116 (AF-DX) on the atrioventricular (AV) nodal conduction was compared with those of pirenzepine and atropine by using the canine isolated, blood-perfused AV node preparation and the open-chest in situ dog heart. In the isolated AV node preparation, dose-response curves for negative dromotropic effects (prolongation of Atrio-His interval) of carbachol (CCh) injected into the posterior septal artery were shifted to the right in parallel by AF-DX, pirenzepine, and atropine with apparent pA2-values of 13, 27.5, and 0.45 microg, respectively, and slopes of the modified Schild plot of nearly unity. Meanwhile, dose-response curves for coronary vasodilator effects of CCh were shifted to the right by AF-DX, pirenzepine, and atropine with the apparent pA2 values of 68, 12.5, and 0.55 microg, respectively, but the slopes were far from unity. In the in situ open-chest heart, dose-response curves for negative dromotropic effects (prolongation of AV conduction time) of CCh given intravenously were shifted to the right in parallel by AF-DX, pirenzepine, and atropine with apparent pA2 values of 36, 32, and 1.25 microg/kg, respectively, and the slope of nearly unity, whereas dose-response curves for hypotensive effects of CCh were shifted to the right by AF-DX, pirenzepine, and atropine with apparent pA2 values of 105, 15, and 0.65 microg/kg, respectively, but the slopes of AF-DX and pirenzepine were far from unity. In addition, prolongations of AV conduction time by electrical stimulation of the left vagus nerve in the in situ heart were suppressed by AF-DX, pirenzepine, and atropine with the ID50, dose for 50% suppression, of 40, 35, and 1.9 microg/kg, respectively. These results suggest that (a) the potency of antimuscarinic actions of AF-DX on the CCh-induced negative dromotropic effects was almost equal to that of pirenzepine, and approximately 30 times less potent than atropine; (b) the M2-subtype selectivity of AF-DX was

  6. Two muscarinic depolarizing mechanisms in mammalian sympathetic neurons.

    PubMed

    Hashiguchi, T; Kobayashi, H; Tosaka, T; Libet, B

    1982-06-24

    A voltage-sensitive outward membrane current ('M') and a consequent change in conductance (delta G) appear with a slow time-constant, in principal neurons of rabbit superior cervical ganglion (SCG), only when membrane potentials (Vm) are depolarized to less than -60 mV. Effects of muscarine on the voltage-current curves indicate that, in this depolarized range of less than -60 mV, suppression of M-current could contribute a muscarinic depolarization accompanied by a decrease in G; but that, at all Vms tested (about -90 to -40 mV), there is an additional larger muscarinic depolarization with no delta G. Thus, the muscarinic depolarizing response and the equivalent slow excitatory postsynaptic potential in the rabbit SCG may consist of two different components: one is due to the suppression of M-current and is substantial only in the depolarized range; the other is probably mediated via an intracellular increase in cyclic GMP and can account for most or all of the response at Vms more negative than -55 mV.

  7. Muscarinic receptors in perirhinal cortex control trace conditioning.

    PubMed

    Bang, Sun Jung; Brown, Thomas H

    2009-04-08

    Trace conditioning requires that a transient representation of the conditional stimulus (CS) persists during the time interval between the CS offset and the onset of the unconditional stimulus. According to one hypothesis, this transient CS representation is supported by endogenous activity in "persistent-firing" neurons of perirhinal cortex (PR). By definition, persistent-firing neurons discharge for tens of seconds or minutes after the termination of the original spike-initiating stimulus. This continued spiking does not depend on recurrent circuit activity and can be reliably and completely blocked by muscarinic receptor antagonists. The present study evaluated the role of PR muscarinic receptors in trace fear conditioning. Before conditioning, rats received bilateral intra-PR infusions with either saline or scopolamine, a nonselective muscarinic receptor antagonist. Scopolamine infusions profoundly impaired trace conditioning but had no effect on delay conditioning or context conditioning. The results encourage a more general understanding of muscarinic receptors in PR and they motivate additional tests of the emerging theory that persistent-firing neurons support aspects of transient memory.

  8. Effects of agonist efficacy on desensitization of phosphoinositide hydrolysis mediated by m1 and m3 muscarinic receptors expressed in Chinese hamster ovary cells

    SciTech Connect

    Hu, J.; Wang, S.Z.; el-Fakahany, E.E. )

    1991-06-01

    Muscarinic receptor agonist-induced desensitization of phosphoinositide (PI) hydrolysis and loss of receptors were studied in Chinese hamster ovary (CHO) cells transfected with the m1 and m3 muscarinic receptor genes. Long-term exposure to the full agonist carbamylcholine (CBC) resulted in a time-dependent attenuation of the maximal PI response and a decrease in agonist potency. This desensitization was accompanied by a parallel loss of maximal ligand binding without an alteration of the binding affinity. The time course of both receptor desensitization and down-regulation was similar in m1 and m3 CHO cells. The PI response to the partial agonist McN-A-343 (McN) in m1 cells was more sensitive to desensitization by CBC than the response to the latter agonist, and this desensitization was faster than receptor down-regulation. Desensitization of the PI response to McN was reflected as a decrease in the maximal response without a marked change in potency. McN induced slow desensitization of the PI response to CBC but a much faster desensitization of its own response. Our data provide evidence that although muscarinic agonist-induced desensitization of PI hydrolysis in CHO cells is due mainly to loss of receptors, there are other important factors which play a role in this process, e.g., receptor-effector uncoupling. The relative contribution of these different mechanisms depends on the efficacy of the agonists used for the receptor desensitization and activation steps.

  9. General pharmacological profile of the novel muscarinic receptor agonist SNI-2011, a drug for xerostomia in Sjögren's syndrome. 4th communication: Effects on gastrointestinal, urinary and reproductive systems and other effects.

    PubMed

    Arisawa, Hirohiko; Fukui, Kenji; Imai, Eiichi; Fujise, Nobuaki; Masunaga, Hiroaki

    2002-01-01

    A novel muscarinic receptor agonist, SNI-2011 ((+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] monohydrochloride hemihydrate, cevimeline, CAS 153504-70-2), is a candidate therapeutic drug for xerostomia in Sjögren's syndrome. The general pharmacological properties of this drug on the gastrointestinal, urinary and reproductive systems and other tissues were investigated in mice, rats guinea pigs, rabbits and dogs. 1. Gastrointestinal system: SNI-2011 did not cause any effects on the gastrointestinal system, i.e. the intestinal transport of charcoal meal in mice, the secretion of gastric and bile juices, and the formation of ulcer induced by water immersion restraint in rats. 2. Urinary and reproductive systems: SNI-2011 augmented the spontaneous movement of rat pregnant uterus in vivo at 0.3 mg/kg i.v. or higher, and this effect was not observed in the non-pregnant uterus. SNI-2011 increased the spontaneous movement of isolated guinea pig bladder (3 x 10(-6) mol/l or higher) and increased the in vivo spontaneous movement of rat bladder (0.3 mg/kg i.v. or higher). SNI-2011 caused increases in rat urine volume, pH and urinary excretion of Na+ and Cl- at 30 mg/kg p.o. 3. Others: SNI-2011 had no effect on the vascular permeability in mice, hematological parameters and blood coagulation in rats. SNI-2011 had neither hemolytic nor anti-inflammatory effect. These results suggest that SNI-2011 has muscarinic effects on the gastrointestinal, urinary and reproductive systems and other tissues at the doses approximately 10-fold higher than the doses needed for saliva secretion.

  10. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD

    PubMed Central

    Moulton, Bart C; Fryer, Allison D

    2011-01-01

    In the lungs, parasympathetic nerves provide the dominant control of airway smooth muscle with release of acetylcholine onto M3 muscarinic receptors. Treatment of airway disease with anticholinergic drugs that block muscarinic receptors began over 2000 years ago. Pharmacologic data all indicated that antimuscarinic drugs should be highly effective in asthma but clinical results were mixed. Thus, with the discovery of effective β-adrenergic receptor agonists the use of muscarinic antagonists declined. Lack of effectiveness of muscarinic antagonists is due to a variety of factors including unwanted side effects (ranging from dry mouth to coma) and the discovery of additional muscarinic receptor subtypes in the lungs with sometimes competing effects. Perhaps the most important problem is ineffective dosing due to poorly understood differences between routes of administration and no effective way of testing whether antagonists block receptors stimulated physiologically by acetylcholine. Newer muscarinic receptor antagonists are being developed that address the problems of side effects and receptor selectivity that appear to be quite promising in the treatment of asthma and chronic obstructive pulmonary disease. LINKED ARTICLES This article is part of a themed issue on Respiratory Pharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-1 PMID:21198547

  11. Alkylating derivative of oxotremorine interacts irreversibly with the muscarinic receptor

    SciTech Connect

    Ehlert, F.J.; Jenden, D.J.; Ringdahl, B.

    1984-03-05

    A 2-chloroethylamine derivative of oxotremorine was studied in pharmacological experiments and muscarinic receptor binding assays. The compound, N-(4-(2-chloroethylmethylamino)-2-butynyl)-2-pyrrolidone (BM 123), forms an aziridinium ion in aqueous solution at neutral pH that stimulates contractions of guinea pig ileum with a potency similar to that of oxotremorine. Following the initial stimulation, there is a long lasting period of lack of sensitivity of the guinea pig ileum to muscarinic agonists. BM 123 also produces muscarinic effects in vivo. When homogenates of the rat cerebral cortex were incubated with BM 123 and assayed subsequently in muscarinic receptor binding assays, a loss of binding capacity for the muscarinic antagonist, (/sup 3/H)N-methylscopolamine ((/sup 3/H)NMS), was noted without a change in affinity. Similar observations were made in (/sup 3/H)1-3-quinuclidinyl benzilate ((/sup 3/H)-QNB) binding assays on the forebrains of mice that had been injected with BM 123 24 hr earlier. The loss in receptor capacity for both (/sup 3/H)NMS and (/sup 3/H)-QNB was prevented by atropine treatment. Kinetic studies of the interaction of BM 123 with homogenates of the rat cerebral cortex in vitro showed that the half-time for the loss of (/sup 3/H)-QNB binding sites increased from 10 to 45 min as the concentration of BM 123 decreased from 10 to 1 ..mu..M. In contrast to the aziridinium ion, the parent 2-chloroethylamine compound and the alcoholic hydrolysis product were largely devoid of pharmacological and binding activity.

  12. Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.

    PubMed

    Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi

    2015-08-01

    Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons.

  13. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity.

    PubMed

    Bymaster, Frank P; Carter, Petra A; Yamada, Masahisa; Gomeza, Jesus; Wess, Jürgen; Hamilton, Susan E; Nathanson, Neil M; McKinzie, David L; Felder, Christian C

    2003-04-01

    Muscarinic agonist-induced parasympathomimetic effects, in vivo phosphoinositide hydrolysis and seizures were evaluated in wild-type and muscarinic M1-M5 receptor knockout mice. The muscarinic agonist oxotremorine induced marked hypothermia in all the knockout mice, but the hypothermia was reduced in M2 and to a lesser extent in M3 knockout mice. Oxotremorine-induced tremor was abolished only in the M2 knockout mice. Muscarinic agonist-induced salivation was reduced to the greatest extent in M3 knockout mice, to a lesser degree in M1 and M4 knockout mice, and was not altered in M2 and M5 knockout mice. Pupil diameter under basal conditions was increased only in the M3 knockout mice. Pilocarpine-induced increases in in vivo phosphoinositide hydrolysis were completely absent in hippocampus and cortex of M1 knockout mice, but in vivo phosphoinositide hydrolysis was unaltered in the M2-M5 knockout mice. A high dose of pilocarpine (300 mg/kg) caused seizures and lethality in wild-type and M2-M5 knockout mice, but produced neither effect in the M1 knockout mice. These data demonstrate a major role for M2 and M3 muscarinic receptor subtypes in mediating parasympathomimetic effects. Muscarinic M1 receptors activate phosphoinositide hydrolysis in cortex and hippocampus of mice, consistent with the role of M1 receptors in cognition. Muscarinic M1 receptors appear to be the only muscarinic receptor subtype mediating seizures.

  14. Differential Muscarinic Modulation in the Olfactory Bulb

    PubMed Central

    Smith, Richard S.; Hu, Ruilong; DeSouza, Andre; Eberly, Christian L.; Krahe, Krista; Chan, Wilson

    2015-01-01

    Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input–output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic

  15. Vasoactive Intestinal Polypeptide and Muscarinic Receptors: Supersensitivity Induced by Long-Term Atropine Treatment

    NASA Astrophysics Data System (ADS)

    Hedlund, Britta; Abens, Janis; Bartfai, Tamas

    1983-04-01

    Long-term treatment of rats with atropine induced large increases in the numbers of muscarinic receptors and receptors for vasoactive intestinal polypeptide in the salivary glands. Since receptors for vasoactive intestinal polypeptide coexist with muscarinic receptors on the same neurons in this preparation, the results suggest that a drug that alters the sensitivity of one receptor may also affect the sensitivity of the receptor for a costored transmitter and in this way contribute to the therapeutic or side effects of the drug.

  16. M1 muscarinic receptors are necessary for retrieval of remote context fear memory.

    PubMed

    Patricio, Rafael Rodisanski; Soares, Juliana Carlota Kramer; Oliveira, Maria Gabriela Menezes

    2017-02-01

    Several studies have investigated the transition of consolidation of recent memory to remote memory in aversively motivated tasks, such as contextual fear conditioning (CFC) and inhibitory avoidance (IA). However, the mechanisms that serve the retrieval of remote memories, has not yet been fully understood. Some evidences suggest that the central cholinergic system appears be involved in the modulation of these processes. Therefore, the present study aimed to investigate the effects of a pre-test administration of dicyclomine, a high-affinity M1 muscarinic receptor antagonist, on the retrieval of remote memories in fear conditioning and IA tasks. Male Wistar rats were trained, and after 1 or 28days, the rats received dicyclomine (16 or 32mg/kg, intraperitoneally, i.p.) and were tested in CFC, tone fear conditioning (TFC) and IA tasks. At both time intervals, 32mg/kg dicyclomine induced impairment of CFC. In TFC task only the performance of the rats 28days after training was impaired. The IA task was not affected in any of the studied intervals. These findings suggest a differential contribution of muscarinic receptors on recent and remote memories retrieval revealing a more generalized role in remote memory.

  17. Ozone-induced airway hyperresponsiveness and loss of neuronal M2 muscarinic receptor function.

    PubMed

    Schultheis, A H; Bassett, D J; Fryer, A D

    1994-03-01

    The effect of acute ozone exposure on the function of efferent parasympathetic nerves, M3 muscarinic receptors on airway smooth muscle, and inhibitory M2 muscarinic receptors on the parasympathetic nerves was studied. Immediately after exposure to 2.0 ppm ozone for 4 h, guinea pigs became hyperresponsive to electrical stimulation of the vagus nerves. The normal airway response to intravenous cholinergic agonists at this time demonstrates normal M3 receptor function. M2 muscarinic receptors on the nerves, which normally inhibit release of acetylcholine, were dysfunctional after ozone exposure, as demonstrated by the failure of the muscarinic agonist pilocarpine to inhibit, and the failure of the M2 antagonist gallamine to potentiate, vagally mediated bronchoconstriction. Thus, loss of inhibitory M2 muscarinic receptor function after ozone exposure potentiates release of acetylcholine from the vagus nerves, increasing vagally mediated bronchoconstriction. By 14 days, postozone responses to vagal nerve stimulation were not different from those of air-exposed animals and the function of the neuronal M2 muscarinic receptor was normal, confirming that ozone-induced hyperresponsiveness is reversible.

  18. Muscarinic inhibition of hippocampal and striatal adenylyl cyclase is mainly due to the M(4) receptor.

    PubMed

    Sánchez, Gonzalo; Colettis, Natalia; Vázquez, Pablo; Cerveñansky, Carlos; Aguirre, Alejandra; Quillfeldt, Jorge A; Jerusalinsky, Diana; Kornisiuk, Edgar

    2009-08-01

    The five muscarinic acetylcholine receptors (M(1)-M(5)) are differentially expressed in the brain. M(2) and M(4) are coupled to inhibition of stimulated adenylyl cyclase, while M(1), M(3) and M(5) are mainly coupled to the phosphoinositide pathway. We studied the muscarinic receptor regulation of adenylyl cyclase activity in the rat hippocampus, compared to the striatum and amygdala. Basal and forskolin-stimulated adenylyl cyclase activity was higher in the striatum but the muscarinic inhibition was much lower. Highly selective muscarinic toxins MT1 and MT2-affinity order M(1) > or = M(4) > others-and MT3-highly selective M(4) antagonist-did not show significant effects on basal or forskolin-stimulated cyclic AMP production but, like scopolamine, counteracted oxotremorine inhibition. Since MTs have negligible affinity for M(2), M(4) would be the main subtype responsible for muscarinic inhibition of forskolin-stimulated enzyme. Dopamine stimulated a small fraction of the enzyme (3.1% in striatum, 1.3% in the hippocampus). Since MT3 fully blocked muscarinic inhibition of dopamine-stimulated enzyme, M(4) receptor would be responsible for this regulation.

  19. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  20. Long-acting muscarinic antagonists.

    PubMed

    Melani, Andrea S

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a major cause of death and disability worldwide. Inhaled bronchodilators are the mainstay of COPD pharmacological treatment. Long-acting muscarinic antagonists (LAMAs) are a major class of inhaled bronchodilators. Some LAMA/device systems with different characteristics and dosing schedules are currently approved for maintenance therapy of COPD and a range of other products are being developed. They improve lung function and patient-reported outcomes and reduce acute bronchial exacerbations with good safety. LAMAs are used either alone or associated with long-acting β₂-agonists, eventually in fixed dose combinations. Long-acting β₂-agonist/LAMA combinations assure additional benefits over the individual components alone. The reader will obtain a view of the safety and efficacy of the different LAMA/device systems in COPD patients.

  1. Muscarinic receptors and ligands in cancer

    PubMed Central

    Shah, Nirish; Khurana, Sandeep; Cheng, Kunrong; Raufman, Jean-Pierre

    2009-01-01

    Emerging evidence indicates that muscarinic receptors and ligands play key roles in regulating cellular proliferation and cancer progression. Both neuronal and nonneuronal acetylcholine production results in neurocrine, paracrine, and autocrine promotion of cell proliferation, apoptosis, migration, and other features critical for cancer cell survival and spread. The present review comprises a focused critical analysis of evidence supporting the role of muscarinic receptors and ligands in cancer. Criteria are proposed to validate the biological importance of muscarinic receptor expression, activation, and postreceptor signaling. Likewise, criteria are proposed to validate the role of nonneuronal acetylcholine production in cancer. Dissecting cellular mechanisms necessary for muscarinic receptor activation as well as those needed for acetylcholine production and release will identify multiple novel targets for cancer therapy. PMID:19036940

  2. Comparison of muscarine- and vasopressin-stimulated inositol phospholipid metabolism in the superior cervical ganglion of the rat

    SciTech Connect

    Horwitz, J.; Anderson, C.; Perlman, R.L.

    1986-03-05

    Both muscarine and vasopressin have previously been shown to increase the accumulation of /sup 3/H-inositol phosphates (/sup 3/H-IP) in superior cervical ganglia in which the phospholipids were labeled with /sup 3/H-inositol. They have compared the effects of muscarine and vasopressin on phospholipid metabolism in the ganglion. The effects of these agents on /sup 3/H-IP accumulation are additive. The response to muscarine plateaus after approximately 10 min whereas the response to vasopressin increases for at least 30 min. Decentralization and maintenance in organ culture appear to potentiate the effect of muscarine on /sup 3/H-IP accumulation but do not effect the response of the ganglia to vasopressin. Muscarine and vasopressin also increase the incorporation of /sup 3/H-inositol into phospholipids in the ganglion. Autoradiographic techniques were used to localize the inositol-containing phospholipids in the ganglion. Muscarine increases phospholipid labeling primarily in the cell bodies of the principal ganglionic neurons, whereas vasopressin increases phospholipid labeling primarily in the neuropil. These data are consistent with the hypothesis that muscarine and vasopressin stimulate the metabolism of different pools of phospholipids.

  3. Effects of tachykinin NK1 receptor antagonists on vagal hyperreactivity and neuronal M2 muscarinic receptor function in antigen challenged guinea-pigs

    PubMed Central

    Costello, Richard W; Fryer, Allison D; Belmonte, Kristen E; Jacoby, David B

    1998-01-01

    The role of tachykinin NK1 receptors in the recruitment of eosinophils to airway nerves, loss of inhibitory neuronal M2 muscarinic receptor function and the development of vagal hyperreactivity was tested in antigen-challenged guinea-pigs.In anaesthetized guinea-pigs, the muscarinic agonist, pilocarpine (1–100 μg kg−1, i.v), inhibited vagally induced bronchoconstriction, in control, but not in antigen-challenged guinea-pigs 24 h after antigen challenge. This indicates normal function of neuronal M2 muscarinic receptors in controls and loss of neuronal M2 receptor function in challenged guinea-pigs. Pretreatment of sensitized guinea-pigs with the NK1 receptor antagonists CP99994 (4 mg kg−1, i.p.), SR140333 (1 mg kg−1, s.c.) or CP96345 (15 mg kg−1, i.p.) before antigen challenge, prevented M2 receptor dysfunction.Neither administration of the NK1 antagonists after antigen challenge, nor pretreatment with an NK2 receptor antagonist, MEN10376 (5 μmol kg−1, i.p.), before antigen challenge, prevented M2 receptor dysfunction.Electrical stimulation of the vagus nerves caused a frequency-dependent (2–15 Hz, 10 V, 0.2 ms for 5 s) bronchoconstriction that was significantly increased following antigen challenge. Pretreatment with the NK1 receptor antagonists CP99994 or SR140333 before challenge prevented this increase.Histamine (1–20 nmol kg−1, i.v.) caused a dose-dependent bronchoconstriction, which was vagally mediated, and was significantly increased in antigen challenged guinea-pigs compared to controls. Pretreatment of sensitized animals with CP99994 before challenge prevented the increase in histamine-induced reactivity.Bronchoalveolar lavage and histological studies showed that after antigen challenge significant numbers of eosinophils accumulated in the airways and around airway nerves. This eosinophilia was not altered by pretreatment with the NK1 receptor antagonist CP99994.These data indicate that pretreatment of

  4. Selective binding of bladder muscarinic receptors in relation to the pharmacokinetics of a novel antimuscarinic agent, imidafenacin, to treat overactive bladder.

    PubMed

    Yamada, Shizuo; Seki, Masanao; Ogoda, Masaki; Fukata, Ayako; Nakamura, Miho; Ito, Yoshihiko

    2011-02-01

    The binding of orally administered imidafenacin, used to treat overactive bladders, to muscarinic receptors in rat tissue was characterized based on pharmacokinetics. The binding in six tissues including bladder tissue was measured using [N-methyl-(3)H] scopolamine methyl chloride ([(3)H]NMS). Pharmacokinetic parameters were estimated from measurements of the concentration of imidafenacin in serum, the bladder, and the submaxillary gland by liquid chromatography-mass spectrometry/mass spectrometry. The receptor binding affinity of imidafenacin in vitro was significantly lower in the bladder than submaxillary gland or colon. The oral administration of imidafenacin (0.79, 1.57, and 6.26 μmol/kg) was characterized by a more selective and longer-lasting binding to muscarinic receptors in the bladder than other tissues. Imidafenacin showed little binding to brain muscarinic receptors, consistent with its minor effect on the central nervous system. Pharmacokinetic data showed that orally administered imidafenacin was distributed at a higher concentration in the bladder than the serum or submaxillary gland of rats. After the intravesical instillation of imidafenacin, there was significant binding of muscarinic receptors in the bladder. Furthermore, a significant level of imidafenacin was detected in the urine of rats given a 1.57 μmol/kg concentration of this agent. The present study demonstrated that imidafenacin administered orally distributes predominantly to the bladder and exerts more selective and longer-lasting effect on the bladder than other tissues, such as the submaxillary gland, colon, and brain. Furthermore, the imidafenacin excreted in urine may play an important role in pharmacokinetic and pharmacological selectivity.

  5. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors.

    PubMed

    Greig, Nigel H; Reale, Marcella; Tata, Ada M

    2013-08-01

    receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer's disease drugs.

  6. HIGH AFFINITY ACYLATING ANTAGONISTS FOR MUSCARINIC RECEPTORS

    PubMed Central

    Baumgold, Jesse; Karton, Yishai; Malka, Naftali; Jacobson, Kenneth A.

    2012-01-01

    Summary The muscarinic antagonists pirenzepine and telenzepine were derivitized as alkylamino derivatives at a site on the molecules corresponding to a region of bulk tolerance in receptor binding. The distal primary amino groups were coupled to the cross-linking reagent meta-phenylene diisothiocyanate, resulting in two isothiocyanate derivatives that were found to inhibit muscarinic receptors irreversibly and in a dose-dependent fashion. Preincubation of rat forebrain membranes with an isothiocyanate derivative followed by radioligand binding using [3H]N-methylscopolamine diminished the Bmax value, but did not affect the Kd value. The receptor binding site was not restored upon repeated washing, indicating that irreversible inhibition had occurred. IC50 values for the irreversible inhibition at rat forebrain muscarinic receptors were 0.15 nM and 0.19 nM, for derivatives of pirenzepine and telenzepine, respectively. The isothiocyanate derivative of pirenzepine was non-selective as an irreversible muscarinic inhibitor, and the corresponding derivative prepared from telenzepine was 5-fold selective for forebrain (mainly m1) vs. heart (m2) muscarinic receptors. PMID:1625525

  7. Muscarinic presynaptic inhibition of neostriatal glutamatergic afferents is mediated by Q-type Ca2+ channels.

    PubMed

    Barral, J; Galarraga, E; Bargas, J

    1999-07-01

    Cholinergic presynaptic inhibition was investigated on neostriatal glutamatergic transmission. Paired pulse facilitation (PPF) of orthodromic population spikes (PS) were used to construct a concentration-response relationship for muscarine on presynaptic inhibition. Muscarine had an effect proportional to its extracellular concentration with an EC50 (mean +/- standard estimation error) of: 2.5 +/- 1.5 nM, and a maximal effect (saturation) of 245 +/- 16%. Several peptidic toxins against some voltage-gated Ca2+-channels increased PPF indicating that the Ca2+-channels they block participate in transmitter release. However, neither 1 microM omega-conotoxin GVIA, a specific blocker of N-type Ca2+-channels, nor 10-30 nM omega-agatoxinTK, a selective blocker of P-type Ca2+-channels, were able to occlude muscarine's effect on presynaptic inhibition. Nevertheless, 100-400 nM omega-agatoxinTK occluded muscarine's action on PPF in a dose-dependent manner. These results are consistent with Q-type Ca2+-channels mediating muscarinic presynaptic inhibition of neostriatal afferents.

  8. Castration decreases amylase release associated with muscarinic acetylcholine receptor downregulation in rat parotid gland.

    PubMed

    Busch, Lucila; Borda, Enri

    2003-05-01

    1 The mechanism and receptor subtypes involved in carbachol-stimulated amylase release and its changes after castration were studied in parotid slices from male rats. 2 Carbachol induced both amylase release and inositol phosphate (IP) accumulation in parotid slices from control and castrated rats, but castration induced a decrease of carbachol maximal effect. The effect of castration was reverted by testosterone replacement. 3 The selective M(1) and M(3) muscarinic receptor antagonists, pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, respectively, inhibited carbachol-stimulated amylase release and IP accumulation in a dose-dependent manner in parotid slices from control and castrated rats. 4 A diminution of binding sites of muscarinic receptor in parotid membrane from castrated rats was observed. Competition binding assays showed that both, M(1) and M(3) muscarinic receptor subtypes are expressed in membranes of parotid glands from control and castrated rats, M(3) being the greater population. 5 These results suggest that amylase release induced by carbachol in parotid slices is mediated by phosphoinositide accumulation. This mechanism appears to be triggered by the activation of M(1) and M(3) muscarinic receptor subtypes. Castration induced a decrease of the maximal effect of carbachol evoked amylase release and IP accumulation followed by a diminution in the number of parotid gland muscarinic acetylcholine receptors.

  9. M1 and M2 muscarinic receptors mediate excitation and inhibition of guinea-pig intracardiac neurones in culture.

    PubMed Central

    Allen, T G; Burnstock, G

    1990-01-01

    1. The effects of muscarine upon intracardiac neurones cultured from ganglia within the atria and interatrial septum of the newborn guinea-pig heart were studied using intracellular recording techniques. 2. Muscarine applied to the neuronal soma typically produced a biphasic change in membrane potential which consisted of a small hyperpolarization followed by a depolarization. In addition, muscarine (0.01-10 microM) inhibited the calcium-dependent, after-hyperpolarization (AHP) and greatly increased the number of action potentials that could be evoked by a given depolarizing current. 3. The hyperpolarization was associated with a decrease in input resistance and it reversed to become a depolarization at a potential of -86.5 mV. This response was antagonized by 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP; 100 nM) and AF-DX 116 (500 nM), but was unaffected by pirenzepine (0.1-5 microM). 4. Two types of slow depolarization were observed in the presence of muscarine. The most common was associated with an increase in input resistance in the potential range -70 to -40 mV. Pirenzepine (100 nM) selectively antagonized this response, 4-DAMP (100 nM) similarly antagonized the response, but was non-selective. AF-DX 116 (0.5-5 microM) showed no antagonist effect. The less common depolarization (5% of cells) had a long latency and was associated with a decrease in input resistance. 5. Muscarine reduced the duration of the action potential and inhibited the AHP. Cadmium chloride (100 microM) mimicked these actions of muscarine. Application of muscarine immediately following a train of action potentials did not inhibit the AHP, suggesting that muscarine did not directly inhibit the calcium-activated potassium current (IK(Ca)). Muscarine-induced depression of the slow AHP was antagonized by 4-DAMP (100 nM) but was not antagonized by either pirenzepine (0.1-0.5 microM) or AF-DX 116 (0.5-5 microM). 6. It is concluded that the muscarine-induced depolarization of guinea

  10. Regulation of muscarinic acetylcholine receptors in the 1321N1 human astrocytoma cell line

    SciTech Connect

    Hoover, R.K.

    1989-01-01

    The binding of muscarinic agonists, partial agonists and antagonists to muscarinic receptors of 1321N1 human astrocytoma cells was studied. Binding was studied in both intact cells and cell lysates. Partial agonists and antagonists exhibited similar apparent affinities in intact cell competition binding assays with either the lipophilic radioligand ({sup 3}H)QNB or the hydrophilic radioligand ({sup 3}H)NMS. In contrast, full agonists exhibited markedly lower apparent affinities in intact cells with ({sup 3}H)QNB than with ({sup 3}H)NMS. Treatment of cells with antimycin A to deplete intracellular ATP prevented agonist-induced internalization of muscarinic receptors as assessed by sucrose density gradient assays of receptor subcellular distribution. In ATP-depleted cells, the apparent affinities of full agonists vs ({sup 3}H)QNB were markedly higher. The apparent affinities of partial agonists and of antagonists were unaffected by ATP depletion. In other studies, the effects of the protein kinase C activator phorbol 12-myristate, 13-acetate (PMA) on muscarinic receptor downregulation and internalization in 1321N1 cells were determined. PMA alone did not induce muscarinic receptor downregulation but instead decreased both the rate and final extent of downregulation induced by the agonist carbachol. The specificity of other protein kinase C activators for inhibiting carbachol-induced downregulation indicated involvement of protein kinase C. Furthermore, the protein kinase C inhibitor staurosporine prevented the inhibitory effect of PMA on downregulation. However, staurosporine did not inhibit agonist-induced downregulation.

  11. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  12. Molecular mechanics calculations on muscarinic agonists

    NASA Astrophysics Data System (ADS)

    Kooijman, Huub; Kanters, Jan A.; Kroon, Jan

    1990-10-01

    Molecular mechanics calculations have been performed on the conformation freedom with respect to the torsion angles OCCN and COCC of acetylcholine, α( R-methylacetylcholine,β( S)-methylacetylcholine, α( R),β( S)-diemthylacetylcholine and muscarine, in order to obtain information about the active conformation and its interaction with the muscarinic cholinergic receptor. Muscarine has a rather flexible ring system, which makes modelling of the receptor site on the active conformation of this particular ligand a difficult problem. A common minimum for these compounds was found at {+ gauche,anti}), which is identified with the active conformation. However, OCCN angles of up to 120° can be accommodated in the receptor site. The reduced cholinergic activity of the α-methyl derivatives is probably caused by unfavourable interactions between the α-methyl group and the receptor site. The apparent contradictory high activity of the 2-acetyloxycyclopropylammonium ion can be explained by the distorted geometry of α substitution.

  13. Presynaptic muscarinic control of glutamatergic synaptic transmission.

    PubMed

    Buño, W; Cabezas, C; Fernández de Sevilla, D

    2006-01-01

    The hippocampus receives cholinergic projections from the medial septal nucleus and Broca's diagonal band that terminate in the CA1, CA3, and dentate gyrus regions (Frotscher and Leranth, 1985). Glutamatergic synapses between CA3 and CA1 pyramidal neurons are presynaptically inhibited by acetylcholine (ACh), via activation of muscarinic ACh receptors (mAChRs) at the terminals of Schaffer collaterals (SCs) (Hounsgaard, 1978; Fernández de Sevilla et al., 2002, 2003). There are two types of SC-CA1 pyramidal neuron synapses. One type, called functional synapse, shows postsynaptic alpha- amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-receptor mediated currents at resting potential (Vm) and both AMPA and N-methyl-D-aspartate receptor (NMDAR)-mediated currents when depolarized. The other type, termed silent synapse, only displays postsynaptic NMDAR-mediated currents at depolarized Vms, but does not respond at the resting Vm (Isaac et al., 1995). Using hippocampal slices obtained from young Wistar rats, we examined the effects of activation of cholinergic afferents at the stratum oriens/alveus on excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of SCs. We also tested the action of the nonhydrolyzable cholinergic agonist carbamylcholine chloride (CCh) on EPSCs evoked by minimal stimulation of SCs (which activates a single or very few synapses) in functional and silent synapses.

  14. Muscarinic modulation of erg potassium current

    PubMed Central

    Hirdes, Wiebke; Horowitz, Lisa F; Hille, Bertil

    2004-01-01

    We studied modulation of current in human embryonic kidney tsA-201 cells coexpressing rat erg1 channels with M1 muscarinic receptors. Maximal current was inhibited 30% during muscarinic receptor stimulation, with a small positive shift of the midpoint of activation. Inhibition was attenuated by coexpression of the regulator of G-protein signalling RGS2 or of a dominant-negative protein, Gq, but not by N-ethylmaleimide or C3 toxin. Overexpression of a constitutively active form of Gq (but not of G13 or of Gs) abolished the erg current. Hence it is likely that Gq/11, and not Gi/o or G13, mediates muscarinic inhibition. Muscarinic suppression of erg was attenuated by chelating intracellular Ca2+ to < 1 nm free Ca2+ with 20 mm BAPTA in the pipette, but suppression was normal if internal Ca2+ was strongly clamped to a 129 nm free Ca2+ level with a BAPTA buffer and this was combined with numerous other measures to prevent intracellular Ca2+ transients (pentosan polysulphate, preincubation with thapsigargin, and removal of extracellular Ca2+). Hence a minimum amount of Ca2+ was necessary for the inhibition, but a Ca2+ elevation was not. The ATP analogue AMP-PCP did not prevent inhibition. The protein kinase C (PKC) blockers staurosporine and bisindolylmaleimide I did not prevent inhibition, and the PKC-activating phorbol ester PMA did not mimic it. Neither the tyrosine kinase inhibitor genistein nor the tyrosine phosphatase inhibitor dephostatin prevented inhibition by oxotremorine-M. Hence protein kinases are not needed. Experiments with a high concentration of wortmannin were consistent with recovery being partially dependent on PIP2 resynthesis. Wortmannin did not prevent muscarinic inhibition. Our studies of muscarinic inhibition of erg current suggest a role for phospholipase C, but not the classical downstream messengers, such as PKC or a calcium transient. PMID:15235086

  15. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome.

    PubMed

    Wang, Jen C; Hinrichs, Anthony L; Stock, Heather; Budde, John; Allen, Rebecca; Bertelsen, Sarah; Kwon, Jennifer M; Wu, William; Dick, Danielle M; Rice, John; Jones, Kevin; Nurnberger, John I; Tischfield, Jay; Porjesz, Bernice; Edenberg, Howard J; Hesselbrock, Victor; Crowe, Ray; Schuckit, Mark; Begleiter, Henri; Reich, Theodore; Goate, Alison M; Bierut, Laura J

    2004-09-01

    Several correlated phenotypes, alcohol dependence, major depressive syndrome, and an endophenotype of electrophysiological measurements, event-related oscillations (EROs), have demonstrated linkage on the long arm of chromosome 7. Recently, we reported both linkage and association between polymorphisms in the gene encoding the muscarinic acetylcholine receptor M2 (CHRM2) and EROs. In this study, we evaluated whether genetic variation in the CHRM2 gene is also a risk factor for the correlated clinical characteristics of alcoholism and depression. The CHRM2 gene contains a single coding exon and a large 5' untranslated region encoded by multiple exons that can be alternatively spliced. Families were recruited through an alcohol dependent proband, and multiplex pedigrees were selected for genetic analyses. We examined 11 single nucleotide polymorphisms (SNPs) spanning the CHRM2 gene in these families. Using the UNPHASED pedigree disequilibrium test (PDTPHASE), three SNPs (one in intron 4 and two in intron 5) showed highly significant association with alcoholism (P=0.004-0.007). Two SNPs (both in intron 4) were significantly associated with major depressive syndrome (P=0.004 and 0.017). Haplotype analyses revealed that the most common haplotype (>40% frequency), T-T-T (rs1824024-rs2061174-rs324650), was under-transmitted to affected individuals with alcohol dependence and major depressive syndrome. Different complementary haplotypes were over-transmitted in alcohol dependent and depressed individuals. These findings provide strong evidence that variants within or close to the CHRM2 locus influence risk for two common psychiatric disorders.

  16. Batrachotoxin Changes the Properties of the Muscarinic Receptor in Rat Brain and Heart: Possible Interaction(s) between Muscarinic Receptors and Sodium Channels

    NASA Astrophysics Data System (ADS)

    Cohen-Armon, Malca; Kloog, Yoel; Henis, Yoav I.; Sokolovsky, Mordechai

    1985-05-01

    The effects of Na+-channel activator batrachotoxin (BTX) on the binding properties of muscarinic receptors in homogenates of rat brain and heart were studied. BTX enhanced the affinity for the binding of the agonists carbamoylcholine and acetylcholine to the muscarinic receptors in brainstem and ventricle, but not in the cerebral cortex. Analysis of the data according to a two-site model for agonist binding indicated that the effect of BTX was to increase the affinity of the agonists to the high-affinity site. Guanyl nucleotides, known to induce interconversion of high-affinity agonist binding sites to the low-affinity state, canceled the effect of BTX on carbamoylcholine and acetylcholine binding. BTX had no effect on the binding of the agonist oxotremorine or on the binding of the antagonist [3H]-N-methyl-4-piperidyl benzilate. The local anesthetics dibucaine and tetracaine antagonized the effect of BTX on the binding of muscarinic agonists at concentrations known to inhibit the activation of Na+ channels by BTX. On the basis of these findings, we propose that in specific tissues the muscarinic receptors may interact with the BTX binding site (Na+ channels).

  17. Muscarinic activity modulated by C-type natriuretic peptide in gastric smooth muscles of guinea-pig stomach.

    PubMed

    Xing, De-gang; Huang, Xu; Li, Chun-hui; Li, Xiang-lan; Piao, Lian-hua; Gao, Ling; Zhang, Yang; Kim, Yong-chul; Xu, Wen-xie

    2007-10-04

    Natriuretic peptides (NPs) are a cyclic guanosine monophosphate (cGMP) generation system like nitric oxide (NO) and play an inhibitory regulation in gastrointestinal motility but the effect of NPs on muscarinic activity is still unclear. This study was designed to investigate effect of C-type natriuretic peptide (CNP) on muscarinic control of gastric motility and its ion channel mechanism. The spontaneous contraction of gastric smooth muscle strip was recorded by using physiograph in guinea-pig. Membrane currents and potential were recorded by using whole-cell patch-clamp technique. CNP significantly inhibited muscarinic M receptor agonist carbachol (Cch)-induced contractions of gastric smooth muscle strips and dramatically hyperpolarized Cch-induced depolarization of membrane potential in gastric single smooth muscle cell. Muscarinic currents induced by both Cch and GTPgammaS, a G-protein agonist were significantly suppressed by CNP. 8-Br-cGMP mimicked the effect of CNP on Cch-induced muscarinic currents, and the peak holding current was decreased from -200.66+/-54.35 pA of control to -67.35+/-24.82 pA. LY83583, a guanylate cyclase nonspecific inhibitor, significantly weakened the inhibitory effect of CNP on muscarinic current while zaprinast, a cGMP sensitive phosphoesterase inhibitor, potentiated the inhibitory effect of CNP on muscarinic current. cGMP production was dramatically enhanced by CNP and this effect was suppressed by LY83583 in gastric smooth muscle. These results suggest that CNP modulates muscarinic activity via CNP-NPR-particulate guanylate cyclase (pGC)-cGMP pathway in guinea-pig.

  18. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  19. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss

    PubMed Central

    Bradley, Sophie J.; Bourgognon, Julie-Myrtille; Sanger, Helen E.; Verity, Nicholas; Mogg, Adrian J.; White, David J.; Butcher, Adrian J.; Moreno, Julie A.; Macedo-Hatch, Timothy; Edwards, Jennifer M.; Wess, Jurgen; Pawlak, Robert; Read, David J.; Sexton, Patrick M.; Broad, Lisa M.; Steinert, Joern R.; Mallucci, Giovanna R.; Felder, Christian C.

    2016-01-01

    The current frontline symptomatic treatment for Alzheimer’s disease (AD) is whole-body upregulation of cholinergic transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR–selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD. PMID:27991860

  20. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning.

    PubMed

    Devore, Sasha; de Almeida, Licurgo; Linster, Christiane

    2014-08-20

    The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats' performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly overlapping input patterns.

  1. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    SciTech Connect

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memory task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.

  2. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss.

    PubMed

    Bradley, Sophie J; Bourgognon, Julie-Myrtille; Sanger, Helen E; Verity, Nicholas; Mogg, Adrian J; White, David J; Butcher, Adrian J; Moreno, Julie A; Molloy, Colin; Macedo-Hatch, Timothy; Edwards, Jennifer M; Wess, Jurgen; Pawlak, Robert; Read, David J; Sexton, Patrick M; Broad, Lisa M; Steinert, Joern R; Mallucci, Giovanna R; Christopoulos, Arthur; Felder, Christian C; Tobin, Andrew B

    2017-02-01

    The current frontline symptomatic treatment for Alzheimer's disease (AD) is whole-body upregulation of cholinergic transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR-selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD.

  3. Muscarinic cholinoreceptors (M1-, M2-, M3- and M4-type) modulate the acetylcholine secretion in the frog neuromuscular junction.

    PubMed

    Tsentsevitsky, Andrei N; Kovyazina, Irina V; Nurullin, Leniz F; Nikolsky, Eugeny E

    2017-04-10

    Muscarinic cholinoreceptors regulate the neurosecretion process in vertebrate neuromuscular junctions. The diversity of muscarinic effects on acetylcholine (ACh) secretion may be attributed to the different muscarinic subtypes involved in this process. In the present study, the location of five muscarinic receptor subtypes (M1, M2, M3, M4 and M5) on the motor nerve terminals of frog cutaneous pectoris muscle was shown using specific polyclonal antibodies. The modulatory roles of these receptors were investigated via assessment of the effects of muscarine and specific muscarinic antagonists on the quantal content of endplate currents (EPCs) and the time course of secretion, which was estimated from the distribution of "real" synaptic delays of EPCs recorded in a low Ca(2+)/high Mg(2+) solution. The agonist muscarine decreased the EPC quantal content and synchronized the release process. The depressing action of muscarine on the EPC quantal content was abolished only by pretreatment of the preparation with the M3 blockers 4-DAMP (1,1-Dimethyl-4-diphenylacetoxypiperidinium iodide) and J 104129 fumarate ((αR)-α-Cyclopentyl-α-hydroxy-N-[1-(4-methyl-3-pentenyl)-4-piperidinyl]benzeneacetamide fumarate). Moreover, antagonists of the M1, M2, M3 and M4 receptors per se diminished the intensity of secretion, which suggests a putative up-regulation of the release by endogenous ACh.

  4. Muscarinic antagonists microinjected into the subthalamic nucleus decrease muscular rigidity in reserpinized rats.

    PubMed

    Hernández-López, S; Flores, G; Rosales, M G; Sierra, A; Martínez-Fong, D; Aceves, J

    1996-08-09

    The ability of anticholinergic agents microinjected into the subthalamic nucleus to reduce reserpine-induced muscular rigidity was assessed in rats. The electromyographical activity of the gastrocnemius-soleus muscle was used as a parameter of muscular rigidity. Reserpine (5 mg/kg i.p.) produced the appearance of electromyographical activity. The muscarinic antagonists M3 (1.27 nmol of 4-DAMP) and M1 (2.36 nmol of pirenzepine) markedly reduced the reserpine-induced electromyographical activity, whereas the M2 antagonist AFDX-116 (2.37 nmol) had no effect. These results suggest that a high cholinergic tone in the subthalamic nucleus is associated with the reserpine-induced muscular rigidity. Moreover, the M3 muscarinic antagonist is more effective than the M1 muscarinic antagonist in reducing the muscular rigidity in reserpinized rats, a model of Parkinson's disease, by blocking the high cholinergic tone in the subthalamic nucleus.

  5. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    SciTech Connect

    Baumgold, J.; Cohen, V.I.; Paek, R.; Reba, R.C. )

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.

  6. [Central effects of ORL1 receptor ligands].

    PubMed

    Maslov, L N; Lishmanov, Iu B; Calo, G; Ma, L

    2003-01-01

    It has been discussed literature data on molecular structure of ORL1 receptor and its interaction with intracellular signal systems and neurotransmitters. Data on chemical structure of ORL1 receptor ligands and their central effects (nociception, locomotion, feeding, cognition) are presented.

  7. Organophosphorus Pesticides Decrease M2 Muscarinic Receptor Function in Guinea Pig Airway Nerves via Indirect Mechanisms

    PubMed Central

    Proskocil, Becky J.; Bruun, Donald A.; Thompson, Charles M.; Fryer, Allison D.; Lein, Pamela J.

    2010-01-01

    Background Epidemiological studies link organophosphorus pesticide (OP) exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE) inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. Methodology/Principal Findings Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS)-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. Conclusions/Significance These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity. PMID:20479945

  8. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition

    PubMed Central

    2012-01-01

    Background In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. Results In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. Conclusions These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia. PMID:22463818

  9. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons.

    PubMed

    Rivas-Ramírez, P; Cadaveira-Mosquera, A; Lamas, J A; Reboreda, A

    2015-07-01

    Muscarinic receptors play a key role in the control of neurotransmission in the autonomic ganglia, which has mainly been ascribed to the regulation of potassium M-currents and voltage-dependent calcium currents. Muscarinic agonists provoke depolarization of the membrane potential and a reduction in spike frequency adaptation in postganglionic neurons, effects that may be explained by M-current inhibition. Here, we report the presence of a riluzole-activated current (IRIL ) that flows through the TREK-2 channels, and that is also inhibited by muscarinic agonists in neurons of the mouse superior cervical ganglion (mSCG). The muscarinic agonist oxotremorine-M (Oxo-M) inhibited the IRIL by 50%, an effect that was abolished by pretreatment with atropine or pirenzepine, but was unaffected in the presence of himbacine. Moreover, these antagonists had similar effects on single-channel TREK-2 currents. IRIL inhibition was unaffected by pretreatment with pertussis toxin. The protein kinase C blocker bisindolylmaleimide did not have an effect, and neither did the inositol triphosphate antagonist 2-aminoethoxydiphenylborane. Nevertheless, the IRIL was markedly attenuated by the phospholipase C (PLC) inhibitor ET-18-OCH3. Finally, the phosphatidylinositol-3-kinase/phosphatidylinositol-4-kinase inhibitor wortmannin strongly attenuated the IRIL , whereas blocking phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion consistently prevented IRIL inhibition by Oxo-M. These results demonstrate that TREK-2 currents in mSCG neurons are inhibited by muscarinic agonists that activate M1 muscarinic receptors, reducing PIP2 levels via a PLC-dependent pathway. The similarities between the signaling pathways regulating the IRIL and the M-current in the same neurons reflect an important role of this new pathway in the control of autonomic ganglia excitability.

  10. Levels of circulating anti-muscarinic and anti-adrenergic antibodies and their effect on cardiac arrhythmias and dysautonomia in murine models of Chagas disease.

    PubMed

    Daliry, Anissa; Pereira, Isabela Resende; Pereira-Junior, Pedro Paulo; Ramos, Isalira Peroba; Vilar-Pereira, Glaucia; Silvares, Raquel Rangel; Lannes-Vieira, Joseli; Campos De Carvalho, Antônio Carlos

    2014-11-01

    SUMMARY Antibodies (Ab) recognizing G-protein coupled receptors, such as β 1 and β 2 adrenergic (anti-β 1-AR and anti-β 2-AR, respectively) and muscarinic cholinergic receptors (anti-M2-CR) may contribute to cardiac damage, however their role in chronic chagasic cardiomyopathy is still controversial. We describe that Trypanosoma cruzi-infected C3H/He mice show increased P and QRS wave duration, and PR and QTc intervals, while the most significant ECG alterations in C57BL/6 are prolonged P wave and PR interval. Echocardiogram analyses show right ventricle dilation in infected animals of both mouse lineages. Analyses of heart rate variability (HRV) in chronically infected C3H/He mice show no alteration of the evaluated parameters, while C57BL/6 infected mice display significantly lower values of HRV components, suggesting autonomic dysfunction. The time-course analysis of anti-β 1-AR, anti-β 2-AR and anti-M2-CR Ab titres in C3H/He infected mice indicate that anti-β 1-AR Ab are detected only in the chronic phase, while anti-β 2-AR and anti-M2-CR are observed in the acute phase, diminish at 60 dpi and increase again in the chronic phase. Chronically infected C57BL/6 mice presented a significant increase in only anti-M2-CR Ab titres. Furthermore, anti-β 1-AR, anti-β 2-AR and anti-M2-CR, exhibit significantly higher prevalence in chronically T. cruzi-infected C3H/He mice when compared with C57BL/6. These observations suggest that T. cruzi infection leads to host-specific cardiac electric alterations.

  11. Cholinergic impact on neuroplasticity drives muscarinic M1 receptor mediated differentiation into neurons.

    PubMed

    Benninghoff, Jens; Rauh, Werner; Brantl, Victor; Schloesser, Robert J; Moessner, Rainald; Möller, Hans-Jürgen; Rujescu, Dan

    2013-04-01

    Increasing evidence indicates that canonical neurotransmitters act as regulatory signals during neuroplasticity. Here, we report that muscarinic cholinergic neurotransmission stimulates differentiation of adult neural stem cells in vitro. Adult neural stem cells (ANSC) dissociated from the adult mouse hippocampus were expanded in culture with basic fibroblast growth factor (BFGF) and epidermal growth factor (EGF). Carbachol (CCh), an analog of acetylcholine (ACh) significantly enhanced de novo differentiation into neurons on bFGF- and EGF-deprived stem cells as shown by the percentage of TUJ1 positive cells. By contrast, pirenzepine (PIR), a muscarinic M1 receptor antagonist, reduced the generation of neurons. Activation of cholinergic signaling drives the de novo differentiation of uncommitted stem cells into neurons. These effects appear to be predominantly mediated via the muscarinic M1 receptor subtype.

  12. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    SciTech Connect

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    1985-07-25

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.

  13. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder

    PubMed Central

    Abrams, Paul; Andersson, Karl-Erik; Buccafusco, Jerry J; Chapple, Christopher; de Groat, William Chet; Fryer, Alison D; Kay, Gary; Laties, Alan; Nathanson, Neil M; Pasricha, Pankaj Jay; Wein, Alan J

    2006-01-01

    The effectiveness of antimuscarinic agents in the treatment of the overactive bladder (OAB) syndrome is thought to arise through blockade of bladder muscarinic receptors located on detrusor smooth muscle cells, as well as on nondetrusor structures. Muscarinic M3 receptors are primarily responsible for detrusor contraction. Limited evidence exists to suggest that M2 receptors may have a role in mediating indirect contractions and/or inhibition of detrusor relaxation. In addition, there is evidence that muscarinic receptors located in the urothelium/suburothelium and on afferent nerves may contribute to the pathophysiology of OAB. Blockade of these receptors may also contribute to the clinical efficacy of antimuscarinic agents. Although the role of muscarinic receptors in the bladder, other than M3 receptors, remains unclear, their role in other body systems is becoming increasingly well established, with emerging evidence supporting a wide range of diverse functions. Blockade of these functions by muscarinic receptor antagonists can lead to similarly diverse adverse effects associated with antimuscarinic treatment, with the range of effects observed varying according to the different receptor subtypes affected. This review explores the evolving understanding of muscarinic receptor functions throughout the body, with particular focus on the bladder, gastrointestinal tract, eye, heart, brain and salivary glands, and the implications for drugs used to treat OAB. The key factors that might determine the ideal antimuscarinic drug for treatment of OAB are also discussed. Further research is needed to show whether the M3 selective receptor antagonists have any advantage over less selective drugs, in leading to fewer adverse events. PMID:16751797

  14. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels.

  15. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist.

    PubMed

    Haga, Kazuko; Kruse, Andrew C; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I; Okada, Tetsuji; Kobilka, Brian K; Haga, Tatsuya; Kobayashi, Takuya

    2012-01-25

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  16. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    SciTech Connect

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  17. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  18. Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation.

    PubMed

    Ma, W; Maric, D; Li, B S; Hu, Q; Andreadis, J D; Grant, G M; Liu, Q Y; Shaffer, K M; Chang, Y H; Zhang, L; Pancrazio, J J; Pant, H C; Stenger, D A; Barker, J L

    2000-04-01

    Increasing evidence has shown that some neurotransmitters act as growth-regulatory signals during brain development. Here we report a role for the classical neurotransmitter acetylcholine (ACh) to stimulate proliferation of neural stem cells and stem cell-derived progenitor cells during neural cell lineage progression in vitro. Neuroepithelial cells in the ventricular zone of the embryonic rat cortex were found to express the m2 subtype of the muscarinic receptor. Neural precursor cells dissociated from the embryonic rat cortical neuroepithelium were expanded in culture with basic fibroblast growth factor (bFGF). reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the presence of m2, m3 and m4 muscarinic receptor subtype transcripts, while immunocytochemistry demonstrated m2 protein. ACh and carbachol induced an increase in cytosolic Ca2+ and membrane currents in proliferating (BrdU+) cells, both of which were abolished by atropine. Exposure of bFGF-deprived precursor cells to muscarinic agonists not only increased both cell number and DNA synthesis, but also enhanced differentiation of neurons. These effects were blocked by atropine, indicating the involvement of muscarinic ACh receptors. The growth-stimulating effects were also antagonized by a panel of inhibitors of second messengers, including 1,2-bis-(O-aminophenoxy)-ethane-N,N,N', N'-tetraacetic acid (BAPTA-AM) to chelate cytosolic Ca2+, EGTA to complex extracellular Ca2+, pertussis toxin, which uncouples certain G-proteins, the protein kinase C inhibitor H7 and the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Muscarinic agonists activated MAPK, which was significantly inhibited by atropine and the same panel of inhibitors. Thus, muscarinic receptors expressed by neural precursors transduce a growth-regulatory signal during neurogenesis via pathways involving pertussis toxin-sensitive G-proteins, Ca2+ signalling, protein kinase C activation, MAPK phosphorylation and DNA synthesis.

  19. Muscarinic receptors in the bladder: from basic research to therapeutics

    PubMed Central

    Hegde, Sharath S

    2006-01-01

    Muscarinic receptor antagonists (antimuscarinics) serve as the cornerstone in the pharmacological management of overactive bladder (OAB) by relieving the symptoms of urgency, frequency and incontinence. These drugs operate primarily by antagonizing post-junctional excitatory muscarinic receptors (M2/M3) in the detrusor. The combination of pharmacological and gene knockout studies has greatly advanced our understanding of the functional role of muscarinic receptors in the bladder. M3 receptors produce direct smooth muscle contraction by a mechanism that relies on entry of extracellular calcium through L-type channels and activation of a rho kinase. M2 receptors, which predominate in number, appear to facilitate M3-mediated contractions. M2 receptors can also produce bladder contractions indirectly by reversing cAMP-dependent β-adrenoceptor-mediated relaxation, although the physiological role of β-adrenoceptors in detrusor relaxation is controversial. Emerging evidence suggests that muscarinic receptors in the urothelium/suburothelium can modulate the release of certain factors, which in turn may affect bladder function at the efferent or afferent axis. Currently, oxybutynin, tolterodine, darifenacin, solifenacin and trospium are the five major antimuscarinics approved for the treatment of OAB. Comparative clinical studies have shown that oxybutynin and solifenacin may be marginally more effective than tolterodine, although the latter seems to be better tolerated. Pharmacokinetic–pharmacodynamic analyses using plasma concentrations of ‘total drug' indicate that, at therapeutic doses, the clinical efficacy of darifenacin and solifenacin may be driven primarily by selective M3 receptor occupation, whereas the pharmacodynamic effects of pan-selective molecules (such as tolterodine, trospium) may potentially involve multiple receptors, including M2 and M3. Furthermore, high M3 receptor occupation is the likely explanation for the greater propensity of darifenacin

  20. Postischemic alteration of muscarinic acetylcholine and adenosine A1 binding sites in gerbil brain. Protective effects of a novel vinca alkaloid derivative, vinconate, and pentobarbital using an autoradiographic study.

    PubMed

    Araki, T; Kato, H; Kogure, K

    1992-01-01

    We studied the alterations in the binding of muscarinic cholinergic and adenosine A1 receptors following transient cerebral ischemia in Mongolian gerbils and examined the effects of the novel vinca alkaloid derivative vinconate and pentobarbital against the alterations in the binding of these receptors. Animals were allowed to survive for 5 h and 7 days after 10 min of cerebral ischemia induced by bilateral occlusion of common carotid arteries. [3H]Quinuclidinyl benzilate (QNB) and [3H]cyclohexyladenosine (CHA) were used to label muscarinic cholinergic and adenosine A1 receptors, respectively. The [3H]QNB and [3H]CHA bindings showed no significant alteration in the gerbil brain 5 h after ischemia. However, these bindings in the striatum, the hippocampal CA1 sector, and the hippocampal CA3 sector revealed a significant reduction 7 days after ischemia. The [3H]CHA binding also showed a significant decline in the dentate molecular layer 7 days after ischemia. Intraperitoneal application of vinconate (100 and 300 mg/kg) 10 min and pentobarbital (40 mg/kg) 30 min before ischemia showed a mild reduction in the [3H]CHA binding in the brain 5 h after ischemia. Especially, the reduction was found in the hippocampal CA1 sector and the dentate molecular layer. However, the [3H]QNB binding revealed no significant alteration in the brain 5 h after ischemia. Seven days after ischemia, both drugs prevented a marked reduction in the [3H]CHA binding in the striatum, but not in the hippocampal CA1 sector, the hippocampal CA3 sector, and the dentate molecular layer. By contrast, vinconate and pentobarbital failed to prevent the reduction in the [3H]QNB binding in the striatum. Morphological study indicated that vinconate and pentobarbital ameliorated the neuronal damage to the striatum, but not the hippocampal damage 7 days after ischemia. This histological finding was relatively consistent with the alteration in the [3H]CHA binding. These receptor autoradiographic and histological

  1. Evaluation of 1,2,5-thiadiazoles as modulators of M₁/M₅ muscarinic receptor subtypes.

    PubMed

    Maheshwari, Aditya; Rao, P S S; Messer, William S

    2014-03-15

    Studies have demonstrated the presence of allosteric binding sites on each of the muscarinic acetylcholine receptor (mAChR) subtypes. Since most drugs targeting muscarinic receptors bind to the highly conserved orthosteric binding site, they fail to achieve appreciable subtype selectivity. Targeting non-conserved allosteric sites may provide a new way of enhancing selectivity for individual subtypes of muscarinic receptor. Tetra(ethyleneglycol)(3-methoxy-1,2,5-thiadiazol-4-yl)[3-(1-methyl-1,2,5,6-tetrahydropyrid-3-yl)-1,2,5-thiadiazol-4-yl] ether, CDD-0304 (10), was found to be a M₁/₂/₄ selective muscarinic agonist and might prove useful in treating the symptoms associated with schizophrenia (J. Med. Chem.2003, 46, 4273). It was hypothesized that the observed subtype selectivity demonstrated by 10 may be due to its ability to function as a bitopic ligand (J. Med. Chem.2006, 49, 7518). To further investigate this possibility, a novel series of compounds was synthesized using a 1,2,5-thiadiazole moiety along with varying lengths of a polyethylene glycol linker and terminal groups, for evaluation as potential allosteric modulators of muscarinic receptors. Preliminary biological studies were performed using carbachol to stimulate M₁ and M₅ receptors. No significant agonist activity was observed at either M₁ or M₅ receptors for any of the compounds. Compound 18, 2-(4-methoxy-1,2,5-thiadiazol-3-yloxy)-N,N-dimethylethanamine fumarate (CDD-0361F) was found to block the effects of carbachol at M5 muscarinic receptors.

  2. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber).

    PubMed

    Jørgensen, Kristine B; Krogh-Jensen, Karen; Pickering, Darryl S; Kanui, Titus I; Abelson, Klas S P

    2016-01-01

    The present study investigated the cholinergic system in the African naked mole-rat (Heterocephalus glaber) with focus on the muscarinic acetylcholine receptor subtypes M1 and M4. The protein sequences for the subtypes m 1-5 of the naked mole-rat were compared to that of the house mouse (Mus musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies with [(3)H]-N-methylscopolamine. The BLAST test revealed 95 % protein sequence homology showing the naked mole-rat to have the genetic potential to express all five muscarinic acetylcholine receptor subtypes. A significant reduction in pain behavior was demonstrated after administration of 8.4 mg/kg in the formalin test. Administration of 50 mg/kg VU0152100 resulted in a non-significant tendency towards antinociception. The antinociceptive effects were reversed by the muscarinic acetylcholine receptor antagonist atropine. Binding studies indicated presence of muscarinic acetylcholine receptors with a radioligand affinity comparable to that reported in mice. In conclusion, muscarinic acetylcholine receptor subtypes are present in the naked mole-rat and contribute to antinociception in the naked mole-rat.

  3. Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors.

    PubMed

    Guizzetti, Marina; Moore, Nadia H; Giordano, Gennaro; VanDeMark, Kathryn L; Costa, Lucio G

    2010-09-01

    In utero alcohol exposure can lead to fetal alcohol spectrum disorders, characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. We have recently shown that stimulation of M(3) muscarinic receptors in astrocytes increases the synthesis and release of fibronectin, laminin, and plasminogen activator inhibitor-1, causing neurite outgrowth in hippocampal neurons. As M(3) muscarinic receptor signaling in astroglial cells is strongly inhibited by ethanol, we hypothesized that ethanol may also inhibit neuritogenesis in hippocampal neurons induced by carbachol-stimulated astrocytes. In the present study, we report that the effect of carbachol-stimulated astrocytes on hippocampal neuron neurite outgrowth was inhibited in a concentration-dependent manner (25-100 mM) by ethanol. This effect was because of the inhibition of the release of fibronectin, laminin, and plasminogen activator inhibitor-1. Similar effects on neuritogenesis and on the release of astrocyte extracellular proteins were observed after the incubation of astrocytes with carbachol in the presence of 1-butanol, another short-chain alcohol, which like ethanol is a competitive substrate for phospholipase D, but not by tert-butanol, its analog that is not a substrate for this enzyme. This study identifies a potential novel mechanism involved in the developmental effects of ethanol mediated by the interaction of ethanol with cell signaling in astrocytes, leading to an impairment in neuron-astrocyte communication.

  4. Muscarinic agonists and potassium currents in guinea-pig myenteric neurones.

    PubMed

    Galligan, J J; North, R A; Tokimasa, T

    1989-01-01

    1. Intracellular electrophysiological recordings were obtained from single neurones of the guinea-pig myenteric plexus in vitro. Using single electrode voltage clamp techniques, four distinct potassium currents were described and the effects of muscarinic agonists on these currents were studied. 2. A calcium-dependent potassium current (gKCa) was present in AH neurones at rest, and was much increased following a brief depolarization (50 ms, to 0 mV). Muscarinic agonists reduced both the resting current and the current evoked by depolarization. Pirenzepine competitively antagonized the suppression by muscarine of the calcium-dependent potassium current (or after-hyperpolarization) following an action potential. The dissociation equilibrium constant for pirenzepine was about 10 nM. 3. The conductance of AH neurones increased two to three fold when they were hyperpolarized negative to -90 mV. This inward rectification was blocked by extracellular caesium (2 mM) or rubidium (2 mM), but not by tetraethylammonium (TEA, 40 mM), 4-aminopyridine (100 microM) or cobalt (2 mM). The inward rectification was unaffected by muscarinic agonists. 4. When AH neurones were depolarized from very negative holding potentials (less than -80 mV) a brief outward current was recorded with a duration of about 200 ms. This transient or A current was completely blocked by 4-aminopyridine (100 microM) but was not affected by tetrodotoxin (300 nM), TEA (40 mM) or cobalt (2 mM). Muscarinic agonists did not affect the A current. 5. In S neurones, and in AH neurones in calcium-free solutions, the potassium conductance (in TEA and caesium) behaved according to constant field assumptions. This background conductance was suppressed by muscarinic agonists. 6. It is concluded that the depolarization by muscarinic agonists of myenteric AH neurones is due to a suppression of both a calcium-dependent potassium conductance and a background potassium conductance. Muscarinic depolarization of S neurones

  5. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes.

    PubMed

    Bell, L Andrew; Bell, Karen A; McQuiston, A Rory

    2013-10-01

    Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K(+) channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function

  6. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes

    PubMed Central

    Bell, L. Andrew; Bell, Karen A.; McQuiston, A. Rory

    2013-01-01

    Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K+ channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function

  7. Inhibition of muscarinic receptor-induced proliferation of astroglial cells by ethanol: mechanisms and implications for the fetal alcohol syndrome.

    PubMed

    Costa, Lucio G; Guizzetti, Marina

    2002-12-01

    In utero exposure to ethanol is deleterious to fetal brain development. Children born with the fetal alcohol syndrome (FAS) display a number of abnormalities, the most significant of which are central nervous system (CNS) dysfunctions, such as microencephaly and mental retardation. An interaction of ethanol with glial cells, particularly astrocytes, has been suggested to contribute to the developmental neurotoxicity of this alcohol. At low concentrations (10-100 mM) ethanol inhibits the proliferation of astroglial cells in vitro, particularly when stimulated by acetycholine through muscarinic M3 receptors. Of the several signal transduction pathways activated by these receptors in astrocytes or astrocytoma cells, which are involved in mitogenic signaling, only some (e.g. protein kinase C (PKC) zeta, p70S6 kinase) appear to be targeted by ethanol at the same low concentrations which effectively inhibit proliferation. Inhibition of astroglial proliferation by ethanol may contribute to the microencephaly seen in FAS.

  8. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  9. External imaging of cerebral muscarinic acetylcholine receptors

    SciTech Connect

    Eckelman, W.C.; Reba, R.C.; Rzeszotarski, W.J.; Gibson, R.E.; Hill, T.; Holman, B.L.; Budinger, T.; Conklin, J.J.; Eng, R.; Grissom, M.P.

    1984-01-20

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  10. External Imaging of Cerebral Muscarinic Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Eckelman, William C.; Reba, Richard C.; Rzeszotarski, Waclaw J.; Gibson, Raymond E.; Hill, Thomas; Holman, B. Leonard; Budinger, Thomas; Conklin, James J.; Eng, Robert; Grissom, Michael P.

    1984-01-01

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  11. THE ANTIPSYCHOTIC POTENTIAL OF MUSCARINIC ALLOSTERIC MODULATION

    PubMed Central

    Bridges, Thomas M.; LeBois, Evan P.; Hopkins, Corey R.; Wood, Michael R.; Jones, Carrie K.; Conn, P. Jeffrey; Lindsley, Craig W.

    2016-01-01

    SUMMARY The cholinergic hypothesis of schizophrenia emerged over 50 years ago based on clinical observations with both anticholinergics and pan-muscarinic agonists. Not until the 1990s did the cholinergic hypothesis of schizophrenia receive renewed enthusiasm based on clinical data with xanomeline, a muscarinic acetylcholine receptor M1/M4-preferring orthosteric agonist. In a clinical trial with Alzheimer’s patients, xanomeline not only improved cognitive performance, but also reduced psychotic behaviors. This encouraging data spurred a second clinical trial in schizophrenic patients, wherein xanomeline significantly improved the positive, negative and cognitive symptom clusters. However, the question remained: Was the antipsychotic efficacy due to activation of M1, M4 or both M1/M4? Classical orthosteric ligands lacked the muscarinic receptor subtype selectivity required to address this key question. More recently, functional assays have allowed for the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric (acetylcholine) site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. Recently, allosteric ligands, with unprecedented selectivity for either M1 or M4, have been discovered and have demonstrated comparable efficacy to xanomeline in preclinical antipsychotic and cognition models. These data suggest that selective allosteric activation of either M1 or M4 has antipsychotic potential through distinct, yet complimentary mechanisms. PMID:20520852

  12. Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica

    PubMed Central

    Du, Nana; Liu, Yanfang; Zhang, Xiuli; Wang, Jixia; Zhao, Jianqiang; He, Jian; Zhou, Han; Mei, Lijuan; Liang, Xinmiao

    2017-01-01

    Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica. PMID:28387362

  13. Pharmacological doses of Zn2+ induce a muscarinic cholinergic supersensitivity.

    PubMed

    Bonfante-Cabarcas, R; Bravo, I; Nello, C; Gutiérrez-Reyes, E; Loureiro Dos Santos, N E; Moreno-Yanes, J A

    2002-01-01

    The goal of this study was to evaluate the effect of chronic Zn2+ administration (1 mg/kg/day for 1 month) in Sprague-Dawley rats (n = 11) on motility and rearing behaviors (number of events/10 min measured in motility cage), on memory (percentage of failures using a foot-shock double T maze), on the number of muscarinic receptors (using [(3)H]-QNB as a marker) and on the cholinacetyltransferase (Chat) activity (determined by Fonnun's method) in various brain areas (striatum, hippocampus and frontal cortex), as compared with saline-treated rats (n = 10). Our results showed that Zn2+ induced a decrease in rearing (control: 24.6 +/- 3; Zn2+: 15.91 +/- 2.19) and in locomotor activity (control: 37 +/- 3.79; Zn2+: 25 +/- 4.37), a decrease in failures during memory trials (control: 26.12 +/- 5.6; Zn2+: 5.33 +/- 2.71) and an increase in muscarinic receptor density (fmol/mg) in the striatum (control: 539 +/- 6.18; Zn2+: 720 +/- 14.69), hippocampus (control: 396 +/- 7.41; Zn 2+: 458 +/- 5.05) and frontal cortex (control: 506 +/- 10.28; Zn2+: 716 +/- 16.54). Chat activity (pmol/mg/min) was decreased only in the striatum (control: 4240 +/- 158; Zn2+: 2311 +/- 69). We conclude that Zn 2+ induces a cholinergic functional supersensitivity which is related to receptor upregulation. Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  14. Differential activation of nitric oxide synthase through muscarinic acetylcholine receptors in rat salivary glands.

    PubMed

    Leirós, C P; Rosignoli, F; Genaro, A M; Sales, M E; Sterin-Borda, L; Santiago BordaE

    2000-03-15

    Muscarinic receptors play an important role in secretory and vasodilator responses in rat salivary glands. Nitric oxide synthase (NOS) appears to be one of the multiple effectors coupled to muscarinic receptors in both submandibular and sublingual glands although some differences have been found depending on the gland studied. First, submandibular glands had a lower basal activity of nitric oxide synthase than sublingual glands and the concentration-response curve for carbachol was bell-shaped in the former but not in sublingual glands. Second, cGMP levels displayed a similar profile to that observed for NOS activity in both glands. Third, protein kinase C also coupled to muscarinic receptor activation in the glands might have a regulatory effect on nitric oxide production since its activity was higher in basal conditions in submandibular than sublingual glands and it also increased in the presence of the agonist at a concentration that inhibited NOS activity in submandibular glands. The effects appear to be partly related to the expression of a minor population of M(1) receptors in submandibular glands absent in sublingual as determined in binding and signaling experiments with the muscarinic receptor antagonist pirenzepine.

  15. M2muscarinic receptors inhibit cell proliferation and migration in urothelial bladder cancer cells

    PubMed Central

    Pacini, Luca; De Falco, Elena; Di Bari, Maria; Coccia, Andrea; Siciliano, Camilla; Ponti, Donatella; Pastore, Antonio Luigi; Petrozza, Vincenzo; Carbone, Antonio; Tata, Ada Maria; Calogero, Antonella

    2014-01-01

    The role of muscarinic receptors in several diseases including cancer has recently emerged. To evaluate the hypothesis that muscarinic acetylcholine receptors may play a role in bladder cancer as well as in other tumor types, we investigated their expression in bladder tumor specimens. All examined samples expressed the M1, M2 and M3 receptor subtypes. We also found that the level of M2 transcripts, but not those of M1 or M3, significantly increased with the tumor histologic grade. In view of these results, we proceeded to investigate whether the M2 agonist Arecaidine had any effect on in vitro cell growth and migration of T24 cells, a bladder tumor cell line expressing the muscarinic receptors, including the M2 subtype. We observed that Arecaidine significantly reduced T24 and 5637 cell proliferation and migration in a concentration dependent manner. The silencing of M2 receptor by siRNA in T24 and 5637 cell lines showed the inability of Arecaidine (100 μM) to inhibit cell proliferation after 48 hours, whereas the use of M1 and M3 antagonists in T24 appeared not to counteract the Arecaidine effect, suggesting that the inhibition of cell proliferation was directly dependent on M2 receptor activation. These data suggest that M2 muscarinic receptors may play a relevant role in bladder cancer and represent a new attractive therapeutic target. PMID:25482946

  16. Muscarinic receptor subtypes mediating the mucosal response to neural stimulation of guinea pig ileum

    SciTech Connect

    Carey, H.V.; Tien, X.Y.; Wallace, L.J.; Cooke, H.J.

    1987-09-01

    Muscarinic receptors involved in the secretory response evoked by electrical stimulation of submucosal neutrons were investigated in muscle-stripped flat sheets of guinea pig ileum set up in flux chambers. Neural stimulation produced a biphasic increase in short-circuit current due to active chloride secretion. Atropine and 4-diphenylacetoxy-N-methylpiperadine methiodide (4-DAMP) (10/sup -7/ M) were more potent inhibitors of the cholinergic phase of the response than was pirenzepine. Dose-dependent increases in base-line short-circuit current were evoked by carbachol and bethanechol; 4-hydroxy-2-butynyl trimethylammonium chloride (McN A343) produced a much smaller effect. Tetrodotoxin abolished the effects of McN A343 but did not alter the responses of carbachol and bethanechol. McN A343 significantly reduced the cholinergic phase of the neurally evoked response and caused a rightward shift of the carbachol dose-response curve. All muscarinic compounds inhibited (/sup 3/H)quinuclidinyl benzilate binding to membranes from muscosal scrapings, with a rank order of potency of 4-DAMP > pirenzepine > McN A343 > carbachol > bethanechol. These results suggest that acetylcholine released from submucosal neurons mediates chloride secretion by interacting with muscarinic cholinergic receptors that display a high binding affinity for 4-DAMP. Activation of neural muscarinic receptors makes a relatively small contribution to the overall secretory response.

  17. Pyridophens: binary pyridostigmine-aprophen prodrugs with differential inhibition of acetylcholinesterase, butyrylcholinesterase, and muscarinic receptors.

    PubMed

    Leader, Haim; Wolfe, Alan David; Chiang, Peter K; Gordon, Richard K

    2002-02-14

    A series of "binary prodrugs" called carbaphens,(1) carbamylated derivatives on one or both of the aromatic rings of the muscarinic receptor antagonist aprophen [(N,N-diethylamino)ethyl 2,2-diphenylpropionate], were synthesized to develop binary prophylactic agents against organophosphorus intoxication. As a group, the carbaphens retained the muscarinic receptor antagonist properties of aprophen but also preferentially inhibited butyrylcholinesterase (BChE) in contrast to acetylcholinesterase (AChE). Therefore, a new series of compounds named pyridophens were designed and synthesized to achieve binary prodrugs to preferentially inhibit AChE over BChE, while still retaining the muscarinic receptor antagonism of aprophen. The pyridophens consist of the basic pyridostigmine skeleton combined with the 2,2-diphenylpropionate portion of aprophen by replacement of the diethylamino group. Three compounds, 9 (a tertiary pyridine), 10 (a quaternary pyridine), and 12 (a tertiary tetrahydropyridine), were found to be effective inhibitors of both BChE and AChE. However, 10, N-methyl-3-[[(dimethylamino)carbonyl]oxy]-2-(2'2'-diphenylpropionoxy-methyl)pyridinium iodide, inhibited AChE selectively over BChE, with a bimolecular rate constant similar to pyridostigmine. In contrast to their potent cholinesterase inhibitory activity, all of the pyridophen analogues were less potent antagonists of the muscarinic receptor than aprophen.

  18. Muscarinic receptors are involved in LMM3 tumor cells proliferation and angiogenesis

    SciTech Connect

    Rimmaudo, Laura Elizabeth; Torre, Eulalia de la; Sacerdote de Lustig, Eugenia; Sales, Maria Elena . E-mail: mesales@2vias.com.ar

    2005-09-09

    Angiogenesis is a process of new blood vessel development from pre-existing vasculature and it plays an essential role in tumor growth and metastases. Here, we investigate the expression of muscarinic acetylcholine receptors (mAchR) and their participation in tumor cell proliferation and angiogenesis ability. Saturation binding assays with the tritiated muscarinic antagonist quinuclidinyl benzilate indicate that LMM3 cells derived from a murine mammary adenocarcinoma express a single class of functional mAchR. Competition binding assays with selective muscarinic antagonists indicate a predominance of M{sub 3} receptor subtype. The muscarinic agonist carbachol (CARB) stimulates LMM3 cell proliferation in a concentration dependent manner. The maximal effect induced by 10{sup -9} M CARB was totally blunted by atropine and by the selective M{sub 3} and M{sub 1} antagonists, para-fluoro hexahydro sila-difenidol (pf-HHSiD) and pirenzepine, respectively. In addition, pf-HHSiD completely blocked in vivo CARB-induced neovascular formation and vascular endothelial growth factor-A in LMM3 tumor cells. We can conclude that mAchR expressed in LMM3 mammary tumor cells positively regulate proliferation and angiogenesis required for tumor progression.

  19. A novel muscarinic receptor ligand which penetrates the blood brain barrier and displays in vivo selectivity for the m2 subtype

    SciTech Connect

    Gitler, M.S.; Cohen, V.I.; De La Cruz, R.; Boulay, S.F.; Jin, B.; Zeeberg, B.R. ); Reba, R.C. Univ. of Chicago Hospital, IL )

    1993-01-01

    Alzheimer's disease (AD) involves selective loss of muscarinic m2, but not m1, subtype neuroreceptors in the posterior parietal cortex of the human brain. Emission tomographic study of the loss of m2 receptors in AD is limited by the fact that there is currently no available m2-selective radioligand which can penetrate the blood-brain barrier. In our efforts to prepare such a radioligand, the authors have used competition studies against currently existing muscarinic receptor radioligands to infer the in vitro and in vivo properties of a novel muscarinic receptor ligand, 5-[[4-[4-(diisobutylamino)butyl]-1-phenyl]acetyl]-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepin-11-one (DIBD). In vitro competition studies against [[sup 3]H](R)-3-quinuclidinylbenzilate ([[sup 3]H]QNB) and [[sup 3]H]N-methylscopolamine ([[sup 3]H]NMS), using membranes derived from transfected cells expressing only m1, m2, m3, or m4 receptor subtypes, indicate that DIBD is selective for m2/m4 over m1/m3. In vivo competition studies against (R,R)-[[sup 125]I]IQNB indicate that DIBD crosses the blood brain barrier (BBB). The relationship of the regional percentage decrease in (R,R)-[[sup 125]I]IQNB versus the percentage of each of the receptor subtypes indicates that DIBD competes more effectively in those brain regions which are known to be enriched in the m2, relative to the m1, m3, and m4, receptor subtype; however, analysis of the data using a mathematical model shows that caution is required when interpreting the in vivo results. The authors conclude that a suitably radiolabeled derivative of DIBD may be of potential use in emission tomographic study of changes in m2 receptors in the central nervous system.

  20. Increased efflux of amyloid-β peptides through the blood-brain barrier by muscarinic acetylcholine receptor inhibition reduces pathological phenotypes in mouse models of brain amyloidosis.

    PubMed

    Paganetti, Paolo; Antoniello, Katia; Devraj, Kavi; Toni, Nicolas; Kieran, Dairin; Madani, Rime; Pihlgren, Maria; Adolfsson, Oskar; Froestl, Wolfgang; Schrattenholz, André; Liebner, Stefan; Havas, Daniel; Windisch, Manfred; Cirrito, John R; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    The formation and accumulation of toxic amyloid-β peptides (Aβ) in the brain may drive the pathogenesis of Alzheimer's disease. Accordingly, disease-modifying therapies for Alzheimer's disease and related disorders could result from treatments regulating Aβ homeostasis. Examples are the inhibition of production, misfolding, and accumulation of Aβ or the enhancement of its clearance. Here we show that oral treatment with ACI-91 (Pirenzepine) dose-dependently reduced brain Aβ burden in AβPPPS1, hAβPPSL, and AβPP/PS1 transgenic mice. A possible mechanism of action of ACI-91 may occur through selective inhibition of muscarinic acetylcholine receptors (AChR) on endothelial cells of brain microvessels and enhanced Aβ peptide clearance across the blood-brain barrier. One month treatment with ACI-91 increased the clearance of intrathecally-injected Aβ in plaque-bearing mice. ACI-91 also accelerated the clearance of brain-injected Aβ in blood and peripheral tissues by favoring its urinal excretion. A single oral dose of ACI-91 reduced the half-life of interstitial Aβ peptide in pre-plaque mhAβPP/PS1d mice. By extending our studies to an in vitro model, we showed that muscarinic AChR inhibition by ACI-91 and Darifenacin augmented the capacity of differentiated endothelial monolayers for active transport of Aβ peptide. Finally, ACI-91 was found to consistently affect, in vitro and in vivo, the expression of endothelial cell genes involved in Aβ transport across the Blood Brain Brain (BBB). Thus increased Aβ clearance through the BBB may contribute to reduced Aβ burden and associated phenotypes. Inhibition of muscarinic AChR restricted to the periphery may present a therapeutic advantage as it avoids adverse central cholinergic effects.

  1. Muscarinic acetylcholine receptors in the nucleus accumbens core and shell contribute to cocaine priming-induced reinstatement of drug seeking

    PubMed Central

    Yee, Judy; Famous, Katie R.; Hopkins, Thomas J.; McMullen, Michael C.; Pierce, R. Christopher; Schmidt, Heath D.

    2011-01-01

    Muscarinic acetylcholine receptors in the nucleus accumbens play an important role in mediating the reinforcing effects of cocaine. However, there is a paucity of data regarding the role of accumbal muscarinic acetylcholine receptors in the reinstatement of cocaine-seeking behavior. The goal of these experiments was to assess the role of muscarinic acetylcholine receptors in the nucleus accumbens core and shell in cocaine and sucrose priming-induced reinstatement. Rats were initially trained to self-administer cocaine or sucrose on a fixed-ratio schedule of reinforcement. Lever-pressing behavior was then extinguished and followed by a subsequent reinstatement phase during which operant responding was induced by either a systemic injection of cocaine in cocaine-experienced rats or non-contingent delivery of sucrose pellets in subjects with a history of sucrose self-administration. Results indicated that systemic administration of the muscarinic acetylcholine receptor antagonist scopolamine (5.0 mg/kg, i.p.) dose-dependently attenuated cocaine, but not sucrose, reinstatement. Furthermore, administration of scopolamine (36.0 μg) directly into the nucleus accumbens shell or core attenuated cocaine-priming induced reinstatement. In contrast, infusion of scopolamine (36.0 μg) directly into the accumbens core, but not shell, attenuated sucrose reinstatement, which suggests that muscarinic acetylcholine receptors in these two subregions of the nucleus accumbens have differential roles in sucrose seeking. Taken together, these results indicate that cocaine-priming induced reinstatement is mediated, in part, by increased signaling through muscarinic acetylcholine receptors in the shell subregion of the nucleus accumbens. Muscarinic acetylcholine receptors in the core of the accumbens, in contrast, appear to play a more general (i.e. not cocaine specific) role in motivated behaviors. PMID:21034738

  2. Naloxone Antagonises Soman-induced Central Respiratory Depression in Rats.

    PubMed

    Škrbić, Ranko; Stojiljković, Miloš P; Ćetković, Slavko S; Dobrić, Silva; Jeremić, Dejan; Vulović, Maja

    2016-12-19

    The influence of naloxone on respiration impaired by the highly toxic organophosphate nerve agent soman in anaesthetized rats was investigated. Soman, administered in a dose that was ineffective in blocking the electrically induced contractions of the phrenic nerve-diaphragm preparation in situ, induced a complete block of the spontaneous respiratory movements of the diaphragm, indicating the domination of central over the peripheral effects. Naloxone dose-dependently antagonised the soman-induced respiratory blockade. Atropine, at a dose that was per se ineffective in counteracting soman-induced respiratory depression, potentiated the protective effects of naloxone and completely restored respiration. Naloxone remained completely ineffective in antagonising respiratory depression induced by the muscarinic receptor agonist the oxotremorine. It is assumed that naloxone antagonises soman-induced respiratory inhibition by blocking endogenous opioidergic respiratory control pathways that are independent of the stimulation of muscarinic receptors. This article is protected by copyright. All rights reserved.

  3. Activation of midbrain presumed dopaminergic neurones by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat

    PubMed Central

    Gronier, B; Rasmussen, K

    1998-01-01

    Extracellular single-unit recording and iontophoresis were used to examine the effects of different cholinoceptor agonists and antagonists on the firing rate and firing pattern of A9 and A10 presumed dopaminergic neurones in the anaesthetized rat.Administration of low currents (1–5 nA) of the selective muscarinic agonists oxotremorine M (Oxo M) and muscarine and of the non-selective muscarinic/nicotinic agonist carbamylcholine (CCh) produced a dose-dependent increase in firing rate in most of the A9 and A10 presumed dopaminergic neurones tested. Oxo M-induced activation could be completely blocked by iontophoretic application of the muscarinic antagonist butyl-scopolamine or systemic administration of the muscarinic antagonist scopolamine (300 μg kg−1, i.v.).Iontophoretic application of the selective nicotinic agonist methylcarbamylcholine (MCCh), but not nicotine, induced a consistent increase in firing rate. Surprisingly, the excitatory effect of MCCh was significantly reduced by the selective muscarinic antagonist scopolamine (300 μg kg−1, i.v.), but not by the selective nicotinic antagonist mecamylamine (2.2 mg kg−1, i.v.). Mecamylamine (3 mg kg−1, i.v.) was also ineffective in reducing the CCh-induced activation of presumed dopamine neurones, suggesting that both CCh and MCCh increased the activity of dopamine neurones via an interaction with muscarinic receptors.Iontophoretic application of the endogenous agonist acetylcholine (ACh) had no or little effect on the firing activity of A10 presumed dopaminergic neurones. However, concomitant application of neostigmine, a potent cholinesterase inhibitor, with acetylcholine induced a substantial activation of these neurones. This activation consisted of two components; one, which was prevalent, was scopolamine (300 μg kg−1, i.v.)-sensitive, and the other was mecamylamine (2 mg kg−1, i.v.)-sensitive.In addition to their effect on firing activity, Oxo M, muscarine and

  4. In vivo quantitative autoradiographic analysis of brain muscarinic receptor occupancy by antimuscarinic agents for overactive bladder treatment.

    PubMed

    Maruyama, Shuji; Tsukada, Hideo; Nishiyama, Shingo; Kakiuchi, Takeharu; Fukumoto, Dai; Oku, Naoto; Yamada, Shizuo

    2008-06-01

    We evaluated the effects of five clinically used antimuscarinic agents for overactive bladder (OAB) treatment on in vivo muscarinic receptor binding in rat brain by quantitative autoradiography. There was a dose-related decrease in in vivo specific +N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB) binding in each brain region of rats 10 min after i.v. injection of oxybutynin, propiverine, solifenacin, and tolterodine. Rank order of the i.v. dose for 50% receptor occupancy (RO(50)) of antimuscarinic agents in rat brain regions was propiverine > solifenacin > tolterodine, oxybutynin. There was a good linear relationship between in vivo (pRO(50) values in the rat hippocampus) and in vitro (pK(i) values in human M(1) receptors) receptor binding activities of propiverine, solifenacin, and tolterodine. The observed RO(50) value of oxybutynin was approximately five times smaller than the predicted in vitro K(i) value. The dose ratios of antimuscarinic agents for the brain receptor occupancy (RO(50)) to the inhibition of carbachol- and volume-induced increases in intravesical pressure (ID(50)), which reflects in vivo selectivity for the urinary bladder over the brain, were greater for solifenacin, tolterodine, and propiverine than oxybutynin. Darifenacin displayed only a slight decrease in specific [11C](+)3-MPB binding in the rat brain regions, and it was not dose-related. In conclusion, in vivo quantitative autoradiographic analysis of brain muscarinic receptor occupancy may provide fundamental basis for managing central nervous system (CNS) side effects in antimuscarinic therapy for OAB. It is suggested that in the treatment of OAB, CNS side effects can be avoided by antimuscarinic agents with high selectivity for the urinary bladder over the brain.

  5. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  6. Muscarine inhibits high-threshold calcium currents with two distinct modes in rat embryonic hippocampal neurons.

    PubMed Central

    Toselli, M; Taglietti, V

    1995-01-01

    1. Ca2+ channel modulation by muscarine was investigated in primary cultured embryonic rat hippocampal neurons using the whole-cell variant of the patch-clamp technique. 2. Muscarine produced a reversible and concentration-dependent decrease in the Ba2+ current amplitude. In 65% of neurons sensitive to the agonist, current inhibition was time and voltage dependent, being maximal between -20 and 0 mV and decreasing at depolarizing potentials. In the remaining 35% of neurons, the effects of muscarine were voltage independent, inhibition being constant in a wide potential range between -20 and +80 mV. 3. Different receptors might be involved in the two modes of modulation. Muscarine-induced voltage-dependent inhibition of Ba2+ current was best suppressed by the muscarinic receptor antagonist 4-diphenylacetoxy-N-methyl-piperidine methiodide (81% suppression), while voltage-independent inhibition was best suppressed by AFDX116 (75% suppression). 4. In cells treated with omega-conotoxin (omega-CgTX), the voltage-independent mode of inhibition was strongly prevented, suggesting that the two modulatory mechanisms (voltage dependent and voltage independent) operate on separate classes of high-voltage-activated (HVA) Ca2+ channels. 5. A pertussis toxin-sensitive G-protein is involved in both modes of action of muscarine, since both modes were prevented by pretreatment of the cells with 50 ng ml-1 pertussis toxin. 6. Both modes of modulation were mimicked in different cells by intracellular application of GTP-gamma-S. However, the onset of voltage-independent inhibition was about 5 times slower than that of voltage-dependent inhibition, suggesting involvement of a more complex metabolic pathway for the former mode of channel modulation. 7. Relief of the voltage-dependent inhibition was obtained by depolarizing voltage prepulses and occurred with kinetics that depended on agonist concentration. 8. The voltage-dependent inhibition could be simulated by a kinetic model in which

  7. Central charges without finite-size effects

    NASA Astrophysics Data System (ADS)

    Fendley, Paul; Intriligator, Ken

    1993-12-01

    We show how to obtain the ultraviolet central charge from the exact S-matrix for a wide variety of models with a U(1) symmetry. This is done by coupling the U(1) current J to a background field. In an N=2 superconformal theory with J the fermion number current, the OPE of J with itself and hence the free energy are proportional to c. By deforming the supersymmetry into affine ? quantum-group symmetry, this result can be generalized to many U(1)-invariant theories, including the N=0 and N=1 sine-Gordon models and the SU(2) kWZW models. This provides a consistency check on a conjectured S-matrix completely independent of the finite-size effects expressed in terms of dilogarithms resulting from the thermodynamic Bethe ansatz.

  8. Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors

    PubMed Central

    Jakubík, Jan; Janíčková, Helena; Randáková, Alena; El-Fakahany, Esam E.; Doležal, Vladimír

    2011-01-01

    Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex “collides” with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to Gq/11, while even-numbered receptors prefer coupling to Gi/o. We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M1 and M3 receptors also pre-couple with non-preferential Gi/o G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype

  9. Muscarinic responses of rat basolateral amygdaloid neurons recorded in vitro.

    PubMed Central

    Washburn, M S; Moises, H C

    1992-01-01

    1. Intracellular recordings were obtained from pyramidal-type neurons in the basolateral amygdaloid nucleus (BLA) in slices of rat ventral forebrain and used to compare the actions of exogenously applied cholinomimetics to the effects produced by electrical stimulation of amygdalopetal cholinergic afferents from basal forebrain. 2. Bath application of carbachol depolarized pyramidal cells with an associated increase in input resistance (Ri), reduced the slow after-hyperpolarization (AHP) that followed a series of current-evoked action potentials and blocked spike frequency accommodation. All of these effects were reversed by the muscarinic antagonist atropine but not by the nicotinic antagonist hexamethonium. 3. Electrical stimulation of amygdaloid afferents within the external capsule evoked a series of synaptic potentials consisting of a non-cholinergic fast excitatory postsynaptic potential (EPSP), followed by early and late inhibitory postsynaptic potentials (IPSPs). Each of these synaptic potentials was reduced by carbachol in an atropine-sensitive manner. 4. Local application of carbachol to pyramidal cells produced a short-latency hyperpolarization followed by a prolonged depolarization. The hyperpolarization and depolarization to carbachol were blocked by atropine but not hexamethonium. 5. The carbachol-induced hyperpolarization was associated with a decrease in Ri and had a reversal potential nearly identical to that of the early IPSP. The inhibitory response was blocked by perfusion of medium containing tetrodotoxin (TTX), bicuculline or picrotoxin, while the subsequent depolarization was unaffected. On the basis of these data, it is concluded that the muscarinic hyperpolarization is mediated through the rapid excitation of presynaptic GABAergic interneurons in the slice. 6. The findings that the carbachol-induced depolarization was associated with an increase in Ri, often had a reversal potential below -80 mV, was sensitive to changes in extracellular

  10. Comparison of central and peripheral pharmacologic effects of biperiden and trihexyphenidyl in human volunteers.

    PubMed

    Guthrie, S K; Manzey, L; Scott, D; Giordani, B; Tandon, R

    2000-02-01

    In this double-blind, randomized study, indices of central (memory, sedation) and peripheral (salivation, ratio of R-R interval on electrocardiogram) muscarinic function were evaluated in 14 healthy volunteers who received trihexyphenidyl, biperiden, and placebo. Additionally, serum drug levels were obtained 2 hours after oral administration. All subjects participated in three study sessions. During each session, subjects received two doses of biperiden (4 mg), trihexyphenidyl (5 mg), or placebo, and four series of tests were administered. The tests included the determination of cardiac response to standing (R-R ratio), mouth salivation, finger-tapping speed, digit span (forward and backward), a selective reminding task, and visual analog scales (VAS). On the VAS, subjects rated biperiden as significantly more sedating than either trihexyphenidyl or placebo, and both biperiden and trihexyphenidyl were associated with more dizziness than was placebo. Saliva production was significantly reduced by both trihexyphenidyl and biperiden compared with placebo. Digit span performance was significantly decreased in only the backward direction. The selective reminding task revealed highly significant decrements in the number of words recalled and consistent long-term retrieval after both biperiden and trihexyphenidyl. Delayed recall was significantly decreased by both active drugs. Both trihexyphenidyl and biperiden caused a significant increase in the R-R ratio comparison with placebo. With the exception of the VAS measurement of sedation, the effects caused by biperiden and trihexyphenidyl did not differ. The results of this study do not support the hypothesis that the side effect profile of biperiden is significantly different from that of trihexyphenidyl.

  11. Once-daily glycopyrronium bromide, a long-acting muscarinic antagonist, for chronic obstructive pulmonary disease: a systematic review of clinical benefit

    PubMed Central

    Ulrik, Charlotte Suppli

    2012-01-01

    Background: Long-acting bronchodilators are central in the pharmacological management of patients with chronic obstructive pulmonary disease (COPD). The aim of this systematic review is to provide an overview of the studies evaluating the safety and clinical efficacy of inhaled glycopyrronium bromide, a novel long-acting muscarinic antagonist, in patients with COPD. Methods: This study was performed as a systematic literature review. Results: Inhaled glycopyrronium bromide seems to be a safe and well tolerated long-acting muscarinic antagonist with a fast onset of action. In patients suffering from moderate to severe COPD, glycopyrronium bromide has clinically important effects on level of forced expiratory volume in one second, use of relief medication, percentage of days with no use of rescue medication, daytime dyspnea scores, and probably also on health status. Furthermore, in this group of patients, glycopyrronium bromide has beneficial effects on dynamic hyperinflation and exercise tolerance. Glycopyrronium bromide has been shown to reduce the rate of exacerbations in patients with moderate to severe COPD, but long-term controlled trials with exacerbation rate as the primary outcome variable have not been published yet. Conclusion: Once-daily inhaled glycopyrronium bromide has characteristics important for use in COPD, including a fast onset of action, sustained 24-hour bronchodilatation, and improvement in exercise tolerance, and therefore appears to have the potential for a significant role in the future management of COPD. PMID:23055716

  12. Scopolamine and depression: a role for muscarinic antagonism?

    PubMed

    Hasselmann, Helge

    2014-01-01

    Depressive disorders have, for a sizeable extent, proven resilient to pharmacotherapy. Established drugs such as selective serotonin reuptake inhibitors (SSRIs) or serotonin-noradrenaline reuptake inhibitors (SNRIs) often provide inadequate symptom relief and sometimes fail altogether. Recently, interest in antidepressant effects of scopolamine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, has arisen. Initial evidence suggests that scopolamine provides relatively rapid and long-lasting symptom alleviation for unipolar and bipolar depressed patients. At the same time, side effects of medical dosages appear mild and transient in nature. The aim of the present review is to tentatively discuss the antidepressant potential of scopolamine and to outline putative neurobiological pathways. Clearly, mAChR antagonism provides an intriguing novel therapeutical approach for treating depressive disorders.

  13. Environmental effects on the central nervous system.

    PubMed Central

    Paulson, G W

    1977-01-01

    The central nervous system (CNS) is designed to respond to the environment and is peculiarly vulnerable to many of the influences found in the environment. Utilizing an anatomical classification (cortex, cerebellum, peripheral nerves) major toxins and stresses are reviewed with selections from recent references. Selective vulnerability of certain areas to particular toxins is apparent at all levels of the CNS, although the amount of damage produced by any noxious agent depends on the age and genetic substrate of the subject. It is apparent that the effects of certain well known and long respected environmental toxins such as lead, mercury, etc., deserve continued surveillance. In addition, the overwhelming impact on the CNS of social damages such as trauma, alcohol, and tobacco cannot be ignored by environmentalists. The effect of the hospital and therapeutic environment has become apparent in view of increased awareness of iatrogenic disorders. The need for particular laboratory tests, for example, examination of CSF and nerve conduction toxicity studies, is suggested. Epidemics such as the recent solvent neuropathies suggest a need for continued animal studies that are chronic, as well as acute evaluations when predicting the potential toxic effects of industrial compounds. PMID:202447

  14. Amplification of the rat m2 muscarinic receptor gene by the polymerase chain reaction: Functional expression of the M sub 2 muscarinic receptor

    SciTech Connect

    Lai, J.; Bloom, J.W.; Yamamura, H.I.; Roeske, W.R. )

    1990-01-01

    A selective amplification of the coding sequence of the rat M{sub 2} muscarinic receptor gene was achieved by the polymerase chain reaction. The error rate of this amplification system under conditions specified was 1 nucleotide substitution in 841 base pairs. In vitro expression of this gene in murine fibroblasts (B82) via the eukaryotic expression vector, pH{beta}APr-1-neo, resulted in high level expression of specific ({sup 3}H)(-)MQNB binding in transfected B82 cell lines. One of these clones, M2LKB2-2, showed a stable expression of ({sup 3}H)(-)MQNB binding with a K{sub d} value of 265 pM and a B{sub max} value of 411{plus minus}50 fmol/10{sup 6} cells. Cardiac selective muscarinic antagonists such as himbacine and AF-DX 116 show high affinities for this binding site in the M2LKB2-2 cells. The rank order of potency of several antagonists in inhibiting ({sup 3}H)(-)MQNB binding in these cells conformed to the characteristics of an M{sub 2} type muscarinic receptor. Carbachol showed a single affinity state for the receptors in the M2LKB2-2 cells with a K{sub i} value of 2.0 {mu}M. This receptor appeared to be inversely coupled to adenylate cyclase via a pertussis toxin sensitive G-protein. Carbachol also had a slight stimulatory effect on the hydrolysis of inositol lipids. The polymerase chain reaction proves highly effective in cloning genes from genomic material, as demonstrated by the first in vitro functional expression of the rat M{sub 2} type muscarinic receptor.

  15. Short-term regulation of muscarinic acetylcholine receptors: An assessment utilizing mouse brain and mouse neuroblastoma cells

    SciTech Connect

    Cioffi, C.L.

    1988-01-01

    The effects of muscarinic agonists and diisopropylfluorophosphate (DFP) on muscarinic receptor density and muscarinic receptor-mediated responses was assessed in mouse brain and mouse neuroblastoma cells (clone N1E-115). Utilizing the antagonist ({sup 3}H)quinuclidinyl benzilate (({sup 3}H)QNB), there was no difference in the maximal binding capacity (B{sub max}) or equilibrium dissociation constant (K{sub d}) between untreated and 24 hour DFP-treated mice. However, one administration of DFP produced a 24% and 33% decrease in B{sub max} measured by ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) after 18 and 24 hours which was rapidly reversible within 36 hours after DFP treatment. The loss of ({sup 3}H)NMS binding sites following acute DFP treatment was not accompanied by a change in a particular muscarinic receptor binding conformation. Furthermore, the magnitude of muscarinic receptor-mediated phosphoinositide hydrolysis was unchanged following short-term DFP treatment.

  16. Muscarinic receptor-stimulated phosphatidylinositol turnover in the rat corpus striatum: role of muscarinic receptor subtypes and regulation

    SciTech Connect

    Monsma, F.J.

    1987-01-01

    The coupling between the M1 and M2 muscarinic receptor subtypes and phosphatidylinositol (Pl) hydrolysis has been examined in the corpus striatum and cerebral cortex of the rat brain. Receptor binding by the various muscarinic ligands was assessed using a preparation of intact brain cell aggregates, under similar conditions as the assay of Pl hydrolysis. In striatal cell aggregates, (/sup 3/H)-quinuclidinyl benzilate ((/sup 3/H)-QNB) bound to a single class of muscarinic sites with high affinity, inhibition of (/sup 3/H)-QNB binding by muscarinic receptor ligands which exhibit selectivity for subtypes of the muscarinic receptor revealed the presence of both the M1 and M2 subtypes in approximately equal numbers.

  17. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception

    PubMed Central

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Dalmann, Romain; El Guerrab, Abderrahim; Aissouni, Youssef; Graveron-Demilly, Danielle; Chalus, Maryse; Pinguet, Jérémy; Eschalier, Alain; Richard, Damien; Daulhac, Laurence; Balayssac, David

    2015-01-01

    Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS 1H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular

  18. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    SciTech Connect

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-03-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of (/sup 3/H)-antagonist as well as of the labeled natural neurotransmitter, (/sup 3/H)-acetylcholine (( /sup 3/H)-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of (/sup 3/H)-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity (/sup 3/H)-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with (/sup 3/H)-antagonist represent a loss of low-affinity agonist binding sites. In contrast, (/sup 3/H)-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms.

  19. Muscarinic receptor pharmacology and circuitry for the modulation of cognition.

    PubMed

    Bubser, Michael; Byun, Nellie; Wood, Michael R; Jones, Carrie K

    2012-01-01

    The muscarinic cholinergic system constitutes an important part of the neuronal circuitry that modulates normal cognition. Muscarinic receptor antagonists are well known to produce or exacerbate impairments in attention, learning, and memory. Conversely, both direct-acting muscarinic receptor agonists and indirect-acting muscarinic cholinergic agonists, such as acetylcholinesterase inhibitors, have shown cognition-enhancing properties, including improvements in normal cognitive function, reversal of cognitive deficits induced by muscarinic receptor antagonists, and attenuation of cognitive deficits in psychiatric and neurological disorders, such as Alzheimer's disease and schizophrenia. However, until recently, the lack of small molecule ligands that antagonize or activate specific muscarinic acetylcholine receptor (mAChR) subtypes with high selectivity has been a major obstacle in defining the relative contributions of individual mAChRs to different aspects of cognitive function and for the development of novel therapeutic agents. These limitations may be potentially overcome by the recent discovery of novel mAChR subtype-selective compounds, notably allosteric agonists and positive allosteric modulators, which exhibit greater selectivity for individual mAChR subtypes than previous mAChR orthosteric agonists. In preclinical studies, these novel ligands have shown promising efficacy in several models for the enhancement of cognition. In this chapter, we will review the muscarinic cholinergic circuitry and pharmacology of mAChR agonists and antagonists relevant to the modulation of different aspects of cognition in animals and clinical populations.

  20. Central effects of the calcium antagonist, nifedipine.

    PubMed Central

    McDevitt, D G; Currie, D; Nicholson, A N; Wright, N A; Zetlein, M B

    1991-01-01

    1. Central effects of the calcium antagonist, nifedipine retard (10, 20 and 40 mg) and nifedipine capsules (10 mg) were studied in 14 healthy male subjects. Two placebos and an active control drug, oxazepam (15 mg), were included. Medication was administered double-blind at 10.00 h. The effects of drugs on performance and subjective feelings were assessed before and from 1.5-2.5 h and 3.5-4.5 h after ingestion, and recordings of the electrical activity of the brain (EEG) and body sway carried out. 2. Performance was assessed using digit symbol substitution, continuous attention, letter cancellation, choice reaction time, finger tapping, immediate and short-term memory, together with critical flicker fusion and two flash fusion. The EEG was recorded with eyes open while the subjects carried out a mental arithmetic task, and with eyes closed, when they were required to relax. Body sway was recorded with eyes open and with eyes closed. Subjects assessed their mood and well-being on a series of 12 visual analogue scales. 3. Nifedipine did not alter performance levels on any of the skills tested, while oxazepam (15 mg) increased the number of errors (P less than 0.01) and reduced accuracy at continuous attention (P less than 0.01). 4. Nifedipine (10 mg) reduced total power of the EEG in the frequency range (0.5-30 Hz), and nifedipine (20 mg) increased total alpha power (7.5-13 Hz) (P less than 0.05). Oxazepam reduced alpha and increased beta 1 power (13.5-21 Hz).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1954069

  1. Identification of M1 muscarinic receptors in pulmonary sympathetic nerves in the guinea-pig by use of pirenzepine.

    PubMed Central

    Maclagan, J.; Fryer, A. D.; Faulkner, D.

    1989-01-01

    1. The effect of pirenzepine, a muscarinic antagonist considered to be selective for M1 receptors, was studied on bronchoconstriction and bradycardia elicited by preganglionic stimulation of the parasympathetic vagal nerves and by i.v. injections of acetylcholine (ACh) in anaesthetized guinea-pigs. 2. Pirenzepine was equipotent in the heart and lung as an antagonist of the effects of i.v. ACh at postjunctional muscarinic receptors. Doses of pirenzepine in excess of 1 mumol kg-1 abolished all muscarinic responses consistent with non-selective blockade of M3 receptors on airway smooth muscle and M2 receptors on atrial cells. 3. In the lung, low doses of pirenzepine (1-100 nmol kg-1) increased vagally-induced bronchoconstriction despite concurrent partial blockade of the postjunctional receptors. This suggests blockade of neuronal muscarinic receptors. 4. Propranolol (1 mg kg-1) increased control bronchoconstrictor responses elicited by ACh and vagal stimulation but did not alter the potency of pirenzepine for postjunctional receptors in heart or lung. However, pirenzepine-induced enhancement of vagally-induced bronchoconstriction was abolished by propranolol, suggesting that pirenzepine may be an antagonist for muscarinic receptors located in the sympathetic nerves innervating airway smooth muscle. 5. These results confirm that bronchoconstrictor stimuli indirectly initiate activation of an opposing sympathetic reflex in the guinea-pig lung. This response is facilitated by muscarinic receptors located in the sympathetic nervous pathway. 6. The high potency of pirenzepine for the neuronal receptors in the sympathetic nerves suggests that these are M1 receptors. In contrast, the parasympathetic nerves innervating airway smooth muscle in this species contain M2 receptors which inhibit neurotransmission. PMID:2758228

  2. [Interaction of chagasic autoantibodies with the third extracellular domain of the human heart muscarinic receptor. Functional and pathological implications].

    PubMed

    Goin, J C; Pérez Leirós, C; Borda, E; Sterin-Borda, L

    1996-01-01

    Herein we demonstrate by ELISA and immunoblotting the presence in the sera of chagasic patients of circulating autoantibodies against the third extracellular domain of human muscarinic acetylcholine receptors by using a synthetic peptide corresponding to the sequence 169-192 of the receptor. Immunoaffinity purified antipeptide antibodies displayed cardiac muscarinic activity as decreased contractility and cAMP production and increased cGMP levels. These effects were specifically blocked by the synthetic peptide and by atropine. A strong association between the existence of circulating autoantibodies and the presence of dysautonomia was shown, making these autoantibodies an appropriate marker of heart autonomic dysfunction.

  3. Effects of beta-amyloid protein on M1 and M2 subtypes of muscarinic acetylcholine receptors in the medial septum-diagonal band complex of the rat: relationship with cholinergic, GABAergic, and calcium-binding protein perikarya.

    PubMed

    González, Iván; Arévalo-Serrano, Juan; Sanz-Anquela, José Miguel; Gonzalo-Ruiz, Alicia

    2007-06-01

    Cortical cholinergic dysfunction has been correlated with the expression and processing of beta-amyloid precursor protein. However, it remains unclear as to how cholinergic dysfunction and beta-amyloid (Abeta) formation and deposition might be related to one another. Since the M1- and M2 subtypes of muscarinic acetylcholine receptors (mAChRs) are considered key molecules that transduce the cholinergic message, the purpose of the present study was to assess the effects of the injected Abeta peptide on the number of M1mAchR- and M2mAChR-immunoreactive cells in the medial septum-diagonal band (MS-nDBB) complex of the rat. Injections of Abeta protein into the retrosplenial cortex resulted in a decrease in M1mAChR and M2mAChR immunoreactivity in the MS-nDBB complex. Quantitative analysis revealed a significant reduction in the number of M1mAChR- and M2mAChR-immunoreactive cells in the medial septum nucleus (MS) and in the horizontal nucleus of the diagonal band of Broca (HDB) as compared to the corresponding hemisphere in control animals and with that seen in the contralateral hemisphere, which corresponds to the PBS-injected side. Co-localization studies showed that the M1mAChR protein is localized in GABA-immunoreactive cells of the MS-nDBB complex, in particular those of the MS nucleus, while M2mAChR protein is localized in both the cholinergic and GABAergic cells. Moreover, GABAergic cells containing M2mAChR are mainly localized in the MS nucleus, while cholinergic cells containing M2mAChR are localized in the MS and the HDB nuclei. Our findings suggest that Abeta induces a reduction in M1mAChR- and M2mAChR-containing cells, which may contribute to impairments of cholinergic and GABAergic transmission in the MS-nDBB complex.

  4. Identification of three muscarinic receptor subtypes in rat lung using binding studies with selective antagonists

    SciTech Connect

    Fryer, A.D.; El-Fakahany, E.E. )

    1990-01-01

    Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against ({sup 3}H)quinuclidinyl benzilate (({sup 3}H)QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced ({sup 3}H)QNB with low affinity from preparations of central airways indicating the absence of M{sub 1} receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M{sub 2} and M{sub 3} receptors since AF-DX 116, an M{sub 2}-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M{sub 3}-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M{sub 1} receptors in the peripheral airways but not in the central airways was confirmed using ({sup 3}H)telenzepine, an M{sub 1} receptor ligand. ({sup 3}H)Telenzepine showed specific saturable binding to 8% of ({sup 3}H)QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart.

  5. Allosteric interaction of the neuromuscular blockers vecuronium and pancuronium with recombinant human muscarinic M2 receptors.

    PubMed

    Cembala, Thor M; Forde, Steven C O; Appadu, Balraj L; Lambert, David G

    2007-08-13

    Neuromuscular blocking drugs produce muscle weakness by interaction with nicotinic-acetylcholine receptors. Cardiovascular side effects have been reported. In this study the neuromuscular blocking drug vecuronium and the controls gallamine and pancuronium slowed the rate of atropine induced [(3)H]N-methylscopolamine dissociation from Chinese hamster ovary cells expressing recombinant human muscarinic M2 receptors K(off) values min(-1); vecuronium (125 nM), atropine 0.45+/-0.07+blocker 0.04+/-0.02; gallamine (21 nM), atropine 0.42+/-0.05+blocker 0.15+/-0.04; pancuronium(21 nM), atropine 0.36+/-0.03+blocker 0.03+/-0.01). These data indicate that vecuronium, gallamine and pancuronium interact with an allosteric site on the muscarinic M2 receptor (located on the heart) and this may explain some of their cardiac side effects.

  6. Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca2+ channels.

    PubMed

    Gilani, Anwarul Hassan; Khan, Arif-Ullah; Raoof, Mustafa; Ghayur, Muhammad Nabeel; Siddiqui, Bina S; Vohra, Waseem; Begum, Sabira

    2008-02-01

    This study describes the spasmolytic, antidiarrhoeal, antisecretory, bronchodilatory and urinary bladder relaxant properties of Hyoscyamus niger to rationalize some of its medicinal uses. The crude extract of H. niger seeds (Hn.Cr) caused a complete concentration-dependent relaxation of spontaneous contractions of rabbit jejunum, similar to that caused by verapamil, whereas atropine produced partial inhibition. Hn.Cr inhibited contractions induced by carbachol (1 microM) and K(+) (80 mM) in a pattern similar to that of dicyclomine, but different from verapamil and atropine. Hn.Cr shifted the Ca(2+) concentration-response curves to the right, similar to that caused by verapamil and dicyclomine, suggesting a Ca(2+) channel-blocking mechanism in addition to an anticholinergic effect. In the guinea-pig ileum, Hn.Cr produced a rightward parallel shift of the acetylcholine curves, followed by a non-parallel shift with suppression of the maximum response at a higher concentration, similar to that caused by dicyclomine, but different from that of verapamil and atropine. Hn.Cr exhibited antidiarrhoeal and antisecretory effects against castor oil-induced diarrhoea and intestinal fluid accumulation in mice. In guinea-pig trachea and rabbit urinary bladder tissues, Hn.Cr caused relaxation of carbachol (1 microM) and K(+) (80 mM) induced contractions at around 10 and 25 times lower concentrations than in gut, respectively, and shifted carbachol curves to the right. Only the organic fractions of the extract had a Ca(2+) antagonist effect, whereas both organic and aqueous fractions had anticholinergic effect. A constituent, beta-sitosterol exhibited Ca(2+) channel-blocking action. These results suggest that the antispasmodic effect of H. niger is mediated through a combination of anticholinergic and Ca(2+) antagonist mechanisms. The relaxant effects of Hn.Cr occur at much lower concentrations in the trachea and bladder. This study offers explanations for the medicinal use of H

  7. Effect of sound deprivation on central hearing.

    PubMed

    Welsh, L W; Welsh, J J; Healy, M P

    1983-12-01

    The authors have investigated the thesis that intermittent hearing impairment due to middle ear disease in the early years of life results in a central auditory disturbance which may persist in adulthood. The concept that, during the speech development years, auditory disturbances interfere with the normal maturation of central auditory processing appear to be clearly established. Thirty-five children, free of active ear disease and normally hearing by standard peripheral audiometry, are the basis for the study. The monotic tests employing temporal and frequency distortion and the dichotic challenges of competing stimuli and central integration provide the test data. Approximately 75% of the study group fail at least 1 segment of the battery, beyond 2 standard deviations from the normal data. A decreasing percentage of the study group exceed the normative values in 2 or more of the test components. In view of these data on aggressive program of auditory conservation is suggested during the early years of life.

  8. Inhibition of adenylate cyclase attenuates muscarinic Ca²(+) signaling by a PKA-independent mechanism in rat carotid body Type I cells.

    PubMed

    Thompson, Carrie M; Wyatt, Christopher N

    2011-01-31

    Carotid body (CB) Type I cells respond to hypoxia by releasing excitatory and inhibitory neurotransmitters. This mechanism leads to increased firing of the carotid sinus nerve (CSN) which alters breathing to maintain blood gases within the physiological range. Acetylcholine targets both muscarinic and nicotinic receptors in the rat CB, acting postsynaptically on CSN and presynaptically on Type I cells. Muscarinic Ca²(+) signaling is inhibited by the activation of G(i)-coupled receptors including histamine H3 receptors. Here inhibition of adenylate cyclase with SQ22536 mimicked H3 receptor activation. Using Ca²(+) imaging techniques it was observed that inhibition of muscarinic Ca²(+) signaling was independent of protein kinase A (PKA) as PKA inhibitors H89 and KT5720 were without effect on the muscarinic Ca²(+) response. By contrast the Epac (exchange protein activated by cAMP) inhibitor brefeldin A inhibited muscarinic Ca²(+) signaling whereas the Epac activator 8-pCPT-2'-O-Me-cAMP-AM potentiated Ca²(+) signaling. Thus in Type I cells inhibition of adenylate cyclase inhibited muscarinic Ca²(+) signaling via a PKA-independent pathway that may rely upon modulation of Epac.

  9. Combinational effects of muscarinic receptor inhibition and β3-adrenoceptor stimulation on neurogenic bladder dysfunction in rats with spinal cord injury.

    PubMed

    Wada, Naoki; Shimizu, Takahiro; Takai, Shun; Shimizu, Nobutaka; Tyagi, Pradeep; Kakizaki, Hidehiro; Yoshimura, Naoki

    2017-04-01

    To investigate the effects of combined therapy with an anticholinergic agent and a β3-adrenoceptor agonist on bladder dysfunction and proliferation-related molecule expression in rats with spinal cord injury (SCI). The spinal cord was transected at the level of T8-9 in female Sprague-Dawley rats, which were divided into four groups; A: Vehicle, B: 10 mg/kg/day of oxybutynin, C: 10 mg/kg/day of mirabegron, and D: combined administration of oxybutynin and mirabegron. Drugs were administered by oral gavage from 2 to 4 weeks after spinal cord transection. We evaluated urodynamic parameters and bladder tissue remodeling factors. Non-voiding contractions (NVCs) during the storage phase of cystometrograms tended to be decreased in all three treated groups with a significant reduction in group D versus A. Bladder compliance was improved, and intercontraction intervals, voided volume and bladder capacity were increased in group D. In all three treated groups (B-D), the expression of HIF1-α and TGF-β1 was decreased compared to group A. The expression of collagen-III and bFGF was decreased in groups B and D. The total bladder elastin level was increased in group D. The combination therapy of an anticholinergic agent and a β3-adrenoceptor agonist elevated the bladder elastin level, reduced NVCs, and increased bladder compliance more effectively than the monotherapy in SCI rats. Thus, the combination therapy could be effective for the treatment of neurogenic bladder dysfunction including bladder remodeling. Neurourol. Urodynam. 36:1039-1045, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases

    PubMed Central

    Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno

    2015-01-01

    Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a

  11. Studies of muscarinic neurotransmission with antimuscarinic toxins.

    PubMed

    Potter, Lincoln T; Flynn, Donna D; Liang, Jing-Sheng; McCollum, Mark H

    2004-01-01

    M1 and M4 muscarinic receptors are the most prevalent receptors for acetylcholine in the brain, and m1-toxin1 and m4-toxin are the most specific ligands yet found for their extracellular faces. Both toxins are antagonists. These toxins and their derivatives with biotin, radioiodine and fluorophores are useful for studying M1- and M4-linked neurotransmission. We have used the rat striatum for many studies because this tissue express exceptionally high concentrations of both receptors, the striatum regulates movement, and movement is altered by antimuscarinic agents, M1-knockout and M4-knockout. These toxins and their derivatives may also be used for studies of M1 and M4 receptors in the hippocampus and cortex.

  12. The effects of pH on the affinity of pirenzepine for muscarinic receptors in the guinea-pig ileum and rat fundus strip.

    PubMed Central

    Barlow, R. B.; Chan, M.

    1982-01-01

    1 Dose-ratios obtained with pirenzepine on the guinea-pig ileum at 30 degrees C are indistinguishable from those obtained at 37 degrees C. 2. In 0.1 M NaCl at 37 degrees C the pKa of pirenzepine for the loss of its last ionizable proton is 8.2. The ionization of pirenzepine is therefore markedly affected by changes in pH in the physiological range. 3 In experiments with pirenzepine on guinea-pig ileum and rat fundus made over a range of pH, the dose-ratio increases with the proportion of the protonated form present. As expected, the slope of the graph of dose-ratio against proportion protonated depends on the concentration of antagonist. The changes in pH produce only small effects on dose-ratios obtained with pirenzepine monomethiodide. These effects of pH can account for some of the differences between estimates of the affinity of pirenzepine. 4 The logarithm of the affinity constant of the protonated form of pirenzepine for the receptors in guinea-pig ileum is estimated to be 6.93, compared with 6.94 for the receptors in rat fundus. However, for the non-protonated form the values appear to be below 5 for the ileum compared with about 6.4 for the rat fundus. PMID:6897199

  13. SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors.

    PubMed

    Loudon, J M; Bromidge, S M; Brown, F; Clark, M S; Hatcher, J P; Hawkins, J; Riley, G J; Noy, G; Orlek, B S

    1997-12-01

    The finding that ascending cholinergic systems are severely degenerated in Alzheimer's disease has driven the search for a cholinomimetic therapy. Adverse effects observed with cholinesterase inhibitors and high-efficacy muscarinic agonists led us to design compounds with an improved profile. SB 202026 (R-(Z)-(+)-alpha-(methoxyimino)-1-azabicyclo[2.2.2] octane-3-acetonitrile) displaced [3H]-oxotremorine-M from muscarinic receptors in the rat brain with high affinity (IC50 = 14 nM), a potency similar to that of oxotremorine-M itself (IC50 = 13 nM), but exhibited low affinity for cholinergic nicotinic receptors and other neuroreceptors. In studies using cloned human muscarinic receptors, SB 202026 possessed approximately equal affinity in displacing [3H]-quinuclidinyl benzilate from all muscarinic receptor subtypes. In functional models in vitro, SB 202026 caused maximal depolarization of the rat superior cervical ganglion at low concentrations (300 nM) (M1-mediated effect), while producing a lower maximal effect than the high-efficacy agonists oxotremorine-M and carbachol on M2-mediated release of ACh and M3-mediated smooth muscle contraction (guinea pig ileum), respectively. The functional selectivity and partial agonist profile seen in vitro were reflected in vivo through potent cognition-related activity (M1-induced increase in hippocampal EEG power) combined with low efficacy, compared with arecoline or oxotremorine, on induction of bradycardia (M2-mediated response), hypotension (via M3-mediated vasorelaxation) and tremor (thought to be mediated by M3 receptors). The foregoing profile of SB 202026 predicted that cognition-enhancing activity would be achieved at doses below those that initiate undesirable side effects, and this has subsequently been demonstrated in rodents, marmosets and humans.

  14. The structure of the third intracellular loop of the muscarinic acetylcholine receptor M2 subtype.

    PubMed

    Ichiyama, Susumu; Oka, Yoshiaki; Haga, Kazuko; Kojima, Shuichi; Tateishi, Yukihiro; Shirakawa, Masahiro; Haga, Tatsuya

    2006-01-09

    We have examined whether the long third intracellular loop (i3) of the muscarinic acetylcholine receptor M2 subtype has a rigid structure. Circular dichroism (CD) and nuclear magnetic resonance spectra of M2i3 expressed in and purified from Escherichia coli indicated that M2i3 consists mostly of random coil. In addition, the differential CD spectrum between the M2 and M2deltai3 receptors, the latter of which lacks most of i3 except N- and C-terminal ends, gave no indication of secondary structure. These results suggest that the central part of i3 of the M2 receptor has a flexible structure.

  15. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  16. Long-Acting Muscarinic Antagonists for Difficult-to-Treat Asthma: Emerging Evidence and Future Directions.

    PubMed

    Bulkhi, Adeeb; Tabatabaian, Farnaz; Casale, Thomas B

    2016-07-01

    Asthma is a complex disease where many patients remain symptomatic despite guideline-directed therapy. This suggests an unmet need for alternative treatment approaches. Understanding the physiological role of muscarinic receptors and the parasympathetic nervous system in the respiratory tract will provide a foundation of alternative therapeutics in asthma. Currently, several long-acting muscarinic antagonists (LAMAs) are on the market for the treatment of respiratory diseases. Many studies have shown the effectiveness of tiotropium, a LAMA, as add-on therapy in uncontrolled asthma. These studies led to FDA approval for tiotropium use in asthma. In this review, we discuss how the neurotransmitter acetylcholine itself contributes to inflammation, bronchoconstriction, and remodeling in asthma. We further describe the current clinical studies evaluating LAMAs in adult and adolescent patients with asthma, providing a comprehensive review of the current known physiological benefits of LAMAs in respiratory disease.

  17. Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability

    PubMed Central

    Lawrence, J Josh; Grinspan, Zachary M; Statland, Jeffrey M; McBain, Chris J

    2006-01-01

    Cholinergic activation of hippocampal targets can initiate and sustain network oscillations in vivo and in vitro, yet the impact of cholinergic modulation on the oscillatory properties of interneurones remains virtually unexplored. Using whole cell current clamp recordings in acute hippocampal slices, we investigated the influence of muscarinic receptor (mAChR) activation on the oscillatory properties of CA1 stratum oriens (SO) interneurones in vitro. In response to suprathreshold oscillatory input, mAChR activation increased spike reliability and precision, and extended the bandwidth that interneurone firing phase-locked. These suprathreshold effects were largest at theta frequencies, indicating that mAChR activation tunes active conductances to enhance firing reliability and precision to theta frequency input. Muscarinic tuning of the intrinsic oscillatory properties of interneurones is a novel mechanism that may be crucial for the genesis of the theta rhythm. PMID:16439425

  18. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods.

    PubMed

    Collin, Caitlin; Hauser, Frank; Gonzalez de Valdivia, Ernesto; de Valdivia, Ernesto Gonzalez; Li, Shizhong; Reisenberger, Julia; Carlsen, Eva M M; Khan, Zaid; Hansen, Niels O; Puhm, Florian; Søndergaard, Leif; Niemiec, Justyna; Heninger, Magdalena; Ren, Guilin R; Grimmelikhuijzen, Cornelis J P

    2013-09-01

    Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M) and muscarine (EC50, 6 × 10(-8) M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547-551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB. These residues are identical between the human m2 and the D. melanogaster and T. castaneum A-type mAChRs, while many of them are different between the human m2 and the B-type receptors. Using bioinformatics, one orthologue of the A-type and one of the B-type mAChRs could also be found in all other arthropods with a sequenced genome. Protostomes, such as arthropods, and deuterostomes, such as mammals and other vertebrates, belong to two evolutionarily distinct lineages of animal evolution that split about 700 million years ago. We found that animals that originated before this split, such as cnidarians (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs.

  19. Cholinergic Partition Cells and Lamina X Neurons Induce a Muscarinic-Dependent Short-Term Potentiation of Commissural Glutamatergic Inputs in Lumbar Motoneurons

    PubMed Central

    Bertrand, Sandrine S.; Cazalets, Jean-René

    2011-01-01

    Acetylcholine and the activation of muscarinic receptors influence the activity of neural networks generating locomotor behavior in the mammalian spinal cord. Using electrical stimulations of the ventral commissure, we show that commissural muscarinic (CM) depolarizations could be induced in lumbar motoneurons. We provide a detailed electrophysiological characterization of the muscarinic receptors and the membrane conductance involved in these responses. Activation of the CM terminals, originating from lamina X neurons and partition cells, induced a pathway-specific short-term potentiation (STP) of commissural glutamatergic inputs in motoneurons. This STP is occluded in the presence of the muscarinic antagonist atropine. During fictive locomotion, the activation of the commissural pathways transiently enhanced the motor output in a muscarinic-dependent manner. This study describes for the first time a novel regulatory mechanism of synaptic strength in spinal locomotor networks. Such cellular mechanisms would endow the locomotor central pattern generators with adaptive processes needed to generate appropriate synaptic inputs to motoneurons during different motor tasks. PMID:22069380

  20. Chronic treatment with simvastatin upregulates muscarinic M1/4 receptor binding in the rat brain.

    PubMed

    Wang, Q; Zengin, A; Ying, W; Newell, K A; Wang, P; Yeo, W; Wong, P T-H; Yenari, M A; Huang, X-F

    2008-06-26

    Statins are increasingly being used for the treatment of a variety of conditions beyond their original indication for cholesterol lowering. We previously reported that simvastatin affected the dopaminergic system in the rat brain. This study aims to investigate regional changes of muscarinic M1/4 receptors in the rat brain after 4-week administration of simvastatin (1 or 10 mg/kg/day). M1/4 receptor distribution and alterations in the post-mortem rat brain were detected by [(3)H]pirenzepine binding autoradiography. Simvastatin (1 mg/kg/day) increased [(3)H]pirenzepine binding, predominantly in the prefrontal cortex (171%, P<0.001), primary motor cortex (153%, P=0.001), cingulate cortex (109%, P<0.001), hippocampus (138%, P<0.001), caudate putamen (122%, P=0.002) and nucleus accumbens (170%, P<0.001) compared with controls; while lower but still significant increases of [(3)H]pirenzepine binding were observed in the examined regions following simvastatin (10 mg/kg/day) treatment. Our results also provide strong evidence that chronic simvastatin administration, especially at a low dosage, up-regulates M1/4 receptor binding, which is likely to be independent of its muscarinic agonist-like effect. Alterations in [(3)H]pirenzepine binding in the examined brain areas may represent the specific regions that mediate the clinical effects of simvastatin treatment on cognition and memory via the muscarinic cholinergic system. These findings contribute to a better understanding of the critical roles of simvastatin in treating neurodegenerative disorders, via muscarinic receptors.

  1. Muscarinic receptor subtypes controlling the cationic current in guinea-pig ileal smooth muscle

    PubMed Central

    Zholos, Alexander V; Bolton, Thomas B

    1997-01-01

    The effects of muscarinic antagonists on cationic current evoked by activating muscarinic receptors with the stable agonist carbachol were studied by use of patch-clamp recording techniques in guinea-pig single ileal smooth muscle cells. Ascending concentrations of carbachol (3–300 μM) activated the cationic conductance in a concentration-dependent manner with conductance at a maximally effective carbachol concentration (Gmax) of 27.4±1.4 nS and a mean −log EC50 of 5.12±0.03 (mean±s.e.mean) (n=114). Muscarinic antagonists with higher affinity for the M2 receptor, methoctramine, himbacine and tripitramine, produced a parallel shift of the carbachol concentration-effect curve to the right in a concentration-dependent manner with pA2 values of 8.1, 8.0 and 9.1, respectively. All M3 selective muscarinic antagonists tested, 4-DAMP, p-F-HHSiD and zamifenacin, reduced the maximal response in a concentration-dependent and non-competitive manner. This effect could be observed even at concentrations which did not produce any increase in the EC50 for carbachol. At higher concentrations M3 antagonists shifted the agonist curve to the right, increasing the EC50, and depressed the maximum conductance response. Atropine, a non-selective antagonist, produced both reduction in Gmax (M3 effect) and significant increase in the EC50 (M2 effect) in the same concentration range. The depression of the conductance by 4-DAMP, zamifenacin and atropine could not be explained by channel block as cationic current evoked by adding GTPγS to the pipette (without application of carbachol) was unaffected. The results support the hypothesis that carbachol activates M2 muscarinic receptors so initiating the opening of cationic channels which cause depolarization; this effect is potentiated by an unknown mechanism when carbachol activates M3 receptors. As an increasing fraction of M3 receptors are blocked by an antagonist, the effects on cationic current of an increasing proportion of

  2. Comparative evaluation of exocrine muscarinic receptor binding characteristics and inhibition of salivation of solifenacin in mice.

    PubMed

    Oki, Tomomi; Takeuchi, Chihiro; Yamada, Shizuo

    2006-07-01

    Anticholinergic agents such as oxybutynin are clinically useful in the treatment of overactive bladder. However, oral administration of oxybutynin is frequently accompanied by side effects such as dry mouth, and novel bladder-selective anticholinergic agents such as solifenacin and tolterodine are now under development. The aim of the present study was to characterize the suppression of cholinergic salivation and exocrine muscarinic receptor binding of solifenacin on oral administration to mice in comparison with those of oxybutynin. Results showed that both drugs produced a significant increase in K(d) values for specific [N-Methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS) binding in the mouse submaxillary gland, compared with control values. However, this enhancement in K(d) values was significantly smaller with solifenacin than with oxybutynin. Moreover, the inhibitory effect of solifenacin on pilocarpine-induced salivary secretion was significantly weaker than that of oxybutynin. Solifenacin dissociated more readily from muscarinic receptors in the mouse submaxillary gland than oxybutynin. In conclusion, the present study indicates that the weak suppression of cholinergic salivation by solifenacin compared with oxybutynin may be partially attributed to its relatively fast dissociation kinetics from exocrine muscarinic receptors.

  3. Ventral tegmental area muscarinic receptors modulate depression and anxiety-related behaviors in rats

    PubMed Central

    Small, Keri M.; Nunes, Eric; Hughley, Shannon; Addy, Nii A.

    2016-01-01

    Cholinergic and dopaminergic mechanisms within the mesolimbic dopamine system are suggested to play a role in the manifestation of depression and anxiety-related disorders. However, despite the fact that cholinergic mechanisms in the ventral tegmental area (VTA) highly regulate dopamine activity, the role of VTA cholinergic mechanisms in depression-related behaviors is relatively unknown. Here we sought to determine whether enhancing cholinergic tone in the VTA would alter depression and anxiety-related behavior in the forced swim test (FST), elevated plus maze (EPM) and sucrose preference test (SPT). Adult Sprague Dawley male rats received VTA infusion of the acetylcholinesterase inhibitor, physostigmine (0, 1, 2 μg/side), immediately prior to the FST, EPM, or SPT. Physostigmine administration increased immobility time in the FST, decreased time spent on open arms in the EPM, and decreased sucrose preference. In a separate cohort of rats, we also examined whether activation of VTA muscarinic receptors was sufficient to alter behavior in the FST and EPM. Similar to physostigmine, VTA infusion of the muscarinic receptor agonist, pilocarpine (0, 3, 30 μg/side), increased immobility time in the FST and decreased time spent on open arms in the EPM. These data suggest that enhanced VTA cholinergic tone promotes pro-depressive and anxiogenic-like effects and demonstrate that specific activation of VTA muscarinic receptors is also sufficient to induce pro-depressive and anxiogenic responses. Together, these findings reveal a novel role of VTA cholinergic, and specifically muscarinic receptor, mechanisms in mediating responses to stress and anxiety. PMID:26828299

  4. Ventral tegmental area muscarinic receptors modulate depression and anxiety-related behaviors in rats.

    PubMed

    Small, Keri M; Nunes, Eric; Hughley, Shannon; Addy, Nii A

    2016-03-11

    Cholinergic and dopaminergic mechanisms within the mesolimbic dopamine system are suggested to play a role in the manifestation of depression and anxiety-related disorders. However, despite the fact that cholinergic mechanisms in the ventral tegmental area (VTA) highly regulate dopamine activity, the role of VTA cholinergic mechanisms in depression-related behaviors is relatively unknown. Here we sought to determine whether enhancing cholinergic tone in the VTA would alter depression and anxiety-related behavior in the forced swim test (FST), elevated plus maze (EPM) and sucrose preference test (SPT). Adult Sprague Dawley male rats received VTA infusion of the acetylcholinesterase inhibitor, physostigmine (0, 1, 2μg/side), immediately prior to the FST, EPM, or SPT. Physostigmine administration increased immobility time in the FST, decreased time spent on open arms in the EPM, and decreased sucrose preference. We also examined whether activation of VTA muscarinic receptors was sufficient to alter behavior in the FST and EPM. Similar to physostigmine, VTA infusion of the muscarinic receptor agonist, pilocarpine (0, 3, 30μg/side), increased immobility time in the FST and decreased time spent on open arms in the EPM. These data suggest that enhanced VTA cholinergic tone promotes pro-depressive and anxiogenic-like effects and demonstrate that specific activation of VTA muscarinic receptors is also sufficient to induce pro-depressive and anxiogenic responses. Together, these findings reveal a novel role of VTA cholinergic, and specifically muscarinic receptor, mechanisms in mediating responses to stress and anxiety. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    SciTech Connect

    Gil, D.W.; Wolfe, B.B.

    1986-05-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands (/sup 3/H)quinuclidinyl benzilate or (/sup 3/H)PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of (/sup 3/H)quinuclidinyl benzilate in a biphasic manner.

  6. Muscarinic receptors stimulate cell proliferation in the human urothelium-derived cell line UROtsa.

    PubMed

    Arrighi, Nicola; Bodei, Serena; Lucente, Alessandra; Michel, Martin C; Zani, Danilo; Simeone, Claudio; Cunico, Sergio Cosciani; Spano, PierFranco; Sigala, Sandra

    2011-10-01

    The widespread non-neuronal synthesis of acetylcholine (ACh) has changed the paradigm of ACh acting solely as a neurotransmitter. Indeed, the presence of ACh in many types of proliferating cells suggests a role for this neurotransmitter in the control of cell division. The parasympathetic system is a major pathway regulating micturition, but ACh-mediated control plays a more complex role than previously described, acting not only in the detrusor muscle, but also influencing detrusor function through the activity of urothelial muscarinic receptors. Here we investigated the role of muscarinic receptors in mediating cell proliferation in the human UROtsa cell line, which is a widely used experimental model to study urothelium physiology and pathophysiology. Our results demonstrate that UROtsa cells express the machinery for ACh synthesis and that muscarinic receptors, with the rank order of M3>M2>M5>M1=M4, are present and functionally linked to their known second messengers. Indeed, the cholinergic receptor agonist carbachol (CCh) (1-100 μM) concentration-dependently raised IP(3) levels, reaching 66±5% over basal. The forskolin-mediated adenylyl cyclase activation was reduced by CCh exposure (forskolin: 1.4±0.14 pmol/ml; forskolin+100 μM CCh: 0.84±0.12 pmol/ml). CCh (1-100 μM) concentration-dependently increased UROtsa cell proliferation and this effect was inhibited by the non-selective antagonist atropine and the M(3)-selective antagonists darifenacin and J104129. Finally, CCh-induced cell proliferation was blocked by selective PI-3 kinase and ERK activation inhibitors, strongly suggesting that these intracellular pathways mediate, at least in part, the muscarinic receptor-mediated cell proliferation.

  7. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Kühne, Sina; Bocksberger, Simone; Banning, Antje; Tikkanen, Ritva

    2013-01-01

    Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer. PMID:24705159

  8. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    SciTech Connect

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  9. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    SciTech Connect

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.; Barker, D.L.

    1985-12-01

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.

  10. The role of muscarinic cholinergic signaling in cost-benefit decision making

    NASA Astrophysics Data System (ADS)

    Fobbs, Wambura

    Animals regularly face decisions that affect both their immediate success and long term survival. Such decisions typically involve some form of cost-benefit analysis and engage a number of high level cognitive processes, including learning, memory and motivational influences. While decision making has been a focus of study for over a century, it's only in the last 20 years that researchers have begun to identify functional neural circuits that subserve different forms of cost-benefit decision making. Even though the cholinergic system is both functionally and anatomically positioned to modulate cost-benefit decision circuits, the contribution of the cholinergic system to decision making has been little studied. In this thesis, I investigated the cognitive and neural contribution of muscarinic cholinergic signaling to cost-benefit decision making. I, first, re-examined the effects of systemic administration of 0.3 mg/kg atropine on delay and probability discounting tasks and found that blockade of muscarinic acetylcholine receptors by atropine induced suboptimal choices (impulsive and risky) in both tasks. Since the effect on delay discounting was restricted to the No Cue version of the delay discounting task, I concluded that muscarinic cholinergic signaling mediates both forms of cost-benefit decision making and is selectively engaged when decisions require valuation of reward options whose costs are not externally signified. Second, I assessed the impact of inactivating the nucleus basalis (NBM) on both forms decision making and the effect of injecting atropine locally into the orbitofrontal cortex (OFC), basolateral amygdala (BLA), or nucleus accumbens (NAc) core during the No Cue version of the delay discounting task. I discovered that although NBM inactivation failed to affect delay discounting, it induced risk aversion in the probability discounting task; and blockade of intra- NAc core, but not intra-OFC or intra-BLA, muscarinic cholinergic signaling lead to

  11. Evidence of paired M2 muscarinic receptors

    SciTech Connect

    Potter, L.T.; Ballesteros, L.A.; Bichajian, L.H.; Ferrendelli, C.A.; Fisher, A.; Hanchett, H.E.; Zhang, R. )

    1991-02-01

    Binding assays involving various antagonists, including N-(3H) methylscopolamine, (3H)quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat brainstem (medulla, pons, and colliculi). However, competition curves between N-(3H)methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization with digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of (3H)-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with (3H)quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.

  12. Muscarinic receptors activity in the perirhinal cortex and hippocampus has differential involvement in the formation of recognition memory.

    PubMed

    Balderas, Israela; Morin, Jean-Pascal; Rodriguez-Ortiz, Carlos J; Bermudez-Rattoni, Federico

    2012-05-01

    In this work we probed the effects of post-trial infusions of the muscarinic receptor antagonist scopolamine on object recognition memory formation. Scopolamine was infused bilaterally immediately after the sample phase in the perirhinal cortex or dorsal hippocampus and animals were tested for short-term (90 min) or long-term (24 h) memory. Results showed that scopolamine impaired short-term memory when injected in either the perirhinal cortex or hippocampus. Nevertheless, scopolamine disrupted long-term memory when administrated in the perirhinal cortex but not when applied in the hippocampus. Long-term memory was unaffected when scopolamine was infused 160 min after the sample phase or 90 min before test phase. Our data indicate that short-term recognition memory requires muscarinic receptors signaling in both the perirhinal cortex and hippocampus, whereas long-term recognition memory depends on muscarinic receptors in the perirhinal cortex but not hippocampus. These results support a differential involvement of muscarinic activity in these two medial temporal lobe structures in the formation of recognition memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task

    PubMed Central

    Devore, Sasha; Manella, Laura C.; Linster, Christiane

    2012-01-01

    Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB) can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for 10–100 s. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM) impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM) had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB. PMID:22973212

  14. Fesoterodine, its active metabolite, and tolterodine bind selectively to muscarinic receptors in human bladder mucosa and detrusor muscle.

    PubMed

    Yoshida, Akira; Fuchihata, Yusuke; Kuraoka, Shiori; Osano, Ayaka; Otsuka, Atsushi; Ozono, Seiichiro; Takeda, Masayuki; Masuyama, Keisuke; Araki, Isao; Yamada, Shizuo

    2013-04-01

    To comparatively characterize the binding activity of fesoterodine, its active metabolite (5-hydroxymethyl tolterodine [5-HMT]), and tolterodine in the human bladder mucosa, detrusor muscle, and parotid gland. Muscarinic receptors in the homogenates of human bladder mucosa, detrusor muscle, and parotid gland were measured by a radioligand binding assay using [N-methyl-(3)H] scopolamine methyl chloride. Fesoterodine, 5-HMT, and tolterodine competed with [N-methyl-(3)H] scopolamine methyl chloride for binding sites in the bladder mucosa, detrusor muscle, and parotid gland in a concentration-dependent manner. The affinity for muscarinic receptors of these agents was significantly greater in the bladder than in the parotid gland, suggesting pharmacologic selectivity for the bladder over the parotid gland. The bladder selectivity was larger for fesoterodine and 5-HMT than for tolterodine. Fesoterodine, 5-HMT, and tolterodine resulted in significantly increased (two- to five-fold) values of the apparent dissociation constant for specific [N-methyl-(3)H] scopolamine methyl chloride binding in the detrusor muscle and parotid gland, with little effect on the corresponding values of the maximal number of binding sites. This finding indicates that these agents bind to the human muscarinic receptors in a competitive and reversible manner. Fesoterodine and 5-HMT bind to the muscarinic receptors with greater affinity in the human bladder mucosa and detrusor muscle than in the parotid gland in a competitive and reversible manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Differential role of protein kinase C in desensitization of muscarinic receptor induced by phorbol esters and receptor agonists

    SciTech Connect

    Lai, Wi Sheung.

    1989-01-01

    PKC, a phorbol ester receptor, copurified with specific binding sites of ({sup 3}H)phorbol-12,13,-dibutyrate (({sup 3}H)PDBu). The specific binding of ({sup 3}H)PDBu to intact cells was saturable to a single class of binding sites. The PKC and phorbol ester receptors in N1E-115 cells can be down regulated by prolonged phorbol ester incubation. Phorbol 12-myristate 13-acetate (PMA) suppressed muscarinic receptor-mediated cyclic GMP response in a time-dependent and a concentration-dependent fashion and the suppressive effect of PMA could be attenuated by a protein kinase inhibitor, H-7, as well as by down-regulation of the PKC through long-term incubation with PDBu. Exposure of the cells to the muscarinic agonist carbamylcholine also desensitized subsequent CBC-mediated cyclic GMP response. However, pretreatment with carbamylcholine did not desensitize histamine-induced cyclic GMP formation while treatment with PMA suppressed this histamine-mediated response. Preincubation of the cells with CBC, but not with phorbol ester, resulted in down-regulation of muscarinic receptors. The loss of muscarinic receptors induced by agonist even occurred when the phosphoinositide hydrolysis response was suppressed.

  16. Characterization of muscarinic receptor binding and inhibition of salivation after oral administration of tolterodine in mice.

    PubMed

    Oki, Tomomi; Maruyama, Shuji; Takagi, Yukiko; Yamamura, Henry I; Yamada, Shizuo

    2006-01-04

    The current study was undertaken to characterize the effects of oral administration of tolterodine on muscarinic receptor binding in the bladder and submaxillary gland and on salivation in mice. In the in vitro experiment, tolterodine and its metabolite (5-hydroxymethyl metabolite: 5-HM) competed concentration-dependently with [N-methyl-(3)H]-scopolamine ([(3)H]NMS) in the mouse bladder, submaxillary gland and heart, and the potencies of both agents were greater than that of oxybutynin. After oral administration of tolterodine (6.31, 21.0 micromol/kg) and oxybutynin (76.1 micromol/kg), there was a dose and time-dependent increase in K(d) values for specific [(3)H]NMS binding in the bladder, prostate, submaxillary gland, heart, colon and lung, compared with control values, suggesting significant muscarinic receptor binding in each tissue. The K(d) increase in each tissue by oral oxybutynin reached a maximum value of 0.5 h after oral administration and then rapidly declined, while that by tolterodine was greatest 2 h after the administration and it was maintained for at least 6 or 12 h, depending on the dose and on the tissue. Thus, muscarinic receptor binding of oral tolterodine was slower in onset and of a longer duration than that of oxybutynin. Also, oral oxybutynin showed relatively greater receptor binding in the submaxillary gland as compared with other tissues, but such high selectivity to the exocrine gland muscarinic receptors was not observed by oral tolterodine. Oral administration of tolterodine and oxybutynin reduced significantly the pilocarpine-induced salivary secretion in mice, and the attenuation of oral tolterodine appeared more slowly and it was more persistent than that of oral oxybutynin. The antagonistic effect of oral tolterodine on the dose-response curves to pilocarpine was significantly weaker than that of oxybutynin. These data suggest that oral tolterodine, compared with the case of oral oxybutynin, binds more selectively to muscarinic

  17. Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice.

    PubMed

    Ito, Yoshihiko; Oyunzul, Luvsandorj; Yoshida, Akira; Fujino, Tomomi; Noguchi, Yukiko; Yuyama, Hironori; Ohtake, Akiyoshi; Suzuki, Masanori; Sasamata, Masao; Matsui, Minoru; Yamada, Shizuo

    2009-08-01

    Solifenacin is a novel selective antagonist of M(3) muscarinic receptor developed for the treatment of overactive bladder. The current study was undertaken to characterize in vivo muscarinic receptor subtype selectivity of solifenacin in the bladder and submandibular gland by using muscarinic receptor subtype knockout (KO) mice. Muscarinic receptors in the bladder and submandibular gland of wild type, M(2)R KO and M(3)R KO mice under in vitro and after oral administration of solifenacin and oxybutynin were measured by radioligand binding assay using [N-methyl-(3)H]scopolamine ([(3)H]NMS). There was little difference between the bladder and submandibular gland of M(2)R KO mice in the receptor binding activities of oxybutynin and solifenacin in vitro, suggesting equal affinity for residual (predominantly M(3) subtype) muscarinic receptors in both tissues. In contrast, compared with oral oxybutynin, oral administration of solifenacin exerted a significantly greater activity to bind muscarinic receptors in the bladder of M(2)R KO mice, while exhibiting a significantly less activity to bind those in the submandibular gland. In the bladder and submandibular gland of M(3)R KO mice, the binding activity of solifenacin and oxybutynin showed no significant difference. Plasma concentrations of solifenacin and oxybutynin after oral administration differed little among wild type, M(2)R KO and M(3)R KO mice. The results indicate that oral solifenacin, unlike oral oxybutynin, may selectively bind to the muscarinic M(3) subtype in the bladder compared with such receptors in the submandibular gland in vivo. Oral solifenacin may be advantageous for the treatment of overactive bladder, in terms of high affinity for M(3) receptors in the bladder.

  18. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  19. Direct Interaction of GABAB Receptors with M2 Muscarinic Receptors Enhances Muscarinic Signaling

    PubMed Central

    Boyer, Stephanie B.; Clancy, Sinead M.; Terunuma, Miho; Revilla-Sanchez, Raquel; Thomas, Steven M.; Moss, Stephen J.; Slesinger, Paul A.

    2009-01-01

    Down-regulation of G protein coupled receptors (GPCR) provides an important mechanism for reducing neurotransmitter signaling during sustained stimulation. Chronic stimulation of M2 muscarinic receptors (M2R) causes internalization of M2R and G protein-activated inwardly rectifying potassium (GIRK) channels in neuronal PC12 cells, resulting in loss of function. Here, we show that co-expression of GABAB R2 receptors (GBR2) rescues both surface expression and function of M2R, including M2R-induced activation of GIRKs and inhibition of cAMP production. GBR2 showed significant association with M2R at the plasma membrane but not other GPCRs (M1R, μOR), as detected by FRET measured with TIRF microscopy. Unique regions of the proximal C-terminal domains of GBR2 and M2R mediate specific binding between M2R and GBR2. In the brain, GBR2, but not GBR1, biochemically coprecipitates with M2R and overlaps with M2R expression in cortical neurons. This novel heteromeric association between M2R and GBR2 provides a possible mechanism for altering muscarinic signaling in the brain and represents a previously unrecognized role for GBR2. PMID:20016095

  20. Muscarinic receptors of the albino rabbit ciliary process.

    PubMed

    Mallorga, P; Babilon, R W; Buisson, S; Sugrue, M F

    1989-04-01

    Muscarinic receptor binding sites were identified in membranes prepared from albino rabbit ciliary processes, using the muscarinic antagonist [3H]L-quinuclidinyl benzylate as the radioligand. Analysis of saturation binding experiments demonstrated that [3H]L-quinuclidinyl benzylate bound to an apparent homogeneous population of binding sites with a Kd value of 6.4 pm and a Bmax value of 155 fmol mg-1 protein. Seventy percent (70%) of binding sites showed high affinity for pirenzepine, i.e. belonged to the M1 subtype. In contrast, AF-DX 116 was unable to discriminate between subtypes of muscarinic binding sites in this tissue. Carbachol caused a dose-dependent increase in phosphatidylinositol turnover (EC50 = 154 microM) in ciliary processes. A maximum stimulation of 652% of basal activity was obtained following a 45 min incubation with 10 mM carbachol. The potency of muscarinic antagonists to block the carbachol-induced response was comparable to that found for M1 receptors in other tissues. Oxotremorine and pilocarpine behaved like partial agonists in this assay. The carbachol-induced increase in phosphatidylinositol turnover was also observed in a suspension of epithelial cells from ciliary processes and it was blocked by atropine; thus, indicating the presence of muscarinic receptors functionally coupled to phosphatidylinositol turnover in these cells.

  1. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    SciTech Connect

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P. )

    1991-07-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 (11-2-((2-(diethylaminomethyl)- 1-piperidinyl)acetyl)-5,11-dihydro-6H- pyrido(2,3-b)(1,4)benzodiazepine-6-one), hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of (3H)quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of (3H)-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated.

  2. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    SciTech Connect

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-03-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 ..mu..M, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. /sup 45/Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated /sup 45/Ca outflux. BPP was also capable of displacing the specific binding of (/sup 3/H)-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 ..mu..M) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.

  3. Rationale for the Use of Anticholinergic Agents in Overactive Bladder With Regard to Central Nervous System and Cardiovascular System Side Effects

    PubMed Central

    Onal, Bulent

    2013-01-01

    Purpose Central nervous system (CNS) and cardiovascular system (CVS) side effects of anticholinergic agents used to treat overactive bladder (OAB) are underreported. Hence, this review aimed to focus on the mechanisms of CNS and CVS side effects of anticholinergic drugs used in OAB treatment, which may help urologists in planning the rationale for OAB treatment. Materials and Methods PubMed/MEDLINE was searched for the key words "OAB," "anticholinergics," "muscarinic receptor selectivity," "blood-brain barrier," "CNS," and "CVS side effects." Additional relevant literature was determined by examining the reference lists of articles identified through the search. Results CNS and CVS side effects, pharmacodynamic and pharmacokinetic properties, the metabolism of these drugs, and the clinical implications for their use in OAB are presented and discussed in this review. Conclusions Trospium, 5-hydroxymethyl tolterodine, darifenacin, and solifenacin seem to have favorable pharmacodynamic and pharmacokinetic properties with regard to CNS side effects, whereas the pharmacodynamic features of darifenacin, solifenacin, and oxybutynin appear to have an advantage over the other anticholinergic agents (tolterodine, fesoterodine, propiverine, and trospium) with regard to CVS side effects. To determine the real-life situation, head-to-head studies focusing especially on CNS and CVS side effects of OAB anticholinergic agents are urgently needed. PMID:24363860

  4. Honokiol blocks store operated calcium entry in CHO cells expressing the M3 muscarinic receptor: honokiol and muscarinic signaling

    PubMed Central

    2013-01-01

    Background Honokiol, a cell-permeable phenolic compound derived from the bark of magnolia trees and present in Asian herbal teas, has a unique array of pharmacological actions, including the inhibition of multiple autonomic responses. We determined the effects of honokiol on calcium signaling underlying transmission mediated by human M3 muscarinic receptors expressed in Chinese hamster ovary (CHO) cells. Receptor binding was determined in radiolabelled ligand binding assays; changes in intracellular calcium concentrations were determined using a fura-2 ratiometric imaging protocol; cytotoxicity was determined using a dye reduction assay. Results Honokiol had a potent (EC50 ≈ 5 μmol/l) inhibitory effect on store operated calcium entry (SOCE) that was induced by activation of the M3 receptors. This effect was specific, rapid and partially reversible, and was seen at concentrations not associated with cytotoxicity, inhibition of IP3 receptor-mediated calcium release, depletion of ER calcium stores, or disruption of M3 receptor binding. Conclusions It is likely that an inhibition of SOCE contributes to honokiol disruption of parasympathetic motor functions, as well as many of its beneficial pharmacological properties. PMID:23432810

  5. Regulation of synaptic MAPK/ERK phosphorylation in the rat striatum and medial prefrontal cortex by dopamine and muscarinic acetylcholine receptors.

    PubMed

    Xue, Bing; Mao, Li-Min; Jin, Dao-Zhong; Wang, John Q

    2015-10-01

    Dopamine and acetylcholine are two principal transmitters in the striatum and are usually balanced to modulate local neural activity and to maintain striatal homeostasis. This study investigates the role of dopamine and muscarinic acetylcholine receptors in the regulation of a central signaling protein, i.e., the mitogen-activated protein kinase (MAPK). We focus on the synaptic pool of MAPKs because of the fact that these kinases reside in peripheral synaptic structures in addition to their somatic locations. We show that a systemic injection of dopamine D1 receptor (D1R) agonist SKF81297 enhances phosphorylation of extracellular signal-regulated kinases (ERKs), a prototypic subclass of MAPKs, in the adult rat striatum. Similar results were observed in another dopamine-responsive region, the medial prefrontal cortex (mPFC). The dopamine D2 receptor agonist quinpirole had no such effects. Pretreatment with a positive allosteric modulator (PAM) of muscarinic acetylcholine M4 receptors (M4Rs), VU0152100, attenuated the D1R agonist-stimulated ERK phosphorylation in the two regions, whereas the PAM itself did not alter basal ERK phosphorylation. All drug treatments had no effect on phosphorylation of c-Jun N-terminal kinases (JNKs), another MAPK subclass, in the striatum and mPFC. These results demonstrate that dopamine and acetylcholine are integrated to control synaptic ERK but not JNK activation in striatal and mPFC neurons in vivo. Activation of M4Rs exerts an inhibitory effect on the D1R-mediated upregulation of synaptic ERK phosphorylation.

  6. Thermodynamics of antagonist binding to rat muscarinic M2 receptors: antimuscarinics of the pridinol, sila-pridinol, diphenidol and sila-diphenidol type.

    PubMed Central

    Waelbroeck, M.; Camus, J.; Tastenoy, M.; Lambrecht, G.; Mutschler, E.; Kropfgans, M.; Sperlich, J.; Wiesenberger, F.; Tacke, R.; Christophe, J.

    1993-01-01

    of drug binding. 6. Replacement of a pyrrolidino by a piperidino group and increasing the length of the alkylene chain bridging the amino group and the central carbon or silicon atom were associated with either an increase or a decrease of entropy and enthalpy changes of drug binding. However, there was no clear correlation between these structural variations and the thermodynamic effects. 7. Taken together, these results suggest that hydrogen bond-forming OH groups and, to a lesser extent, polarizable phenyl groups contribute significantly to the thermodynamics of interactions between these classes of muscarinic antagonists and M2 muscarinic receptors. PMID:8102927

  7. Muscarinic toxicity among family members after consumption of mushrooms.

    PubMed

    George, Peter; Hegde, Narasimha

    2013-01-01

    Mushrooms are commercially cultivated over the world and safe for human consumption, except in those with known allergies. Among the thousands of mushroom species identified, few are considered to be edible. Mushroom hunting has emerged as an adventure and recreational activity in recent decades. Wild forms of mushrooms are often poisonous and visually mimic the edible ones, thus leading to mistaken harvesting, consumption, and toxicities. In literature, various systemic toxic syndromes associated with mushroom poisoning have been described. We report four members of a family with muscarinic manifestations after accidental consumption of poisonous mushrooms. The Clitocybe species of mushrooms they consumed resulted in their muscarinic toxicity. Patients with muscarinic mushroom toxicity have early onset of symptoms and they respond well to atropine and symptomatic supportive care.

  8. Muscarinic Toxicity Among Family Members After Consumption of Mushrooms

    PubMed Central

    George, Peter; Hegde, Narasimha

    2013-01-01

    Mushrooms are commercially cultivated over the world and safe for human consumption, except in those with known allergies. Among the thousands of mushroom species identified, few are considered to be edible. Mushroom hunting has emerged as an adventure and recreational activity in recent decades. Wild forms of mushrooms are often poisonous and visually mimic the edible ones, thus leading to mistaken harvesting, consumption, and toxicities. In literature, various systemic toxic syndromes associated with mushroom poisoning have been described. We report four members of a family with muscarinic manifestations after accidental consumption of poisonous mushrooms. The Clitocybe species of mushrooms they consumed resulted in their muscarinic toxicity. Patients with muscarinic mushroom toxicity have early onset of symptoms and they respond well to atropine and symptomatic supportive care. PMID:23833447

  9. Characterization of muscarinic receptor subtypes in human tissues

    SciTech Connect

    Giraldo, E.; Martos, F.; Gomez, A.; Garcia, A.; Vigano, M.A.; Ladinsky, H.; Sanchez de La Cuesta, F.

    1988-01-01

    The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with (/sup 3/H)Pirenzepine and (/sup 3/H)N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M/sub 1/ neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M/sub 1/, the cardiac M/sub 2/ and the glandular M/sub 3/.

  10. The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat.

    PubMed

    Stanhope, K J; Mirza, N R; Bickerdike, M J; Bright, J L; Harrington, N R; Hesselink, M B; Kennett, G A; Lightowler, S; Sheardown, M J; Syed, R; Upton, R L; Wadsworth, G; Weiss, S M; Wyatt, A

    2001-11-01

    The muscarinic receptor agonist xanomeline was examined and compared with the antipsychotics clozapine and/or haloperidol in the following in vivo rat models: apomorphine-induced disruption of prepulse inhibition (PPI), amphetamine-induced hyperlocomotion, and the conditioned emotional response (CER) test. The effects of xanomeline were also assessed ex vivo on dopamine turnover in the rat medial prefrontal cortex. Under conditions of varying dose and prepulse intensity, xanomeline, like haloperidol, had no effect on PPI. In contrast, the muscarinic receptor antagonist scopolamine and the muscarinic receptor agonist pilocarpine both induced significant dose-dependent deficits in PPI. Haloperidol and xanomeline, but not pilocarpine, dose dependently reversed apomorphine-induced disruption of PPI. Thus, xanomeline induced a clear antipsychotic-like effect in PPI, whereas pilocarpine appeared to induce a psychotomimetic-like effect. Xanomeline attenuated amphetamine-induced hyperactivity at doses that had no effect on spontaneous activity, possibly indicating a separation between attenuation of limbic hyperdopaminergic function and the induction of hypolocomotion. Haloperidol and clozapine also reversed amphetamine-induced hyperlocomotion, but at similar doses to those that reduced spontaneous locomotion. Clozapine, but not haloperidol had an anxiolytic-like effect in the CER test. The effects of xanomeline in the CER test were similar to those of clozapine, although at the anxiolytic dose it tended to disrupt baseline levels of lever pressing. Finally, haloperidol, clozapine, pilocarpine, and xanomeline, all induced an increase in dopamine turnover in medial prefrontal cortex. The antipsychotic-like effects of xanomeline in the animal models used here suggest that it may be a useful treatment for psychosis.

  11. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  12. Muscarinic receptors in amygdala control trace fear conditioning.

    PubMed

    Baysinger, Amber N; Kent, Brianne A; Brown, Thomas H

    2012-01-01

    Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  13. Muscarinic Receptors in Amygdala Control Trace Fear Conditioning

    PubMed Central

    Baysinger, Amber N.; Kent, Brianne A.; Brown, Thomas H.

    2012-01-01

    Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning. PMID:23029199

  14. α1-Adrenoceptors and muscarinic receptors in voiding function – binding characteristics of therapeutic agents in relation to the pharmacokinetics

    PubMed Central

    Yamada, Shizuo; Ito, Yoshihiko; Tsukada, Hideo

    2011-01-01

    In vivo and ex vivo binding of α1-adrenoceptor and muscarinic receptors involved in voiding function is reviewed with therapeutic agents (α1-adrenoceptor antagonists: prazosin, tamsulosin and silodosin; and muscarinic receptor antagonists: oxybutynin, tolterodine, solifenacin, propiverine, imiafenacin and darifenacin) in lower urinary tract symptoms. This approach allows estimation of the inhibition of a well-characterized selective (standard) radioligand by unlabelled potential drugs or direct measurement of the distribution and receptor binding of a standard radioligand or radiolabelled form of a novel drug. In fact, these studies could be conducted in various tissues from animals pretreated with radioligands and/or unlabelled novel drugs, by conventional radioligand binding assay, radioactivity measurement, autoradiography and positron emission tomography. In vivo and ex vivo receptor binding with α1-adrenoceptor antagonists and muscarinic receptor antagonists have been proved to be useful in predicting the potency, organ selectivity and duration of action of drugs in relation to their pharmacokinetics. Such evaluations of drug–receptor binding reveal that adverse effects could be avoided by the use of new α1-adrenoceptor antagonists and muscarinic receptor antagonists for the treatment of lower urinary tract symptoms. Thus, the comparative analysis of α1-adrenoceptor and muscarinic receptor binding characteristics in the lower urinary tract and other tissues after systemic administration of therapeutic agents allows the rationale for their pharmacological characteristics from the integrated viewpoint of pharmacokinetics and pharmacodynamics. The current review emphasizes the usefulness of in vivo and ex vivo receptor binding in the discovery and development of novel drugs for the treatment of not only urinary dysfunction but also other disorders. PMID:21265873

  15. α1-Adrenoceptors and muscarinic receptors in voiding function - binding characteristics of therapeutic agents in relation to the pharmacokinetics.

    PubMed

    Yamada, Shizuo; Ito, Yoshihiko; Tsukada, Hideo

    2011-08-01

    In vivo and ex vivo binding of α(1)-adrenoceptor and muscarinic receptors involved in voiding function is reviewed with therapeutic agents (α(1)-adrenoceptor antagonists: prazosin, tamsulosin and silodosin; and muscarinic receptor antagonists: oxybutynin, tolterodine, solifenacin, propiverine, imiafenacin and darifenacin) in lower urinary tract symptoms. This approach allows estimation of the inhibition of a well-characterized selective (standard) radioligand by unlabelled potential drugs or direct measurement of the distribution and receptor binding of a standard radioligand or radiolabelled form of a novel drug. In fact, these studies could be conducted in various tissues from animals pretreated with radioligands and/or unlabelled novel drugs, by conventional radioligand binding assay, radioactivity measurement, autoradiography and positron emission tomography. In vivo and ex vivo receptor binding with α(1)-adrenoceptor antagonists and muscarinic receptor antagonists have been proved to be useful in predicting the potency, organ selectivity and duration of action of drugs in relation to their pharmacokinetics. Such evaluations of drug-receptor binding reveal that adverse effects could be avoided by the use of new α(1)-adrenoceptor antagonists and muscarinic receptor antagonists for the treatment of lower urinary tract symptoms. Thus, the comparative analysis of α(1)-adrenoceptor and muscarinic receptor binding characteristics in the lower urinary tract and other tissues after systemic administration of therapeutic agents allows the rationale for their pharmacological characteristics from the integrated viewpoint of pharmacokinetics and pharmacodynamics. The current review emphasizes the usefulness of in vivo and ex vivo receptor binding in the discovery and development of novel drugs for the treatment of not only urinary dysfunction but also other disorders. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological

  16. Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation.

    PubMed

    Bernard, V; Laribi, O; Levey, A I; Bloch, B

    1998-12-01

    The purpose of our work was to investigate how the cholinergic environment influences the targeting and the intracellular trafficking of the muscarinic receptor m2 (m2R) in vivo. To address this question, we have used immunohistochemical approaches at light and electron microscopic levels to detect the m2R in control rats and rats treated with muscarinic receptor agonists. In control animals, m2Rs were located mostly at postsynaptic sites at the plasma membrane of perikarya and dendrites of cholinergic and NPY-somatostatin interneurons as autoreceptors and heteroreceptors, respectively. Presynaptic receptors were also detected in boutons. The m2Rs were usually detected at extrasynaptic sites, but they could be found rarely in association with symmetrical synapses, suggesting that the cholinergic transmission mediated by m2R occurs via synaptic and nonsynaptic mechanisms. The stimulation of muscarinic receptors with oxotremorine provoked a dramatic alteration of m2R compartmentalization, including endocytosis with a decrease of the density of m2R at the membrane (-63%) and an increase of those associated with endosomes (+86%) in perikarya. The very strong increase of m2R associated with multivesicular bodies (+732%) suggests that oxotremorine activated degradation. The slight increase in the Golgi apparatus (+26%) suggests that the m2R stimulation had an effect on the maturation of m2R. The substance P receptor located at the membrane of the same neurons was unaffected by oxotremorine. Our data demonstrate that cholinergic stimulation dramatically influences the subcellular distribution of m2R in striatal interneurons in vivo. These events may have key roles in controlling abundance and availability of muscarinic receptors via regulation of receptor endocytosis, degradation, and/or neosynthesis. Further, the control of muscarinic receptor trafficking may influence the activity of striatal interneurons, including neurotransmitter release and/or electric activity.

  17. Antitussive and central respiratory depressant effects of Stemona tuberosa.

    PubMed

    Xu, Yan-Tong; Shaw, Pang-Chui; Jiang, Ren-Wang; Hon, Po-Ming; Chan, Yiu-Man; But, Paul Pui-Hay

    2010-04-21

    Stemona alkaloids with distinctly different chemical skeletons are recently reported as the active components in the antitussive herb Baibu derived from the root-tubers of Stemona tuberosa. This study aims to determine if alkaloids of this herb contribute equally to the antitussive functions, act on the same sites of cough reflex, and play any role in inducing central respiratory depressant effects. Antitussive potency of four major alkaloids was evaluated on guinea pigs with citric acid aerosol to induce cough. The action sites of the alkaloids on cough reflex pathway were tested with electrical stimulation of the superior laryngeal nerve in guinea pigs. The central respiratory effects of croomine were also tested on guinea pigs. Croomine, neotuberostemonine and stemoninine showed similar antitussive potency, while tuberostemonine showed much weaker antitussive potency. Neotuberostemonine, tuberostemonine and stemoninine acted on the peripheral cough reflex pathway, while croomine acted on the central part. Croomine also showed obvious central respiratory depressant effects. The four major Stemona alkaloids in Stemona tuberosa do not contribute equally to antitussive potency in guinea pigs. Neotuberostemonine, tuberostemonine and stemoninine target on peripheral cough reflex pathway. Croomine acts on central sites in the cough reflex pathway and demonstrates central respiratory depressant effects, which can partly account for the adverse reactions reported for the herb. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Sustained Effects of Acupuncture Stimulation Investigated with Centrality Mapping Analysis.

    PubMed

    Long, Xiangyu; Huang, Wenjing; Napadow, Vitaly; Liang, Fanrong; Pleger, Burkhard; Villringer, Arno; Witt, Claudia M; Nierhaus, Till; Pach, Daniel

    2016-01-01

    Acupuncture can have instant and sustained effects, however, its mechanisms of action are still unclear. Here, we investigated the sustained effect of acupuncture by evaluating centrality changes in resting-state functional magnetic resonance imaging after manually stimulating the acupuncture point ST36 at the lower leg or two control point locations (CP1 same dermatome, CP2 different dermatome). Data from a previously published experiment evaluating instant BOLD effects and S2-seed-based resting state connectivity was re-analyzed using eigenvector centrality mapping and degree centrality mapping. These data-driven methods might add new insights into sustained acupuncture effects on both global and local inter-region connectivity (centrality) by evaluating the summary of connections of every voxel. We found higher centrality in parahippocampal gyrus and middle temporal gyrus after ST36 stimulation in comparison to the two control points. These regions are positively correlated to major hubs of the default mode network, which might be the primary network affected by chronic pain. The stronger integration of both regions within the whole-brain connectome after stimulation of ST36 might be a potential contributor to pain modulation by acupuncture. These findings highlight centrality mapping as a valuable analysis for future imaging studies investigating clinically relevant outcomes associated with physiological response to acupuncture stimulation.

  19. Sustained Effects of Acupuncture Stimulation Investigated with Centrality Mapping Analysis

    PubMed Central

    Long, Xiangyu; Huang, Wenjing; Napadow, Vitaly; Liang, Fanrong; Pleger, Burkhard; Villringer, Arno; Witt, Claudia M.; Nierhaus, Till; Pach, Daniel

    2016-01-01

    Acupuncture can have instant and sustained effects, however, its mechanisms of action are still unclear. Here, we investigated the sustained effect of acupuncture by evaluating centrality changes in resting-state functional magnetic resonance imaging after manually stimulating the acupuncture point ST36 at the lower leg or two control point locations (CP1 same dermatome, CP2 different dermatome). Data from a previously published experiment evaluating instant BOLD effects and S2-seed-based resting state connectivity was re-analyzed using eigenvector centrality mapping and degree centrality mapping. These data-driven methods might add new insights into sustained acupuncture effects on both global and local inter-region connectivity (centrality) by evaluating the summary of connections of every voxel. We found higher centrality in parahippocampal gyrus and middle temporal gyrus after ST36 stimulation in comparison to the two control points. These regions are positively correlated to major hubs of the default mode network, which might be the primary network affected by chronic pain. The stronger integration of both regions within the whole-brain connectome after stimulation of ST36 might be a potential contributor to pain modulation by acupuncture. These findings highlight centrality mapping as a valuable analysis for future imaging studies investigating clinically relevant outcomes associated with physiological response to acupuncture stimulation. Clinical trial registration: NCT01079689, ClinicalTrials.gov. PMID:27803655

  20. Synthesis, Trafficking, and Localization of Muscarinic Acetylcholine Receptors

    PubMed Central

    Nathanson, Neil M.

    2008-01-01

    Muscarinic acetylcholine receptors are members of the G-protein coupled receptor superfamily that are expressed in and regulate the function of neurons, cardiac and smooth muscle, glands, and many other cell types and tissues. The correct trafficking of membrane proteins to the cell surface and their subsequent localization at appropriate sites in polarized cells are required for normal cellular signaling and physiological responses. This review will summarize work on the synthesis and trafficking of muscarinic receptors to the plasma membrane and their localization at the cell surface. PMID:18558434

  1. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sporer, F; Sauerwein, M; Wink, M

    1995-07-01

    Fourteen tropane and related alkaloids were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. The biogenetic intermediates littorine, 6 beta-hydroxyhyoscyamine, 7 beta-hydroxyhyoscyamine exhibit similar affinities at the muscarinic receptor as scopolamine and atropine. The quarternary derivatives N-methylatropine and N-methylscopolamine show the highest binding with IC50 values of less than 100 pM and 300 pM, respectively. The tropane alkaloids (including cocaine) also bind to the nicotinic acetylcholine receptor, albeit with much lower affinities.

  2. Muscarinic suppression of the M-current in the rat sympathetic ganglion is mediated by receptors of the M1-subtype.

    PubMed Central

    Marrion, N. V.; Smart, T. G.; Marsh, S. J.; Brown, D. A.

    1989-01-01

    1. Under voltage-clamp dissociated adult and foetal rat superior cervical ganglion (s.c.g.) cells exhibited a non-inactivating voltage- and time-dependent component of K+ current termed the M-current (IM). IM was detected and measured from the current decay during hyperpolarizing voltage steps applied from potentials where IM was pre-activated. 2. Neither the resting membrane current nor the amplitude of these current decay relaxations were reduced by omitting Ca from the bathing fluid, showing that the M-current was not a 'Ca-activated' K-current dependent on a primary Ca-influx. Concentrations of (+)-tubocurarine sufficient to block the slow Ca-activated K-current IAHP did not inhibit IM or antagonize the effect of muscarinic agonists on IM, showing that IM was not contaminated by IAHP. Tetraethylammonium (1 mM), which blocks the fast Ca-activated K-current IC, produced a small inhibition of IM. This was not due to contamination of IM by IC since muscarinic agonists did not consistently block IC. 3. The muscarinic agonists muscarine, oxotremorine, McN-A-343 and methacholine reversibly suppressed IM, resulting in an inward (depolarizing) current. The rank order of potency was: oxotremorine greater than or equal to muscarine greater than McN-A-343 greater than methacholine. 4. The suppression of IM by muscarine was similar in cultured cells derived from adult and foetal tissue to that seen in the intact ganglia. 5. IM-suppression by muscarine was inhibited by pirenzepine (Pz) and AF-DX 116 with mean pKB values of 7.53 +/- 0.13 (n = 3) and 6.02 +/- 0.13 (n = 4) respectively. 6. The suppression of IM by muscarinic agonists was not affected by gallamine (10-30 microM). 4-Diphenylacetoxy-N-methylpiperidine methiodide inhibited the response at 300 nM. 7. Pirenzepine inhibited the contractions of the guinea-pig isolated ileum produced by muscarine with a mean pKB of 6.37 +/- 0.03 (n = 8). 8. These results suggest that the receptors mediating suppression of the M

  3. Central tendency effects in time interval reproduction in autism

    PubMed Central

    Karaminis, Themelis; Cicchini, Guido Marco; Neil, Louise; Cappagli, Giulia; Aagten-Murphy, David; Burr, David; Pellicano, Elizabeth

    2016-01-01

    Central tendency, the tendency of judgements of quantities (lengths, durations etc.) to gravitate towards their mean, is one of the most robust perceptual effects. A Bayesian account has recently suggested that central tendency reflects the integration of noisy sensory estimates with prior knowledge representations of a mean stimulus, serving to improve performance. The process is flexible, so prior knowledge is weighted more heavily when sensory estimates are imprecise, requiring more integration to reduce noise. In this study we measure central tendency in autism to evaluate a recent theoretical hypothesis suggesting that autistic perception relies less on prior knowledge representations than typical perception. If true, autistic children should show reduced central tendency than theoretically predicted from their temporal resolution. We tested autistic and age- and ability-matched typical children in two child-friendly tasks: (1) a time interval reproduction task, measuring central tendency in the temporal domain; and (2) a time discrimination task, assessing temporal resolution. Central tendency reduced with age in typical development, while temporal resolution improved. Autistic children performed far worse in temporal discrimination than the matched controls. Computational simulations suggested that central tendency was much less in autistic children than predicted by theoretical modelling, given their poor temporal resolution. PMID:27349722

  4. Characterization of muscarinic receptor subtypes in primary cultures of cerebellar granule cells using specific muscarinic receptor antagonists

    SciTech Connect

    McLeskey, S.W.

    1989-01-01

    In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinic receptive proteins were alkylated with {sup 3}H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m{sub 3} reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m{sub 2} and/or m{sub 4} receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI.

  5. Quantitative in vivo receptor binding. III. Tracer kinetic modeling of muscarinic cholinergic receptor binding

    SciTech Connect

    Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.; Agranoff, B.W.

    1985-10-01

    A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations. The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.

  6. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors

    DOE PAGES

    Thal, David M.; Sun, Bingfa; Feng, Dan; ...

    2016-03-09

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  7. Crystal Structures of the M1 and M4 Muscarinic Acetylcholine Receptors

    PubMed Central

    Thal, David M.; Sun, Bingfa; Feng, Dan; Nawaratne, Vindhya; Leach, Katie; Felder, Christian C.; Bures, Mark G.; Evans, David A.; Weis, William I.; Bachhawat, Priti; Kobilka, Tong Sun; Sexton, Patrick M.; Kobilka, Brian K.; Christopoulos, Arthur

    2016-01-01

    Summary Muscarinic M1–M5 acetylcholine receptors are G protein-coupled receptors (GPCRs) that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here, we report the first crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures to each other, as well as the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains. PMID:26958838

  8. The importance of muscarinic receptors in domestic animal diseases and therapy: Current and future perspectives.

    PubMed

    Abraham, Getu

    2016-02-01

    This review provides an overview of the early and current literature including contributions that highlight the parasympathetic cholinergic receptor systems in domestic animal tissues. Muscarinic acetylcholine receptors (mAChRs) belong to the subfamily of G protein-coupled receptors and regulate many fundamental functions of the central and peripheral nervous systems and have been subject to research over at least 40 years. Nonetheless, there are few studies specifying mAChRs in domestic animal tissues. This review focuses on the pharmacology of muscarinic acetylcholine receptor (mAChR) system and its pathological as well as the therapeutic importance in organ systems of domestic animals. Illustration and discussion of recent advances in distribution, function, biochemistry and pharmacology of mAChRs are followed by summaries of the involvement of this family of receptors in cardiovascular, respiratory, neurological, gastrointestinal (GI) and urological diseases as well as in anaesthesia and toxicology. Specific functions of mAChRs are described in detail including subtype characterization, smooth muscle functions, signal transduction and regulation. Due to their wide tissue distribution, mAChRs have shown promise as targets for the treatment of some animal diseases such as equine recurrent airway obstruction, glaucoma, abnormalities of gastric acid secretion and GI disturbances including colic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cost-effectiveness of cervical cancer prevention in Central and Eastern Europe and Central Asia.

    PubMed

    Berkhof, Johannes; Bogaards, Johannes A; Demirel, Erhan; Diaz, Mireia; Sharma, Monisha; Kim, Jane J

    2013-12-31

    We studied the cost-effectiveness of cervical cancer prevention strategies in the Central and Eastern Europe and Central Asia (CEECA) region. The cost-effectiveness of human papillomavirus (HPV)16/18 vaccination of 12 year-old girls was calculated for 28 countries, under the assumption that vaccination prevents 70% of all cervical cancer cases and that cervical cancer and all-cause mortality rates are stable without vaccination. At three-dose vaccination costs of I$ 100 per vaccinated girl (currency 2005 international dollars), HPV16/18 vaccination was very cost-effective in 25 out of 28 countries using the country's gross domestic product (GDP) per capita as cost-effectiveness threshold (criterion by World Health Organization). A three-dose vaccination cost of I$ 100 is within the current range of vaccine costs in European immunization programs, and therefore our results indicate that HPV vaccination may be good value for money. To evaluate the cost-effectiveness of cervical cancer screening combined with vaccination, we calibrated a published simulation model to HPV genotype data collected in Slovenia, Poland, and Georgia. The screening interval was varied at 3, 6, and 10 years starting at age 25 or 30 and ending at age 60. In Slovenia and Poland, combined vaccination and 10-yearly HPV (DNA) screening (vaccination coverage 70%, screening coverage per round 70%) was very cost-effective when the cost of three-dose vaccination was I$ 100 per vaccinated girl. More intensive screening was very cost-effective when the screening coverage per round was 30% or 50%. In Georgia, 10-yearly Pap screening was very cost-effective in unvaccinated women. Vaccination combined with 10-yearly HPV screening was likely to be cost-effective if the three-dose vaccination cost was I$ 50 per vaccinated girl. To conclude, cervical cancer prevention strategies utilizing both HPV16/18 vaccination and HPV screening are very cost-effective in countries with sufficient resources. In low

  10. Pharmacological discrimination between muscarinic receptor signal transduction cascades with bethanechol chloride

    PubMed Central

    Liu, Liwang; Rittenhouse, Ann R

    2003-01-01

    Muscarinic agonist specificity is limited, making it difficult to match receptor subtypes with signal transduction cascades that mediate ion channel modulation. We have characterized the inhibitory effects of two muscarinic agonists, oxotremorine-M (Oxo-M) and bethanechol chloride (BeCh), on Ca2+ currents in neonatal rat superior cervical ganglion neurons. Oxo-M-mediated (10 μM) inhibition occurred via two signaling pathways. The first pathway inhibited whole cell peak currents, consisting primarily of N-type current, but not FPL 64176-induced, long-lasting tail currents, comprised entirely of L-type current. Inhibited currents displayed slowed activation kinetics and voltage dependence, characteristics of membrane-delimited inhibition. Current inhibition was blocked by the selective M2 receptor antagonist, methoctramine (METH; 100 nM), or following pertussis toxin (PTX) pretreatment. Activation of the second pathway inhibited both peak and long-lasting tail currents. This pathway was voltage-independent, PTX-insensitive, but sensitive to internal Ca2+ chelator concentration. Muscarinic toxin 7 (MT-7, 100 nM), an irreversible M1 receptor antagonist, eliminated this inhibition. Oxo-M (100 μM) decreased L- and N-type channel activities in cell-attached patches, indicating that a diffusible second messenger is involved. BeCh (100 μM) also inhibited whole cell currents via the membrane-delimited pathway. Blocking M4 receptors with 100 nM pirenzepine (in the presence of MT-7) had no effect, while antagonizing M2 receptors with METH abolished inhibition. Concentrations of BeCh as high as 3 mM failed to inhibit either peak or long-lasting tail currents following PTX pretreatment. These results indicate that BeCh may be an effective tool for selectively activating M2 receptor stimulation of the membrane-delimited pathway. PMID:12711626

  11. The selective M1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility.

    PubMed

    Ragozzino, Michael E; Artis, Sonja; Singh, Amritha; Twose, Trevor M; Beck, Joseph E; Messer, William S

    2012-03-01

    Various neurodegenerative diseases and psychiatric disorders are marked by alterations in brain cholinergic function and cognitive deficits. Efforts to alleviate such deficits have been limited by a lack of selective M(1) muscarinic agonists. 5-(3-Ethyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine hydrochloride (CDD-0102A) is a partial agonist at M(1) muscarinic receptors with limited activity at other muscarinic receptor subtypes. The present studies investigated the effects of CDD-0102A on working memory and strategy shifting in rats. CDD-0102A administered intraperitoneally 30 min before testing at 0.1, 0.3, and 1 mg/kg significantly enhanced delayed spontaneous alternation performance in a four-arm cross maze, suggesting improvement in working memory. In separate experiments, CDD-0102A had potent enhancing effects on learning and switching between a place and visual cue discrimination. Treatment with CDD-0102A did not affect acquisition of either a place or visual cue discrimination. In contrast, CDD-0102A at 0.03 and 0.1 mg/kg significantly enhanced a shift between a place and visual cue discrimination. Analysis of the errors in the shift to the place or shift to the visual cue strategy revealed that in both cases CDD-0102A significantly increased the ability to initially inhibit a previously relevant strategy and maintain a new, relevant strategy once selected. In anesthetized rats, the minimum dose required to induce salivation was approximately 0.3 mg/kg i.p. Salivation increased with dose, and the estimated ED(50) was 2.0 mg/kg. The data suggest that CDD-0102A has unique memory and cognitive enhancing properties that might be useful in the treatment of neurological disorders at doses that do not produce adverse effects such as salivation.

  12. Biochemical and immunological studies of the Muscarinic acetylcholine receptor

    SciTech Connect

    Gainer, M.W.

    1985-01-01

    Muscarinic acetylcholine receptors were solubilized from bovine brain membranes with 3(3-cholamidopropyl)dimethylammonio)propanesulfonate (CHAPS). A combination of 10 mM CHAPS and 1 M NaCl solubilized 15-40% of the specific receptor binding sites from these membranes. The solubilized receptors displayed high affinity binding of the muscarinic antagonist, (/sup 3/H)quinuclidinyl benzilate with a K/sub D/ = 300 pM. In addition, the solubilized and retained guanyl nucleotide regulation of agonist binding characteristic of membrane bound receptors. Gel filtration experiments showed that solubilized receptors from cortex and cerebellum had different elution profiles. Analysis by sucrose density gradient centrifugation showed that receptors in the lower molecular weight peak sedimented with a coefficient of 5S. Receptors in the larger molecular weight peak sedimented to the bottom of the gradient. Attempts to purify receptors by chromatography on propylbenzilycholine Sepharose were unsuccessful. The technique used to attach the ligand to the solid support, however, was used to synthesize a PrBCM-BSA conjugate and the conjugate used as an antigen in the production of anti-ligand antibodies. Two anti-PrBCM monoclonal antibodies were isolated that recognize muscarinic but not nicotinic cholinergic ligands. The abilities of the antibodies to recognize other muscarinic ligands indicated the antibodies recognized a portion of PrBCM involved in binding to the receptor. Construction of an antibody affinity resin resulted in the purification of this fragment a minimum of 170 fold.

  13. Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis

    SciTech Connect

    Large, T.H.; Cho, N.J.; De Mello, F.G.; Klein, W.L.

    1985-07-25

    Biochemical properties of the muscarinic acetylcholine receptor system of the avian retina were found to change during the period when synapses form in ovo. Comparison of ligand binding to membranes obtained before and after synaptogenesis showed a significant increase in the affinity, but not proportion, of the high affinity agonist-binding state. There was no change in receptor sensitivity to antagonists during this period. Pirenzepine binding, which can discriminate muscarinic receptor subtypes, showed the presence of a single population of low affinity sites (M2) before and after synaptogenesis. The change in agonist binding was not due to the late development of receptor function. However, detergent-solubilization of membranes eliminated differences in agonist binding between receptors from embryos and hatched chicks, suggesting a developmental change in interactions of the receptor with functionally related membrane components. A possible basis for altered interactions was obtained from isoelectric point data showing that the muscarinic receptor population underwent a transition from a predominantly low pI form (4.25) in 13 day embryos to a predominantly high pI form (4.50) in newly hatched chicks. The possibility that biochemical changes in the muscarinic receptor play a role in differentiation of the system by controlling receptor position on the surface of nerve cells is discussed.

  14. Functionalized Congener Approach to Muscarinic Antagonists: Analogues of Pirenzepine

    PubMed Central

    Karton, Yishai; Bradbury, Barton J.; Baumgold, Jesse; Paek, Robert; Jacobson, Kenneth A.

    2012-01-01

    The M1-selective muscarinic receptor antagonist pirenzepine (5,11-dihydro-11-[(4-methyl-1-piperazinyl)acetyl]-6H-pyrido[2,3-b] [1,4]benzodiazepin-6-one) was derivatized to explore points of attachment of functionalized side chains for the synthesis of receptor probes and ligands for affinity chromatography. The analogues prepared were evaluated in competitive binding assays versus [3H]-N-methylscopolamine at four muscarinic receptor subtypes (m1AChR-m4AChR) in membranes from rat heart tissue and transfected A9L cells. 9-(Hydroxymethyl)pirenzepine, 8-(methylthio)pirenzepine, and a series of 8-aminosulfonyl derivatives were synthesized. Several 5-substituted analogues of pirenzepine also were prepared. An alternate series of analogues substituted on the 4-position of the piperazine ring was prepared by reaction of 4-desmethylpirenzepine with various electrophiles. An N-chloroethyl analogue of pirenzepine was shown to form a reactive aziridine species in aqueous buffer yet failed to affinity label muscarinic receptors. Within a series of aminoalkyl analogues, the affinity increased as the length of the alkyl chain increased. Shorter chain analogues were generally much less potent than pirenzepine, and longer analogues (7–10 carbons) were roughly as potent as pirenzepine at m1 receptors, but were nonselective. Depending on the methylene chain length, acylation or alkyl substitution of the terminal amine also influenced the affinity at muscarinic receptors. PMID:2066986

  15. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  16. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  17. Anti-Muscarinic Adjunct Therapy Accelerates Functional Human Oligodendrocyte Repair

    PubMed Central

    Abiraman, Kavitha; Pol, Suyog U.; O'Bara, Melanie A.; Chen, Guang-Di; Khaku, Zainab M.; Wang, Jing; Thorn, David; Vedia, Bansi H.; Ekwegbalu, Ezinne C.; Li, Jun-Xu; Salvi, Richard J.

    2015-01-01

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a+O4+ cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors. PMID:25716865

  18. Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer's dementia models.

    PubMed

    Sadashiva, C T; Chandra, J N Narendra Sharath; Kavitha, C V; Thimmegowda, A; Subhash, M N; Rangappa, Kanchugarakoppal S

    2009-12-01

    Earlier we have reported the effect of arecoline thiazolidinone and morpholino arecoline analogues as muscarinic receptor 1 agonist in Alzheimer's dementia models. To elucidate further our SAR study on the chemistry and muscarinic receptor binding efficacy, a series of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues 6(a-m) were designed and synthesized from 3-pyridine carboxaldehyde by reacting with different amines in the presence of gamma-ferrite as catalyst and subjected to in vitro muscarinic receptor binding studies using male Wistar rat brain membrane homogenate and extended to in vivo pharmacological evaluation of memory and learning in male Wistar rats. Derivative 6j having diphenylamine moiety attached to nitrogen of thiazolidinone showed significant affinity for the M1 receptor binding.

  19. Muscarinic toxins from the black mamba Dendroaspis polylepis.

    PubMed

    Jolkkonen, M; Van Giersbergen, P L; Hellman, U; Wernstedt, C; Oras, A; Satyapan, N; Adem, A; Karlsson, E

    1995-12-01

    Three new toxins acting on muscarinic receptors were isolated from the venom of the black mamba Dendroaspis polylepis. They were called muscarinic toxins alpha, beta, and gamma (MT alpha, MT beta, and MT gamma). All of the toxins have four disulphide bonds and 65 or 66 amino acids. The sequences of MT alpha and MT beta were determined. The muscarinic toxins, of which about 12 have been isolated from venoms of green and black mambas, have 60-98% sequence identity with each other, and are similar to many (about 180) other snake venom components, such as alpha-neurotoxins, cardiotoxins, and fasciculins. In contrast to the alpha-neurotoxins, muscarinic toxins do not bind to nicotinic acetylcholine receptors. The binding constants of MT alpha and MT beta were determined for human muscarinic receptors of subtypes m1-m5 stably expressed in Chinese hamster ovary cells. The toxins are less selective than the earlier discovered muscarinic toxins from the green mamba Dendroaspis angusticeps. MT alpha and the muscarinic toxin MT4 from D. angusticeps differ only in a region of three amino acids (residues 31-33), which are Leu-Asn-His in MT alpha and Ile-Val-Pro in MT4. This difference causes a pronounced shift in subtype selectivity. MT alpha has high affinity to all subtypes, with Ki (inhibition constant) values of 23 nM (m1; pKi = 7.64 +/- 0.10), 44 nM (m2; pKi = 7.36 +/- 0.06), 3 nM (m3; pKi = 8.46 +/- 0.14), 5 nM (m4; pKi = 8.32 +/- 0.07), and 8 nM (m5; pKi = 8.09 +/- 0.07). MT4 has high affinity only to m1 (Ki = 62 nM) and m4 (87 nM) receptors, and low (Ki > 1 microM) affinity to m2, m3, and m5. The region at positions 31-33 evidently plays an important role in the toxin-receptor interaction. MT beta has low affinity for m1 and m2 receptors (Ki > 1 microM) and intermediate affinity for m3 (140 nM; pKi = 6.85 +/- 0.03), m4 (120 nM; pKi = 6.90 +/- 0.06), and m5 (350 nM; pKi = 6.46 +/- 0.01). The low affinity of MT beta may reflect a tendency for spontaneous inactivation.

  20. Muscarinic cholinergic receptors of B lymphocytes during the immune response in mice

    SciTech Connect

    Ado, A.D.; Gol'dshtein, M.M.; Kravchenko, S.A.; Fominova, T.I.

    1986-10-01

    The effect of a specific antigen on expression of muscarinic cholinergic (MC) receptors on the surface of splenic B lymphocytes of mice after their immunization was studied. To determine the number of MC receptors on the B lymphocytes, /sup 3/H-quinuclidinyl benzilate with specific radioactivity of 36 Ci/mmole, a specific blocker of these receptors, was used. The degree of specific binding was determined and the number of receptors on the surface of a B lymphocyte was calculated. The results are obtained are evidence of the possibility of stearic interaction between MC receptors and immunoglobulin receptors binding specific antigen on B lymphocytes during the immune response.

  1. Intranasal scopolamine affects the semicircular canals centrally and peripherally.

    PubMed

    Weerts, Aurélie P; Putcha, Lakshmi; Hoag, Stephen W; Hallgren, Emma; Van Ombergen, Angelique; Van de Heyning, Paul H; Wuyts, Floris L

    2015-08-01

    Space motion sickness (SMS), a condition caused by an intravestibular conflict, remains an important obstacle that astronauts encounter during the first days in space. Promethazine is currently the standard treatment of SMS, but scopolamine is used by some astronauts to prevent SMS. However, the oral and transdermal routes of administration of scopolamine are known to have substantial drawbacks. Intranasal administration of scopolamine ensures a fast absorption and rapid onset of therapeutic effect, which might prove to be suitable for use during spaceflights. The aim of this study was to evaluate the effects of intranasally administered scopolamine (0.4 mg) on the semicircular canals (SCCs) and the otoliths. This double-blind, placebo-controlled study was performed on 19 healthy male subjects. The function of the horizontal SCC and the vestibulo-ocular reflex, as well as the saccular function and utricular function, were evaluated. Scopolamine turned out to affect mainly the SCCs centrally and peripherally but also the utricles to a lesser extent. Centrally, the most probable site of action is the medial vestibular nucleus, where the highest density of muscarinic receptors has been demonstrated and afferent fibers from the SCCs and utricles synapse. Furthermore, our results suggest the presence of muscarinic receptors in the peripheral vestibular system on which scopolamine has a suppressive effect. Given the depressant actions on the SCCs, it is suggested that the pharmacodynamic effect of scopolamine may be attributed to the obliteration of intravestibular conflict that arises during (S)MS.

  2. Some effects of aging on central auditory processing.

    PubMed

    Martin, Jeffrey S; Jerger, James F

    2005-01-01

    Seniors often have more difficulty understanding speech than younger adults, particularly in noisy environments. While loss in peripheral hearing sensitivity explains many of the listening problems of elderly persons, age-related declines in general cognitive skill and central auditory processing also appear to contribute. In this article, we focus primarily on the effects of age on central auditory mechanisms. To this end, we review research examining a central locus for deficits in temporal processing and summarize behavioral and event-related potential findings from our laboratory's research on the effects of aging on dichotic listening performance. Results show that age-related deficits in interhemispheric information processing may underlie some of the listening problems among seniors. We also discuss implications for clinical audiological rehabilitative efforts in this population.

  3. Comparative characterization of lung muscarinic receptor binding after intratracheal administration of tiotropium, ipratropium, and glycopyrrolate.

    PubMed

    Ogoda, Masaki; Niiya, Ryo; Koshika, Tadatsura; Yamada, Shizuo

    2011-01-01

    The aim of the current study was to characterize comparatively the binding of muscarinic receptor in the lung of rats intratracheally administered anticholinergic agents (tiotropium, ipratropium, glycopyrrolate) used clinically to treat chronic obstructive pulmonary disease (COPD) and asthma. Binding parameters of [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS) were determined in tissues (lung, bladder, submaxillary gland) of rats intratracheally administered tiotropium, ipratropium, and glycopyrrolate. The in vitro binding affinity of tiotropium for the receptors was 10-11-fold higher than those of ipratropium and glycopyrrolate. Intratracheal administration of tiotropium (0.6-6.4 nmol/kg) caused sustained (lasting at least 24 h) increase in the apparent dissociation constant (K(d)) for [(3)H]NMS binding in rat lung compared with the control value. Concomitantly, there was a long-lasting decrease in the maximal number of binding sites (B(max)) for [(3)H]NMS. Similary, ipratropium and glycopyrrolate at 7.3 and 7.5 nmol/kg, respectively, brought about a significant increase in K(d) for [(3)H]NMS binding. The effect by ipratropium was observed at 2 h but not 12 h, and that by glycopyrrolate lasted for 24 h. Both agents had little influence on the muscarinic receptors in the bladder and submaxillary gland. The present study provides the first evidence that tiotropium, ipratropium, and glycopyrrolate administered intratracheally in rats selectively bound muscarinic receptors of the lung, and tiotropium and glycopyrrolate had a much longer-lasting effect than ipratropium.

  4. Long-acting muscarinic receptor antagonists for the treatment of respiratory disease.

    PubMed

    Cazzola, Mario; Page, Clive; Matera, Maria Gabriella

    2013-06-01

    The use of muscarinic receptor antagonists in the treatment of chronic obstructive pulmonary disease (COPD) is well established. More recently, the potential for long-acting muscarinic receptor antagonists (LAMAs) in the treatment of asthma has also been investigated. While LAMAs offer advantages over short-acting muscarinic receptor antagonists, in terms of a reduced dosing frequency, there remains a need for therapies that improve symptom control throughout both the day and night, provide better management of exacerbations and deliver improved health-related quality of life. Furthermore, the potential for unwanted anticholinergic side effects, particularly cardiovascular effects, remains a concern for this class of compounds. Novel LAMAs in clinical development for the treatment of respiratory disease include: aclidinium bromide, NVA237 (glycopyrronium bromide), GP-MDI, EP-101, CHF-5259, umeclidinium bromide, CHF-5407, TD-4208, AZD8683 and V-0162. These compounds offer potential advantages in terms of onset of action, symptom control and safety. In addition, a number of LAMAs are also being developed as combination treatments with long-acting β2-agonists (LABAs) or inhaled glucocorticosteroids, potentially important treatment options for patients who require combination therapy to achieve an optimal therapeutic response as their disease progresses. More recently, compounds such as GSK961081 and THRX-198321 have been identified that combine LAMA and LABA activity in the same molecule, and have the potential to offer the benefits of combination therapy in a single compound. Here, we review novel LAMAs and dual action compounds in clinical development, with a particular focus on how they may address the current unmet clinical needs in the treatment of respiratory disease, particularly COPD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Vitamin C Deficiency Reduces Muscarinic Receptor Coronary Artery Vasoconstriction and Plasma Tetrahydrobiopterin Concentration in Guinea Pigs

    PubMed Central

    Skovsted, Gry Freja; Tveden-Nyborg, Pernille; Lindblad, Maiken Marie; Hansen, Stine Normann

    2017-01-01

    Vitamin C (vitC) deficiency is associated with increased cardiovascular disease risk, but its specific interplay with arteriolar function is unclear. This study investigates the effect of vitC deficiency in guinea pigs on plasma biopterin status and the vasomotor responses in coronary arteries exposed to vasoconstrictor/-dilator agents. Dunkin Hartley female guinea pigs (n = 32) were randomized to high (1500 mg/kg diet) or low (0 to 50 mg/kg diet) vitC for 10–12 weeks. At euthanasia, coronary artery segments were dissected and mounted in a wire-myograph. Vasomotor responses to potassium, carbachol, sodium nitroprusside (SNP), U46619, sarafotoxin 6c (S6c) and endothelin-1 (ET-1) were recorded. Plasma vitC and tetrahydrobiopterin were measured by HPLC. Plasma vitC status reflected the diets with deficient animals displaying reduced tetrahydrobiopterin. Vasoconstrictor responses to carbachol were significantly decreased in vitC deficient coronary arteries independent of their general vasoconstrictor/vasodilator capacity (p < 0.001). Moreover, in vitC deficient animals, carbachol-induced vasodilator responses correlated with coronary artery diameter (p < 0.001). Inhibition of cyclooxygenases with indomethacin increased carbachol-induced vasoconstriction, suggesting an augmented carbachol-induced release of vasodilator prostanoids. Atropine abolished carbachol-induced vasomotion, supporting a specific muscarinic receptor effect. Arterial responses to SNP, potassium, S6c, U46619 and ET-1 were unaffected by vitC status. The study shows that vitC deficiency decreases tetrahydrobiopterin concentrations and muscarinic receptor mediated contraction in coronary arteries. This attenuated vasoconstrictor response may be linked to altered production of vasoactive arachidonic acid metabolites and reduced muscarinic receptor expression/signaling. PMID:28671625

  6. Vitamin D3 restores altered cholinergic and insulin receptor expression in the cerebral cortex and muscarinic M3 receptor expression in pancreatic islets of streptozotocin induced diabetic rats.

    PubMed

    Kumar, Peeyush T; Antony, Sherin; Nandhu, Mohan S; Sadanandan, Jayanarayanan; Naijil, George; Paulose, Chiramadathikudiyil S

    2011-05-01

    Nutritional therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. The study evaluates the effect of vitamin D(3) in preventing the altered function of cholinergic, insulin receptors and GLUT3 in the cerebral cortex of diabetic rats. Muscarinic M3 acetylcholine receptors in pancreas control insulin secretion. Vitamin D(3) treatment in M3 receptor regulation in the pancreatic islets was also studied. Radioreceptor binding assays and gene expression was done in the cerebral cortex of male Wistar rats. Immunocytochemistry of muscarinic M3 receptor was studied in the pancreatic islets using specific antibodies. Y-maze was used to evaluate the exploratory and spatial memory. Diabetes induced a decrease in muscarinic M1, insulin and vitamin D receptor expression and an increase in muscarinic M3, α7 nicotinic acetylcholine receptor, acetylcholine esterase and GLUT3 expression. Vitamin D(3) and insulin treatment reversed diabetes-induced alterations to near control. Diabetic rats showed a decreased Y-maze performance while vitamin D(3) supplementation improved the behavioural deficit. In conclusion, vitamin D(3) shows a potential therapeutic effect in normalizing diabetes-induced alterations in cholinergic, insulin and vitamin D receptor and maintains a normal glucose transport and utilisation in the cortex. In addition vitamin D(3) modulated muscarinic M3 receptors activity in pancreas and plays a pivotal role in controlling insulin secretion. Hence our findings proved, vitamin D(3) supplementation as a potential nutritional therapy in ameliorating diabetes mediated cortical dysfunctions and suggest an interaction between vitamin D(3) and muscarinic M3 receptors in regulating insulin secretion from pancreas.

  7. Muscarinic Depolarization of Layer II Neurons of the Parasubiculum

    PubMed Central

    Glasgow, Stephen D.; Chapman, C. Andrew

    2013-01-01

    The parasubiculum (PaS) is a component of the hippocampal formation that sends its major output to layer II of the entorhinal cortex. The PaS receives strong cholinergic innervation from the basal forebrain that is likely to modulate neuronal excitability and contribute to theta-frequency network activity. The present study used whole cell current- and voltage-clamp recordings to determine the effects of cholinergic receptor activation on layer II PaS neurons. Bath application of carbachol (CCh; 10–50 µM) resulted in a dose-dependent depolarization of morphologically-identified layer II stellate and pyramidal cells that was not prevented by blockade of excitatory and inhibitory synaptic inputs. Bath application of the M1 receptor antagonist pirenzepine (1 µM), but not the M2-preferring antagonist methoctramine (1 µM), blocked the depolarization, suggesting that it is dependent on M1 receptors. Voltage-clamp experiments using ramped voltage commands showed that CCh resulted in the gradual development of an inward current that was partially blocked by concurrent application of the selective Kv7.2/3 channel antagonist XE-991, which inhibits the muscarine-dependent K+ current IM. The remaining inward current also reversed near EK and was inhibited by the K+ channel blocker Ba2+, suggesting that M1 receptor activation attenuates both IM as well as an additional K+ current. The additional K+ current showed rectification at depolarized voltages, similar to K+ conductances mediated by Kir 2.3 channels. The cholinergic depolarization of layer II PaS neurons therefore appears to occur through M1-mediated effects on IM as well as an additional K+ conductance. PMID:23520542

  8. Central nervous system depressant effect of Hoslundia opposita vahl.

    PubMed

    Olajide, O A; Awe, S O; Makinde, J M

    1999-08-01

    The chloroform extract of the dried root of Hoslundia opposita has been evaluated for effects on the central nervous system (CNS). The extract significantly potentiated the phenobarbitone sleeping time in mice and produced a 60% protection against leptazol-induced convulsion. Neuropharmacological screening revealed CNS depression. Copyright 1999 John Wiley & Sons, Ltd.

  9. Muscarinic acetylcholine receptors regulating cell cycle progression are expressed in human gingival keratinocytes.

    PubMed

    Arredondo, J; Hall, L L; Ndoye, A; Chernyavsky, A I; Jolkovsky, D L; Grando, S A

    2003-02-01

    We have previously reported the presence in human gingival keratinocytes (GKC) of choline acetyltransferase, the acetylcholine (ACh) synthesizing enzyme, acetylcholinesterase, the ACh degrading enzyme, and alpha 3, alpha 5, alpha 7, beta 2 as well as alpha 9 nicotinic ACh receptor subunits. To expand the knowledge about the role of ACh in oral biology, we investigated the presence of the muscarinic ACh receptor (mAChR) subtypes in GKC. RT-PCR demonstrated the presence of m2, m3, m4, and m5 mRNA transcripts. Synthesis of the respective proteins was verified by immunoblotting with the subtype-specific antibodies that revealed receptor bands at the expected molecular weights. The antibodies mapped mAChR subtypes in the epithelium of human attached gingiva and also visualized them on the cell membrane of cultured GKC. The whole cell radioligand binding assay revealed that GKC have specific binding sites for the muscarinic ligand [3H]quinuclidinyl benzilate, Bmax = 222.9 fmol/106 cells with a Kd of 62.95 pM. The downstream coupling of the mAChRs to regulation of cell cycle progression in GKC was studied using quantitative RT-PCR and immunoblotting assays. Incubation of GKC for 24 h with 10 micro m muscarine increased relative amounts of Ki-67, PCNA and p53 mRNAs and PCNA, cyclin D1, p21 and p53 proteins. These effects were abolished in the presence of 50 micro m atropine. The finding in GKC of mAChRs coupled to regulation of the cell cycle progression demonstrate further the structure/function of the non-neuronal cholinergic system operating in human oral epithelium. The results obtained in this study help clarify the role for keratinocyte ACh axis in the physiologic control of oral gingival homeostasis.

  10. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  11. Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients.

    PubMed

    Profita, M; Giorgi, R Di; Sala, A; Bonanno, A; Riccobono, L; Mirabella, F; Gjomarkaj, M; Bonsignore, G; Bousquet, J; Vignola, A M

    2005-11-01

    Acetylcholine (ACh) plays an important role in smooth muscle contraction and in the development of airway narrowing; preliminary evidences led us to hypothesize that ACh might also play a role in the development of airways inflammation in chronic obstructive pulmonary disease (COPD). We evaluated the concentrations of leukotriene B4 (LTB4) in induced sputum, and the expression of Ach M1, M2, and M3 receptors in sputum cells (SC) obtained from 16 patients with COPD, 11 smokers, and 14 control subjects. The SC were also treated with ACh and the production of LTB4 assessed in the presence or absence of a muscarinic antagonist (oxitropium). In blood monocytes, we evaluated LTB4 release and activation of the extracellular signal-regulated kinases (ERK) pathway after treatment with Ach. The LTB4 concentrations were higher in COPD than in controls (P < 0.01) and correlated with the number of neutrophil (P < 0.01). The M3 receptors expression was increased in COPD subjects when compared to smokers and control (P < 0.05 and 0.0001, respectively), while M2 expression resulted decreased (P < 0.05 and 0.01). The ACh-induced LTB(4) production was observed in peripheral blood monocytes, and was sensitive to ERK inhibition. Similarly, ACh significantly increased neutrophil chemotactic activity and LTB4 released from SC of COPD patients only, and these effects were blocked by pretreatment with the inhibitor of ERK pathway PD98059. The results obtained show that muscarinic receptors may be involved in airway inflammation in COPD subjects through ACh-induced, ERK1/2-dependent LTB4 release. Muscarinic antagonism may contribute to reduce neutrophil infiltration and activation in COPD.

  12. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems.

    PubMed

    Falsafi, Soheil Keihan; Deli, Alev; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.

  13. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex.

    PubMed

    Haj-Dahmane, S; Andrade, R

    1998-09-01

    The mammalian prefrontal cortex receives a dense cholinergic innervation from subcortical regions. We previously have shown that cholinergic stimulation of layer V pyramidal neurons of the rat prefrontal cortex results in a depolarization and the appearance of a slow afterdepolarization (sADP). In the current report we examine the mechanism underlying the sADP with the use of sharp microelectrode and whole cell recording techniques in in vitro brain slices. The ability of acetylcholine (ACh) and carbachol to induce the appearance of an sADP in pyramidal cells of layer V of prefrontal cortex is antagonized in a surmountable manner by atropine and is mimicked by application of muscarine or oxotremorine. These results indicate that ACh acts on muscarinic receptors to induce the sADP. In many cell types afterpotentials are triggered by calcium influx into the cell. Therefore we examined the possibility that calcium influx might be the trigger for the generation of the sADP. Consistent with this possibility, buffering intracellular calcium reduced or abolished the sADP but had little effect on the direct muscarinic receptor-induced depolarization also seen in these cells. These results, coupled to the previous observation that calcium channel blockers inhibit the sADP, indicated that the sADP results from a rise in intracellular calcium secondary to calcium influx into the cell. The ionic basis for the current underlying the sADP (IsADP) was examined with the use of ion substitution experiments. The amplitude of IsADP was found to be reduced in a graded fashion by replacement of extracellular sodium with N-methyl-D-glucamine (NMDG). In contrast no clear evidence for the involvement of potassium or chloride channels in the generation of the sADP or IsADP could be found. This result indicated that IsADP is carried by sodium ions flowing into the cell. However, the dependence of IsADP on extracellular sodium was less pronounced than expected for a pure sodium current. We

  14. Pharmacology, Distribution and Development of Muscarinic Acetylcholine Receptor Subtypes in the Optic Tectum of Rana Pipiens

    PubMed Central

    Butt, C. M.; Pauly, J. R.; Wilkins, L. H.; Dwoskin, L. P.; Debski, E. A.

    2008-01-01

    Visually evoked behaviors mediated by the frog optic tectum require cholinergic activity, but the receptor subtypes through which acetylcholine acts are not yet identified. Using quantitative autoradiography and scintillation spectrometry, we examined the binding of [3H]pirenzepine and [3H]AF-DX 384 in the laminated optic tectum of the frog. In mammalian systems, these substances bind excitatory (m1 and m3 subtypes) and inhibitory (m2 and m4 subtypes) muscarinic acetylcholine receptors, respectively. Pharmacological analyses, including the use of specific muscarinic toxins, confirmed the subtype selectivity of the radioligands in the frog brain. Binding sites for [3H]pirenzepine were distinct from those for [3H]AF-DX 384. In the adult tectum, [3H]pirenzepine demonstrated specific binding in tectal layers 5–9. [3H]Pirenzepine binding was also present in tadpoles as young as stage V, but all sampled stages of tadpole tectum had significantly less binding when compared to adults. Lesioning of the optic nerve had no effect on [3H]pirenzepine binding. Specific [3H]AF-DX 384 binding was found in all layers of the adult tectum. All sampled tadpole stages exhibited binding sites for [3H]AF-DX 384, but the densities of these sites were also significantly higher in adults than they were in developing stages. Short-term lesions of the optic nerve reduced [3H]AF-DX 384 binding in all tectal layers of the deafferented lobe when compared to the afferented one. Long-term lesions decreased [3H]AF-DX 384 sites in both lobes. These results indicate that multiple muscarinic acetylcholine receptor binding sites reside in the frog optic tectum at all stages of development, and their pharmacology resembles that of mammalian m1/m3, m2 and m4 subtypes. Our data indicate that few, if any, of these receptors are likely to be located on retinal ganglion cell terminals. Furthermore, the expression of inhibitory muscarinic subtypes seems to be regulated by different mechanisms than that for

  15. Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder

    PubMed Central

    Pak, K. J.; Ostrom, R. S.; Matsui, M.

    2010-01-01

    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment. PMID:20349044

  16. Ethanol impairs muscarinic receptor-induced neuritogenesis in rat hippocampal slices: role of astrocytes and extracellular matrix proteins

    PubMed Central

    Giordano, Gennaro; Guizzetti, Marina; Dao, Khoi; Mattison, Hayley A.; Costa, Lucio G.

    2011-01-01

    In an in vitro co-culture system of astrocytes and neurons, stimulation of cholinergic muscarinic receptors in astrocytes had been shown to cause neuritogenesis in hippocampal neurons, and this effect was inhibited by ethanol. The present study sought to confirm these earlier findings in a more complex system, in vitro rat hippocampal slices in culture. Exposure of hippocampal slices to the cholinergic agonist carbachol (1 mM for 24 h) induced neurite outgrowth in hippocampal pyramidal neurons, which was mediated by activation of muscarinic M3 receptors. Specifically, carbachol induced a >4-fold increase in the length of the longest neurite, and a 4-fold increase in the length of minor neurites and in the number of branches. Co-incubation of carbachol with ethanol (50 mM) resulted in significant inhibition of the effects induced by carbachol on all parameters measured. Neurite outgrowth in CNS neurons is dependent on various permissive factors that are produced and released by glial cells. In hippocampal slices carbachol increased the levels of two extracellular matrix protein, fibronectin and laminin-1, by 1.6-fold, as measured by Western blot. Co-incubation of carbachol with ethanol significantly inhibited these increases. Carbachol-induced increases in levels of extracellular matrix proteins were antagonized by a M3 muscarinic receptor antagonist. Furthermore, function-blocking fibronectin or laminin-1 antibodies antagonized the effect of carbachol on neurite outgrowth. These results indicate that in hippocampal slices stimulation of muscarinic M3 receptors induces neurite outgrowth, which is mediated by fibronectin and laminin-1, two extracellular matrix proteins released by astrocytes. By decreasing fibronectin and laminin levels ethanol prevents carbachol-induced neuritogenesis. These findings highlight the importance of glial-neuronal interactions as important targets in the developmental neurotoxicity of alcohol. PMID:21884684

  17. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor.

    PubMed Central

    Jacoby, D B; Gleich, G J; Fryer, A D

    1993-01-01

    The effect of human eosinophil major basic protein (MBP) as well as other eosinophil proteins, on binding of [3H]N-methyl-scopolamine ([3H]NMS: 1 x 10(-10) M) to muscarinic M2 receptors in heart membranes and M3 receptors in submandibular gland membranes was studied. MBP inhibited specific binding of [3H]NMS to M2 receptors but not to M3 receptors. MBP also inhibited atropine-induced dissociation of [3H]NMS-receptor complexes in a dose-dependent fashion, demonstrating that the interaction of MBP with the M2 muscarinic receptor is allosteric. This effect of MBP suggests that it may function as an endogenous allosteric inhibitor of agonist binding to the M2 muscarinic receptor. Inhibition of [3H]NMS binding by MBP was reversible by treatment with heparin, which binds and neutralizes MBP. Eosinophil peroxidase (EPO) also inhibited specific binding of [3H]NMS to M2 receptors but not to M3 receptors and inhibited atropine-induced dissociation of [3H]NMS-receptor complexes. On a molar basis, EPO is less potent than MBP. Neither eosinophil cationic protein nor eosinophil-derived neurotoxin affected binding of [3H]NMS to M2 receptors. Thus both MBP and EPO are selective allosteric antagonists at M2 receptors. The effects of these proteins may be important causes of M2 receptor dysfunction and enhanced vagally mediated bronchoconstriction in asthma. Images PMID:8473484

  18. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  19. Effect of ethanol on the central oscillator in essential tremor.

    PubMed

    Zeuner, Kirsten E; Molloy, Fiona M; Shoge, Richard O; Goldstein, Susanne R; Wesley, Robert; Hallett, Mark

    2003-11-01

    We investigated the effects of ethanol and diazepam on the central, mechanical, and mechanical reflex components of tremor in patients with essential tremor (ET). A double-blind crossover study (ethanol or diazepam) was conducted on 2 separate days. Dose of ethanol or diazepam was calculated in each individual according to height, weight, and age in 10 patients with ET. The postural tremor amplitude at the wrist was recorded using a three-dimensional accelerometer placed on the dorsum of the hand. Electromyogram (EMG) was recorded with surface electrodes placed on the forearm extensors and flexors. To separate central and mechanical (reflex) components, a 500-g weight was placed on the dorsum of the hand during a second tremor measurement. Tremor recordings were done at baseline and 30, 60, 90, and 120 minutes after drug ingestion. Ethanol and diazepam blood levels were measured at baseline and after 20, 40, 80, and 120 minutes. Blood ethanol and diazepam levels were highest after 40 and 80 minutes. The amplitude of the central component 60 minutes after ingestion of ethanol was decreased significantly (P = 0.029) compared with diazepam. Our findings suggest that the improvement in tremor after ethanol ingestion was due, at least in part, to an effect on a central oscillator.

  20. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    PubMed Central

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (i.c.) administrations of 100 mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with i.c. administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was employed as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats. PMID:17980789

  1. Functional and laminar dissociations between muscarinic and nicotinic cholinergic neuromodulation in the tree shrew primary visual cortex.

    PubMed

    Bhattacharyya, Anwesha; Bießmann, Felix; Veit, Julia; Kretz, Robert; Rainer, Gregor

    2012-04-01

    Acetylcholine is an important neuromodulator involved in cognitive function. The impact of cholinergic neuromodulation on computations within the cortical microcircuit is not well understood. Here we investigate the effects of layer-specific cholinergic drug application in the tree shrew primary visual cortex during visual stimulation with drifting grating stimuli of varying contrast and orientation. We describe differences between muscarinic and nicotinic cholinergic effects in terms of both the layer of cortex and the attribute of visual representation. Nicotinic receptor activation enhanced the contrast response in the granular input layer of the cortex, while tending to reduce neural selectivity for orientation across all cortical layers. Muscarinic activation modestly enhanced the contrast response across cortical layers, and tended to improve orientation tuning. This resulted in highest orientation selectivity in the supra- and infragranular layers, where orientation selectivity was already greatest in the absence of pharmacological stimulation. Our results indicate that laminar position plays a crucial part in functional consequences of cholinergic stimulation, consistent with the differential distribution of cholinergic receptors. Nicotinic receptors function to enhance sensory representations arriving in the cortex, whereas muscarinic receptors act to boost the cortical computation of orientation tuning. Our findings suggest close homology between cholinergic mechanisms in tree shrew and primate visual cortices.

  2. The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx.

    PubMed Central

    Steger, Katherine A; Avery, Leon

    2004-01-01

    Muscarinic acetylcholine receptors regulate the activity of neurons and muscle cells through G-protein-coupled cascades. Here, we identify a pathway through which the GAR-3 muscarinic receptor regulates both membrane potential and excitation-contraction coupling in the Caenorhabditis elegans pharyngeal muscle. GAR-3 signaling is enhanced in worms overexpressing gar-3 or lacking GPB-2, a G-protein beta-subunit involved in RGS-mediated inhibition of G(o)alpha- and G(q)alpha-linked pathways. High levels of signaling through GAR-3 inhibit pharyngeal muscle relaxation and impair feeding--but do not block muscle repolarization--when worms are exposed to arecoline, a muscarinic agonist. Loss of gar-3 function results in shortened action potentials and brief muscle contractions in the pharyngeal terminal bulb. High levels of calcium entry through voltage-gated channels also impair terminal bulb relaxation and sensitize worms to the toxic effects of arecoline. Mutation of gar-3 reverses this sensitivity, suggesting that GAR-3 regulates calcium influx or calcium-dependent processes. Because the effects of GAR-3 signaling on membrane depolarization and muscle contraction can be separated, we conclude that GAR-3 regulates multiple calcium-dependent processes in the C. elegans pharyngeal muscle. PMID:15238517

  3. Relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium

    SciTech Connect

    Ehlert, F.J.

    1985-11-01

    The muscarinic receptor-binding properties of a series of muscarinic drugs were compared with their effects on adenylate cyclase in membranes of the rabbit myocardium. When measured by competitive inhibition of (TH)-N-methylscopolamine binding, the competition curves of the various agonists were adequately described by the ternary complex model. This model assumes that the receptor can bind reversibly with a guanine nucleotide binding protein in the membrane and that the affinity of the agonist for the receptor-guanine nucleotide-binding protein complex is higher than that for the free receptor. A satisfactory fit of the ternary complex model to the data could only be achieved assuming that very little receptor is precoupled with the guanine nucleotide-binding protein in the absence of agonist. There was good agreement between the efficacy of each agonist as measured by inhibition of adenylate cyclase and the estimate of the positive cooperativity between the binding of the agonist receptor complex and the guanine nucleotide-binding protein. Guanosine 5'-triphosphate (0.1 mM) had no significant effect on the binding of (TH)N-methylscopolamine but caused an increase in the concentration of the various agonists required for half-maximal receptor occupancy. There was good correlation between efficacy as measured by inhibition of adenylate cyclase and the influence of guanosine 5'-triphosphate on binding properties.

  4. M sub 1 muscarinic antagonists interact with. sigma. recognition sites

    SciTech Connect

    Hudkins, R.L. ); DeHaven-Hudkins, D.L. )

    1991-01-01

    The M{sub 1}-selective muscarinic antagonists aprophen, caramiphen, carbetapentane, 2-DAEX, dicyclomine, hexahydrosiladifenidol, iodocaramiphen, nitrocaramiphen, oxybutynin and trihexyphenidyl potently inhibited binding to {sigma} sites in brain. Both basic ester and non-ester structural type compounds which exhibit affinity for the muscarinic receptor also demonstrated affinity for the {sigma} site, while the classical antimuscarinic agents atropine and QNB, and the tricyclic pirenzepine, were ineffective in binding to this site. The authors also observed a significant correlation between the K{sub i} values for {sigma}compounds to inhibit ({sup 3}H)pirenzepine binding and their IC{sub 50} values to inhibit carbachol-stimulated phosphoinositide turnover. These observations may aid in elucidating the relationship of {sigma} binding to inhibition of phosphoinositide turnover stimulated by cholinergic agonists.

  5. A model of the human M2 muscarinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Jöhren, Kirstin; Höltje, Hans-Dieter

    2002-11-01

    The M2 muscarinic acetylcholine receptor belongs to the family of rhodopsin like G-Protein Coupled Receptors. This subtype of muscarinic receptors is of special interest because it bears, aside from an orthosteric binding site, also an allosteric binding site. Based on the X-ray structure of bovine rhodopsin a complete homology model of the human M2 receptor was developed. For the orthosteric binding site point mutations and binding studies with different agonists and antagonists are available. This knowledge was utilized for an initial verification of the M2 model. Allosteric modulation of activity is mediated by structurally different ligands such as gallamine, caracurine V salts or W84 (a hexamethonium-derivative). Caracurine V derivatives with different affinities to M2 were docked using GRID-fields. Subsequent molecular dynamics simulations yielded different binding energies based on diverse electrostatic and lipophilic interactions. The calculated affinities are in good agreement to experimentally determined affinities.

  6. Evolution of the Toxins Muscarine and Psilocybin in a Family of Mushroom-Forming Fungi

    PubMed Central

    Kosentka, Pawel; Sprague, Sarah L.; Ryberg, Martin; Gartz, Jochen; May, Amanda L.; Campagna, Shawn R.; Matheny, P. Brandon

    2013-01-01

    Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10–20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa. PMID:23717644

  7. Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi.

    PubMed

    Kosentka, Pawel; Sprague, Sarah L; Ryberg, Martin; Gartz, Jochen; May, Amanda L; Campagna, Shawn R; Matheny, P Brandon

    2013-01-01

    Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10-20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa.

  8. Differences in central and non-central keratoconus, and their effect on the objective screening thresholds for keratoconus.

    PubMed

    Prakash, Gaurav; Srivastava, Dhruv; Choudhuri, Sounak; Thirumalai, Sandeep Mark; Bacero, Ruthchel

    2016-03-01

    To evaluate the differences in central and non-central keratoconus (based on cone location), and their effect on the objective screening thresholds for keratoconus. This comparative case series was performed at tertiary care cornea and refractive surgery service. Three groups were made: KC apex within central 2 mm (central keratoconus, n = 50), apex outside central 2mm (non-central keratoconus, n = 50) and normal controls (n = 100, with 50 cases each with apex within and outside central 2 mm). All cases underwent clinical evaluation and corneal topography (CSO, Sirius, Italy). Apex keratometry (ApexK), simulated keratometry at 3 mm (SimK), central corneal thickness (CCT) and minimum corneal thickness (MCT), anterior corneal higher-order aberrations root mean square (HOARMS), and Zernike's coefficients up to fourth order at different zones were measured. In spite of the keratoconic groups having comparable ApexK (p > 0.05), central keratoconus had higher SimK and thinner CCT and MCT (p < 0.001). HOARMS was significantly more for central keratoconus at 3 mm zones. These findings had moderate to large effect size (Cohen's d). Receiver operating curve analysis was carried out to compare central keratoconus and non-central keratoconus with control group. ApexK and HOARMS had best discriminative parameters. Using single parametric suspicion cut-offs of 'either SimK steep >47.2 D or CCT < 491.6 μ' had a good sensitivity (0.98) for central keratoconus, but not for non-central keratoconus (0.80). Changing this cut-off to 'either SimK steep K ≥ 45.8 D or CCT ≤ 503 μ' gave a sensitivity and specificity of 0.95 and 0.87 for non-central keratoconus and 0.99 and 0.87 for central keratoconus. Non-central keratoconus has lesser effect on SimK, pachymetry and smaller-aperture HOARMS. Using 'SimK steep >47.2 D or CCT < 491.6 μ' may miss timely referral for topography in many of these cases. Using more stringent criteria of SimK steep K ≥ 45.8 D or CCT ≤ 503 μ to get a

  9. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy.

    PubMed

    Calcutt, Nigel A; Smith, Darrell R; Frizzi, Katie; Sabbir, Mohammad Golam; Chowdhury, Subir K Roy; Mixcoatl-Zecuatl, Teresa; Saleh, Ali; Muttalib, Nabeel; Van der Ploeg, Randy; Ochoa, Joseline; Gopaul, Allison; Tessler, Lori; Wess, Jürgen; Jolivalt, Corinne G; Fernyhough, Paul

    2017-02-01

    Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor-dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.

  10. Muscarinic receptor size on smooth muscle cells and membranes

    SciTech Connect

    Collins, S.M.; Jung, C.Y.; Grover, A.K.

    1986-08-01

    The loss of (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) binding following high-energy radiation was used to compare the muscarinic receptor size on single smooth muscle cells isolated by collagenase digestion from the canine stomach and on plasma membranes derived from intact gastric smooth muscle without exposure to exogenous proteolysis. Radiation inactivation of galactose oxidase (68 kdaltons), yeast alcohol dehydrogenase (160 kdaltons), and pyruvate kinase (224 kdaltons) activities were used as molecular-weight standards. Radiation inactivation of (/sup 3/H)QNB binding to rat brain membranes, which gave a target size of 86 kdaltons, served as an additional control. In isolated smooth muscle cells, the calculated size of the muscarinic receptor was 80 +/- 8 kdaltons. In contrast, in a smooth muscle enriched plasma membrane preparation, muscarinic receptor size was significantly smaller at 45 +/- 3 kdaltons. Larger molecular sizes were obtained either in the presence of protease inhibitors (62 +/- 4 kdaltons) or by using a crude membrane preparation of gastric smooth muscle 86 +/- 7 kdaltons).

  11. Action of AF64A on rat brain muscarinic receptors

    SciTech Connect

    Eva, C.; Costa, E.

    1986-03-01

    ICV administration of compound AF64A (ethylcholine mustard aziridium ion) induces a long-term selective cholinergic hypofunction; however, it does not modify the characteristics of muscarinic receptors. In brain muscarinic receptor activation can either stimulate phosphoinositide turnover or inhibit adenylate cyclase. ICV infusion of AF64A (5 nmol/side/2.5 ..mu..l) reduced the hippocampal ACh content 10 or 30 days after the treatment to 75% of the control values. Under these conditions neither in the striatum nor in the frontal cortex ACh levels were decreased. The carbachol dose-dependent stimulation in hippocampal slices differed from that observed in control rats. The carbachol efficacy was increased but its potency was unchanged by AF64A. In contrast, ICV administration of AF64A failed to alter the oxotremorine efficacy or potency in inhibiting the forskolin stimulated adenylate cyclase in rat hippocampal membranes. These results suggest the two transducer systems coupled to muscarinic receptors may be differentially regulatable by cholinergic input.

  12. Muscarinic receptor family interacting proteins: role in receptor function.

    PubMed

    Borroto-Escuela, Dasiel O; Correia, Patrícia A; Romero-Fernandez, Wilber; Narvaez, Manuel; Fuxe, Kjell; Ciruela, Francisco; Garriga, Pere

    2011-02-15

    G protein-coupled receptors constitute one of the most important families of membrane receptors through which cells respond to extracellular stimuli. Receptors of this superfamily likely function as signal transduction complexes. The identification and analysis of their components provide new insights into a better understanding of these receptors' function and regulation. We used tandem-affinity purification and mass spectrometry as a systematic approach to characterize multiprotein complexes in the acetylcholine muscarinic receptor subfamily. To overcome the limitations associated with membrane protein receptor solubilization with detergents, we developed a strategy in which receptors are co-expressed with a cytoplasmic minigene construct, encoding the third intracellular loop and the C-terminal tail tagged to the tandem-affinity-cassette of each receptor subtype. Numerous protein complexes were identified, including many new interactions in various signalling pathways. Systematic identification data set together with protein interactions reported in the literature revealed a high degree of connectivity. These allow the proposal, for the first time, of an outline of the muscarinic interactome as a network of protein complexes and a context for a more reasoned and informed approach to drug discovery and muscarinic receptor subtype specificities.

  13. Layer-specific processing of excitatory signals in CA1 interneurons depends on postsynaptic M₂ muscarinic receptors.

    PubMed

    Zheng, Fang; Seeger, Thomas; Nixdorf-Bergweiler, Barbara E; Alzheimer, Christian

    2011-05-02

    The hippocampus receives a diffuse cholinergic innervation which acts on pre- and postsynaptic sites to modulate neurotransmission and excitability of pyramidal cells and interneurons in an intricate fashion. As one missing piece in this puzzle, we explored how muscarinic receptor activation modulates the somatodendritic processing of glutamatergic input in CA1 interneurons. We performed whole-cell recordings from visually identified interneurons of stratum radiatum (SR) and stratum oriens (SO) and examined the effects of the cholinergic agonist carbachol (CCh) on EPSP-like waveforms evoked by brief glutamate pulses onto their proximal dendrites. In SO interneurons, CCh consistently reduced glutamate-induced postsynaptic potentials (GPSPs) in control rat and mice, but not in M₂ muscarinic receptor knockout mice. By contrast, the overwhelming majority of interneurons recorded in SR of control and M₂ receptor-deficient hippocampi exhibited muscarinic enhancement of GPSPs. Interestingly, the non-responding interneurons were strictly confined to the SR subfield closest to the subiculum. Our data suggest that postsynaptic modulation by acetylcholine of excitatory input onto CA1 interneurons occurs in a stratum-specific fashion, which is determined by the absence or presence of M₂ receptors in their (somato-)dendritic compartments. Thus cholinergic projections might be capable of recalibrating synaptic weights in different inhibitory circuits of the CA1 region.

  14. Stress and re-stress increases conditioned taste aversion learning in rats: possible frontal cortical and hippocampal muscarinic receptor involvement.

    PubMed

    Brand, Linda; Groenewald, Ilse; Stein, Dan J; Wegener, Gregers; Harvey, Brian H

    2008-05-31

    Symptoms of posttraumatic stress disorder are often precipitated by sensory cues in the form of visual, auditory, olfactory and gustatory "flashbacks" resulting in enhanced fear-memory consolidation and the characteristic symptoms of re-experiencing, avoidance and hyper-arousal. Single prolonged stress with and without re-stress have been used to explore the neurobiology of this disorder, particularly with respect to contextual conditioning and spatial memory impairment. However, less work has been done regarding associative sensory-related memories linked to aversive events. Although growing evidence supports a role for cholinergic pathways in stress, this has not been studied in the above animal models. We studied the effects of single prolonged stress with and without re-stress on conditioned taste aversion learning in rats, together with differential analysis of frontal cortical and hippocampal [3H]-quinuclidinyl benzylate ([3H]-QNB) muscarinic receptor binding. Single prolonged stress with and without re-stress both enhanced associative sensory aversion learning 7 days after stressor-taste pairing, although re-stress did not strengthen this response. Increased cortical and hippocampal muscarinic receptor density (Bmax) was found 7 days after single prolonged stress with re-stress, although receptor affinity remained unaltered. Frontal cortical and hippocampal muscarinic receptor changes may thus underlie conditioned taste aversion learning in rats exposed to stress and re-stress. These data suggest that it may be useful to study the role of cholinergic pathways in mediating associative memory in psychiatric disorders such as posttraumatic stress disorder.

  15. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity

    PubMed Central

    Carmona-Rivera, Carmelo; Purmalek, Monica M.; Moore, Erica; Waldman, Meryl; Walter, Peter J.; Garraffo, H. Martin; Phillips, Karran A.; Preston, Kenzie L.; Graf, Jonathan; Grayson, Peter C.

    2017-01-01

    Levamisole, an anthelmintic drug with cholinergic properties, has been implicated in cases of drug-induced vasculitis when added to cocaine for profit purposes. Neutrophil extracellular trap (NET) formation is a cell death mechanism characterized by extrusion of chromatin decorated with granule proteins. Aberrant NET formation and degradation have been implicated in idiopathic autoimmune diseases that share features with levamisole-induced autoimmunity as well as in drug-induced autoimmunity. This study’s objective was to determine how levamisole modulates neutrophil biology and its putative effects on the vasculature. Murine and human neutrophils exposed to levamisole demonstrated enhanced NET formation through engagement of muscarinic subtype 3 receptor. Levamisole-induced NETosis required activation of Akt and the RAF/MEK/ERK pathway, ROS induction through the nicotinamide adenine dinucleotide phosphate oxidase, and peptidylarginine deiminase activation. Sera from two cohorts of patients actively using levamisole-adulterated cocaine displayed autoantibodies against NET components. Cutaneous biopsy material obtained from individuals exposed to levamisole suggests that neutrophils produce NETs in areas of vasculitic inflammation and thrombosis. NETs generated by levamisole were toxic to endothelial cells and impaired endothelium-dependent vasorelaxation. Stimulation of muscarinic receptors on neutrophils by cholinergic agonists may contribute to the pathophysiology observed in drug-induced autoimmunity through the induction of inflammatory responses and neutrophil-induced vascular damage. PMID:28194438

  16. Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors.

    PubMed

    Sodhi, Puneet; Hartwick, Andrew T E

    2016-09-01

    Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists.

  17. Local heating of human skin causes hyperemia without mediation by muscarinic cholinergic receptors or prostanoids.

    PubMed

    Golay, Sandrine; Haeberli, Christian; Delachaux, Anne; Liaudet, Lucas; Kucera, Paul; Waeber, Bernard; Feihl, François

    2004-11-01

    Local changes in surface temperature have a powerful influence on the perfusion of human skin. Heating increases local skin blood flow, but the mechanisms and mediators of this response (thermal hyperemia response) are incompletely elucidated. In the present study, we examined the possible dependence of the thermal hyperemia response on stimulation of muscarinic cholinergic receptors and on production of vasodilator prostanoids. In 13 male healthy subjects aged 20-30 yr, a temperature-controlled chamber was positioned on the volar face of one forearm and used to raise surface temperature from 34 to 41 degrees C. The time course of the resulting thermal hyperemia response was recorded with a laser-Doppler imager. In one experiment, each of eight subjects received an intravenous bolus of the antimuscarinic agent glycopyrrolate (4 microg/kg) on one visit and saline on the other. The thermal hyperemia response was determined within the hour after the injections. Glycopyrrolate effectively inhibited the skin vasodilation induced by iontophoresis of acetylcholine but did not influence the thermal hyperemia response. In a second experiment, conducted in five other subjects, 1 g of the cyclooxygenase inhibitor aspirin administered orally totally abolished the vasodilation induced in the skin by anodal current but also failed to modify the thermal hyperemia response. The present study excludes the stimulation of muscarinic receptors and the production of vasodilator prostaglandins as essential and nonredundant mechanisms for the vasodilation induced by local heating in human forearm skin.

  18. Mechanisms of ozone-induced bronchial hyperreactivity to muscarinic agonists in the guinea pig

    SciTech Connect

    Roum, J.H.

    1986-01-01

    Bronchial hyperreactivity, a chief characteristic of asthma, is poorly understood mechanistically. Its development in ozone-exposed guinea pigs was studied in this dissertation research. Reactivity was assessed in awake, spontaneously breathing animals by measuring specific airway resistance (SRaw) as a function of increasing muscarinic bronchoconstrictor challenge. In the first study, improvements in the reactivity measurement were seen by using (1) propranolol pretreatment (10 mg/kg IP, 1/2 hr before measurement) and (2) intravenous (rather than aerosolized) muscarinic challenge. Both (1) decreased its population wide variation and (2) increased its intra-animal reproducibility. Secondly, characteristics of ozone-induced bronchial hyperreactivity, such as (1) its airway mucosal permeability dependence, (2) its time course of development, and (3) its ozone-dose dependence were studied. The relationship between airway mucosa neutrophilic infiltration and the development of this hyperreactivity was examined in the third and fourth study. In the third, a time course study showed that development of hyperreactivity occurred before the neutrophilic infiltration phase, and correlated best with a decrease in identifiable mucosal goblet cells and increase in identifiable mucosoal mast cells. In the fourth, the development of ozone-induced hyperreactivity in animals made granulocytopenic with cyclophosphamide and cortisone acetate treatment was studied. In the final study, the effects of indomethacin on the development of this hyperreactivity was assessed.

  19. Muscarinic cholinergic and histamine H1 receptor binding of phenothiazine drug metabolites

    SciTech Connect

    Hals, P.A.; Hall, H.; Dahl, S.G.

    1988-01-01

    In vitro binding affinities of chlorpromazine, fluphenazine, levomepromazine, perphenazine and some of their metabolites for dopamine D2 receptors, ..cap alpha../sub 1/- and ..cap alpha../sup 2/ adrenoceptors in rat brain were previously reported from out laboratories. The present study reports the in vitro binding affinities of the same compounds for muscarinic cholinergic receptors and for histamine H1 receptors in rat brain, using /sup 3/H-quinuclidinyl benzilate and /sup 3/H-mepyramine as radioligands. Chlorpromazine, levomepromazine, and their metabolites had 5-30 times higher binding affinities for muscarinic cholinergic receptors than fluphenazine, perphenazine and their metabolites. Levomepromazine was the most potent and fluphenazine the least potent of the four drugs in histamine H1 receptor binding. 7-Hydroxy levomepromazine, 3-hydroxy levomepromazine and 7-hydroxy fluphenazine had only 10% of the potency of the parent drug in histamine H1 receptor binding, while the 7-hydroxy-metabolites of chlorpromazine and perphenazine had about 75% of the potency of the parent drug in this binding system. This histamine H1 receptor binding affinities indicate that metabolites may contribute to the sedative effects of chlorpromazine and levomepromazine.

  20. Muscarinic receptor-mediated inositol tetrakisphosphate response in bovine adrenal chromaffin cells

    SciTech Connect

    Sanborn, B.B.; Schneider, A.S. )

    1990-01-01

    Inositol trisphosphate (IP{sub 3}), a product of the phosphoinositide cycle, mobilizes intracellular Ca{sup 2+} in many cell types. New evidence suggests that inositol tetrakisphosphate (IP{sub 4}), an IP{sub 3} derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP{sub 4} are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP{sub 4} in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine stimulated an increase in ({sup 3}H)IP{sub 4} and ({sup 3}H)IP{sub 3} accumulation in chromaffin cells and this effect was completely blocked by atropine. ({sup 3}H)IP{sub 4} accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP{sub 3} and IP{sub 4} hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP{sub 4} and calcium homeostasis.

  1. Volatile anesthetics interfere with muscarinic receptor-g protein interactions in rat heart

    SciTech Connect

    Anthony, B.L.

    1987-01-01

    The influence of halothane and enflurane (0.5-8%) on muscarinic receptor binding in rat atrium was studied using (/sup 3/H) methylscopolamine ((/sup 3/H)MS). Anesthetic-gas mixtures were blown over membrane suspensions for 20 min before and during the binding assays. Halothane and enflurane increased the affinity of cardiac muscarinic receptors for (/sup 3/H)MS by slowing the rate of dissociation. These anesthetics did not affect the affinity of the receptor for carbamylcholine, but significantly reduced the sensitivity of agonist binding to regulation by guanine nucleotides. For example, the fraction of receptors displaying high affinity agonist binding was decreased by a GTP analog from 0.64 to 0.43 in the absence, but only to 0.52 in the presence of 2% halothane. The binding of a radiolabeled agonist, (/sup 3/H)oxotremorine-M, was reduced by 50% by halothane, while its sensitivity to guanine nucleotides was reduced by at least 100 fold. The diminution of the guanine nucleotide effect may reflect a stabilization of the receptor-G proteincomplex due to either a direct action on the receptor complex or to an alteration of the physical state of the membrane. It is also possible that the ability of the G protein to bind guanine nucleotides is adversely affected by anesthetic agents.

  2. Differential alterations in muscarinic receptor subtypes in Alzheimer's disease: implications for cholinergic-based therapies.

    PubMed

    Flynn, D D; Ferrari-DiLeo, G; Levey, A I; Mash, D C

    1995-01-01

    Molecular subtypes of muscarinic receptors (m1-m5) are novel targets for cholinergic replacement therapies in Alzheimer's disease (AD). However, knowledge concerning the relative distribution, abundance and functional status of these receptors in human brain and AD is incomplete. Recent data from our laboratory have demonstrated a defect in the ability of the M1 receptor subtype to form a high affinity agonist-receptor-G protein complex in AD frontal cortex. This defect is manifested by decreased M1 receptor-stimulated GTPgammaS binding and GTPase activity and by a loss in receptor-stimulated phospholipase C activity. Normal levels of G proteins suggest that the aberrant receptor-G protein interaction may result from an altered form of the m1 receptor in AD. The combined use of radioligand binding and receptor-domain specific antibodies has permitted the re-examination of the status of muscarinic receptor subtypes in the human brain. In AD, normal levels of m1 receptor [3H]-pirenzepine binding contrasted with diminished m1 immunoreactivity, further suggesting that there is an altered form of the m1 receptor in the disease. Reduced m2 immunoreactivity was consistent with decreased numbers of m2 binding sites. Increased levels of m4 receptors were observed in both binding and immunoreactivity measurements. These findings suggest one possible explanation for the relative ineffectiveness of cholinergic replacement therapies used to date and suggest potential new directions for development of effective therapeutic strategies for AD.

  3. Muscarinic Antagonists Free of Hallucinogenic Properties.

    DTIC Science & Technology

    1984-12-01

    response curve with maximum . .~nterference of pilocarpine-induced catatonia at 5mg/Kg. The inhibition decreased in a dose- ependent manner to control levels...of catatonia at 0.01 mg/Kg. QNX and QNA gave responses S arkedly different from QNB. QNB, QNX and QNA were all potent stimulators of the limb flick...behavioral measures were selected: 1) The pilocarpine test, a measure of interference with pilocarpine induced catatonia thought to be centrally mediated by

  4. Iron-56 irradiation diminishes muscarinic but not {alpha}{sub 1}-adrenergic-stimulated low-K{sub m} GTPase in rat brain

    SciTech Connect

    Villalobos-Molina, R.; Joseph, J.A.; Rabin, B.M.; Kandasamy, S.B.; Dalton, T.K.; Roth, G.S.

    1994-12-01

    Initial findings from our laboratory have indicated that muscarinic enhancement of K{sup +}-evoked release of dopamine from perifused striatal slices is reduced after exposure to {sup 56}Fe-particle irradiation. This finding suggested that there is a radiation-induced deficit in muscarinic receptor sensitivity. Subsequent findings have indicated that at least part of the loss in sensitivity may occur as a result of alterations in the initial steps of the signal transduction process and involve muscarinic receptor-G protein coupling/uncoupling. The present study was carried out to localize this deficit further by determining carbachol-stimulated low-K{sub m} guanosine triphosphatase (GTPase) activity in striatal and hippocampal tissue obtained from rats exposed to 0, 0.1 or 1.0 Gy of {sup 56}Fe-particle irradiation. In addition, to examine the specificity of the effect of {sup 56}Fe-particle irradiation, {alpha}{sub 1}-adrenergic-stimulated low-K{sub m} GTPase activity was also examined in these tissues. The results showed that there was a high degree of specificity in the effects of {sup 56}Fe particles. Decrements were observed in muscarinic-stimulated low-K{sub m} GTPase in striatum but not in hippocampus, and {sup 56}Fe-particle irradiation did not affect {alpha}{sub 1}-adrenergic low-K{sub m} GTPase activity in either brain tissue. 24 refs., 2 figs.

  5. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    SciTech Connect

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-11-07

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor.

  6. Target Essentiality and Centrality Characterize Drug Side Effects

    PubMed Central

    Yu, Haiyuan

    2013-01-01

    To investigate factors contributing to drug side effects, we systematically examine relationships between 4,199 side effects associated with 996 drugs and their 647 human protein targets. We find that it is the number of essential targets, not the number of total targets, that determines the side effects of corresponding drugs. Furthermore, within the context of a three-dimensional interaction network with atomic-resolution interaction interfaces, we find that drugs causing more side effects are also characterized by high degree and betweenness of their targets and highly shared interaction interfaces on these targets. Our findings suggest that both essentiality and centrality of a drug target are key factors contributing to side effects and should be taken into consideration in rational drug design. PMID:23874169

  7. Immunohistochemical localisation of cholinergic muscarinic receptor subtype 1 (M1r) in the guinea pig and human enteric nervous system.

    PubMed

    Harrington, A M; Hutson, J M; Southwell, B R

    2007-07-01

    Little is known regarding the location of cholinergic muscarinic receptor 1 (M1r) in the ENS, even though physiological data suggest that M1rs are central to cholinergic neurotransmission. This study localised M1rs in the ENS of the guinea pig ileum and human colon using fluorescence immunohistochemistry and RT-PCR in human colon. Double labelling using antibodies against neurochemical markers was used to identify neuron subytpes bearing M1r. M1r immunoreactivity (IR) was present on neurons in the myenteric and submucosal ganglia. The two antibodies gave similar M1r-IR patterns and M1r-IR was abolished upon antibody preabsorption. M1r-IR was present on cholinergic and nNOS-IR nerve cell bodies in both guinea pig and human myenteric neurons. Presynaptic M1r-IR was present on NOS-IR and VAChT-IR nerve fibres in the circular muscle in the human colon. In the submucosal ganglia, M1r-IR was present on a population of neurons that contained cChAT-IR, but did not contain NPY-IR or calretinin-IR. M1r-IR was present on endothelial cells of blood vessels in the submucosal plexus. The localisation of M1r-IR in the guinea pig and human ENS shown in this study agrees with physiological studies. M1r-IR in cholinergic and nitrergic neurons and nerve fibres indicate that M1rs have a role in both cholinergic and nitrergic transmission. M1r-IR present in submucosal neurons suggests a role in mediating acetylcholine's effect on submucosal sensory and secretomotor/vasodilator neurons. M1r-IR present on blood vessel endothelial cells suggests that M1rs may also mediate acetylcholine's direct effect on vasoactivation.

  8. Central sympathoplegic and norepinephrine-depleting effects of antioxidants

    SciTech Connect

    Chester, A.E.; Meyers, F.H.

    1988-01-01

    Carbon disulfide (CS/sub 2/), tetraethyl lead (TEL), tetraethyl tin (TeET), dithiothreitol (DTT), and gossypol acetic acid (GAA) significantly decreased brain norepinephrine (NE) in rats. The central dopamine (DA) increased after ip administration of CS/sub 2/, TEL, and DTT, but decreased after TeET and GAA. The brain serotonin decreased only after TeET. Two doses of DTT decreased the NE longer than one dose (24 vs 2 hr) but did not increase DA. L-DOPA, given SC with DTT, delayed the decrease in NE by 24 hr. The similar behavioral and autonomic effects of each of these compounds suggest a central sympatholytic effect and an antipsychotic type of sedation and rigidity. A possible mechanism is reversible inhibition of dopamine ..beta..-hydroxylase through the reduction of the copper ion of the enzyme. Each of these reducing agents, together with the boranes previously studied, has similar behavioral and autonomic effects and a common effect on NE concentration, suggesting that the agents act through a physicochemical property rather than by combination with a cellular component. These data have applications to the toxicity of the single agents. They also provide an index of activity, previously lacking, of systemic antoxidant effect.

  9. Effect of PACAP in Central and Peripheral Nerve Injuries

    PubMed Central

    Tamas, Andrea; Reglodi, Dora; Farkas, Orsolya; Kovesdi, Erzsebet; Pal, Jozsef; Povlishock, John T.; Schwarcz, Attila; Czeiter, Endre; Szanto, Zalan; Doczi, Tamas; Buki, Andras; Bukovics, Peter

    2012-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system. PMID:22942712

  10. 5-HT1A and muscarinic acetylcholine receptors jointly regulate passive avoidance behavior.

    PubMed

    Riekkinen, P

    1994-09-01

    The present study was designed to investigate the effects of combined stimulation of 5-HT1A or 5-HT2 receptors and blockade of muscarinic acetylcholine receptors on passive avoidance behavior. Administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 receptor agonist, impaired passive avoidance acquisition (pre-training injections) and consolidation (post-training injections) performance. Ketanserin, a 5-HT2 receptor antagonist, blocked the performance-impairing effect of DOI on passive avoidance consolidation. Interestingly, 5-HT receptor agonists may affect passive avoidance consolidation only during the immediate post-training period, as passive avoidance testing performance was not modulated by 8-OH-DPAT or DOI injected 30 min after the training trial. Furthermore, passive avoidance retention (pre-testing injections) performance was impaired only by the highest dose of 8-OH-DPAT, and DOI had no effect on passive avoidance retention. Next, the effects of combined 5-HT and acetylcholine receptor manipulations on passive avoidance behavior were studied. The effects on passive avoidance behavior of a combination of subthreshold doses of scopolamine, a muscarinic acetylcholine receptor antagonist, and 8-OH-DPAT were compared to those of a single high dose of scopolamine. A combination of small doses of scopolamine and 8-OH-DPAT impaired acquisition and consolidation of passive avoidance performance, but a single high dose of scopolamine impaired only acquisition performance. The small dose of 8-OH-DPAT also aggravated medial septal lesion-induced passive avoidance acquisition and consolidation failure. The combination of small doses of scopolamine and DOI had no effect on passive avoidance behavior. Peripherally acting scopolamine methylbromide alone or in combination with 8-OH-DPAT had no effect on passive avoidance performance. Motor activity in a swimming pool

  11. Central antitussive effect of codeine in the anesthetized rabbit.

    PubMed

    Simera, Michal; Poliacek, I; Jakus, J

    2010-11-04

    Codeine represents a commonly used drug to suppress cough. Central antitussive effect of codeine has been confirmed in a number of animal studies. However, available data related to antitussive activity of codeine in rabbits are very limited. We investigated the effects of codeine on cough, single expiratory responses (expiration-like reflex) induced by mechanical tracheo-bronchial stimulation, and on the sneeze reflex in the anesthetized rabbit. Twenty pentobarbitone anesthetized spontaneously breathing rabbits were used for the study. Increasing doses of codeine (codeinum dihydrogenphosphate, Interpharm) were injected intravenously (iv); 0, 0.15, 0.76, and 3.78 mg/kg of codeine dissolved in saline, 0.25 ml/kg) or intracerebroventricularly (icv); 0, 0.015, 0.076, and 0.378 mg/kg of codeine dissolved in artificial cerebrospinal fluid, 0.033 ml/kg. Both iv and icv injections of codeine led to a dose-dependent reduction of coughing provoked by tracheo-bronchial stimulation; however, the doses differed substantially. The effective cumulative dose for a 50% reduction in the number of coughs was 3.9 and 0.11 mg/kg after iv and icv administration of codeine, respectively; representing about 35-fold higher efficacy of the icv route. The numbers of expiration-like responses and sneeze reflex responses remained unchanged. The study confirmed the central antitussive effect of codeine, but showed a low sensitivity of sneeze and expiration reflex to codeine. We validated the experimental model of an anesthetized rabbit for studies on central antitussive action.

  12. Central antitussive effect of codeine in the anesthetized rabbit

    PubMed Central

    2010-01-01

    Background Codeine represents a commonly used drug to suppress cough. Central antitussive effect of codeine has been confirmed in a number of animal studies. However, available data related to antitussive activity of codeine in rabbits are very limited. Objective We investigated the effects of codeine on cough, single expiratory responses (expiration-like reflex) induced by mechanical tracheo-bronchial stimulation, and on the sneeze reflex in the anesthetized rabbit. Materials and methods Twenty pentobarbitone anesthetized spontaneously breathing rabbits were used for the study. Increasing doses of codeine (codeinum dihydrogenphosphate, Interpharm) were injected intravenously (iv); 0, 0.15, 0.76, and 3.78 mg/kg of codeine dissolved in saline, 0.25 ml/kg) or intracerebroventricularly (icv); 0, 0.015, 0.076, and 0.378 mg/kg of codeine dissolved in artificial cerebrospinal fluid, 0.033 ml/kg. Results Both iv and icv injections of codeine led to a dose-dependent reduction of coughing provoked by tracheo-bronchial stimulation; however, the doses differed substantially. The effective cumulative dose for a 50% reduction in the number of coughs was 3.9 and 0.11 mg/kg after iv and icv administration of codeine, respectively; representing about 35-fold higher efficacy of the icv route. The numbers of expiration-like responses and sneeze reflex responses remained unchanged. Conclusions The study confirmed the central antitussive effect of codeine, but showed a low sensitivity of sneeze and expiration reflex to codeine. We validated the experimental model of an anesthetized rabbit for studies on central antitussive action. PMID:21147648

  13. Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia.

    PubMed

    Scarr, E; Cowie, T F; Kanellakis, S; Sundram, S; Pantelis, C; Dean, B

    2009-11-01

    Schizophrenia is widely acknowledged as being a syndrome, consisting of an undefined number of diseases probably with differing pathologies. Although studying a syndrome makes the identification of an underlying pathology more difficult; neuroimaging, neuropsychopharmacological and post-mortem brain studies all implicate muscarinic acetylcholine receptors (CHRM) in the pathology of the disorder. We have established that the CHRM1 is selectively decreased in the dorsolateral prefrontal cortex of subjects with schizophrenia. To expand this finding, we wanted to ascertain whether decreased cortical CHRMs might (1) define a subgroup of schizophrenia and/or (2) be related to CHRM1 genotype. We assessed cortical [(3)H]pirenzepine binding and sequenced the CHRM1 in 80 subjects with schizophrenia and 74 age sex-matched control subjects. Kernel density estimation showed that [(3)H]pirenzepine binding in BA9 divided the schizophrenia, but not control, cohort into two distinct populations. One of the schizophrenia cohorts, comprising 26% of all subjects with the disorder, had a 74% reduction in mean cortical [(3)H]pirenzepine binding compared to controls. We suggest that these individuals make up 'muscarinic receptor-deficit schizophrenia' (MRDS). The MRDS could not be separated from other subjects with schizophrenia by CHRM1 sequence, gender, age, suicide, duration of illness or any particular drug treatment. Being able to define a subgroup within schizophrenia using a central biological parameter is a pivotal step towards understanding the biochemistry underlying at least one form of the disorder and may represent a biomarker that can be used in neuroimaging.

  14. [Propofol-induced myocardial depression: possible role of atrial muscarinic cholinergic receptors].

    PubMed

    Aguero Peña, R E; Pascuzzo-Lima, C; Granado Duque, A E; Bonfante-Cabarcas, R A

    2008-02-01

    To investigate the possible role of muscarinic cholinergic receptors (MCRs) in the depression of myocardial function induced by propofol, an intravenous anesthetic chemically unrelated to other drugs. Although adverse effects are rare, bradycardia has been reported and this can lead to cardiac arrest in some patients. The mechanism behind this effect is still unknown but a possible role for MCRs has been suggested. The interaction of propofol with human atrial MCRs was determined by means of inhibition tests using [3H] quinuclidinyl benzilate ([3H] QNB). The displacement of [3H] QNB binding to human atrial MCRs by propofol was concentration dependent but the observed effect was not consistent with a model of simple competition between propofol and [3H] QNB. Propofol appears to have the ability to modify the activity of human atrial MCRs and this effect may be related to its ability to induce bradycardia.

  15. Central Diabetes Insipidus: A Previously Unreported Side Effect of Temozolomide

    PubMed Central

    Nachtigall, Lisa; Wexler, Deborah; Miller, Karen K.; Klibanski, Anne; Makimura, Hideo

    2013-01-01

    Context: Temozolomide (TMZ) is an alkylating agent primarily used to treat tumors of the central nervous system. We describe 2 patients with apparent TMZ-induced central diabetes insipidus. Using our institution's Research Patient Database Registry, we identified 3 additional potential cases of TMZ-induced diabetes insipidus among a group of 1545 patients treated with TMZ. Case Presentations: A 53-year-old male with an oligoastrocytoma and a 38-year-old male with an oligodendroglioma each developed symptoms of polydipsia and polyuria approximately 2 months after the initiation of TMZ. Laboratory analyses demonstrated hypernatremia and urinary concentrating defects, consistent with the presence of diabetes insipidus, and the patients were successfully treated with desmopressin acetate. Desmopressin acetate was withdrawn after the discontinuation of TMZ, and diabetes insipidus did not recur. Magnetic resonance imaging of the pituitary and hypothalamus was unremarkable apart from the absence of a posterior pituitary bright spot in both of the cases. Anterior pituitary function tests were normal in both cases. Using the Research Patient Database Registry database, we identified the 2 index cases and 3 additional potential cases of diabetes insipidus for an estimated prevalence of 0.3% (5 cases of diabetes insipidus per 1545 patients prescribed TMZ). Conclusions: Central diabetes insipidus is a rare but reversible side effect of treatment with TMZ. PMID:23928668

  16. Central diabetes insipidus: a previously unreported side effect of temozolomide.

    PubMed

    Faje, Alexander T; Nachtigall, Lisa; Wexler, Deborah; Miller, Karen K; Klibanski, Anne; Makimura, Hideo

    2013-10-01

    Temozolomide (TMZ) is an alkylating agent primarily used to treat tumors of the central nervous system. We describe 2 patients with apparent TMZ-induced central diabetes insipidus. Using our institution's Research Patient Database Registry, we identified 3 additional potential cases of TMZ-induced diabetes insipidus among a group of 1545 patients treated with TMZ. A 53-year-old male with an oligoastrocytoma and a 38-year-old male with an oligodendroglioma each developed symptoms of polydipsia and polyuria approximately 2 months after the initiation of TMZ. Laboratory analyses demonstrated hypernatremia and urinary concentrating defects, consistent with the presence of diabetes insipidus, and the patients were successfully treated with desmopressin acetate. Desmopressin acetate was withdrawn after the discontinuation of TMZ, and diabetes insipidus did not recur. Magnetic resonance imaging of the pituitary and hypothalamus was unremarkable apart from the absence of a posterior pituitary bright spot in both of the cases. Anterior pituitary function tests were normal in both cases. Using the Research Patient Database Registry database, we identified the 2 index cases and 3 additional potential cases of diabetes insipidus for an estimated prevalence of 0.3% (5 cases of diabetes insipidus per 1545 patients prescribed TMZ). Central diabetes insipidus is a rare but reversible side effect of treatment with TMZ.

  17. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    SciTech Connect

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  18. Comparison of selective M3 and nonselective muscarinic receptor antagonists on gastrointestinal transit and bowel habits in humans

    PubMed Central

    Ravi, Karthik; Zinsmeister, Alan R.

    2010-01-01

    Although in vitro studies show that muscarinic M3 receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M3-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M3 antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 ± 6.4%, mean ± SE], 7.5 mg ER [34.4 ± 6.1%], 15 mg ER [20.4 ± 6.3%)]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 ± 1.5 h), 7.5 mg (18.6 ± 1.9 h), 15 mg (22.9 ± 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 ± 0.2), 7.5 mg (2.4 ± 0.2), 15 mg (1.9 ± 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M3 receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M3 antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated. PMID:20395537

  19. Comparison of selective M3 and nonselective muscarinic receptor antagonists on gastrointestinal transit and bowel habits in humans.

    PubMed

    Bharucha, Adil E; Ravi, Karthik; Zinsmeister, Alan R

    2010-07-01

    Although in vitro studies show that muscarinic M(3) receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M(3)-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M(3) antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 +/- 6.4%, mean +/- SE], 7.5 mg ER [34.4 +/- 6.1%], 15 mg ER [20.4 +/- 6.3%)]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 +/- 1.5 h), 7.5 mg (18.6 +/- 1.9 h), 15 mg (22.9 +/- 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 +/- 0.2), 7.5 mg (2.4 +/- 0.2), 15 mg (1.9 +/- 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M(3) receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M(3) antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated.

  20. Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles.

    PubMed

    Gerthoffer, William T

    2005-05-01

    Stimulation of muscarinic M3 and M2 receptors on gastrointestinal smooth muscle elicits contraction via activation of G proteins that are coupled to a diverse set of downstream signaling pathways and effector proteins. Many studies suggest a canonical excitation-contraction coupling pathway that includes activation of phospholipases, production of inositol 1,4,5-trisphosphate and diacylglycerol, release of calcium from the sarcoplasmic reticulum, activation of L-type calcium channels, and activation of nonselective cation channels. These events lead to elevated intracellular calcium concentration, which activates myosin light chain kinase to phosphorylate and activate myosin II thus causing contraction. In addition, muscarinic receptors are coupled to signaling pathways that modulate the effect of activator calcium. The Rho/Rho kinase pathway inhibits myosin light chain phosphatase, one of the key steps in sensitization of the contractile proteins to calcium. Phosphatidylinositol 3-kinases and Src family tyrosine kinases are also activated by muscarinic agonists. Src family tyrosine kinases regulate L-type calcium and nonselective cation channels. Src activation also leads to activation of ERK and p38 MAPKs. ERK MAPKs phosphorylate caldesmon, an actin filament binding protein. P38 MAPKs activate phospholipases and MAPKAP kinase 2/3, which phosphorylate HSP27. HSP27 may regulate cross-bridge function, actin filament formation, and actin filament attachment to the cell membrane. In addition to the well-known role of M3 muscarinic receptors to regulate myoplasmic calcium levels, the integrated effect of muscarinic activation probably also includes signaling pathways that modulate phospholipases, cyclic nucleotides, contractile protein function, and cytoskeletal protein function.

  1. M2 muscarinic acetylcholine receptors regulate long-term potentiation at hippocampal CA3 pyramidal cell synapses in an input-specific fashion.

    PubMed

    Zheng, Fang; Wess, Jürgen; Alzheimer, Christian

    2012-07-01

    Muscarinic receptors have long been known as crucial players in hippocampus-dependent learning and memory, but our understanding of the cellular underpinnings and the receptor subtypes involved lags well behind. This holds in particular for the hippocampal CA3 region, where the mechanisms of synaptic plasticity depend on the type of afferent input. Williams and Johnston (Williams S, Johnston D. Science 242: 84-87, 1988; Williams S, Johnston D. J Neurophysiol 64: 1089-1097, 1990) demonstrated muscarinic depression of mossy fiber (MF) long-term potentiation (LTP) through a presynaptic site of action and Maeda et al. (Maeda T, Kaneko S, Satoh M. Brain Res 619: 324-330, 1993) proposed a bidirectional modulation of MF LTP by muscarinic receptor subtypes. Since then, this issue, as well as muscarinic regulation of plasticity at associational/commissural (A/C) fiber-CA3 synapses has remained largely neglected, not least because of the lack of highly selective ligands for the different muscarinic receptor subtypes. In the present study, we performed field potential and whole cell recordings from the hippocampal CA3 region of M(2) receptor knockout mice to determine the role of M(2) receptors in short-term and long-term plasticity at A/C and MF inputs to CA3 pyramidal cells. At the A/C synapse, M(2) receptors promoted short-term facilitation and LTP. Unexpectedly, M(2) receptors mediated the opposite effect on LTP at the MF synapse, which was significantly reduced, most likely involving a depressant effect of M(2) receptors on adenylyl cyclase activity in MF terminals. Our data demonstrate that cholinergic projections recruit M(2) receptors to redistribute the gain of LTP in CA3 pyramidal cells in an input-specific manner.

  2. Down regulation of the muscarinic cholinergic receptor of the rat prostate following castration

    SciTech Connect

    Shapiro, E.; Miller, A.R.; Lepor, H.

    1985-07-01

    Prostatic secretion is dependent upon the integrity of the endocrine and autonomic nervous systems and is dramatically influenced by muscarinic cholinergic analogs. In this study, the authors have used radioligand receptor binding methods on whole tissue homogenates and slide mounted tissue sections of rat prostate to determine whether androgens regulate the density of muscarinic cholinergic receptors in the prostate. The muscarinic cholinergic receptor binding affinities (Kd) of (/sup 3/H) N-methylscopolamine in prostatic homogenates obtained from intact, castrate, and castrate rats receiving testosterone replacement (castrate + T) were similar (0.07 to 0.10 nM). The muscarinic cholinergic receptor binding capacity decreased 73 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in castrate rats to intact levels. In order to ensure that the loss of receptor density was not due to a decrease in the epithelial: stromal cell ratio, the number of muscarinic cholinergic receptors per unit area of epithelium was determined in the 3 treatment groups using autoradiography on slide mounted tissue sections. The density of muscarinic cholinergic receptors in a unit area of epithelium was decreased 91 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in the castrate rats to intact levels. The modulation of neurotransmitter receptors by steroid hormones may be a mechanism by which sex steroids regulate biological responsiveness of target tissues.

  3. Ozone-induced loss of neuronal M2 muscarinic receptor function is prevented by cyclophosphamide.

    PubMed

    Gambone, L M; Elbon, C L; Fryer, A D

    1994-09-01

    We tested the hypothesis that inflammatory cells mediate the loss of neuronal M2 muscarinic receptors in the lung after ozone exposure. Pathogen-free guinea pigs treated with cyclophosphamide (30 mg.kg-1.day-1 i.p. for 7 days) before exposure to ozone were compared with untreated ozone-exposed animals. This dose of cyclophosphamide significantly reduced leukocytes in peripheral blood and bronchoalveolar lavage fluid. Twenty-four hours after ozone, muscarinic receptor function was tested in anesthetized animals. In air-exposed guinea pigs, vagally induced bronchoconstriction was attenuated by the muscarinic agonist pilocarpine (0.1-100 micrograms/kg i.v.) and potentiated by the selective M2 antagonist gallamine (0.1-10 mg/kg i.v.), indicating that the neuronal M2 muscarinic receptors were functioning. These responses were significantly reduced after ozone, indicating loss of neuronal M2 muscarinic receptor function. However, in those animals treated with cyclophosphamide, M2 muscarinic receptor function was not altered by ozone. These data suggest that ozone-induced loss of neuronal muscarinic receptor function is mediated via inflammatory cells and that the link between ozone-induced hyperresponsiveness and inflammation may be the neuronal M2 muscarinic receptor.

  4. Central effects of humanin on hepatic triglyceride secretion.

    PubMed

    Gong, Zhenwei; Su, Kai; Cui, Lingguang; Tas, Emir; Zhang, Ting; Dong, H Henry; Yakar, Shoshana; Muzumdar, Radhika H

    2015-08-01

    Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism. Copyright © 2015 the American Physiological Society.

  5. Central effects of humanin on hepatic triglyceride secretion

    PubMed Central

    Gong, Zhenwei; Su, Kai; Cui, Lingguang; Tas, Emir; Zhang, Ting; Dong, H. Henry; Yakar, Shoshana

    2015-01-01

    Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism. PMID:26058861

  6. Central effects following repeated treatment with antidepressant drugs.

    PubMed

    Maj, J

    1984-01-01

    The review sums up the results of experiments in which there were studied central effects following repeated administration of various antidepressant drugs (AD) in rats and mice. A number of typical and atypical AD, except for selective inhibitors of 5-hydroxytryptamine (5-HT) uptake, potentiate the clonidine aggressiveness in mice (medicated by alpha 1-adrenoceptors). These results indicate that the repeated AD administration enhances responsiveness of central postsynaptic alpha 1-adrenoceptors. This assumption is in accordance with electrophysiological literature data. A few AD (including citalopram, a selective inhibitor of the 5-HT uptake), administered repeatedly, potentiate the locomotor hyperactivity induced by D-amphetamine or apomorphine, without affecting the stereotypy evoked by both dopaminomimetics. It may be supposed that AD enhance the responsiveness of a dopamine (DA) system, probably the mesolimbic one (but not the striatal one). A repeated administration of various AD also counteracts the locomotor hypoactivity induced by salbutamol (mediated by a beta-adrenoceptor). The importance of the effects stated above (alpha 1 up-regulation, DA up-regulation, beta down-regulation) for the mechanism of antidepressant action has been discussed.

  7. Muscarinic M3 receptor subtype gene expression in the human heart.

    PubMed

    Hellgren, I; Mustafa, A; Riazi, M; Suliman, I; Sylvén, C; Adem, A

    2000-01-20

    The heart is an important target organ for cholinergic function. In this study, muscarinic receptor subtype(s) in the human heart were determined using reverse transcription-polymerase chain reaction. Our results demonstrated muscarinic receptor M2 and M3 subtype RNA in left/right atria/ventricles of donor hearts. Receptor autoradiography analysis using selective muscarinic ligands indicated an absence of M1 receptor subtype in the human heart. The level of muscarinic receptor binding in atria was two to three times greater than in ventricles. Our results suggest that muscarinic receptors in the human heart are of the M2 and M3 subtypes. This is the first report of M3 receptors in the human myocardium.

  8. Action of cholinergic poisons on the central nervous system and effectiveness of potential antidotes. Annual report 1 Jul 81-30 Jun 82

    SciTech Connect

    Samson, F.; Nelson, S.

    1982-11-01

    The research aim was to determine the effects of soman, related organophosphate toxins and potential antidotes on brain regional functions in rats: The (/sup 14/C)-2-deoxyglucose procedure (2-DG) was used for mapping brain regional glucose use. Quantitative autoradiography was used for muscarinic and nicotinic cholinergic receptors. The 2-DG procedure gives a quantitative measure of glucose utilization in brain regions and is in index of the 'functional activity' in brain regions and systems. Values were determined in controls, rats with soman induced seizures, seizures induced by convulsants (DFP, strychnine, picrotoxin, pentylenetetrazol, penicillin) and soman pretreated with TAB. Brain regional cholinergic receptor maps were prepared and some regional muscarinic and nicotinic receptor densities have been quantified. Soman (112 micrograms/kg i.m.) causes strong, continuous seizures and a dramatic (2-6 fold) increase in the rate of glucose use in 10 major brain regions. Most intense increases were in septum, substants nigra reticularis and outer layer of hippcampal dendata gyrus. The overt seizures of rats induced by convulsants DFP, strychnine, picrotoxin, pentylenetetrazol and penicillin (in hippocampus) were strikingly different from that of rats with soman seizures. High doses (2X LD50) of soman in rats protected with TAB caused a 50% depression of glucose use in most brain regions. The effects of repeated soman exposure on muscarinic and nicotinic receptors are under study.

  9. M1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation.

    PubMed

    Nissen, Christoph; Power, Ann E; Nofzinger, Eric A; Feige, Bernd; Voderholzer, Ulrich; Kloepfer, Corinna; Waldheim, Bernhard; Radosa, Marc-Philipp; Berger, Mathias; Riemann, Dieter

    2006-11-01

    Preclinical studies have implicated cholinergic neurotransmission, specifically M1 muscarinic acetylcholine receptor (mAChR) activation, in sleep-associated memory consolidation. In the present study, we investigated the effects of administering the direct M1 mAChR agonist RS-86 on pre-post sleep memory consolidation. Twenty healthy human participants were tested in a declarative word-list task and a procedural mirror-tracing task. RS-86 significantly reduced rapid eye movement (REM) sleep latency and slow wave sleep (SWS) duration in comparison with placebo. Presleep acquisition and postsleep recall rates were within the expected ranges. However, recall rates in both tasks were almost identical for the RS-86 and placebo conditions. These results indicate that selective M1 mAChR activation in healthy humans has no clinically relevant effect on pre-post sleep consolidation of declarative or procedural memories at a dose that reduces REM sleep latency and SWS duration.

  10. Effective centrality and explosive synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Navas, A.; Villacorta-Atienza, J. A.; Leyva, I.; Almendral, J. A.; Sendiña-Nadal, I.; Boccaletti, S.

    2015-12-01

    Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process. In particular, in the context of explosive synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a fraction of its nodes.

  11. Effects of central depressant drugs upon acetylcholine release

    PubMed Central

    Matthews, E. K.; Quilliam, J. P.

    1964-01-01

    Several central depressant and other drugs have been examined for their effects upon acetylcholine release from the stimulated, perfused cat superior cervical ganglion and rat isolated phrenic nerve-diaphragm preparations. The acetylcholine released was assayed biologically. Amylobarbitone sodium, chloral hydrate, trichloroethanol, methylpentynol, methylpentynol carbamate, paraldehyde, procaine hydrochloride and troxidone reduced the presynaptic release of acetylcholine from the ganglion. They also exhibited a postsynaptic blocking action, this component of depressant activity being particularly prominent with paraldehyde and troxidone. Closely analogous findings were obtained at the neuromuscular junction with methylpentynol and its carbamate, paraldehyde, procaine hydrochloride, trichloroethanol and troxidone. At both sites the drug-induced depression, both of transmission and of acetylcholine output, was reversible. Whereas hexamethonium regularly blocked ganglionic transmission with no effect upon acetylcholine release, tetraethylammonium not only completely blocked ganglionic transmission but concomitantly augmented acetylcholine output. These results are discussed in relation to the electrophysiological and metabolic events associated with neuro-effector transmission. PMID:14190477

  12. Effective centrality and explosive synchronization in complex networks.

    PubMed

    Navas, A; Villacorta-Atienza, J A; Leyva, I; Almendral, J A; Sendiña-Nadal, I; Boccaletti, S

    2015-12-01

    Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process. In particular, in the context of explosive synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a fraction of its nodes.

  13. Characterization and photoaffinity labeling of the muscarinic acetylcholine receptor

    SciTech Connect

    Cremo, C.R.

    1983-01-01

    The muscarinic acetylcholine receptor, identified by tritiated L-quinuclidinyl benzilate (L-(/sup 3/H)QNB) binding, was solubilized from porcine atrial membranes using a 5:1 (w/w) ratio of digitonin and cholate. Specific binding activities of the solubilized receptor solutions usually exceeded 1.0 nmol L-(/sup 3/H)QNB sites per gram of protein, representing 75-98% total site recovery and a two- to three-fold enrichment over untreated atrial membranes. Two rapid assays for measuring the binding activities of detergent extracts were devised and compared with equilibrium dialysis. All three methods gave similar results. The equilibrium dissociation constant of the solubilized receptor for L-(/sup 3/H)QNB as determined by the three methods varied from 230 to 450 pM depending on the method and temperature. The interaction of alkyl quanidines and decahydrohistrionicotoxin with the membrane-bound and solubilized muscarinic acetylcholine receptor (mAcChR) from porcine atria was described. Alkyl guanidines with alkyl chain lengths from one to ten carbons displaced (/sup 3/H)L-quinuclidinyl bensilate ((/sup 3/H)L-QNB) competitively from a single class of sites for the membrane-bound mAcChR. From a plot of -1n K/sub i/ versus alkyl carbon chain number, a value of -(473 +/- 30) cal/mol was estimated as the energetic contribution per methylene group to the total binding energy. The synthesis and properties of a radiolabeled muscarinic antagonist photoaffinity probe, (/sup 3/H) p-azidoatropine methyl iodide were reported.

  14. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation.

    PubMed

    Brack, Kieran E; Coote, John H; Ng, G André

    2011-08-01

    The role of the vagus in the ventricle is controversial, although the vagus can protect against ventricular fibrillation (VF) via nitric oxide (NO). This study aims to determine whether the mechanisms involved are dependent on post-ganglionic release and muscarinic receptor activation. For this purpose, NO release and electrophysiological effects of vagus nerve stimulation (VNS) were evaluated in relation to acetylcholine and vasoactive intestinal peptide (VIP). In addition, the role of the coronary endothelium and afferent nerves was tested. Using the isolated innervated rabbit heart, we measured ventricular NO release using 4,5-diaminofluorescein (DAF-2) fluorescence and ventricular fibrillation threshold (VFT) during VNS after muscarinic, ganglionic, and VIP inhibition [atropine, hexamethonium, and VIP (6-28), respectively] and after Triton-X endothelial functional dysfunction. The vagal-mediated increases in NO and VFT were not significantly affected (P> 0.05) during (i) atropine perfusion [increase in NO: 196.8 ± 35.2 mV (control) vs. 156.1 ± 20.3 mV (atropine) and VFT 3.1 ± 0.5 mA (control) vs. 2.7 ± 0.4 mA (atropine)], (ii) VIP inhibition-increase in NO: 243.0 ± 42.4 mV (control) vs. 203.9 ± 28.5 mV [VIP(6-28)] and VFT 3.3 ± 0.3 mA (control) vs. 3.9 ± 0.6 mA [VIP(6-28)], or (iii) after endothelial functional dysfunction [increase in NO: 127.7 ± 31.7 mV (control) vs. 172.1 ± 31.5 mV (Triton-X) and VFT 2.6 ± 0.4 mA (control) vs. 2.5 ± 0.5 mA (Triton-X)]. However, the vagal effects were inhibited during ganglionic blockade [increase in NO: 175.1 ± 38.1 mV (control) vs. 0.6 ± 25.3 mV (hexamethonium) and VFT 3.3 ± 0.5 mA (control) vs. -0.3 ± 0.3 mA (hexamethonium)]. We show that the vagal anti-fibrillatory action in the rabbit ventricle occurs via post-ganglionic efferent nerve fibres, independent of muscarinic receptor activation, VIP, and the endothelium. Together with our previous publications, our data support the possibility of a novel

  15. The modulatory role of M2 muscarinic receptor on apomorphine-induced yawning and genital grooming.

    PubMed

    Gamberini, Maria Thereza; Bolognesi, Maria Laura; Nasello, Antonia Gladys

    2012-12-07

    The interaction between dopaminergic and cholinergic pathways in the induction of behavioral responses has been previously established. In the brain, M2 receptors are found predominantly in presynaptic cholinergic neurons as autoreceptors, and in dopaminergic neurons as heteroceptors, suggesting a control role of acetylcholine and dopamine release, respectively. Our aim was to investigate the role of M2 receptors on the yawning and genital grooming of rats induced by apomorphine, a dopaminergic receptor agonist, focusing on the interaction between cholinergic and dopaminergic pathways. Initially, the effect of atropine, a non-selective muscarinic antagonist, on yawning and genital grooming induced by apomorphine (100 μg/kg s.c.) was analyzed. Atropine doses of 0.5, 1 and 2 mg/kg i.p. were administered to Wistar rats 30 min before induction of the behavioral responses by apomorphine. Number of yawns and time spent genital grooming were quantified over a 60 min period. Apomorphine-induced yawning was increased by low dose (0.5 mg/kg i.p.) but not by high doses (1 and 2 mg/kg, i.p.) of atropine. Genital grooming was antagonized by 2 mg/kg i.p. of atropine and showed no changes at the other doses tested. Tripitramine, a selective M2 cholinergic antagonist, was used as a tool for distinguishing between M2 and all other muscarinic receptor subtypes in yawning and genital grooming. Tripitramine doses of 0.01, 0.02 and 0.04 μmol/kg i.p. were administered to Wistar rats 30 min before apomorphine (100 μg/kg s.c.). Number of yawns and time spent genital grooming were also quantified over a 60 min period. Tripitramine 0.01 μmol/kg increased all parameters. Higher doses, which possibly block all subtypes of muscarinic receptor, did not modify the response of apomorphine, suggesting a non-selective effect of tripitramine at these doses. Given that low doses of tripitramine increased the behavioral responses induced by apomorphine and that the main distribution of the M2

  16. Muscarinic and nicotinic cholinergic agonists: structural analogies and discrepancies.

    PubMed

    Bikádi, Zsolt; Simonyi, Miklós

    2003-12-01

    Acetylcholine, the first identified neurotransmitter acts on both types of cholinergic receptors. Both rigid and flexible derivatives of acetylcholine could either be selective muscarinic or selective nicotinic agonists while some compounds show activity at both receptor subclasses. Earlier structure-activity considerations are revisited. Ligand and receptor based calculations have been applied in the hope to identify characteristic geometrical and steric requirements for the activity on the receptor subtypes. Results are treated critically and applied cautiously for predicting selective structural requirements by the cholinergic receptor subclasses.

  17. Does pirenzepine distinguish between 'subtypes' of muscarinic receptors?

    PubMed Central

    Szelenyi, I.

    1982-01-01

    Pharmacological studies with pirenzepine were carried out on the isolated ileum and atrium of the guinea-pig and on the acid secretion from the isolated stomach of the mouse. Pirenzepine inhibited the bethanechol-evoked changes in all three organs in a dose-dependent manner. The slopes of the Schild-plots confirmed the competitive nature of the antagonism by pirenzepine. The estimated pA2-values were very similar. Based on these data, it might be concluded that pirenzepine is an anticholinoceptor compound without specific affinity for gastric muscarinic receptors. PMID:6897522

  18. Muscarinic receptor occupancy by biperiden in living human brain.

    PubMed

    Sudo, Y; Suhara, T; Suzuki, K; Okubo, Y; Yoshikawa, K; Uchida, S; Sassa, T; Okauchi, T; Sasaki, Y; Matsushita, M

    1999-01-01

    Anticholinergic drug is often used to treat extrapyramidal symptoms. We measured muscarinic cholinergic receptor (mAchR) occupancy by the oral administration of biperiden in eight healthy subjects using positron emission tomography (PET) and [11C]N-methyl-4-piperidylbenzilate (NMPB). After the baseline scan each subject underwent one or two post-dose PET scans. mAchR occupancy was 10-45% in the frontal cortex three hours after the oral administration of 4 mg of biperiden. The occupancy correlated with the plasma concentration of biperiden in a curvilinear manner.

  19. Use of acetylcholine mustard to study allosteric interactions at the M2 muscarinic receptor

    PubMed Central

    Suga, Hinako; Figueroa, Katherine W.; Ehlert, Frederick J.

    2008-01-01

    We explored the interaction of a nitrogen mustard derivative of acetylcholine with the human M2 muscarinic receptor expressed in CHO cells using the muscarinic radioligand, [3H]N-methylscopolamine. Acetylcholine mustard caused a concentration-dependent, first order loss of [3H]N-methylscopolamine binding at 37°C, with the half maximal rate constant occurring at 24 µM and a maximal rate constant of 0.16 min−1. We examined the effects of various ligands on the rate of alkylation of M2 receptors by acetylcholine mustard. N-methylscopolamine and McN-A-343 (4-(trimethylamino)-2-butynyl-(3-chlorophenyl)carbamate) competitively slowed the rate of alkylation, whereas the inhibition by gallamine reached a plateau at high concentrations, indicating allosteric inhibition. In contrast, WIN 51708 (17-β-hydroxy-17-α-ethynyl-5-α-androstano[3,2-b]pyrimido[1,2-a]benzimidazole) had no effect. We also measured the inhibition of [3H]NMS binding by acetylcholine mustard at 0°C, conditions under which there is little or no detectable covalent binding. In these experiments, the dissociation constant of the aziridinium ion of acetylcholine mustard was estimated to be 12.3 µM. In contrast, the parent mustard and alcoholic hydrolysis product of acetylcholine mustard were without effect. Our results show that measurement of the effects of ligands on the rate of inactivation of the orthosteric site by a small site-directed electrophile is a powerful method for discriminating competitive inhibition from allosterism. PMID:18682569

  20. Coupling of G Proteins to Reconstituted Monomers and Tetramers of the M2 Muscarinic Receptor*

    PubMed Central

    Redka, Dar'ya S.; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V.; Ellis, John; Ernst, Oliver P.; Wells, James W.

    2014-01-01

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. PMID:25023280

  1. Fire effects on wildlife in Central Hardwoods and Appalachian regions

    USGS Publications Warehouse

    Harper, Craig A.; Ford, William; Lashley, Marcus A.; Moorman, Christopher; Stambaugh, Michael C.

    2016-01-01

    Fire is being prescribed and used increasingly to promote ecosystem restoration (e.g., oak woodlands and savannas) and to manage wildlife habitat in the Central Hardwoods and Appalachian regions, USA. However, questions persist as to how fire affects hardwood forest communities and associated wildlife, and how fire should be used to achieve management goals. We provide an up-to-date review of fire effects on various wildlife species and their habitat in the Central Hardwoods and Appalachians. Documented direct effects (i.e., mortality) on wildlife are rare. Indirect effects (i.e., changes in habitat quality) are influenced greatly by light availability, fire frequency, and fire intensity. Unless fire intensity is great enough to kill a portion of the overstory, burning in closed-canopy forests has provided little benefit for most wildlife species in the region because it doesn’t result in enough sunlight penetration to elicit understory response. Canopy reduction through silvicultural treatment has enabled managers to use fire more effectively. Fire intensity must be kept low in hardwoods to limit damage to many species of overstory trees. However, wounding or killing trees with fire benefits many wildlife species by allowing increased sunlight to stimulate understory response, snag and subsequent cavity creation, and additions of large coarse woody debris. In general, a fire-return interval of 2 yr to 7 yr benefits a wide variety of wildlife species by providing a diverse structure in the understory; increasing browse, forage, and soft mast; and creating snags and cavities. Historically, dormant-season fire was most prevalent in these regions, and it still is when most prescribed fire is implemented in hardwood systems as burn-days are relatively few in the growing season of May through August because of shading from leaf cover and high fuel moisture. Late growing-season burning increases the window for burning, and better control on woody composition is

  2. Respiratory effects of air pollutants among asthmatics in central Taiwan.

    PubMed

    Kuo, Hsien W; Lai, Jim S; Lee, Mon C; Tai, Ru C; Lee, Ming C

    2002-01-01

    The authors investigated the relationship between respiratory effects and air pollutants among asthmatics in central Taiwan. A total of 12,926 subjects were selected from 8 junior high schools. Data about monthly hospital admissions for respiratory illnesses were collected over a period of 1 yr from the National Insurance Bureau. Data included how frequently subjects purchased medication and the respiratory symptoms recorded by clinic and hospital personnel. Pulmonary function tests were administered to 20% of the total study population, which was selected randomly. Data about monthly levels of air pollutants (i.e., particulate matter 10 pm and less [PM10], ozone [O3], sulfur dioxide [SO2], and nitrogen dioxide [NO2]) were provided by Taiwan's Environmental Protection Agency. The prevalence rates of asthma were correlated significantly with NO2 (r = .63) and 03 (r = .51) concentrations. Levels of NO2 and PM10 were correlated significantly with monthly hospital admissions. Forced vital capacity, forced expiratory volume in 1 sec, and peak expiratory flow for asthmatics in central Taiwan were 6-11% lower than normal predicted values for the general Taiwanese student population, adjusted for age, height, and weight. In conclusion, the increased risk of asthma and the frequency of monthly hospital admissions among asthmatics may be correlated positively with pollution levels-especially NO2 and PM10. air pollutants, asthma, mon

  3. Behavioral, hormonal and central serotonin modulating effects of injected leptin.

    PubMed

    Haleem, Darakhshan J; Haque, Zeba; Inam, Qurrat-ul-Aen; Ikram, Huma; Haleem, Muhammad Abdul

    2015-12-01

    Leptin is viewed as an important target for developing novel therapeutics for obesity, depression/anxiety and cognitive dysfunctions. The present study therefore concerns behavioral, hormonal and central serotonin modulating effects of systemically injected leptin. Pharmacological doses (100 and 500 μg/kg) of leptin injected systemically decreased 24h cumulative food intake and body weight in freely feeding rats and improved acquisition and retention of memory in Morris water maze test. Potential anxiety reducing, hormonal and serotonin modulating effects of the peptide hormone were determined in a separate experiment. Animals injected with 100 or 500 μg/kg leptin were tested for anxiety in an elevated plus maze test 1h later. A significant increase in the number of entries and time passed in open arm of the elevated plus maze in leptin injected animals suggested pronounced anxiety reducing effect. Moreover, circulating levels of leptin correlated significantly with anxiety reducing effects of the peptide hormone. Serum serotonin increased and ghrelin decreased in leptin injected animals and correlated, positively and negatively respectively, with circulating leptin. Corticosterone increased at low dose and levels were normal at higher dose. Serotonin metabolism in the hypothalamus and hippocampus decreased only at higher dose of leptin. The results support a role of leptin in the treatment of obesity, anxiety and cognitive dysfunctions. It is suggested that hormonal and serotonin modulating effects of leptin can alter treatment efficacy in particularly comorbid conditions.

  4. Muscarinic receptors participation in angiogenic response induced by macrophages from mammary adenocarcinoma-bearing mice

    PubMed Central

    de la Torre, Eulalia; Davel, Lilia; Jasnis, María A; Gotoh, Tomomi; de Lustig, Eugenia Sacerdote; Sales, María E

    2005-01-01

    Introduction The role of macrophages in tumor progression has generated contradictory evidence. We had previously demonstrated the ability of peritoneal macrophages from LMM3 murine mammary adenocarcinoma-bearing mice (TMps) to increase the angiogenicity of LMM3 tumor cells, mainly through polyamine synthesis. Here we investigate the ability of the parasympathetic nervous system to modulate angiogenesis induced by TMps through the activation of the muscarinic acetylcholine receptor (mAchR). Methods Peritoneal macrophages from female BALB/c mice bearing a 7-day LMM3 tumor were inoculated intradermally (3 × 105 cells per site) into syngeneic mice. Before inoculation, TMps were stimulated with the muscarinic agonist carbachol in the absence or presence of different muscarinic antagonists or enzyme inhibitors. Angiogenesis was evaluated by counting vessels per square millimeter of skin. The expression of mAchR, arginase and cyclo-oxygenase (COX) isoforms was analyzed by Western blotting. Arginase and COX activities were evaluated by urea and prostaglandin E2 (PGE2) production, respectively. Results TMps, which stimulate neovascularization, express functional mAchR, because carbachol-treated TMps potently increased new blood vessels formation. This response was completely blocked by preincubating TMps with pirenzepine and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), M1 and M3 receptor antagonists, and partly by the M2 receptor antagonist methoctramine. M1 receptor activation by carbachol in TMps triggers neovascularization through arginase products because Nω-hydroxy-L-arginine reversed the agonist action. Preincubation of TMps with methoctramine partly prevented carbachol-stimulated urea formation. In addition, COX-derived liberation of PGE2 is responsible for the promotion of TMps angiogenic activity by M3 receptor. We also detected a higher expression of vascular endothelial growth factor (VEGF) in TMps than in macrophages from normal mice. Carbachol

  5. Muscarinic receptors participation in angiogenic response induced by macrophages from mammary adenocarcinoma-bearing mice.

    PubMed

    de la Torre, Eulalia; Davel, Lilia; Jasnis, María A; Gotoh, Tomomi; de Lustig, Eugenia Sacerdote; Sales, María E

    2005-01-01

    The role of macrophages in tumor progression has generated contradictory evidence. We had previously demonstrated the ability of peritoneal macrophages from LMM3 murine mammary adenocarcinoma-bearing mice (TMps) to increase the angiogenicity of LMM3 tumor cells, mainly through polyamine synthesis. Here we investigate the ability of the parasympathetic nervous system to modulate angiogenesis induced by TMps through the activation of the muscarinic acetylcholine receptor (mAchR). Peritoneal macrophages from female BALB/c mice bearing a 7-day LMM3 tumor were inoculated intradermally (3 x 10(5) cells per site) into syngeneic mice. Before inoculation, TMps were stimulated with the muscarinic agonist carbachol in the absence or presence of different muscarinic antagonists or enzyme inhibitors. Angiogenesis was evaluated by counting vessels per square millimeter of skin. The expression of mAchR, arginase and cyclo-oxygenase (COX) isoforms was analyzed by Western blotting. Arginase and COX activities were evaluated by urea and prostaglandin E2 (PGE2) production, respectively. TMps, which stimulate neovascularization, express functional mAchR, because carbachol-treated TMps potently increased new blood vessels formation. This response was completely blocked by preincubating TMps with pirenzepine and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), M1 and M3 receptor antagonists, and partly by the M2 receptor antagonist methoctramine. M1 receptor activation by carbachol in TMps triggers neovascularization through arginase products because Nomega-hydroxy-L-arginine reversed the agonist action. Preincubation of TMps with methoctramine partly prevented carbachol-stimulated urea formation. In addition, COX-derived liberation of PGE2 is responsible for the promotion of TMps angiogenic activity by M3 receptor. We also detected a higher expression of vascular endothelial growth factor (VEGF) in TMps than in macrophages from normal mice. Carbachol significantly increased VEGF

  6. Functional and biochemical characteristics of urinary bladder muscarinic receptors in long-term alloxan diabetic rats

    PubMed Central

    Rocha, Jeová Nina

    2015-01-01

    Objective To re-examine the function of the urinary bladder in vivo as well as to determine the functional and biochemical characteristics of bladder muscarinic receptors in long-term alloxan-induced diabetes rats. Methods Two-month-old male Wistar rats were injected with alloxan and the animals showing blood glucose levels >300mg/dL together with age-paired untreated animals were kept for 11 months. Body weight, bladder weight, blood glucose, and urinary volume over a period of 24 hours were determined in both groups of animals. A voiding cystometry in conscious control and diabetic rats was performed to determine maximal micturition pressure, micturition contraction interval and duration as well as voided and post-voiding residual volume. In addition, concentration-response curves for bethanechol in isolated bladder strips, as well as [3H]-N methyl-scopolamine binding site characteristics in bladder homogenates were determined. Results Mean bladder weight was 162.5±21.2mg versus 290±37.9mg in control and treated animals, respectively (p<0.05). Micturition contraction amplitude (34.6±4.7mmHg versus 49.6±2.5mmHg), duration (14.5±1.7 seconds versus 23.33±4.6 seconds) and interval (87.5±17.02 seconds versus 281.11±20.24 seconds) were significantly greater in alloxan diabetic rats. Voided urine volume per micturition contraction was also significantly higher in diabetic animals. However the post-voiding residual volume was not statistically different. Bethanechol potency (EC50 3µM versus 5µM) and maximal effect (31.2±5.9g/g versus 36.1±6.8g/g) in isolated bladder strips as well as number (169±4fmol/mg versus 176±3fmol/mg protein) and affinity (0.69±0.1nM versus 0.57±0.1nM) of bladder muscarinic receptors were also not statistically different. Conclusion Bladder function in vivo is altered in chronic alloxan-induced diabetes rats without changes in functional and biochemical characteristics of bladder muscarinic receptors. PMID:26466064

  7. Inverse agonist activity of pirenzepine at M2 muscarinic acetylcholine receptors.

    PubMed

    Daeffler, L; Schmidlin, F; Gies, J P; Landry, Y

    1999-03-01

    1. The intrinsic properties of muscarinic ligands were studied through their binding properties and their abilities to modulate the GTPase activity of G proteins coupled to muscarinic M2 receptors in pig atrial sarcolemma. 2. Competition binding experiments were performed with [3H]-oxotremorine-M to assess the affinity of receptors coupled to G proteins (R*), with [3H]-N-methylscopolamine ([3H]-NMS) to estimate the affinities of coupled and uncoupled receptors (R*+R) and with [3H]-NMS in the presence of GppNHp to assess the affinity of uncoupled receptors (R). 3. The ranking of Ki values for the agonist carbachol was R*R*+R>R (174, 155, 115 nM), suggesting inverse agonism. 4. The Vmax of the basal high affinity GTPase activity of pig atrial sarcolemma was increased by mastoparan and decreased by GPAnt-2 indicating the relevance of this activity to G proteins coupled to receptors (R*). The K(M) value (0.26-0.33 microM) was not modified by mastoparan or GPAnt-2. 5. Carbachol increased the Vmax of GTP hydrolysis (EC50 8.1+/-0.3 microM), whereas atropine and AF-DX 116, up to 1 mM, did not modify it. Pirenzepine decreased the Vmax of GTP hydrolysis (EC50 77.5+/-10.3 microM). This effect was enhanced when KCI was substituted for NaCl (EC50 11.0+/-0.8 microM) and was antagonized by atropine and AF-DX 116 (IC50 0.91+/-0.71 and 197+/-85 nM). 6. Pirenzepine is proposed as an inverse agonist and atropine and AF-DX 116 as neutral antagonists at the muscarinic M2 receptor.

  8. Inverse agonist activity of pirenzepine at M2 muscarinic acetylcholine receptors

    PubMed Central

    Daeffler, Laurent; Schmidlin, Fabien; Gies, Jean-Pierre; Landry, Yves

    1999-01-01

    The intrinsic properties of muscarinic ligands were studied through their binding properties and their abilities to modulate the GTPase activity of G proteins coupled to muscarinic M2 receptors in pig atrial sarcolemma. Competition binding experiments were performed with [3H]-oxotremorine-M to assess the affinity of receptors coupled to G proteins (R*), with [3H]-N-methylscopolamine ([3H]-NMS) to estimate the affinities of coupled and uncoupled receptors (R*+R) and with [3H]-NMS in the presence of GppNHp to assess the affinity of uncoupled receptors (R). The ranking of Ki values for the agonist carbachol was R*<R*+R>R (174, 155, 115 nM), suggesting inverse agonism. The Vmax of the basal high affinity GTPase activity of pig atrial sarcolemma was increased by mastoparan and decreased by GPAnt-2 indicating the relevance of this activity to G proteins coupled to receptors (R*). The KM value (0.26–0.33 μM) was not modified by mastoparan or GPAnt-2. Carbachol increased the Vmax of GTP hydrolysis (EC50 8.1±0.3 μM), whereas atropine and AF-DX 116, up to 1 mM, did not modify it. Pirenzepine decreased the Vmax of GTP hydrolysis (EC50 77.5±10.3 μM). This effect was enhanced when KCl was substituted for NaCl (EC50 11.0±0.8 μM) and was antagonized by atropine and AF-DX 116 (IC50 0.91±0.71 and 197±85 nM). Pirenzepine is proposed as an inverse agonist and atropine and AF-DX 116 as neutral antagonists at the muscarinic M2 receptor. PMID:10205015

  9. Participation of muscarinic receptors in memory consolidation in passive avoidance learning.

    PubMed

    Dobryakova, Yulia V; Gurskaya, Olga; Markevich, Vladimir A

    2014-01-01

    It is well-known that the cholinergic system and the muscarinic cholinergic receptors are associated with cognitive functions. Here we examined whether a non-selective muscarinic receptor antagonist scopolamine affects learning performance and/or synaptic plasticity during the memory consolidation period. Adult male Wistar rats (250-300 g) were injected with scopolamine (2 mg/kg) or saline immediately after training in a "passive avoidance" task. Memory retention test was conducted 24 h after training. The changes in the latency of the first entry into a dark compartment of a test chamber was chosen as a criterion of learning. The efficacy of synaptic transmission was estimated by the changes in the basal level of focal potentials (fEPSP amplitude and slope ratio) before training (baseline), 90 min after the training (consolidation period), and 24 hour after the training (retention period). We found that foot-shock presentation by itself had no effect on fEPSP within the first 90 min after training, but in 24 hour fEPSPs were decreased. In untrained rats administration of scopolamine had no effect on the fEPSP amplitude within the first 90 min after the injection, but in 24 h we observed an increase in the fEPSP amplitude. In trained animals, scopolamine decreased the fEPSP amplitude in the hippocampal CA1 area during first 1.5 h after the injection. However, the drug had no effect on the memory retention in the passive avoidance task. Taken together our data suggest that scopolamine modifies the synaptic placticity of the hippocampal network but does not induce significant changes in the retention of the passive avoidance skill.

  10. Hypoxia increases exercise heart rate despite combined inhibition of β-adrenergic and muscarinic receptors.

    PubMed

    Siebenmann, C; Rasmussen, P; Sørensen, H; Bonne, T C; Zaar, M; Aachmann-Andersen, N J; Nordsborg, N B; Secher, N H; Lundby, C

    2015-06-15

    Hypoxia increases the heart rate response to exercise, but the mechanism(s) remains unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate, but not combined, inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exercise to exhaustion in normoxia and hypoxia (fraction of inspired O2 = 12%) after intravenous administration of 1) no drugs (Cont), 2) propranolol (Prop), 3) glycopyrrolate (Glyc), or 4) Prop + Glyc. HR increased with exercise in all drug conditions (P < 0.001) but was always higher at a given workload in hypoxia than normoxia (P < 0.001). Averaged over all workloads, the difference between hypoxia and normoxia was 19.8 ± 13.8 beats/min during Cont and similar (17.2 ± 7.7 beats/min, P = 0.95) during Prop but smaller (P < 0.001) during Glyc and Prop + Glyc (9.8 ± 9.6 and 8.1 ± 7.6 beats/min, respectively). Cardiac output was enhanced by hypoxia (P < 0.002) to an extent that was similar between Cont, Glyc, and Prop + Glyc (2.3 ± 1.9, 1.7 ± 1.8, and 2.3 ± 1.2 l/min, respectively, P > 0.4) but larger during Prop (3.4 ± 1.6 l/min, P = 0.004). Our results demonstrate that the tachycardic effect of hypoxia during exercise partially relies on vagal withdrawal. Conversely, sympathoexcitation either does not contribute or increases heart rate through mechanisms other than β-adrenergic transmission. A potential candidate is α-adrenergic transmission, which could also explain why a tachycardic effect of hypoxia persists during combined β-adrenergic and muscarinic receptor inhibition. Copyright © 2015 the American Physiological Society.

  11. Muscarinic receptor modulation of GABA-mediated giant depolarizing potentials in the neonatal rat hippocampus

    PubMed Central

    Avignone, Elena; Cherubini, Enrico

    1999-01-01

    The whole-cell patch clamp technique was used to study the role of muscarinic receptors in regulating the frequency of giant depolarizing potentials (GDPs) in CA3 hippocampal neurones in slices from postnatal (P) P1-P8 rats. Atropine (1 μM) reduced the frequency of GDPs by 64·2 ± 2·9%. The acetylcholinesterase inhibitor edrophonium (20 μM) increased the frequency of GDPs in a developmentally regulated way. This effect was antagonized by the M1 muscarinic receptor antagonist pirenzepine. In the presence of edrophonium, tetanic stimulation of cholinergic fibres induced either an enhancement of GDP frequency (179 ± 79%) or a membrane depolarization (27 ± 16 mV) associated with an increase in synaptic noise. These effects were prevented by atropine. Application of carbachol (3 μM) produced an increase in GDP frequency that at P5-P6 was associated with a membrane depolarization and an increase in synaptic noise. These effects were prevented by atropine, pirenzepine (3 μM) and bicuculline (10 μM). In the presence of pirenzepine, carbachol reduced GDP frequency by 50 ± 4%. Conversely, in the presence of methoctramine (3 μM), carbachol enhanced GDP frequency by 117 ± 4%. It is concluded that endogenous acetylcholine, through the activation of M1 receptors, enhances the release of γ-aminobutyric acid (GABA), in a developmentally regulated way. On the other hand, carbachol exerts both an up- and downregulation of GABA release through the activation of M1 and M2 receptors, respectively. PMID:10373692

  12. Modulation of muscarinic receptor-stimulated phosphoinositide breakdown by sulfhydryl group modification is a general response in different rat brain regions and depends on the stage of brain development.

    PubMed

    Balduini, W; Cattabeni, F; Cantoni, O

    1996-10-01

    In a previous study we reported that muscarinic receptor-stimulated phosphoinositide breakdown in rat cortical slices is significantly reduced by modification of critical thiols located at the post-receptor level. We have now extended this observation by investigating whether this effect is a general response in different brain areas and is differentially regulated, within the cortex, in the neonatal and adult brain. Experimental results have demonstrated that indeed the effect of sulfhydryl group modification on muscarinic receptor-stimulated phosphoinositide breakdown appears to be mediated by a general mechanism operative in different brain regions (cortex, hippocampus and striatum). In addition, this response is more pronounced in the early stages of brain development, when muscarinic receptor agonists lead to the highest inositol phosphate accumulation.

  13. Muscarinic receptor subtypes involved in regulation of colonic motility in mice: functional studies using muscarinic receptor-deficient mice.

    PubMed

    Kondo, Takaji; Nakajima, Miwa; Teraoka, Hiroki; Unno, Toshihiro; Komori, Sei-ichi; Yamada, Masahisa; Kitazawa, Takio

    2011-11-16

    Although muscarinic M(2) and M(3) receptors are known to be important for regulation of gastric and small intestinal motility, muscarinic receptor subtypes regulating colonic function remain to be investigated. The aim of this study was to characterize muscarinic receptors involved in regulation of colonic contractility. M(2) and/or M(3) receptor knockout (KO) and wild-type mice were used in in vivo (defecation, colonic propulsion) and in vitro (contraction) experiments. Amount of feces was significantly decreased in M(3)R-KO and M(2)/M(3)R-KO mice but not in M(2)R-KO mice. Ranking of colonic propulsion was wild-type=M(2)R-KO>M(3)R-KO>M(2)/M(3)R-KO. In vitro, the amplitude of migrating motor complexes in M(2)R-KO, M(3)R-KO and M(2)/M(3)R-KO mice was significantly lower than that in wild-type mice. Carbachol caused concentration-dependent contraction of the proximal colon and distal colon from wild-type mice. In M(2)R-KO mice, the concentration-contraction curves shifted to the right and downward. In contrast, carbachol caused non-sustained contraction and relaxation in M(3)R-KO mice depending on its concentration. Carbachol did not cause contraction but instead caused relaxation of colonic strips from M(2)/M(3)R-KO mice. 4-[[[(3-chlorophenyl)amino]carbonyl]oxy]-N,N,N-trimethyl-2-butyn-1-aminium chloride (McN-A-343) caused a non-sustained contraction of colonic strips from wild-type mice, and this contraction was changed to a sustained contraction by tetrodotoxin, pirenzepine and L-nitroarginine methylester (L-NAME). In the colon of M(2)/M(3)R-KO mice, McN-A-343 caused only relaxation, which was decreased by tetrodotoxin, pirenzepine and L-NAME. In conclusion, M(1), M(2) and M(3) receptors regulate colonic motility of the mouse. M(2) and M(3) receptors mediate cholinergic contraction, but M(1) receptors on inhibitory nitrergic nerves counteract muscarinic contraction.

  14. Fesoterodine: a novel muscarinic receptor antagonist for the treatment of overactive bladder syndrome.

    PubMed

    Michel, Martin C

    2008-07-01

    Fesoterodine is a newly approved drug for the treatment of overactive bladder syndrome. The aim of this study was to review the preclinical and clinical data on fesoterodine. The study involved a search of the Medline database and the proceedings volumes of urological congresses. Fesoterodine functions as an orally active prodrug that is converted to the active metabolite 5-hydroxymethyltolterodine by non-specific esterases. 5-Hydroxymethyltolterodine is a muscarinic receptor antagonist. Fesoterodine is primarily eliminated as inactive metabolites along with significant renal excretion as the unchanged active metabolite 5-hydroxymethyltolterodine. Fesoterodine is indicated for use at doses of 4 and 8 mg once daily. In clinical studies both doses of fesoterodine were consistently superior to placebo in improving the symptoms of overactive bladder syndrome, with 8 mg/day having significantly greater effects than 4 mg/day.

  15. Enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment

    SciTech Connect

    Koide, T.; Matsushita, H.

    1981-03-09

    The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using /sup 3/H-spiroperidol (/sup 3/H-SPD) and /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestation of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity.

  16. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin

    PubMed Central

    Frago, Laura M.; Chowen, Julie A.

    2017-01-01

    Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin’s actions within the brain. PMID:28257088

  17. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin.

    PubMed

    Frago, Laura M; Chowen, Julie A

    2017-03-02

    Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin's actions within the brain.

  18. HIV and aging: effects on the central nervous system.

    PubMed

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J

    2014-02-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.

  19. HIV and Aging: Effects on the Central Nervous System

    PubMed Central

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J.

    2014-01-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some mark