NASA Astrophysics Data System (ADS)
He, Chuansong; Santosh, M.
2018-05-01
The Tianshan orogenic belt, Junggar terrane and Altai terrane are located at the southwestern part of the Central Asian Orogenic Belt (CAOB). Here, we investigate the velocity structure beneath the Xinjiang region in NW China, which includes the Tarim terrane, Tianshan orogenic belt, Junggar terrane and Altai terrane with a view to evaluate the mantle dynamics based on teleseismic data recorded by 103 seismic stations. Our tomographic results show both high and low velocity perturbations beneath the Tianshan orogenic belt. We suggest that the high velocity perturbations beneath this orogenic belt might represent the northward subducted lithosphere of the Tarim Basin and the southward subducted lithosphere of the Junggar Basin. The low velocity structure beneath the Tianshan orogenic belt might represent asthenosphere upwelling that triggered the extensive magmatism which contributed to rebuilding of the Tianshan orogenic belt.
NASA Astrophysics Data System (ADS)
Smirnov, Yu. V.; Sorokin, A. A.
2017-05-01
The first results of geochemical and Sm-Nd isotope-geochemical studies of metavolcanic rocks, metagabbroids, and diabase of the Nora-Sukhotino terrane, the least studied part of the South Mongolian-Khingan orogenic belt in the system of the Central Asian orogenic belt are reported. It is established that the basic rocks composing this terrane include varieties comparable with E-MORB, tholeiitic, and calc-alkaline basalt of island arc, calc-alkaline gabbro-diabase, and gabbroids of island arcs. Most likely, these formations should be correlated with metabasalt and associated Late Ordovician gabbro-amphibolite of the Sukdulkin "block" of the South Mongolian-Khingan orogenic belt, which are similar to tholeiite of intraplate island arcs by their geochemical characteristics.
NASA Astrophysics Data System (ADS)
He, Chuansong; Dong, Shuwen; Chen, Xuanhua; Santosh, M.; Li, Qiusheng
2014-01-01
The Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt records the tectonic history of Paleozoic convergence between the South China and North China Blocks. In this study, the distribution of crustal thickness and P- and S-wave velocity ratio (Vp/Vs) is obtained by using the H-k stacking technique from the Dabie-Sulu belt in central China. Our results show marked differences in the crustal structure between the Dabie and Sulu segments of the ultrahigh-pressure (UHP) orogen. The lower crust in the Dabie orogenic belt is dominantly of felsic-intermediate composition, whereas the crust beneath the Sulu segment is largely intermediate-mafic. The crust of the Dabie orogenic belt is thicker by ca. 3-5 km as compared to that of the surrounding region with the presence of an ‘orogenic root’. The crustal thickness is nearly uniform in the Dabie orogenic belt with a generally smooth crust-mantle boundary. A symmetrically thickened crust in the absence of any deep-structural features similar to that of the Yangtze block suggests no supportive evidence for the proposed northward subduction of the Yangtze continental block beneath the North China Block. We propose that the collision between the Yangtze and North China Blocks and extrusion caused crustal shortening and thickening, as well as delamination of the lower crust, resulting in asthenospheric upwelling and lower crustal UHP metamorphism along the Dabie Orogen. Our results also reveal the presence of a SE to NW dipping Moho in the North China Block (beneath the Tran-North China Orogen and Eastern Block), suggesting the fossil architecture of the northwestward subduction of the Kula plate.
NASA Astrophysics Data System (ADS)
Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao
2018-03-01
The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.
NASA Astrophysics Data System (ADS)
Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming
2018-03-01
The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of juvenile crust during an intra-plate extensional setting, respectively. The corresponding crustal growth in the southern CAOB is dominated by early Paleozoic lateral accretion of arc complexes and late Paleozoic vertical addition of juvenile material from the mantle.
Magnetically inferred basement structure in central Saudi Arabia
Johnson, P.R.; Stewart, I.C.F.
1995-01-01
A compilation of magnetic data acquired during the past three decades for a region in central Saudi Arabia where Precambrian basement is partly exposed on the Arabian shield and partly concealed by overlying Phanerozoic strata, shows a central sector of conspicuous N-S-trending anomalies, a heterogeneous western sector of short-wavelength, high-intensity anomalies, and an eastern sector of low- to moderate-intensity broad-wavelength anomalies. Anomalies in the western and central sectors correlate with Neoproterozoic metavolcanic, metasedimentary, and intrusive rocks of the Arabian shield and are interpreted as delineating extensions of shield-type rocks down-dip beneath Phanerozoic cover. These rocks constitute terranes making up part of a Neoproterozoic orogenic belt that underlies Northeast Africa and western Arabia and it is proposed that their magnetically indicated easternmost extent marks the concealed eastern edge of the orogenic belt in central Arabia. The flat magnetic signature of the eastern sector, not entirely accounted for as an effect of deep burial, may reflect the presence of a crustal block different in character to the terranes of the orogenic belt and, speculatively, may outline a continental block that, according to some tectonic models of the region, collided with the Neoproterozoic terranes and thereby caused their deformation and tectonic accretion.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon
2015-04-01
The NW-SE Irtysh Shear Zone represents a major tectonic boundary in the Central Asian Orogenic Belt, recording the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan orogenic system. The structural evolution and geodynamics of this shear zone is still poorly documented. Here we present new structural data complemented by chronological data in an attempt to unravel the geodynamic significance of the Irtysh Shear Zone in the context of accretion history of the Central Asian Orogenic Belt. Our results show three episodes of deformation for the shear zone. D1 foliation is locally recognized in low strain area and recorded by garnet inclusions, whereas D2 is represented by a sub-horizontal fabric and related NW-SE lineation. D3 is characterized by a transpersonal deformation event, to form a series of NW-SE mylonitic belts with sinistral kinematics, and to overprint D2 fabric forming regional-scale NW-SE upright folds. A paragneiss sample from the shear zone yielded the youngest detrital zircon peaks in the late Carboniferous, placing a maximum age constraint on the deformation, which overlaps in time with the late Paleozoic collision between the Chinese Altai and the intraoceanic arc system of the East Junggar and West Junggar. We interpret three episodes of deformation to represent orogenic thickening (D1), collapse (D2) and thickening (D3) in response to this collisional event. Sinistral shearing (D3) together with the coeval dextral shearing in the Tianshan accommodate eastward extrusion of the Kazakhstan orogenic system during the late Paleozoic amalgamation of the Central Asian Orogenic Belt. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048, 41273012) and a HKU CRCG grant. The work is a contribution of the Joint Laboratory of Chemical Geodynamics between HKU and CAS (Guangzhou Institute of Geochemistry), IGCP 592 and PROCORE France/Hong Kong Joint Research Scheme.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Chen, Xuanhua; Chen, Zhengle
2016-04-01
The Central Asia Orogenic Belt (CAOB) is an important area with significant growth of the crust and metallogeny in the Late Paleozoic. The Balkhash-Junggar tectono-metallogenic belt consists of the Balkhash, the West Junggar, and the East Junggar tectono-metallogenic belts in western part of the Central Asian Orogenic Belt (CAOB). According to the structural geological relationship, the East Junggar, the West Junggar, and the Balkhash belts are considered to be once a continuous E-W-trending tectono-metallogenic belt in Late Carboniferous. The West Junggar belt is featured with NE-trending left-lateral strike-slip faulting tectonic system (WJTS), while the left-lateral strike-slip faults are E-W-trending in the Balkhash belt. The WJTS consists of the Darabut, the Mayile, and the Baerluke faults, and the blocks among them. All these left-lateral strike-slip faults are forming due to the transition of tectonic settings from syn-collisional orogeny to post-collisional extension during the closure of the ocean (the Junggar Sea) in Late Carboniferous, with significant intrusion of batholiths and crust growth occurred in this period. These faults are truncated by the right-lateral strike-slip faults, such as the Chingiz-Junggar fault, and the Central Balkhash fault in Mesozoic. The Balkhash-Junggar tectono-metallogenic belt is important for the occurrence of many well-known super-large and large porphyry Cu-Mo deposits (such as the Kounrad, the Aktogai, the Borly, and the Baogutu deposits), large skarn Cu deposits (in the Sayak ore-filed), large rare metal deposits (such as the East Kounrad, the Zhanet, and the Akshatau deposits), and large gold deposits (such as the Hatu deposit). Zircon U-Pb ages, Re-Os isotopic dating of molybdenites, 40Ar/39Ar thermochronology of hornblendes, muscovites, biotites, and K-feldspars, and zircon and apatite fission track (FT) and (U-Th)/He dating and thermal history modeling, provide a multidisciplinary approach to constrain the whole course thermo-history of the minearl deposits from their formation in the deep to the exhumation in the surface. It reveals the arc-related granitic magmatism and the metallogeneses of skarn Cu, porphyry Cu-Mo, quartz-vein/greisen W-Mo, and orogenic Au in Late Paleozoic, the medium-temperature regional cooling in Late Paleozoic and Early Mesozoic, and the low-temperature exhumation of the deposits in Mesozoic. The timing, combined with geochemistry of granitoids, suggests a transition of tectonic environment from syn-collision and volcanic arc in Late Carboniferous to post-collision extension in Early Permian, and the concentrated mineralization of Cu, Mo, rare metals, and Au during this tectonic transition. The complete metallogenic series for the concentrated mineralization are from skarn and porphyry Cu-Mo deposits to rare metal and gold deposits. Key words: Late Paleozoic; Tectonic evolution; Concentrated mineralization; Balkhash-Junggar tectono-metallogenic belt; Central Asian Orogenic Belt
Structure and Tectonics of the Saint Elias Orogen
NASA Astrophysics Data System (ADS)
Bruhn, R. L.; Pavlis, T. L.; Plafker, G.; Serpa, L.; Picornell, C.
2001-12-01
The Saint Elias orogen of western Canada and southern Alaska is a complex mountain belt formed by transform faulting and subduction between the Pacific and North American plates, and collision of the Yakutat terrane. The orogen is segmented into three regions of different structural style caused by lateral variations in transpression and processes of terrane accretion. Deformation is strain and displacement partitioned throughout the orogen; transcurrent motion is focused along discrete strike-slip faults, and shortening is distributed among reverse faults and folds with sub-horizontal axes. Plunging folds accommodate horizontal shortening and extension in the western part of the orogen. Segment boundaries extend across the Yakutat terrane where they coincide with the courses of huge piedmont glaciers that flow from the topographic backbone of the range onto the coastal plain. The eastern segment is marked by strike-slip faulting along the Fairweather transform fault and by a narrow belt of reverse faulting where the transpression ratio is 0.4:1 shortening to dextral shear. The transpression ratio is 1.7:1 in the central part of the orogen where a broad thin-skinned fold and thrust belt deforms the Yakutat terrane south of the Chugach-Saint Elias (CSE) suture. Dextral shearing is accommodated by strike-slip faulting beneath the Seward and Bagley glaciers in the hanging wall of the CSE suture, and partly by reverse faulting along a structural belt that cuts across the Yakutat terrane along the western edge of the Malaspina Glacier and links to the Pamplona fold and thrust belt offshore. Deformation along this segment boundary is probably also driven by vertical axis bending of the Yakutat microplate during collision. Subduction & accretion in the western segment of the orogen causes re-folding of previously formed structures when they are emplaced into the upper plate of the Alaska-Aleutian mega-thrust. Second phase folds plunge at moderate to steep angles and accretion is marked by only modest amounts of uplift. The structural boundary between the central and western segments of the orogen localizes the course of the Bering piedmont glacier. The structural segments coincide with subdivisions in historical seismicity, particularly ruptures of great to large magnitude earthquakes. The results of this structural study provide the requisite geological framework to design new-generation geophysical monitoring systems to study active deformation within the orogen.
The eastern Central Asian Orogenic Belt: formation and evolution
NASA Astrophysics Data System (ADS)
Xu, Bei; Xu, Wenliang
2017-08-01
The Central Asian Orogenic Belt (CAOB) extends from the northern Eurasian continent in the west via Mongolia, Inner Mongolia and northeast part of China to the Russia Far East in the east. It is characterized by complex trench-arc-basin subduction system, exotic terrane (microcontinents) accretion, massive generation of juvenile crust during the Neoproterozoic-Phanerozoic (e.g., Jahn et al., 2000, 2004; Sengör et al., 1993). A lot of papers about formation and evolution of the CAOB have been published and new field observations and geochemical data for key areas of the CAOB challenge to previous assessments. Several areas previously defined as juvenile are now shown to have mixed crustal compositions. For example, Kröner et al. (2014, in press) estimated that the distribution of various crustal provinces is truly juvenile crustal material ca. 20%, mixed crust ca. 30%, old crust ca. 50%,respectively, in the CAOB, similar to those in other accretionary orogens through Earth history. A two-stage model for the evolution of the CAOB has been suggested based on recent data from the Eastern Tianshan and Beishan (Gao et al., 2011; Su et al., 2011; Chen et al., 2016; Wang et al., 2017), which suggests the process of the formation and evolution of the CAOB includes closure of the Paleo Asian ocean (PAO), formation of orogenic belt before the late Paleozoic and crustal extension and magmatism resulted from plume upon the young orogenic belt after the late Paleozoic. This new model changes previous concept that the CAOB developed through the Paleozoic and is supported by recent researches on the eastern CAOB.
NASA Astrophysics Data System (ADS)
Vansutre, Sandeep; Hari, K. R.
2010-11-01
The Central Indian collage incorporates the following major granulite belts: (1) the Balaghat-Bhandara Granulite Belt (BBG), (2) the Ramakona-Katangi Granulite Belt (RKG), (3) the Chhatuabhavna Granulite (CBG) of Bilaspur-Raigarh Belt, (4) the Makrohar Granulite Belt (MGB) of Mahakoshal supracrustals, (5) the Kondagaon Granulite Belt (KGGB), (6) the Bhopalpatnam Granulite Belt (BGB), (7) the Konta Granulite Belt (KTGB) and (8) the Karimnagar Granulite Belt (KNGB) of the East Dharwar Craton (EDC). We briefly synthesize the general geologic, petrologic and geochronologic features of these belts and explain the Precambrian crustal evolution in Central India. On the basis of the available data, a collisional relationship between Bastar craton and the EDC during the Paleo-Mesoproterozoic is reiterated as proposed by the earlier workers. The tectonic evolution of only few of the orogenic belts (BGB in particular) of Central India is related to Columbia.
Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie
Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.
1994-01-01
New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.
Duplex thrusting in the South Dabashan arcuate belt, central China
NASA Astrophysics Data System (ADS)
Li, Wangpeng; Liu, Shaofeng; Wang, Yi; Qian, Tao; Gao, Tangjun
2017-10-01
Due to later tectonic superpositioning and reworking, the South Dabashan arcuate belt extending NW to SE has experienced several episodes of deformation. The earlier deformational style and formation mechanism of this belt remain controversial. Seismic interpretations and fieldwork show that the curved orogen can be divided into three sub-belts perpendicular to the strike of the orogen, the imbricate thrust fault belt, the detachment fold belt and the frontal belt from NE to SW. The imbricate thrust fault belt is characterized by a series of SW-directed thrust faults and nappes. Two regional detachment layers at different depths have been recognized in the detachment fold and frontal belts, and these detachment layers divide the sub-belts into three structural layers: the lower, middle, and upper structural layers. The middle structural layer is characterized by a passive roof duplex structure, which is composed of a roof thrust at the top of the Sinian units, a floor thrust in the upper Lower Triassic units, and horses in between. Apatite fission track dating results and regional structural analyses indicate that the imbricate thrust fault belt may have formed during the latest Early Cretaceous to earliest Paleogene and that the detachment fold belt may have formed during the latest Late Cretaceous to earliest Neogene. Our findings provide important reference values for researching intra-continental orogenic and deformation mechanisms in foreland fold-thrust belts.
Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China
He, Chuansong; Dong, Shuwen; Santosh, M.; Chen, Xuanhua
2013-01-01
South China, composed of the Yangtze and Cathaysia Blocks and the intervening Jiangnan orogenic belt, has been central to the debate on the tectonic evolution of East Asia. Here we investigate the crustal structure and composition of South China from seismic data employing the H-k stacking technique. Our results show that the composition and seismic structure of the crust in the Jiangnan orogenic belt are identical to those of the Cathaysia Block. Our data reveal a distinct contrast in the crustal structure and composition between the two flanks of the Jiujiang-Shitai buried fault. We propose that the Jiujiang-Shitai buried fault defines a geosuture between the Yangtze and Cathaysia Blocks, and that the felsic lower crust of the Cathaysia Block and the Jiangnan orogenic belt may represent fragments derived from the Gondwana supercontinent. PMID:23857499
NASA Astrophysics Data System (ADS)
Wu, H.; Chen, J.
2017-12-01
The Central Qiangtang Orogenic Belt (CQOB) was formed through Triassic continental collision between the Southern and Northern Qiangtang terranes. Numerous granitic intrusions occur along the CQOB, forming a Late Triassic granitic belt that stretches 1000 km from west to east. This Central Qiangtang granitic belt was believed to constitute most of the CQOB. Therefore, the CQOB thus provides a typical composite orogen for the study of relationships between granitoid magmatism and orogenic processes. Recently, many studies have been carried out, and the close relationship of the magmatic belt with the evolutionary history of the CQOB is well established. Late Triassic intrusive rocks are widely exposed in the Riwanchaka area of Central Qiangtang, northern Tibet. In this study, new U-Pb zircon ages reveal that Late Triassic magmatism in Riwanchaka took place at ca 225-205 Ma, coeval with exhumation of the metamorphic rocks in Central Qiangtang. Our new and previously published data enable us to correlate the subduction-related volcanic arc rocks in the Riwanchaka area to a post-collisional extension setting related to slab break-off during northward subduction of the Paleo-Tethys Ocean seafloor. Geochemical characteristics suggested that the samples from CQOB can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios and (La/Yb)N (chondrite-normalized) ratios. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The crustal structure and evolution of the CQOB are considered on the basis of available data and variations in Sr/Y, La/Yb, and Hf isotopic ratios. Temporal geochemical and Hf isotopic changes, diagnostic of crustal thickening, indicate that the CQOB was greatly thickened (>50 km) within a short timespan ( 20 Myr). Our new data, together with recently published data, lead us to propose that basaltic underplating caused by slab break-off, contributed significantly to crustal thickening of the CQOB.
Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du
2015-01-01
The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100,000 km2 Jinsajiang tract and the 300,000 km2 Tethyan-Gangdese tract. Assessment participants evaluated applicable grade and tonnage models and estimated numbers of undiscovered deposits at different confidence levels for each permissive tract. The estimates were then combined with the selected grade and tonnage models using Monte Carlo simulations to generate probabilistic estimates of undiscovered resources. Additional resources in extensions of deposits with identified resources were not specifically evaluated. Assessment results, presented in tables and graphs, show amounts of metal and rock in undiscovered deposits at selected quantile levels of probability (0.95, 0.9, 0.5, 0.1, and 0.05 confidence levels), as well as the arithmetic mean and associated standard deviations and variances for each tract. This assessment estimated a total of 97 undiscovered porphyry copper deposits within the assessed permissive tracts. This represents nearly five times the 20 known deposits. Predicted mean resources that could be associated with these undiscovered deposits are about 370,000,000 metric tons (t) of copper, 10,000 t of gold, 7,700,000 t of molybdenum, and 120,000 t of silver. The assessment area is estimated to contain about five times as much copper in undiscovered deposits as has been identified to date. This report includes a summary of the data used in the assessment, a brief overview of the geologic framework of the area, descriptions of permissive tracts and known deposits, maps, and tables. A geographic information system database that accompanies this report includes the tract boundaries and known porphyry copper deposits, significant prospects, and prospects. Assessments of overlapping younger rocks and adjacent areas are included in separate reports available on-line at http://minerals.usgs.gov/global/.
The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China
NASA Astrophysics Data System (ADS)
Wu, Fu-Yuan; Zhao, Guo-Chun; Sun, De-You; Wilde, Simon A.; Yang, Jin-Hui
2007-05-01
The Hulan Group of central Jilin Province, northeastern (NE) China, consists of felsic volcanic and sedimentary rocks that underwent sub-greenschist to amphibolite facies metamorphism and multiple phases of deformation during formation of the Central Asian Orogenic Belt. Young Nd model ages of ˜1100 Ma obtained in this study do not support earlier models that the Hulan Group was either rifted from the North China Craton to the south or from the Jiamusi Block to the north, since both these blocks have much older Nd model ages. Detrital zircon U-Pb ages from a meta-sedimentary rock of the Hulan Group define a maximum age of deposition of 287 ± 6 Ma, not Early Palaeozoic as previously believed. Rb-Sr mineral isochron data indicate that metamorphism of the Hulan Group occurred at ˜250 Ma. This conclusion is further supported by an age of 248 ± 4 Ma for the Dayushan granite, which intruded the Hulan Group. These new isotopic data, together with evaluation of the regional geology, indicate that final oceanic closure in the Chinese segment of the Central Asian Orogenic Belt took place in the Late Permian. The Hulan area is located along the Solonker-Xra Moron-Changchun suture that extends from Inner Mongolia across to central Jilin Province. It is this zone that marks the final ocean closure, resulting in the amalgamation of the North China and Siberian cratons.
The Tintina Gold Belt - A global perspective
Goldfarb, Richard J.; Hart, Craig J.R.; Miller, Marti L.; Miller, Lance D.; Farmer, G. Lang; Groves, David I.; Tucker, Terry L.; Smith, Moira T.
2000-01-01
The so-called Tintina Gold Belt extends for more than 1000 km along the length of the northern North American Cordillera. Middle to Late Cretaceous Au deposits within the belt have various similar characteristics, among which are a spatial and temporal association with magmatism; Bi-W-Te signatures in deposits hosted by granitod stocks and As-Sb signatures where hosted by sedimentary rocks and dyke systems; and δ180 values consistently > 12 per mil for Au-bearing quartz. Nevertheless significant differences in structural styles, levels of deposit emplacement, ore-fluid chemistry, and Au grades suggest that the characteristics represent a broad range of deposit types. Many of these are best classified as orogenic Au deposits in the Yukon-Tanana terrane, as epithermal and porphyry-style Au deposits in the Kuskokwim region, and as Au-bearing, granite-related veins and stockworks, replacements, and skarns, as well as associated polymetallic lodes, in central Yukon. The diverse types of Au deposits and associated plutons of the Tintina Gold Belt collectively define a 45-m.y.-long period of arc magmatism that migrated northwesterly, for about 1000 km, across the active collisional margin of Cretaceous northwestern North America. The initiation of fluid flow and plutonism in Albian time seems to correlate with the onset of oblique subduction and dextral strike-slip on the Denali-Farewell, Tintina-Kaltag, and related fault systems. Initial Au-vein formation and subduction-related magmatism at about 115-110 Ma (e.g., including the Goodpaster and Fortymile districts), within the seaward side of the Yukon-Tanana terrane, correlate with the arrival of the Wrangellia superterrane off the continental margin. Dextral translation of the allochthonous Wrangellia block was associated with the migration of the thermal pulse to the northwest at about 95-90 Ma. Orogenic (or so called mesotherrnal) and granitoid-related Au deposits formed across the width of the Yukon-Tanana terrane (e.g., Fort Knox, True North, Ryan Lode, Kantishna district) and inland into the passive-margin rocks of the Selwyn basin ( e.g., Scheelite Dome, Brewery Creek, Dublin Gulch), respectively. By 70 Ma, the arc had migrated to the vicinity of present-day southwestern Alaska, where it was associated with the formation of additional orogenic Au deposits (e.g., Willow Creek district) and, within still-preserved shallow crustal levels, epithermal Au systems (e.g., Donlin Creek). The Au-bearing deposits of the Tintina Gold Belt are typical of those found in most well-preserved, moderate- to high-temperature Phanerozoic collisional orogens. Around the circum-Pacific region, these would include large areas of Mesozoic tectonism along the Cordilleran orogen, throughout the Russian Far East, and along the margins of the North China craton. Favorable terrain for such Au belts of Paleozoic age worldwide include the active Gondwana margins (e.g., Tasman orogenic system, northern Africa, Telfer district), and the northern margins ( e.g., Caledonian Kazakhstania, Uralian orogen, Baikal orogen, Tian Shan orogenic system) and western margins ( e.g., southern European massifs) to the Paleo-Tethys Ocean. Gold lodes in all of the Phanerozoic belts are dominated by orogenic Au-deposit types; other deposit types are concentrated where relatively shallow levels to the orogens are locally preserved. A significant percentage of the lode-gold resource in many areas was lost to placer accumulation that began forming approximately 100 m.y. after hypogene ore formation, except where continent-continent collision "cratonized" highly mineralized terranes in central Asia.
Deformation during terrane accretion in the Saint Elias orogen, Alaska
Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.
2004-01-01
The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from the topographic backbone of the Saint Elias Mountains onto the coastal plain. The Malaspina fault-Pamplona structural zone separates the eastern and central parts of the orogen and is marked by reverse faulting and folding. Onshore, most of this boundary is buried beneath the western or "Agassiz" lobe of the Malaspina piedmont glacier. The boundary between the central fold-and-thrust belt and western zone of superimposed folding lies beneath the middle and lower course of the Bering piedmont glacier. ?? 2004 Geological Society of America.
NASA Astrophysics Data System (ADS)
Wu, Yu; Chen, Chih-Tung; Lee, Jian-Cheng; Shyu, J. Bruce H.
2017-04-01
The fate of passive continental margin in collisional orogens is crucial in understanding tectonic evolution of mountain belts. The active arc-continent collision of Taiwan is considered as a model case in studying mountain building processes, and largely consists of deformed margin basement and cover series. Among the whole orogeny belt, the slate belt of the Hsuehshan Range (HR) is a prominent large-scale pop-up structural on the prowedge part of the orogen, and is composed of metamorphosed Eocene to Miocene sediments which experienced only the Neogene Taiwan orogeny after diagenesis in margin graben. Characterizing the metamorphic history of the HR is essential for reconstructing its geological evolution during the mountain building processes. However, previous studies were mostly focused on northern and central HR, structural investigation coupled with metamorphic documentation in the southern part of HR, which is the most active part of the orogeny belt, is therefore targeted in this work. Since carbonaceous material is common in pelitic protolith of HR slates, the Raman spectrum of carbonaceous material (RSCM) measuring the rock peak temperature is chosen for quantitative thermal metamorphic documentation. In this study, we reconstruct a geological structural profile in western central Taiwan across the prowedge part of the mountain belt containing the southern HR by combining the surface geological data, well log records and published seismic reflection profiles. Although most of the existing data are concentrated in the fold-and-thrust belt, they are now reinforced by new field structural measurements and RSCM samples in the southern HR. In total 27 RSCM samples were collected along 2 transects perpendicular to the average strike with a dense interval about 2 km. The results allow us to map peak temperature distribution across southern HR, and provide new constraints for structural profile reconstruction and reappraisal of the structural evolution of the HR and neighboring fold-and-thrust belt. As shown in the previous thermal metamorphic investigation, we expected that southern HR strata acquired highest temperature during its burial stage than the orogenic stage like their central HR counterparts, thus experiencing mostly retrograde metamorphism in the entire mountain building processes.
Mao, J.; Qiu, Yumin; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.
2002-01-01
Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river systems that flow south from the lode-bearing central zone. Carlin-like gold deposits have only been identified during the last decade in the southern zone of the western Qinling and in the northeastern corner of the Songpan-Ganzi basin. The deposits mainly contain micron-diameter gold in arsenical pyrite; are characterized by the common occurence of cinnabar, stibnite, realgar, and orpiment; exhibit strong silicification, carbonatization, pyritization, and decalcification dissolution textures; and are structurally controlled. The lack of reactive host lithologies may have prevented development of large (> 100 tones of gold), stratigraphically-controlled orebodies, which are typical of the Carlin deposits in the western USA. These deposits are hosted by Triassic turbidities and shallow-water carbonates, and an early Paleozoic inlier in the Songpan-Ganzi basin that extends in an east-west belt for about 300 km. Rather than true "Carlin" deposits, these Carlin-like deposits may be some type of shallow-crustal (i.e., epithermal) hybrid with features intermediate to Nevada-style Carlin deposits and the orogenic gold deposits to the immediate north. These Carlin-like deposits also overlap in age with the early Mesozoic orogenic gold deposits and, therefore, also formed during the final stages of collision between the cratons and intermediate basin closure.
The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China
NASA Astrophysics Data System (ADS)
Xu, Bei; Zhao, Pan; Wang, Yanyang; Liao, Wen; Luo, Zhiwen; Bao, Qingzhong; Zhou, Yongheng
2015-01-01
A new tectonic division of the Xing'an-Mongolia orogenic belt (XMOB) in north China has been presented according to our research and a lot of new data of tectonics, geochronology and geochemistry. Four blocks and four sutures have been recognized in the XMOB, including the Erguna (EB), Xing'an-Airgin Sum (XAB), Songliao-Hunshandake (SHB), and Jiamusi (JB), and Xinlin-Xiguitu (XXS), Xilinhot-Heihe (XHS), Mudanjiang (MS) and Ondor Sum-Yongji sutures (OYS). The framework of the XMOB is characterized by a tectonic collage of the blocks and orogenic belts between them. Different Precambrian basements have been found in the blocks, including the Neoproterozoic metamorphic rocks and plutons in the EB, the Neoproterozoic metamorphic rocks in western and eastern of segments of the XAB, Mesoproterozoic and Neoproterozoic metamorphic rocks in middle segments of the XAB, respectively, the Neoproterozoic metamorphic rocks and Mesoproterozoic volcanic rocks and plutons in the SHB, and Neoproterozoic metamorphic rocks in the JB. The XXS resulted from a northwestward subduction of the XAB beneath the EB during the Cambrian, which was followed by the forming of the XHS and OYS in the northwest and south margins of the SHB in the Silurian, respectively. The MS was caused by a westward subduction of the JB beneath the east margin of the SHB during the middle Devonian. The three Cambrian, Silurian and middle Devonian events indicate that the XMOB belongs to a pre-middle Devonian multiple orogenic belt in the Central Asian Orogenic Belt (CAOB). Forming of the XMOB suggests that the southeast part of the Paleo Asian Ocean closed before the middle Devonian.
Earthquake activity along the Himalayan orogenic belt
NASA Astrophysics Data System (ADS)
Bai, L.; Mori, J. J.
2017-12-01
The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.
NASA Astrophysics Data System (ADS)
Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua
2015-05-01
Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a Carboniferous back-arc basin formed as a result of slab rollback ascribed to northward subduction of the Niujuanzi oceanic lithosphere. Subduction of this back-arc basin probably took place in the early Carboniferous, generating the widespread arc-related granitoids including adakitic plutons, and overlapping earlier arc assemblages. The Beishan orogenic collage is not the eastern extension of the Chinese Central Tianshan, but it was generated by the same north-dipping subduction system separated by the Xingxingxia transform fault, as revealed by available regional data. This contribution implies that in addition to fore-arc accretion, back-arc accretion ascribed to opening and closure of a back-arc basin may also have been a common process in the construction of the CAOB, resembling that of the Mesozoic-Cenozoic subduction-accretion system in the SW pacific.
Tectonic evolution of the Black Sea orogene belt and the history of opening of the Black Sea basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uesuemezsoy, S.
1988-08-01
The Black Sea basin is surrounded by successive orogenic belts of Hercynian, Cimmerian, and Alpine ages. The Rhodope, Thracian, western Pontian, and Transcaucasian (RTPT) blocks of Precambrian age were involved by the circum-Black Sea orogene belts. The Hercynian orogene was documented in the Balkanide, Great Caucasian, Kriastide, southern Pontian, and Transcaucasian belts. The Cimmerian orogene extended north and south of the Black Sea. The southern Cimmerian orogene was represented by the circum-Rhodope and East Thracian-Strandja-Kuere belts. The northern Cimmerian orogene belt extended along the Dobruca-Crimean and southern slope belts. Following the demise of the Black Sea Cimmerian basin, the northernmostmore » oceanic branch extending from Nish-Trajan through the present Black Sea to the intra-Transcaucasian basin, was opened within the Hercynian and Cimmerian consolidated terrain in the Late Jurassic. The other oceanic branch, extending from Izmir-Ankara through circum Kirsehir to various basins, was opened within the Paleotethyan collision belt, considered to be eastern extension of the Pindus basin. The Nish-Trajan sector of the northernmost basin was closed in the middle Cretaceous, and the Moesian platform re-fused to the Getic-Serbo-Macedonian-Rhodope belt. The easternmost extension of the intra-Transcaucasian basin disappeared in the Late Cretaceous. Consequently, the northernmost oceanic branch was reduced to the present Black Sea basin.« less
Bradshaw, J.D.
2007-01-01
Correlation of the Cambrian Delamerian Orogen of Australia and Ross Orogen of the Transantarctic Mountains widely accepted but the extension of the adjacent Lachlan Orogen into Antarctica is controversial. Outside the main Ross-Delamerian belt, evidence of this orogeny is preserved at Mt Murphy in Marie Byrd Land and the in Takaka Terrane of New Zealand. In all pre-break- configurations of the SW Pacific, these two areas are far removed from the Ross-Delamerian belt. Evidence from conglomerates in the Takaka Terrane, however, shows that in Late Cambrian times it was adjacent to the Ross Orogen. This indicates major tectonic displacements within Gondwana after the Cambrian and before break-up. The Lachlan Orogen formed in an extensional belt in a supra-subduction zone setting and the Cambrian rocks of Marie Byrd Land and New Zealand are interpreted as parts of a rifted continental ribbon on the outboard side of the Lachlan belt.
Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying
2018-03-01
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.
Robinson, D.M.; Pearson, O.N.; ,
2006-01-01
South-vergent channel flow from beneath the Tibetan Plateau may have played an important role in forming the Himalaya. The possibility that Greater Himalayan rocks currently exposed in the Himalayan Fold-Thrust Belt flowed at mid-crustal depths before being exhumed is intriguing, and may suggest a natural link between orogenic processes operating under the Tibetan Plateau and in the fold-thrust belt. Conceptual and numeric models for the Himalayan-Tibetan Orogen currently reported in the literature do an admirable job of replicating many of the observable primary geological features and relationships. However, detailed observations from Greater Himalayan rocks exposed in the fold-thrust belt's external klippen, and from Lesser Himalayan rocks in the proximal footwall of the Main Central Thrust, suggest that since Early Miocene time, it may be more appropriate to model the evolution of the fold-thrust belt using the critical taper paradigm. This does not exclude the possibility that channel flow and linked extrusion of Greater Himalayan rocks may have occurred, but it places important boundaries on a permissible time frame during which these processes may have operated. ?? The Geological Society of London 2006.
NASA Astrophysics Data System (ADS)
Kounov, Alexandre; Gerdjikov, Ianko; Vangelov, Dian; Balkanska, Eleonora; Lazarova, Anna; Georgiev, Stoyan; Blunt, Edward; Stockli, Daniel
2017-11-01
The Balkan fold-thrust belt, exposed in Bulgaria and north-east Serbia, is part of the north-east vergent segment of the bi-vergent Eastern Mediterranean Alpine orogen. It was formed during two distinct compressional stages; the first one lasted from the Middle Jurassic to the Early Cretaceous and the second from Late Cretaceous to the Paleogene. Although the compressional tectonic evolution of the Balkan fold-thrust belt since the Middle Jurassic and during most of the Mesozoic is relatively well studied, the final exhumation of the rocks of the belt during the Cenozoic has remained poorly understood. Here, we present the first thermochronological constraints, based on fission-track and [U-Th-(Sm)]/He analysis, showing that along the central part of the belt syn- to post-orogenic extension could have started as early as the middle Eocene. Low-temperature thermochronological analysis of samples collected from three areas reveals at least two phases of increased cooling and exhumation during the Cenozoic. The first exhumation phase took place between 44 and 30 Ma and appears to be related to the syn- to post-orogenic collapse coeval with the earliest Cenozoic extensional stage observed across the southern Balkan Peninsula. A period of relative quiescence (between 30 and 25 Ma) is followed by the next cooling stage, between 25 and 20 Ma, which appears to be related to late Oligocene to early Miocene crustal extension across the Balkan Peninsula. Extension accommodated by the late Miocene to Recent age Sub-Balkan Graben System does not appear to have produced exhumation of rocks from beneath 2-4 km depth, as it was not detected by the low-temperature thermochronological methods applied in this study.
Linking magmatism with collision in an accretionary orogen
Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian
2016-01-01
A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207
Shear fabrics reveal orogen-parallel deformations, NW Lesser Garhwal Himalaya, Uttarakhand, India
NASA Astrophysics Data System (ADS)
Biswas, T.; Bose, N.; Mukherjee, S.
2017-12-01
Shear deformation along the Himalayan belt is poorly understood unlike that across the orogen. Field observations and structural analysis along Bhagirathi river section along the National Highway 34 reveals NW Lesser Himalaya (Garhwal region, India) suffered both compression and extension parallel to the orogenic belt and thus forms a unique venue of great structural and tectonic interest. Meso-scale ductile- and brittle shear fabrics, such as S-C, C-P, Y-P, Y-S; are emphasized describing such deformations. Extensional shear fabric strikes N43oE and compressional shear fabrics N39.5oE, which are at a low-angle with the orogenic trend. Our study reviews orogen parallel deformation, both extension as well as compression, taking examples from other part of the world (e.g., Central Andes, N Apennines and SW Alps) and from other terrains in the Himalaya. Proposed models are evaluated and compared with the study area. The results shows that the pre-existing remnant structures (e.g., the Delhi-Haridwar ridge) on the under-thrusting Indian shield/plate plays a vital role in modifying thin-skinned tectonics along with migration of the eastward extrusion of the Tibetian plateau (hinterland deformation) into the Himalayan foreland.
NASA Astrophysics Data System (ADS)
Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu
2015-11-01
The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore-forming fluids were exsolved from the granitic melts in shallow-crustal magma chambers, resulting in the formation of the Mo deposits of the Luanchuan metallogenic belt. This model may account for the widespread late Mesozoic Mo deposits of eastern China.
NASA Astrophysics Data System (ADS)
Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi
2017-09-01
Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late Jurassic and Early Cretaceous, respectively, for granitic magmatism. While partial melting in the Late Triassic is responsible for syn-exhumation magmatism, the Late Jurassic and Early Cretaceous granitoids are independent of the continental collision and thus belong to postcollisional magmatism.
Basement thrust sheets in the Clearwater orogenic zone, central Idaho and western Montana
NASA Astrophysics Data System (ADS)
Skipp, Betty
1987-03-01
The Clearwater orogenic zone in central Idaho and western Montana contains at least two major northeast-directed Cordilleran thrust plates of Early Proterozoic metasedimentary and metaigneous rocks that overrode previously folded Middle Proterozoic rocks of the Belt basin in Cretaceous time. The northeastward migration of the resultant thickened wedge of crustal material combined with Cretaceous subduction along the western continental margin produced a younger northern Bitterroot lobe of the Idaho batholith relative to an older southern Atlanta lobe. Eocene extensional unroofing and erosion of the Bitterroot lobe has exposed the roots of the thick Cordilleran thrust sheets.
NASA Astrophysics Data System (ADS)
Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen
2018-03-01
The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently hybridized by the mantle peridotite. On the basis of our data and combined with previous data, we conclude that a Silurian-early Devonian slab window model accounts for all geological records in the western segment of the Central Beishan. We further propose that magmatic events associated with a slab window played an important role in crustal growth of the Central Asian Orogenic Belt.
NASA Astrophysics Data System (ADS)
Avigad, D.
2007-12-01
The Aegean Sea, formed via extensional tectonics and floored by an attenuated continental crust, overprinted and dissected a once-continuous Alpine orogenic belt that stretched from mainland Greece to Anatolia. The Cycladic islands, in the central Aegean region, mainly comprise HP-LT metamorphic rocks (and their greenschist-facies derivatives) whose P-T conditions range at 12-15 kbars and 450-500 °C, straddling the blueschist-eclogite facies boundary. The protoliths are supracrustals metavolcanics and volcanoclastics alongside thick marble units that were deposited on the Pindos basin margin. Locally, such as on Syros and Sifnos, kilometer-thick, blueschist and eclogite-facies rocks are preserved intact allowing to explore the bottom of the orogenic edifice. 40Ar/39Ar ages of ~45Ma have been repeatedly obtained on Si rich phengites assessing the Eocene timing of the high-pressure metamorphism and crustal thickening. Upon decompression, the high- pressure rocks were overprinted in the greenschist-facies but locally as on Naxos migmatites were formed on the expense of eclogites at mid-crustal depth, at ~20 Ma. A series of granitoids penetrated the exhumed rock units during the Middle Miocene (until ~10Ma) in relation to whole-lithosphere back-arc extension.//The Cycladic blueschist belt, in the core of the extending Aegean region, is a suitable site to analyze the interplay between Mediterranean-type back-arc extension and the exhumation of the high-pressure metamorphic rocks. The Cycladic blueschist unit is sandwiched between lower pressure rocks: it is topped by greenschist- and amphibolite facies metamorphic rocks comprising metavolcanics interleaved with metamorphosed ultrabasic slices. The tectonic contact is a low-angle extensional detachment of significant lateral dimension and kinematic markers usually portray top-to-the-North sense of motion. Being stitched by mid-Miocene granitoids this is the oldest extensional discontinuity observed in the central Aegean. Where the original architecture of the Alpine orogenic belt was not severely obliterated, such as on Evia, a basal unit (Almyropotamos window) is exposed below the Cycladic blueschists unit. Within the basal unit, the presence of relict glaucophane and Si-rich phengite attest for a LT-HP metamorphism, but carbonates still preserve Lutetian nummullites indicating the basal unit metamorphism outlasted the Middle Eocene as well as cooling of the overlying Cycladic blueschists. The Cycladic blueschist unit is thus allochtonous on a regional scale: it was accreted into the orogenic wedge sometimes after the mid-Eocene. The time interval between the Eocene peak of eclogite metamorphism and the onset of back-arc extension in the Oligo-Miocene involved thrusting and contraction. In the central Aegean, the entire inventory of extensional structures operated subsequently to the emplacement of the Cycladic blueschist unit onto lower pressure sequences implying whole-lithosphere back-arc extension overprinted an Alpine orogen containing eclogites at relatively shallow structural levels. This resembles the mode of occurrence of eclogites in other mountain belts where back-arc extension played no role. Remarkably, despite significant crustal stretching only minor lateral metamorphic breaks can be identified in the Cyclades and the 12-15 kbar level of the former orogen are pervasively exposed over much of the archipelago.
NASA Astrophysics Data System (ADS)
Saktura, Wanchese M.; Buckman, Solomon; Nutman, Allen P.; Belousova, Elena A.; Yan, Zhen; Aitchison, Jonathan C.
2017-12-01
The Gubaoquan eclogite occurs in the Paleozoic Beishan Orogen of NW China. Previously it has been interpreted as a fragment of subducted oceanic crust that was emplaced as a mélange within continental rocks. Contrary to this, we demonstrate that the Gubaoquan eclogite protolith was a Neoproterozoic basic dyke/sill which intruded into Proterozoic continental rocks. The SHRIMP Usbnd Pb zircon dating of the metamorphic rims of the Gubaoquan eclogite yields an age 466 ± 27 Ma. Subdued heavy rare earth element abundances and lack of negative Eu anomalies of the metamorphic zircon domains confirm that this age represents eclogite facies metamorphism. The host augen orthogneiss has a Usbnd Pb zircon age of 920 ± 14 Ma, representing the timing of crystallization of the granitic protolith. A leucogranitic vein which intrudes the eclogite has a Usbnd Pb zircon age of 424 ± 8.6 Ma. This granitic vein marks the end of high-grade metamorphism in this area. The overcomplication of tectonic history of the Beishan Orogen is partially caused by inconsistent classifications and nomenclature of the same rock units and arbitrary subdivisions of Precambrian blocks as individual microcontinents. In an attempt to resolve this, we propose a simpler model that involves the partial subduction of the northern passive margin of the Dunhuang Block beneath the active continental margin developing on the Mazongshan-Hanshan Block to the north. Ocean closure and continental collision during the Late Ordovician resulted in continental thickening and eclogite facies metamorphism recorded by the mafic dykes/sills (now the Gubaoquan eclogite). In the light of the new data, the tectonothermal evolution of the Beishan Orogen is reviewed and integrated with the evolution of the Central Asian Orogenic Belt.
NASA Astrophysics Data System (ADS)
Xu, Daili; Huang, Wei; Zhang, Letian
2017-03-01
The West Qinling belt is the westward extensioin of the Qinling-Dabie-Sulu orogen in central China. It links the Kunlun and Qilian orogens to the west and the Songpan-Ganze belt to the south, making it an important tectonics syntaxis in China. According to the collection and analysis of the data of West Qinling Mountains gold deposit metallogenic chronology, the gold deposits in this area can be divided into five groups by time: 225-245 Ma, 220-190 Ma, 170 Ma±, 135-110 Ma, 75-45 Ma. The formation time is related to the geological process at that time. The relationship between the formation of gold deposit and geological structure can be explored by the research on the present geological structures. According to the regional tectonic evolution and magmatic activity, the gold deposits are divided into four metallogenic epoches: from the end of the Indo-Chinese epoch to the early Yanshanian (245-225 Ma), is one of the initial stages of gold mineralization; the early and the middle Yanshanian (220-190 Ma, 170 Ma±), is the main forming time of the gold mineralization in the West Qinling; the late Yanshanian (135-110 Ma), is the superimposed mineralization stage; at last, the effect of Himalayan hydrothermal activity to the gold deposits. Under the support of three projects naemed " the research on the conductivity of the lithosphere of the Central Orogenic in China ", " the MT array observation of the intersection area of COC(Central Orogen in China) and the North-South seismic belt ", " the experiment research of MT standard network observation in the area of Qinghai-Tibetan Plateau and the North-China " (Sinoprobe-01-02), we collected massive magnetotellurics data for futher study of the present geological strusctures to discess the relationship between gold deposites and geotectonic in West Qinling.
NASA Astrophysics Data System (ADS)
Yang, Fuquan; Geng, Xinxia; Wang, Rui; Zhang, Zhixin; Guo, Xuji
2018-06-01
The Altay Mountains within the Xinjiang region of northwestern China hosts major metallic ore deposits. Here we review the geological characteristics, metallogenic features and tectonic settings of these deposits. The metallic ore deposits in the Altay Mountains occur mainly within four regions: North Altay, Central Altay, South Altay and Erqis. We recognize seven types of metallic ore deposits in the Altay Mountains: VMS, submarine volcanogenic iron, magmatic, skarn, pegmatite, hydrothermal vein (Cu-Zn, Fe) and orogenic gold. Among these types, the VMS, pegmatite, orogenic gold and skarn deposits are the most common. Most of the rare metal pegmatite deposits are distributed in Central Altay, with only a few in South Altay. The VMS, submarine volcanogenic type iron and skarn-type deposits are distributed in South Altay, whereas the orogenic-type gold deposits are distributed in the Erqis Fault belt. The hydrothermal vein-type deposits occur in the Erqis Fault belt and Chonghu'er Basin in South Altay. Magmatic-type deposits are mostly in the Erqis Fault belt and Central Altay. Based on isotopic age data, the VMS, submarine volcanogenic-type Fe and skarn-type Cu, Pb, Zn, Fe mineralization occurred during Early-Middle Devonian (∼410-377 Ma), orogenic-type Au, magmatic-type Cu-Ni, and a small number of skarn-type Fe, hydrothermal vein-type Cu-Zn, pegmatite-type rare-metal deposits in Early-Middle Permian (293-261 Ma), pegmatite-type rare-metal deposits, few skarn-type Fe deposit in Early-Middle Triassic (248-232 Ma), and dominantly represented by pegmatite-type rare-metal deposits in Late Triassic-Early Jurassic (223-180 Ma). The metallic ore deposits in the Altay Mountains formed in various tectonic settings, such as the Early-Middle Devonian continental arc and oceanic island arc, Early-Middle Permian post-collisional extensional setting, and Triassic-Early Jurassic intracontinental setting.
NASA Astrophysics Data System (ADS)
Harlaux, Matthieu; Romer, Rolf L.; Mercadier, Julien; Morlot, Christophe; Marignac, Christian; Cuney, Michel
2018-01-01
We present U-Pb thermal ionization mass spectrometer (TIMS) ages of wolframite from several granite-related hydrothermal W±Sn deposits in the French Massif Central (FMC) located in the internal zone of the Variscan belt. The studied wolframite samples are characterized by variable U and Pb contents (typically <10 ppm) and show significant variations in their radiogenic Pb isotopic compositions. The obtained U-Pb ages define three distinct geochronological groups related to three contrasting geodynamic settings: (i) Visean to Namurian mineralization (333-327 Ma) coeval with syn-orogenic compression and emplacement of large peraluminous leucogranites (ca. 335-325 Ma), (ii) Namurian to Westphalian mineralization (317-315 Ma) synchronous with the onset of late-orogenic extension and emplacement of syn-tectonic granites (ca. 315-310 Ma) and (iii) Stephanian to Permian mineralization (298-274 Ma) formed during post-orogenic extension contemporaneous with the Permian volcanism in the entire Variscan belt. The youngest ages (276-274 Ma) likely reflect the reopening of the U-Pb isotopic system after wolframite crystallization and may correspond to late hydrothermal alteration (e.g. ferberitization). Our results demonstrate that W(±Sn) mineralization in the FMC formed during at least three distinct hydrothermal events in different tectono-metamorphic settings over a time range of 40 Ma.
Penokean tectonics along a promontory-embayment margin in east-central Minnesota
Chandler, V.W.; Boerboom, Terrence; Jirsa, M.A.
2007-01-01
Recent geologic investigations in east-central Minnesota have utilized geophysical data, test drilling, and high-resolution geochronologic dating to produce a significantly improved map of a poorly exposed part of the 1880-1830 Ma Penokean orogen. These investigations have elucidated major changes in the structure of the orogen, as compared to its counterparts in northern Michigan and northwestern Wisconsin. Foreland basin, fold and thrust belt, and magmatic terrane components that are recognized to the east extend into east-central Minnesota, but they appear to be deflected southwards and truncated in proximity to Archean rocks of the Minnesota River Valley (MRV) subprovince. In contrast, the interior of the MRV subprovince to the southwest shows little sign of Penokean tectonism. In addition, the magmatic and metamorphic rocks of the internal zone of the orogen in east-central Minnesota are extensively invaded by ca. 1785-1770 Ma granitic rocks (the East-Central Minnesota Batholith), whereas, post-orogenic granites of this age occur sparingly to the east. These differences in orogenic structure may be related to their location near the juncture of an embayment (Becker embayment) and a promontory (MRV promontory) that formed the pre-Penokean continental margin. In this scenario, the MRV promontory, which at the surface consists chiefly of high-metamorphic-grade Mesoarchean gneisses, would have formed competent, high-standing crust that resisted deformation and did not host significantly thick continental margin sequences. In contrast, the part of the Becker Embayment adjoining the promontory would have involved relatively weak, low-standing crust that favored deposition of continental margin sequences and, during Penokean collision, would have accommodated tectonic loading of the cratonic margin through thin-skinned deformation. Thrusting of thick embayment sequences and possibly a block of Archean crust (Marshfield terrane) onto the embayment margin may have produced a greatly thickened crust that subsequently promoted crustal melting and generation of the geon 17 granites. Preliminary gravity and magnetic model studies of the present-day crust imply that rocks of the fold and thrust belt may sole out at 5-8 km depth; whereas, magmatic and high-metamorphic-grade rocks associated with the internal zone of the orogen could extend to mid-crustal depths. The tectonic model proposed here, implies that a collision between an embayment and an impinging continental mass may enhance tectonic thickening and subsequent generation of post-orogenic magmas. This and other hypotheses regarding the Penokean orogen need to be investigated further in the third dimension of depth, which will require a comprehensive suite of geophysical studies. ?? 2007 Elsevier B.V. All rights reserved.
First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts
NASA Astrophysics Data System (ADS)
Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter
2015-07-01
The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these orogenic systems. We show that the observed model behavior is consistent with observations from a number of natural orogenic systems.
Basement thrust sheets in the Clearwater orogenic zone, central Idaho and western Montana ( USA).
Skipp, B.
1987-01-01
The Clearwater orogenic zone in central Idaho and W Montana contains at least 2 major NE-directed Cordilleran thrust plates of Early Proterozoic metasedimentary and metaigneous rocks that overrode previously folded Middle Proterozoic rocks of the Belt basin in Cretaceous time. The northeastward migration of the resultant thickened wedge of crustal material combined with Cretaceous subduction along the W continental margin produced a younger N Bitterroot lobe of the Idaho batholith relative to an older S Atlanta lobe. Eocene extensional unroofing and erosion of the Bitterroot lobe has exposed the roots of the thick Cordilleran thrust sheets.-Author
NASA Astrophysics Data System (ADS)
Xiao, Wenjiao
2016-06-01
This monograph book represents an important volume summarizing the present geological knowledge and understanding of the geodynamic evolution of large parts of the Central Asian Orogenic Belt (CAOB) or Altaids, which is one of the largest orogenic collages on Earth. The CAOB, like other major accretionary orogens, is a complex assembly of ancient microcontinents, arc terranes, accretionary wedges, fragments of oceanic volcanic islands (sea-mounts), oceanic plateaus, ophiolites, and shelf sediments from passive continental margins. The CAOB has caused much international attention due to its complicated architecture and considerably continental growth. However, after many years of investigations, some fundamental problems still remain controversial, such as the rate and volume of crustal growth, the origin of continental fragments, the detailed mechanism of accretion and collision, the role of terrane rotations during the orogeny, and the age and composition of the lower crust in Central Asia.
Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data
NASA Astrophysics Data System (ADS)
Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.
2017-12-01
Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartok, P.
1993-02-01
A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. Amore » second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.« less
Architecture of orogenic belts and convergent zones in Western Ishtar Terra, Venus
NASA Technical Reports Server (NTRS)
Head, James W.; Vorderbruegge, R. W.; Crumpler, L. S.
1989-01-01
Linear mountain belts in Ishtar Terra were recognized from Pioneer-Venus topography, and later Arecibo images showed banded terrain interpreted to represent folds. Subsequent analyses showed that the mountains represented orogenic belts, and that each had somewhat different features and characteristics. Orogenic belts are regions of focused shortening and compressional deformation and thus provide evidence for the nature of such deformation, processes of crustal thickening (brittle, ductile), and processes of crustal loss. Such information is important in understanding the nature of convergent zones on Venus (underthrusting, imbrication, subduction), the implications for rates of crustal recycling, and the nature of environments of melting and petrogenesis. The basic elements of four convergent zones and orogenic belts in western Ishtar Terra are identified and examined, and then assess the architecture of these zones (the manner in which the elements are arrayed), and their relationships. The basic nomenclature of the convergent zones is shown.
NASA Astrophysics Data System (ADS)
Li, W.; Gao, R.; Keller, G. R.; Hou, H.; Li, Q.; Cox, C. M.; Chang, J. C.; Zhang, J.; Guan, Y.
2010-12-01
The evolution history of Central Asian Orogen Belt (CAOB) is still the main tectonic problems in northeastern Asia. The Siberia Craton (NC), North China Craton (NCC) and several blocks collided, and the resulting tectonic collage formed as the Paleo-Asian Ocean disappeared. Concerning the northern margin of North China Craton, many different geological questions remain unanswered, such as: the intracontinental orogenic process in the Yanshan orogen and the nature and location of the suture between the southern NC and the northern NCC. In Dec 2009, a 400 km long seismic refraction and wide-angle reflection profile was completed jointly by Institute of Geology, CAGS and University of Oklahoma. The survey line extended from the west end of the Yanshan orogen, across a granitoid belt to the Solonker suture zone. The recording of seismic waves from 8 explosions (500~1500 kg each) was conducted in four deployments of 300 Reftek125 (Texan) seismic recorders, with an average spacing of 1 km. For the calculations, we used the Rayinvr, Vmed and Zplot programs for ray tracing, model modification and phase picking. The initial result show that: 1)the depth of low velocity sediment cover ranges from 0.6 to 2.7 km (velocity: 2.8~5.6 km/s); 2)the depth of basement is 5.6~10 km (the depth of basement under the granitoid belt deepens to 10 km and velocity increases to 6.2 km/s); 3)the upper crust extends to a depth of 15.5~21 km and has the P-wave velocities between 5.6 and 6.4 km/s; 4)the thickness of the lower crust ranges from 22~28 km(velocity: 6.4~6.9 km/s); and 5)the depth of Moho varies from 39.5 km under the granitoid belt to 49 km under the Yanshan orogen. Based on these results, we can preliminarily deduce that: 1) the concave depression of the Moho observed represents the root of the Yanshan orogen, and it may prove that the orogen is dominated by thick-skinned tectonics; 2) the shape of velocity variations under the granitoid belt is suggestive of a magma conduit. It may be connected with subduction-collision magmatism between the southern NC and the northern NCC along the Solonker suture zone. Supported by Sinoprobe-02 and US NSF PIRE grant (0730154)
Venus orogenic belt environments - Architecture and origin
NASA Astrophysics Data System (ADS)
Head, James W.; Vorder Bruegge, Richard W.; Crumpler, L. S.
1990-08-01
Orogenic belt environments (Danu, Akna, Freyja, and Maxwell Montes) in Western Ishtar Terra, Venus, display a range of architectural elements, including (from the center of Western Ishtar outward) an inboard plateau (Lakshmi Planum), the linear orogenic belts themselves, outboard plateaus, steep scarps bounding Ishtar, adjacent linear foredeeps and outboard rises, and outboard low-lying volcanic plains. The main elements of the architecture are interpreted to be due to the convergence, underthrusting, and possible subduction of lowland plains at the margins of a preexisting tessera plateau of thicker crust.
Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt
NASA Astrophysics Data System (ADS)
Zheng, Rongguo; Li, Jinyi; Xiao, Wenjiao; Zhang, Jin
2018-03-01
The ages and origins of metasedimentary rocks, which were previously mapped as Precambrian, are critical in rebuilding the orogenic process and better understanding the Phanerozoic continental growth in the Central Asian Orogenic Belt (CAOB). The Beishan Complex was widely distributed in the southern Beishan Orogenic Collage, southernmost CAOB, and their ages and tectonic affinities are still in controversy. The Beishan Complex was previously proposed as fragments drifted from the Tarim Craton, Neoproterozoic Block or Phanerozoic accretionary complex. In this study, we employ detrital zircon age spectra to constrain ages and provenances of metasedimentary sequences of the Beishan Complex in the Chuanshanxun area. The metasedimentary rocks here are dominated by zircons with Paleoproterozoic-Mesoproterozoic age ( 1160-2070 Ma), and yield two peak ages at 1454 and 1760 Ma. One sample yielded a middle Permian peak age (269 Ma), which suggests that the metasedimentary sequences were deposited in the late Paleozoic. The granitoid and dioritic dykes, intruding into the metasedimentary sequences, exhibit zircon U-Pb ages of 268 and 261 Ma, respectively, which constrain the minimum deposit age of the metasedimentary sequences. Zircon U-Pb ages of amphibolite (274 and 216 Ma) indicate that they might be affected by multi-stage metamorphic events. The Beishan Complex was not a fragment drifted from the Tarim Block or Dunhuang Block, and none of cratons or blocks surrounding Beishan Orogenic Collage was the sole material source of the Beishan Complex due to obviously different age spectra. Instead, 1.4 Ga marginal accretionary zones of the Columbia supercontinent might have existed in the southern CAOB, and may provide the main source materials for the sedimentary sequences in the Beishan Complex.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao
2017-05-01
The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of those Paleozoic intrusive rocks reveal that both the Silurian and the late Devonian magmatic activities predominantly represent crustal growth processes in the DTB, accompanied by different degrees of reworking of pre-existing continental crust. However, the middle Carboniferous (ca. 335-315 Ma) magmatic activity reflects a crustal reworking process. The Silurian and late Devonian intrusive rocks were most likely formed in the arc-related subduction zones, whereas, the middle Carboniferous intrusive rocks were possibly formed in a transitional tectonic setting from compression to extension, representing the final stage of Paleozoic orogeny in the DTB. These Paleozoic magmatic rocks further suggest that the DTB has reactivated from a stable block to an orogen and undergone two episodes (the early Paleozoic and the late Paleozoic) of orogeny during Paleozoic. It represents a Paleozoic accretionary orogen of the southernmost margin of the CAOB between the Tarim Craton and North China Craton, and tectonically extends northward to the Beishan orogen and westward to the eastern South Tianshan Belt.
Incorporation of New and Old Tectonics Concepts Into a Modern Course in Tectonics.
ERIC Educational Resources Information Center
Hatcher, Robert D., Jr.
1983-01-01
Describes a graduate-level tectonics course which includes the historical basis for modern tectonics concepts and an in-depth review of pros/cons of plate tectonics. Tectonic features discussed include: ocean basins; volcanic arcs; continental margins; continents; orogenic belts; foreland fold and thrust belts; volcanic/plutonic belts of orogens;…
NASA Astrophysics Data System (ADS)
Scharf, A.; Handy, M. R.; Favaro, S.; Schmid, S. M.; Bertrand, A.
2013-09-01
The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north-south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23-21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north-south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.
NASA Astrophysics Data System (ADS)
Ji, Zejia; Zhang, Zhicheng; Chen, Yan; Li, Ke; Yang, Jinfu; Qian, Xiaoyan
2018-02-01
The southeastern part of the Central Asian Orogenic Belt (CAOB), which records the collision of the North China Block (NCB) with the South Mongolian microcontinent, is a key area for reconstructing the tectonic history of the CAOB. Controversy persists regarding the timing of the final structural amalgamation of the region; therefore, it remains unclear whether the Late Paleozoic thick volcanic successions were generated in a subduction or post-orogenic environment. Redefining the age of the formation and analyzing the geochemical compositions of these volcanic rocks can provide clues regarding the regional tectonic evolution during the Late Paleozoic and place constraints on the closure time of the Paleo-Asian Ocean. In this study, we present geochemical, geochronologic, and Sr-Nd isotopic data for 29 volcanic rock samples from the Elitu Formation in Xianghuangqi, central Inner Mongolia. The Elitu volcanic rocks have latest early-to-middle Permian ages between 272 and 268 Ma. Most of the mafic-intermediate and felsic rocks show K-normal and high-K calc-alkaline characteristics. Melting is considered to be due to large scale upwelling of the metasomatic lithospheric mantle and different degrees of melting of the thickened lower crust. The northern margin of the NCB, which represents the southeastern boundary of the CAOB, records transtensional and, subsequently, extensional tectonics associated with late Carboniferous to middle Permian volcanic activity.
East African and Kuunga Orogenies in Tanzania - South Kenya
NASA Astrophysics Data System (ADS)
Fritz, H.; Hauzenberger, C. A.; Tenczer, V.
2012-04-01
Tanzania and southern Kenya hold a key position for reconstructing Gondwana consolidation because here different orogen belts with different tectonic styles interfere. The older, ca. 650-620 Ma East African Orogeny resulted from the amalgamation of arc terranes in the northern Arabian-Nubian Shield (ANS) and continental collision between East African pieces and parts of the Azania terrane in the south (Collins and Pisarevsky, 2005). The change form arc suturing to continental collision settings is found in southern Kenya where southernmost arcs of the ANS conjoin with thickened continental margin suites of the Eastern Granulite Belt. The younger ca. 570-530 Ma Kuunga orogeny heads from the Damara - Zambesi - Irumide Belts (De Waele et al., 2006) over Tanzania - Mozambique to southern India and clashes with the East African orogen in southern-central Tanzania. Two transitional orogen settings may be defined, (1) that between island arcs and inverted passive continental margin within the East African Orogen and, (2) that between N-S trending East African and W-E trending Kuungan orogenies. The Neoproterozoic island arc suites of SE-Kenya are exposed as a narrow stripe between western Azania and the Eastern Granulite belt. This suture is a steep, NNW stretched belt that aligns roughly with the prominent southern ANS shear zones that converge at the southern tip of the ANS (Athi and Aswa shear zones). Oblique convergence resulted in low-vorticity sinstral shear during early phases of deformation. Syn-magmatic and syn-tectonic textures are compatible with deformation at granulite metamorphic conditions and rocks exhumed quickly during ongoing transcurrent motion. The belt is typified as wrench tectonic belt with horizontal northwards flow of rocks within deeper portions of an island arc. The adjacent Eastern Granulite Nappe experienced westward directed, subhorizontal, low-vorticity, high temperature flow at partly extreme metamorphic conditions (900°C, 1.2 to 1.4 GPa) (Fritz et al., 2009). Majority of data suggest an anticlockwise P-T loop and prolonged, slow cooling at deep crustal levels without significant exhumation. Isobaric cooling is explained by horizontal flow with rates faster than thermal equilibration of the lower crust. Those settings are found in domains of previously thinned lithosphere such as extended passive margins. Such rheolgically weak plate boundaries do not produce self-sustaining one-sided subduction but large areas of magmatic underplating that enable melt enhanced lateral flow of the lower crust. Western Granulites deformed by high-vorticity westwards thrusting at c. 550 Ma (Kuunga orogeny). Rocks exhibit clockwise P-T paths and experienced significant exhumation during isothermal decompression. Overprint between Kuungan structures and 620 Ma East African fabrics resulted in complex interference pattern within the Eastern Granulites. The three orogen portions that converge in Tanzania / Southern Kenya have different orogen styles. The southern ANS formed by transcurrent deformation of an island arc root; the Eastern Granulites by lower crustal channelized flow of a hot inverted passive margin; the Western Granulites by lower to mid crustal stacking of old and cold crustal fragments. Collins, A.S., Pisarevsky, S.A. (2005). Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71, 229-270. De Waele, B., Kampunzu, A.B., Mapani, B.S.E., Tembo, F. (2006). The Mesoproterozoic Irumide belt of Zambia. Journal of African Earth Sciences, 46, 36-70 Fritz, H., Tenczer, V., Hauzenberger, C., Wallbrecher, E., Muhongo, S. (2009). Hot granulite nappes — Tectonic styles and thermal evolution of the Proterozoic granulite belts in East Africa. Tectonophysics, 477, 160-173.
Early Cretaceous adakitic magmatism in central eastern China controlled by ridge subduction
NASA Astrophysics Data System (ADS)
Ling, M.; Luo, Z.; Sun, W.
2017-12-01
Early Cretaceous adakites are widely distributed in central eastern China, e.g., Lower Yangtze River Belt (LYRB), Dabie orogen and south Tan-Lu Fault (STLF) area. Adakite from the LYRB is closely associated with mineralization, while adakites from Dabie orogen and STLF are ore barren. Their origins, however, remain controversial. Detailed geochemical comparison between these adakites indicates that the LYRB adakite are formed by partial melting of oceanic crust, i.e., slab melting, whereas those from Dabie orogen and STLF (e.g., Guandian pluton) have origin of lower continental crust (LCC) 1,2. Base on the distribution of igneous rocks, e.g., adakite, A-type granite and Nb-enriched basalts, as well as other lines of evidence, ridge subduction of the Pacific and Izanagi plates was proposed to explain the genesis of Cretaceous magmatism and associated mineralization in the LYRB 1. Ridge subduction is a special plate tectonic process that can provide both physical erosion and thermal erosion 3. Flat subduction of a spreading ridge will result in strong physical subduction-related erosion, and trigger destruction (e.g., in the Dabie orogen) or delamination (e.g., in the STLF) of the thickened LCC. Subsequently, ridge subduction, accompanied by opening of a slab window, will facilitate partial melting of the LCC by thermal erosion. References: 1. Ling, M. X. et al. Cretaceous ridge subduction along the Lower Yangtze river belt, eastern China. Econ. Geol. 104, 303-321, doi:10.2113/gsecongeo.104.2.303 (2009). 2. Ling, M. X., Wang, F. Y., Ding, X., Zhou, J. B. & Sun, W. D. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: Geochemical constraints. International Geology Review 53, 727-740 (2011). 3. Ling, M. X. et al. Destruction of the North China Craton Induced by Ridge Subductions. Journal of Geology 121, 197-213 (2013).
From a collage of microplates to stable continental crust - an example from Precambrian Europe
NASA Astrophysics Data System (ADS)
Korja, Annakaisa
2013-04-01
Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive of spreading. Close to the original ocean-continent plate boundary, in the core of the Svecofennian orogen, the thickened accretionary crust carries pervasive stretching lineations at surface and seismic vp-velocity anisotropy in the crust. The direction of spreading and crustal flow seems to be diverted by shapes of the pre-existing boundaries. It is concluded that lateral spreading and midcrustal flow not only rearrange the bedrock architecture but also stabilize the young accreted continental crust in emerging internal orogenic systems. Pre-existing microplate/terrane boundaries will affect the final architecture of the orogenic belt.
NASA Astrophysics Data System (ADS)
Stübner, Konstanze; Grujic, Djordje; Dunkl, István; Thiede, Rasmus; Eugster, Patricia
2018-01-01
The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari-Ramgarh-Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U-Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu-Larji-Rampur window, ages ranging from 2.4 ± 0.4 Ma to 5.4 ± 0.9 Ma constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U-Th)/He ages are older (7.0 ± 0.7 Ma to 42.2 ± 2.1 Ma). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2-3 mm/yr from 4-7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic 'Bajaura nappe' of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari-Ramgarh-Shumar thrust system.
NASA Astrophysics Data System (ADS)
Hong, Dawei; Zhang, Jisheng; Wang, Tao; Wang, Shiguang; Xie, Xilin
2004-09-01
Studies of supercontinental cycle are mainly concentrated on the assembly, breakup and dispersal of supercontinents, and studies of continental crustal growth largely on the growth and loss (recycling) of the crust. These two problems have long been studied separately from each other. The Paleozoic-Mesozoic granites in the Central Asian Orogenic Belt have commonly positive ɛNd values, implying large-scale continental crustal growth in the Phanerozoic. They coincided temporally and spatially with the Phanerozoic Pangea supercontinental cycle, and overlapped in space with the P-wave high- V anomalies and calculated positions of subducted slabs for the last 180 Ma, all this suggests that the Phanerozoic Laurasia supercontinental assembly was accompanied by large-scale continental crustal growth in central Asia. Based on these observations, this paper proposes that there may be close and original correlations between a supercontinental cycle, continental crustal growth and catastrophic slab avalanches in the mantle. In this model we suggest that rapid continental crustal growth occurred during supercontinent assembly, whereas during supercontinental breakup and dispersal new additions of the crust were balanced by losses, resulting in a steady state system. Supercontinental cycle and continental crustal growth are both governed by changing patterns of mantle convection.
Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.
2011-01-01
Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.
Evidences of Silurian dextral transpression in the Scandinavian Caledonides
NASA Astrophysics Data System (ADS)
Torgersen, Espen; Viola, Giulio
2017-04-01
The Scandinavian Caledonides are classically interpreted as a fold and thrust belt resulting from the collision between Laurentia and Baltica during the Silurian, which involved the up-to-400 km ESE-wards translation of nappes onto the Baltoscandian platform. It has been suggested that the Caledonian fold and thrust belt formed through several distinct orogenic episodes, from early shortening in the Late Ordovician to orogenic collapse in the Devonian. The classic Caledonian, orogen-perpendicular ESE-ward nappe transport is constrained by abundant and consistently oriented stretching lineations across the entire orogen and unambiguous kinematic indicators. However, there is also a large number of NW-SE-trending and roughly orogen-parallel lineations, particularly in the upper ophiolite- and eclogite-bearing nappes, which are more challenging to interpret with the traditional orogeny evolution model. The analysis of the areal extent, spatial distribution and geometrical relationships of the Caledonian nappes in southern and central Norway, however, offers new insights and allows for new constraints on the bulk kinematic framework of the shortening history of the belt. Here we present new, first-order geological observations that demonstrate a two-fold compressional history and associated strain partitioning during Caledonian convergence. More specifically, we propose that Late Ordovician NNW-SSE shortening caused early compression, followed by WNW-ESE Early Silurian shortening, which resulted in strain partitioning along the planar fabrics and discontinuities from the earlier event. In detail, orogen-parallel dextral wrench tectonics caused significant lateral displacement along at least three, orogen-scale NE-SW striking corridors, wherein the nappes appear to be consistently displaced in a dextral fashion. We propose that the Møre-Trøndelag Fault Complex, which accommodated significant sinistral displacements during the later Devonian orogenic collapse, localized on one of these early dextral shear corridor. This is expressed by the asymptotic dragging of the nappes along it and also the significant morphological asymmetry of the central Norwegian coast line, which is not compatible with sinistral shearing. Along a southern corridor, which extends from the Hardangerfjord to the east of Folldal, the Caledonian foliation is asymptotically bent into the ENE-WSW orientation of the shear corridor, also consistent with an overall dextral kinematics. This is also confirmed by the gradual reorientation and increased strain toward these shear corridors of Ordovician to Silurian intrusive bodies, indicating that the dextral displacement is of Silurian age. Similar dextral displacements along NE-SW faults have previously been interpreted from potential field data offshore southern Norway. Large-scale dextral transpression in the Scandinavian Caledonides readily accounts for numerous geological features that are not as easily reconciled with the more classical model of only ESE-ward translation and/or sinistral transpression.
NASA Astrophysics Data System (ADS)
Pilitsyna, Anfisa V.; Tretyakov, Andrey A.; Degtyarev, Kirill E.; Cuthbert, Simon J.; Batanova, Valentina G.; Kovalchuk, Elena V.
2018-03-01
The Anrakhai Metamorphic Complex (AMC), located in the SE part of the Chu-Ili Mountains of Southern Kazakhstan in the western part of Central Asian Orogenic Belt, exhibits occurrences of HP metamorphic rocks in the form of eclogites and garnet clinopyroxenites with peak metamorphic conditions of 750-850° and 15-19 kbar estimated with both conventional geothermobarometric methods and phase diagram modeling. P-T estimates as well as intimate field relations evidently imply a common metamorphic history for eclogites and garnet clinopyroxenites of the AMC. These high-pressure, medium temperature eclogite facies P-T conditions are indicative of a collision or subduction tectonic setting. Major and trace element geochemistry suggests that they probably had a common magmatic origin as part of a suite of differentiated tholeiitic intrusions. Furthermore, distinctive mineral and chemical compositions of these eclogites and garnet clinopyroxenites correspond to the Fe-Ti type of ultramafic rocks suggesting that they may have been derivatives of intraplate tholeiitic melts, introduced into continental crust before HP metamorphism.
NASA Astrophysics Data System (ADS)
Osterhus, Lennart; Jung, Stefan
2010-05-01
The Damara orogen (Namibia) represents a well-exposed and deeply eroded orogenic mobile belt consisting of the north-south trending Kaoko belt and the northeast-southwest trending intracontinental Damara belt. The latter has been subdivided into a Northern, a Central and a Southern Zone based on stratigraphy, metamorphic grade, structure and geochronology. The late-orogenic granodioritic to leucogranitic Gawib pluton is a cross-cutting, pear-shaped post-tectonic stock within the southern Central Zone which is elsewhere dominated by basement rocks, high-grade metasedimentary rocks of the Tinkas Formation and syn-orogenic granites (Salem-type). The non-foliated granodiorites consist of plagioclase, quartz, microcline, hornblende and biotite whereas the leucogranites consist of microcline, quartz, plagioclase and biotite. Major element variation of the granodiorites show two distinct magma types were some samples have high TiO2, MgO and Fe2O3 and low Al2O3 and others have low TiO2, MgO and Fe2O3 and high Al2O3. Based on high REE, Nb, Zr and Y concentrations some granodiorites can be classified as A-type granitoids. Strontium concentrations are high in the granodiorites (up to 939 ppm) and decrease to < 200 ppm in the leucogranites. Rb/Sr ratios are low (1) in the leucogranites. Granodiorites have moderately radiogenic initial 87Sr/86Sr ratios (0.7088-0.7132), strongly negative initial ɛ Nd values (ca. -12) and comparatively unradiogenic Pb isotope data, the latter obtained on acid-leached feldspar separates. Leucogranites have more radiogenic initial 87Sr/86Sr ratios (0.7223-0.7336) and more negative initial ɛ Nd values (ca. -18). Pb isotopes tend to be less radiogenic than in the granodiorites. The mean crustal residence ages of the granodiorites, expressed as depleted mantle Nd model ages, are ca. 2.0 Ga but the leucogranites tend to have older Nd model ages (2.5 Ga). Therefore, a likely source for the granodiorites and leucogranites is a sequence of mafic to intermediate or felsic lower crust. In a plate-tectonic context, a correlation between lower crustal magmatism and changes in the direction of micro-plate movements between the central and the southern part of the Damara orogen can be suggested, provoking re-activation of lithospheric shear zones. If such reactivation caused a reversal in the sense of movement, the associated faults opened and propagated as tensional faults. This would have allowed fracturing through the continental crust causing pressure release, channeling of volatiles, partial melting and generation of magmas from the lower crust. This suggestion is confirmed by the intrusion of the pluton along a major crustal shear zone, the Okahandja Lineament. The intrusion was probably accompanied by a change in the stress field which renewed transcurrent movements along this lithospheric shear zone.
NASA Astrophysics Data System (ADS)
Zhu, Y.
2016-12-01
Paleozoic intrusive rocks widely exposed in the west Tianshan orogenic belt provides key to understand the geodynamic evolution of the central Asian orogenic belt. A synthesis involving the data for Chinese Yili-central Tianshan and southwest Tianshan and comparison of Kyrgyz Tianshan with a broader dataset including zircon U-Pb ages, zircon Hf isotopic composition, major and trace elements for Paleozoic intrusions are presented to classify the Paleozoic intrusive rocks in four categories which corresponding to subduction of the Terskey Ocean, initial subduction stage of South Tianshan Ocean (STO), major subduction stage of the STO, and collisional to post-collisional stages. The subduction of the Terskey Oceanic crust finally caused the closure of the Terskey Ocean and the opening of the South Tianshan back-arc basin. The development of the Southwest Tianshan back-arc basin formed the STO, which subducted under the Yili-central Tianshan during early Silurian to early Carboniferous, and consequently formed huge arc magmatic rocks. Both the Silurian and early Carboniferous intrusions showing arc geochemical characteristics were derived from partial melting of juvenile arc-derived rocks with involvement of old continental crust. The STO finally closed by the end of early Carboniferous. Afterwards, geodynamic setting changed from convergence to extensional during late Carboniferous to early Permian periods. There is a significant geodynamic change from convergence to extension during late Carboniferous to early Permian, which may be resulted from breakoff of the subducted slab (Fig. 1). Such processes caused upwelling of asthenosphere and triggered partial melting of continental crust, as evidenced by emplacement of voluminous granitic rocks. References: An F, et al, 2013. Journal of Asian Earth Sciences, 78: 100-113; Zhu YF, 2011. Ore Geology Reviews, 40: 108-121; Zhu YF, et al, 2009. Geological Society, London, 166: 1085-1099; Zhu YF et al, 2016. Journal of Earth Science 27: 491-506
Axial Belt Provenance: modern river sands from the core of collision orogens
NASA Astrophysics Data System (ADS)
Resentini, A.; Vezzoli, G.; Paparella, P.; Padoan, M.; Andò, S.; Malusà, M.; Garzanti, E.
2009-04-01
Collision orogens have a complex structure, including diverse rock units assembled in various ways by geodynamic processes. Consequently, orogenic detritus embraces a varied range of signatures, and unravelling provenance of clastic wedges accumulated in adjacent foreland basins, foredeeps, or remnant-ocean basins is an arduous task. Dickinson and Suczek (1979) and Dickinson (1985) recognized the intrinsically composite nature of orogenic detritus, but did not attempt to establish clear conceptual and operational distinctions within their broad "Recycled Orogenic Provenance". In the Alpine and Himalayan belts, the bulk of the detritus is produced by focused erosion of the central backbone of the orogen, characterized by high topography and exhumation rates (Garzanti et al., 2004; Najman, 2006). Detritus derived from such axial nappe pile, including slivers of thinned continental-margin lithosphere metamorphosed at depth during early collisional stages, has diagnostic general features, which allows us to define an "Axial Belt Provenance" (Garzanti et al., 2007). In detail, "Axial Belt" detrital signatures are influenced by metamorphic grade of source rocks and relative abundance of continental versus oceanic protoliths, typifying distinct subprovenances. Metasedimentary cover nappes shed lithic to quartzolithic detritus, including metapelite, metapsammite, and metacarbonate grains of various ranks; only amphibolite-facies metasediments supply abundant heavy minerals (e.g., almandine garnet, staurolite, kyanite, sillimanite, diopsidic clinopyroxene). Continental-basement nappes shed hornblende-rich quartzofeldspathic detritus. Largely retrogressed blueschist to eclogite-facies metaophiolites supply albite, metabasite and foliated antigorite-serpentinite grains, along with abundant heavy minerals (epidote, zoisite, clinozoisite, lawsonite, actinolitic to barroisitic amphiboles, glaucophane, omphacitic clinopyroxene). Increasing metamorphic grade and deeper tectonostratigraphic level of source rocks are reflected by: a) increasing rank of metamorphic rock fragments (as indicated by progressive development of schistosity and growth of micas and other index minerals; MI index of Garzanti and Vezzoli, 2003); b) increasing feldspars; c) increasing heavy-mineral concentration (HMC index); d) increasing hornblende, changing progressively in color from blue/green to green/brown (HCI index); e) successive appearance of chloritoid, staurolite, kyanite, fibrolitic and prismatic sillimanite (MMI index; Garzanti and Andò, 2007). Dickinson W.R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G.G. (ed.), Reidel, NATO ASI Series 148: 333-361. Dickinson W.R. and C.A. Suczek. 1979. Plate tectonics and sandstone composition. Am. Assoc. Pet. Geol. Bull. 63: 2164-2172. Garzanti E. and S. Andò. 2007, Plate tectonics and heavy-mineral suites of modern sands. In: Mange M. and D. Wright (eds.), Elsevier, Developments in Sedimentology Series 58: 741-763. Garzanti E. and G. Vezzoli. 2003. A classification of metamorphic grains in sands based on their composition and grade. J. Sedimentary Res. 73: 830-837. Garzanti E., C. Doglioni, G. Vezzoli and S. Andò. 2007. Orogenic Belts and Orogenic Sediment Provenances. J. Geology 115: 315-334. Garzanti E., G. Vezzoli, S. Andó, C. France-Lanord, S.K. Singh and G. Foster. 2004. Sediment composition and focused erosion in collision orogens: the Brahmaputra case. Earth Planet. Sci. Lett. 220: 157-174. Najman Y. 2006. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev. 74: 1-72.
NASA Astrophysics Data System (ADS)
Yin, Jiyuan; Chen, Wen; Hodges, Kip V.; Xiao, Wenjiao; Cai, Keda; Yuan, Chao; Sun, Min; Liu, Li-Ping; van Soest, Matthijs C.
2018-01-01
The Chinese Tianshan is located in the south of the Central Asian Orogenic Belt and formed during final consumption of the Paleo-Asian Ocean in the late Palaeozoic. In order to further elucidate the tectonic evolution of the Chinese Tianshan, we have established the temperature-time history of granitic rocks from the Chinese Tianshan through a multi-chronological approach that includes U/Pb (zircon), 40Ar/39Ar (biotite and K-feldspar), and (U-Th)/He (zircon and apatite) dating. Our data show that the central Tianshan experienced accelerated cooling during the late Carboniferous- to early Permian. Multiple sequences of complex multiple accretionary, subduction and collisional events could have induced the cooling in the Tianshan Orogenic Belt. The new 40Ar/39Ar and (U-Th)/He data, in combination with thermal history modeling results, reveal that several tectonic reactivation and exhumation episodes affected the Chinese central Tianshan during middle Triassic (245-210 Ma), early Cretaceous (140-100 Ma), late Oligocene-early Miocene (35-20 Ma) and late Miocene (12-9 Ma). The middle Triassic cooling dates was only found in the central Tianshan. Strong uplift and deformation in the Chinese Tianshan has been limited and localized. It have been concentrated in around major fault zone and the foreland thrust belt since the early Cretaceous. The middle Triassic and early Cretaceous exhumation is interpreted as distal effects of the Cimmerian collisions (i.e. the Qiangtang and Kunlun-Qaidam collision and Lhasa-Qiangtang collision) at the southern Eurasian margin. The Cenozoic reactivation and exhumation is interpreted as a far field response to the India-Eurasia collision and represents the beginning of modern mountain building and denudation in the Chinese Tianshan.
NASA Astrophysics Data System (ADS)
Nédélec, A.; Paquette, J.-L.
1998-02-01
The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as ``stratoid'' granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ~570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.
NASA Astrophysics Data System (ADS)
Paquette, Jean-Louis; Nédélec, Anne
1998-02-01
The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as "stratoid" granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ˜570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.
NASA Astrophysics Data System (ADS)
Wu, S.; Yang, Y.; Wang, K.
2017-12-01
The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.
Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China
NASA Astrophysics Data System (ADS)
Wu, X.; Qi, X.; Zheng, M.
2015-12-01
Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.
NASA Astrophysics Data System (ADS)
Bhattacharya, A.; Das, H. H.; Bell, Elizabeth; Bhattacharya, Atreyee; Chatterjee, N.; Saha, L.; Dutt, A.
2016-10-01
Geological mapping and P-T path reconstructions are combined with monazite chemical age and Secondary Ion Mass Spectrometric (SIMS) U-Pb zircon age determinations to identify crustal domains with distinctive evolutionary histories in the Rengali orogen sandwiched between two Grenvillian-age metamorphic belts, i.e. the Eastern Ghats Granulite Belt (EGGB) in the south, and the amphibolite facies Gangpur Schist Belt (GSB) in the north, which in turn forms a collar along the NW/W margins of the Paleo/Mesoarchean Singhbhum Craton (SC) north of the Rengali orogen. Anatectic gneisses in the orogen core exhibit multi-phase Neoarchean/Paleoproterozoic deformation, metamorphic P-T histories and juvenile magma emplacement events. The high-grade belt is inferred to be a septum of the Bastar Craton (BC). The flanking supracrustal belt in the orogen - dominated by quartz-muscovite schists (± staurolite, kyanite, garnet pyrophyllite), inter-bedded with poorly-sorted and polymict meta-conglomerate, and meta-ultramafic/amphibolite bands - evolved along P-T paths characterized by sub-greenschist to amphibolite facies peak P-T conditions in closely-spaced samples. The supracrustal rocks and the anatectic gneisses of contrasting metamorphic P-T histories experienced D1, D2 and D3 fabric-forming events, but the high-angle obliquity between the steeply-plunging D3 folds in the anatectic gneisses and the gently-plunging D3 folds in the supracrustal unit suggests the two lithodemic units were tectonically accreted post-S2. The supracrustal belt is inferred to be a tectonic mélange formed in an accretionary wedge at the tri-junction of the Bastar Craton, the Eastern Ghats Granulite Belt and the Singhbhum Craton; the basin closure synchronous with the assembly of EGGB and the Singhbhum Craton-Gangpur Schist belt composite occurred between 510 and 610 Ma. Based on the available evidence across the facing coastlines of the Greater India landmass and the Australo-Antarctic blocks at 500 Ma, it is suggested that the EGGB welded with the Greater India landmass during the Pan African along an accretion zone, of which the Rengali orogen is a part, synchronous with the final assembly of the Gondwanaland.
Moho depth model for the Central Asian Orogenic Belt from satellite gravity gradients
NASA Astrophysics Data System (ADS)
Guy, Alexandra; Holzrichter, Nils; Ebbing, Jörg
2017-09-01
The main purpose of this study is to construct a new 3-D model of the Central Asian Orogenic Belt (CAOB) crust, which can be used as a starting point for future lithospheric studies. The CAOB is a Paleozoic accretionary orogen surrounded by the Siberian Craton to the north and the North China and Tarim Cratons to the south. This area is of great interest due to its enigmatic and still not completely understood geodynamic evolution. First, we estimate an initial crustal thickness by inversion of the vertical gravity component of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and DTU10 models. Second, 3-D forward modeling of the GOCE gravity gradients is performed, which determines the topography of the Moho, the geometry, and the density distribution of the deeper parts of the CAOB and its surroundings, taking into account the lateral and vertical density variations of the crust. The model is constrained by seismic refraction, reflection, and receiver function studies and geological studies. In addition, we discuss the isostatic implications of the differences between the seismic Moho and the resulting 3-D gravity Moho, complemented by the analysis of the lithostatic load distribution at the upper mantle level. Finally, the correlation between the contrasting tectonic domains and the thickness of the crust reveals the inheritance of Paleozoic and Mesozoic geodynamics, particularly the magmatic provinces and the orocline which preserve their crustal features.
NASA Astrophysics Data System (ADS)
Yang, Jinfu; Zhang, Zhicheng; Chen, Yan; Yu, Haifei; Qian, Xiaoyan
2017-08-01
The Central Asian Orogenic Belt (CAOB) is known for its massive Phanerozoic generation of juvenile crust. The tectonic evolution of the CAOB during the late Paleozoic era is still debated. The Eastern Erenhot ophiolite complex (EOC) has been recognized as one of the numerous late Paleozoic ophiolitic blocks in the southeastern part of the CAOB. Zircon U-Pb dating on rhyolite and plagiogranite from the EOC yielded a tight range of ages from 360 to 348 Ma, indicating that the complex formed in the early Carboniferous. The primitive mantle-normalized spider diagram of rhyolites (εNd(t) values of +6.8 and +7) and basalts almost overlaps. Such rhyolites may have been derived from partial melting of juvenile basaltic rocks during the initial opening of the Erenhot-Hegenshan oceanic basin. All of the plagiogranites exhibit similar trace element behaviours of High Field-Strength Elements, such as U, Zr and Hf, and Large Ion Lithophile Elements, such as Ba and Rb, to these of gabbros. These plagiogranites were considered products of episodes of partial melting of hydrous gabbros during ocean floor spreading. We conclude that the northern subduction of the Paleo-Asian Ocean stopped before 360 Ma and the southeastern CAOB experienced extension during the late Paleozoic era. The Erenhot-Hegenshan Ocean, which is comparable to the present Red Sea, originated from syn-collisional crustal thickening, subsequent lithosphere extension, and upwelling of the asthenosphere during orogenic quiescence with an age of 20 Ma.
NASA Astrophysics Data System (ADS)
Yang, K. M.; Kun-an, H.; Chien, C. W.; Leh-chyun, W.; Chi-Cheng, Y.
2017-12-01
The foreland basin in southwestern Taiwan offers an idealistic example for the study of tectonostratigraphy in basin development. The subsidence analysis indicates that the recent basin development went through at least two rapid subsidence events, along with back-and-forth migration of the forebulge. This study aims to explore the interaction between the uplifting forebulge and coevally subsiding foredeep primarily based on petrofacies analysis, the results of which were then interpreted with the well-established tectonostratigraphic and biostratigraphic frameworks to infer the erosion and deposition mode during the basin development. The craton had been the sediment source to the west of the study area in the pre-orogenic period. In the initial stage of foreland basin development, the forebulge slowly elevated and started to obstruct sediment supplies from the craton. Before the period of NN19, the forebulge not only became the barrier of the most cratonic sediment supplies but also shed a major amount of detritus into the adjacent area. In addition, regional topographic relief, which was formed by syn-orogenic normal faulting during the NN11-15, locally changed the composition and transportation modes of the sediments; the exposed basement of the footwall also became the source of the sediments shed into the adjacent depo-centers. After the NN19, whole area was influenced predominantly by the orogenic belt from the east. Large amounts of slate fragments began to appear in the middle NN19 and relative percentage of the metamorphic lithics was increased upward and northward. As the orogen moved westward along with the foreland basin development, the studied area changed from the distal to proximal parts of the foredeep and sediment sources were controlled mainly by river systems derived from the orogen. The metamorphic lithics decreased southward and concentrated in the central part of the study area, suggesting that the slate fragments which were transported parallel with the orientation of submarine canyons since NN13 to the south of the study area. We propose that 1) from NN13 to NN18, the episodic subsidence in the foreland basin implies episodic movement of the orogenic belt, and 2) since the period of NN19, the orogenic belt and foreland basin has been developing in a continuous and steady state.
NASA Astrophysics Data System (ADS)
Darbyshire, F. A.; Bastow, I. D.; Gilligan, A.; Petrescu, L.
2016-12-01
The Precambrian core of North America is an assemblage of Archean cratons and Proterozoic orogenic belts, preserving over 3 billion years of Earth history. Here we focus on two of the largest collisional orogens, using recent and ongoing seismological studies to probe their present-day structure and tectonic history. The 1.8 Ga collision between the Western Churchill and Superior cratons, along with microcontinental and island arc terranes, formed the Trans-Hudson Orogen (THO), a collisional belt similar in scale and shape to the present-day Himalaya-Karakoram-Tibet Orogen (HKTO). In the Mesoproterozoic, a series of collisions reworked the SE margin of the Superior craton and added new material over a period of several hundred Ma, culminating in the Grenvillian orogeny and the assembly of the supercontinent Rodinia. The Grenville Orogen is thought to have been a large, hot, long-lived plateau which subsequently underwent orogenic collapse. While similar in spatial scale, the Trans-Hudson and Grenville Orogens have significantly different tectonic histories, notably in terms of longevity and tectonic evolution. Comparison of these collisional belts with each other, and with the HTKO, provide valuable insights into plate-tectonic history. Recently a number of broadband seismograph installations have allowed a detailed study of present-day crustal structure beneath the THO and the Grenville. Receiver-function and surface wave studies provide information on crustal thickness variations, bulk crustal composition and crustal heterogeneity. The crust beneath the orogens is generally thicker, more mafic and more heterogeneous than that beneath neighbouring Archean and Phanerozoic domains, with significant along-strike variability and Moho complexity. We review and interpret the new crustal structure information in the context of the tectonic processes affecting the two contrasting orogens.
Ravikant, V.; Laux, J.H.; Pimentel, M.M.
2007-01-01
Recent post-750 Ma continental reconstructions constrain models for East African Orogeny formation and also the scattered remnants of ~640 Ma granulites, whose genesis is controversial. One such Neoproterozoic granulite belt is the Schirmacher Oasis in East Antarctica, isolated from the distinctly younger Pan-African orogen to the south in the central Droning Maud Land. To ascertain the duration of granulite-facies events in these remnants, garnet Sm-Nd and monazite and titanite U-Pb IDTIMS geochronology was carried out on a range of metamorphic rocks. Garnet formation ages from a websterite enclave and gabbro were 660±48 Ma and 587±9 Ma respectively, and those from Stype granites were 598±4 Ma and 577±4 Ma. Monazites from metapelite and metaquartzite yielded lower intercept UPb ages of 629±3 Ma and 639±5 Ma, respectively. U-Pb titanite age from calcsilicate gneiss was 580±5 Ma. These indicate peak metamorphism to have occurred between 640 and 630 Ma, followed by near isobaric cooling to ~580 Ma. Though an origin as an exotic terrane from the East African Orogen cannot be discounted, from the present data there is a greater likelihood that Mesoproterozoic microplate collision between Maud orogen and a northerly Lurio-Nampula block resulted in formation of these granulite belt(s).
NASA Astrophysics Data System (ADS)
Ballato, Paolo; Landgraf, Angela; Schildgen, Taylor F.; Stockli, Daniel F.; Fox, Matthew; Ghassemi, Mohammad R.; Kirby, Eric; Strecker, Manfred R.
2015-09-01
The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from ∼36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from ∼6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a ∼3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last ∼5 Ma.
Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.
2000-01-01
We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.
NASA Astrophysics Data System (ADS)
Wang, Xiaoxia; Wang, Tao; Zhang, Chengli
2013-08-01
The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225-185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158-100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.
NASA Astrophysics Data System (ADS)
Zhao, Pan; Jahn, Bor-ming; Xu, Bei
2017-09-01
The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The generation of this belt was ascribed to subduction of the Paleo-Pacific Plate.
NASA Astrophysics Data System (ADS)
Groulier, Pierre-Arthur; Indares, Aphrodite; Dunning, Gregory; Moukhsil, Abdelali; Jenner, George
2018-07-01
The Escoumins Supracrustal Belt (ESB) represents higher levels of the infrastructure of a large hot orogen, exposed in a broadly dome and basin pattern. It consists of remnants of a Pinwarian-age (1.52-1.46 Ga) oceanic arc and arc-rift sequence, preserved in the low-P Belt of the central Grenville Province, and was intruded by diverse Grenvillian-age plutons. The plutonic rocks range from quartz monzodiorite to granite and have intrusion ages covering a time interval of 100 My, that represents the entire range of the Grenvillian orogeny. Moreover, the ages, field relations and geochemical signatures of the different intrusions can be matched with different documented stages of the orogeny. The oldest pluton, the magnesian, biotite-bearing Bon-Désir granite (1086 ± 2 Ma), has positive εNd (+0.6), TDM = 1.52 Ga, and is attributed to melting of a juvenile Pinwarian crust as a result of slab break-off, at the onset of continental collision. The ferroan and Ba-Sr enriched, biotite-, amphibole- and clinopyroxene-bearing Michaud plutonic suite (1063 ± 3 Ma) and biotite-rich felsic sill (1045 ± 3 Ma) have εNd (-0.01 - +0.8) and TDM = 1.45-1.48 Ga. Their geochemistry is consistent with fractionation of a mafic magma derived from melting of a Geon 14 subduction-modified subcontinental lithospheric mantle. This magmatism is consistent with convective thinning of subcontinental lithosphere, potentially linked to tectonic extrusion and orogenic collapse. This collapse ultimately led to the juxtaposition of the low-P Belt with the high-T mid-P Belt in the hinterland of the Grenville Province and to amphibolite-facies metamorphism in the former, producing metamorphic zircon overgrowths at 1037 ± 10 Ma. Finally, 988 ± 5 Ma to 983 ± 5 Ma syn-kinematic peraluminous two-mica garnetiferous leucogranite bodies and pegmatites with inherited 1055 ± 2 Ma metamorphic monazite were derived from melting of previously metamorphosed deeper levels of the low-P Belt. This is consistent with a high geothermal gradient linked to thinning of the crust in a Basin and Range setting. The geochemical and age pattern of Grenvillian-age magmatism in the ESB, in conjunction with the overall architecture of the Province, suggests that Laurentia was the upper plate during the Grenvillian orogeny.
Rotund versus skinny orogens: Well-nourished or malnourished gold?
Goldfarb, R.J.; Groves, D.I.; Gardoll, S.
2001-01-01
Orogenic gold vein deposits require a particular conjunction of processes to form and be preserved, and their global distribution can be related to broad-scale, evolving tectonic processes throughout Earth history. A heterogeneous distribution of formation ages for these mineral deposits is marked by two major Precambrian peaks (2800-2555 Ma and 2100-1800 Ma), a singular lack of deposits for 1200 m.y. (1800-600 Ma), and relatively continuous formation since then (after 600 Ma). The older parts of the distribution relate to major episodes of continental growth, perhaps controlled by plume-influenced mantle overturn events, in the hotter early Earth (ca. 1800 Ma or earlier). This worldwide process allowed preservation of gold deposits in cratons, roughly equidimensional, large masses of buoyant continental crust. Evolution to a less episodic, more continuous, modern-style plate tectonic regime led to the accretion of volcano-sedimentary complexes as progressively younger linear orogenic belts sorrounding the margins of the more buoyant cratons. The susceptibility of these linear belts to uplift and erosion can explain the overall lack of orogenic gold deposits at 1800-600 Ma, their exposure in 600-50 Ma orogens, the increasing importance of placer deposits back through the Phanerozoic since ca. 100 Ma, and the absence of gold deposits in orogenic belts younger than ca. 50 Ma.
NASA Astrophysics Data System (ADS)
Bai, L.; Mori, J. J.
2016-12-01
The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon
2016-04-01
The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late Carboniferous to Permian. References: Abrajevitch, A., Van der Voo, R., Bazhenov, M.L., Levashova, N.M., McCausland, P.J.A., 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 455, 61-76. Levashova, N., Degtyarev, K., Bazhenov, M., 2012. Oroclinal bending of the Middle and Late Paleozoic volcanic belts in Kazakhstan: Paleomagnetic evidence and geological implications. Geotectonics 46, 285-302. Xiao, W., Huang, B., Han, C., Sun, S., Li, J., 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253-273. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB448000 and 2014CB440801), Hong Kong Research Grant Council (HKU705311P, HKU704712P and HKU17303415), National Science Foundation of China (41273048), HKU seed funding (201111159137) and HKU CRCG grants. This work is a contribution of the Joint Laboratory of Chemical Geodynamics between HKU and CAS (Guangzhou Institute of Geochemistry), IGCP 592 and PROCORE France/Hong Kong Joint Research Scheme.
NASA Astrophysics Data System (ADS)
Longridge, L.; Gibson, R. L.; Kinnaird, J. A.; Armstrong, R. A.
2017-05-01
Orthopyroxene-bearing pelitic migmatites and associated anatectic leucogranites from the southwestern Central Zone of the Damara Belt provide revised constraints on the age and grade of LPHT metamorphism and its timing relative to deformation. Pseudosection modelling using THERMOCALC 3.33 indicates a single metamorphic event with peak temperatures of ca. 835 °C and pressures of 4.9 kbar for a garnet-cordierite-biotite-orthopyroxene schist. These temperatures confirm the attainment of true granulite facies conditions in the belt and are higher than previous estimates based on cation-exchange thermobarometry, which are likely to have been affected by retrograde re-equilibration and underestimate peak temperatures for the Central Zone by 50-150 °C. The early growth of sillimanite, consumption of sillimanite to produce cordierite, and the late development of garnet, together with modal isopleths and textural constraints on mineral reactions suggest a near-isobaric heating path for the southwestern Central Zone. Field and petrographic relationships indicate that the metamorphic peak was coeval with non-coaxial D2 deformation that produced orogen-normal, south- to SE-verging, km-scale, recumbent folds and late-D2 shear zones linked to NE-SW, orogen-parallel, extension. Weighted mean U-Pb single-grain concordia ages of 520.3 ± 4.6 Ma (zircon) and 514.1 ± 3.1 Ma (monazite) from a syn-D2 anatectic garnet-bearing granite constrain the age of metamorphism and the D2 deformation event in the southwestern Central Zone to 520-510 Ma. It is suggested that two tectonometamorphic episodes are preserved in the Central Zone. NW-verging folding and thrusting coeval with the emplacement of the Salem-type granites and mafic-dioritic Goas Suite took place at 550-530 Ma, and south- to SE-verging folding, shearing and NE-SW extension at 520-510 Ma was coeval with granulite-facies metamorphism and the emplacement of crustal melt granitoids. These events are temporally distinct and should not be considered different rheological responses to a single tectonic episode. We suggest that the 550-530 Ma event records crustal thickening related to collision of the Congo and Kalahari cratons, whilst the 520-510 Ma event reflects orogenic collapse and crustal thinning, with a possible heat contribution as the result of detachment of the subcontinental lithosphere following collision, resulting in addition of heat to the lower crust.
NASA Astrophysics Data System (ADS)
Zhang, Chen; Liu, Dongdong; Luo, Qun; Liu, Luofu; Zhang, Yunzhao; Zhu, Deyu; Wang, Pengfei; Dai, Quanqi
2018-06-01
The Central Asian Orogenic Belt (CAOB) represents one of the most important sites of juvenile crustal growth during the Phanerozoic. Located in the central part of the CAOB, the Chinese Altai and Eastern Junggar terranes record the collisional processes between the peri-Siberian and Kazakhstan orogenic systems. However, the precise timing of collision between the two terranes remains controversial. The Wukuli and Kadelat plutons in the Chinese Altai belt are dated at ∼305 and ∼280 Ma respectively, whereas the Aketas pluton in the Eastern Junggar terrane is dated at ∼308 Ma. Granites from the Wukuli and Kadelat plutons are strongly peraluminous (A/CNK > 1.1), and are characterized by low Al2O3, Na2O, MnO, MgO, CaO and heavy rare earth element (HREE) contents, but with high SiO2, K2O and Rb contents as well as high Rb/Sr ratios. Granites from the Wukuli pluton have low εNd(t) and εHf(t) values of -3.7 to -3.4 and -9.7 to +4.9, whereas those from the Kadelat pluton have values of -3.6 to -3.4 and -8.0 to +2.6. These features suggest S-type affinity for the Wukuli and Kadelat plutons with magma derivation through partial melting of Mesoproterozoic metasediments. The Aketas pluton is composed of weakly peraluminous quartz monzonites that have A/CNK values ranging from 0.92 to 1.08, with high Na2O, Sr, and Sr/Y, and low Y, Yb, Nb, and Ta. These rocks display positive εNd(t) (+4.8 to +6.4) and εHf(t) (+9.7 to +14.6) values, and low initial 87Sr/86Sr ratios (0.703357-0.703868), similar to modern adakites, suggesting that the quartz monzonites were derived from the partial melting of lower crustal material. The geochemical characteristics suggest that the Aketas pluton was formed in a subduction-related setting, the Wukuli pluton in a syn-collisional setting, and the Kadelat pluton in the subsequent post-orogenic strike-slip-related setting. In combination with data from other granitoids in these two terranes, the Aketas pluton represents the youngest record of subduction-related environments, suggesting that the final collision between the Chinese Altai and Eastern Junggar terranes might have occurred between 308 and 304 Ma.
NASA Astrophysics Data System (ADS)
Goodenough, K. M.; Thomas, R. J.; De Waele, B.; Key, R. M.; Schofield, D. I.; Bauer, W.; Tucker, R. D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A. V.; Randriamananjara, T.
2010-04-01
Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen.
NASA Astrophysics Data System (ADS)
Luo, Yinhe; Zhao, Kaifeng; Tang, Chi-Chia; Xu, Yixian
2018-05-01
The Dabie-Sulu orogenic belt in China contains one of the largest exposures of high and ultrahigh pressure (HP and UHP) metamorphic rocks in the world. The origin of HP/UHP metamorphic rocks and their exhumation to the surface in this belt have attracted great interest in the geologic community because the study of exhumation history of HP/UHP rocks helps to understand the process of continental-continental collision and the tectonic evolution of post-collision. However, the exhumation mechanism of the HP-UHP rocks to the surface is still contentious. In this study, by deploying 28 broadband seismic stations in the eastern Dabie orogenic belt and combining seismic data from 40 stations of the China National Seismic Network (CNSN), we image the high-resolution crustal isotropic shear velocity and radial anisotropy structure using ambient noise tomography. Our high-resolution 3D models provide new information about the exhumation mechanism of HP/UHP rocks and the origin of two dome structures.
Gravity domains and assembly of the North American continent by collisional tectonics
NASA Technical Reports Server (NTRS)
Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.
1988-01-01
A gravity trend map of North America, based on a horizontal Bouguer gravity gradient map produced from gravity data for Canada and the conterminous United States, is presented and used to define a continental mosaic of gravity trend domains akin to structural domains. Contrasting trend characteristics at gravity domain boundaries support the concept of outward growth of the continent primarily by accretionary tectonics. Gravity patterns, however, indicate a different style of tectonics dominated in the development of now-buried Proterozoic orogenic belts in the south-central United States, supporting a view that these belts formed along the leading edge of a southward-migrating Proterozoic continental margin.
NASA Astrophysics Data System (ADS)
Haproff, P. J.; Yin, A.; Zuza, A. V.
2017-12-01
Investigations of continental collisions often focus on thrust belts oriented perpendicular to the plate-convergence direction and exclude belts that bound the flanks of a continental indenter despite being crucial to understanding the collisional process. Research of the Himalayan orogen, for example, has mostly centered on the east-trending thrust belt between the eastern and western syntaxes, resulting in inadequate examination of the north-trending Indo-Burma Ranges located along the eastern margin of India. To better understand the development of the entire Himalayan orogenic system, we conducted field mapping across the Northern Indo-Burma Range (NIBR), situated at the intersection of the eastern Himalaya and Indo-Burma Ranges. Our research shows that major lithologic units and thrust faults of the Himalaya extend to the NIBR, suggesting a shared geologic evolution. The structural framework of the NIBR consists of a southwest-directed thrust belt cored by a hinterland-dipping duplex, like the Himalaya. However, the Northern Indo-Burma orogen is distinct based on (1) the absence of the Tethyan Himalayan Sequence and southern Gangdese batholith, (2) the absence of the South Tibetan detachment, (3) crustal shortening greater than 80%, (4) an incredibly narrow orogen width of 7-33 km, (5) exposure of an ophiolitic mélange complex as a klippe, (6) and right-slip shear along the active range-bounding thrust fault. Furthermore, lithospheric deformation along the flank and northeast corner of India is characterized by right-slip transpression partitioned between the thrust belt and right-slip faults. Such a regime is interpreted to accommodate both contraction and clockwise rotation of Tibetan lithosphere around India, consistent with existing continuum deformation and rotation models.
NASA Astrophysics Data System (ADS)
Fillon, Charlotte; Calassou, Sylvain; Mouthereau, Frédéric; Pik, Raphaël; Bellahsen, Nicolas; Gautheron, Cécile
2017-04-01
Within their sedimentary record, foreland basins document vertical movements of the lithosphere, climatic changes, paleogeograhic evolution but also history of exhumation of the adjacent mountain belt. Comparing vertical movements in a range and in its foreland is key to identify processes involved in growth and destruction of mountain belts. The Aquitaine basin, geomorphologically stable since the early Pyrenean orogenesis has the potential to help understanding the driving mechanisms during the late to post-orogenic phases, but the lack of outcrops makes the studies particularly difficult to achieve. To bring a new point of vue on the processes involved in the Cenozoic exhumation of this range, we present new low-Temperature thermochronology data from boreholes of the Aquitaine basin. With the objectives to study rift-related to post-orogenic processes, numerous low-T thermochronological ages ( 300 across the range) have been published, documenting pre-, syn- , and post-orogenic exhumation in the Pyrenees. Using thermal modeling of a new low-T database in the western Axial Zone, we show that a late Miocene (around 10 Ma) uplift occured in the western Pyrenees, which generalizes the post-orogenic signal already detected in the south central Pyrenees. In previous studies, we linked the post-orogenic exhumation in the Southern Pyrenees to the excavation of the foreland valleys caused by the opening of the endorheic Ebro basin towards the Mediterranean Sea. To the West, the tectonic out-of sequence reactivation of the Gavarnie thrust has been invoked to explain the late Miocene AHe ages in the Bielsa massif. These new data might lead us to re-think the causes for such an exhumation signal during "post-orogenic" times. We thus summarize all evidences for the post-orogenic phase and attempt to provide explanation for it: is exhumation driven by Aquitaine foreland basin evolution? Does it reflect a tectonic reactivation of the Pyrenees? or is the signature of a regional/global climate change conditions ? To answer these questions, we present a new dataset of ZHe and AFT ages from borehole samples in three localities of the Aquitaine basin. We use these new data to link the late Miocene exhumation history with the vertical movements in the Aquitaine basin. This study is part of the Orogen projet, an academic-industrial collaboration (CNRS-Total-BRGM)
Triple junction orogeny: tectonic evolution of the Pan-African Northern Damara Belt, Namibia
NASA Astrophysics Data System (ADS)
Lehmann, Jérémie; Saalmann, Kerstin; Naydenov, Kalin V.; Milani, Lorenzo; Charlesworth, Eugene G.; Kinnaird, Judith A.; Frei, Dirk; Kramers, Jan D.; Zwingmann, Horst
2014-05-01
Trench-trench-trench triple junctions are generally geometrically and kinematically unstable and therefore can result at the latest stages in complicated collisional orogenic belts. In such geodynamic sites, mechanism and timescale of deformations that accommodate convergence and final assembly of the three colliding continental plates are poorly studied. In western Namibia, Pan-African convergence of three cratonic blocks led to pene-contemporaneous closure of two highly oblique oceanic domains and formation of the triple junction Damara Orogen where the NE-striking Damara Belt abuts to the west against the NNW-striking Kaoko-Gariep Belt. Detailed description of structures and microstructures associated with remote sensing analysis, and dating of individual deformation events by means of K-Ar, Ar-Ar (micas) and U-Pb (zircon) isotopic studies from the Northern Damara Belt provide robust constraints on the tectonic evolution of this palaeo-triple junction orogeny. There, passive margin sequences of the Neoproterozoic ocean were polydeformed and polymetamorphosed to the biotite zone of the greenschist facies to up to granulite facies and anatexis towards the southern migmatitic core of the Central Damara Belt. Subtle relict structures and fold pattern analyses reveal the existence of an early D1 N-S shortening event, tentatively dated between ~635 Ma and ~580 Ma using published data. D1 structures were almost obliterated by pervasive and major D2 E-W coaxial shortening, related to the closure of the Kaoko-Gariep oceanic domain and subsequent formation of the NNW-striking Kaoko-Gariep Belt to the west of the study area. Early, km-scale D1 E-W trending steep folds were refolded during this D2 event, producing either Type I or Type II fold interference patterns visible from space. The D2 E-W convergence could have lasted until ~533 Ma based on published and new U-Pb ages. The final D3 NW-SE convergence in the northernmost Damara Belt produced a NE-striking deformation front in weak metasedimentary rocks during SE-directed indentation of a rigid Paleoproterozoic basement. In the central and southern parts of the Northern Damara Belt, D3 is mostly expressed by km-scale local Type I fold interference patterns formed by the refolding of D2 upright synclines as well as bending around a steep axis of the D2 refolded folds and steep S2 multilayer. In the western part however, where the two orthogonal trends of the Damara and Kaoko-Gariep Belts meet, D3 is described in literature as sinistral shearing along reactivated steep S2 planes that is associated with steep-hinge folds with steep NE-striking axial planes. Our new ages indicate that D3 lasted from ~513 Ma to ~460 Ma throughout the entire Northern Damara Belt. These results document for the first time a regional-scale early Pan-African N-S shortening event of uncertain geotectonic significance. They furthermore indicate that two competing orthogonal collisional systems have contributed in resolving instabilities at the triple orogenic junction over a period in the order of ~100 m.y. and could therefore account for the assembly of the three cratons. The E-W convergence was preponderant in strength and pre-dates the NW-SE one, the latter being associated with localized sinistral shearing along the Kaoko Belt interface in the westernmost Northern Damara Belt.
Lawton, T.F.; Sprinkel, D.A.; Decelles, P.G.; Mitra, G.; Sussman, A.J.; Weiss, M.P.
1997-01-01
The Sevier orogenic belt in central Utah comprises four north-northwest trending thrust plates and two structural culminations that record crustal shortening and uplift in late Mesozoic and early Tertiary time. Synorogenic clastic rocks, mostly conglomerate and sandstone, exposed within the thrust belt were deposited in wedge-top and foredeep depozones within the proximal part of the foreland-basin system. The geologic relations preserved between thrust structures and synorogenic deposits demonstrate a foreland-breaking sequence of thrust deformation that was modified by minor out-of-sequence thrust displacement. Structural culminations in the interior part of the thrust belt deformed and uplifted some of the thrust sheets following their emplacement. Strata in the foreland basin indicate that the thrust sheets of central Utah were emplaced between latest Jurassic and Eocene time. The oldest strata of the foredeep depozone (Cedar Mountain Formation) are Neocomian and were derived from the hanging wall of the Canyon Range thrust. The foredeep depozone subsided most rapidly during Albian through Santonian or early Campanian time and accumulated about 2.5 km of conglomeratic strata (Indianola Group). The overlying North Horn Formation accumulated in a wedge-top basin from the Campanian to the Eocene and records propagation of the Gunnison thrust beneath the former foredeep. The Canyon Range Conglomerate of the Canyon Mountains, equivalent to the Indianola Group and the North Horn Formation, was deposited exclusively in a wedge-top setting on the Canyon Range and Pavant thrust sheets. This field trip, a three day, west-to-east traverse of the Sevier orogenic belt in central Utah, visits localities where timing of thrust structures is demonstrated by geometry of cross-cutting relations, growth strata associated with faults and folds, or deformation of foredeep deposits. Stops in the Canyon Mountains emphasize geometry of late structural culminations and relationships of the Canyon Range thrust to growth strata deposited in the wedge-top depozone. Stops in the San Pitch Mountains illustrate deposits of the foredeep depozone and younger, superjacent wedge-top depozone. Stops in the Sanpete Valley and western part of the Wasatch Plateau examine the evolution of the foreland-basin system from foredeep to wedge-top during growth of a triangle zone near the front of the Gunnison thrust.
NASA Astrophysics Data System (ADS)
Hartnady, Michael; Kirkland, Chris; Clark, Chris; Spaggiari, Catherine; Smithies, Hugh
2017-04-01
The Albany-Fraser Orogen is a 1200 km long east to northeasterly trending Palaeoproterozoic to Mesoproterozoic orogenic belt that defines the southern to southeastern margin of the West Australian Craton (WAC). The belt records a long and complex geological history spanning the break-up of Nuna between 2000 and 1700 Ma and amalgamation of Rodinia between 1300 and 1000 Ma. Recent geochronological, geochemical and isotopic work has shown that the Albany-Fraser Orogen formed through a protracted period of reworking of the margin of the Archean Yilgarn Craton (part of the WAC) with various additions of mantle-derived material. The Cretaceous Bight and Cenozoic Eucla Basins partially overlie the northeastern part of the Albany-Fraser Orogen and completely cover 1000 km of crystalline basement (the Eucla basement) that separates the belt from the South Australian Craton. This basement constitutes the glue between the major building blocks of Proterozoic Australia, yet, its geological history is poorly understood. New drill cores penetrating the basement have intersected interlayered granitic and gabbroic rocks that yield U-Pb zircon dates that are dissimilar to any magmatic ages from units within the adjoining Albany-Fraser Orogen, with the exception of the youngest, 1190-1125 Ma magmatic suite. In addition, mantle-like hafnium and neodymium isotopic signatures indicate that the rocks of the Eucla basement are dominated by new juvenile addition, and may represent an allochthonous terrane of oceanic heritage. New ɛHf contour maps for the Albany-Fraser Orogen and Eucla basement highlight this difference. Time-slicing the isotopic dataset reveals a pattern of Palaeoproterozoic juvenile magmatism sub-perpendicular to the present day structural grain in the belt. If this marks the presence of an older lithospheric structure then it demonstrates the power that time-constrained isotopic mapping provides for illuminating lithospheric architecture through time. This may be particularly useful for unravelling crustal evolution in regions with complex tectonic histories.
Timing of tectonic evolution of the East Kunlun Orogen, Northern Tibet Plateau
NASA Astrophysics Data System (ADS)
Dong, Yunpeng
2017-04-01
The East Kunlun Orogen, located at the northern Tibet Plateau, represents the western segment of the Central China Orogenic Belt which was formed by amalgamation of the North China blocks and South China blocks. It is a key to understanding the formation of Eastern Asian continent as well as the evolution of the Pangea supercontinent. Based on detailed geological mapping, geochemical and geochronological investigations, the orogen is divided into three main tectonic belts, from north to south, including the Northern Qimantagh, Central Kunlun and Southern Kunlun Belts by the Qimantagh suture, Central Kunlun suture and South Kunlun fault. The Qimantagh suture is marked by the Early Paleozoic ophiolites outcropped in the Yangziquan, Wutumeiren, and Tatuo areas, which consist mainly of peridotites, gabbros, diabases and basalts. Besides, the ophiolite in the Wutumeiren is characterized by occurring anorthosite while the ophiolite in the Tatuo occurring chert. The basalts and diabases from both Yaziquan and Tatuo areas display depletion of Nb, Ta, P and Ti, and enrichment of LILE, suggesting a subduction related tectonic setting. LA-ICP-MS zircon U-Pb age of 421 Ma for the diabase represents the formation age of the Yaziquan ophiolite, while the U-Pb ages of 490 Ma and 505 Ma for gabbro and anorthosite, respectively, constrain the formation age of the Tatuo ophiolite. The basaltic rocks in the Wutumeiren area display flat distribution of HFSEs (such as Nb, Ta, K, La, Ce, Pr, Nd, Zr, Sm, Eu, Ti, Dy, Y, Yb and Lu) and slightly enrichment in LREEs, while the peridotites showing depletion in MREEs. The LA-ICP-MS zircon U-Pb age of 431 Ma for the gabbro represents the formation age of the Wutumeiren ophiolite. Together with regional geology, we suggest herewith a back-arc basin tectonic setting during ca. 505-421 Ma at least for the Qimantagh suture. The Central Kunlun suture is represented by the ophiolite in the Wutuo area, which is characterized by depletion of Nb, Ta, P and Ti, and enrichment of LILEs, LREEs, K, Pb, Sr and Nd, accounting for a subduction relation setting. The gabbro yields a LA-ICP-MS zircon U-Pb age of 243 Ma, representing the formation age of the ophiolite. Taking into account of evidence from the Early Paleozoic ophiolites in the Buqinshan ( Bian Qiantao et al., 2001, 2007; Li Zuochen et al., 2013; Li Ruibao et al., 2014; Liu Zhanqing et al., 2011) and the Derni areas (Chen Liang et al., 2001, 2003), the Central Kunlun ocean might be existed from Early Paleozoic to Middle Triassic time. The Northern Qimantagh tectonic belt, to the north of the Qimantagh suture, exposes a large volume of Early Paleozoic granitic plutons and volcanic rocks. Geochemistry of the granites suggests an arc setting. LA-ICP-MS zircon U-Pb ages ranging from ca. 440 to 402 Ma constrain the time of the subduction and arc setting. The Central Kunlun tectonic belt is characterized by occurring of Paleo-Proterozoic basement which was intruded by large amounts of Triassic granitoids. The basement represented by the Jinshuikou Group including gneisses, amphibolites and marbles, yields a protolith formation age of 2.2 Ga which was overprinted by Neoproterozoic tectono-thermal event. The plutonic intrusions display LA-ICP-MS zircon ages mainly of 260-200 Ma with minor ages of 470-400 Ma, revealing a long-lived subduction from Early Paleozoic to Late Triassic. Taken into together all above evidence, trench-arc-back arc basin tectonics were suggested here accounting for the tectonic evolution of the East Kunlun Orogeny during Early Paleozoic to Triassic time.
NASA Astrophysics Data System (ADS)
Casas, Josep M.; Brendan Murphy, J.
2018-06-01
We present a pre-orogenic, early Paleozoic, palinspastic reconstruction of the northern Gondwana margin that was subsequently involved in the Late Paleozoic Variscan orogeny in central and Western Europe. Our reconstruction is based on two pre-orogenic data sets, the age and distribution of Cambrian-Ordovician magmatism and the detrital zircon age signature of late Neoproterozoic-early Paleozoic clastic rocks. We obtain this reconstruction by unfolding the Ibero-Armorican arc and by restoring the movement of the large-scale dextral strike-slip faults that transect the different tectono-stratigraphic units. Our results favour an irregular shape for this part of the northern Gondwana margin with a N-S central segment linking two E-W oriented segments. The proposed reconstruction and the structural restoration of the main features of Variscan deformation is in accordance with some aspects of previously proposed structural models, such as the curved geometry of the Gondwanan margin required by the indentor model for continental collision, the role played by the large strike-slip faults in dispersing formerly juxtaposed units, and the regional-scale oroclinal folding of part of this margin during late Carboniferous-Early Permian times. The combined use of the pre-orogenic geological constraints and palinspastic restoration is a useful approach that may provide a foundation for continual refinement of reconstructions as more data become available.
Crustal and uppermost mantle structure and deformation in east-central China
NASA Astrophysics Data System (ADS)
Li, H.; Yang, X.; Ouyang, L.; Li, J.
2017-12-01
We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present velocity structure and stress environment of eastern China.
NASA Astrophysics Data System (ADS)
Folguera, AndréS.; Ramos, VíCtor A.; Hermanns, Reginald L.; Naranjo, José
2004-10-01
The Antiñir-Copahue fault zone (ACFZ) is the eastern orogenic front of the Andes between 38° and 37°S. It is formed by an east vergent fan of high-angle dextral transpressive and transtensive faults, which invert a Paleogene intra-arc rift system in an out of sequence order with respect to the Cretaceous to Miocene fold and thrust belt. 3.1-1.7 Ma volcanic rocks are folded and fractured through this belt, and recent indicators of fault activity in unconsolidated deposits suggest an ongoing deformation. In spite of the absence of substantial shallow seismicity associated with the orogenic front, neotectonic studies show the existence of active faults in the present mountain front. The low shallow seismicity could be linked to the high volumes of retroarc-derived volcanic rocks erupted through this fault system during Pliocene and Quaternary times. This thermally weakened basement accommodates the strain of the Antiñir-Copahue fault zone, absorbing the present convergence between the South America and Nazca plates.
NASA Astrophysics Data System (ADS)
Wu, S.; McKay, M.; Evans, K. R.
2017-12-01
Understanding the architecture of mountain belts is limited because studies are typically confined to surficial exposures with lesser amounts of subsurface data and active margins are prone to successive tectonism that obscures the rock record. In west-central Missouri, two Paleozoic meteorite impacts are exposed that contain a range of outcrop-scale structures. While the strain rate in a meteorite impact is an order of magnitude greater than that in orogeny-scale structures, the morphology and spatial relationships in these impact structures may provide insight into larger tectonic features. The entire crater could not be compared to an orogenic event because the amount of strain diffuses as distance increases from the impactor during an impacting event. The center of an impact crater could not be compared to an orogenic event because it has become too deformed. However, the crater rim and the immediate surrounding area could be used as a comparison because it has undergone the right amount of deformation to have recognizable structures. High-detail mapping and structural analyses of road cut exposures near Decaturville, MO reveals thrust fault sequences contain 1-2 m thick mixed carbonate and clastic sheets that include rollover anticlines, structural orphans, and lateral ramp features. Thrust faults dip away from the impact structure and represent gravitational collapse of the central uplift seconds after collision. Thrust sheet thickness, thrust fault spacing, ramp/flat morphology, and shortening of within these structures will be presented and assessed as an analogue for map-scale features in the Southern Appalachian fold and thrust belt. Because temperature controls rock mechanic properties, a thermal model based on thermochronology and thermobarometry for the section will also be presented and discussed in the context of orogenic thermomechanics.
NASA Astrophysics Data System (ADS)
Van Hinsbergen, D. J. J.; Maffione, M.
2017-12-01
Jurassic subduction initiation in the Neo-Tethys Ocean was the first, critical step of a long tectonic process that eventually led to the collision of the Adria-Africa and Eurasia plates and the formation of a 6000 km long Alpine orogenic belt spanning from the Balkan Peninsula to Iran. Investigating the process of subduction initiation in the Neo-Tethys during the Jurassic is crucial to (i) reconstruct the complex geological evolution of this orogen from its initial stages, and (ii) shed new lights over the enigmatic kinematics and driving mechanisms of subduction initiation. Records of the initial closure of the Neo-Tethys are today preserved in a fragmented belt of Middle Jurassic ophiolites (170-160 Ma) distributed above the Alpine orogen. In particular, the well-preserved and extensively studied ophiolites of the Balkan Peninsula offer a unique chance to study the mechanisms leading to the closure of the western domain of the Neo-Tethys. Here we provide the first quantitative constraints on the geometry of the Jurassic Neo-Tethyan subduction system using a net tectonic rotation analysis based on paleomagnetic and structural geological data from the sheeted dyke complexes of various ophiolites of Serbia (Maljen, Ibar) and Greece (Othris, Pindos, Vourinos, Guevgueli). Our results show that closure of the western Neo-Tethys was accommodated by two subduction zones, one intra-oceanic, formed at the N-S trending Neo-Tethyan ridge, the other initiated at the European passive margin and curving southward from a N-S to a NW-SE direction following the shape of the passive margin. We propose that these two subduction zones formed upon propagation of subduction(s) initiated in the central Neo-Tethys (modern Turkey) in the late Early Jurassic ( 185-180 Ma).
NASA Astrophysics Data System (ADS)
Shi, Yuruo; Zhang, Wei; Kröner, Alfred; Li, Linlin; Jian, Ping
2018-03-01
We present zircon ages and geochemical data for Cambrian ophiolite complexes exposed in the Beishan area at the southern margin of the Central Asian Orogenic Belt (CAOB). The complexes consist of the Xichangjing-Xiaohuangshan and Hongliuhe-Yushishan ophiolites, which both exhibit complete ophiolite stratigraphy: chert, basalt, sheeted dikes, gabbro, mafic and ultramafic cumulates and serpentinized mantle peridotites. Zircon grains of gabbro samples yielded 206Pb/238U ages of 516 ± 8, 521 ± 4, 528 ± 3 and 535 ± 6 Ma that reflect the timing of gabbro emplacement. The geochemical data of the basaltic rocks show enrichment in large-ion lithophile elements and depletion in the high field strength elements relative to normal mid-oceanic ridge basalt (NMORB) in response to aqueous fluids or melts expelled from the subducting slab. The gabbro samples have higher whole-rock initial 87Sr/86Sr ratios and lower positive εNd(t) values than NMORB. These geochemical signatures resulted from processes or conditions that are unique to subduction zones, and the ophiolites are therefore likely to have formed within a supra-subduction zone (SSZ) environment. We suggest that the Cambrian ophiolite complexes in the Beishan area formed within a SSZ setting, reflecting an early Paleozoic subduction of components of the Paleo-Central Asian Ocean and recording an early Paleozoic southward subduction event in the southern CAOB along the northern margin of the Tarim and North China Cratons.
Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust
NASA Astrophysics Data System (ADS)
Korja, T.; Hjelt, S.-E.
1993-12-01
Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of the Svecofennian Domain.
NASA Astrophysics Data System (ADS)
Wang, Yannan; Cai, Keda
2017-04-01
The western Chinese Tianshan, located in the southern domain of the Central Asian Orogenic Belt (CAOB), was originally constructed by multiple accretion-collision processes in the Paleozoic, and was superimposed by complex intracontinental tectonic evolution in the Mesozoic-Cenozoic. Understanding the timing and mechanism of the latter geological processes is critical to unravel the preservation conditions of the epithermal deposits in the western Chinese Tianshan. This work presents new apatite fission track (AFT) data for three mountain ranges of the western Chinese Tianshan to track their exhumation history. Our AFT data gave a wide range of ages from 76.8 ± 5.5 Ma to 182.3 ± 9.9 Ma, and the mean confined fission track lengths are between 9.8 ± 0.5 μm and 12.3 ± 0.2 μm. The new data, in combination with the thermal history modeling,enable us to attribute the exhumation history to three primary stages, including Early Permian (300-280 Ma), Late Triassic-Early Cretaceous (230-130 Ma), and Late Oligocene-Early Miocene (30-20 Ma). The first stage may be caused by the terrane accretion-collision in the late Paleozoic. The second stage was likely related to the closure of the Mongol-Okhotsk Ocean during the Mesozoic. The last one is regarded as the result of the collision between the Indian Plate and the Eurasia Plate in the Cenozoic. The extraordinary exhumation processes of these three major mountain ranges might have been responsible for sediment supply to the corresponding intra-mountain basins in the western Chinese Tianshan, and the particularly mountain-basin coupling evolution is ascribed to an essential condition for the preservation of epithermal deposits in ancient orogenic belt.
Marillier, F.; Hall, J.; Hughes, S.; Louden, K.; Reid, I.; Roberts, B.; Clowes, R.; Cote, T.; Fowler, J.; Guest, S.; Lu, H.; Luetgert, J.; Quinlan, G.; Spencer, C.; Wright, J.
1994-01-01
Combined onshore-offshore seismic refraction/ wide-angle reflection data have been acquired across Newfoundland, eastern Canada, to investigate the structural architecture of the northern Appalachians, particularly of distinct crustal zones recognized from earlier LITHOPROBE vertical incidence studies. A western crustal unit, correlated with the Grenville province of the Laurentian plate margin thins from 44 to 40 km and a portion of the lower crust becomes highly reflective with velocities of 7.2 km/s. In central Newfoundland, beneath the central mobile belt, the crust thins to 35 km or less and is marked by average continental velocities, not exceeding 7.0 km/s in the lower crust. Further east, in a crustal unit underlying the Avalon zone and associated with the Gondwanan plate margin, the crust is 40 km thick, and has velocities of 6.8 km/s in the lower crust. Explanations for the thin crust beneath the central mobile belt include (1) post-orogenic isostatic readjustment associated with a density in the mantle which is lower beneath this part of the orogen than beneath the margin, (2) mechanical thinning at the base of the crust during orogenic collapse perhaps caused by delamination, and (3) transformation by phase change of a gabbroic lower crust to eclogite which seismologically would be difficult to distinguish from mantle. Except for a single profile in western Newfoundland, velocities in the crust are of typical continental affinity with lower-crustal velocities less than 7.0 km/s. This indicates that there was no significant magmatic underplating under the Newfoundland Appalachians during Mesozoic rifting of the Atlantic Ocean as proposed elsewhere for the New England Appalachians. A mid-crustal velocity discontinuity observed in the Newfoundland region does not coincide with any consistent reflection pattern on vertical incidence profiles. However, we suggest that localized velocity heterogeneities at mid-crustal depths correspond to organized vertical incidence reflections. ?? 1994.
Proterozoic metamorphism and uplift history of the north-central Laramie Mountains, Wyoming, USA
Patel, S.C.; Frost, B.R.; Chamberlain, K.R.; Snyder, G.L.
1999-01-01
The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U-Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U-Pb apatite ages are 2.4-2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz-biotite-plagioclase-garnet-staurolite-kyanite in the pelitic schists; (b) quartz-biotite-plagioclase-low-Ca amphiboles-kyanite in Mg-Al-rich schists, and locally (c) hornblende-plagioclase-garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg-Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from > 7 kbar to < 3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78-1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.
Tectonic mode switches and the nature of orogenesis
NASA Astrophysics Data System (ADS)
Lister, Gordon; Forster, Marnie
2009-12-01
The birth and death of many mountain belts occurs in lithosphere that over-rides major subduction zones. Here the tectonic mode (shortening versus extension) can abruptly switch, even during continuous and otherwise smooth convergence. If the hinge line of the foundering slab rapidly retreats (i.e. rolls back), the foundering slab creates a gravitational potential well into which the orogen collapses. This motion, coupled with stress guides, can "pull" the orogen apart. A slowing of roll-back (or of hinge retreat) means that the subduction flexure may subsequently begin to be "pushed back" or be "pushed over" by the advancing orogen. The consequence of such changes in relative motion is that orogenic belts are affected by abrupt tectonic mode switches. The change from "push" to "pull" leads to a sudden change from horizontal extension to horizontal shortening, potentially throughout the entire mass of the orogenic lithosphere that over-rides the subducting slab. The sequencing of these tectonic mode switches affects the thermal evolution of the orogen, and thus fundamentally determines the nature of orogenesis. This insight led to us to our quite different views as to how orogens work. It is evident that orogens affected by abrupt "push-pull" mode switches are characterized by high-pressure metamorphism, whereas orogens affected by abrupt "pull-push" mode switches are characterized by high-temperature metamorphism, magmatism and anatexis.
NASA Astrophysics Data System (ADS)
Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar
2018-01-01
The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.
The main features of the Uralian Paleozoic magmatism and the epioceanic nature of the orogen
NASA Astrophysics Data System (ADS)
Fershtater, G. B.
2013-02-01
The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460-390 Ma) to mantle-crust gabbro-granitic complexes (370-315 Ma) followed by pure crustal granite magmatism (290-250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.
Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2016-12-01
Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic gold becomes diluted by abundant lithic debris in rivers and sedimentary basins except where localised concentration occurs, especially on beaches.
Tectonic and kinematics of curved orogenic systems: insights from AMS analysis and paleomagnetism
NASA Astrophysics Data System (ADS)
Cifelli, Francesca; Mattei, Massimo
2016-04-01
During the past few years, paleomagnetism has been considered a unique tool for constraining kinematic models of curved orogenic systems, because of its great potential in quantifying vertical axis rotations and in discriminating between primary and secondary (orocline s.l.) arcs. In fact, based on the spatio-temporal relationships between deformation and vertical axis rotation, curved orogens can be subdivided as primary or secondary (oroclines s.l.), if they formed respectively in a self-similar manner without undergoing important variations in their original curved shape or if their curvature in map-view is the result of a bending about a vertical axis of rotation. In addition to the kinematics of the arc and the timing of its curvature, a crucial factor for understanding the origin of belts curvature is the knowledge of the geodynamic process governing arc formation. In this context, the detailed reconstruction of the rotational history is mainly based on paleomagnetic and structural analyses (fold axes, kinematic indicators), which include the magnetic fabric. In fact, in curved fold and thrust belts, assuming that the magnetic lineation is tectonically originated and formed during layer-parallel shortening (LPS) before vertical axis rotations, the orientation of the magnetic lineation often strictly follows the curvature of the orogeny. This assumption represents a fundamental prerequisite to fully understand the origin of orogenic arcs and to unravel the geodynamic processes responsible for their curvature. We present two case studies: the central Mediterranean arcs and the Alborz Mts in Iran. The Mediterranean area has represented an attractive region to apply paleomagnetic analysis, as it shows a large number of narrow arcs, whose present-day shape has been driven by the space-time evolution of the Mediterranean subduction system, which define a irregular and rather diffuse plate boundary. The Alborz Mts. form a sinuous range over 1,200 km long, defining from west to east a salient with a southward concavity which results in the wrapping of the South Caspian basin to the north, and a southward reentrant with apex which encircles the Central Iranian block to the south. The integration of paleomagnetic and AMS data indicates that this orogen started to form as an almost straight E-W oriented range and acquired its present-day curved shape by means of opposite vertical axis rotations. Such a process was probably caused by the relative motion between different rigid blocks (South Caspian, Central Iran, and the Eastern Iranian Blocks) forming the collision zone and hence must be a crustal to lithospheric-scale process.
NASA Astrophysics Data System (ADS)
Koyi, Hemin; Nilfouroushan, Faramarz; Hessami, Khaled
2015-04-01
A series of scaled analogue models are run to study the degree of coupling between basement block kinematics and cover deformation. In these models, rigid basal blocks were rotated about vertical axis in a "bookshelf" fashion, which caused strike-slip faulting along the blocks and, to some degrees, in the overlying cover units of loose sand. Three different combinations of cover basement deformations are modeled; cover shortening prior to basement fault movement; basement fault movement prior to shortening of cover units; and simultaneous cover shortening with basement fault movement. Model results show that the effect of basement strike-slip faults depends on the timing of their reactivation during the orogenic process. Pre- and syn-orogen basement strike-slip faults have a significant impact on the structural pattern of the cover units, whereas post-orogenic basement strike-slip faults have less influence on the thickened hinterland of the overlying fold-and-thrust belt. The interaction of basement faulting and cover shortening results in formation of rhomb features. In models with pre- and syn-orogen basement strike-slip faults, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strike-slip faulting. These rhombic blocks, which have resemblance to flower structures, differ in kinematics, genesis and structural extent. They are bounded by strike-slip faults on two opposite sides and thrusts on the other two sides. In the models, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strke-slip faulting. Such rhomb features are recognized in the Alborz and Zagros fold-and-thrust belts where cover units are shortened simultaneously with strike-slip faulting in the basement. Model results are also compared with geodetic results obtained from combination of all available GPS velocities in the Zagros and Alborz FTBs. Geodetic results indicate domains of clockwise and anticlockwise rotation in these two FTBs. The typical pattern of structures and their spatial distributions are used to suggest clockwise block rotation of basement blocks about vertical axes and their associated strike-slip faulting in both west-central Alborz and the southeastern part of the Zagros fold-and-thrust belt.
What controls deformation in a bent three-dimensional orogen? An example from the Bolivian Andes
NASA Astrophysics Data System (ADS)
Kaislaniemi, L.; Whipp, D. M., Jr.
2017-12-01
The width of orogens is thought to be affected by both erosional intensity and strength of the rocks. Along-strike variation of the orogen width can be expected to reflect shifts in these factors. An example of such variation can be found around the Bolivian orocline, which is a change in the orientation of the central Andes, in central Bolivia, from N-S south of 18°S to roughly NW-SE in the north. This bend coincides with 50% reduction in the width of the orogen east of the Altiplano, an approximately eight-fold increase in the annual precipitation, and the presence of a basement arch that reduces the thickness of relatively weak Paleozoic sediments upon which the orogen detaches. This has led to uncertainty about whether the growth of the orogen is controlled primarily by climate (erosion) or tectonics (strength of the basal detachment). We study deformation in a segmented orogen using 3D geodynamic models to understand how along-strike variations in rainfall and basal detachment strength affect orogen deformation and growth of the frontal part of the Andean fold-and-thrust belt (FTB). We calculate the visco-plastic deformation in the retro-wedge of an Andean-style orogen using the finite element software DOUAR (Braun et al. 2008) coupled to the surface process model FastScape (Braun & Willett 2013). The model design includes the basement, the Altiplano, and the FTB east of the plateau. A weak basal detachment zone is prescribed. Strain softening allows development of new faults and free evolution of the detachment zone. The effects of varying rock strength and varying precipitation are considered to determine the primary control(s) on the geometry and evolution of curved orogens. Results show that both increased precipitation and stronger detachment zone can explain differences in the width of the FTB, as reflected in the topography. These factors, however, lead to different structural evolution of the orogen: Weak basal detachment zone promotes growth of the FTB towards the foreland, whereas strong basal detachment keeps the deformation nearer to the plateau. Increased precipitation causes strong localization of the frontal thrust and no internal deformation in the foreland or near the plateau. Strike-slip faults are produced by variation in detachment zone strength, but not by shifts in precipitation rates.
NASA Astrophysics Data System (ADS)
Berger, Aaron L.; Spotila, James A.; Chapman, James B.; Pavlis, Terry L.; Enkelmann, Eva; Ruppert, Natalia A.; Buscher, Jamie T.
2008-06-01
The kinematics and architecture of orogenic systems along the leading edges of accreting terranes may be heavily influenced by climate, but little research has been devoted to the long-term effects of glacial erosion on orogenesis. Here we use low-temperature apatite and zircon (U-Th)/He and fission-track thermochronometry, along with subsidiary structural relationships and seismicity, to develop a new architectural model of the St. Elias orogen in southern Alaska, which is one of the best examples of a glaciated orogenic wedge worldwide. These data illustrate that the orogen consists of a deformational backstop on the leeward flank and a rapidly deforming and eroding, thin-skinned fold and thrust belt on the windward flank. A structure beneath the Bagley ice field separates these distinct deformational domains, which we propose is a backthrust that makes the orogen doubly-vergent. Thermochronometry within the orogenic wedge suggests that denudation and deformation are strongly influenced by glacial erosion. Long-term exhumation, at rates of up to 4 mm/yr, is concentrated within a narrow zone along the windward flank, where glacier equilibrium lines intersect the orogenic wedge. The onset of enhanced glaciation also coincided with a marked acceleration in exhumation across the orogenic wedge, accelerated backthrust motion, and a major shift in deformation away from the North American-Yakutat terrane suture (Chugach St. Elias fault). We propose that accelerated glacial erosion forced the redistribution of strain along the backthrust and an en echelon array of forethrusts that lie beneath the zone of heaviest glaciation, which in turn are systematically truncated by the backthrust. This focusing of deformation matches predictions from analytical models of orogenic wedges and implies a high degree of coupling between climate and tectonics in this glacially-dominated orogen.
Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China
NASA Astrophysics Data System (ADS)
Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng
2016-04-01
Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows, and oil and gas fields have also been discovered in the Zaysan Basin in adjacent Kazakhstan and in adjacent Junggar, Tuha and Santanghu Basins. Drilling data, geochemical analysis of outcrop data, and the disection of ancient Bulongguoer oil reservoir at the south margin of the Hefeng Basin show there developed two sets of good transitional source rocks, the lower Hujierste Formation in the Middle Devonian (D2h1) and the Hebukehe Formation in the Upper Devonian and Lower Carboniferous (D3-C1h) in this area, which, 10 to 300 m thick, mainly distribute in the shoal water zone along Tacheng-Ertai Late Paleozoic island arc belt. Reservoirs were mainly formed in the Jurassic and then adjusted in two periods, one from the end of the Jurassic to middle Cretaceous and the other in early Paleogene. Those early oil reservoirs might be destroyed in areas such as Bulongguoer with poor preservation conditions, but in an area with good geologic and preserving conditions, oil and gas might accumulate again to form new reservoirs. Therefore, a potential Middle Devonian-Lower Carboniferous petroleum system may exist in Tacheng-Ertai island arc belt, which may become a new domain for exploration, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.
Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch
2014-01-01
Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.
Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch.
2014-01-01
Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%), Ba (42.45–503.0 ppm), and ΣREE (3.28–19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb)N, and (La/Ce)N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349
Geodynamic processes and deformation in orogenic belts
NASA Astrophysics Data System (ADS)
Dennis, John G.; Jacoby, Wolfgang R.
1980-03-01
The development of geosynclines and orogenic belts is related to lithosphere convergence. Initial sediment accumulation implying subsidence, and volcanic activity implying extension and rise of geotherms, are in most cases followed by folding and thrusting suggesting compression and by uplift. In terms of recent analogs, sediment accumulation and crustal extension are characteristic of back-arc spreading; subsequent compression would indicate continent—continent collision; and rise of geotherms most likely requires localized thermal flow (convection) in the asthenosphere. These events are here shown to agree with Andrews and Sleep's (1974) numerical model of asthenosphere flow at converging plate margins. Orthogeosynclinal subsidence appears to be a consequence of subcrustal ablation and lithosphere extension and thinning in active marginal basins. Arc and Andean type magmatism mark the reappearance of ablated and transported, relatively low-density subcrustal material. Collision slows and eventually stops the local convection cell, resulting in local heat accumulation and hence high- T, low- P metamorphism and granitization while marginal basin (orthogeosynclinal) deposits are being compressed into Alpine style orogenic structures. Moreover, closing of the marginal basin leads to subsidiary subduction, which in turn may be responsible for some Alpine style structures. Oceanic trench deposits may become incorporated in orogenic zones, as high- P, low- T metamorphic belts (thalassogeosynclines). Dynamic uplift is a fundamental characteristic of orogeny. Most rising and sinking in orogenic zones can be linked to those asthenosphere processes which are a consequence of Andrews-Sleep convection.
Southwest U. S. -East Antarctic (SWEAT) connection: A hypothesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moores, E.M.
A hypothesis for a late Precambrian fit of western North America with the Australia-Antarctic shield region permits the extension of many features through Antarctica and into other parts of Gondwana. Specifically, the Grenville orogen may extend around the coast of East Antarctica into India and Australia. The Wopmay orogen of northwest Canada may extend through eastern Australia into Antarctica and thence beneath the ice to connect with the Yavapai-Mazatzal orogens of the southwestern US. The ophiolitic belt of the latter may extend into East Antarctica. Counterparts of the Precambrian-Paleozoic sedimentary rocks along the US Cordilleran miogeocline may be present inmore » the Transantarctic Mountains. Orogenic belt boundaries provide useful piercing points for Precambrian continental reconstructions. The model implies that Gondwana and Laurentia rifted away from each other on one margin and collided some 300 m.y. later on their opposite margins to from the Appalachians.« less
NASA Astrophysics Data System (ADS)
Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei
2017-01-01
Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early Paleozoic magmatic rocks in the North Altun orogenic belt.
Sink to survive: The persistence of ancient mountain belts through crustal density changes
NASA Astrophysics Data System (ADS)
Blackburn, T. J.; Ferrier, K.; Perron, J.
2012-12-01
Mountain belts form when collisions between continents thicken the Earth's crust, which buoyantly rises to remain in isostatic equilibrium with the underlying asthenosphere. Just as isostasy leads to the birth of mountain belts, it contributes to their destruction by responding to erosion with rock uplift, which in turn promotes further erosion. If the continental crust consisted of a single layer of constant density, erosion and isostatic rebound would continue thinning the crust until it was completely eroded. Such total destruction evidently does not happen, however, as the roots of Earth's oldest mountains have persisted for billions of years. One explanation for this preservation is that an orogen's isostatic response to erosion decreases over time as the crust increases in density as the lower crust undergoes metamorphic phase changes that accompany lithosphere cooling. The implication of this hypothesis is that erosion rates in mountain belts are linked to the thermal and density evolution of the lithosphere. We test this hypothesis with a global compilation of exhumation rates and erosion rates determined from published apatite fission track and cosmogenic 10Be measurements in collisional orogens ranging in formation age from 0 to 2 billion years. We compare these data to a numerical model of the thermal, density and erosional evolution of a decaying mountain belt. Measured and modeled data indicate that erosion is fastest in young, hot, low-density, and topographically high mountain belts, and that erosion rates decrease dramatically after 200-300 million years (My). This 200-300 My timescale is consistent with titanite U-Pb thermochronologic data from lower crustal xenoliths, which record cooling to temperatures consistent with garnet growth and crustal densification (~650 °C) within 200-300 My after orogenesis. For the same orogens, Sm-Nd and/or Lu-Hf garnet-whole rock isochron dates constrains lower crustal garnet growth and a corresponding crustal density increase to 200-450 My following orogenesis. Thus, geochronologic data at various timescales, from ancient thermal histories to geologically recent erosion rates, are consistent with an isostatic model that links the erosional decay of a collisional orogens to its thermal and density evolution. Given the geologic and climatic diversity of mountain ranges around the world, it is striking that their erosional histories are generally consistent with a single simple model. The scenario described here, in which young, hot, low-density orogens erode quickly for a few hundred My while older, colder, denser orogens erode much more slowly for billions of years provides an explanation for the persistence of some of Earth's oldest mountain belts. The importance of this erosional succession is underscored by the fact that continental landmasses are constructed through mountain building processes: like jigsaw puzzles with many pieces, continents are amalgamations of ancient mountain belts assembled over geologic time. Temperature-dependent densities appear to play a global role in the long-term evolution of mountain belts and continents, influencing the preservation of continental lithosphere over billions of years.
Paleo- and Neo-Tethyan ophiolites of Iran: a progress report
NASA Astrophysics Data System (ADS)
Ghazi, M.; Hassanipak, A.; Babaie, H.
2003-04-01
The Bitlis-Zagros and Alborz stuture zones of Iran mark two collisional plate boundaries in the Alpine-Himalayan orogenic belt. The ophiolites of these zones together with the ophiolites of Makran accretionary prism and Central Iran form discontinuous linear belts of Tethyan oceanic fragments, which form a bridge between the Mediterranean and Himalayan ophiolites. Based on age alone these ophiolites have been divided into less abundant Paleozoic and much more abundant Mesozoic ophiolites. The Paleozoic ophiolites are located along the Alborz orogenic belt [i.e., Rasht and Mashhad ophiolites (297 Ma and 268 Ma)] and near Anarak in Central Iran. which are the remnants of the Paleo-Tethys ocean crust emplaced as result of closure of the Paleo-Tethys between the Turan and the Central Iranian Microplates (CIM). The Mesezoic ophiolites of Iran are more abundant and include the Zagros ophiolites (i.e., Neyriz and the Kermanshah ophiolites which appear to be coeval with the Oman ophiolite obducted onto the Arabian plate (˜96-92 Ma). The Khoy ophiolite in NW Iran which has formation age of Middle to Late Jurrasic (˜159-155 Ma), and emplacement age Albian ages (˜ 109-104 Ma) has a different tectonics than other Zagros ophiolites. Unfragmented ophiolites of the Makran accretionary prism which are located to the south of the Sanandaj-Sirjan microcontinental block, including complexes such as Band-e-Zeyarat/Dar Anar, Ganj and Remeshk/Mokhtarabad (˜140-98 Ma) are similar in age to the Masirah ophiolite (i.e., ˜150-120 Ma). The ophiolites of the Central Iran include those inside of the Sanandaj-Sirjan microcontinental block, such as Shahr-e-Babak (120 Ma), Naien (100 Ma), Baft, Sabzevar in north central Iran (98-70 Ma) and Tchehel Kureh on the eastern boundary of CIM.Geochemically, these ophiolites are quite diverse and show a significant variations in rock composition, representing a wide range of tectonic environment of formation. In terms of radiogenic isotopic data, basalt and gabbros from Neyriz (Zagros), Khoy (NW Zagros ?), and Band-e-Zeyarat (Makran) have Indian Ocean MORB signature.
Tectonic evolution of the Western Australian Shield
NASA Technical Reports Server (NTRS)
Myers, John S.
1988-01-01
Geological and geochronological studies in the Western Australian Shield were updated. This terrane bears many similarities to the Indian Shield since they were neighboring parts of Gondwanaland. Western Australia consists of two cratons (Pilbara and Yilgarn) and four orogenic belts (Capricorn, Pingarra, Albany-Fraser, and Patterson), as well as some relatively young (1.6 to 0.75 Ga) sedimentary rocks. The two cratonic blocks are both older than about 2.5 Ga, and the orogenic belts range in age from 2.0 to 0.65 Ga.
NASA Astrophysics Data System (ADS)
Yuan, Lingling; Zhang, Xiaohui; Xue, Fuhong; Liu, Fulin
2016-11-01
Coeval high-K calc-alkaline to alkaline granites constitute important components of post-collisional to post-orogenic igneous suites in most orogenic belts of various ages on Earth and their genesis harbors a key to ascertaining critical geodynamic controls on continental crustal formation and differentiation. This zircon U-Pb dating and geochemical study documents three contrasting Early Permian granites from Erenhot of central Inner Mongolia, eastern Central Asian Orogenic Belt (CAOB) and reveals concurrent high-K calc-alkaline to alkaline granite association derived from successive partial melting of distinct protoliths. The ca. 280 Ma Gancihuduge (GCG) pluton shows a calc-alkaline I-type character, with initial 87Sr/86Sr ratios of 0.7035 to 0.7039, εNd(t) of + 1.87 to + 4.70, zircon εHf(t) of + 8.0 to + 13.2 and δ18O from 7.4 to 8.7‰. The ca. 276 Ma Cailiwusu (CLS) pluton is magnesian and peraluminous, with initial 87Sr/86Sr ratios of 0.7036 to 0.7040, εNd(t) of + 1.9 to + 2.4, zircon εHf(t) of + 6.5 to + 12.1 and δ18O from 9.7 to 10.9‰. These features are consistent with partial melts of mixed sources composed of newly underplated meta-basaltic to -andesitic protoliths and variable supracrustal components, with distinctively higher proportion of the latter in the CLS pluton. By contrast, the ca. 279 Ma Kunduleng (KDL) suite exhibits an A-type magmatic affinity, with typical enrichment in alkalis, Ga, Zr, Nb and Y, εNd(t) of + 2.39 to + 3.55, zircon εHf(t) from + 8.3 to + 12.3 and δ18O values from 6.8 to 7.5‰. These features suggest that they stem from high-temperature fusion of dehydrated K-rich mafic to intermediate protoliths. Besides presenting a snapshot into a stratified crustal architecture in δ18O, these contrasting granites could not only serve as a temporal marker for monitoring post-collisional extension in the aftermath of a retreating subduction zone, but also present spatial magmatic proxy for tracing crustal formation and differentiation within back-arc basin environments in the CAOB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cosca, M.A.
1989-01-01
Thermochronological ({sup 40}Ar/{sup 39}Ar) data are presented from 76 mineral separates of hornblende, muscovite, biotite, phlogopite, and K-feldspar. Samples were selected from regionally metamorphosed gneiss, amphibolite, metasediment, marble, metagabbro and pegmatite across the two major metamorphic belts of the Grenville Province, the Central Metasedimentary Belt (CMB) and the Central Gneiss Belt (CGB). When combined with published temperature estimates for closure to argon diffusion in the phases analyzed, cooling rates from {approximately}500 C to {approximately}120 C of 1-4 C/MA are calculated across the entire Grenville Province of Ontario. Regional uplift/erosion rates for the Grenville Orogen of Ontario have been estimated frommore » the {sup 40}Ar/{sup 39}Ar data, a retrograde P-T path for rocks of the CGB, and an upper time constraint provided by flat, overlying Cambro-Ordovician sediments. Twenty-two of the hornblendes used for thermochronology have been quantitatively analyzed for major elements by microprobe, Fe{sup 2+}/Fe{sup 3+} by wet chemistry, and for H{sub 2}O by manometric measurement. Water activities calculated from hornblende equilibria are typically low (<0.01) because of the exponential dilutions in hornblende (tremolite) activity required by present activity-composition models. An oxyamphibole component of 25% further reduces any amphibole component and the H{sub 2}O activity by as much as 50% below that calculated with simplifying assumption. These findings indicate that different amphibole normalization schemes have a marked effect on the activity calculated for a specific amphibole or H{sub 2}O, and should be carefully evaluated.« less
NASA Astrophysics Data System (ADS)
Tchameni, R.; Sun, F.; Dawaï, D.; Danra, G.; Tékoum, L.; Nomo Negue, E.; Vanderhaeghe, O.; Nzolang, C.; Dagwaï, Nguihdama
2016-09-01
We present the mineralogy and age of the magmatic epidote-bearing granite composing most of the Mokong pluton, in the Central Africa orogenic belt (North Cameroon). This pluton intrudes Neoproterozoic (~830 to 700 Ma) low- to high-grade schists and gneisses (Poli-Maroua group), and is crosscut or interleaved with bodies of biotite granite of various sizes. The pluton is weakly deformed in its interior, but solid-state deformation increases toward its margins marked by narrow mylonitic bands trending NNE-SSW. The magmatic epidote granitic rocks are classified as quartz monzodiorite, granodiorite, monzogranite, and syenogranite. They are medium- to coarse-grained and composed of K-feldspar + plagioclase + biotite + amphibole + epidote + magnetite + titanite + zircon + apatite. In these granites, the pistacite component [atomic Fe+3/(Fe3+ + Al)] in epidote ranges from 16 to 29 %. High oxygen fugacity (log ƒO2 - 14 to -11) and the preservation of epidote suggest that the magma was oxidized. Al-in hornblende barometry and hornblende-plagioclase thermometry indicate hornblende crystallization between 0.53 and 0.78 GPa at a temperature ranging from 633 to 779 °C. Zircon saturation thermometry gives temperature estimates ranging from 504 to 916 °C, the latter being obtained on samples containing inherited zircons. U/Pb geochronology by LA-ICP-MS on zircon grains characterized by magmatic zoning yields a concordia age of 668 ± 11 Ma (2 σ). The Mokong granite is the only known occurrence magmatic epidote in Cameroon, and is an important milestone for the comparison of the Central Africa orogenic belt with the Brasiliano Fold Belt, where such granites are much more abundant.
NASA Astrophysics Data System (ADS)
Chung, Sun-Lin
2016-04-01
This study, based on an ongoing joint research project "Tibet and Beyond", presents a synthesis of principal magmatic records from the CIA (Caucasus-Iran-Anatolia) and Tibet-Himalaya orogens resulting from the continental collisions of Arabia and India, respectively, with Eurasia. In both orogens, through this and other recent studies, the temporal and spatial variations in magmatism pre-, syn- and post-dating the collisions can now be much better defined, thus improving our understanding of collision zone magmatism that appears to have evolved with changes in the lithospheric structures over time and space by collisional processes. The two "collisional" Tethyan orogens were preceded by accretionary orogenic processes, which not only had produced a substantial amount of juvenile continental crust but also fulfill the "orogenic cycle" that evolved from an accretionary into a collisional system. Geochemical data reveal that in contrast to generating vast portions of juvenile crust in the early, accretionary stages of orogenic development, crustal recycling plays a more important role in the later, collisional stages. The latter, as exemplified in SE Turkey and southern Tibet, involves addition of older continental crust material back into the mantle, which subsequently melted and caused compositional transformation of the juvenile crust produced in the accretionary stages. Similar features are observed in young volcanic rocks from eastern Taiwan, the northern Luzon arc complex and part of the active subduction/accretion/collision system in Southeast Asia that may evolve one day to resemble the eastern Tethyan and central Asian orogenic belts by collision with the advancing Australian continent.
Episodic behavior of Gondwanide deformation in eastern Australia: Insights from the Gympie Terrane
NASA Astrophysics Data System (ADS)
Hoy, Derek; Rosenbaum, Gideon
2017-08-01
The mechanisms that drove Permian-Triassic orogenesis in Australia and throughout the Cordilleran-type Gondwanan margin is a subject of debate. Here we present field-based results on the structural evolution of the Gympie Terrane (eastern Australia), with the aim of evaluating its possible role in triggering widespread orogenesis. We document several deformation events (D1-D3) in the Gympie Terrane and show that the earliest deformation, D1, occurred only during the final pulse of orogenesis (235-230 Ma) within the broader Gondwanide Orogeny. In addition, we found no evidence for a crustal suture, suggesting that terrane accretion was not the main mechanism behind deformation. Rather, the similar spatiotemporal evolution of Permian-Triassic orogenic belts in Australia, Antarctica, South Africa, and South America suggest that the Gondwanide Orogeny was more likely linked to large-scale tectonic processes such as plate reorganization. In the context of previous work, our results highlight a number of spatial and temporal variations in pulses of deformation in eastern Australia, suggesting that shorter cycles of deformation occurred at a regional scale within the broader episode of the Gondwanide Orogeny. Similarly to the Cenozoic evolution of the central and southern Andes, we suggest that plate coupling and orogenic cycles in the Late Paleozoic to Early Mesozoic Gondwanide Orogeny have resulted from the superposition of mechanisms acting at a range of scales, perhaps contributing to the observed variations in the intensity, timing, and duration of deformation phases within the orogenic belt.
Compressional intracontinental orogens: Ancient and modern perspectives
NASA Astrophysics Data System (ADS)
Raimondo, Tom; Hand, Martin; Collins, William J.
2014-03-01
Compressional intracontinental orogens are major zones of crustal thickening produced at large distances from active plate boundaries. Consequently, any account of their initiation and subsequent evolution must be framed outside conventional plate tectonics theory, which can only explain the proximal effects of convergent plate-margin interactions. This review considers a range of hypotheses regarding the origins and transmission of compressive stresses in intraplate settings. Both plate-boundary and intraplate stress sources are investigated as potential driving forces, and their relationship to rheological models of the lithosphere is addressed. The controls on strain localisation are then evaluated, focusing on the response of the lithosphere to the weakening effects of structural, thermal and fluid processes. With reference to the characteristic features of intracontinental orogens in central Asia (the Tien Shan) and central Australia (the Petermann and Alice Springs Orogens), it is argued that their formation is largely driven by in-plane stresses generated at plate boundaries, with the lithosphere acting as an effective stress guide. This implies a strong lithospheric mantle rheology, in order to account for far-field stress propagation through the discontinuous upper crust and to enable the support of thick uplifted crustal wedges. Alternative models of intraplate stress generation, primarily involving mantle downwelling, are rejected on the grounds that their predicted temporal and spatial scales for orogenesis are inconsistent with the observed records of deformation. Finally, inherited mechanical weaknesses, thick sedimentary blanketing over a strongly heat-producing crust, and pervasive reaction softening of deep fault networks are identified as important and interrelated controls on the ability of the lithosphere to accommodate rather than transmit stress. These effects ultimately produce orogenic zones with architectural features and evolutionary histories strongly reminiscent of typical collisional belts, suggesting that the deformational response of continental crust is remarkably similar in different tectonic settings.
NASA Astrophysics Data System (ADS)
Levine, J. S. F.; Mosher, S.
2017-12-01
Older orogenic belts that now expose the middle and lower crust record interaction between partial melting, magmatism, and deformation. A field- and microstructural-based case study from the Wet Mountains of central Colorado, an exhumed section of Proterozoic rock, shows structures associated with anatexis and magmatism, from the grain- to the kilometer-scale, that indicate the interconnection between deformation, partial melting, and magmatism, and allow reconstructions of the processes occurring in hot active orogens. Metamorphic grade, along with the degree of deformation, partial melting, and magmatism increase from northwest to southeast. Deformation synchronous with this high-grade metamorphic event is localized into areas with greater quantities of former melt, and preferential melting occurs within high-strain locations. In the less deformed northwest, partial melting occurs dominantly via muscovite-dehydration melting, with a low abundance of partial melting, and an absence of granitic magmatism. The central Wet Mountains are characterized by biotite dehydration melting, abundant former melt and foliation-parallel inferred melt channels along grain boundaries, and the presence of a nearby granitic pluton. Rocks in the southern portion of the Wet Mountains are characterized by partial melting via both biotite dehydration and granitic wet melting, with widespread partial melting as evidenced by well-preserved former melt microstructures and evidence for back reaction between melt and the host rocks. The southern Wet Mountains has more intense deformation and widespread plutonism than other locations and two generations of dikes and sills. Recognition of textures and fabrics associated with partial melting in older orogens is paramount for interpreting the complex interplay of processes occurring in the cores of orogenic systems.
NASA Astrophysics Data System (ADS)
Zorigtkhuu, O.-E.
2012-04-01
The Central Asian Orogenic Belt (CAOB), also known as Altaids, located between the Archean Siberian Craton to the north and the Tarim and North China Cratons to the south, is regarded as one of the largest accretionary and collisional orogen in the world. Detailed petrological studies on the CAOB therefore provide useful information of pressure-temperature (P-T) history of the orogeny as well as the tectonic evolution of East Asia. This study reports detailed petrological data, particularly the results of phase equilibrium modeling and fluid inclusion analysis, of pelitic schists and amphibolites from Bodonch area, southwestern Mongolia, which occupies a significant part of the Paleozoic history of the Altai Orogen in the southwestern margin of the CAOB, and discuss pressure-temperature-fluid evolution of the area. The dominant mineral assemblages of pelitic schist in Bodonch area are garnet + kyanite + staurolite + biotite + plagioclase, garnet + biotite + staurolite + cordierite, and garnet + biotite + sillimanite + plagioclase with quartz and ilmenite, while amphibolite contains calcic amphibole + quartz + plagioclase + garnet + ilmenite assemblage. Application of conventional garnet-biotite and garnet-cordierite geothermometers as well as GASP geobarometer gave metamorphic conditions of 615-635°C/8.2-8.9 kbar from kyanite-bearing pelitic schist samples. Slightly higher P-T condition of 640-690°C/6.3-10.7 kbar was obtained by mineral equilibrium modeling of garnet-kyanite-staurolite and garnet-staurolite-cordierite assemblages using Theriak-Domino software. The calculation was made in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). We constructed a clockwise P-T path staring from high-pressure amphibolite facies condition within the stability field of kyanite (approximately 650°C/9 kbar) possibly through the stability field of sillimanite by post-peak decompressional cooling. Our petrographical observations of fluid inclusions in pelitic schists identified primary, secondary and pseudosecondary fluid inclusions trapped in quartz grains. The melting temperatures of all the categories of inclusions lie in the narrow range of -57.5 to-56.6°C, close to the triple point of pure CO2. Homogenization of fluids occurs into liquid phase at temperature between -33.3 to +19.4 °C, which convert into densities in the range of 0.78 to 1.09 g/cm3. The estimated CO2 isochores for primary and pseudosecondary high-density inclusions is broadly consistent with the peak metamorphic condition of the studied area. The results, together with the primary and pseudosecondary nature of the inclusions, indicate CO2 was the dominant fluid component during the peak amphibolite-facies metamorphism of the study area. The common occurrences of carbonates and graphite in the study area suggest the origin of CO2 either by oxidation of organic carbon or devolatilization of carbonates in the protolith sedimentary rocks. Key words: P-T condition; geothermobarometry; mineral equilibrium modeling; fluid inclusion; Altai Orogeny; Central Asian Orogenic Belt; Mongolia
NASA Astrophysics Data System (ADS)
Chiu, Tzu-Hsuan; Tien-Shun Lin, Andrew; Chi, Wen-Rong; Wang, Shih-Wei
2017-04-01
Lithofacies and paleo-environmental analyses of the Pliocene-Pleistocene deposits of Taiwan provide a framework to understand the stratigraphic development of foreland basin to the west of the orogenic belt. In this study, we performed lithofacies analyses and biostratigraphic studies on calcareous nannofossils in two areas in south-central Taiwan, the Jhuoshuei River, and the Hushan Reservoir, respectively. The studied lithostratigraphic units are the Chinshui Shale, the Cholan Formation, and the Toukoshan Formation, in an ascending order, with a total stratigraphic thickness more than 3500 m in central Taiwan. Sixteen lithofacies and four lithofacies associations are identified, pertaining to tide-dominated deltaic systems bordering a shallow marine setting in the foreland basin. A few wide-spread layers of thickly-bedded sandstones featuring ball-and-pillow structures are interpreted as resulting from earthquake shaking (i.e., seismites). In addition, the vertical facies change shows a coarsening and shallowing-upward succession, indicating the gradually filling up of the foreland basin by sediment progradation. The progradation is interpreted to result from westward migrating orogenic belt and an increase in sediment supply. The top 2000-m thick foreland succession (i.e., the uppermost part of the Cholan Formation, and the Toukoshan Formation) is dominantly fluvial deposits with occasional intercalations of shoreface sediments, indicating an extremely rapid and balanced rate of basin subsidence and sediment supply for the past 1.5 Ma. Vertebrate fossils of deer and elephants are identified in the upper Cholan Formation deposited in coastal to fluvial settings. Keywords: Pliocene-Pleistocene Epoch, lithofacies, foreland basin, Taiwan
The nature of orogenic crust in the central Andes
NASA Astrophysics Data System (ADS)
Beck, Susan L.; Zandt, George
2002-10-01
The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.
Paleozoic Orogens of Mexico and the Laurentia-Gondwana Connections: an Update
NASA Astrophysics Data System (ADS)
Ortega-Gutierrez, F.
2009-05-01
The present position of Mexico in North America and the fixist tectonic models that prevailed prior to the seventies of the past century, have considered the main Paleozoic tectonic systems of Mexico as natural extensions of the orogens that fringed the eastern and southern sides of the Laurentian craton. Well known examples of pre-Mesozoic orogens in Mexico are the Oaxacan, Acatlan, and Chiapas polymetamorphic terranes, which have been correlated respectively with the Grenville and Appalachian-Ouachitan orogens of eastern North America. Nonetheless, several studies conducted during the last decade in these Mexican orogenic belts, have questioned their Laurentian connections, regarding northwestern Gondwana instead as the most plausible place for their birth and further tectonic evolution. This work pretends to approach the problem by briefly integrating the massive amount of new geological information, commonly generated through powerful dating methods such as LA-ICPM-MS on detrital zircon of sedimentary and metasedimentary units in the Paleozoic crustal blocks, which are widely exposed in southern and southeastern Mexico. The Acatlan Complex bears the closest relationships to the Appalachian orogenic system because it shows thermotectonic evidence for opening and closure of the two main oceans involved in building the Appalachian mountains in eastern Laurentia, whereas two other Paleozoic terranes in NW and SE Mexico, until recently rather geologically unknown, may constitute fundamental links between the Americas for the last-stage suturing and consolidation of western Pangea. The buried basement of the Yucatan platform (400,000 squared km) on the other hand, remains as one of the most relevant problems of tectonostratigraphic correlations across the Americas, because basement clasts from the Chicxulub impact ejecta reveal absolute and Nd-model ages that suggest close Gondwanan affinities. Major changes in the comprehension of the Paleozoic orogens in Mexico include the swift of the Acatlan Complex from Iapetus to Rheic scenarios, and the apparent continuation of the Ouachita belt across northern Mexico into south central Sonora, rather than displaced eastwards along the legendary Mojave-Sonora megashear. And yet, poorly known suture-related lithotectonic associations of Paleozoic metamorphic rocks and arc granitoids that underlie the eastern margin of Mexico, have not been explained by existing models dealing with the Appalachian-Mexico-Gondwanan connections.
NASA Astrophysics Data System (ADS)
Ni, Dong-Hong
2017-09-01
We disagree the transitional supra-subduction zone model of Feng et al. (Int J Earth Sci (Geol Rundsch) 105:491-505, 2016) for the tectonic setting of Jifeng ophiolite suite in NE China. Existence of the komatiite in the Jifeng ophiolite indicates an oceanic plateau environment for this ophiolite suite within the so-called Xinlin-Xiguitu ocean.
Structural investigation of the Grenville Province by radar and other imaging and nonimaging sensors
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.; Blodget, H. W.; Webster, W. J., Jr.; Paia, S.; Singhroy, V. H.; Slaney, V. R.
1984-01-01
The structural investigation of the Canadian Shield by orbital radar and LANDSAT, is outlined. The area includes parts of the central metasedimentary belt and the Ontario gneiss belt, and major structures as well-expressed topographically. The primary objective is to apply SIR-B data to the mapping of this key part of the Grenville orogen, specifically ductile fold structures and associated features, and igneous, metamorphic, and sedimentary rock (including glacial and recent sediments). Secondary objectives are to support the Canadian RADARSAT project by evaluating the baseline parameters of a Canadian imaging radar satellite planned for late in the decade. The baseline parameters include optimum incidence and azimuth angles. The experiment is to develop techniques for the use of multiple data sets.
Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.
Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song
2018-01-23
The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.
Strong Lg-wave attenuation in the Middle East continental collision orogenic belt
NASA Astrophysics Data System (ADS)
Zhao, Lian-Feng; Xie, Xiao-Bi
2016-04-01
Using Lg-wave Q tomography, we construct a broadband crustal attenuation model for the Middle East. The QLg images reveal a relationship between attenuation and geological structures. Strong attenuation is found in the continental collision orogenic belt that extends from the Turkish and Iranian plateau to the Pamir plateau. We investigate the frequency dependence of QLg in different geologic formations. The results illustrate that QLg values generally increase with increasing frequency but exhibit complex relationships both with frequency and between regions. An average QLg value between 0.2 and 2.0 Hz, QLg (0.2-2.0 Hz), may be a critical index for crustal attenuation and is used to infer the regional geology. Low-QLg anomalies are present in the eastern Turkish plateau and correlate well with low Pn-velocities and Cenozoic volcanic activity, thus indicating possible partial melting within the crust in this region. Very strong attenuation is also observed in central Iran, the Afghanistan block, and the southern Caspian Sea. This in line with the previously observed high crustal temperature, high-conductivity layers, and thick marine sediments in these areas, suggests the high Lg attenuation is caused by abnormally high tectonic and thermal activities.
NASA Astrophysics Data System (ADS)
Reeder, J.; Metzger, E. P.; Bickford, M. E.; Leech, M. L.
2016-12-01
Sillimanite-rich felsic migmatites exposed at Ledge Mountain in the Central Adirondack Highlands (AH) represent the only location in the AH where kyanite is found. The texturally young kyanite is overprinted on sillimanite in largely undeformed pegmatitic leucosomes, suggesting a late episode of melting taking place deeper than previously thought, and requiring a counter-clockwise P-T path. A final phase of anatexis ca. 1050 Ma in the Eastern AH is consistent with an influx of fluid or decompression from extension in sillimanite-bearing migmatites. Temperatures both from this study and previous work are consistent with granulite-facies metamorphism; however, the presence of kyanite requires higher pressure conditions corresponding to deeper burial of rocks exposed in the central Adirondacks. The Adirondacks are associated with the Grenville Province of eastern North America, that formed during four orogenic events. The most recent (Grenville) orogeny consisted of two stages: crustal thickening and granulite facies metamorphism during the Ottawan phase (ca 1090-1020) then metamorphism and melting in the kyanite field during the much shorter Rigolet pulse (ca 1005-980 Ma). Preliminary U-Pb SHRIMP zircon ages from Ledge Mountain kyanite-bearing migmatites suggest that melting in the Central AH persisted into the Rigolet phase. On the basis of mineral composition and chemistry and the presence of distinctive quartz-sillimanite nodules, the Ledge Mountain migmatites closely resemble the K-rich phase of the Ottawan-age Lyon Mountain granite (LMG) and may represent LMG that was metamorphosed to sillimanite grade and then overprinted by a higher pressure, lower temperature assemblage. Kyanite-bearing felsic anatectites of Rigolet age have previously been observed only in the western portion of the Grenville Province. Documentation of a counterclockwise P-T path and post-Ottawan melting in the Ledge Mountain migmatites requires re-evaluation of current tectonic models for the Grenville Province and its Adirondacks outlier. Further analysis of age, geochemical, and petrographic data will help develop a better-defined P-T-t path and may lead to the development of a new tectonic model to be compared with other collisional orogens such as Himalaya or the Bohemian Massif of the Variscan orogenic belt.
Some aspects of the role of rift inheritance on Alpine-type orogens
NASA Astrophysics Data System (ADS)
Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy; Chevrot, Sébastien
2017-04-01
Processes commonly recognized as fundamental for the formation of collisional orogens include oceanic subduction, arc-continent and continent-continent collision. As collisional belts result from the closure of oceanic basins and subsequent inversion of former rifted margins, their formation and evolution may also in theory be closely interlinked with the initial architecture of the former rifted margins. This assumption is indeed more likely to be applicable in the case of Alpine-type orogens, mainly controlled by mechanical processes and mostly devoid of arc-related magmatism. More and more studies from present-day magma-poor rifted margins illustrate the complex evolution of hyperextended domains (i.e. severely thinned continental crust (<10 km) and/or exhumed serpentinized mantle with relatively minor magmatic additions) between unequivocal continental and oceanic domains. In this contribution, we compare the deep structure of the Pyrenean and Alpine belts to discuss some aspects of the relative role of rift-inherited hyperextension and collisional processes in building Alpine-type orogens. The Pyrenees and Western to Central Alps respectively result from the inversion of a Late Jurassic to Mid Cretaceous and an Early to Middle Jurassic rift system eventually floored by hyperextended crust, exhumed mantle and/or proto-oceanic crust. In spite of uncertainties on the initial width of the hyperextended and proto-oceanic domains, the rift-related pre-collisional architecture of the Alps shows many similarities with that proposed for the Pyrenees. Remnants of these domains occur in the internal parts of both orogens, but they are largely affected by orogeny-related deformation and show a HP-LT to HT-MP metamorphic overprint in the Alps as a result of a polyphase deformation history. Yet, recent high-resolution tomographic images across the Pyrenees (PYROPE) and the Alps (CIFALPS) reveal a surprisingly comparable present-day overall crustal and lithospheric structure. Based on the comparison between the two orogens we discuss: (1) the nature and depth of decoupling levels inherited from hyperextension; (2) the implications for restorations and interpretations of orogenic roots (former hyperextended domains vs. lower crust only); and (3) the nature and major role of buttresses in controlling the final stage of collisional processes. Eventually, we discuss the variability of the role of rift-inheritance in building Alpine-type orogens. The Pyrenees seem to represent one extreme, where rift-inheritance is important at different stages of collisional processes. In contrast, in the Alps the role of rift-inheritance is subtler, likely because of its more complex and polyphase compressional deformation history.
NASA Astrophysics Data System (ADS)
Mohn, Geoffroy; Manatschal, Gianreto
2016-04-01
Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western Alps by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western Alps. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western Alps. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the Alps but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western Alps, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the Alps. His innovative work allowed a re-assessment of several areas in the Western Alps and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the Southern Alps highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at the forefront of new techniques, ideas and concepts that ultimately will improve our understanding of mountain belts and rift systems. Eventually more than anything, his motivation and enthusiasm were a constant source of inspiration.
NASA Astrophysics Data System (ADS)
Ye, Gaofeng; Jin, Sheng; Wei, Wenbo; Jing, Jian'en
2017-04-01
The closure of the Paleo-Asian Ocean along the Solonker Suture Zone (SSZ) during the Late Permian and Triassic represented the final stage in the formation of the Central Asian Orogenic Belt between the Siberian Craton and the North China Craton. In order to better understand the structure and formation of this ancient subduction zone, a high-resolution magnetotelluric (MT) profile was collected with both broadband and long-period MT data. The high resolution mapping of the lithosphere achieved in this study is due to the closely spaced MT stations (2-3 km). With the 2-D resistivity model, a south-dipping conductor was detected and extends through the entire crust. The geometry of this feature provides evidence that a southward directed subduction zone formed the Solonker suture. The enhanced conductivity was interpreted to subducted sulfide-bearing graphitic sediments. The resistive body beneath the northern margin of the North China Craton indicates a thickened lithosphere caused by the southward subduction at this region, and the resistive body beneath the Solonker Suture Zone indicates the subducted oceanic lithosphere. North-dipping low resistivity features were also detected in the crust of both the North China Craton and Central Asian Orogenic Belt, and were interpreted as post-collisional thrust faults. Strong anisotropy was found beneath the suture zone, and can be explained if the high strain rate has rotated the fold axes into the dip direction.
NASA Astrophysics Data System (ADS)
Eyuboglu, Yener; Dudas, Francis O.; Chatterjee, Nilanjan; Liu, Ze; Yılmaz-Değerli, Sedanur
2018-06-01
The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, a mountain chain extending parallel to the southeastern margin of the Black Sea, has been controversial for the last forty years. Here we present data for a newly discovered alkaline gabbro body and its surrounding basaltic rocks in the northern part of the Eastern Pontides Orogenic Belt. We also provide a comprehensive assessment of the Late Mesozoic-Cenozoic geodynamic evolution of the Eastern Mediterranean region. The gabbroic body is bounded by reverse faults along its northern and southern borders and is surrounded by vesicular, pillow-fragment breccias and pillow basalts. Mineral compositions suggest that crystallization of the gabbros began at about 1170 °C, and the lowest preserved crystallization T is near 1000 °C. Estimated pressure at the beginning of crystallization is 5.7-7.4 kb. The 40Ar/39Ar dating of kaersutite and plagioclase and Usbnd Pb dating of titanite indicated that the Hayrat gabbro crystallized at 67 Ma (Late Maastrichtian). Whole rock major-trace-rare earth element and Sr-Nd-Pb isotope data indicate that the gabbros and basalts have different origins. The gabbros are alkaline and exhibit the geochemical features of OIB, whereas the basalts are tholeiitic and reveal depletions of HFSE that are similar to those of arc rocks. The gabbros are strongly fractionated, and derive from an enriched, lithospheric mantle source, with partial melting occurring in a garnet-stable environment. The basalts are less fractionated, and probably derive from a shallower source in which spinel peridotite was the predominant lithology. Considering all new and old geological, geochemical, geochronological and geophysical data from the Black Sea Basin and the Eastern Pontides-Lesser Caucasus-Alborz Orogenic Belt, we suggest that the alkaline Hayrat gabbro formed in an oceanic intraplate setting, and was accreted to the forearc region of the Eastern Pontides Orogenic Belt during southward subduction of Paleotethyan lithosphere. It was later tectonically juxtaposed with subaqueously erupted, arc-related basalts.
NASA Astrophysics Data System (ADS)
Sato, A. M.; Tickyj, H.; Llambías, E. J.; Sato, K.
2000-12-01
The N-S trending belt with Grenvillian-age rocks developed in central western Argentina represents the basement of an allochthonous terrane derived from Laurentia during the Early Paleozoic. The Las Matras pluton (36°46‧S, 67°07‧W) is located at the southern extension of this belt in the Las Matras Block. It consists of a low-Al tonalitic to trondhjemitic facies characteristic of an arc magmatism. Isotopic studies yielded Grenvillian Rb-Sr (1212±47 Ma) and Sm-Nd (1188±47 Ma) ages which, due to the undeformed and non-metamorphosed character of the pluton, are interpreted to represent a crystallization age of around 1200 Ma. Although this age is slightly older than available dates from other exposures of the same belt, and the undeformed feature is also distinctive for Las Matras, the depleted Sr and Nd isotopic signatures of the pluton agree with those from other magmatic rocks involved in that belt. The differences found between Las Matras and the northern exposures indicate that this belt with Grenvillian-age rocks comprises regions of non-homogeneous evolution. Although the correlation of the Lower Paleozoic platform carbonates from the sedimentary cover of the Grenvillian-age basement rocks suggests the surroundings of the Southern Grenville Province (Texas and northern Mexico) as the probable detachment site for the Argentine belt, comparison of magmatic and tectonic processes involved in these basement rocks does not indicate similar evolutions. This fact can suggest an independent evolution of the Argentine belt prior to amalgamation to the Laurentian Grenville orogen.
Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt
NASA Astrophysics Data System (ADS)
Liu, Yongjiang; Li, Weimin; Feng, Zhiqiang; Neubauer, Franz
2017-04-01
The Central Asian Orogenic Belt (CAOB) is the largest accretionary orogen in the world, which is responsible for considerable Phanerozoic juvenile crustal growth. The NE China and its adjacent areas compose the eastern segment of the CAOB, which is a key area for providing important evidence of the CAOB evolution and understanding the NE Asian tectonics. The eastern segment of the CAOB is composed tectonically of four micro-blocks and four sutures, i.e. Erguna block (EB), Xing'an block (XB), Songliao-Xilinhot block (SXB), Jiamusi block (JB), Xinlin-Xiguitu suture (XXS), Heihe-Hegenshan suture (HHS), Mudanjiang-Yilan suture (MYS) and Solonker-Xar Moron-Changchun-Yanji suture (SXCYS). The EB and XB were amalgamated by westward subduction, oceanic island accretions and final collision in ca. 500 Ma. The XB and SXB were amalgamated by subduction-related Early Paleozoic marginal arc, Late Paleozoic marginal arc and final collision in the late Early Carboniferous to early Late Carboniferous. The JB probably had been attached to the SXB in the Early Paleozoic, but broken apart from the SXB in the Triassic and collided back in the Jurassic. The closure of Paleo-Asian Ocean had experienced a long continue/episodic subduction-accretion processes on margins of the NCC to the south and the SXB to the north from the Early to Late Paleozoic. The final closure happened along the SXCYS, from west Solonker, Sonid Youqi, Kedanshan (Keshenketengqi), Xar Moron River through Songliao Basin via Kailu, Tongliao, Horqin Zuoyizhongqi, Changchun, to the east Panshi, Huadian, Dunhua, Yanji, with a scissors style closure in time from the Late Permian-Early Triassic in the west to the Late Permian-Middle Triassic in the east. The amalgamated blocks should compose a united micro-continent, named as Jiamusi-Mongolia Block (JMB) after Early Carboniferous, which bounded by Mongo-Okhotsk suture to the northwest, Solonker-Xar Moron-Changchun suture to the south and the eastern margin of JB to the east.
Relationship Between Earthquake b-Values and Crustal Stresses in a Young Orogenic Belt
NASA Astrophysics Data System (ADS)
Wu, Yih-Min; Chen, Sean Kuanhsiang; Huang, Ting-Chung; Huang, Hsin-Hua; Chao, Wei-An; Koulakov, Ivan
2018-02-01
It has been reported that earthquake b-values decrease linearly with the differential stresses in the continental crust and subduction zones. Here we report a regression-derived relation between earthquake b-values and crustal stresses using the Anderson fault parameter (Aϕ) in a young orogenic belt of Taiwan. This regression relation is well established by using a large and complete earthquake catalog for Taiwan. The data set consists of b-values and Aϕ values derived from relocated earthquakes and focal mechanisms, respectively. Our results show that b-values decrease linearly with the Aϕ values at crustal depths with a high correlation coefficient of -0.9. Thus, b-values could be used as stress indicators for orogenic belts. However, the state of stress is relatively well correlated with the surface geological setting with respect to earthquake b-values in Taiwan. Temporal variations in the b-value could constitute one of the main reasons for the spatial heterogeneity of b-values. We therefore suggest that b-values could be highly sensitive to temporal stress variations.
The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Ghanbarian, Mohammad Ali
2014-05-01
The collision of the Iranian microcontinent with the Afro-Arabian continent resulted in the deformation of the Zagros orogenic belt. The foreland of this belt in the Persian Gulf and Arabian platform has been investigated for its petroleum and gas resource potentials, but the Zagros hinterland is poorly investigated and our knowledge about its deformation is much less than other parts of this orogen. Therefore, this work presents a new geological map, stratigraphic column and two detailed geological cross sections. This study indicates the presence of a hinterland fold-and-thrust belt on northeastern side of the Zagros orogenic core that consists of in-sequence thrusting and basement involvement in this important part of the Zagros hinterland. The in-sequence thrusting resulted in first- and second-order duplex systems, Mode I fault-bend folding, fault-propagation folding and asymmetric detachment folding which indicate close relationships between folding and thrusting. Study of fault-bend folds shows that layer-parallel simple shear has the same role in the southeastern and northwestern parts of the study area (αe = 23.4 ± 9.1°). A major lateral ramp in the basement beneath the Talaee plain with about one kilometer of vertical offset formed parallel to the SW movement direction and perpendicular to the major folding and thrusting.
NASA Astrophysics Data System (ADS)
Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang
2017-10-01
The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.
Crustal structure of mainland China from deep seismic sounding data
Li, S.; Mooney, W.D.; Fan, J.
2006-01-01
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity-depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north-south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30-45??km, and a western region, with a thickness of 45-75??km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1-7.4??km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1??km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2??km/s, and may display azimuthal anisotropy. ?? 2006.
Seismic images of a Grenvillian terrane boundary
Milkereit, B.; Forsyth, D. A.; Green, A.G.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.
1992-01-01
A series of gently dipping reflection zones extending to mid-crustal depths is recorded by seismic data from Lakes Ontario and Erie. These prominent reflection zones define a broad complex of southeast-dipping ductile thrust faults in the interior of the Grenville orogen. One major reflection zone provides the first image of a proposed Grenvillian suture—the listric boundary zone between allochthonous terranes of the Central Gneiss and Central Metasedimentary belts. Curvilinear bands of reflections that may represent "ramp folds" and "ramp anticlines" that originally formed in a deep crustal-scale duplex abut several faults. Vertical stacking of some curvilinear features suggests coeval or later out-of-sequence faulting of imbricated and folded thrust sheets. Grenvillian structure reflections are overlain by a thin, wedge-shaped package of shallow-dipping reflections that probably originates from sediments deposited in a local half graben developed during a period of post-Grenville extension. This is the first seismic evidence for such extension in this region, which could have occurred during terminal collapse of the Grenville orogen, or could have marked the beginning of pre-Appalachian continental rifting.
NASA Astrophysics Data System (ADS)
Whalen, Joseph B.; Wodicka, Natasha; Taylor, Bruce E.; Jackson, Garth D.
2010-06-01
Large volume, plutonic belts, such as the ˜ 221,000 km 2, ca. 1.865-1.845 Ga Cumberland batholith (CB) of the Trans-Hudson Orogen in Canada, are major components of Paleoproterozoic orogenic belts. In many cases, they have been interpreted as continental arc batholiths. The petrogenesis and tectonic context of the CB and implications for crustal growth and recycling are interpreted herein based on a 900 km geochemical-isotopic (Nd-O) transect across it and into granitoid plutons within bounding Archean cratons in central and southern Baffin Island. The mainly granulite grade CB, emplaced over an age span of between 14 and 24 Ma, consists mainly of high-K to shoshonitic monzogranite and granodiorite, but also includes low- and medium-K granitoid rocks. Metaluminous to slightly peraluminous compositions and δ 18O (VSMOW) values (+ 6 to + 10‰) indicate derivation from infracrustal (I-type) sources. ɛ Nd 1.85 Ga signatures (- 12 to - 2) of both mafic and felsic units suggest a dominance of evolved sources. Isotopic signatures in the interior of the CB (- 2 to - 7) are more radiogenic than those within Archean domains in central (- 8 to - 15) and southern (- 5 to - 19) Baffin Island. The isotopic transect is interpreted as 'imaging' an accreted microcontinental block (Meta Incognita) and bounding Archean cratons. The CB includes granites of arc, within-plate (A-type) and post-collisional affinity and volumetrically minor mafic rocks with both arc and non-arc features. (La/Yb) CN and Sr/Y values range from < 1 to 225 and < 1 to 611, respectively. In these respects, some CB granitoid rocks resemble Paleozoic adakitic granites, interpreted as partial melts of greatly thickened crust within post-collisional settings, such as Tibet. Thus, the CB likely encompasses various non-consanguineous magmatic suites generated at deep- to mid-crustal depths. Although CB granitoid rocks undoubtedly had important crustal sources, it is hard to assess the relative contribution of mantle-derived magmas. The CB is best interpreted as a post-accretion batholith resulting from large-scale lithospheric mantle delamination followed by the upwelling of hot asthenospheric mantle leading to voluminous crustal partial melting. Contributors to crustal instability which may have facilitated such delamination included: (a) a collage of recently assembled small cratons underlain by hot, weak lithosphere with mantle-depth structural breaks within this segment of the Trans-Hudson Orogen; (b) the gabbro-eclogite phase transformation, and (c) a greatly thickened crustal section (> 60 km), as evidenced by adakitic granites.
Peterman, Z.E.; Hedge, C.E.; Coleman, R.G.; Snavely, P.D.
1967-01-01
Rb and Sr contents and 87Sr/86Sr values were determined for samples of eugeosynclinal sedimentary rocks, mostly graywackes, from Oregon and California. These data are compatible with the theory of anataxis of eugeosynclinal sedimentary rocks in orogenic belts to produce granitic magmas provided that the melting occurs within several hundreds of m.y. after sedimentation. The low (87Sr/86Sr)0 values of the eugeosynclinal sedimentary rocks are related to the significant amounts of volcanogenic detritus present which probably were originally derived from the mantle. ?? 1967.
Late Mesozoic deformations of the Verkhoyansk-Kolyma orogenic belt, Northeast Russia
NASA Astrophysics Data System (ADS)
Fridovsky, Valery
2016-04-01
The Verkhoyansk-Kolyma orogenic belt marks the boundary between the Kolyma-Omolon superterrane (microcontinent) and the submerged eastern margin of the North Asian craton. The orogenic system is remark able for its large number of economically viable gold deposits (Natalka, Pavlik, Rodionovskoe, Drazhnoe, Bazovskoe, Badran, Malo-Tarynskoe, etc.). The Verkhoyansk - Kolyma orogenic belt is subdivided into Kular-Nera and the Polousny-Debin terranes. The Kular-Nera terrane is mainly composed of the Upper Permian, Triassic, and Lower Jurassic black shales that are metamorphosed at lower greenschist facies conditions. The Charky-Indigirka and the Chai-Yureya faults separate the Kular-Nera from the Polousny-Debin terrane that is predominantly composed of the Jurassic flyschoi dturbidites. The deformation structure of the region evolved in association with several late Mesozoic tectonic events that took place in the north-eastern part ofthe Paleo-Pacific. In Late Jurassic-Early Cretaceous several generations of fold and thrust systems were formed due to frontal accretion of the Kolyma-Omolon superterrane to the eastern margin of the North Asian craton.Thrusting and folding was accompanied by granitic magmatism, metamorphic reworking of the Late Paleozoic and the Early Mesozoic sedimentary rocks, and formation of Au-Sn-W mineralization. Three stages of deformation related to frontal accretion can be distinguished. First stage D1 has developed in the north-eastern part of the Verkhoyansk - Kolyma orogenic belt. Early tight and isoclinal folds F1 and assosiated thrusts are characteristic of D1. Major thrusts, linear concentric folds F2 and cleavage were formed during D2. The main ore-controlling structures are thrust faults forming imbricate fan systems. Frontal and oblique ramps and systems of bedding and cross thrusts forming duplexes are common. It is notable that mineralized tectonized zones commonly develop along thrusts at the contacts of rocks of contrasting competence. The superimposed structures are recognized from the early cleavage deformations. Folds F3 are often chevron type, open or tight. D1, D2 and D3 deformations are coaxial. In the Late-Neocomian-Aptian the Kolyma-Omolon superterrane started moving to the west. As a result, the thrust faults were reactivated with sinistral strike-slip motions along fault planes. At that time, granitoids of the North and Transverse belts were emplaced in the northwestern part of the Kolyma-Omolon superterrane. The strike slip faults were associated with cross open folds. The postacrettionary stage is associated with the development of the Albian-Late Cretaceous Okhotsk-Chukotka subduction zone. During this stage strike-slip faults and associated deformation structures were superimposed upon accretion-related tectonic structures of the Verkhoyansk - Kolyma orogenic belt.
No erosional control on the lateral growth of the Alps
NASA Astrophysics Data System (ADS)
Rosenberg, C. L.; Berger, A.
2009-04-01
On the base of literature data, we estimated the paleowidth of the Central Alps and the changing location of the inferred active fronts of the orogen from the Oligocene to the present. These compilations indicate that the absolute change of width, defined as the distance between the most external, but not necessarily active thrusts of the orogen was modest, amounting to less than 15 %, from 32 Ma to the present. This value lies within the error of estimate, and hence it is no sound evidence for lateral growth or retreat of the orogen. On the other hand the width of the active orogen, defined as the distance between the most external active thrusts, did increase in the early Miocene. This increase started already in the Oligocene as also concluded on the base of sedimentological findings, suggesting a continuous growth of thrusts through the Oligocene-Early Miocene interval (e.g. Schumacher et al., 1996). In the Late Miocene the active width of the Southern Alps decreased, as documented by a pre-Messinian out-of-sequence phase of thrusting (Lecco thrust; Schönborn, 1992) younger than the Milan Belt (Schönborn 1992). Increasing erosion rates are expected to reduce the width of the orogen, whereas decreasing rates are expected to increase its width (Beaumont et al., 1992). Therefore, following the example of previous investigations (Schlunegger et al., 2001; Schlunegger and Simpson, 2002; Willett et al., 2006) we compare the reconstructed changes of width of the Alps with the depositional budgets of the Alpine foreland basins (Kuhlemann, 2000) inferred to be a proxy for the erosion rates of the Alpine belt. This comparison shows that the most significant increases in erosion efficiency do not lead to a decrease in the active width of the orogen. This is indicated by the pronounced foreland-directed growth of the Alps after the Messinian, i.e., during the phase of greatest increase in the erosion rates of the orogen. The best regional examples are the northward shift of the deformation front of the Jura Mountains (Nivière and Winter, 2000; Giamboni et al., 2004; Madritsch et al., 2008), the westward shift of the Chaines Subalpines (Lickorisch and Ford, 1998) on the western side of the orogen, and the southward migration of the active front in the eastern sector of the Southern Alps (Benedetti et al., 2000). The reduced erosional efficiency of the orogen, which started at 17 Ma and continued until the Messinian (Kuhlemann, 2000) also did not coincide to a phase of lateral growth of the orogen. Out-of sequence thrusting in the Southern Alps (Schönborn, 1992) reduced the width of the chain well before the Messinian crisis, i.e. during the phase of fading erosion efficiency. Therefore, erosion does not seem to have been the prime control on the changes of width of the orogen. Alternatively, the effect of erosion on the lateral growth of the orogen can be tested by comparing the timing and the type of shifts of the active deformation front from different parts of the orogen. If climate changes are inferred to control changes in the erosional efficiency of the Alps (Willett et al., 2006), the tectonic response to a given change of climate is expected to be coeval and of similar type in all parts of the chain. This is especially true for an orogen as small as the Alps, whose different portions are all affected by the same climatic conditions. However, the mode of exhumation of the Eastern Alps is very different than that of the Western and Central Alps. The exhumation front progressively shifted towards the foreland in the latter case, whereas it remained focused in the axial zone of the orogen in the former case (Rosenberg and Berger, 2009). As a consequence, a broad metamorphic belt, with cooling ages younging from the axial zone towards the foreland formed in the western Alps, and a narrow metamorphic belt with cooling ages younging towards the axial zone of the orogen formed in the Eastern Alps. These first-order differences indicate that processes other than erosion and climate change controlled the migration of the deformation and exhumation fronts of the Alps. References: Beaumont, C., P. Fullsack, and J. Hamilton (1992). In: K.R. McKlay (ed.), Thrust Tectonics, pp. 19-31, Chapman and Hall, New York. Benedetti, L., P. Tapponnier, G.C.P. King, B. Meyer, and I. Manighetti (2000). J. Geophys. Res., 105, 739-766. Giamboni, M., K. Ustaszewski, S.M. Schmid, M. Schumacher, and A. Wetzel (2004). Int. J. Earth Sci., 93, 207-223. Kuhlemann, J. (2000). Mem. Sci. Geol. Padova, 52, 1-91. Lickorisch, W. H., Ford, M., (1998). In: Mascle et al. (eds.), Cenozoic foreland basin of Western Europe, Geol. Soc. London, Spec. Publ., 134, 189-211. Madritsch, H., S. M. Schmid, and O. Fabbri (2008). Tectonics, 27, TC5005, doi:10.1029/2008TC002282 Rosenberg, C.L. and Berger, A. (2009).Geophysical Research Abstracts, Vol. 11, EGU2009-2906, 2009 EGU General Assembly 2009Schlunegger, F., J. Melzer, and G.E. Tucker (2001). Int. J. Earth Sci., 90, 484-499. Schlunegger, F., and G. Simpson (2002), Geology 30, 907-910. Schönborn, G. (1992) Mem. Scienze Sci. Geolog. Padova, 44, 229-393. Schumacher, M.E., G. Schönborn, D. Bernoulli, and H.P. Laubscher (1996), In: O.A. Pfiffner et al. (eds.), Deep Structure of the Swiss Alps — Results from the National Research Program 20 (NRP 20), 186-204, Birkhäuser, Basel. Willett, S.D., F. Schlunegger, and V. Picotti (2006). Geology, 34, 613-616.
NASA Technical Reports Server (NTRS)
Patino Douce, Alberto E.; Humphreys, Eugene D.; Johnston, A. Dana
1990-01-01
This paper presents a thermal and petrologic model of anatexis and metamorphism in regions of crustal thickening exemplified by the Sevier hinterland in western North America, and uses the model to examine the geological and physical processes leading to crustally derived magmatism. The results of numerical experiments show that anatexis was an inevitable end-product of Barrovian metamorphism in the thickened crust of the late Mesozoic Sevier orogenic belt and that the advection of heat across the lithosphere, in the form of mantle-derived mafic magmas, was not required for melting of metasedimentary rocks. It is suggested that, in the Sevier belt, as in other intracontinental orogenic belts, anatexis occurred in the midcrust and not at the base of the crust.
Patrick, B.; Till, A.B.; Dinklage, W.S.
1994-01-01
During exhumation of the Brooks Range internal zone, amphibolite-facies rocks were emplaced atop the blueschist/greenschist facies schist belt. The resultant inverted metamorphic field gradient is mappable as a series of isograds encountered as one traverses up structural section. Amphibolite-facies metamorphism occurred at ??? 110 Ma as determined from 40Ar 39Ar analysis of hornblende. This contrasts with 40Ar 39Ar phengite cooling ages from the uderlying schist belt, which are clearly older (by 17-22 m.y.). Fabrics in both the amphibolite-facies rocks and schist belt are characterized by repeated cycles of N-vergent crenulation and transposition that was likely associated with out-of-sequence ductile thrusting in the internal zone of the Brooks Range orogen. Contractional deformation occurred in an overall environment of foreland-directed tectonic transport, broadly synchronous with exhumation of the internal zone, and shortening within the thin-skinned fold and thrust belt. These data are inconsistent with a recently postulated mid-Cretaceous episode of lithospheric extension in northern Alaska. ?? 1994.
NASA Astrophysics Data System (ADS)
Audrey, Bertrand; Sue, Christian
2016-04-01
Brittle deformations allow assessing the late stage of deformation of an orogenic chain. We reappraised the meaning of the late fracturing over the entire Alps in a global geodynamic context. The closure temperature of ZFT corresponds to the brittle-ductile transition in quartz. Therefore, ZFT ages are a proxy for the maximal age of brittle deformation. Combined analyses of ZFT ages with paleostresses data allow the comparison of the brittle deformations over the belt. In the Western Alps, paleostress indicate a major occurrence of orogen-paralell extension and associated strike-slip regimes (Champagnac et al. 2006; Sue et al. 2007 ; Sue and Tricart, 2003). Indeed, paleostress data show a rotation of the main σ3 stress axes along the arc. Those structures are of Miocene age and are related to the propagation of the Alpine front toward the external zone. In the Central Alps, Paleostress fields are dominated by orogen-parrallel extensional regimes both in the Bergell area (Ciancaleoni and Marquer 2008) and the Lepontie dome (Allanic, 2012). In the Eastern Alps, the only area where ZFT ages are of Tertiary ages is the Tauern Window. The brittle deformation is here dominated by orogen-parallel extension at the eastern and western borders of the dome and by strike-slip faulting in the central parts (Bertrand et al., 2015), and inferred to be driven by the combined collapse and lateral escape of the orogenic wedge, due to indentation on the Adriatic indenter (Ratschbacher et al., 1991). Major orogen-parallel extensional signal is closely linked with transcurrent deformation's component. It appears extremely stable all over the Alps and coeval with the propagation of the alpine front top the W-NW. Looking deeper, SKS splitting over the Alps [Qorbani et al., 2015] roughly indicates an orogen-parallel anisotropy pattern in the upper mantle. Indeed, the scheme of the SKS is very comparable with faulting data along-strike of the Alps. In this frame, we can compare both kinds of data, a priori disconnected, but which exhibit similar patterns. How about connecting deep processes in the upper alpine mantel, and its ductile flow, and upper crustal Miocene dynamics, as seen by brittle deformation? There is a very good correlation between the two pattern of deformation, related to two structural levels, the upper crust and the upper mantle, suggesting that the orogen-parallel extension could be an answer to lithospheric-scale processes. In this geodynamic model we may propose that the overall orogen-parallel Miocene extension observed in the upper crust of the internal Alps may be driven by mantel flow and slab retreat processes implying the Panonian slab to the East and the Apennine slab to the SW. REF: Allanic, C., 2013. PhD, Orléans, 272p - Bertrand, A. et al., 2015. Tectonophysics, 649, 1-17 - Champagnac J-D. et al. Tectonics. doi: 10.1029/2004TC001779 - Ciancaleoni, L. and Marquer, D., 2008 Tectonics, 27, 1-22. Ratschbacher, L. et al. 1989 Geology 17:404-407 - Schmid, S.M. et al. 1996. Tectonics, 15, 1036-1064 - Sue, C. and Tricart, P., 2003 Tectonics 22:1-25 - Sue, C. et al. 2007, IJES, 96, 1101-1129.
Hissar-Alai and the Pamirs: Junction and Position in the System of Mobile Belts of Central Asia
NASA Astrophysics Data System (ADS)
Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.
2018-01-01
The position of the Pamirs and the Hissar-Alai mountainous system in the structure of Central Asia and features of their junction are considered. It is shown that their outer contours and tectonic infrastructure are significantly distinct in the planar pattern: latitudinally linear and arched for the Hissar-Alai and the Pamirs, respectively. These structures logically match those of the Central Asian and Alpine-Himalayan belts, respectively. The Pamir orogen is a relatively autonomous structural element of the crust, which is located discordantly relative to the country lithospheric blocks. Most of the Pamirs (at least, the Northern and Central) probably form a giant allochthon on the ancient basement of the Tarim and Afghan-Tajik blocks. The junction zone of these two "hard" crustal segments is reflected in the transverse Transpamir threshold, which is expressed in the relief, deep structure, and seismicity. The specific geological structure of the junction zone of the Pamirs and Hissar-Alai (systems of the Tarim, Alai, and Afghan-Tajik troughs) is shown. It suggested that this zone is a damper, which significantly neutralizes the dynamic influence of the Pamir and the southernmost elements of the Pamir-Punjab syntax on Hissar-Alai structures.
NASA Astrophysics Data System (ADS)
Henriquez, S.; Carrapa, B.; DeCelles, P. G.
2017-12-01
In Cordilleran-type orogens, exhumation of the thrust belt records the kinematic history of the orogenic system. In the Central Andes, the widest and thickest part of this orogen, several authors have documented the exhumation of the thrust belt in the modern forearc (Chile) and retroarc region (Bolivia and Argentina) showing an overall eastward propagation of deformation since the late Eocene. However, the exhumation of earlier Andean retroarc tectonic events remains poorly documented. In the forearc, the Cordillera de Domeyko and Salar de Atacama basin exhibit multiple pieces of evidence for earlier Andean orogenesis. The goal of this study is to document the thermal record of Late Cretaceous to Eocene retroarc deformation. To this end, this study investigates the cooling history of the easternmost basement uplift of the Cordillera de Domeyko. We couple this record with detrital thermochronology from cobbles in the Late Cretaceous to Miocene sedimentary units from the Salar de Atacama basin which records the unroofing history of this uplift. We employed a multi-dating approach combining apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) thermochronology to constrain the timing and amount of exhumation in the early Andean retroarc region. Our results show episodic cooling ca. 90-80, 65-60 and 45-40 Ma. This new data provides a thermochronologic record of Late Cretaceous and Paleocene deformation in the retroarc region as well as of the widely recognized Eocene deformation event. The cooling signal is interpreted to reflect exhumation controlled by uplift and erosion in the retroarc region. These exhumation events reflect episodes of internal deformation, crustal thickening, and roughly similar amounts of local erosion. Exhumation in this region decreased by the late Oligocene; by this time the orogenic front was established to the east, in the Eastern Cordillera.
Moore, Thomas E.; Potter, Christopher J.; O'Sullivan, Paul B.; Shelton, Kevin L.; Underwood, Michael B.
2003-01-01
Ocentral Brooks Range consists of two superposed north-directed contractional orogens, one formed between 140-120 Ma and the other at ~60-45 Ma. The older orogen was an arc-continent collisional zone characterized by far-traveled allochthons and relatively low structural relief. The younger orogen is a retroarc thrust belt with relatively low amounts of shortening and high structural relief. Folding and thrusting of the younger episode is superimposed on the thin-skinned deformational wedge of the earlier orogen and also produced a frontal triangle zone in a thick sequence of mid-Cretaceous foreland basin sediments to the north. Stable isotope compositions of calcite and quartz veins indicate two fluid events including: (1) an earlier, higher-temperature (~250-300° C) event that produced veins in deformed Devonian clastic rocks, and (2) a younger, lower-temperature (~150° C) event that deposited veins in deformed Mississippian through Albian strata. The fluids in the first event had variable d18O values, but nearly constant d13C values buffered by limestone lithologies. The vein-forming fluids in the second event had similarly variable d18O values, but with distinctly lower d13C values as a result of oxidation of organic matter and/or methane. Zircon fission track ages demonstrate cooling to temperatures below 200° C between 140-120 Ma for the Devonian rocks, whereas zircon and apatite fission track ages show that Mississippian to Albian rocks were never heated above 200° C and cooled below 110-90° C at ~60-45 Ma. These data are interpreted as indicating that the older, high-temperature fluid event was active during thrusting at 120-140 Ma, and the younger fluid event during deformation at ~60-45 Ma. The data and results presented in this poster will be published in early 2004 in Moore and others (in press).
Integrated Geophysical Models Extending From The Craton Across The Gulf Coast Region Of The USA
NASA Astrophysics Data System (ADS)
Keller, G. R.; Mickus, K. L.; Thomas, W. A.
2017-12-01
In spite of decades of industry geophysical studies in the US Gulf Coast region, its crustal and uppermost mantle structure remain poorly understood. To understand the structure of this region and its variations from the southern Appalachians to northernmost Mexico, we have complied and integrated multiple data sets to produce a set of lithospheric scale transects crossing this region. These transects are presented as gravity models, but they are constrained by the available seismic reflection/refraction, passive seismic, magnetic, drilling, and geological data. The key transect is based on the PASSCAL wide-angle reflection/refraction experiment that extended from the Ouachita Mountains in Arkansas across the Sabine uplift in Louisiana and into the northernmost Gulf of Mexico. This experiment imaged the Iapetan rifted margin and showed that it was not strongly deformed. This model and one across Alabama delineated crustal blocks south of the rifted margin of Laurentia whose origin is unknown. In central Texas, the models show a crust that thins gradually from the Ouachita orogenic belt southward across the coastline to the edge of the continental margin in the Gulf of Mexico. In western Texas and adjacent northern Mexico, another crustal block has been proposed. Thus, our integrated models and geologic constraints show that the Appalachian and Ouachita orogenic belts were formed during assembly of Pangea (by 270 Ma), and were driven onto the Iapetan rifted margin by collisions with arcs, exotic terranes, and other continents. They also show that the sinuous curves of the Appalachian-Ouachita orogen mimic the shape of the Iapetan rifted margin and subsequent passive-margin shelf edge. Our results indicate that the Ouachita orogeny appears to be the result of soft collisions that have left the pre-orogenic rifted margins largely intact and reflect the complex interactions of compressional and strike-slip deformation.
NASA Astrophysics Data System (ADS)
Meigs, Andrew
2014-05-01
Critical taper wedge theory is the gold standard by which climate control of convergent orogenic belts is inferred. The theory predicts (and models reproduce) that an orogenic belt narrows if erosion increases in erosion in the face of a constant tectonic influx. Numerous papers now argue on the basis of thermochronologic data that the Chugach/ St. Elias Range (CSE) of southern Alaska narrowed as a direct response to Quaternary climate change because glaciers dominated erosion of the orogenic belt. The CSE formed in response to collision of a microplate with North America and is notable because glacial erosion has dominated the CSE for the past 5 to 6 Ma. An increase in sediment accumulation rates in the foreland basin over that time suggests that glacial erosion become more efficient. If correct, it is possible that glacial erosion outpaced rock influx thereby inducing a climatically controlled narrowing of the orogenic wedge during the Quaternary. Growth strata preserved within the wedge provide a test of that interpretation because they demonstrate the spatial and temporal pattern of deformation during the Pliocene to Quaternary climate transition. A thrust front established between 6 and 5 Ma jumped towards the foreland by 30 and 15 km at 1.8 and 0.25 Ma, respectively. Distributed deformation within the thrust belt accompanied the thrust front relocations. Continuous exhumation recorded by low-temperature thermochronometers occurred contemporaneously with the shortening, parallel the structural not the topographic grain, and ages become younger towards the foreland as well. Interpreted in terms of critical wedge theory, continuous distributed deformation reflects a sub-critical wedge taper resulting from the combined effects of persistent exhumation and incremental accretion and orogenic widening via thrust front jumps into the undeformed foreland. Taper angle varies according to published cross-sections and ranges from 3 to 9 degrees. If the wedge oscillated about critical taper, a pore fluid ratio between 0.7 and 0.97 is suggested by range of taper angles. Thus, the thrust belt response to Pliocene to Quaternary climate change and a likely increase in glacial coverage is in fact the opposite of the expected response of a critical-taper wedge to an increase in hinterland erosion rate. The CSE hovered near critical taper throughout the Quaternary and the tectonic influx equaled or exceeded the erosional efflux, implying that glacial erosion was paced by, not independent of, tectonic rock uplift rate.
Goldfarb, Richard J.; Marsh, Erin; Anderson, Eric D.; Horton, John D.; Finn, Carol A.; Beaudoin, Georges
2015-01-01
A preliminary evaluation of these gold data can be used to develop broad, firstorder tracts defining favorable and permissive areas for gold resources; detailed metamorphic and structural maps are required for more detailed future tract definition. Such a first-order assessment can, nonetheless, broadly identify four tracts of gold resource potential. Three of these are favorable for discovery of new orogenic gold deposits. One tract, although not favorable, is nevertheless permissive for discovery of epithermal gold deposits. Tract 1 is defined by favorable medium metamorphic grade greenstone belts within vast areas of unfavorable high metamorphic grade, Mesoarchean and Paleoproterozoic granite-gneiss basement of the Rgueïbat Shield. Faults >200 km in length following the general strike of the greenstone belts; lineament intersections with both exposed and buried parts of greenstone belts within 500 m of the surface, as defined by aeromagnetic data (Finn and Anderson, 2015); and areas of banded iron formation (BIF) in the belts are particularly favorable areas for hosting gold resources in orogenic gold deposits within and along the margins of the greenstone belts. Tracts 2 and 3, also for orogenic gold, reflect the favorable Proterozoic-Cambrian metamorphic rocks of the Northern and Southern Mauritanides, with >200-km-long faults following the general strike of the range, and areas underlain by ultramafic and BIF rocks being particularly favorable. Outcrops of Triassic-Jurassic igneous rocks along the margins of the Taoudeni Basin define tract 4, which is permissive for epithermal gold deposits. Although extensive data are lacking for the area, carbonate units along the northern side of the Taoudeni Basin could be considered permissive host rocks for Carlin-type mineralization, but the deep-water carbonate lithologies are typically not favorable for such.
Evaluation of the Orogenic Belt Hypothesis for the Formation of Thaumasia, Mars
NASA Astrophysics Data System (ADS)
Nahm, A. L.; Schultz, R. A.
2008-12-01
The Thaumasia Highlands (TH) and Solis Planum are two of the best-known examples of compressional tectonics on Mars. The TH is a region of high topography located in the southern portion of the Tharsis Province, Mars. Solis Planum is located in eastern Thaumasia. Two hypotheses for the formation of this region have been suggested: sliding on a weak horizon or thrusting analogous to orogenic wedges on Earth. Both hypotheses require a shallowly dipping to sub-horizontal weak horizon below Thaumasia. Wrinkle ridges in Solis Planum are also inferred to sole into a décollement. If Thaumasia formed by thrusting related to sliding on a décollement, then certain conditions must be met as in critical taper wedge mechanics (CTWM) theory. If the angle between the surface slope and the basal décollement is less than predicted by the critical taper equation, the 'subcritical' wedge will deform internally until critical taper is achieved. Once the critical taper has been achieved, internal deformation ceases and the wedge will slide along its base. Formation of orogenic belts on Earth (such as the Central Mountains in Taiwan) can be described using CTWM. This method is applied here to the Thaumasia region on Mars. The surface slope (alpha) was measured in three locations: Syria Planum-Thaumasia margin, Solis Planum, and the TH. Topographic slopes were compared to the results from the critical taper equation. Because the dip of the basal décollement (beta) cannot be measured directly as on Earth, the dip angle was varied at 0 - 10 degrees; these values span the range of likely values based on terrestrial wedges. Pore fluid pressure (lambda) was varied between 0 (dry) and 0.9 (overpressured); these values span the full range of this important unknown parameter. Material properties, such as the coefficients of internal friction and of the basal décollement, were varied using reasonable values. Preliminary results show that for both reasonable (such as lambda = 0, mu b = 0.85, beta = 0 deg) and extreme (such as lambda = 0.9, mu b = 0.1, beta greater than 0 deg) values of the parameters for Mars, the predicted critical taper angle was typically lower than the measured slope, rendering the orogenic belt hypothesis for the formation of the TH invalid. Comparable analysis of Solis Planum shows it also lacks a décollement.
NASA Astrophysics Data System (ADS)
San José, M.; Faccenna, C.; Fellin, M. G.; Willett, S.; Funiciello, F.; Caves Rugenstein, J. K.
2017-12-01
The topography of mountain belts results from interactions between surface processes, lithospheric thickening, and mantle dynamics. However, the contributions of each mechanism have yet to be clearly quantified. The Apennines (Italy) provide a study area where all of these processes are at play. The central part of the Apennines is an orogenic wedge formed by the westward subducting Adriatic microplate during Miocene-Pliocene, and overlies an area of local slab detachment. Recent studies indicate anomalously high uplift rates in this area (Faccenna et al., 2015), as well as a simultaneous onset of post-orogenic extension across the Central Apennines at ̴ 2 Ma (Cosentino et al., 2017). These observations have been interpreted as an expression of dynamic topography due to the slab break-off and inherent mantle upwelling. In order to test this hypothesis and further constrain the topographic evolution of the orogen, we use low-temperature thermochronology to date the exhumation, and stable isotope paleoaltimetry (18O/16O on carbonates) to reconstruct paleoelevations. We couple this paleotopographic dataset with geomorphological analysis of the present day topography. Here we present a set of 30 new (U-Th)/He cooling ages on apatites (AHe) sampled from widespread syn-orogenic flysch basin deposits (including one high-resolution vertical profile), as well as preliminary isotopic measurements. Initial results show mean AHe ages ranging from 1.62 (± 0.38 ) Ma to 2.6 (±0.02) Ma, suggesting a regionally uniform exhumation during Pleistocene. Denudation rates inferred from our vertical profile are extremely high (>1 mm/year from 2 to 1 Ma). Some samples have not been thermally reset due to insufficient burial, and yield exhumation ages older than stratigraphic depositional ages (generally > 5 Ma). These results support the hypothesis that exhumation is mainly controlled by rapid regional scale uplift related to the opening of the Adriatic slab window at the end of the orogenic phase. However, denudation is not only driven by geodynamic processes, but also by climatic changes. Further research will consider climatic variations in the interpretation of our results.
NASA Astrophysics Data System (ADS)
Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.
2012-04-01
Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).
NASA Astrophysics Data System (ADS)
Vernikovskaya, A. E.; Romanov, M. I.; Kadilnikov, P. I.; Matushkin, N. Y.; Romanova, I.
2017-12-01
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens in the world, which formation started in the Neoproterozoic giving rise to numerous assemblages of island arcs, ophiolites, continental fragments and sedimentary basins. The Eastern Sayan, located at the southwestern margin of the Siberian craton, is the key area in understanding the initiation of orogenic processes in the CAOB. Widely distributed mafic igneous rocks (dolerites, gabbro etc.) in the Eastern Sayan were previously considered as part of the Nersa igneous complex of the Neoproterozoic age, whereas tectonic setting of these rocks remained highly debatable. New geochemical and mineralogical data from igneous mafic rocks within the Eastern Sayan show presence of rocks with shoshonitic and high- and low-K calc-alkaline affinities and allowed us to refine the tectonic context of their formation in the southwestern margin of the Siberian craton.All studied intrusive and volcanic rocks in the Eastern Sayan showing OIB-like geochemical signatures. The high-K rocks contain orthoclase, olivine, diopside, augite, anorthite, various amphiboles, including edenite, cataphorite, Mg-cataphorite, anthophyllite-gedrite, Mg-Fe hornblende, biotites of the siderophyllite-eastonite-annite series, as well as zircon, baddeleyite, apatite, magnetite, ilmenite and Cr-spinel. The high-K rock type is characterised by high K2O contents (up to 9.2 wt. %), K2O/Na2O ratios over 90, lowered TiO2 and MgO and moderate FeO contents and negative P and Sr anomalies. In contrast, low-K rocks, characterised by moderate and increased TiO2 and MgO contents, contain augite, pigeonite, olivine, andesine and accessory minerals, such as rutile, titanite, ilmenite and apatite. Both rock types vary considerably in Nb and Ta concentrations, from OIB-like to E-MORB. Such geochemical signatures of calc-alkaline and shoshonitic igneous rocks are indicative of an active continental margin setting. Presence of the active continental margin setting in the southwestern margin of the Siberian craton during the late Neoproterozoic-early Cambrian time is in agreement with the U-Pb age of 511 Ma of high-K dolerites (Gladkochub et al., 2006) and the development of the coeval island arc assemblages in the northern part of the CAOB.
NASA Astrophysics Data System (ADS)
Enkelmann, E.; Garver, J. I.; Pavlis, T. L.; Bruhn, R. L.; Chapman, J. B.
2007-12-01
Investigating the exhumation history of the Chugach-St. Elias orogen (SE Alaska) using low-temperature thermochronometers is challenged by significant ice cover. Assuming exhumation drove cooling, cooling ages increase with elevation in an orogenic belt, and as such the youngest ages occur in valley bottoms. Cooling and exhumation rates are expected to be very high in the Chugach-St. Elias orogen due to efficient glacial erosion and the most intense erosion occurs under the major ice fields. To study the cooling history of rapidly exhuming rocks underneath this ice cover, we analyzed detrital zircon fission track (DZFT) ages of Recent sand samples from modern rivers that drain the central Bagley Ice field and smaller glaciers draining north (Chitina valley) and south (Pacific) of the mountain range. A distinct advantage of DZFT is that it allows one to sample a landscape regardless of accessibility. The youngest ZFT component populations of samples north and south of the Bagley Ice field record a Late Miocene (5-13 Ma) cooling of the orogen. The pattern of cooling ages shows symmetry across the orogen predates the earliest record of the collision of the Yakutat terrane with Alaska. This result contrasts with the asymmetric cooling pattern displayed by low- temperature thermochronological ages (AFT and AHe) of the exposed bedrock within the range. Apatite FT and U- Th/He ages of bedrock samples south of the Bagley Ice field record the syn-collisional (<5 Ma) fast exhumation whereas apatite ages to the north reveal more heterogeneous exhumation and vary widely from Miocene to Eocene. The bedrock samples from throughout the orogenic belt thus display predominantly the effects of the recent climatic situation of the mountain range with very high precipitation on the south, seaward side versus a more arid north side. Our ZFT results from the northern drainages highlight the relative sense and timing of two important fault zones, both accommodate south-side-up exhumation. The Steward Creek fault zone, located north of the Bagley Ice field, limits the Late Miocene exhumation, whereby samples north of it yielded age populations that are Late Eocene to Cretaceous (30-120 Ma) or older. The Border Ranges fault zone, located farther north, limits the Late Eocene cooling and exhumation of the low-P and high-T Chugach Metamorphic Complex that is inferred to have formed during Eocene ridge subduction. This study provides the first insights on the exhumation history of the Chugach- St. Elias orogen between the time of Eocene ridge subduction and full collision of the Yakutat terrane with North America in the latest Miocene.
NASA Astrophysics Data System (ADS)
He, D.
2016-12-01
The Junggar Basin locates in the central part of Paleo-Asian Ocean tectonic domain, and records the dynamic processes of the Central Asian Orogenic Belt from subduction-accretion-collision to later intracontinental deformations. Carboniferous is the key period from subduction to closure in the tectonic evolution of Paleo-Asian Ocean. Based on the borehole, outcrop, seismic and gravity and magnetic anomaly data, the paper made analysis of the Carboniferous basin evolution.Geo-chronological results for the borehole volcanic rocks suggest that the Junggar Basin and adjacent area had five periods of volcanic activities, including two periods in the Early Carboniferous (359-347Ma 347-331Ma and 331-324Ma) and three periods in the Late Carboniferous (323-307Ma and 307-300Ma). Regional unconformities divided the Carboniferous into two tectono-stratigraphic sequences: Lower Carboniferous and Upper Carboniferous. The former is characterized by compressional structures and involves massive calc-alkaline basalts, andesites, dacites and rhyolites, whereas the later is mainly controlled by extensional faults and dominated by intermediate-mafic volcanic rocks, with bimodal volcanic rocks in parts. The paper determined four Carboniferous arc-basin belts in the Junggar Basin and adjacent area from north to south: the Saur-Fuhai-Dulate, Heshituoluogai-Wulungu-Yemaquan, Darbut-Luliang-Karamaili, and Zhongguai-Mosuowan-Baijiahai-Qitai, and identified multi-type basins, such as fore-arc basin, retro-arc basin, intra-arc rift basin, foreland basin and passive continental margin basin,etc.. The Carboniferous proto-type basin evolution of the Junggar Basin can be divided into three phases such as, the early to middle Early Carboniferous subduction-related compressional phase, the late Early Carboniferous to middle Late Carboniferous subduction-related extensional phase and the late Late Carboniferous intra-continental fault-sag phase. The study discloses that the Junggar Basin is likely underlain by juvenile continental crust rather than unified Precambrian basement, and also implies that the Junggar Basin and adjacent area, even the entire CAOB, were built by successively northward amalgamation of multiple linear arc-basin systems characterized by southward accretion.
NASA Astrophysics Data System (ADS)
Jian, Ping; Kröner, Alfred; Shi, Yuruo; Zhang, Wei; Liu, Yaran; Windley, Brian F.; Jahn, Bor-ming; Zhang, Liqao; Liu, Dunyi
2016-06-01
We present 110 ages and 51 in-situ δ18O values for zircon xenocrysts from a post-99 Ma intraplate basaltic rock suite hosted in a subduction-accretion complex of the southern Central Asian Orogenic Belt in order to constrain a seismic profile across the Paleozoic Southern Orogen of Inner Mongolia and the northern margin of the North China Craton. Two zircon populations are recognized, namely a Phanerozoic group of 70 zircons comprising granitoid-derived (ca. 431-99 Ma; n = 31; peak at 256 Ma), meta-granitoid-derived (ca. 449-113 Ma; n = 24; peak at 251 Ma) and gabbro-derived (436-242 Ma; n = 15; peaks at 264 and 244 Ma) grains. Each textural type is characterized by a distinct zircon oxygen isotope composition and is thus endowed with a genetic connotation. The Precambrian population (2605-741 Ma; n = 40) exhibits a prominent age peak at 2520 Ma (granulite-facies metamorphism) and four small peaks at ca. 1900, 1600, and 800 Ma. Our new data, together with literature zircon ages, significantly constrain models of three seismically-determined deep crustal layers beneath the fossil subduction zone-forearc along the active northern margin of the North China Craton, namely: (1) an upper arc crust of early to mid-Paleozoic age, intruded by a major Permian-Triassic composite granitoid-gabbroic pluton (8-20 km depth); (2) a middle crust, predominantly consisting of mid-Meso- to Neoproterozoic felsic and mafic gneisses; and (3) a lower crust composed predominantly of late Archean granulite-facies rocks. We conclude that the Paleozoic orogenic crust is limited to the upper crustal level, and the middle to lower crust has a North China Craton affinity. Furthermore, integrating our data with surface geological, petrological and geochronological constraints, we present a new conceptual model of orogenic uplift, lithospheric delamination and crustal underthrusting for this key ocean-continent convergent margin.
NASA Astrophysics Data System (ADS)
Caputo Neto, V.; Ribeiro, A.; Nepomuceno, F. O.; Dussin, I. A.; Trouw, R. A. J.
2018-07-01
The Pico do Itapeva Formation is a key metasedimentary unit to the understanding of the extensional events that occurred between the late stage of the southern Brasília Orogen collision and the main collision in the central Ribeira Orogen. The formation crops out in a 20 km long NE-trending narrow belt in the Mantiqueira mountain range in eastern São Paulo State, Brazil. It is located in the interference zone of the southern Brasília and the central Ribeira orogens and records deformation and greenschist facies metamorphism (biotite zone) related to the Brasiliano orogeny. The Pico do Itapeva Formation rests unconformably on a metaigneous substratum of the Socorro-Guaxupé Nappe/Embu Terrane and, on the southern side, is truncated by a steep SE-dipping dextral reverse shear zone. It consists of a coarsening- and thickening-upward succession, with minimum thickness of 800 m, composed of lutite, arkose and conglomerate. These rocks constitute three distinct lithofacies associations: LAI- arkose, arkose-lutite composite beds, lutite and fine conglomerate beds; LAII- arkose, pebbly arkose and scarce lutite and; LAIII- conglomerate and pebbly arkose. Most of the beds are massive; graded beds, dish and convolute structures occur locally. Bed thickness varies from thin to very thick and amalgamated bodies constitute up to 30m thick strata. Three mappable units at scale 1:20,000 were recognized based on different proportions of the three lithofacies associations. The deposits are interpreted as the record of mass flows and associated processes in a fan delta setting developed in an intermontane rift basin. U-Pb LA-ICP-MS detrital zircon ages suggest the maximum depositional age at ca. 611 Ma and the basin evolution is interpreted in the range between 611 and 580 Ma during an inter-orogenic stage between the Brasília and Ribeira orogenies.
Lease, Richard O.; Ehlers, T.A.; Enkelmann, E.
2016-01-01
Plate tectonics drives mountain building in general, but the space-time pattern and style of deformation is influenced by how climate, geodynamics, and basement structure modify the orogenic wedge. Growth of the Subandean thrust belt, which lies at the boundary between the arid, high-elevation Central Andean Plateau and its humid, low-elevation eastern foreland, figures prominently into debates of orogenic wedge evolution. We integrate new apatite and zircon (U-Th)/He thermochronometer data with previously published apatite fission-track data from samples collected along four Subandean structural cross-sections in Bolivia between 15° and 20°S. We interpret cooling ages vs. structural depth to indicate the onset of Subandean exhumation and signify the forward propagation of deformation. We find that Subandean growth is diachronous south (11 ± 3 Ma) vs. north (6 ± 2 Ma) of the Bolivian orocline and that Subandean exhumation magnitudes vary by more than a factor of two. Similar north-south contrasts are present in foreland deposition, hinterland erosion, and paleoclimate; these observations both corroborate diachronous orogenic growth and illuminate potential propagation mechanisms. Of particular interest is an abrupt shift to cooler, more arid conditions in the Altiplano hinterland that is diachronous in southern Bolivia (16-13 Ma) vs. northern Bolivia (10-7 Ma) and precedes the timing of Subandean propagation in each region. Others have interpreted the paleoclimate shift to reflect either rapid surface uplift due to lithosphere removal or an abrupt change in climate dynamics once orographic threshold elevations were exceeded. These mechanisms are not mutually exclusive and both would drive forward propagation of the orogenic wedge by augmenting the hinterland backstop, either through surface uplift or spatially variable erosion. In summary, we suggest that diachronous Subandean exhumation was driven by piecemeal hinterland uplift, orography, and the outward propagation of deformation.
NASA Astrophysics Data System (ADS)
Likhanov, Igor I.; Régnier, Jean-Luc; Santosh, M.
2018-04-01
The tectonic evolution of the Siberian Cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB, the world's largest Phanerozoic accretionary orogenic belt. Here we report for the first time, the occurrence of glaucophane schist relics in tectonites within the Yenisey shear zone which provides insights on Chilean-type convergent boundary. We present results from isotope geochronology (SHRIMP zircon analysis and mica 40Ar/39Ar dating), coupled with P-T calculations derived from conventional geothermobarometry and pseudosections in the system NCKFMASH that suggest two superimposed metamorphic events. During the first stage, glaucophane schists formed at around 640-620 Ma at P-T conditions of 8-10 kbar and 400-450 °C. In the second stage, the rocks experienced dynamic metamorphism (c. 600 Ma) at 11-15 kbar/550-640 °C. The differences in P-T parameters between weakly deformed rocks and intensely deformed tectonites and P-T paths suggest distinct tectonic processes. Geochemical features of the mafic tectonites suggest N-MORB and E-MORB affinity, and the zircon U-Pb ages suggest formation of the protoliths at 701.6 ± 8.4. The sequence of spreading, subduction and shear deformation identified in our study correlate with the early stages of development of the Paleo-Asian Ocean at the western margin of the Siberian Craton and supports the spatial proximity of Siberia and Laurentia at 700-600 Ma, as proposed for the Late Neoproterozoic paleogeographic reconstructions and as robustly constrained from large igneous province (LIP) record.
NASA Astrophysics Data System (ADS)
Han, Jie; Zhou, Jian-Bo; Wilde, Simon A.; Song, Min-Chun
2017-08-01
The Xilinhot Terrane is located in the eastern segment of the Central Asian Orogenic Belt in NE China, and is a key to a hotly debated issue on the Paleozoic tectonic evolution of this giant progenic belt. To constrain the tectonic evolution of the Xilinhot Terrane in the Late Paleozoic, we undertook zircon U-Pb dating and geochemical analyses of the Zhesi and Benbatu formations in the Suolun and Xi Ujimqin areas in the Xilinhot Terrane. Samples of the Benbatu Formation yield detrital zircon U-Pb ages ranging from 2659 Ma to 316 Ma, with four age populations at: 2659-1826 Ma, 1719-963 Ma, 590-402 Ma, and 396-316 Ma, whereas samples from the Zhesi Formation yield detrital zircon U-Pb ages ranging from 1967 Ma to 250 Ma, with four age populations at: 1967-1278 Ma, 971-693 Ma, 561-403 Ma, and 399-250 Ma. The age groups of both the Benbatu and Zhesi formations in the Xilinhot Terrane are similar to those in other parts of the Central Asian Orogenic Belt (CAOB). This evidence indicates that the Xilinhot Terrane is a microcontinent, and not an accretionary complex as previously thought. Furthermore, the youngest zircon grains in the Benbatu and Zhesi formations yield weighted mean 206Pb/238U ages of 322 ± 12 Ma (MSDW = 0.12, n = 4) and 257 ± 2.8 Ma (MSDW = 1.6, n = 8), respectively. Combined with fossil data, our new data suggest that the Benbatu and Zhesi formations in the Xilinhot Terrane were possibly deposited at ∼322 Ma and ∼257 Ma, respectively. Based on the provenance of the Carboniferous-Permian sandstones came from the blocks of NE China, we speculate that the Xilinhot Terrane is the western part of the Songliao block.
NASA Astrophysics Data System (ADS)
de Jong, K.; Wang, B.; Ruffet, G.; Shu, L. S.; Faure, M.
2012-04-01
The Tianshan belt (northwestern China) is a major tectonic element of the southern Central Asian Orogenic Belt that contains a number of ophiolitic mélanges and (ultra)high-pressure metamorphic belts formed after closure of oceanic and back-arc basins that resulted in terrane collisions. Deciphering its tectonic evolution is thus crucial for understanding the amalgamation of Central Asia. We produce robust 40Ar/39Ar laser-probe evidence that the Tianshan is a Late Palaeozoic (ultra)high-pressure metamorphic collision belt, not a Triassic one, as suggested by some SHRIMP zircon ages in recent literature. Instead of trying to date the peak pressure conditions we focused on 40Ar/39Ar analysis of white mica formed during retrograde recrystallisation when the (ultra)high-pressure metamorphic rocks of the Changawuzi-Kekesu complex were exhumed. Exhumation was coeval with their northward thrusting over the southern margin of the Yili terrane, the easternmost element of the Kazakhstan composite super-terrane, which produced main phase tectonic structures. The Yili terrane comprises a Proterozoic basement covered by metasediments, intruded by Early Carboniferous granites when it formed part of a continental margin arc. During the Permian deformation was partitioned in vertical brittle-ductile strike-slip fault zones that reactivated these suture zones and in which bimodal magmatism was concentrated. We also investigate the effects of these events on the isotopic ages of mica. 40Ar/39Ar laser-probe dating of white mica reveals that the strongest retrogressed blueschists immediately above the basal thrust fault of the Changawuzi-Kekesu belt gave the youngest plateau age of 316 ± 2 Ma (1σ). White mica in greenschist-facies metamorphic quartzite from the ductilely deformed metasedimentary cover of the Yili terrane's crystalline basement, taken at about 1 km below the thrust contact with the overlying Changawuzi-Kekesu belt, yielded a plateau age of 323 ± 1 Ma (1σ). Elsewhere, such metasediments yielded plateau ages (1σ) of 253 ± 1 (muscovite) and 252 ± 1 (biotite) Ma, whereas biotite from an undeformed ca. 340 Ma-old granite intruding the Yili terrane's southern margin gave a 263 ± 1 Ma plateau age (1σ). The 263-252-Ma-old samples were taken between 2 and 5 km across strike from the Permian Qingbulak-Nalati strike-slip fault, and within the 15-20 km wide zone with steeply dipping tectonic fabrics used by intruding Permian granites, and associated mineralisations. We interpret these Permian ages by recrystallisation of the mica by (late magmatic?) fluid flow channeled into these steep zones. Laser-probe dating of mylonite whole-rock samples from the North Tianshan - Main Tianshan strike-slip fault zone yielded 40Ar/39Ar spectra with step ages in the 255-285 Ma range, which date the movement on this ductile shear zone. The picture is emerging that a convective fluid system partly driven by magmatic heat, existed in a strongly fractured and weakened crust with an elevated heat flow, leading to regional-scale isotope resetting. We suggest that surprisingly young isotopic ages for early orogenic (ultra)high-pressure metamorphism are similarly due to fluid-mediated recrystallisation, leading to the erroneous view that the Tianshan is a Triassic orogenic belt.
NASA Astrophysics Data System (ADS)
Kusky, Timothy M.; Bradley, Dwight C.
1999-12-01
Permian to Cretaceous mélange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and mélange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the mélange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to σ1 are contracted in both the brittle and ductile regimes, layers at 30-45° to σ1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45° to σ1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within mélange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north-south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest-northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with inferred plate motions during the general time frame of accretion of the McHugh Complex. The slip vectors are interpreted to preserve the convergence directions between the overriding and underriding plates, which became more oblique with time. They are not considered indicative of strain partitioning into belts of orogen-parallel and orogen-perpendicular displacements, because the kinematic data are derived from the earliest preserved structures, whereas fabrics related to strain partitioning would be expected to be superimposed on earlier accretion-related fabrics.
Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling
NASA Astrophysics Data System (ADS)
Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael
2016-03-01
Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.
The Volga-Don orocline stitching Volgo-Sarmatia
NASA Astrophysics Data System (ADS)
Bogdanova, S. V.; Postnikov, A. V.; Bibikova, E. V.
2012-04-01
The crustal segments of Volgo-Uralia and Sarmatia occupy about half of the territory of the East European Craton. They differ from its Fennoscandian part by featuring large Early Archaean blocks and 2.1-2.0 Ga orogenic belts. The Volga-Don belt, which separates Archaean Volgo-Uralia from likewise Archaean eastern Sarmatia (the Oskol-Azov megablock) is one of the intracratonic collisional orogens that stitched together various Sarmatian terranes and Volgo-Uralia during the assembly of megacontinent Volgo-Sarmatia. The Volga-Don orogen is an orocline, NS-trending in the south, but bending and wedging out in the northwest where Sarmatia and Volgo-Uralia were brought into close contact caused by their oblique collision. It extends for more than 600 km and is very wide in the southeast, embracing several tectonic terranes, bounded by strike slip- and thrust faults. There, the Volga-Don orogen comprises the following terranes from the east to the west: (1) The wide South Volga province made up of metasedimentary migmatites and S-type garnet-bearing granitoids of granulite and amphibolite facies having NdTDM isotopic ages between 2.4 and 2.1 Ga. These overlie the Archaean basement of Volgo-Uralia, (2) The Tersa continental- marginal igneous belt, where granitoid intrusions of shoshonitic affinity were emplaced into South Volga metasedimentary rocks and their basement at 2.04 Ga. Their NdTDM model ages vary between 2.6 and 2.1 Ga, (3) The Balashov block consisting of the East Vorontsovka turbiditic rocks metamorphosed in the greenschist- to amphibolite facies of a LP/HT series, and in places migmatized and intruded by 2.02 Ga S-type granites, (4) the East Voronezh block, where accretionary-type turbidites of the West Vorontsovka Group have been penetrated by a number of small mafic-ultramafic and gabbro-dioritic plus granitic intrusions with ages of 2.08-2.05 and 2.06-2.05 Ga, respectively, (5) the 2.1-2.08 Ga Lipetsk-Losevo volcanic arc extending along the continental margin of the Archaean Oskol-Azov (Kursk) block of Sarmatia, and (6) the Oskol-Azov block with tectonic belts of Palaeoproterozoic intensively deformed BIF (banded iron formation) metasediments. Terranes 4, 5 and 6 characterize the East Sarmatian accretionary orogen (Shchipansky et al., 2007) developed shortly before the Volga-Don collision. The Volgo-Uralian terranes (1-3) appear to represent an array of intracratonic basin, active continental margin and mature island arcs. The internal structure of the Volga-Don orogen is bilateral and symmetric, complicated by strike-slip faulting and normal faults mostly related to the formation of the Mesoproterozoic Pachelma aulacogen. Recent seismic reflection profiling revealed typical collisional interfingering of tectonic layers/nappes belonging to the Sarmatian as well as Volgo-Uralian crust, and a mantle reflector dipping beneath Volgo-Uralia (Gusev et al., 2010). On the whole, the deep crustal geometry suggests that the Sarmatia-Volgo-Uralia intersegment suture is situated in the central part of the orocline along the western fault boundary of the Balashov block. Gusev, G.S., Mezhelovsky, N.V. and Fedorchuk, V.P. (Eds.), 2010. Essays for Regional Geology of Russia, 2. GEOKART, GEOS, Moscow, 400 pp. (in Russian). Shchipansky, A.A., Samsonov, A.V., Petrova, A.Y. and Larionova, Y.O., 2007. Geotectonics (Geotektonika), 41(1): 38-62.
NASA Astrophysics Data System (ADS)
Tunini, L.; Jimenez-Munt, I.; Fernandez, M.; Villasenor, A.; Afonso, J. C.; Verges, J.
2013-12-01
The Himalaya-Tibet and Zagros orogens are the two most prominent mountain belts built by continental collision. They are part of a huge belt of Cenozoic age which runs from the Pyrenees to Burma. In its central sector, the collision with the southern margin of the Eurasian plate has resulted not only in the building of mountain ranges over the north-eastern edges of the Arabian and Indian plates but also in widespread deformation 1000-3000 km from the suture zones. Zagros and Himalaya-Tibet orogens share many geodynamic processes but at different rates, amount of convergence and stage of development. The study of their present-day structures provides new insights into their quasi coeval collisional event pointing out differences and similarities in the mountain building processes. We present 2D crust and upper mantle cross-sections down to 400 km depth, along four SW-NE trending profiles. Two profiles cross the Zagros Mountains, running from the Mesopotamian Foreland Basin up to the Alborz and Central Iran. Two other profiles run through the Himalaya-Tibetan orogen: the western transect crosses the western Himalaya, Tarim Basin, Tian Shan Mountains and Junggar Basin; the eastern transect runs from the Indian shield to the Beishan Basin, crossing the eastern Himalaya, Tibetan Plateau, Qaidam Basin and Qilian Mountains. We apply the LitMod-2D code which integrates potential fields (gravity and geoid), isostasy (elevation) and thermal (heat flow and temperature distribution) equations, and mantle petrology. The resulting crust and upper mantle structure is constrained by available data on elevation, Bouguer anomaly, geoid height, surface heat flow and seismic data including P- and S-wave tomography models. Our results show distinct deformation patterns between the crust and the lithospheric mantle beneath the Zagros and Himalaya-Tibetan orogens, indicating a strong strain partitioning in both areas. At crustal level, we found a thickening beneath the Zagros and the Alborz ranges, more pronounced in the southern profile. At sub-crustal level, a lithospheric mantle thinning affects the whole area beneath the Zagros range extending to the north through the zone below the Alborz and the central Iran. In the Himalaya-Tibet region our results show stronger strain partitioning in the horizontal (east-west) direction than in the vertical (depth) direction. At crustal level, the Tibetan Plateau extends more than 1000 km in the eastern profile, whereas it is squeezed between the Himalayan Mountains and the Tarim Basin along the western profile (~600 km). At sub-crustal level, the lithospheric mantle is more homogeneous in thickness and mineral composition along the western profile than the eastern one. Finally, our results on mineral composition show that both collisional regions are characterised by a predominant lherzolitic lithospheric mantle, whereas we observe compositional variations around the suture zones, probably related to subduction and mantle delamination processes.
NASA Astrophysics Data System (ADS)
Ferraccioli, Fausto; Seddon, Samuel; Finn, Carol; Bell, Robin; Wu, Guochao; Jordan, Tom
2017-04-01
The Gamburtsev Subglacial Mountains in interior East Antarctica are underlain by 50-60 km thick crust imaged by gravity and seismic models (Ferraccioli et al., 2011; An et al., 2015). In contrast, the composite Archean to Mesoproterozoic Mawson craton that occupies the Wilkes and Terre Adelie sector of East Antarctica typically features only 40-45 km thick crust (Aitken et al., 2014). Over 200 km thick and seismically fast lithosphere underlies the Gamburtsev Province, as typically observed over Precambrian lithosphere that has not been substantially reworked during Phanerozoic subduction or collision. Satellite and airborne magnetic data indicate that the Gamburtev Province is sandwiched in between distinct Precambrian lithospheric blocks including the Ruker, Princess Elizabeth Land, Vostok, Nimrod (Goodge and Finn, 2010), South Pole and Recovery provinces. Ferraccioli et al., (2011) proposed that a segment of a stalled orogen (i.e. an orogen where widespread orogenic collapse and root delamination has not occurred) is preserved in the Gamburtsev Province and further hypothesised that its origin relates to widespread accretionary and subsequent collisional events at ca 1 Ga, linked to the assembly of the Rodinia supercontinent. However, recent passive seismic interpretations (An et al., 2015) indicate that crustal thickening may relate instead to Pan-African age assembly of Greater India, East Antarctica and Australia within Gondwana (at ca 550 Ma). Here we interpret a set of enhanced magnetic and gravity images, depth to magnetic and gravity sources and preliminary 2D and 3D forward and inverse models to characterise in detail the crustal architecture of the Gamburtsev Province. Enhanced aeromagnetic images reveal a system of subglacial faults that segment the Gamburtsev Province into three distinct geophysical domains, the northern, central and southern domains. Apparent offsets in high-frequency magnetic anomalies within the central domain are interpreted here as revealing a right-lateral predominantly transpressional fault system roughly parallel to the previously proposed Gamburtsev Suture flanking the northern domain. Simple magnetic modelling provides support for the existence of potential positive flower structures and basement push ups. An analogy with well-known modern strike-slip fault systems in New Zealand also supports our magnetic interpretation for a transpressional orogenic belt within the composite Gamburtsev Province. We propose that large-scale Pan-African age transpression in interior East Antarctica is kinematically linked with collision of Greater India and a mosaic of distinct lithospheric provinces in East Antarctica. Pan-African transpression likely reactivated pre-existing fault systems that may have formed during Grenvillian-age accretion of arc terranes, as recently hypothesised in the interior of Eastern Dronning Maud Land, in the so called Tonian Ocean Arc Superterrane (Jacobs et al., 2015). By compiling aeromagnetic, airborne gravity, and satellite magnetic and satellite gravity data over the Gamburtserv Province and Eastern Dronning Maud Land we test whether these two areas could potentially be linked together during the inferred Grenvillian and Pan-African accretionary and collisional stages of tectonic evolution.
NASA Astrophysics Data System (ADS)
DeCelles, P. G.; Carrapa, B.; Gehrels, G. E.; Chakraborty, T.; Ghosh, P.
2016-12-01
The Himalaya consists of thrust sheets tectonically shingled together since 58 Ma as India collided with and slid beneath Asia. Major Himalayan structures, including the South Tibetan Detachment (STD), Main Central Thrust (MCT), Lesser Himalayan Duplex (LHD), Main Boundary Thrust (MBT), and Main Frontal Thrust (MFT), persist along strike from northwestern India to Arunachal Pradesh near the eastern end of the orogenic belt. Previous work suggests significant basement involvement and a kinematic history unique to the Arunachal Himalaya. We present new geologic and geochronologic data to support a regional structural cross section and kinematic restoration of the Arunachal Himalaya. Large Paleoproterozoic orthogneiss bodies (Bomdila Gneiss) previously interpreted as Indian basement have ages of 1774-1810 Ma, approximately 50 Ma younger than Lesser Himalayan strata into which their granitic protoliths intruded. Bomdila Gneiss is therefore part of the Lesser Himalayan cover sequence, and no evidence exists for basement involvement in the Arunachal Himalaya. Minimum shortening in rocks structurally beneath the STD is 421 km. The MCT was active during the early Miocene; STD extension overlapped MCT shortening and continued until approximately 15-12 Ma; and growth of the LHD began 11 Ma, followed by slip along the MBT (post-7.5 Ma) and MFT (post-1 Ma) systems. Earlier thrusting events involved long-distance transport of strong, low-taper thrust sheets, whereas events after 12-10 Ma stacked smaller, weaker thrust sheets into a steeply tapered orogenic wedge dominated by duplexing. A coeval kinematic transition is observed in other Himalayan regions, suggesting that orogenic wedge behavior was controlled by rock strength and erodibility.
Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies
Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.
2004-01-01
Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.
NASA Astrophysics Data System (ADS)
Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu
2017-08-01
The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu-Mo or Cu-Au mineralization and associated epithermal Au deposits.
NASA Astrophysics Data System (ADS)
Zhang, Feifei; Wang, Yuejun; Cawood, Peter A.; Dong, Yunpeng
2018-01-01
The Qinling-Dabie orogenic belt was formed by the collision of the North and South China Cratons during the Early Mesozoic and subsequently developed into an intracontinental tectonic process during late Mesozoic. Field investigations identified the presence of late Mesozoic basalts in the Duofutun and Hongqiang areas in the western Qinling orogenic belt. The petrogenesis of these basalts provides an important constraint on the late Mesozoic geodynamics of the orogen. The representative basaltic samples yield the 40Ar/39Ar plateau age of about 112 Ma. These samples belong to the alkaline series and have SiO2 ranging from 44.98 wt.% to 48.19 wt.%, Na2O + K2O from 3.44 wt% to 5.44 wt%, and MgO from 7.25 wt.% to 12.19 wt.%. They demonstrate the right-sloping chondrite-normalized REE patterns with negligible Eu anomalies (1.00-1.10) and PM-normalized patterns enriched in light rare earth element, large ion lithophile element and high field strength element, similar to those of OIB rocks. These samples additionally show an OIB-like Sr-Nd isotopic signature with εNd(t) values ranging from +6.13 to +10.15 and initial 87Sr/86Sr ratios from 0.7028 to 0.7039, respectively. These samples are geochemically subdivided into two groups. Group 1 is characterized by low Al2O3 and high TiO2 and P2O5 contents, as well as high La/Yb ratios (>20), being the product of the high-pressure garnet fractionation from the OIB-derived magma. Group 2 shows higher Al2O3 but lower P2O5 contents and La/Yb ratios (<20) than Group 1, originating from asthenospheric mantle with input of delaminated lithospheric component. In combination with available data, it is proposed for the petrogenetic model of the Early Cretaceous thickened lithospheric delamination in response to the asthenospheric upwelling along the western Qinling orogenic belt.
NASA Astrophysics Data System (ADS)
Jahn, Bor-ming; Valui, Galina; Kruk, Nikolai; Gonevchuk, V.; Usuki, Masako; Wu, Jeremy T. J.
2015-11-01
The Sikhote-Alin Range of the Russian Far East is an important accretionary orogen of the Western Pacific Orogenic Belt. In order to study the formation and tectonic evolution of the orogen, we performed zircon U-Pb dating, as well as geochemical and Sr-Nd-Hf isotopic analyses on 24 granitoid samples from various massifs in the Primorye and Khabarovsk regions. The zircon dating revealed that the granitoids were emplaced from 131 to 56 Ma (Cretaceous to Paleogene). In the Primorye Region, granitoids in the coastal Sikhote-Alin intruded the Cretaceous Taukha Accretionary Terrane from ca. 90 to 56 Ma, whereas those along the Central Sikhote-Alin Fault zone intruded the Jurassic Samarka Accretionary Terrane during ca. 110-75 Ma. The "oldest" monzogranite (131 Ma) was emplaced in the Lermontovka area of the NW Primorye Region. Granitoid massifs along the Central Sikhote-Alin Fault zone in the Khabarovsk Region formed from 109 to 58 Ma. Thus, the most important tectonothermal events in the Sikhote-Alin orogen took place in the Cretaceous. Geochemical analysis indicates that most samples are I-type granitoids. They have initial 87Sr/86Sr ratios ranging from 0.7040 to 0.7083, and initial Nd isotopic ratios, expressed as εNd(t) values, from +3.0 to -5.0 (mostly 0 to -5). The data suggest that the granitoid magmas were generated by partial melting of sources with mixed lithologies, including the subducted accretionary complex ± hidden Paleozoic-Proterozoic basement rocks. Based on whole-rock Nd isotopic data, we estimated variable proportions (36-77%) of juvenile component (=mantle-derived basaltic rocks) in the generation of the granitic magmas. Furthermore, zircon Hf isotopic data (εHf(t) = 0 to +15) indicate that the zircon grains crystallized from melts of mixed sources and that crustal assimilation occurred during magmatic differentiation. The quasi-continuous magmatism in the Sikhote-Alin orogen suggests that the Paleo-Pacific plate subduction was very active in the Late Cretaceous. The apparently regular progression of granitic intrusion ages from 80 to 56 Ma in the Taukha Terrane may reflect oblique underflow of the Paleo-Pacific plate beneath the Eurasian continental margin. Subduction was not only manifested by granitic intrusion, but also by abundant silicic volcanism. The Late Cretaceous Paleo-Pacific plate motion probably changed from parallel or sub-parallel to oblique relative to the continental margin of the Sikhote-Alin, leading to the change of magmatic source region and geochemical characteristics of the derived igneous rocks. Late Cretaceous rapid sea-floor spreading at ca. 100 Ma induced highly active subduction and led to voluminous magmatism in the entire Circum-Pacific realm. Finally, the present age and isotopic study lends support to the hypothesis of geologic and tectonic correlation between Sikhote-Alin and SW Japan.
NASA Astrophysics Data System (ADS)
Curry, M. E.; van der Beek, P.; Huismans, R. S.; Muñoz, J. A.
2017-12-01
The Pyrenees are an asymmetric, doubly-vergent orogen with retro- and pro- foreland basins that preserve a record of deformation since the Mesozoic. The extensive research and exploration efforts on the mountain belt and flanking foreland basins provide an exceptional dataset for investigating geodynamics and surface processes over large spatial and temporal scales in western Europe. We present the results of a numerical modeling study investigating the spatio-temporal variation in lithospheric flexure in response to the developing orogen. We employ a finite element method to model the 3D flexural deformation of the lithosphere beneath the Pyrenean orogen since the onset of convergence in the late Cretaceous. Using subsurface, geophysical, and structural data, we describe the evolving geometry of both the French Aquitaine and Spanish Ebro foreland basins at the present (post-orogenic), the mid-Eocene (peak orogenic), the Paleocene (early orogenic), and the end of the Cretaceous (pre- to early orogenic). The flexural modeling provides insight into how both the rigidity of the lithosphere and the paleotopographic load have varied over the course of orogenesis to shape the basin geometry. We find that the overriding European plate has higher rigidity than the subducting Iberian plate, with modern Effective Elastic Thickness (EET) values of 20 ± 2 and 12 ± 2 km, respectively. Modeling indicates that the modern rigidity of both plates decreases westward towards the Bay of Biscay. The lithospheric rigidity has increased by 50% since the Mesozoic with early Cenozoic EET values of 13 ± 2 and 8 ± 1 km for the European and Iberian plates, respectively. The topographic load began increasing with convergence in the late Cretaceous, reaching modern levels in the central and eastern Pyrenees by the Eocene. In contrast, the topographic load in the western Pyrenees was 70% of the modern value in the Eocene, and experienced topographic growth through the Oligo-Miocene. The westward propagation of topographic growth and erosion is supported by subsidence analysis and low-temperature thermochronology data. These results have implications for surface processes and foreland basin development of the Pyrenean Orogen, inheritance of Hercynian crustal properties, and the geodynamic evolution of western Europe.
NASA Astrophysics Data System (ADS)
Liu, Kai; Zhang, Jinjiang; Wilde, Simon A.; Liu, Shiran; Guo, Feng; Kasatkin, Sergey A.; Golozoubov, Vladimir V.; Ge, Maohui; Wang, Meng; Wang, Jiamin
2017-11-01
The Sikhote-Alin orogenic belt in Russian Far East is comprised of several N-S trending belts, including the Late Jurassic to Early Cretaceous accretionary prisms and turbidite basin which are now separated by thrusts and strike-slip faults. The origin and collage of the belts have been studied for decades. However, the provenance of the belts remains unclear. Six sandstone samples were collected along a 200 km long east-west traverse across the major belts in the southern Sikhote-Alin for U-Pb dating and Lu-Hf isotope analysis to constrain the provenance and evaluate the evolution of the northwest Pacific margin at this time. The result reveals that the sediments from the main Samarka belt was mainly from the adjacent Bureya-Jiamusi-Khanka Block (BJKB); the eastern Samarka belt and the Zhuravlevka turbidite basin were supplied by detritus from both the North China Craton (NCC) and the BJKB; the Taukha belt was mainly fed by sediments from the NCC; whereas the data from the Sergeevka nappes are insufficient to resolve their provenance. In the Late Jurassic to Early Cretaceous, collision and subduction was important in the initial collage of most belts in Sikhote-Alin. However, merely E-W trending collage cannot explain the increasing importance of the NCC provenance from west to east. It is proposed that the main Samarka belt was located adjacent to the BJKB when deposited, whereas the other belts were farther south to accept the materials from the NCC. Sinistral strike-slip faulting transported the eastern belts northward after their initial collage by thrusting.
NASA Astrophysics Data System (ADS)
Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.
2013-04-01
The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in central parts of the orogen), which, at least in the allochtonous nappes, have been interpreted to be "isofacial" with their host country rocks (Bucher, 1991). The latter strongly contrast to the interpretation of their "primary" (="protolith"- related) mineral assemblage(s) which clearly suggest a bimodal origin: here called thick (>80 km) versus thin (< 70 km) rooted lithospheric mantle protoliths. Distinction can be made on the basis of the presence of the stable (minimal Proterozoic) garnet-olivine assemblages in the protolith (i.e. much older than the Scandian collision event (Brueckner et al., 2010). For this reason orogenic garnet peridotite was first called "relict" garnet peridotite (Brueckner and Medaris, 2000), later rephrased into mantle wedge garnet peridotite (MWgp) by Van Roermund (2009). MWgp occurs in the WGC and in the SNC of the Upper Allochthon in central Sweden (Zhang et al., 2009). Most (All?) other protolith assemblages of orogenic peridotite in the CSC belong to the thin-rooted protolith subtype. No examples are known to us in which thin rooted prototypes became overprinted (during the Caledonian orogeny) by (U)HP metamorphic minerals, except for the subduction zone garnet peridotites (SZgp) in the WGC (Van Roermund, 2009). The latter can thus savely be interpreted as being enclosed within normal "MP" (or lower pressure) nappe sequences. As such it will be clear that this duality in protolith (and/or metamorphic) mineral assemblages of orogenic peridotite can be used to identify former, but now strongly retrogressed, (U)HP metamorphic terranes in other parts of the CSC (Gee et al, 2012). For this reason a comparative study has been made concerning field, (micro-)structural, mineral-chemical and/or geochemical aspects of two major orogenic peridotites from the SNC, central Sweden; here called the Friningen Garnet Peridotite (FGP) and the Kittelfjäll Spinel Peridotite (KSP), both exposed within the central belt of the SNC in central Sweden. The ultimate aim was to investigate whether the MWgp sub-type can be extended towards (Al-poor) spinel-bearing protolith assemblages or not. Results, including some hitherto unexpected mechanical effects, will be presented. References: Brueckner, H.K., Carswell, D.A., Griffin, W.L., Medaris, L.G., Van Roermund, H.L.M., Cuthbert, S.J. (2010). The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: An isotopic investigation. Lithos, 117, 1-19. doi:10.1016/j. Lithos.2010.01.011 Brueckner, H.K.and Medaris, L.G. (2000). A general model for the intrusion and evolution of "mantle" garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes. J. Metamorphic Geol., 18, 123-133. Brueckner H.K. and Van Roermund,H.L.M. (2004). Dunk tectonics: A multiple subduction//eduction model for the evolution of the Scandinavian Caledonides. Tectonics, 23, TC2004, doi:10.1029/2003tc001502. Bucher, K. (1991). Mantle fragments in the Scandinavian Caledonides. Tectonophysics, 190, 173-192. Gee, D.G., Fossen, H., Henriksen, N., Higgins, K. (2008). From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes, 31, 44-51. Gee, D.G., Janak, M., Majka, J., Robinson, P., Van Roermund, H.L.M (2012). UHP metamorphism along the Baltoscandian outer margin: evidence from the Seve Nappe Complex of the Swedish Caledonides. Lithosphere, in press. Janak, M., Van Roermund, H., Majka, J., Gee, D. (2012). UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of northern Jämtland, Swedish Caledonides. Gondwana Research, in press. Van Roermund, H.L.M. (2009). Mantle-wedge garnet peridotites from the northernmost ultra-high pressure domain of the Western Gneiss Region, SW Norway. Eur. J. Mineralogy, 21, 1085-1096. Zhang, C., Van Roermund, H.L.M., Zhang, L.F (2011). 16 - Orogenic Garnet Peridotites: Tools to Reconstruct Paleo-Geodynamic Settings of Fossil Continental Collision Zones. In: Ultrahigh Pressure Metamorphism, 25 Years After The Discovery Of Coesite And Diamond. London. Doi:10.1016/B978-0-12-385144-4.00015-1
NASA Astrophysics Data System (ADS)
Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao
2018-03-01
Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.
NASA Astrophysics Data System (ADS)
Strecker, M. R.; Bookhagen, B.
2008-12-01
The Southern Central Andes of NW Argentina and the NW Himalaya are important orographic barriers that intercept moisture-bearing winds associated with monsoonal circulation. Changes in both atmospheric circulation systems on decadal to millennial timescales fundamentally influence differences in the amount and location of rainfall in both orogens. In India, the eastern arm of the monsoonal circulation draws moisture from the Bay of Bengal and transports humid air masses along the southern Himalayan front to the northwest. There, at the end of the monsoonal conveyer belt, rainfall is diminished and moisture typically does not reach far into the orogen interior. Similar conditions apply to the NW Argentine Andes, which are located within the precipitation regime of the South American Monsoon. Here, pronounced local relief blocks humid air masses from the Amazon region, resulting in extreme gradients in rainfall that leave the orogen interior dry. However, during negative ENSO years (La Niña) and intensified Indian Summer Monsoon years, moisture penetrates farther into the Andean and Himalayan orogens, respectively. Structurally pre- conditioned valley systems may enhance this process and funnel moisture far into the orogen interior. The greater availability of moisture increases runoff, lateral scouring of mountin streams, and ultimately triggers intensified hillslope processes on decadal to centennial timescales. In both environments, the scenario of intensified present-day surface processes and rates is analogous to protracted episodes of enhanced mass removal from hillslopes via deep-seated landslides during the early Holocene and late Pleistocene. Apparently, these episodes were also associated with transient storage of voluminous conglomerates and lacustrine deposits in narrow intermontane basins. Subsequently, these deposits were incised, partly removed, and the fluvial systems adjusted themselves to the pre-depositional base levels through a readjustment and an increase in the fluvial efficiency and connectivity. Farther into the orogen interior, however, the episodically occurring increase in the availability of material may have contributed to the overall long-term reduction of relief due to reduced fluvial connectivity and the inability of rivers to evacuate material to the foreland. Pronounced coeval variations in erosion and depositional processes therefore emphasize the far-reaching impact of climate variability on the surface-process regime and hence provide insights into intensified episodes of landscape evolution in orogens. In addition, the present-day effects of climatic variability on the surface-process system may serve as a model for similar intensified processes that might be expected in a future global change scenario.
NASA Astrophysics Data System (ADS)
Hirano, N.; Dilek, Y.
2015-12-01
Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.
NASA Astrophysics Data System (ADS)
Bender, Hagen; Glodny, Johannes; Ring, Uwe; Almqvist, Bjarne S. G.; Grasemann, Bernhard; Stephens, Michael B.
2017-04-01
The Caledonian orogen of Scandinavia is thought to be a Himalaya-style head-on collisional orogen. However, in contrast to the Himalayas, the Caledonides are characterized by various ultrahigh-pressure belts of different ages, which make them a unique orogen on Earth. The Seve Nappe Complex (SNC) in Jämtland (Sweden) holds the key to better understanding the multi-stage tectonometamorphic evolution of a well-studied ultrahigh-pressure belt in the central Scandinavian Caledonides. Leucogranites and migmatic gneisses record an ultrahigh-pressure event at 460 Ma (Brueckner and Van Roermund, 2007; Grimmer et al., 2015), followed by migmatization at 440 Ma (Ladenberger at al. 2014). How those high-grade metamorphic events relate to the nappe structure remains elusive. We use a combined structural and geochronological approach to show that amphibolite- and greenschist-facies foreland-directed, top-to-the-ESE shearing formed the nappe pile consisting of the Köli Nappe overlying the SNC, the various nappes of the SNC, and the underlying units. Furthermore, we present new Rb-Sr internal multi-mineral isochron ages from two east-west transects in central and northern Jämtland. Most isotopic ages, complemented by a dense network of kinematic field data, range between 431 and 427 Ma. These ages are interpreted to reflect the timing of amphibolite-facies top-to-the-ESE-directed nappe stacking. Blackwall formation, i.e., in-situ chemical interaction between ultramafic rocks and felsic gneiss, at the Seve-Köli boundary occurred at 423 Ma, an age interpreted to postdate nappe emplacement. Biotite in top-to-the-ESE greenschist-facies shear bands in the Middle Köli nappe formed at 416 Ma. These new geochronological data show that the nappe assembly postdates deep subduction and subsequent decompression melting. Top-to-the-foreland directed thrusting occurred at 430 Ma and continued for several million years, while amphibolite-facies shear criteria yield older ages than retrograde structures. References: Brueckner and Van Roermund, 2007, J. Geol. Soc. 164, 117-128. Grimmer et al., 2015, Geology 43 (4), 347-350. Ladenberger et al., 2014, Geol. Soc. Spec. Publ. 390, 337-368.
Timescales of orogeny: Jurassic construction of the Klamath Mountains
NASA Astrophysics Data System (ADS)
Hacker, Bradley R.; Donato, Mary M.; Barnes, Calvin G.; McWilliams, M. O.; Ernst, W. G.
1995-06-01
An electronic supplement of this material may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GET and the name of the file to get it. Finally, type EXIT to leave the system.) (Paper 94YCJ2454, Timescales of orogeny: Jurassic construction of the Klamath Mountains, B.R. Hacker, M.M. Donato, C.G. Barnes, M.O. McWilliams, and W.G. Ernst). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009; $15.00. Payment must accompany order. Classical interpretations of orogeny were based on relatively imprecise biostratigraphic and isotopic age determinations that necessitated grouping apparently related features that may in reality have been greatly diachronous. Isotopic age techniques now have the precision required to resolve the timing of orogenic events on a scale much smaller than that of entire mountain belts. Forty-five new 40Ar/39Ar ages from the Klamath Mountains illuminate the deformation, metamorphism, magmatism, and sedimentation involved in the Jurassic construction of that orogen, leading to a new level of understanding regarding how preserved orogenic features relate to ancient plate tectonic processes. The new geochronologic relationships show that many Jurassic units of the Klamath Mountains had 200 Ma or older volcanoplutonic basement. Subsequent formation of a large ˜170 Ma arc was followed by contractional collapse of the arc. Collision with a spreading ridge may have led to large-scale NW-SE extension in the central and northern Klamaths from 167 to ˜155 Ma, coincident with the crystallization of voluminous plutonic and volcanic suites. Marked cooling of a large region of the central Klamath Mountains to below ˜350°C at ˜150 Ma may have occurred as the igneous belt was extinguished by subduction of colder material at deeper structural levels. These data demonstrate that the Klamath Mountains—and perhaps other similar orogens—were constructed during areally and temporally variant episodes of contraction, extension, and magmatism that do not fit classical definitions of orogeny.
NASA Astrophysics Data System (ADS)
Vicat, J.-P.; Pouclet, A.
2000-11-01
Various Palæo- and Neoproterozoic granitoid bodies and related rhyolites are located in the West Congolian Belt. The Palæoproterozoic granitoids, dated around 2 Ga, exhibit an Archæan-type tonalite-trondhjemite-granodiorite suite chemical signature and are related to the Eburnean tectnno-magmatic event. In contrast, Neoproterozoic granitoids and rhyolites, dated around 1 Ga, have chemical geotectonic signatures that range from orogenic to intraplate (Nb-negative anomaly, large ion lithophile element enrichment and high field strength element depletion). However, a late Kibaran orogenic event (1.35-1.00 Ga) is unknown in this area. The Neoproterozoic magmatism is interpreted as a consequence of the initiation of pre-Pan-African rifting, which implies the formation or the reactivation of major crustal strike-slip faults with asthenospheric upwelling and the generation of a thermal anomaly. This thermal anomaly could have been responsible for magmatic processes involving the lower crust, as encountered in post-orogenic environments.
NASA Astrophysics Data System (ADS)
Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao
2018-06-01
The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of the Yili-Central Tianshan Block were suggested to be the causes for extensive emplacements of the igneous products, which may be in an association with synchronous subduction of the South Tianshan and the North Tianshan oceanic plates, respectively. In this tectonic context, the Carboniferous magmatic rocks of the Wusun Mountain may be a tectonic response to the change in magma sources due to back-arc propagation in the western Chinese Tianshan.
NASA Astrophysics Data System (ADS)
Wu, Kai; Ding, Xing; Ling, Ming-Xing; Sun, Wei-dong; Zhang, Li-Peng; Hu, Yong-Bin; Huang, Rui-Fang
2018-03-01
Serpentinites are important volatile and fluid mobile element repositories in oceanic lithosphere and subduction zones, and thus provide significant constraints on global geochemical cycles and tectonic evolution at convergent margins. In this contribution, two types of serpentinites from the Mianlue suture zone in the Qinling orogenic belt, central China, are identified on the basis of detailed mineralogical and geochemical study. Serpentinites from the Jianchaling region (Group 1) are composed of lizardite/chrysotile + magnesite + magnetite. Most of these serpentinites (Group 1a), consist of pseudomorphic orthopyroxene and olivine, and are characterized by low Al2O3/SiO2, high MgO/SiO2 and Ir-type PGEs to Pt ratios, suggesting a residual mantle origin. Meanwhile, the U-shape REE pattern and positive Eu, Sr and Ba anomalies of these serpentinites indicate that serpentinization fluids have interacted with gabbroic cumulates at moderately high temperatures or associate with the chlorinity and redox conditions of the fluid. Considering the limited mobility of U in the hydrating fluids for the Group 1a serpentinites, hydrating fluids for these serpentinites are most likely derived from the dehydrated slab, and have been in equilibrium with subducting sediments. There are also some serpentinites with low-grade metamorphic recrystallization from the Jianchaling region (Group 1b), represented by recrystallized serpentine minerals (antigorite). The trace element compositions of these Group 1b serpentinites suggest that partial dehydration of serpentinites associated with the transformation from lizardite to antigorite in subduction zone is also likely to affect the geochemistry of serpentinites. Serpentinites from the Liangyazi region (Group 2) are composed of antigorite + dolomite + spinel + magnetite. The high Cr number (0.65-0.80) and low Ti concentrations of spinels in Group 2 serpentinites indicate a refractory mantle wedge origin. Fertile major element compositions (e.g., high Al2O3 content and Al2O3/SiO2) and conjoint enrichment in light rare earth elements and high field strength elements, however, suggest melt-rock interactions before serpentinization. Combined with their geochemical affinity to "subducted serpentinites", we conclude that their protoliths (refractory mantle wedge peridotite) experienced melt-rock interactions and then were incorporated into the subduction channel before serpentinization. Studies on these two types of serpentinites indicate that serpentinites from the orogenic belt are most likely characterized by multi-source, multi-stage and multi-genesis, further providing important constraints on subduction channel processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, R.J.; Dawoud, A.S.
1991-09-01
New Rb-Sr and whole rock and U-Pb zircon data are reported for deep-seated igneous rocks from Jebel Moya in east-central Sudan. This exposure is important because it may link the high-grade metamorphic and deep-seated igneous rocks of the Mozambique Belt with the greenschist-facies and ophiolitic assemblages of the Arabian-Nubian Shield, both of Pan-African (ca. 900-550 Ma) age. The rocks of Jebel Moya consist of pink granite, green charnockite, and dark enderbite. A twelve-point Rb-Sr whole rock isochron for all three lithologies yields an age of 730 {plus minus} 31 Ma and an initial {sup 87}Sr/{sup 86}Sr of 0.7031 {plus minus}more » 1. Nearly concordant zircon ages for granite, charnockite, and enderbite are 744 {plus minus} 2,742 {plus minus} 2, and 739 {plus minus} 2 Ma, respectively. Initial {epsilon}-Nd for these rocks are indistinguishable at 3.0 {plus minus} 0.4. The data suggest that the charnockite, enderbite, and granite are all part of a deep-seated igneous complex. The initial isotopic compositions of Sr and Nd indicate that Jebel Moya melts were derived from a mantle source that experienced significantly less time-integrated depletion of LRE and LIL elements than the source of Arabian-Nubian Shield melts. The ages for Jebel Moya deep-seated igneous rocks are in accord with data from elsewhere in the Mozambique Belt indicating that peak metamorphism occurred about 700-750 Ma. The northward extension of the Mozambique Belt to the Arabian-Nubian Shield defines a single east Pan-African orogen. The principal difference between the northern and southern sectors of this orogen may be the greater degree of thickening and subsequent erosion experienced in the south during the late Precambrian, perhaps a result of continental collision between East (Australia-India) and West Gondwanaland (S. America-Africa) about 750 Ma.« less
NASA Astrophysics Data System (ADS)
Juhlin, C.; Almqvist, B. S. G.; Buske, S.; Giese, R.; Hedin, P.; Lorenz, H.
2017-12-01
Mountain belts (orogens) have influenced, and do influence, geological processes and climatic conditions considerably, perhaps more than any other natural phenomenon. The Alpine-Himalayan mountain belt is the prime example of a collisional orogen today. However, research in an active orogen is mostly constrained to observe and interpret the expression of processes at the surface, while the driving processes act at depth, often at mid-crustal levels (20 km) and deeper. About 440 million years ago, an orogen comparable in dimension and tectonic setting to today's Alpine-Himalayan orogen was developing in what is western Scandinavia today. Since then, erosion has removed much of the overburden and exposed the deep interior of the orogen, facilitating direct observation of rocks that are deep in the crust in modern orogens. In the COSC project we study how large rock volumes (allochthons) were transported during the collision of two continents and the associated deformation. The emplacement of high-grade metamorphic allochthons during orogeny has been the focus of COSC-1 research, centered on a 2.5 km deep fully cored borehole drilled in the summer of 2014 through the lower part of the high-grade Seve Nappe Complex near the town of Åre in western Sweden. The planned COSC-2 borehole (also fully cored to 2.5 km) will complement the COSC-1 borehole and allow a 5 km deep tectonostratigraphic column of the Caledonides to be constructed. The rock volume in the proximity of the COSC-2 borehole will be imaged with a combination of very-high and high-resolution geophysical experiments, such as a combination of high frequency seismics; zero offset and walk-away vertical seismic profiling (VSP); and a sparse 3D coverage around the drill site combined with 2D seismic profiles of several kilometers length in different directions. Downhole geophysical logging will provide additional information on the in-situ rock physical properties. Data from surface surveys will be calibrated against and integrated with the borehole data and the geological interpretation of the drill core. The COSC-1 and COSC-2 boreholes will provide a field laboratory for investigating mountain building processes, how plates and rock units deform, what structures and units are formed and their physical properties.
NASA Astrophysics Data System (ADS)
Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin
2018-03-01
The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.
NASA Astrophysics Data System (ADS)
López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.
2018-04-01
In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.
NASA Astrophysics Data System (ADS)
Powerman, V.; Shatsillo, A.; Chumakov, N.; Kapitonov, I.; Hourigan, J. K.
2015-12-01
The goal of this study is to pinpoint the beginning of interaction of two gigantic crustal structures: the Siberian Craton and the Central Asian Orogenic Belt (CAOB). We hypothesize that the beginning of convergence should be recorded in the Neoproterozoic passive margin strata of Siberian Craton by the first appearance of extraregional Neoproterozoic zircons. In order to test this hypothesis, we have acquired U-Pb zircon age distributions from twelve Neoproterozoic clastic rocks from the Baikal-Patom margin of Siberia and one sample from the volcaniclastic Padrinsky Group that was deposited atop accreted CAOB crust. Stratigraphically lower strata from the Siberian margin yield Archean - Paleoproterozoic detrital zircon ages, which are similar to, and probably derived from the Siberian Precambrian craton. A few extra-regional Mesoproterozoic grains are also present. The provenance shift happens in the upper portion of the section and is marked by a strong influx of extra-regional Neoproterozoic sediments. The youngest grains of 610 Ma constrain the sedimentation age and confine the timing of interaction between CAOB and Siberia in this region. Neoproterozoic zircons also dominate the overlying sedimentary unit, suggesting the continuance of the convergence. The coeval volcanoclastic unit on the CAOB side has a similar U-Pb detrital age distribution, strengthening the provenance link. Analysis of the local tectonics suggests that the beginning of accretion might have started even before the first appearance of Neoproterozoic zircon: during the development of a regional unconformity, capped by 635 Ma (?) "Snowball Earth" tillites of Dzhemkukan Fm. The absence of Neoproterozoic zircons in Dzhemkukan Fm. is probably explained by a thin-skinned tectonics that did not result in massive orogenesis . Our data are in good correlation with other Neoproterozoic sedimentary basins of southern Siberian Craton, including Cisbaikalia and Bodaibo Synclinorium.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Cai, Keda; Chen, Ming; He, Yulin
2016-06-01
Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.
Detrital fingerprints of fossil continental-subduction zones (Axial Belt Provenance, European Alps)
NASA Astrophysics Data System (ADS)
Resentini, Alberto; Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; Malusà, Marco G.; Padoan, Marta; Paparella, Paolo
2010-05-01
Alpine-type collision orogens are generated by attempted subduction of thinned continental margins. Because of complex tectonic structure, orogenic detritus is characterized by a range of detrital signatures, making its recognition an arduous task (Dickinson and Suczek, 1979). Among the various orogenic sub-provenances, Axial Belt Provenance, derived from the erosion of the neometamorphic axial pile, can be regarded as the most typifying signature of collision orogens (Garzanti et al., 2007). In the Austroalpine Cretaceous and Penninic Eocene axial belts of the Alps, we ideally distinguish three structural levels, each characterized by diagnostic detrital fingerprints. The shallow level chiefly consists of offscraped remnant-ocean turbidites and unmetamorphosed continental-margin sediments, and mostly produces lithic to lithoquartzose sedimentaclastic sands yielding very-poor heavy-mineral suites including ultrastable minerals. The intermediate level includes low-grade metasediments and polymetamorphic basements, and sheds lithoquartzose to quartzolithofeldspathic metamorphiclastic sands yielding moderately-rich epidote- amphibole suites with chloritoid or garnet. The deep level contains eclogitic remnants of continent- ocean transitions, and supplies quartzofeldspathic to quartzolithic high-rank metamorphiclastic to lithic ultramaficlastic sands yielding rich to extremely-rich suites dominated by garnet, hornblende, or epidote depending on protoliths (continental vs. oceanic) and pressure/temperature paths followed during exhumation. Although widely overprinted under greenschist-facies or amphibolite-facies conditions, occurrence of ultradense eclogite in source areas is readily revealed by the Heavy Mineral Concentration (HMC) index, which mirrors the average density of source rocks in the absence of hydraulic-sorting effects (Garzanti and Andò 2007). The Metamorphic Index (MI, Garzanti and Vezzoli, 2003) and Hornblende Colour Index (HCI) reflect peak temperatures reached at later stages, when subduction is throttled by arrival of thicker continental crust and geothermal gradients increase. Experience gained from modern sediments provides fundamental help to decrypt the innumerable pieces of information stored in the sedimentary record, and thus to identify and reconstruct subduction events of the past. Dickinson, W., R., Suczek, C.A., 1979.Plate tectonics and sandstone compositions. AAPG Bull. 63, 2164-2182. Garzanti, E. and Andò, S. 2007. Heavy-mineral concentration in modern sands: implications for provenance interpretation. In Mange, M., and Wright, D., eds. Heavy Minerals in Use. Developments in Sedimentology Series 58. Amsterdam, Elsevier, p. 517-545. Garzanti, E., and Vezzoli, G. 2003. A classification of metamorphic grains in sands based on their composition and grade. J. Sediment. Res. 73:830-837. Garzanti, E., Doglioni, C., Vezzoli, G., Andò, S., 2007. Orogenic belts and orogenic sediment provenante. J. Geology, 115:315-334.
NASA Astrophysics Data System (ADS)
Yu, Xun; Lee, Cin-Ty A.
2016-09-01
The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from <5% to >30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.
NASA Astrophysics Data System (ADS)
Polat, Ali; Kerrich, Robert
1999-10-01
The late Archean (circa 2750-2670 Ma) Schreiber-Hemlo greenstone belt, Superior Province, Canada, is composed of tectonically juxtaposed fragments of oceanic plateaus (circa 2750-2700 Ma), oceanic island arcs (circa 2720-2695 Ma), and siliciclastic trench turbidites (circa 2705-2697 Ma). Following juxtaposition, these lithotectonic assemblages were collectively intruded by synkinematic tonalite-trondhjemite-granodiorite (TTG) plutons (circa 2720-2690 Ma) and ultramafic to felsic dikes and sills (circa 2690-2680 Ma), with subduction zone geochemical signatures. Overprinting relations between different sequences of structures suggest that the belt underwent at least three phases of deformation. During D1 (circa 2695-2685 Ma), oceanic plateau basalts and associated komatiites, arc-derived trench turbidites, and oceanic island arc sequences were all tectonically juxtaposed as they were incorporated into an accretionary complex. Fragmentation of these sequences resulted in broken formations and a tectonic mélange in the Schreiber assemblage of the belt. D2 (circa 2685-2680 Ma) is consistent with an intra-arc, right-lateral transpressional deformation. Fragmentation and mixing of D2 synkinematic dikes and sills suggest that mélange formation continued during D2. The D1 to D2 transition is interpreted in terms of a trenchward migration of the magmatic arc axis due to continued accretion and underplating. The D2 intra-arc strike-slip faults may have provided conduits for uprising melts from the descending slab, and they may have induced decompressional partial melting in the subarc mantle wedge, to yield synkinematic ultramafic to felsic intrusions. A similar close relationship between orogen-parallel strike-slip faulting and magmatism has recently been recognized in several Phanerozoic transpressional orogenic belts, suggesting that as in Phanerozoic counterparts, orogen-parallel strike-slip faulting in the Schreiber-Hemlo greenstone belt played an important role in magma emplacement.
NASA Astrophysics Data System (ADS)
Mazzoli, Stefano; Castelluccio, Ada; Andreucci, Benedetta; Jankowski, Leszek; Ketcham, Richard A.; Szaniawski, Rafal; Zattin, Massimiliano
2017-04-01
The Western Carpathians are the northernmost, W-E-trending branch of a more than 1500 km long, curved orogen. Traditionally, the Western Carpathians have been divided into two distinct parts, namely the Inner Carpathians (including basement nappes) and the Outer Carpathians fold and thrust belt. These two major domains are separated by the so-called 'Pieniny Klippen Belt', a narrow zone of intensely deformed and sheared Mesozoic to Palaeogene rocks. In this contribution, a new interpretation for the tectonic evolution of the Western Carpathians is provided based on: (i) the analysis of the stratigraphy of the Mesozoic-Tertiary successions across the different orogenic domains; (ii) the construction of a series of balanced and restored cross-sections, validated by 2D forward modeling; and (iii) the integration of a large thermochronometric dataset (apatite fission tracks and apatite and zircon (U-Th-(Sm))/He ages). The latter work included thermo-kinematic modeling using FetKin, a finite element solver that takes as input a series of balanced cross-sections. The software solves the heat flow equations in 2D together with the predicted thermochronometric ages, which can be compared with the measured data. Moreover, the spatial distribution of burial depths, cooling ages and the rate of exhumation were correlated with heat flow, topographic relief, crustal and lithospheric thickness. This process allowed us to obtain the cooling history along each section and test the response of low-temperature thermochronometers to the changes in the thrust belt geometry produced by fault activity and topography evolution. Our sequentially restored, balanced cross-sections, showing a mix of thin-skinned thrusting and thick-skinned tectonic inversion involving the reactivation of pre-existing basement normal faults, effectively unravel the tectonic evolution of the thrust belt-foreland basin system. Our analysis provides a robust correlation of the stratigraphy from the Outer to the Inner Carpathians, independently of the occurrence of oceanic lithosphere in the area; it also allows for the reinterpretation of the tectonic relationships between the two major tectonic domains of the orogen, and the exhumation mechanisms affecting them. The interplay between thick- and thin-skinned thrusting had a relevant effect on the distribution of cooling ages. The non-homogeneous burial and exhumation history unravelled by our work suggests that different exhumation processes controlled the Neogene stages of the Carpathian evolution. In particular, the data point out a significant along-strike variation of exhumation mechanisms in the Outer Carpathian domain, ranging from Early Miocene syn-thrusting erosion to the west, to post-thrusting tectonic denudation in the central sector, to post-thrusting exhumation associated with uplift of the accretionary wedge to the east. Relatively young cooling ages (13 to 4 Ma) obtained for the Inner Carpathian domain were mainly associated with a later uplift, partly controlled by high-angle faulting, and coeval erosion. The effective integration of structural and thermochronometric methods carried out in this study provided, for the first time, a high-resolution thermo-kinematic model of the Western Carpathians from the Early Cretaceous onset of shortening to the present-day.
NASA Astrophysics Data System (ADS)
Ryan, James Joseph
The Elbow-Cranberry-Iskwasum lakes area comprises a large portion of the eastern Amisk collage in the Palaeoproterozoic Flin Flon Belt (southern Trans-Hudson Orogen) of Manitoba, Canada. Deformation episodes recorded in the Flin Flon Belt are divided into pre-, early, late and post-Hudsonian orogeny, and are distinguished by the orientation of structures and changes in metamorphic conditions. Detailed structural analysis, petrography, geochemistry and U-Pb geochronology indicate a structural history spanning 180 m.y. in the Amisk collage. Accretion of the 1.92--1.88 Ga tectonostratigraphic assemblages that constitute the Amisk collage began prior to 1.868 Ga, the age of the oldest dyke to cross-cut the earliest mylonitic fabrics. The deformational history has been discerned, in which six generations of ductile structures F1 - F6 were followed by development of brittle-ductile and brittle structures F7 . Movements along the late structures may have continued until 1.690 Ga, during exhumation of the collage. The macroscopic structural grain in the central Flin Flon Belt is steeply dipping, generally trends north to north-northeast, and is dominated by two regionally pervasive foliations ( S2 and S5 ). Its grain contrasts strongly with the shallowly-dipping, east--west-trending grain in the adjacent Kisseynew domain. Foliations of different generations have been distinguished by their age relative to regional metamorphic mineral growth. Regional metamorphism in the Flin Flon Belt is interpreted as having culminated at moderate pressure and temperature, between 1.820 and 1.805 Ga. The development of S2 between 1.868 and 1.845 Ga was associated with east--west shortening of the successor magmatic arc that overprinted the Amisk collage. S3 and S4 were associated with shear zones, and are not regionally widespread. The S5 regional-scale Elbow Lake shear zone, and a pervasive crenulation cleavage in the wall rocks, developed during an episode of sinistral transpression that postdated regional metamorphism. The Elbow Lake shear zone appears to have triclinic symmetry. Most of the tectonostratigraphic assemblages, and subordinate formations, in the study area are structurally bound; the boundaries vary in age from early accretionary to post-collisional. Maximum displacements between assemblages occurred along the early shear zones. A high-strain corridor south of Elbow Lake, with four generations of near-parallel foliations ( S1,S 2,S3 and S5 ), records multiple reactivations. Vertical extension was important in post- S1 deformations, even in the later stages. Post-orogenic, low-angle extensional features, common in many mountain belts, appear to be absent in the southern portion of the Trans-Hudson Orogen. This may indicate that erosion was the dominant unroofing mechanism. The regional-scale Berry Creek shear zone transects the southern portion of the field area. Though covered by Ordovician limestone for most of its length, the Berry Creek shear zone is well imaged in regional geophysical maps. The latest portion of the brittle history on the Berry Creek shear zone probably controlled the sharp truncation of the geophysically imaged anomalies.
NASA Astrophysics Data System (ADS)
Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.
2014-12-01
The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of thermochronologic ages, hinterland growth, extensive erosion, and recycled sediment in the Neogene foreland basin imply that the Zagros orogenic wedge in the Iraqi Kurdistan region largely developed under subcritical wedge conditions.
NASA Astrophysics Data System (ADS)
Grenholm, Mikael; Scherstén, Anders
2015-11-01
We present a conceptual model for supercontinent cycles in the Proterozoic-Phanerozoic Eons. It is based on the repetitive behavior of C and Sr isotopes in marine carbonates and U-Pb ages and εHf of detrital zircons seen during the Neoproterozoic-Paleozoic and Paleoproterozoic Eras, respectively. These records are considered to reflect secular changes in global tectonics, and it is hypothesized that the repetitive pattern is caused by the same type of changes in global tectonics. The fundamental premise of this paper is that such repetitive changes should also be recorded in orogenic belts worldwide. This carries the implication that Neoproterozoic-Paleozoic orogenic belts should have Paleoproterozoic equivalents. It is proposed that this is the case for the East African, Uralides and Ouachita-Alleghanian orogens, which have Paleoproterozoic analogs in the West African-Amazon, Laurentian and East European cratons, respectively. The Neoproterozoic-Paleozoic orogenic belts are not isolated features but occur in a specific global context, which correspond to the relatively well-constrained Neoproterozoic break-up of Rodinia, and the subsequent Late Paleozoic assembly of Pangea. The existence of Paleoproterozoic equivalents to Neoproterozoic-Paleozoic orogens requires that the same cycle defined the Paleoproterozoic. We therefore hypothesize that there were Paleoproterozoic supercontinents equivalent to Rodinia and Pangea, and that Proterozoic-Phanerozoic supercontinents are comprised of two basic types of configurations, equivalent to Rodinia (R-type) and Pangea (P-type). The Paleoproterozoic equivalent of Rodinia is likely the first supercontinent to have formed, and Proterozoic-Phanerozoic supercontinent cycles are therefore defined by R- to R-type cycles, each lasting approximately 1.5 Gyr. We use this cyclic pattern as a framework to develop a conceptual model that predicts the configuration and cycles of Proterozoic-Phanerozoic supercontinents, and their relation to mantle convection and Earth system evolution.
NASA Astrophysics Data System (ADS)
Gerbault, Muriel; Schneider, Julie; Corsini, Michel; Reverso-Peila, Alexandre
2015-04-01
The Maures-Tanneron Massif together with Corsica and Sardinia compose the present day southeastern part of the Variscan belt. Pressure-temperature-time patterns were compiled to adress how rocks once forming a thick orogenic crust were exhumed, from burial conditions of ca. 10 kb and ca. 800°C. A continuous evolution from subduction to collision, from ca. 420 Ma to 290 Ma has recently been proposed by Schneider et al., 2014, ending with orthogonal Permean rifting. Here we complement this study by exploring the thermo-mechanical conditions prevailing during the massive exhumation of this orogenic crust. Based on field observations and petrological analysis indicative of the acceleration of partial melting during ongoing convergence, our numerical models test a scenario in which pre-thickened units located at 40-60 km depth, would have molten due to internal heating and burrial, and were progressively exhumed by gravitationally-driven instabilities to the surface, within ~15-25 Myrs. Assuming temperature dependent elasto-visco-plastic behavior, we have tested rheological layering including mafic or felsic units, far-field convergence and surface processes, as well as temperature-dependent melting conditions and density and viscosity evolution. In order to reproduce asymmetrical exhumation over the given time-scales and over an extent area of more than 50 km synchroneous with the development of compressional folds in the upper crust, a best fit was obtained for an applied far-field convergence of 0.5 cm/yr, equivalent to present day Alpine convergence rates, and a bulk crustal viscosity of at least 102° Pa.s. Crustal heat source had to contribute significantly, whereas a too shallow mantle heat source triggers exceedingly warm and fast exhumation. We propose that the evolution from transpressional to tensile conditions perpendicular to the orogenic axis (north-south Permean rifting versus East-West vergence of the orogenic structures), occurred progressively as internal volume forces rose and exceeded far-field boundary forces, linked with the balancing of masses in all three directions. The original location of this portion of the Variscan belt remains unclear but it presents consistent transitional characteristics between the Massif Central and the Bohemian massif.
NASA Astrophysics Data System (ADS)
Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili
2018-03-01
The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.
NASA Astrophysics Data System (ADS)
de Jong, Koenraad; Ruffet, Gilles; Han, Seokyoung
2013-04-01
The Korean peninsula is located in the eastern margin of the Eurasian continent where major late Palaeozoic to early Mesozoic continental collision zones, like the Central Asian Orogenic Belt and the Qinling-Dabie-Sulu Belt, merge with circum-Pacific subduction-accretion systems. Deciphering the tectonic evolution of Korea is thus crucial for the understanding of the amalgamation of East Asia. Classically, research in Korea has focused on the search for (ultra)high-pressure metamorphic rocks and their isotopic dating, most recently applying SHRIMP on Th- and U-bearing accessory minerals, in order to substantiate links with the Qinling-Dabie-Sulu Belt across the Yellow Sea in China. Instead of trying to date peak pressure conditions we focused on 40Ar/39Ar laser-probe step-heating dating of single grains of the fabric-forming minerals muscovite, biotite and amphibole, formed during retrograde recrystallisation and exhumation. This is a big advantage as their growth can be straightforwardly correlated to major phases of the tectono-metamorphic evolution of rocks. This approach helps to meet the major geochronological challenge of obtaining age estimates for the timing of specific tectono-metamorphic events in the Korean orogenic belts. The Korean peninsula comprises a number of Palaeoproterozoic high-grade gneiss terranes; only one of which has been affected by Permo-Triassic metamorphism: the Gyeonggi Massif. We concentrated on the uppermost Gyeonggi Massif and the overlying Imjingang Belt, to the North, and the ill-defined Hongseong zone to the West, both constituted by younger metamorphic rocks. Both belts contain rare lenses of mafic rocks with relics of high-pressure metamorphism. Hornblende from a corona-textured amphibolite from the lowermost part of the Imjingang Belt yielded a U-shaped age spectrum, the base of which is formed by four concordant steps with a weighted mean age of 242.8 ± 2.4 Ma (15% 39Ar release). Muscovites from strongly retrogressed and ductily deformed rocks in the mylonitised top of the Gyeonggi Massif yielded different 1? plateau ages: 242.8 ± 1.0 Ma and 240.3 ± 1.0 Ma for two chlorite-mica schists, and 219.7 ± 0.9 Ma for a garnet-bearing micaceous quartzite. Two amphibolites from Neoproterozoic orthogneiss in the Hongseong area yielded concordant 1? plateau ages of 228.1 ± 1.0 (biotite), 230.1 ± 1.0 (hornblende), and 229.8 ± 1.0 Ma (hornblende from a foliated garnet-bearing corona-textured amphibolite). 40Ar/39Ar laser-probe dating produced robust evidence that cooling and exhumation of once deeply buried rocks in different parts of Korea essentially occurred in middle to late Triassic time. The concordance of hornblende and mica ages in each of the target areas implies a rapid cooling, during at least part of the history, which seems not to have been coeval. This corroborates the observation that our Ar/Ar mineral ages are only a couple of million years younger than CHIME and SHRIMP U-Pb ages in accessory minerals, which are in the 230-255 Ma range in the uppermost Gyeonggi Massif and Imjingang Belt, and between 225-235 Ma in the Hongseong area. However, the much younger muscovite age from the mylonitic quartzite implies a prolonged recrystallization in the ductile shear zone in the uppermost Gyeonggi Massif. This is subject of ongoing research.
Gold deposit styles and placer gold characterisation in northern and east-central Madagascar
Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A
2009-01-01
Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.
Neotectonic Deformation in Central Eurasia: A Geodynamic Model Approach
NASA Astrophysics Data System (ADS)
Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume; Bird, Peter
2017-11-01
Central Eurasia hosts wide orogenic belts of collision between India and Arabia with Eurasia, with diffuse or localized deformation occurring up to hundreds of kilometers from the primary plate boundaries. Although numerous studies have investigated the neotectonic deformation in central Eurasia, most of them have focused on limited segments of the orogenic systems. Here we explore the neotectonic deformation of all of central Eurasia, including both collision zones and the links between them. We use a thin-spherical sheet approach in which lithosphere strength is calculated from lithosphere structure and its thermal regime. We investigate the contributions of variations in lithospheric structure, rheology, boundary conditions, and fault friction coefficients on the predicted velocity and stress fields. Results (deformation pattern, surface velocities, tectonic stresses, and slip rates on faults) are constrained by independent observations of tectonic regime, GPS, and stress data. Our model predictions reproduce the counterclockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults in the Tibetan Plateau, a weaker lithosphere is required, provided by a change in the rheological parameters. The southward movement of the SE Tibetan Plateau can be explained by the combined effects of the Sumatra trench retreat, a thinner lithospheric mantle, and strik-slip faults in the region. This study offers a comprehensive model for regions with little or no data coverage, like the Arabia-India intercollision zone, where the surface velocity is northward showing no deflection related to Arabia and India indentations.
Late Paleozoic orogeny in Alaska's Farewell terrane
Bradley, D.C.; Dumoulin, Julie A.; Layer, P.; Sunderlin, D.; Roeske, S.; McClelland, B.; Harris, A.G.; Abbott, G.; Bundtzen, T.; Kusky, T.
2003-01-01
Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100-200 km apart. In the northern belt, metamorphic rocks dated at 284-285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
McDonough, Michael R.; Simony, Philip S.
1989-03-01
The Valemount strain zone (VSZ), a narrow zone of high orogen-parallel (OP) strain in pebble conglomerate of the Late Proterozoic Miette Group, is the footwall expression of a thrust fault on the western edge of the Rocky Mountain belt, marking the eastern limit of a wide zone of OP fabrics distributed through the Omineca crystalline and western Rocky Mountain belts of the southeastern Canadian Cordillera. Kinematic indicators from the VSZ and the adjacent Bear Foot thrust zone show that both thrust and dextral displacement are associated with folding and thrust motion in the Rocky Mountains, thereby linking the southern Rocky Mountain belt to the Omineca belt by an oblique-slip thrust regime that is tectonically unrelated to the Southern Rocky Mountain Trench. Transverse shortening of thrust sheets and subsequent distribution of OP shear are invoked to explain the parallelism of stretching lineations and fold axes. Strain and kinematic data and the thrust-belt geometry of the VSZ suggest that OP lineations are a product of a large amount of transverse shortening during slightly oblique A-type subduction. Thus, OP lineations are not representative of relative plate motions between North America and accreted terranes, but probably are a function of footwall buttressing of thrust sheets, a mechanism that may be widely applicable to the internal zones of collisional orogens.
The Myszkow porphyry copper-molybdenum deposit, Poland
Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.
1994-01-01
The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors
NASA Astrophysics Data System (ADS)
Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei
2017-07-01
Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.
NASA Astrophysics Data System (ADS)
Rojas Vera, E. A.; Mescua, J.; Folguera, A.; Becker, T. P.; Sagripanti, L.; Fennell, L.; Orts, D.; Ramos, V. A.
2015-12-01
The Chos Malal and Agrio fold and thrust belts are located in the western part of the Neuquén basin, an Andean retroarc basin of central-western Argentina. Both belts show evidence of tectonic inversion at the western part during Late Cretaceous times. The eastern part is dominated by late Miocene deformation which also partially reactivated the western structures. This work focuses on the study of the regional structure and the deformational event that shaped the relief of this part of the Andes. Based on new field work and structural data and previously published works a detailed map of the central part of the Neuquén basin is presented. Three regional structural cross sections were surveyed and balanced using the 2d Move™ software. In order to define a more accurate uplift history, new apatite fission track analyses were carried on selected structures. These data was used for new thermal history modeling of the inner part of the Agrio and Chos Malal fold and thrust belts. The results of the fission track analyses improve the knowledge of how these fold and thrust belts have grown trough time. Two main deformational events are defined in Late Cretaceous to Paleocene and Late Miocene times. Based on this regional structural analysis and the fission track data the precise location of the orogenic front for the Late Cretaceous-Paleocene times is reconstructed and it is proposed a structural evolution of this segment of the Andes. This new exhumation data show how the Late Cretaceous to Paleocene event was a continuous and uninterrupted deformational event.
A Laurentian margin back-arc: the Ordovician Wedowee-Emuckfaw-Dahlonega basin
Barineau, Clinton I.; Tull, James F.; Holm-Denoma, Christopher S.
2015-01-01
Independent researchers working in the Talladega belt, Ashland-Wedowee-Emuckfaw belt, and Opelika Complex of Alabama, as well as the Dahlonega gold belt and western Inner Piedmont of Alabama, Georgia, and the Carolinas, have mapped stratigraphic sequences unique to each region. Although historically considered distinct terranes of disparate origin, a synthesis of data suggests that each includes lithologic units that formed in an Ordovician back-arc basin (Wedowee-Emuckfaw-Dahlonega basin—WEDB). Rocks in these terranes include varying proportions of metamorphosed mafic and bimodal volcanic rock suites interlayered with deep-water metasedimentary rock sequences. Metavolcanic rocks yield ages that are Early–Middle Ordovician (480–460 Ma) and interlayered metasedimentary units are populated with both Grenville and Early–Middle Ordovician detrital zircons. Metamafic rocks display geochemical trends ranging from mid-oceanic-ridge basalt to arc affinity, similar to modern back-arc basalts. The collective data set limits formation of the WEDB to a suprasubduction system built on and adjacent to upper Neoproterozoic–lower Paleozoic rocks of the passive Laurentian margin at the trailing edge of Iapetus, specifically in a continental margin back-arc setting. Overwhelmingly, the geologic history of the southern Appalachians, including rocks of the WEDB described here, indicates that the Ordovician Taconic orogeny in the southern Appalachians developed in an accretionary orogenic setting instead of the traditional collisional orogenic setting attributed to subduction of the Laurentian margin beneath an exotic or peri-Laurentian arc. Well-studied Cenozoic accretionary orogens provide excellent analogs for Taconic orogenesis, and an accretionary orogenic model for the southern Appalachian Taconic orogeny can account for aspects of Ordovician tectonics not easily explained through collisional orogenesis.
NASA Astrophysics Data System (ADS)
Gubert, Mauricio Lemos; Philipp, Ruy Paulo; Stipp Basei, Miguel Angelo
2016-10-01
Usbnd Pb LA-ICPMS geochronological analyses were carried out on zircon grains from metavolcanic rocks of the Bossoroca Complex and for one ash tuff of the Acampamento Velho Formation of the Camaquã Basin, in order to understand the evolution of the Neoproterozoic São Gabriel magmatic arc. A total of 42 analyses of igneous zircon grains were performed in three samples. The results yielded Usbnd Pb ages of 767.2 ± 2.9 Ma for the metavolcanic agglomerate (BOS-02); 765 ± 10 Ma for the metacrystal tuff (BOS-03) and 565.8 ± 4.8 Ma for the ash tuff (BOS-04). The Orogenic Cycle in Brazil is characterized by a set of orogenic belts consisting of petrotectonic associations juxtaposed by two collisional events that occurred at the end of the Neoproterozoic. In southern Brazil this orogeny formed the Dom Feliciano Belt, a unit composed of associations of rocks developed during two major orogenic events called São Gabriel (900-680 Ma) and Dom Feliciano (650-540 Ma). The main São Gabriel associations are tectonically juxtaposed as elongated strips according to the N20-30°E direction, bounded by ductile shear zones. The Bossoroca Complex comprises predominantly metavolcano-sedimentary rocks, characterized by medium-K calc-alkaline association generated in a cordillera-type magmatic arc. The volcanism occurred in sub-aerial environment, developing deposits generated by flow, resurgence and fall, sporadically interrupted by subaqueous epiclastic deposits, suggesting an arc related basin. The São Gabriel Terrane contains the petrotectonic units that represent the closure of the Charrua Ocean associated to the subduction period of the Brasiliano Orogenic Cycle in the Sul-rio-grandense Shield.
NASA Astrophysics Data System (ADS)
Goodwin, Nicholas R. J.; Burgess, Ray; Craw, Dave; Teagle, Damon A. H.; Ballentine, Chris J.
2017-02-01
The world-class Macraes orogenic gold deposit (˜10 Moz resource) formed during the late metamorphic uplift of a metasedimentary schist belt in southern New Zealand. Mineralising fluids, metals and metalloids were derived from within the metasedimentary host. Helium and argon extracted from fluid inclusions in sulphide mineral grains (three crush extractions from one sample) have crustal signatures, with no evidence for mantle input (R/Ra = 0.03). Xenon extracted from mineralised quartz samples provides evidence for extensive interaction between fluid and maturing organic material within the metasedimentary host rocks, with 132Xe/36Ar ratios up to 200 times greater than air. Similarly, I/Cl ratios for fluids extracted from mineralised quartz are similar to those of brines from marine sediments that have interacted with organic matter and are ten times higher than typical magmatic/mantle fluids. The Macraes mineralising fluids were compositionally variable, reflecting either mixing of two different crustal fluids in the metasedimentary pile or a single fluid type that has had varying degrees of interaction with the host metasediments. Evidence for additional input of meteoric water is equivocal, but minor meteoric incursion cannot be discounted. The Macraes deposit formed in a metasedimentary belt without associated coeval magmatism, and therefore represents a purely crustal metamorphogenic end member in a spectrum of orogenic hydrothermal processes that can include magmatic and/or mantle fluid input elsewhere in the world. There is no evidence for involvement of minor intercalated metabasic rocks in the Macraes mineralising system. Hydrothermal fluids that formed other, smaller, orogenic deposits in the same metamorphic belt have less pronounced noble gas and halogen evidence for crustal fluid-rock interaction than at Macraes, but these deposits also formed from broadly similar metamorphogenic processes.
NASA Astrophysics Data System (ADS)
Shi, Yu; Huang, Qianwen; Liu, Xijun; Krapež, Bryan; Yu, Jinhai; Bai, Zhian
2018-06-01
The Qinling Complex lies in the Qinling orogenic belt of Central China and holds the key to understanding the evolution of this feature. The Qinling Complex comprises a basement complex composed of amphibolite and ecologite, overlain by a supra-crustal succession that has been metamorphosed to the upper greenschist facies at approximately 516-509 Ma. The protoliths of the meta-sedimentary rocks are graywackes, which are divided into lower, middle and upper units. Detrital zircons from nine samples of the supra-crustal succession have ages ranging from 1182 to 1158 Ma for the lower unit, 957 to 955 Ma for the middle unit and 917 to 840 Ma for the upper unit. The lower unit is intruded by a ca. 960 Ma pluton. The bulk compositions of these meta-sedimentary rocks and their detrital zircon ages clearly indicate derivation from Meso- and Neo-proterozoic granites. Thus, we suggest that the sedimentary succession was derived from an arc-related tectonic setting and that none of the detritus was sourced from the southern margin of the North China Block or from the northern and western margins of the South China Block. We conclude that the North Qinling Belt was an independent micro-continental block during the Meso- to Neo-proterozoic.
NASA Astrophysics Data System (ADS)
Eyuboglu, Yener
2015-01-01
The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; εNd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204Pb. The distribution of Sr-Nd isotopic compositions in the late Cretaceous igneous rocks from different locations of the Eastern Pontides Orogenic Belt is consistent with two-component mixing between depleted mantle and crust. However, the Pb isotopic data are not compatible with two-component mixing and require at least a third component. Considering all of the new data and also previous data such as southward migration and increasing potassium content of the late Cretaceous arc volcanism, the northward migration of Cenozoic igneous activity, northward drift of the belt since the late Cretaceous and the existence of south-dipping reverse fault systems in the whole region, the Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt can be best explained by southward subduction of Tethys oceanic lithosphere, rather than northward subduction.
Fluid-driven normal faulting earthquake sequences in the Taiwan orogen
NASA Astrophysics Data System (ADS)
Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui
2017-04-01
Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5.87 earthquake and the rise of the high pressure fluid.
NASA Astrophysics Data System (ADS)
Huang, Z.; Long, X.; Yuan, C.
2016-12-01
The Chinese Central Tianshan Block (CTB) is one of the oldest continental fragments in the southern Central Asian Orogenic Belt (CAOB). Although it is vital for understanding the evolution of the CAOB, its origin has been poorly studied. The CTB was previously suggested to have been originated from the North China, the South China, the Tarim cratons or the East European Craton (Baltica). A total of 165 concordant U-Pb and Hf isotopic analyses of detrital zircon are obtained from three meta-sediments in the CTB, including one meta-sandstone from Xingxingxia formation and one meta-sandstone as well as one quartzite from Kawabulake formation. Detrital zircon grains from the Xingxingxia and Kawabulake formations are dominated by respective youngest age populations at 1002 Ma and 930-960 Ma, providing constraints on the maximum depositional ages for these two formations. Zircon grains from the meta-sediments have very similar age distributions, with two dominant peaks at 0.93-1.0 Ga and 1.0-1.6 Ga and a minor peak at 2.3-2.7 Ga. They have similar Hf isotopic signatures, suggesting that the meta-sediments in the CTB share similar sedimentary provenance. The early Neoproterozoic detrital zircon grains are mainly local-derived, whereas the Paleo-Mesoproterozoic grains are both autochthonous and allochthonous. The occurrence of these Mesoproterozoic and Neoproterozoic zircon grains are coincident with the Nuna breakup and the Rodinia assembly. This suggests that the CTB might experience the tectonic switching of the Nuna to the Rodinia. The distinct Meso-Neoproterozoic age patterns and Hf isotopic compositions of these detrital grains from the CTB and the surrounding blocks indicate that the CTB was not located close to the North China, the South China or the Tarim cratons in Precambrian. Our new data suggest that the CTB was most likely once a part of the East European Craton before the Neoproterozoic. This study was supported by National Basic Research Program of China (2014CB440801).
Probing Tectonic Topography in the Aftermath of Continental Convergence in Central Europe
NASA Astrophysics Data System (ADS)
Cloetingh, S.; Horváth, F.; Dinu, C.; Stephenson, R. A.; Bertotti, G.; Bada, G.; Matenco, L.; Garcia-Castellanos, D.
Continental topography is at the interface of processes taking place at depth in the Earth, at its surface, and above it. Topography influences society, not only in terms of slow processes of landscape change and earthquakes but also in terms of how it affects climate. The Pannonian Basin - Carpathian Orogen System in Central and Eastern Europe represents a key natural laboratory for the development of a new generation of models for ongoing orogeny and its effect on continental topography development (Figure 1). This system comprises some of the best documented sedimentary basins in the world, located within the Alpine orogenic belt, at the transition between the western European lithosphere and the East European Craton. It includes one of the most active seismic zones in Europe, with intermediate depth (50-220km) mantle earthquakes of significant magnitude occurring in a geographically restricted area in the Vrancea zone of southeastern Romania. The objective of TECTOP (TECtonic TOPography) is to quantify the links between neotectonics and continental topography in the aftermath of continental convergence. TECTOP was initiated in fall 2001 by the Netherlands Research Centre for Integrated Solid Earth Science (ISES), the University of Bucharest, Romania and the Eötvös University in Budapest,Hungary. This paper highlights the generic concept and the first results of TECTOP.
NASA Astrophysics Data System (ADS)
Fitz Diaz, E.; van der Pluijm, B. A.
2012-12-01
We are developing a robust method to obtain absolute ages of folds that were formed at shallow crustal conditions. The method takes advantage of illite neocrystallization in folded, clay-bearing layers and the ability to obtain accurate retention and total gas ages from small size fractions using encapsulated Ar analysis, analogous to prior work on fault gouge dating. We illustrate our approach in folded Cretaceous shale-bentonitic layers that are interbedded with carbonates of the Zimapán and the Tampico-Misantla cretaceous basins in central-eastern Mexico. Basinal carbonates were buried by syntectonic turbidites and inverted during the formation of the Mexican Fold-Thrust in the Late Cretaceous. Results were obtained from four chevron folds that are representative of different stages of deformation, burial/temperature conditions and location within this thin-skinned orogenic wedge: two from the Zimapán Basin (Folds 1 and 2) in the west and two from the Tampico-Misantla Basin (Folds 3 and 4) in the east. Mineralogic compositions and variations in illite-polytypes, crystallite-size (CS) and Ar/Ar ages were obtained from size fractions in limbs and hinges of folded layers. Ar retention ages produce a folding age of ~81 Ma for Fold 1 and ~69 Ma for Fold 2, which are fully consistent with stratigraphic limits from syn-orogenic turbidities and observed overprinting events in the Mexican Fold-Thrust Belt. The total gas age of Fold 3, on the easternmost margin of the Tampico-Misantla Basin is similar to that of Fold 2, indicating that the second event is regional in scale. In addition to presenting a new, reliable method to constrain the timing of local deformation, we interpret folding and associated clay neo-mineralization in terms of the regional burial history, and localization and propagation of deformation within a heterogeneous orogenic wedge involving progressive deformation of two basins separated by a platform block.
NASA Astrophysics Data System (ADS)
Xiong, X.; Gao, R.; Li, Q.; Wang, H.
2012-12-01
The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.
Lateral variations in lithospheric and landscape evolution at both ends of the Himalaya-Tibet orogen
NASA Astrophysics Data System (ADS)
Zeitler, P. K.; Schmidt, J. L.; Meltzer, A.
2015-12-01
At the broadest scale, like many orogens the Himalaya encompass a range of orogenic features that are remarkably similar along much of the length of the mountain belt and its neighboring terranes. At one scale of consideration, these similarities appear to be a signal that fundamental processes associated with lithospheric collision have been active. However, the vast size of the Himalaya and Tibet, the different climate regimes experienced by the orogen across time and space, and the along-strike variations in the continental and arc margins that faced one another before collision, make it at once remarkable that any similarities exist, and important to more critically evaluate their nature. The eastern and western Himalayan syntaxes confound any attempt to generalize too much about the Himalaya-Tibet orogen. By area these features occupy at least 25% of the orogenic belt, and compared to the "main" portions of the arc they show clear differences in their lithospheric structures, landscapes, and evolution. The boundary and initial conditions that shaped the eastern and western indentor corners were and are different, as is the nature and timing of erosional exhumation. Some of the most active geologic processes on Earth have recently been in play within the syntaxes, and the evolution of landscapes and fluvial systems, important in developing the sedimentary record of the Himalaya-Tibet system, has been complex and variable in space and time. Southeasternmost Tibet and the Lhasa Block in particular exemplify this complexity both in its complex topographic evolution linked to surface processes and climate, and in lateral variability in lithospheric structure. Taking a system viewpoint, an important question to debate is the degree to which there are features in the Himalaya-Tibet system that are robustly emergent, given the broad boundary conditions of the continental collision plus the suite of local and regional geodynamical processes that have operated during orogenesis. A related question is the degree to which the variability seen within the orogen represents important information about process that is exportable to other orogens, or is in effect tectonic noise contingent on local geologic details and secular changes.
Geologic evolution of the Akna Montes-Atropos Tessera region, Venus
NASA Astrophysics Data System (ADS)
Marinangeli, Lucia; Gilmore, Martha S.
2000-05-01
The investigated area comprises an arcuate mountain belt, Akna Montes, in Western Ishtar Terra, associated with an outboard plateau, Atropos Tessera, to the west and a volcanic plateau, Lakshmi Planum, to the east. Eight geologic units have been recognized on the basis of their geomorphic and structural characteristics as they appear on Magellan radar images. Our stratigraphic analysis shows that the geological evolution of the study area can be explained by four main steps: (1) formation of the older substrata of Atropos Tessera and Lakshmi, (2) extensive plains emplacement, (3) an orogenic phase including the formation of Akna Montes, and (4) local emplacement of younger plains. The tectonic evolution shows a deformational sequence characterized by contraction, shear, and topographic relaxation. This sequence is interpreted to be a consequence of the variation of crustal stresses and crustal thickening during orogenic events as observed for terrestrial high plateaus associated with a mountain belt (i.e., Himalaya and Tibet, Andes and Altiplano). In order to estimate the amount of crustal shortening associated with the Akna Montes, we considered two end-members for structural style of the mountain belt: a symmetric fold model and fault-bend fold model. The models are theoretical because terrestrial orogenic belts are often formed by a combination of different compressional structures. However, symmetric and fault-bend faults represent the minimum and maximum crustal shortening, respectively, and thus they do place bounds on the amount of strain recorded by Akna Montes. The first model yields a shortening value less than 1%, whereas a range of 17-34% is derived for the second model. The large difference between these values underscores the importance of fold geometries for estimating strain and to place constraints on geodynamic models for mountain belt formation. On the basis of our study we think that a combination of mantle downwelling and horizontal convergence may provide a good explanation of the geology and tectonics we observed in the Akna Montes-Atropos Tessera region.
NASA Astrophysics Data System (ADS)
Kerrich, R.; Jia, Y.; Wyman, D.
2001-12-01
Mantle plume activity was more intense in the Archean and komatiite-basalt volcanic sequences are a major component of many Archean greenstone belts. Tholeiitic basalts compositionally resemble Phanerozoic and Recent ocean plateau basalts, such as those of Ontong Java and Iceland. However, komatiite-basalt sequences are tectonically imbricated with bimodal arc lavas and associated trench turbidites. Interfingering of komatiite flows with boninite series flows, and primitive to evolved arc basalts has recently been identified in the 2.7 Ga Abitibi greenstone belt, demonstrating spatially and temporally associated plume and arc magmatism. These observations are consistent with an intra-oceanic arc migrating and capturing an ocean plateau, where the plateau jams the arc and imbricated plateau-arc crust forms a greenstone belt orogen. Melting of shallowly subducted plateau basalt crust (high Ba, Th, LREE) accounts for the areally extensive and voluminous syntectonic tonalite batholiths. In contrast, the adakite-Mg-andesite-Niobium enriched basalt association found in Archean greenstone belts and Cenozoic arcs are melts of LREE depleted MORB slab. Buoyant residue from anomalously hot mantle plume melting at > 100km rises to couple with the composite plume-arc crust to form the distinctively thick and refractory Archean continental lithospheric mantle. New geochemical data for structurally hosted ultramafic units along the N. American Cordillera, from S. California to the Yukon, show that these are obducted slices of sub-arc lithospheric mantle. Negatively fractionated HREE with high Al2O3/TiO2 ratios signify prior melt extraction, and variably enriched Th and LREE with negative Nb anomalies a subduction component in a convergent margin. A secular decrease of mantle plume activity and temperature results in plume-arc dominated geodynamics in the Archean with shallow subduction and thick CLM, whereas Phanerozoic convergent margins are dominated by arc-continent, arc-terrane, and terrane-terrane collision with steep subduction resulting in narrow belts of granitoids and obduction of lithospheric mantle.
Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data
NASA Astrophysics Data System (ADS)
Yang, Yu-shan; Li, Yuan-yuan
2018-01-01
In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.
NASA Astrophysics Data System (ADS)
Xin, Wei; Sun, Feng-Yue; Li, Liang; Yan, Jia-Ming; Zhang, Yu-Ting; Wang, Ying-Chao; Shen, Ting-Shuo; Yang, Yi-Jun
2018-07-01
The Wulonggou Pluton is located in Wulonggou area, eastern segment of the Eastern Kunlun Orogenic Belt, NW China, and consists of mainly alkali-feldspar granites covering an area of about 150 km2. Petrogenesis of these granitoids has been investigated through an integrated study of petrography, zircon Usbnd Pb ages, whole-rock geochemistry, and Hfsbnd Nd isotopic compositions. Usbnd Pb dating of magmatic zircons indicated these granites crystallized during 426-424 Ma in the middle Silurian. The granites display high SiO2 (75.26-77.55 wt%), K2O + Na2O (7.98-9.03 wt%), extremely low MgO (0.04-0.19 wt%), CaO (0.28-0.61 wt%), and TiO2 (0.05-0.09 wt%) contents showing metaluminous, calcic-alkali and ferroan features; enrichment in Rb and some HFSEs (Zr, U, Nb, Ta, and Y), depletion in Sr, Ba, P, and Ti, mostly right-inclined REE curve, flat HREE patterns, high 10,000 ∗ Ga/Al and intensively negative Eu anomalies, exhibiting an A2-type granite affinity with Y/Nb > 1.2 mostly. The primitive magma of these large quantities of granites was generated under a high temperature, low pressure, reduced and anhydrous environment indicating intense upwelling of asthenosphere. Combining with the positive uniform zircon εHf(t) values of -0.2 to +3.8 and decoupled εNd(t) values of -4.9 to -2.1 at t = 424 Ma, it can be concluded that subduction-related juvenile materials, probably calc-alkaline granitoids, are the source of these A-type granites. Geochemical studies of Wulonggou granites, spatial and temporal distributions of regional magmatism, metamorphism, and sedimentary records throughout the Eastern Kunlun Orogen Belt jointly indicate that the whole orogenic belt was in a typical post-collision extension setting and experienced an isostatic uplift during the middle Silurian triggered by delamination after the convergence of the northeastern margin of Gondwana.
NASA Astrophysics Data System (ADS)
Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan
2018-05-01
The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs at ∼47 Ma.
NASA Astrophysics Data System (ADS)
Wang, Nan; Wu, Cai-Lai; Lei, Min; Chen, Hong-Jie
2018-07-01
Early Paleozoic granitic magmatism in the North Qilian orogenic belt records a complete Wilson cycle and provides critical geological clues for unraveling the regional tectonic history. In this study, we report the results of zircon U-Pb ages, Hf isotopic analysis and systematic whole-rock geochemical data for the Late Ordovician Hongliuhe granite and Early Silurian Qingshan monzogranite in the western segment of the North Qilian orogenic belt to constrain their emplacement ages, petrogenesis, and regional evolution history. U-Pb dating reveals that the Hongliuhe granite was emplaced around 453-452 Ma, and the Qingshan monzogranite was emplaced about 440-438 Ma. A geochemical study shows that the two granites belong to the calc-alkaline to high-K calc-alkaline series. The Hongliuhe granite shows adakitic and peraluminous features, while the Qingshan monzogranite belongs to metaluminous to weak peraluminous granites. Zircons in the Hongliuhe granite show εHf(t) values ranging from -15.1 to +11.7 with two-stage Hf model ages (tDM2) of 687-2398 Ma, whereas zircons in the Qingshan monzogranite show εHf(t) values ranging from +5.7 to +11.0 with two-stage Hf model ages from 814 to 1057 Ma. The geochemical characteristics indicate that the Hongliuhe granite was a transitional I/S-type granite and was generated from a thickened lower crust with the addition of minor Paleo- to Mesoproterozoic crustal materials, which left a rutile + garnet + pyroxene ± plagioclase residue. The Qingshan monzogranite formed from the partial melting of mafic crust with minor mantle-derived materials, and the fractionation of Ti-bearing phases, apatite and pyroxene occurred during the magma's evolution, which left an amphibole and plagioclase residue. We infer that the Hongliuhe granite formed during the northward subduction of the North Qilian Ocean, while the Qingshan monzogranite was generated during the post-collision stage between the Qilian and Alxa blocks. This observation indicates that syn-collision stage of the North Qilian orogenic belt began before 453 Ma, and that the extension regime began prior to 444 Ma.
NASA Astrophysics Data System (ADS)
Gonçalves, Leonardo; Alkmim, Fernando F.; Pedrosa-Soares, Antônio; Gonçalves, Cristiane C.; Vieira, Valter
2018-01-01
The Araçuaí-West Congo orogen (AWCO) is one of the various components of the Brasiliano/Pan-African orogenic network generated during the amalgamation of West Gondwana. In the reconstructions of Gondwana, the AWCO, encompassing the Araçuaí orogen of South America and the West Congo belt of Southwestern Africa, appears as a tongue-shaped orogenic zone embraced by the São Francisco-Congo craton. Differing from the vast majority of the known orogens owing to its singular confined setting, the AWCO contains a large amount of orogenic igneous rocks emplaced in all stages of its tectonic evolution. We present new and revised information about the oldest Ediacaran granitic assemblage, the G1 Supersuite, which together with the Rio Doce Group defines the Rio Doce magmatic arc, and then we propose a new tectonic setting for the arc. Field relationships and mineralogical compositions of the G1 Supersuite allow us to characterize three lithofacies associations, Opx-bearing rocks, enclave-rich Tonalite-Granodiorite and enclave-poor Granite-Tonalite, suggesting different crustal levels are exposed in the central part of the Araçuaí orogen. The region is interpreted to represent a tilted crustal section, with deep arc roots now exposed along its western border. Chemically, these plutonic associations consist mostly of magnesian, metaluminous to slightly peraluminous, calc-alkaline to alkali-calcic and medium- to high-K acidic rocks. The dacitic and rhyolitic rocks of the Rio Doce Group are mainly magnesian, peraluminous, calcic to calc-alkaline, and medium- to high-K acidic rocks. Zircon U-Pb data constrain the crystallization of the granitoids between ca. 625 and 574 Ma, while the age of the metamorphosed volcanic rocks is around ca. 585 Ma. Thus, within errors, these rock associations likely belong to the same magmatic event and might represent the subduction-related, pre-collisional, evolution of the Araçuaí orogen. In addition, whole-rock Sm-Nd isotopic compositions show variable negative ɛNd(t) values between -6.7 and -13.8, and TDM model ages varying from 1.39 to 2.26 Ga, while ɛHf(t) vary between -5.2 and -11.7, with TDM ages from 1.5 to 2.0 Ga. Thus, predominantly constructed upon Paleoproterozoic (Rhyacian) basement, the Rio Doce arc shows crustal sources largely prevailing over mantle sources, providing a well-studied example to be compared with similar orogenic settings around the world.
NASA Astrophysics Data System (ADS)
Gutiérrez-Alonso, G.; López-Carmona, A.; García Acera, G.; Martín Garro, J.; Fernández-Suárez, J.; Gärtner, A.; Hofmann, M.
2017-12-01
The advent of a large amount of more precise U-Pb age data on Variscan granitoids from NW Iberia in recent years has provided a more focused picture of the magmatic history of the Western European Variscan belt (WEVB). Based on these data, three main pulses of magmatic activity seem to be well established.
NASA Astrophysics Data System (ADS)
Brookfield, M. E.
2000-12-01
The Tien Shan form a high intracontinental mountain belt, lying north of the main India-Asia collision mountains, and consist of re-activated Paleozoic orogens. The western segment of the southern Tien Shan lies northwest of the Pamir and west of the Talas-Fergana fault. The stratigraphy, lithology, igneous and metamorphic petrology and geochemistry of this segment indicate that it was formed by the assembly of Lower Paleozoic arcs which developed into microcontinents with Upper Paleozoic mature shelf and slope clastic and carbonate sediments. Precambrian continental crust is confined to two small blocks along its southern margin. The bulk of the southern Tien Shan consists of ?Vendian to Silurian oceanic and slope clastic rocks, resting on oceanic lithosphere, and overlain by thick passive margin Devonian to mid-Carboniferous mature shelf clastics and carbonates. These are unconformably overlain by syn- and post-orogenic immature clastic sediments derived from mountains on the north formed by closure of a Carboniferus southern Tajik and a northern Vendian to Carboniferous Turkestan ocean with the southern Tien Shan microcontinent sandwiched between. Associated with these collisions are late Carboniferous to Permian intrusives, which form three south to north (though overlapping) suites; a southern calc-alkaline granodiorite-granite suite, an intermediate gabbro-monzodiorite-granite suite, and a northern alkaline monzodiorite-granite-alaskite suite. The gabbro-monzodiorite-granite suite forms the earliest subduction-related magmatism of the southern Tien Shan: rare earth element patterns are consistent with derivation from a primitive or slightly enriched mantle. The other suites show more crustal contamination. Rb and Sr vary with depth and degree of partial melting and are consistent with progressive involvement of crustal material in partial melts during collision. The gradual change in composition within each complex, lasting in some cases from 295 to 250 Ma (the entire Permian), may be explained by a consecutive shift in the melting sedimentary cover of the subducting plate from oceanic crust through transitional crust to marginal continental crust. Like the Central Asian orogenic belt (the main focus of IGCP 420), the Tien Shan represent a net addition of continental crust during the Phanerozoic. Very little of the belt has any Precambrian precursor.
NASA Astrophysics Data System (ADS)
Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin
2018-03-01
The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.
Proterozoic orogens in southern Peninsular India: Contiguities and complexities
NASA Astrophysics Data System (ADS)
Chetty, T. R. K.; Santosh, M.
2013-12-01
The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents - Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ˜400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P-T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale "flower structures", transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.
Arctic-Asian Mobile Belt - Global Structure in the North, Central, and East Asia
NASA Astrophysics Data System (ADS)
Shokalsky, Sergey; Petrov, Oleg; Pospelov, Igor; Kashubin, Sergey; Sobolev, Nikolay; Petrov, Evgeny
2014-05-01
Over the last decade under the international project of five countries, the geological surveys of Russia, China, Kazakhstan, Mongolia, and the Republic of Korea, with the participation of national academies of sciences in these countries compiled a set of digital maps at 1:2.5 M scale. It includes geological, tectonic, metallogenic maps and map of energy resources with databases for North, Central, and East Asia, area of more than 30 million km2. Map compilation was supervised by the Subcommission for Northern Eurasia and Subcommission for Tectonic Maps of the Commission for the Geological Map of the World under the auspices of UNESCO (CGMW). The set of maps was displayed at the 33rd IGC (Oslo, 2008) and 34th IGC (Brisbane, 2012). One of the largest accretion collages of orogenic belts of different ages on the planet (from the Neoproterozoic to Early Mesozoic) is clearly shown in the tectonic map compiled under the joint project. Extended polychronous mobile belt is bounded in the west by the East European Craton, in the east, by the Siberian Craton, in the south, by a chain of Gondwana cratonic blocks - North China, Tarim, Tajik. In the north it can be traced as a broad band within the Circumpolar Region, where it is limited by the North American Craton. The central part of the accretionary belt is hidden under the Meso-Cenozoic sediments of Western Siberia. Analysis of vast geological material shows that the Arctic-Asian mobile belt was formed on place of an extensive paleo-ocean, which closed with a successive rejuvenation of suture ophiolite zones from the marginal to axial zone and along strike to the north and east of the South Siberian segment towards Paleopacific. Arctic-Asian mobile belt is characterized by a complex combination of accretionary and riftogenic tectonic-magmatic processes. At its early stages, accretionary tectonics with a wide development of volcanic belts dominated; at the late ones (in the Late Paleozoic, Mesozoic, and Cenozoic) stretching, rifting and postrift subsidence were widely shown with the formation of oil and gas sedimentary basins with a thick sedimentary cover (West Siberian, Turan, Caspian, Middle Amur, Songliao), large igneous provinces (South Urals, West and East Siberian, Central Kazakhstan, Trans-Baikal, etc.) and rift systems (Mongol-Transbaikal, Baikal, etc.). The aim of further research under the existing joint projects should be identifying and tracing the boundaries of the Arctic-Asian mobile belt, study and correlation of geological complexes-indicators of major tectonic events, reconstruction of the history of the accretionary belt with superimposed oil and gas bearing sedimentary basins as a tectonic structure of the global level.
NASA Astrophysics Data System (ADS)
Calvet, Marc; Gunnell, Yanni; Farines, Bernard
2015-07-01
Extensive tracts of low-gradient topography in steep mountain ranges, either forming rangetop plateaus or terraced pediments on range flanks, are widely distributed in mountain belts around the world. Before the advent of plate tectonics, such populations of planar landforms were interpreted as vestiges of a post-orogenic raised peneplain, i.e., a low-gradient land surface resulting from the decay, during long intervals of base-level stability, of a previous mountain range that was subsequently raised once again to great elevations-thus forming a new mountain range. This two-stage model has been challenged by theories that advocate continuity in tectonic processes and more gradual changes in base level, and thus expect a more immediate and proportionate response of geomorphic systems. Here we present a global survey of erosion surfaces in mountain ranges and put existing theories and empirical evidence into a broad perspective calling for further research into the rates and regimes of long-term mountain evolution. The resulting library of case studies provides opportunities for comparative analysis and helps to classify the landform mosaics that are likely to arise from the interplay between (i) crustal regimes, which at convergent plate margins need be neither uniform nor steady at all times; (ii) radiation-driven and gravity-driven geomorphic regimes, which are mainly determined by crustal boundary conditions and climate; and (iii) paleogeography, through which clues about base-level changes can be obtained. We examine intracratonic and plate-margin settings, with examples from thin-skinned fold belts, thick-skinned fold belts, island-arc and other subduction-related settings, and bivergent collisional orogens. Results reveal that the existence of erosion surfaces is not a simple function of geodynamic setting. Although some erosion surfaces are pre-orogenic, evidence about their predominantly post-orogenic age is supported by apatite fission-track and helium rock-cooling signatures, stratigraphic age-bracketing, stream channel gradient patterns, and other direct or indirect dating criteria. It follows that many portions of mountain belts undergo unsteady, nonuniform post-orogenic landscape evolution trajectories, with intermittent opportunities for relief reduction. The resulting erosion surfaces remain preserved as signatures of transient landscape evolution regimes. We find that (i) occurrences of planar topography form populations of discrete, insular landscape units, only some of which could be interpreted as fragments of a fluvially dissected, and/or tectonically fragmented, regional peneplain. (ii) The post-orogenic time required for achieving advanced stages of relief reduction is variable, ranging from 3 to 70 Ma. (iii) Partly depending on whether the adjacent sedimentary basins were over- or underfilled, some erosion surfaces may have been controlled by raised base levels and may thus have formed at high elevations; however, in many cases they were disconnected from marine base levels by rapid surface uplift, thus acquiring their elevated positions in recent time. In some cases, subcrustal processes such as asthenospheric anomalies, and/or lithospheric slab tear or breakoff, explain extremely rapid, regional post-orogenic uplift. (iv) Overall, the conditions for achieving surface preservation in steep and tectonically active terrain are predictable but also quite varied and contingent on context.
Laubach, S.E.; Reynolds, S.J.; Spencer, J.E.; Marshak, S.
1989-01-01
In the Maria fold and thrust belt, a newly recognized E-trending Cretaceous orogenic belt in the southwestern United States, ductile thrusts, large folds and superposed cleavages record discordant emplacement of crystalline thrust sheets across previously tilted sections of crust. Style of deformation and direction of thrusting are in sharp contrast to those of the foreland fold-thrust belt in adjacent segments of the Cordillera. The net effect of polyphase deformation in the Maria belt was underthrusting of Paleozoic and Mesozoic metasedimentary rocks under the Proterozoic crystalline basement of North America. The structure of the Maria belt is illustrated by the Granite Wash Mountains in west-central Arizona, where at least four non-coaxial deformation events (D1-D4) occurred during the Cretaceous. SSE-facing D1 folds are associated with S-directed thrusts and a low-grade slaty cleavage. D1 structures are truncated by the gently-dipping Hercules thrust zone (D2), a regional SW-vergent shear zone that placed Proterozoic and Jurassic crystalline rocks over upturned Paleozoic and Mesozoic supracrustal rocks. Exposures across the footwall margin of the Hercules thrust zone show the progressive development of folds, cleavage and metamorphism related to thrusting. D3 and D4 structures include open folds and spaced cleavages that refold or transect D1 and D2 folds. The D2 Hercules thrust zone and a D3 shear zone are discordantly crosscut by late Cretaceous plutons. ?? 1989.
Bagua Basin: an Archive of the Tectonic Evolution of the Northern Peruvian Andes.
NASA Astrophysics Data System (ADS)
Moreno, F.; Garzione, C. N.; George, S. W. M.; Williams, L. A.
2017-12-01
The Cenozoic sediments of the intermontane Bagua Basin contain the record of the orogenic history of the northern Peruvian Andes. This Andean segment is constituted by a relatively narrow and low elevation orogen compared to the Central Andean Plateau. Understanding the similarities and differences of the tectonic evolution between these two provinces provides insights into the processes that govern the evolution of fold-thrust belts and orogenic plateaus. We use stratigraphic and sedimentologic field observations, detrital zircons (DZ) provenance analysis and stable isotopes paleoenvironmental analysis to reconstruct the regional tectonic history. Our results reveal the evolution of Bagua Basin, as a foreland basin related to the Andean belt since late Cretaceous time. The late Cretaceous Fundo el Triunfo Fm. records shelf deposits in a backbulge setting associated with a distant orogenic load. The Early Cretaceous DZ signature contained in these deposits reveal the early exhumation of Mesozoic rocks in the forebulge. The Paleocene fluvial deposits of the Rentema Fm. and the estuarine deposits of the Eocene Series record the transition to a forebulge setting. The Jurassic and Triassic DZ signature contained in the Paleocene and Eocene deposits reveal the continued exhumation of Mesozoic rocks during forebulge migration. The fluvial-floodplain succession of the Sambimera Fm. overlays the Eocene Series, recording intermediate and proximal foredeep deposition. Sambimera deposits contains sin-depositional Cenozoic DZ populations that reveal strong magmatism in the west. Comparison of δ18O and δ13C values from Sambimera and Rentema pedogenic carbonate nodules (δ18O -9‰ vs. -5‰ and δ13C -12.5‰ vs. -10‰) suggests that the Sambimera fluvial-floodplain system was more distal from the shoreline, based on the relatively negative δ18O values, and deposited in a drier climate, based on the relatively positive δ13C values. A four million year unconformity separates the Sambimera from the overlaying San Antonio Fm. that was deposited in a wedge-top setting, associated with the transition to the modern intermontane basin. We suggest that the low elevation (0.5 km) intermontane Bagua basin represents a modern analogue to the larger Altiplano basin that resided at relatively low elevations (<2 km) 10 to 15 Myr ago.
NASA Astrophysics Data System (ADS)
He, Dengfa
2016-04-01
Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending retro-arc or inter-arc basin belts from north to south, such as Santanghu-Suosuoquan-Emin, Wucaiwan-Dongdaohaizi-Mahu (Mahu block sunk as a bathyal basin during this phase) and Fukang-western well Pen1 sag accordingly. Thirdly, the closure of these retro-arc or inter-arc basins migrating gradually toward the south led to the collision and amalgamation between the above-mentioned island arcs during the Carboniferous, constituting the basic framework of the Junggar 'block'. Fourthly, the emplacement of large-scale mantle-derived magmas occurred in the latest Carboniferous to Early Permian. For instance, the well Mahu 5 penetrate the latest Carboniferous basalts with a thickness of over 20 m, and these mantle-derived magmas consolidated the above-mentioned island arc-collaged blocks. Therefore, the Junggar basin basement mainly comprises pre-Carboniferous collaged basement, and its formation is characterized by two-stage growth model, involving the Carboniferous lateral growth of island arcs and the latest Carboniferous to Early Permian vertical crustal growth related to emplacement and underplating of the mantle-derived magmas. In the Middle Permian, the Junggar Basin is dominated by a series of stable intra-continental sag basins from west to east, such as Mahu, Shawan, western Well Pen1, Dongdaohaizi-Wucaiwan-Dajing, Fukang-Jimusaer sag lake-basins and so on. The Middle Permian (e.g., Lower Wu'erhe, Lucaogou, and Pingdiquan Formations) thick source rocks developed in these basins, suggesting that the Junggar Basin had been entered 'intra-cratonic sag' basin evolution stage. Since then, no strong thermal tectonic event could result in crust growth. The present crustal thickness of Junggar Basin is 45-52 km, which was mainly formed before the latest Early Permian. Subsequently, the Junggar Basin experienced a rapid cooling process during the Late Permian to Triassic. These events constrain the formation timing of the Junggar basin basement to be before the latest Early Permian. It is inferred that the crustal thickness of Carboniferous island arc belts and associated back-arc basins is of 30-35 km or less. The latest Carboniferous to Early Permian vertical crust growth should have a thickness of 15-20 km or more. Viewed from the deep seismic refection profile across the basin, the Junggar crust does not contain the large-scale imbricate thrust systems, but shows well-layered property. Thus, the vertical growth rate reached 0.75~1 km/Ma in the latest Carboniferous to Early Permian time, a period approximately of 20Ma. It indicates a very rapid crustal growth style which could be named as the Junggar-type vertical growth of continental crust. Its formation mechanism and geodynamic implications need to be further explored later.
NASA Astrophysics Data System (ADS)
Sagripanti, Lucía; Rojas Vera, Emilio A.; Gianni, Guido M.; Folguera, Andrés; Harvey, Jonathan E.; Farías, Marcelo; Ramos, Victor A.
2015-03-01
This study examines the neotectonic deformation and development of the Tromen massif, a Quaternary retroarc volcanic field located in the western section of the Malargüe fold and thrust belt in the Southern Central Andes. The linkages between neotectonic deformation in the intra-arc zone and the recent retroarc structures of the Tromen volcanic plateau are not clearly understood. These retroarc deformations affect the mid-section of the fold and thrust belt, leaving to the east a 200 km-wide deformed zone that can be considered inactive over the last 12-10 Ma. This out-of-sequence deformation west of the orogenic front area has not been previously addressed in detail. In this study, exhaustive mapping is used to describe and discriminate structures with a neotectonic component from those fossilized by Pleistocene strata. Two balanced cross-sections are constructed showing the distribution of the youngest deformations and their relation to pre-Miocene structures. An important means for evaluating this is the morphometric and morphological analyses that allowed identification of perturbations in the fluvial network associated with active structures. In a broader perspective, neotectonic activity in the fold and thrust belt is discussed and inferred to be caused by local mechanical weakening of the retroarc zone, due to injection of asthenospheric material evidenced by magnetotelluric surveys. Thus, deformation imposed by the oblique convergence between South American and Nazca plates, while to the south being limited to the Liquiñe-Ofqui fault system that runs through the arc zone, in the retroarc area is located at the site of magmatic emplacement, presumably in association with a thermally weakened-upper crust. This control exemplifies the relationship that exists between surficial processes, magmatic emplacement and upper asthenospheric dynamics in the Southern Central Andes.
Microdiamonds from the European Variscan Orogenic Belt
NASA Astrophysics Data System (ADS)
Kotkova, J.; Jakubova, P.; Whitehouse, M.; Fedortchouk, Y.
2014-12-01
Diamond, along with coesite, has been discovered recently in the continental crustal rocks of the European Variscan orogenic belt, namely the Bohemian Massif (BM). In addition to the garnet-phengite gneiss in Germany, western BM, microdiamond occurs in major rock forming minerals - garnet, kyanite - and in zircon in ultrahigh-pressure rocks overprinted under high-pressure granulite facies conditions (c. 16-20 kbar, c. 1000°C) in the northern and eastern BM. Well-preserved 10-30 μm-sized microdiamonds from northern BM exhibit diverse morphologies (SEM data) depending upon the host rock type. Octahedral diamond occurs in felsic garnet-kyanite-feldspar-quartz rock (metasediment), whereas intermediate garnet-clinopyroxene-feldspar-quartz rock contains a cubo-octahedral variety. Diamond morphology can be thus controlled by solid impurities available in the medium of crystallization (K- vs. Ca-bearing fluids or melts), as shown by experiments. Pointed-bottom negatively oriented trigonal etch pits on the octahedral diamond faces developed due to diamond resorption at CO2-dominated environment (less than 50 wt % of H2O, experimental data), possibly by action of a residual fluid. SIMS determined δ13C values range from -22 to -21 ‰ for the felsic rock and from - 26 to - 33 for the intermediate one, corresponding to the typical range of organic carbon δ13C and inconsistent with a significant mantle carbon (δ13C ~ - 5 ‰) input. Diamond-bearing domains in zircon, also analysed by SIMS, yielded a Variscan U-Pb age of c. 340 Ma. The present stage of knowledge allows us to conclude that (i) metamorphic diamonds in the BM occur in lithologies of metasedimentary character, and their carbon source was organic; (ii) crustal-derived CO2-rich fluids with impurities played an important role in diamond formation and dissolution; (iii) diamonds formed during the Variscan orogenic cycle and (iv) diamonds are best preserved in the external domain of the Variscan orogenic belt.
NASA Astrophysics Data System (ADS)
Kergaravat, Charlie; Ribes, Charlotte; Callot, Jean-Paul; Ringenbach, Jean-Claude
2017-09-01
The Central Sivas Basin (Turkey) provides an outcrop example of a minibasin province developed above a salt canopy within a foreland-fold and thrust belt. Several minibasins are examined to assess the influence of regional Oligo-Miocene shortening during the development of a minibasin province. The results are based on extensive field work, including regional and detailed outcrop mapping of at least 15 minibasin margins and analysis of the structural elements at all scales. This reveals a progressive increase in shortening and a decrease in salt tectonics during evolution of the province. The initiation of minibasins is driven mostly by the salt-induced accommodation forming a polygonal network of salt structures with mainly local halokinetic sequences (i.e. hooks and wedges). The initiation of shortening is marked by an abrupt increase in sedimentation rate within the flexural foreland basin causing burial of the preexisting salt structures. Subsequently, orogenic compression encourages the rejuvenation of linear salt structures oriented at right angle to the regional shortening direction. The influence of orogenic shortening during the last steps of the minibasin province evolution is clearly shown by: (i) the squeezing of salt structures to form welds which are developed both at right angle and oblique to the regional shortening direction, (ii) the emergence of thrust faults, (iii) the tilting and rotation of minibasins about vertical axis associated with the formation of strike-slip fault zones, and (iv) the extrusion of salt sheets. The pre-shortening geometry of the salt structures pattern, polygonal network of walls and diapirs versus linear and sub-parallel walls, influence the resultant structural style of the minibasin province subjected to shortening. Preexisting linear depocenter limited by sub-parallel walls accommodate preferentially the shortening compare to the preexisting sub-circular depocenter limited by polygonal network of salt walls and diapirs.
NASA Astrophysics Data System (ADS)
Cao, Yi; Jung, Haemyeong; Song, Shuguang
2017-03-01
To advance our understanding of the deformation characteristics, rheological behaviors, and tectonic evolution of the fore-arc lithospheric mantle, we analyzed mineral fabrics for a large spinel-bearing ultramafic massif in the Songshugou area in the Qinling orogenic belt, central China. In the spinel-poor coarse-grained dunite, stronger A/D-type and weaker C-type-like fabrics were found, whereas the spinel-rich coarse-grained dunite displayed a comparatively stronger B-type-like fabric. These olivine fabrics are high-T fabrics influenced by the presence of melt, in which B and C-type-like fabrics are inferred to be produced by melt-assisted grain boundary sliding during synkinematic high-T melt-rock reactions. In contrast, the spinel-poor porphyroclastic and fine-grained dunites present weak AG and B-type-like fabrics, respectively. Their olivine fabrics (low-T fabrics) are inferred to transform from A/D-type fabric in their coarse-grained counterparts possibly through mylonitization process assisted by low-T fluid-rock reactions, during which strain was accommodated by the fluid-enhanced dislocation slip and/or fluid-assisted grain boundary sliding processes. Combined with the tectonic results of our previous work, the high-T olivine fabrics are probably related to a young and warm fore-arc mantle where intense partial melting and high-T boninitic melt-rock reactions prevalently occurred, whereas the low-T olivine fabrics likely reflect the evolving tectonic settings through the cooling fore-arc mantle to a continental lower crust in a collisional orogeny where low-T fluid-rock reactions were pervasively activated. These low-T olivine fabrics imply that though cold, the fore-arc lithospheric mantle may be locally weak (˜20-30 MPa), allowing ductile deformation to occur at a geologically significant strain rate.
NASA Astrophysics Data System (ADS)
Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.
2016-04-01
The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is likely ubiquitous, indicating continental crust growth by both lateral accumulation and vertical basaltic injection.
NASA Astrophysics Data System (ADS)
Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang
2018-03-01
The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.
NASA Astrophysics Data System (ADS)
Liang, Xiao; Sun, Shengshi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng
2017-04-01
The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism
NASA Astrophysics Data System (ADS)
Liang, Xiao; Sun, Shengsi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng
2017-05-01
The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism
Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model
NASA Astrophysics Data System (ADS)
Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu
2014-09-01
The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.
Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran
NASA Astrophysics Data System (ADS)
Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza
2016-04-01
Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or arc magmatism. During the Jurassic to Eocene rifting, this belt acted as the southern boundary of the Amu Darya Basin with normal faulting, which is also widespread in the South Caspian Sea and the Black Sea. Moreover, such an extended area became a relatively weak zone within the Eurasian Plate, and could be easily reworked. Because of the collision in the Zagros Belt, the intracontinental compression commenced as early as Late Eocene to Early Oligocene, which is interpreted as tectonic inversion along this weak zone. The western zone of the Kopeh Dagh Belt was also affected by southerly indentation/extrusion of the South Caspian block since middle Miocene, possibly resulting in the different deformation patterns between the western and eastern zones.
NASA Astrophysics Data System (ADS)
Varela, Ricardo; Basei, Miguel A. S.; González, Pablo D.; Sato, Ana M.; Naipauer, Maximiliano; Campos Neto, Mario; Cingolani, Carlos A.; Meira, Vinicius T.
2011-04-01
A comprehensive review of the geological, geochronological, and isotopic features of the Mesoproterozoic Grenvillian terranes attached to the southwest of the Río de la Plata craton in Early Paleozoic times is presented in this paper. They are grouped into the northern (sierras de Umango, Maz and del Espinal and surroundings), central (Sierra de Pie de Palo, southern Precordillera and Frontal Cordillera), and southern (San Rafael and Las Matras Blocks) segments. The Mesoproterozoic basement consists mainly of arc related, intermediate to acidic and mafic-ultramafic rocks of 1,244-1,027 Ma, with juvenile, Laurentian affinity. Exception to it is the Maz Group, with a protracted history and reworked character. They are affected by 846-570 Ma, extensional magmatism in the northern and central segments, which represents the Neoproterozoic breakup of the Rodinia supercontinent. Successive passive margin sedimentation is registered in Late Neoproterozoic (~640-580 Ma) and Cambro-Ordovician (~550-470 Ma) times. The southern segment is noted for the younger sedimentation alone, and for showing the exclusive primary unconformable relationship between the Mesoproterozoic basement and Early Ordovician cover. The effects of Early Paleozoic Famatinian orogeny, associated with the collisions of Cuyania and Chilenia terranes, are recorded as main phase (480-450 Ma), late phase (440-420 Ma), and Chanic phase (400-360 Ma). Among them, the tectonothermal climax is the Ordovician main phase, to which klippe and nappe structures typical of collisional orogens are related in the northern and central segments. Preliminary data allow us to suggest a set of paired metamorphic belts, with an outboard high-P/T belt, and an inboard Barrowian P/T belt.
Western Ishtar Terra and Lakshmi Planum, Venus - Models of formation and evolution
NASA Astrophysics Data System (ADS)
Roberts, Kari M.; Head, James W.
1990-08-01
Regional geologic mapping and gravity data reveal a variety of characteristics that must be accounted for in models for the formation and evolution of Western Ishtar Terra and Lakshmi Planum, including: (1) high elevation, (2) plateau-shaped profile, (3) abnormally steep bounding slopes, (4) foredeeps, (5) polygonal outline, (6) adjacent orogenic belts, (7) volcanic plains, (8) plains emplaced synchronously with orogenic belts, (9) paterae, (10) variable topography of Lakshmi, (11) tessera-like material underlying Lakshmi, and (12) a large apparent depth of compensation. A tessera/peripheral deformation model, in which a preexisting block of tessera is the locus of convergence of adjacent thinner crust and lithosphere, underthrusting, mountain building, subsurface melting, and plateau uplift, is interpreted to account for most of the characteristics. The aparent depth of compensation is not simply explained by this model and appears to require a second, deeper mantle anomaly component, such as broad mantle upwelling or a hot spot.
Ambient tremors in a collisional orogenic belt
Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei
2014-01-01
Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.
Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model
NASA Astrophysics Data System (ADS)
Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza
2017-08-01
Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.
NASA Astrophysics Data System (ADS)
Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang
2015-05-01
The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.
NASA Astrophysics Data System (ADS)
Gallen, S. F.
2016-12-01
Long-term landscape evolution in post-orogenic settings remains an outstanding question in the geosciences. Despite conventional wisdom that topography in dead orogens will slowly and steadily decay through time, observations from around the globe show that dynamic, unsteady (e.g. transient) landscape evolution is the norm. Unraveling the mechanisms that drive unsteadiness in dead orogens is paramount to understanding the stratigraphic record of offshore basins and the geologic factors that contribute to the high biodiversity common in these settings. Here we address the enigma of unsteady post-orogenic landscape evolution with a study of the geomorphology of southern Appalachians, U.S.A. We focus on the 58,000 km2 Upper Tennessee River Basin that covers portions of the fold-and-thrust belt (Valley and Ridge), foreland basin (Appalachian Plateau), and a deeply exhumed thrust sheet (Blue Ridge) of this dead orogen. Using published millennial-scale erosion rates and quantitative analysis of fluvial topography, we show that this region is in a transient state of adjustment to 400 m of base level fall. Ongoing adjustment to base level drop is observed as a zone of high erosion rates, steep river channels and numerous knickpoints located upstream of and surrounding the contact between the Valley and Ridge and adjacent lithotectonic units. We argue that the association of adjusting landscapes and the Valley and Ridge contact is due to the rapid response time of rivers incising soft Valley and Ridge rocks, relative to the harder metamorphic rocks in the Blue Ridge and resistant capstone in the Appalachian Plateau. We propose that base level fall was triggered by incision through the Appalachian Plateau capstone into underlying weaker rocks that set off a wave of transient adjustment, drainage reorganization and ultimately capture of the paleo-Upper Tennessee Basin. Our results indicate that transient landscape evolution is characteristic of post-orogenic settings, as rivers continually incise through rock-types of varying erosional resistance in ancient foreland basins and fold-and-thrust belts. Thus, unsteadiness in dead orogens reflects the legacy of past tectonic events and may have little to do with epeirogenic uplift or climate induced changes in erosional efficiency, as is often the interpretation.
Collisional Tectonics in the St. Elias Orogen, Alaska Observed by GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Larsen, C. F.
2008-12-01
The rugged topography of the St. Elias orogen of southern Alaska and the adjacent region of Canada is the result of the on-going collision of the Yakutat block with southern Alaska. Nearly 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. A key to understanding this complex collisional boundary is knowing the locations of the structures taking up the convergence. GPS provides a snapshot of the present-day strain field and helps to delineate active structures. As part of the St. Elias Erosion/Tectonics Project (STEEP), we re-surveyed 70 campaign GPS sites across the St. Elias orogen during the summer of 2008. Strain rates derived from our GPS data highlight several areas within the St. Elias orogen. The highest strain rates occur across Icy Bay and the western edge of the Malaspina Glacier. Rates there approach -1 microstrain/yr, a value higher than that observed in the Himalaya. Lower, but still significant, strain rates of about -0.2 microstrain/yr extend north from Icy Bay to the region surrounding Mt. St. Elias. The second major focus of compressive strain in the orogen is centered over the Yakataga fold-and-thrust belt. Strain rates there are in the range of -0.40 to -0.50 microstrain/yr. Little significant strain is seen across the Bagley icefield or to the north of that feature. These results suggest that most of the convergence across the St. Elias orogen is currently accommodated on structures located south of the Bagely icefield, specifically in the Icy Bay, upper Malaspina/Mt. St. Elias, and Yakataga fold-and-thrust belt regions. We use block modeling techniques to describe the tectonic elements of the St. Elias orogen and connect them with the tectonic regime in southeast Alaska. Our preliminary results indicate that a single thrust fault through Icy Bay cannot explain the data there; multiple NW and N directed thrust faults through Icy Bay, along the western edge of the Malaspina Glacier, and between Icy Bay and Mt. St. Elias are required. Over half of the relative convergence between the Yakutat block and southern Alaska may be accommodated by elastic strain accumulation on these faults.
NASA Astrophysics Data System (ADS)
Mohanty, S.
2010-11-01
The Satpura Mountain Belt (also referred as Central Indian Tectonic Zone in recent literature) forms an important morphotectonic unit in the central part of India. Some of the recent workers have reported an orogenic event at ˜1000-900 Ma (termed "Sausar orogeny") which led to amalgamation of the North Indian Block and the South Indian Block and formation of the Satpura Mountain Belt. In this model the stratigraphic relations of two important lithostratigraphic units on either side of the Satpura Mountain Belt (the Sausar Group in the south and the Vindhyan Supergroup on the north) are suggested to be revised from previously held ideas. Critical analyses of available published work in the region to assess the status of the Sausar Group vis a vis the Vindhyan Supergroup was carried out. It is found that the ideas proposed by the recent workers stem from an earlier interpretation that the Sausar Group has monocyclic evolution and the earliest fabric in the Sausar Group is marked by a schistosity with EW strike. Re-mapping of the gneissic rocks and adjacent matasedimentary rocks of Khawasa, Deolapar, and Kandri-Mansar areas revealed presence of gneissic rocks and granulites of two generations, and of four phases of superposed deformations in the metasediments and gneisses. The older gneisses and granulites constitute the basement over which the rocks of the Sausar Group were deposited; and the younger gneisses developed by metamorphism and migmatisation of the rocks of the Sausar Group. The latter types are found in the Khawasa-Ramakona areas. Contrary to the belief of the recent workers that no volcanic activity is present in the Sausar Group, volcanic rocks marked by amygdular basic flows and tuffs have been mapped from different parts of the Sausar Group. Migmatisation and metamorphism of these volcanic rocks (of the Sausar Group) have given rise to amphibolites and granulites in Khawasa and Ramakona areas. Therefore, the use of fabric patterns in these areas to suggest that the granulite facies metamorphism in the Ramakona-Katangi granulite domain was pre-Sausar in age is debatable. Available geochronological data of the Satpura Mountain Belt and its eastward continuation into the Chhotanagpur Gneiss terrain indicate that the basement and cover rocks of these areas were subjected to multiple deformation and metamorphic episodes of similar style and nature. The earliest deformation and metamorphism of the rocks of the Sausar Group and its equivalent rocks to the east took place at ˜2100-1900 Ma. The regional EW trend of the belt developed during the second deformation at ˜1800-1700 Ma and again at ˜1600-1500 Ma. This deformation was accompanied by migmatisation and granulite facies metamorphism in the northern domain of the Sausar Belt and in the Chhotanagpur Gneiss region. Late phase low intensity deformations in the region were associated with thermal events at ˜1100-1000 Ma and ˜900-800 Ma. The ˜EW trending fabric, referred as "Satpura orogenic trend" in Indian literature marks a major compressional tectonic event, developed during the second deformation of the Sausar Group. This has its counter part in Western Australia as the Capricorn orogeny (˜1780-1830 Ma). The development of the Satpura Mountain Belt during the Grenvillian orogeny is ruled out from the synthesis of event stratigraphic data of the region and from its comparison with the Western Australian Craton.
NASA Astrophysics Data System (ADS)
Deshmukh, Tanzil; Naraga, Prabhakar; Bhattacharya, Abhijit; Kaliappan, Madhavan
2017-04-01
The Mahakoshal Belt (MB) is regarded as the oldest subunit along the northern collar of the Central Indian Tectonic Zone (CITZ) arguably representing the zone of accretion between the North India Block and the South India Block. The following study focuses on deciphering the structural and metamorphic P-T-t history of the schists/phyllites from the eastern part of the belt, and provides insights into the Paleoproterozoic tectonic development in the CITZ. The schists comprise phengite, quartz, andalusite, biotite, muscovite and margarite, and are associated with veins of rare andalusite + corundum + quartz assemblage. The field relations combined with deformation microtextures in the MB schists suggests three episodes of metamorphism, M1, M2 and M3, corresponding with D1, D2 and D3 deformation events respectively. Inclusion trails (S1) of phengite + biotite + quartz ± chlorite in syn/post-S2 andalusite porphyroblasts constrain the M1 metamorphic event in pelitic schists. The application of pseudosection modelling estimated peak metamorphic conditions at ˜8 kbar and 520 ˚ C. Near isothermal decompression (<4 kbar) resulted in the formation of the andalusite + muscovite bearing retrograde assemblage that stabilized at the expense of phengite-bearing assemblage. Further, andalusite porphyroblasts are replaced by margarite + muscovite + chlorite pseudomorphs (2-3 kbar) during syn/post-S3 fluid-aided metamorphism. Th-U-total Pb dating of monazite grains yield core populations at 1.8-1.9 Ga, and rim populations at 1.7-1.8 Ga and 1.5-1.6 Ga. Thus, the peak metamorphism in MB schists was Paleoproterozoic in age, 1.8-1.9 Ga, and the clockwise P-T path was recorded at 1.7-1.8 Ga, which overlaps with the emplacement of blastoporphyritic granitoids along southern margin of the MB. The results obtained in this study combined with the existing structural-metamorphic-chronological information demonstrate the CITZ to be a composite of desperately-evolved crustal domains. With some major omissions, the tectono-thermal events identified in the CITZ partly overlap with those observed in the Capricorn Orogen (Western Australia) and the Trans North China Orogen. Therefore, these global correlations possibly corroborate new configurations on the assembly and fragmentation of Columbia Supercontinent, but await further studies and robust age determinations in the various parts of CITZ.
NASA Astrophysics Data System (ADS)
Soulaimani, Abderrahmane; Jaffal, Mohammed; Maacha, Lhou; Kchikach, Azzouz; Najine, Abdessamad; Saidi, Abdellatif
2006-02-01
Aeromagnetic data of the Anti-Atlas Mountains show an important magnetic anomaly along the 'Major Anti-Atlas Fault', produced by different mafic and ultramafic rocks of a Neoproterozoic ophiolite complex. The magnetic modelling of Bou Azzer-El Graara ophiolitic suture shows a deep-seated anomaly through the upper continental crust corresponding to a north-dipping subduction. The polarity of the Pan-African subduction in the Anti-Atlas is therefore compatible with the contemporaneous Pan-African orogenic belts, where polarity of subduction dipped away from the West African Craton during the amalgamation of Western Gondwana. To cite this article: A. Soulaimani et al., C. R. Geoscience 338 (2006).
Growth of the Zagros Fold-Thrust Belt and Foreland Basin, Northern Iraq, Kurdistan
NASA Astrophysics Data System (ADS)
Koshnaw, Renas; Horton, Brian; Stockli, Daniel; Barber, Douglas; Ghalib, Hafidh; Dara, Rebwar
2016-04-01
The Zagros orogenic belt in the Middle Eastern segment of the Alpine-Himalayan system is among the youngest seismically active continental collision zones on Earth. However, due to diachronous and incremental collision, the precise ages and kinematics of shortening and deposition remain poorly understood. The Kurdistan region of the Zagros fold-thrust belt and foreland basin contains well-preserved Neogene wedge-top and foredeep deposits that include clastic nonmarine fill of the Upper Fars, Lower Bakhtiari, and Upper Bakhtiari Formations. These deposits record significant information about orogenic growth, fold-thrust dynamics, and advance of the deformation front. Thermochronologic and geochronologic data from thrust sheets and stratigraphic archives combined with local earthquake data provide a unique opportunity to address the linkages between surface and subsurface geologic relationships. This research seeks to constrain the timing and geometry of exhumation and deformation by addressing two key questions: (1) Did the northwestern Zagros fold-thrust belt evolve from initial thin-skinned shortening to later thick-skinned deformation or vice-versa? (2) Did the fold-thrust belt advance steadily under critical/supercritical wedge conditions involving in-sequence thrusting or propagate intermittently under subcritical conditions with out-of-sequence deformation? From north to south, apatite (U-Th)/He ages from the Main Zagros Thrust, the Mountain Front Flexure (MFF), and additional frontal thrusts suggest rapid exhumation by ~10 Ma, ~5 Ma, and ~8 Ma respectively. Field observations and seismic sections indicate progressive tilting and development of growth strata within the Lower Bakhtiari Formation adjacent to the frontal thrusts and within the Upper Bakhtiari Formation near the MFF. In the Kurdistan region of Iraq, a regional balanced cross section constrained by new thermochronometric results, proprietary seismic reflection profiles, and earthquake hypocenters suggest prolonged thin-skinned shortening in sequence from north to south followed by a thick-skinned out-of-sequence MFF deformation and intermittent hinterland uplift postdating initial collision. Magnetostratigraphic analyses of Dinarta wedge-top deposits and Kifri foredeep deposits constrain accumulation of the Upper Fars-Lower Bakhtiari synorogenic succession to 12.5-5 Ma. These findings suggest that temporal and spatial shifts in upper-crustal modes of deformation in the Kurdistan segment of the Zagros orogenic belt strongly influenced patterns of topographic growth, landscape development, and resulting foreland basin stratigraphy.
Schoonmaker, A.; Kidd, W.S.F.; Bradley, D.C.
2005-01-01
During collisional convergence, failure in extension of the lithosphere of the lower plate due to slab pull will reduce the thickness or completely remove lower-plate lithosphere and cause decompression melting of the asthenospheric mantle; magmas from this source may subsequently provide enough heat for substantial partial melting of crustal rocks under or beyond the toe of the collisional accretionary system. In central Maine, United States, this type of magmatism is first apparent in the Early Devonian West Branch Volcanics and equivalent mafic volcanics, in the slightly younger voluminous mafic/silicic magmatic event of the Moxie Gabbro-Katahdin batholith and related ignimbrite volcanism, and in other Early Devonian granitic plutons. Similar lower-plate collisional sequences with mafic and related silicic magmatism probably caused by slab breakoff are seen in the Miocene-Holocene Papuan orogen, and the Hercynian-Alleghenian belt. Magmatism of this type is significant because it gives evidence in those examples of whole-lithosphere extension. We infer that normal fault systems in outer trench slopes of collisional orogens in general, and possibly those of oceanic subduction zones, may not be primarily due to flexural bending, but are also driven by whole-lithosphere extension due to slab pull. The Maine Acadian example suggests that slab failure and this type of magmatism may be promoted by pre-existing large margin-parallel faults in the lower plate. ?? 2005 Geological Society of America.
The paradox of vertical σ2 in foreland fold and thrust belts
NASA Astrophysics Data System (ADS)
Tavani, Stefano
2014-05-01
Occurrence of aesthetically appealing thrust systems and associated large scale anticlines, in both active and fossil foreland fold and thrust belts, is commonly interpreted as an evidence for Andersonian compressional framework. Indeed, these structures would testify for a roughly vertical σ3. Such a correlation between thrusts occurrence and stress field orientation, however, frequently fails to explain denser observations at a smaller scale. The syn-orogenic deformation meso-structures hosted in exposed km-scale thrust-related folds, in fact, frequently and paradoxically witness for a syn-thrusting strike-slip stress configuration, with a near-vertical σ2 and a sub-horizontal σ3. This apparent widespread inconsistency between syn-orogenic meso-structures and stress field orientation is here named "the σ2 paradox". A possible explanation for such a paradox is provided by inherited extensional deformation structures commonly developed prior to thrusting, in the flexural foreland basins located ahead of fold and thrust belts. Thrust nucleation and propagation is facilitated and driven by the positive inversion of the extensional inheritances, and their subsequent linkage. This process eventually leads to the development of large reverse fault zones and can occur both in compressive and strike-slip stress configurations.
NASA Astrophysics Data System (ADS)
Cai, Keda
2016-04-01
Kazakhstan accretionary system was a principle component of the Central Asian Orogenic Belt (CAOB) that is one of the largest accretionary orogens on earth. The Kazakhstan composite continent could have been established in the Early Paleozoic by the Kazakhstan accretionary system in the form of progressively amalgamations of diverse tectonic units, such as continental ribbon, accretionary prim, oceanic remnant and arc material. Subsequently, the composite continent was bended to form a spectacular U-shaped architecture that probably occurred in the Late Paleozoic. The western Chinese Tianshan is situated on the south wing of the Kazakhstan Orocline, featured by extensive magmatim, intense deformation and voluminous mineralization. Our new geochronological and geochemical data suggest a noticeable magmatic gap between Late Devonian and Early carboniferous and contrasting magma sources of these magmatic rocks. The significant shifts correspond to the tectonic transition from terrane amalgamation to mountain bending in the Early Paleozoic. This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (2014CB448000), Xinjiang outstanding youth scientific grant (2013711003) and the Talent Awards to KDC from the China Government under the 1000 Talent Plan.
NASA Astrophysics Data System (ADS)
Ruh, Jonas B.; Gerya, Taras
2015-04-01
The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.
NASA Astrophysics Data System (ADS)
He, D.
2017-12-01
The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous. During Cenozoic, MFTB is moderately modified by the northeastward compression due to the NE propagation of Qinghai-Tibet Plateau, and distinctly superimposed by the Yingchuan half-graben. North-South Tectonic Belt underwent a full cycle from extension during Middle Proterozoic to Paleozoic to compression since late Triassic.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Keshavarz, Saeede; Faghih, Ali
2015-05-01
This study is aimed at quantifying the kinematics of deformation using a population of drag fold structures associated with small-scale faults in deformed quartzites from Seh-Ghalatoun area within the HP-LT Sanandaj-Sirjan Metamorphic Belt, SW Iran. A total 30 small-scale faults in the quartzite layers were examined to determine the deformation characteristics. Obtained data revealed α0 (initial fault angle) and ω (angle between flow apophyses) are equal to 83° and 32°, respectively. These data yield mean kinematic vorticity number (Wm) equal to 0.79 and mean finite strain (Rs) of 2.32. These results confirm the relative contribution of ∼43% pure shear and ∼57% simple shear components, respectively. The strain partitioning inferred from this quantitative analysis is consistent with a sub-simple or general shear deformation pattern associated with a transpressional flow regime in the study area as a part of the Zagros Orogen. This type of deformation resulted from oblique convergence between the Afro-Arabian and Central-Iranian plates.
Extension and gold mineralisation in the hanging walls of active convergent continental shear zones
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2014-07-01
Orogenic gold-bearing quartz veins form in mountain belts adjacent to convergent tectonic boundaries. The vein systems, hosted in extensional structures within compressively deformed rocks, are a widespread feature of these orogens. In many cases the extensional structures that host gold-bearing veins have been superimposed on, and locally controlled by, compressional structures formed within the convergent orogen. Exploring these observations within the context of a three-dimensional mechanical model allows prediction of mechanisms and locations of extensional zones within convergent orogens. Our models explore the effect of convergence angle and mid-crustal strength on stress states and compare them to the Southern Alps and Taiwan. The dilatation zones coincide with the highest mountains, in the hanging walls of major plate boundary faults, and can extend as deep as the brittle-ductile transition. Extensional deformation is favoured in the topographic divide region of oblique orogens with mid-lower crustal rheology that promotes localisation rather than diffuse deformation. In the near surface, topography influences the stress state to a depth approximately equal to the topographic relief, bringing the rock closer to failure and rotating σ1 to near vertical. The distribution of gold-bearing extensional veins may indicate the general position of the topographic divide within exhumed ancient orogens.
NASA Technical Reports Server (NTRS)
Lowe, D. R.; Byerly, G. R.
1986-01-01
The sedimentological and stratigraphic evolution of the 3.5 to 3.3 Ga Barberton Greenstone Belt can be divided into three principal stages: (1) the volcanic platform stage during which at least 8 km of mafic and ultramafic volcanic rocks, minor felsic volcanic units, and thin sedimentary layers (Onverwacht Group) accumulated under generally anorogenic conditions; (2) a transitional stage of developing instability during which widespread dacitic volcanism and associated pyroclastic and volcaniclastic sedimentation was punctuated by the deposition of terrigenous debris derived by uplift and shallow erosion of the belt itself (Fig Tree Group); (3) an orogenic stage involving cessation of active volcanism, extensive thrust faulting, and widespread deposition of clastic sediments representing deep erosion of the greenstone belt sequence as well as sources outside of the belt (Moodies Group).
NASA Astrophysics Data System (ADS)
Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.
2017-11-01
Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.
NASA Astrophysics Data System (ADS)
Gu, Hai-Ou; Xiao, Yilin; Santosh, M.; Li, Wang-Ye; Yang, Xiaoyong; Pack, Andreas; Hou, Zhenhui
2013-09-01
The Mesozoic tectonics in East China is characterized by significant lithospheric thinning of the North China Craton, large-scale strike-slip movement along the Tan-Lu fault, and regional magmatism with associated metallogeny. Here we address the possible connections between these three events through a systematic investigation of the geochemistry, zircon geochronology and whole rock oxygen isotopes of the Mesozoic magmatic rocks distributed along the Tan-Lu fault in the Shandong province. The characteristic spatial and temporal distributions of high-Mg adakitic rocks along the Tan-Lu fault with emplacement ages of 134-128 Ma suggest a strong structural control for the emplacement of these intrusions, with magma generation possibly associated with the subduction of the Pacific plate in the early Cretaceous. The low-Mg adakitic rocks (127-120 Ma) in the Su-Lu orogenic belt were formed later than the high-Mg adakitic rocks, whereas in the Dabie orogenic belt, most of the low-Mg adakitic rocks (143-129 Ma) were generated earlier than the high-Mg adakitic rocks. Based on available data, we suggest that the large scale strike-slip tectonics of the Tan-Lu fault in the Mesozoic initiated cratonic destruction at the south-eastern margin of the North China Craton, significantly affecting the lower continental crust within areas near the fault. This process resulted in crustal fragments sinking into the asthenosphere and reacting with peridotites, which increased the Mg# of the adakitic melts, generating the high-Mg adakitic rocks. The gravitationally unstable lower continental crust below the Tan-Lu fault in the Su-Lu orogenic belt triggered larger volume delamination of the lower continental crust or foundering of the root.
Seismic behaviour of mountain belts controlled by plate convergence rate
NASA Astrophysics Data System (ADS)
Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.
2018-01-01
The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.
Orogenic structural inheritance and rifted passive margin formation
NASA Astrophysics Data System (ADS)
Salazar Mora, Claudio A.; Huismans, Ritske S.
2016-04-01
Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology 26, 873-886. Tommasi, A., Vauchez, A., 2001. Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle. Earth and Planetary Science Letters 185, 199-210.
NASA Astrophysics Data System (ADS)
Weil, Arlo; Gutiérrez-Alonso, Gabriel; Johnston, Stephen; Pastor Galán, Daniel
2013-04-01
The Paleozoic Variscan orogeny was a large-scale collisional event involving amalgamation of multiple continents and micro-continents. Existing data, suggests oroclinal buckling of an originally near-linear convergent margin during the last stages of Variscan deformation in the late Paleozoic. Closure of the Rheic Ocean resulted in E-W shortening (present-day coordinates) in the Carboniferous, producing a near linear N-S trending, east-verging belt. Subsequent N-S shortening near the Carb-Permian boundary resulted in oroclinal buckling. This late-stage orogenic event remains an enigmatic part of final Pangea amalgamation. The present-day arc curvature of the Variscan has inspired many tectonic models, with little agreement between them. While there is general consensus that two separate phases of deformation occurred, various models consider that curvature was caused by: dextral transpression around a Gondwana indentor; strike-slip wrench tectonics; or a change in tectonic transport direction due to changing stress fields. More recent models explain the curvature as an orocline, with potentially two opposite-facing bends, caused by secondary rotations. Deciphering the kinematic history of curved orogens is difficult, and requires establishment of two deformation phases: an initial compressive phase that forms a relatively linear belt, and a second phase that causes vertical-axis rotation of the orogenic limbs. Historically the most robust technique to accurately quantify vertical axis-rotation in curved orogens is paleomagnetic analysis, but recently other types of data, including fracture, geochemical, petrologic, paleo-current and calcite twin data, have been used to corroborate secondary buckling. A review of existing and new Variscan data from Iberia is presented that argues for secondary buckling of an originally linear orogenic system. Together, these data constrain oroclinal buckling of the Cantabrian Orocline to have occurred in about 10 Ma during the latest Carboniferous, which agrees well with recent geodynamical models and structural data that relate oroclinal buckling with lithospheric delamination in the Variscan.
NASA Astrophysics Data System (ADS)
Weil, A. Brandon; Gutiérrez-Alonso, G.; Johnston, S. T.; Pastor-Galán, D.
2013-01-01
The Paleozoic Variscan orogeny was a large-scale collisional event involving amalgamation of multiple continents and micro-continents. Existing data, suggests oroclinal buckling of an originally near-linear convergent margin during the last stages of Variscan deformation in the late Paleozoic. Closure of the Rheic Ocean resulted in E-W shortening (present-day coordinates) in the Carboniferous, producing a near linear N-S trending, east-verging belt. Subsequent N-S shortening near the Carb-Permian boundary resulted in oroclinal buckling. This late-stage orogenic event remains an enigmatic part of final Pangea amalgamation. The present-day arc curvature of the Variscan has inspired many tectonic models, with little agreement between them. While there is general consensus that two separate phases of deformation occurred, various models consider that curvature was caused by: dextral transpression around a Gondwana indentor; strike-slip wrench tectonics; or a change in tectonic transport direction due to changing stress fields. More recent models explain the curvature as an orocline, with potentially two opposite-facing bends, caused by secondary rotations. Deciphering the kinematic history of curved orogens is difficult, and requires establishment of two deformation phases: an initial compressive phase that forms a relatively linear belt, and a second phase that causes vertical-axis rotation of the orogenic limbs. Historically the most robust technique to accurately quantify vertical axis-rotation in curved orogens is paleomagnetic analysis, but recently other types of data, including fracture, geochemical, petrologic, paleo-current and calcite twin data, have been used to corroborate secondary buckling. A review of existing and new Variscan data from Iberia is presented that argues for secondary buckling of an originally linear orogenic system. Together, these data constrain oroclinal buckling of the Cantabrian Orocline to have occurred in about 10 Ma during the latest Carboniferous, which agrees well with recent geodynamical models and structural data that relate oroclinal buckling with lithospheric delamination in the Variscan.
NASA Astrophysics Data System (ADS)
Silva, Luiz Carlos da; Pedrosa-Soares, Antonio Carlos; Armstrong, Richard; Pinto, Claiton Piva; Magalhães, Joana Tiago Reis; Pinheiro, Marco Aurélio Piacentini; Santos, Gabriella Galliac
2016-07-01
This geochronological and isotopic study focuses on one of the Archean-Paleoproterozoic basement domains of the São Francisco craton reworked in the Araçuaí orogen, the Porteirinha domain, Brazil. It also includes a thorough compilation of the U-Pb geochronological data related to the adjacent Archean and Rhyacian terranes from the São Francisco craton and Araçuaí orogen. The main target of this study is the TTG gneisses of the Porteirinha complex (Sample 1). The gneiss dated at 3371 ± 6 Ma unraveled a polycyclic evolution characterized by two metamorphic overprinting episodes, dated at 3146 ± 24 Ma (M1) and ca. 600 Ma (M2). The former (M1) is so far the most reliable evidence of the oldest metamorphic episode ever dated in Brazil. The latter (M2), in turn, is endemic in most of the exposed eastern cratonic margin within the Araçuaí orogen. Whole-rock Sm-Nd analysis from the gneiss provided a slightly negative εNd(t3370) = - 0.78 value, and a depleted mantle model (TDM) age of 3.5 Ga, indicating derivation mainly from the melting of a ca. 3.5 Ga tholeiitic source. Sample 2, a K-rich leuco-orthogneiss from the Rio Itacambiriçu Complex, was dated at 2657 ± 25 Ma and also presents a ca. 600 Ma M2 overprinting M2 age. The other two analyses were obtained from Rhyacian granitoids. Sample 3 is syn-collisional, peraluminous leucogranite from the Tingui granitic complex, showing a crystallization age of 2140 ± 14 Ma and strong post-crystallization Pb*-loss, also ascribed to the Ediacaran overprinting. Accordingly, it is interpreted as a correlative of the late Rhyacian (ca. 2150-2050 Ma) collisional stage of the Mantiqueira orogenic system/belt (ca. 2220-2000 Ma), overprinted by the Ediacaran collage. Sample 4 is a Rhyacian post-orogenic (post-collisional), mixed-source, peralkaline, A1-type suite, with a crystallization age of 2050 ± 10 Ma, presenting an important post-crystallization Pb*-loss related to Ediacaran collision. The focused region records some of the oldest magmatic and metamorphic events ever found in the São Francisco craton basement, a ca. 3.4 Ga TTG generation and ca. 3.1 Ga metamorphism, as well as two younger orogenic events: the Rhyacian (2.15-2.05 Ga), accretionary event, correlated to the Mineiro belt, and the Ediacaran Brasiliano overprinting, event imposed by the Araçuaí orogen.
Isotopic perspectives on the western Himalayan syntaxis
NASA Astrophysics Data System (ADS)
Argles, T. W.; Foster, G. L.; Whittington, A. G.; George, M. T.
2003-04-01
The western syntaxis has been characterised as a structural and metamorphic anomaly within the Himalaya, resulting from extreme Neogene exhumation and associated partial melting. However, an integration of detailed fieldwork with whole-rock isotopic data indicates that all the major tectonic units observed along the arc of the orogen also occur in the syntaxis. Most of the rocks exposed by the extreme exhumation have very different characteristics to their correlatives in the rest of the Himalayan mountain belt, because they represent very different crustal levels. The generally higher metamorphic grade of most syntaxial units obscures their affinities, while high strain throughout the syntaxis also conspires to mask the major tectonic faults that form boundaries to the units in the rest of the orogen. The Lesser Himalayan affinity of the gneissic core of the Nanga Parbat massif has been revealed previously using Nd isotopes. This study confirms the distinction between Lesser (E(Nd) = -20 to -29) and High (E(Nd) = -12 to -19) Himalayan rocks, but further subdivides those units with a High Himalayan Nd signature using Sr isotopic data. Some low-grade schists within the syntaxis have a relatively low 87Sr/86Sr ratio (<0.720) that distinguishes them from the High Himalayan rocks, and suggests they are metamorphic equivalents of the Tethyan sediments exposed in the main Himalayan orogen. The tectonic contact between the Lesser and High Himalayan units in the central Himalaya is the Main Central Thrust, a zone characterised by inverted metamorphism and high strain, but in the uniformly high-strain syntaxis this thrust is difficult to locate except by isotopic signatures. Extensive thermobarometric studies in the syntaxis, however, show two things. The first is the varying intensity of Neogene metamorphic overprint, whose strength is closely related to the degree of deformation (and rheology). The second is a zone of distinctly lower temperature mineral assemblages related to extensional (top-to-the-north) fabrics that straddles the boundary between the High Himalayan gneisses and the Tethyan metasediments. This extensional zone occupies the same structural position in the syntaxis as the South Tibetan Detachment System does in the central Himalaya.
Synorogenic Extensional Tectonics in the Forearc, Arc and Southwest Altiplano of Southern Peru
NASA Astrophysics Data System (ADS)
Sempere, T.; Jacay, J.
2007-05-01
There is increasing evidence that paradigms, as in many fields of science, deeply influence interpretations and even observations of the actual geology of the Andes, to the point that some same areas have be mapped in dramatically different ways by geologists who favored distinct models. The belief that the Central Andes originated by tectonic shortening has commonly biased cartography in this orogen, for instance by forcing high-angle or poorly-exposed faults to be mapped as reverse faults and thrusts. Extensional structures have often been overlooked, because they were thought to be irrelevant in the investigation of orogenic issues. However, observations and models from a variety of undoubtedly extensional settings in Europe and Africa have recently shown that some structural geometries previously thought to be typical of contractional processes, as in the Central Andes, in fact also occur in extensional contexts, in particular where normal faults were initiated as flexure-forming blind faults. Traditional mapping in the Central Andes has therefore to be re-evaluated. Identification and correction of such biases result in major revisions of structural mapping in southwestern Peru. The forearc, arc, and SW Altiplano of southern Peru in fact appear to have been dominated by extension and transcurrence since ~30 Ma, in contrast with the NE Altiplano, Eastern Cordillera, and sub-Andean belt, where shortening has been indeed significant. These two contrasting orogenic domains are separated by the SFUACC fault system, which corresponds to a major lithospheric boundary. Basins SW of the SFUACC formed in extension and along transcurrent faults. At least one low-angle extensional detachment, placing near-vertical Miocene conglomerates over a Cretaceous unit, occurs just west of Lake Titicaca. Other detachments occur in the forearc. Significant transcurrent faulting, including transpressional deformation, developed along specific structures over southern Peru. SW of the SFUACC, undisputable reverse faults are rare, but are common along the lower slope of the Pacific Andean escarpment, suggesting incipient oceanward gravitational collapse of the Western Cordillera. We find that extension has accompanied the Andean orogeny SW of the SFUACC, and therefore question the currently dominant paradigm.
NASA Astrophysics Data System (ADS)
Zuza, A. V.; Levy, D. A.; Wang, Z.; Xiong, X.; Chen, X.
2017-12-01
The active Cenozoic Qilian Shan-Nan Shan thrust belt defines the northern margin of the Tibetan Plateau. The kinematic development of this thrust belt has implications models of plateau growth and Himalayan-Tibetan orogen strain accommodation. We present new field observations and analytical data from a traverse across the 350-km-wide doubly vergent Qilian Shan, which is bound by the south-dipping North Qilian thrust system in the north and the north-dipping range-bounding Qinghai Nanshan-Dulan Shan thrust system in the south. These faults, and several other major thrusts within the thrust-belt interior, disrupt relatively thick Oligocene-Miocene basin deposits. Of note, many of the thrust faults across the width of the Qilian Shan have Quaternary fault scarps, indicating that active deformation is distributed and not only concentrated along the northern frontal faults. By integrating our detailed structural traverse with new geophysical observations and thermochronology data across the northern plateau margin, we construct a kinematic model for the development of the Tibetan Plateau's northern margin. Deformation initiated in the Eocene-Oligocene along the north-dipping Qinghai Nanshan-Dulan Shan and south-dipping Tuolai Nan Shan thrusts, the latter of which then defined the northern boundary of the Tibetan Plateau. This early deformation was focused along preexisting early Paleozoic structures. A 200-km-wide basin formed between these ranges, and from the Miocene to present, new thrust- and strike-slip-fault-bounded ranges developed, including the north-directed North Qilian and the south-directed Tuolai Nan thrusts. Thus, our observations do not support northward propagating thrust-belt expansion. Instead, we envision that the initial thrust-belt development generated a wide Oligocene-Miocene north-plateau basin that was subsequently disintegrated by later Miocene to present thrusting and strike-slip faulting. Ultimately, the Qilian Shan-Nan Shan thrust belt differs from a typical orogenic thrust wedge, and active deformation is distributed across the range.
Quantitative Comparison of Mountain Belt Topographic Profiles on Earth and Venus
NASA Astrophysics Data System (ADS)
Stoddard, P. R.; Jurdy, D. M.
2016-12-01
Earth's mountain belts result from interactions between tectonic plates. Several styles of belts reflect the differing nature of those interactions: The narrow spine of the Andes results from subduction of the oceanic Nazca plate under the continental South American plate, the soaring Himalayas from the collision of India and Asia, the broad Rockies and Alaskan cordillera from multiple collisions, and the gentle Appalachians and Urals are remnants from ancient collisions. Venus' mountain chains - Maxwell, Freyja, Akna and Danu - surround Lakshmi Planum, a highland with an elevation of 4 km. These make up Ishtar Terra. Maxwell Montes ascends to over 11 km, the highest elevation on the planet. Freyja rises just over 7 km and Akna to about 6 km. The arcuate Danu belt on Ishtar's western boundary comes up to only 1.5 km over the planum. No other mountain belts exist on Venus. The origins of these venusian orogenic belts remain unknown. Earliest explanations invoked subduction around Lakshmi Planum; subsequent models included either up- or down-welling of the mantle, horizontal convergence, or crustal thickening. We quantitatively compare topography of Venus' mountain chains with Earth's for similarities and differences. Patterns may provide clues to the dynamics forming venusian orogenic belts. To do this, we find topographic profiles across the various chains, determine average profiles for each, and then correlate averages to establish the degree of similarity. From this correlation we construct a covariance matrix, diagonalized for eigenvalues, or principal components. These can be displayed as profiles. Correlations and principal components allow us to assess the degree of similarity and variability of the shapes of the average profiles. These analyses thus offer independent and objective modes of comparison; for example, with respect to terrestrial mid-ocean ridges, some Venus chasmata were shown to most closely resemble the ultra-slow Arctic spreading center.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zheng, J.; Wang, B.
2017-12-01
The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.
van der Pluijm, B.A.; Vrolijk, P.J.; Pevear, D.R.; Hall, C.M.; Solum, J.
2006-01-01
Fault rocks from the classic Rocky Mountain foreland fold-and-thrust belt in south-western Canada were dated by Ar analysis of clay grain-size fractions. Using X-ray diffraction quantification of the detrital and authigenic component of each fraction, these determinations give ages for individual faults in the area (illite age analysis). The resulting ages cluster around 72 and 52 Ma (here called the Rundle and McConnell pulses, respectively), challenging the traditional view of gradual forward progression of faulting and thrust-belt history of the area. The recognition of spatially and temporally restricted deformation episodes offers field support for theoretical models of critically stressed wedges, which result in geologically reasonable strain rates for the area. In addition to regional considerations, this study highlights the potential of direct dating of shallow fault rocks for our understanding of upper-crustal kinematics and regional tectonic analysis of ancient orogens. ?? 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Nie, Hu; Yang, Jianzhou; Zhou, Guangyan; Liu, Chuanzhou; Zheng, Jianping; Zhang, Wen-Xiang; Zhao, Yu-Jie; Wang, Hao; Wu, Yuanbao
2017-11-01
The Songshugou peridotite massif in the Qinling orogenic belt is one of the largest orogenic spinel peridotite bodies in central China, but its origin remains controversial and its age is poorly constrained. We have carried out an integrated study of major and trace element composition, mineral chemistry, platinum group elements (PGE), as well as Re-Os isotope systematics of 1 harzburgite and 12 dunites from the Songshugou peridotite massif. These samples contain high Mg# olivine (90.0-91.3) and Cr# spinel (83.4-96.0). The harzburgite and dunites are characterized by relatively low whole-rock Al2O3 (0.32-0.60 wt.%), CaO (0.26-1.57 wt.%), and Na2O (0.07-0.12 wt.%) concentrations. The studied samples have very low concentrations of middle and heavy rare earth elements and exhibit enrichments in iridium-group platinum-group elements (IPGE) relative to palladium-group PGE. The Songshugou peridotites exhibit variable enrichments of light rare earth elements, large ion lithophile elements, Re, Zr, and Hf, which resulted from reactions with melt after their isolation from the convecting mantle. Combined with previous results, our data suggest that the Songshugou peridotites are highly refractory mantle residues derived from a forearc mantle wedge. 187Os/188Os values of the studied samples vary from 0.12073 to 0.12390, and 187Re/188Os ratios are 0.005-0.081. The average Re-Os model ages (TMA) and maximum Re depletion model age (TRD) of the Songshugou peridotites are ca. 1.2-1.1 Ga, suggesting a tectonic affinity to the South China Block and that the peridotites formed during the assembly of the Rodinia supercontinent. The Songshugou peridotites were sourced from a mantle wedge above a subduction zone, and finally incorporated into the underlying continental lithosphere by exhumation.
Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model
NASA Astrophysics Data System (ADS)
Yakubchuk, Alexander
2004-09-01
The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust of the Paleo-Pacific Ocean. Several world-class Cu-(Mo)-porphyry, Cu-Pb-Zn VMS and intrusion-related Au mineral camps, which formed in the Altaids at this stage, coincided with the episodes of plate reorganization and oroclinal bending of magmatic arcs. Major Pb-Zn and Cu sedimentary rock-hosted deposits of Kazakhstan and Central Asia formed in backarc rifts, which developed on the earlier amalgamated fragments. Major orogenic gold deposits are intrusion-related deposits, often occurring within black shale-bearing sutured backarc basins with oceanic crust. After amalgamation of the western Altaids, this part of the collage and adjacent cratons were affected by the Siberian superplume, which ascended at the Permian-Triassic transition. This plume-related magmatism produced various deposits, such as famous Ni-Cu-PGE deposits of Norilsk in the northwest of the Siberian craton. In the early Mesozoic, the eastern Altaids were oroclinally bent together with the overlapping Transbaikal magmatic arc in response to the northward migration and anti-clockwise rotation of the North China craton. The following collision of the eastern portion of the Altaid collage with the Siberian craton formed the Mongol-Okhotsk suture zone, which still links the accretionary wedges of central Mongolia and Circum-Pacific belts. In the late Mesozoic, a system of continent-scale conjugate northwest-trending and northeast-trending strike-slip faults developed in response to the southward propagation of the Siberian craton with subsequent post-mineral offset of some metallogenic belts for as much as 70-400 km, possibly in response to spreading in the Canadian basin. India-Asia collision rejuvenated some of these faults and generated a system of impact rifts.
Kusky, T.M.; Bradley, D.C.
1999-01-01
Permian to Cretaceous melange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and melange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the melange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to ??1 are contracted in both the brittle and ductile regimes, layers at 30-45??to ??1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45??to ??1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within melange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north-south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest-northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with inferred plate motions during the general time frame of accretion of the McHugh Complex. The slip vectors are interpreted to preserve the convergence directions between the overriding and underriding plates, which became more oblique with time. They are not considered indicative of strain partitioning into belts of orogen-parallel and orogen-perpendicular displacements, because the kinematic data are derived from the earliest preserved structures, whereas fabrics related to strain partitioning would be expected to be superimposed on earlier accretion-related fabrics.Permian to Cretaceous melange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and melange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the melange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to ??1 are contracted in both the brittle and ductile regimes, layers at 30-45?? to ??1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45?? to ??1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within melange of the McHugh Complex are asymmetric and record
Overview of geology and tectonic evolution of the Baikal-Tuva area.
Gladkochub, Dmitry; Donskaya, Tatiana
2009-01-01
This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.
Phanerozoic continental growth and gold metallogeny of Asia
Goldfarb, Richard J.; Taylor, Ryan D.; Collins, Gregory S.; Goryachev, Nicolay A.; Orlandini, Omero Felipe
2014-01-01
The Asian continent formed during the past 800 m.y. during late Neoproterozoic through Jurassic closure of the Tethyan ocean basins, followed by late Mesozoic circum-Pacific and Cenozoic Himalayan orogenies. The oldest gold deposits in Asia reflect accretionary events along the margins of the Siberia, Kazakhstan, North China, Tarim–Karakum, South China, and Indochina Precambrian blocks while they were isolated within the Paleotethys and surrounding Panthalassa Oceans. Orogenic gold deposits are associated with large-scale, terrane-bounding fault systems and broad areas of deformation that existed along many of the active margins of the Precambrian blocks. Deposits typically formed during regional transpressional to transtensional events immediately after to as much as 100 m.y. subsequent to the onset of accretion or collision. Major orogenic gold provinces associated with this growth of the Asian continental mass include: (1) the ca. 750 Ma Yenisei Ridge, ca. 500 Ma East Sayan, and ca. 450–350 Ma Patom provinces along the southern margins of the Siberia craton; (2) the 450 Ma Charsk belt of north-central Kazakhstan; (3) the 310–280 Ma Kalba belt of NE Kazakhstan, extending into adjacent NW Xinjiang, along the Siberia–Kazakhstan suture; (4) the ca. 300–280 Ma deposits within the Central Asian southern and middle Tien Shan (e.g., Kumtor, Zarmitan, Muruntau), marking the closure of the Turkestan Ocean between Kazakhstan and the Tarim–Karakum block; (5) the ca. 190–125 Ma Transbaikal deposits along the site of Permian to Late Jurassic diachronous closure of the Mongol–Okhotsk Ocean between Siberia and Mongolia/North China; (6) the probable Late Silurian–Early Devonian Jiagnan belt formed along the margin of Gondwana at the site of collision between the Yangtze and Cathaysia blocks; (7) Triassic deposits of the Paleozoic Qilian Shan and West Qinling orogens along the SW margin of the North China block developed during collision of South China; and (8) Jurassic(?) ores on the margins of the Subumusu block in Myanmar and Malaysia. Circum-Pacific tectonism led to major orogenic gold province formation along the length of the eastern side of Asia between ca. 135 and 120 Ma, although such deposits are slightly older in South Korea and slightly younger in the Amur region of the Russian Southeast. Deformation related to collision of the Kolyma–Omolon microcontinent with the Pacific margin of the Siberia craton led to formation of 136–125 Ma ores of the Yana–Kolyma belt (Natalka, Sarylakh) and 125–119 Ma ores of the South Verkhoyansk synclinorium (Nezhdaninskoe). Giant ca. 125 Ma gold provinces developed in the Late Archean uplifted basement of the decratonized North China block, within its NE edge and into adjacent North Korea, in the Jiaodong Peninsula, and in the Qinling Mountains. The oldest gold-bearing magmatic–hydrothermal deposits of Asia include the ca. 485 Ma Duobaoshan porphyry within a part of the Tuva–Mongol arc, ca. 355 Ma low-sulfidation epithermal deposits (Kubaka) of the Omolon terrane accreted to eastern Russia, and porphyries (Bozshakol, Taldy Bulak) within Ordovican to Early Devonian oceanic arcs formed off the Kazakhstan microcontinent. The Late Devonian to Carboniferous was marked by widespread gold-rich porphyry development along the margins of the closing Ob–Zaisan, Junggar–Balkhash, and Turkestan basins (Amalyk, Oyu Tolgoi); most were formed in continental arcs, although the giant Oyu Tolgoi porphyry was part of a near-shore oceanic arc. Permian subduction-related deformation along the east side of the Indochina block led to ca. 300 Ma gold-bearing skarn and disseminated gold ore formation in the Truong Son fold belt of Laos, and along the west side to ca. 250 Ma gold-bearing skarns and epithermal deposits in the Loei fold belt of Laos and Thailand. In the Mesozoic Transbaikal region, extension along the basin margins subsequent to Mongol–Okhotsk closure was associated with ca. 150–125 Ma formation of important auriferous epithermal (Balei), skarn (Bystray), and porphyry (Kultuminskoe) deposits. In northeastern Russia, Early Cretaceous Pacific margin subduction and Late Cretaceous extension were associated with epithermal gold-deposit formation in the Uda–Murgal (Julietta) and Okhotsk–Chukotka (Dukat, Kupol) volcanic belts, respectively. In southeastern Russia, latest Cretaceous to Oligocene extension correlates with other low-sulfidation epithermal ores that formed in the East Sikhote–Alin volcanic belt. Other extensional events, likely related to changing plate dynamics along the Pacific margin of Asia, relate to epithermal–skarn–porphyry districts that formed at ca. 125–85 Ma in northeastmost China and ca. 105–90 Ma in the Coast Volcanic belt of SE China. The onset of strike slip along a part of the southeastern Pacific margin appears to correlate with the giant 148–135 Ma gold-rich porphyry–skarn province of the lower and middle Yangtze River. It is still controversial as to whether true Carlin-like gold deposits exist in Asia. Those deposits that most closely resemble the Nevada (USA) ores are those in the Permo-Triassic Youjiang basin of SW China and NE Vietnam, and are probably Late Triassic in age, although this is not certain. Other Carlin-like deposits have been suggested to exist in the Sepon basin of Laos and in the Mongol–Okhotsk region (Kuranakh) of Transbaikal.
Structural development of an Archean Orogen, Western Point Lake, Northwest Territories
NASA Astrophysics Data System (ADS)
Kusky, Timothy M.
1991-08-01
The Point Lake orogen in the central Archean Slave Province of northwestern Canada preserves more than 10 km of structural relief through an eroded antiformal thrust stack and deeper anastomosing midcrustal mylonites. Fault restoration along a 25 km long transect requires a minimum of 69 km slip and 53 km horizontal shortening. In the western part of the orogen the basal decollement places mafic plutonic/volcanic rocks over an ancient tonalitic gneiss complex. Ten kilometers to the east in the Keskarrah Bay area, slices of gneiss unroofed on brittle thrusts shed molasse into several submerged basins. Conglomerates and associated thinly bedded sedimentary rocks are interpreted as channel, levee, and overbank facies of this thrust-related sedimentary fan system. The synorogenic erosion surface at the base of the conglomerate truncates premetamorphic or early metamorphic thrust faults formed during foreland propagation, while other thrusts related to hinterland-progressing imbrication displace this unconformity. Tightening of synorogenic depositional troughs resulted in the conglomerates' present localization in synclines to the west of associated thrust faults and steepening of structural dips. Eastern parts of the orogen consist of isoclinally folded graywackes composed largely of Mutti and Ricci-Lucchi turbidite facies B, C, and D, interpreted as submarine fan deposits eroded from a distant volcanic arc. Thrust faults in the metasedimentary terrane include highly disrupted slate horizons with meter-scale duplex structures, and recrystallized calcmylonites exhibiting sheath folds and boudin trains with very large interboudin distances. The sequence of fabric development and the overall geometry of this metasedimentary terrane strongly resembles younger forearc accretionary prisms. Conditions of deformation along the thrusts parallel the regional metamorphic zonation: amphibolite facies in the basal decollement through greenschist facies shear zones to cataclastic crush zones in the region of emergent thrusts in Keskarrah Bay. Depth differences can account for only half of the metamorphic gradient; thermal profiles which increased downwards in obducted greenstone belts and synthrusting plutonism explains other high metamorphic gradients. A tectonic model involving the collision of an accretionary prism with a continental margin best explains the structural and sedimentological evolution of the orogen.
Alpine thermal events in the central Serbo-Macedonian Massif (southeastern Serbia)
NASA Astrophysics Data System (ADS)
Antić, Milorad D.; Kounov, Alexandre; Trivić, Branislav; Wetzel, Andreas; Peytcheva, Irena; von Quadt, Albrecht
2016-07-01
The Serbo-Macedonian Massif (SMM) represents a crystalline belt situated between the two diverging branches of the Eastern Mediterranean Alpine orogenic system, the northeast-vergent Carpatho-Balkanides and the southwest-vergent Dinarides and the Hellenides. We have applied fission-track analysis on apatites and zircons, coupled with structural field observations in order to reveal the low-temperature evolution of the SMM. Additionally, the age and geochemistry of the Palaeogene igneous rocks (i.e. Surdulica granodiorite and dacitic volcanic rocks) were determined by the LA-ICPMS U-Pb geochronology of zircons and geochemical analysis of main and trace elements in whole-rock samples. Three major cooling stages have been distinguished from the late Early Cretaceous to the Oligocene. The first stage represents rapid cooling through the partial annealing zones of zircon and apatite (300-60 °C) during the late Early to early Late Cretaceous (ca. 110-ca. 90 Ma). It is related to a post-orogenic extension following the regional nappe-stacking event in the Early Cretaceous. Middle to late Eocene (ca. 48-ca. 39 Ma) cooling is related to the formation of the Crnook-Osogovo-Lisets extensional dome and its exhumation along low-angle normal faults. The third event is related to regional cooling following the late Eocene magmatic pulse. During this pulse, the areas surrounding the Surdulica granodiorite (36 ± 1 Ma) and the slightly younger volcanic bodies (ca. 35 Ma) have reached temperatures higher than the apatite closure temperature (120 °C) but lower than ca. 250 °C. The geochemistry of the igneous samples reveals late- to post-orogenic tectonic setting during magma generation.
Predicting km-scale shear zone formation
NASA Astrophysics Data System (ADS)
Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey
2015-04-01
Because km-scale shear zones play a first-order role in lithospheric kinematics, accurate conceptual and numerical models of orogenic development require predicting when and where they form. Although a strain-based algorithm in the upper crust for weakening due to faulting appears to succeed (e.g., Koons et al., 2010, doi:10.1029/2009TC002463), a comparable general rule for the viscous crust remains unestablished. Here we consider two aspects of the geological argument for a similar algorithm in the viscous regime, namely (1) whether predicting km-scale shear zone development based on a single parameter (such as strain or shear heating) is reasonable; and (2) whether lithologic variability inherent in most orogenic systems precludes a simple predictive rule. A review of tectonically significant shear zones worldwide and more detailed investigations in the Central Gneiss belt of the Ontario segment of the Grenville Province reveals that most km-scale shear zones occur at lithological boundaries and involve mass transfer, but have fairly little else in common. As examples, the relatively flat-lying Twelve Mile Bay shear zone in the western Central Gneiss belt bounds the Parry Sound domain and is likely the product of both localized anatexis and later retrograde hydration with attendant metamorphism. Moderately dipping shear zones in granitoids of the Grenville Front Tectonic Zone apparently resulted from cooperation among several complementary microstructural processes, such as grain size reduction, enhanced diffusion, and a small degree of metamorphic reaction. Localization into shear zones requires the operation of some spatially restricted processes such as stress concentration, metamorphism/fluid access, textural evolution, and thermal perturbation. All of these could be due in part to strain, but not necessarily linearly related to strain. Stress concentrations, such as those that form at rheological boundaries, may be sufficient to nucleate high strain gradients but are insufficient to maintain them because the stress perturbations will dissipate with deformation. Metamorphism can unquestionably cause sufficient rheological change, but only in certain rock types: for example, granitoids have much less capacity for metamorphically induced rheologic change than do mafic rocks. The magnitude of phase geometry variation observed in natural systems suggests that morphological change (e.g., interconnection of weak phases) likely has little direct affect on strength changes, although other textural factors related to diffusion paths and crystallographic orientation could play a significant role. Thermal perturbation, mainly in the form of shear heating, remains potentially powerful but inconclusive. Taken together, these observations indicate that a simple algorithm predicting shear zone formation will not succeed in many geologically relevant instances. One significant reason may be that the inherent lithologic variation at the km scale, such as observed in the Central Gneiss belt, prevents the development of self-organized strain patterns that would form in more rheologically uniform systems.
Fumarolic activity in marie byrd land, antarctica.
Lemasurier, W E; Wade, F A
1968-10-18
Ice towers, probably formed by recent fumarolic activity, have been found around the summit calderas of two volcanoes in Marie Byrd Land. These active (?) volcanoes lie within a broad belt of Mesozoic intrusion and late Cenozoic extrusion that appears to be part of the circum-Pacific orogenic province.
> Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)
NASA Astrophysics Data System (ADS)
Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.
2012-04-01
The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground engineering, ore genesis and assessment of geothermal potential. After a general scientific workshop supported by ICDP in 2010, the hydrogeological aspects of deep drilling were the topic of a separate workshop last year; orogen dynamics will provide a focus at EGU; and geothermics research will be addressed at a workshop in Autumn 2012. The geothermics workshop will be announced on the ICDP homepage. Partial funding for the drilling has been achieved through national sources and ICDP. Additional funding (c. 500000€) is being sought to allow drilling to commence in 2013. Scientific and financial partners, both from academia and industry, are welcome to the project. The presentation will review the current status of the COSC project and the research leading up to the site selection for COSC 1.
NASA Astrophysics Data System (ADS)
Webb, Max; White, Lloyd; Jost, Benjamin
2017-04-01
New Guinea has a long, complicated history of arc magmatism. The present day shape of the island (resembling that of a bird in flight) formed as a result of oblique convergence of the Pacific and Caroline/Philippine plates with the northward moving Australian plate. This convergence resulted in multiple collisions of island arcs with continental crust, representing a modern day analogue to ancient accretionary orogens. This complex geological history has formed four major tectonic belts; accreted Palaeogene island arcs, the New Guinea Mobile Belt, the New Guinea Fold Belt and a stable platform. These tectonic belts are drawn across most of New Guinea in major review papers. However, these tectonic belts are not generally considered to extend through to New Guinea's western most peninsula (the Bird's Head). We present new field evidence, together with new U-Pb zircon geochronology and geochemical analyses from rocks collected within the Bird's Head. These document Middle to Late Miocene intermediate to felsic volcanic rocks and associated granitoid intrusives that formed along an active continental margin. These are effectively the equivalent of the Maramuni arc and Freida River Complex in eastern New Guinea. Several, broadly Eocene island arcs composed of dominantly mafic volcanic rocks are also found in the Bird's Head. These island arcs accreted along the Bird's Head sometime after their initial formation, possibly coinciding with Middle to Late Miocene active continental margin magmatism and we consider them to be equivalents of the Cyclops Mountains arc in Central New Guinea. This work demonstrates that New Guinea's east-west terranes are more extensive than previously thought. This potentially has implications for locating future ore deposits and understanding the relative position of the Bird's Head with respect to the rest of New Guinea in major plate reconstructions.
NASA Astrophysics Data System (ADS)
Qi, Yue; Gou, Guo-Ning; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Li, Qiu-Li; Zhang, Le
2018-03-01
The question of whether continental subduction processes in collisional orogenic belts can trigger wide-spread mantle metesomatism and crustal material recycling remains unresolved. Miocene (25-8 Ma) ultrapotassic rocks in southern Tibet are the only mantle-derived magmatic rocks emplaced after the collision between India and Asia and they have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached near-maximum elevation. However, their petrogenesis remains highly controversial, particularly the issue of whether their extremely enriched Sr-Nd isotopic characteristics were related to metasomatism derived from subducted Indian continental materials during the Cenozoic. Here we report on a Paleocene silicate-unsaturated, pseudoleucite phonolitic dike, in the Rongniduo area of central Lhasa terrane. In-situ SIMS (secondary ion mass spectrometry) apatite U-Pb age indicates the dike was generated at 64.1 ± 4.2 Ma, which slightly predates the age of initial India and Asia collision (about 55-50 Ma). This is the oldest age yet reported for ultrapotassic rocks in southern Tibet. Samples from this dike have distinctly more depleted Sr-Nd (whole rock: (87Sr/86Sr)i = 0.7064 to 0.7062, εNd(t) = - 1.5 to 0.4; in situ apitite: (87Sr/86Sr)i = 0.7059 to 0.7060, εNd(t) = - 2.0 to 0.4) isotopic compositions, than those of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa terrane ((87Sr/86Sr)i = 0.7106 to 0.7399, εNd(t) = - 10.6 to - 18.5). Our new data provides important constraints on pre-collisional mantle characteristics beneath the Lhasa terrane. We suggest that these 64 Ma pseudoleucite phonolitic rocks were derived from the enriched lithospheric mantle metasomatized by subducted Tethyan oceanic materials in response to Neo-Tethyan slab roll-back. As a consequence, the younger Miocene ultrapotassic rocks, which display different geochemical compositions from the pre-collisional ultrapotassic rocks, were most probably derived from a mantle source metasomatized by subducted Indian continental materials after 64 Ma. Our results indicate that the addition of subducted continental components plays an important role in changing mantle constituents beneath collisional orogenic belts.
A geologic history of the north-central Appalachians, part 3. The Alleghany orogeny
Faill, R.T.
1998-01-01
The north-central Appalachians occupy a critical position within the 3000+ km-long Appalachian orogen, lying southwest of the boundary between the central and northern Appalachians (CNAB). The one-billion-year-long history of tectonic activity in eastern Laurentia includes the creation and evolution of the Appalachian orogen during the Paleozoic and the Mesozoic transformation of the orogen into a passive margin during Pangea's disassembly. A most important ingredient in the evolution of the orogen was the Alleghany orogeny, which was driven by the convergence and collision between Laurentia (Laurussia) and West Gondwana (Africa). The Alleghany orogeny in the central and southern Appalachians was a de??collement tectonism that involved a larger part of eastern Laurentia than had the previous three orogenies. The fundamental element was a very low-angle thrust (de??collement) that originated in mid-crustal levels east of the presently-exposed Appalachians and rose westwardly to progressively higher levels in the upper crust and the supra-crustal Paleozoic section. Alleghany deformation was widely developed in the hanging-wall block (allochthon), primarily in the form of thrust faults and fold-and-thrust structures, both of which splayed upward from the basal de??collement. The youngest manifestations of the Alleghany orogeny were northeast-trending strike-slip faults and dextral shear zones in the Piedmont. In the north-central Appalachians, the exposed allochthon consists of two parts: the sedimentary externides (Appalachian Plateau and Valley and Ridge provinces) and the crystalline externides (Reading Prong, Blue Ridge belt, and Piedmont province). Long, thrust-cored anticlines predominate in the sedimentary externides. A widespread layer-parallel shortening preceded the folding; it is largely coaxial with the folding but extends considerably farther to the northwest toward the craton. It is hypothesized that the folding developed in reverse order, sequentially from the northwest to the southeast The crystalline externides are dominated by low-angle thrust faults and upright folds trending east-northeast The first-order Valley and Ridge folds on the northwest side acted as a buttress and diverted the crystalline externides rocks north-northwestwardly, onto the topographic low area over the Anthracite region. This thrusting of the crystalline externides caused anthracitization of the coals within the Pennsylvanian rocks there. Metamorphism and magmatism were significant events during the earlier phase of the Alleghany orogeny in the southern Appalachians. Whatever magmatism and medium-to high-grade metamorphism developed in the north-central Appalachians are in the covered internides to the southeast. The Alleghany orogeny of the north-central Appalachians occurred during the Early Permian. Erosion of anticlinal crests probably began as the folds grew, with accumulation of this locally-derived sediment in the intervening synclines. A regional alluvial plain coalesced above the partially-eroded externides structures as erosion of the pre-Alleghany highland and the Alleghany hinterland mountains continued to the southeast, spreading sediment to the northwest. This erosion and northwest transport probably persisted, with diminishing intensity, throughout the remainder of the Permian and into the Mesozoic, and changed only with the beginning of crustal extension during the Late Triassic.
NASA Astrophysics Data System (ADS)
Memtimin, M.; Guo, Z.
2017-12-01
Late Paleozoic tectonic history, especially Carboniferous-Permian periods, of the Central Asia Orogenic Belt (CAOB) is considered to be the turning point for the termination of terrane amalgamation and closure of the Paleoasian Ocean. However, the debate about the paleoenvironment and tectonic setting of the region during the period is still not resolved. In this study, we report a set of volcano-sedimentary sequence in the Bogda Mountain of the southernmost of CAOB, which is associated with contemporaneous subaqueous emplacement of and interaction between mafic lava and carbonate sediments. The succession contains four distinct facies including closely packed pillow basalts, pillow basalts with interstitial materials, hyaloclastites and peperites. We discuss their formation and emplacement mechanism, interaction between hot magma-water/unconsolidated sediments and thermal metamorphism during the interaction. Textural features of the sequence, especially hyaloclastites and peperites, provide clear evidence for in situ autofragmentation of lava flows, synvolcanic sedimentation of carbonates, fuel coolant interaction when hot magma bulldozed into wet unconsolidated sediments, and represent autochthonous origin of the succession. Lateral transition of the lithofacies indicate a progressively deepening subaqueous environment, resembling a stepwise evolution from early stage of volcanic intrusion with lower lava flux in shallower water level to increasingly subsiding basin with more lava flux in greater depth. Previous studies determined that the mafic magma was intruded around the Carboniferous-Permian boundary ( 300Ma), and geochemical studies showed the magma was originated from dry depleted mantle with little crustal contamination. Nevertheless, the succession was thought to be fault related allochthones formation which was transferred in as part of a Carboniferous intraplate arc. Combining our findings with the previous study results, we propose a new model to reconstruct the paleoenvironemnt of the area and infer that the intraplate Carboniferous Bogda arc system was already evolved into an early stage of a post collisional rift basin by the Early Permian, and consolidate the previous model constraining the closure of the Paleoasian Ocean before the Late Carboniferous periods.
Late Devonian Anoxia Events in the Central Asian Orogenic Belt: a Global Phenomenon
NASA Astrophysics Data System (ADS)
Carmichael, S. K.; Waters, J. A.; Suttner, T. J.; Kido, E.; DeReuil, A. A.; Moore, L. M.; Batchelor, C. J.
2013-12-01
Atmospheric CO2 values decreased dramatically during the Middle Devonian due to the rapid rise of land plants. These changing environmental conditions resulted in widespread anoxia and extinction events throughout the Late Devonian, including the critical Kellwasser and Hangenberg anoxia events, which are associated with major mass extinctions at both the beginning and end of the Famennian Stage of the Late Devonian. Fammenian sediments in northwestern Xinjiang Province, China, represent a highly fossiliferous shallow marine setting associated with a Devonian oceanic island arc complex. Analysis of multiple geochemical proxies (such as U/Th, Ba, normalized P2O5, V/Cr, Zr), magnetic susceptibility, and mineralogical data (biogenic apatite and pyrite framboids) indicates that these Famennian sequences record not only the Upper Kellwasser Anoxic Event at the Frasnian/Famennian (F/F) boundary but also the rebound from the F/F extinction event. Preliminary evidence suggests that the Hangenberg Anoxic Event can also be recognized in the same sequence, although our biostratigraphic control is less precise. Previous studies of the Kellwasser and Hangenberg Events have been performed on continental shelf environments of Laurussia, Gondwana, Siberia, and South China. The Devonian formations of northwest Xinjiang in this study, however, are part of the Central Asian Orogenic Belt (CAOB), which is thought to have formed as part of a complex amalgamation of intra-oceanic island arcs and continental fragments prior to the end of the latest Carboniferous. These results allow us to confirm the presence of the Kellwasser and Hangenberg Events in the open oceanic part of Paleotethys, indicating that both events were global in scope. The presence of an abundant diverse Famennian fauna between these anoxia/extinction events suggests that the shallow marine ecosystems in the CAOB were somewhat protected due to their tectonic location and relative isolation within an open ocean system. Our new data puts the Late Devonian anoxic events recognized in the CAOB into a global rather than regional context, and helps constrain the nature of ocean anoxia during this period by analysis of locations outside subequatorial North America and Europe.
NASA Astrophysics Data System (ADS)
Cleven, Nathan; Lin, Shoufa; Davis, Donald; Xiao, Wenjiao; Guilmette, Carl
2017-04-01
This work expands upon detrital zircon geochronology with a sampling and analysis strategy dating granitoid conglomerate clasts that exhibit differing degrees of internal ductile deformation. As deformation textures within clastic material reflect the variation and history of tectonization in the source region of a deposit, we outline a dating methodology that can provide details of the provenance's tectonomagmatic history from deformation-relative age distributions. The method involves bulk samples of solely granitoid clasts, as they are representative of the magmatic framework within the provenance. The clasts are classified and sorted into three subsets: undeformed, slightly deformed, and deformed. LA-ICPMS U-Pb geochronology is performed on zircon separates of each subset. Our case study, involving the Permian Hongliuhe Formation in the southern Central Asian Orogenic Belt, analyzes each of the three clast subsets, as well as sandstone detrital samples, at three stratigraphic levels to yield a profile of the unroofed provenance. The age spectra of the clast samples exhibit different, wider distributions than sandstone samples, considered an effect of proximity to the respective provenance. Comparisons of clast data to sandstone data, as well as comparisons between stratigraphic levels, yield indications of key tectonic processes, in addition to the typical characteristics provided by detrital geochronology. The clast data indicates a minimal lag time, implying rapid exhumation rates, whereas sandstone data alone would indicate a 90 m.y. lag time. Early Paleozoic arc building episodes appear as Ordovician peaks in sandstone data, and Silurian-Devonian peaks in clast data, indicating a younging of magmatism towards the proximal provenance. A magmatic hiatus starts in the Devonian, correlating with the latest age of deformed clasts, interpreted as timing of collisional tectonics. Provenance interpretation using the correlations seen between the clast and sandstone data proves to be more detailed and more robust than that determined from sandstone samples alone. The variably tectonized clast detrital geochronology method offers a regional reconnaissance tool that can address the practical limits of studying regional granitoid distributions.
NASA Astrophysics Data System (ADS)
Mühlberg, M.; Hegner, E.; Klemd, R.; Pfänder, J. A.; Kaliwoda, M.; Biske, Y. S.
2016-11-01
High-pressure (HP) metamorphism of the Kassan Metamorphic Complex (KMC) in the western Kyrgyz Tianshan has been related to either late Ordovician or late Carboniferous-Permian subduction processes. We report Sm-Nd ages for retrogressed eclogite samples and 40Ar/39Ar cooling ages for enclosing garnet-muscovite samples from the KMC as new age constraints on HP metamorphism and rock exhumation. These data will be used for an upgraded paleogeographic model for late Paleozoic crustal consolidation in the southwestern Central Asian Orogenic Belt. The retrogressed eclogite samples have transitional alkaline to tholeiitic affinity and trace-element patterns consistent with protoliths derived from garnet-bearing mantle sources at rifting plate margins. Geothermobarometric data for a retrogressed eclogite sample indicate peak-metamorphic conditions of 540 ± 30 °C at 1.6 ± 0.1 GPa. Samples from different lithotectonic units of the KMC provide coherent Sm-Nd garnet-whole rock ages of 317 ± 4 Ma and 316 ± 3 Ma (2σ). The prograde major-element zoning in the mm-sized garnets in combination with the moderate peak-metamorphic temperature, support our interpretation of the Sm-Nd garnet ages as unambiguous evidence for late Carboniferous HP metamorphism. The Sm-Nd garnet growth ages overlap within-error with the 40Ar/39Ar mica cooling ages of 314 ± 2 Ma and 313 ± 2 Ma (2σ) indicating rapid uplift of the subduction complex after peak metamorphism. The ca. 317-313 Ma HP-exhumation event of the KMC is contemporaneous with those of the Atbashi and Akeyazi (ca. 500 km east in NW China) HP complexes and implies similar collision histories at the South Tianshan Suture to the east and west of the Talas-Fergana Fault (TFF). The exhumation of the KMC and Atbashi HP complexes overlaps with the initiation of the TFF (Rolland et al., 2013) suggesting incipient separation of the Chatkal and Atbashi complexes during rock exhumation and early plate collision.
Global Miocene tectonics and the modern world
NASA Astrophysics Data System (ADS)
Potter, Paul Edwin; Szatmari, Peter
2009-11-01
An amazing congruence of seemingly unrelated, diverse global events began in the Middle and Upper Miocene and established our modern world. Two global orogenic belts were active, mostly in the Middle and Upper Miocene, while backarc basins formed along the eastern margin of Asia. Coincident with these events global temperatures cooled in both the ocean and atmosphere, desertification occurred from Central Asia into and across most of northern Africa and also in Australia, and in southern South America. Coincident with the expansion of the Antarctic ice cap at 14 Ma, there was initial widespread deep sea erosion and changes in patterns of deep sea sedimentation. Muddy pelagic sedimentation increased six-fold in the North and Central Atlantic and Pacific Oceans and global changes in circulation lead to more diatomites in the Pacific and fewer in the Atlantic. By the end of the Miocene most of the Mediterranean Sea had evaporated. Broadly coincident with these events, many old, large river systems were destroyed and new ones formed as much of the world's landscape changed. Collectively, these global on-shore tectonic and ocean-atmospheric events provide the foundation for our modern world—a mixture of new and rejuvenated orogenic belts and their far-field effects (distant epiorogenic uplift, rain-shadow deserts, large alluvial aprons, and distant deltas) as inherited Gondwanan landscapes persisted remote from plate boundaries. Thus at the end of the Miocene much of the world's landscape, except for that changed by Pleistocene continental glaciation, would be recognizable to us today. We argue that all of these events had the same ultimate common cause-an internal Earth engine-that drove plate motions in two broad ways: first, the opening and closing of seven key gateways to deep-water oceanic currents radically altered global heat transfer and changed a lingering Greenhouse to an Icehouse world; secondly, these events were in part coincident with renewed heat flow in the African and Pacific Superplumes that energized global plate motions in the Middle and Upper Miocene. We hope this global synthesis will stimulate more research on the many global events of the Miocene—to understand better both our modern world and earlier global orogenies.
Belt, Edward S.; Lyons, P.C.
1990-01-01
Two differential depositional sequences are recognized within a 37-m-thick lowermost section of the Conemaugh Group of Late Pennsylvanian (Westphalian D) age in the southern part of the Upper Potomac coal field (panhandle of Maryland and adjacent West Virginia). The first sequence is dominated by the Upper Freeport coal bed and zone (UF); the UF consists of a complex of interfingered thick coal beds and mudrocks. The UF underlies the entire 500 km2 study area (approximately 40 km in a NE-SW direction). The second sequence is dominated by medium- to coarse-grained sandstone and pebbly sandstone. They were deposited in channel belts that cut into and interfingered laterally with mudrock and fine- to medium-grained sandstone facies of floodbasin and crevasse-lobe origin. Thin lenticular coals occur in the second sequence. Nowhere in the study area does coarse-grained sandstone similar to the sandstone of the channel belts of the second sequence occur within the UF. However, 20 km north of the study area, coarse channel belts are found that are apparently synchronous with the UF (Lyons et al., 1984). The southeastern margin of the study are is bounded by the Allegheny Front. Between it and the North Mountain thrust (75 km to the southeast), lie at least eight other thrusts of unknown extent (Wilson, 1887). All these thrusts are oriented northwest; Devonian and older strata are exposed at the surface between the Allegheny Front and the North Mountain thrust. A blind-thrust ridge model is proposed to explain the relation of the two markedly depositional sequences to the thrusts that lie to the southeast of the Upper Potomac coal field. This model indicates that thrust ridges diverted coarse clastics from entering the swamp during a period when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions are envisioned to have developed parallel to the Appalachian orogen during Middle and early Late Pennsylvanian time. A blind thrust developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.
NASA Astrophysics Data System (ADS)
Herrera, S. S.; Farías, M.; Pinto, L.; Yagupsky, D. L.; Guzman, C.; Charrier, R.
2017-12-01
Structural evolution of the southernmost Central Andes is a major subject of debate. Overall vergence within the range and how intra-continental subduction prompts Andean orogeny are controversial topics. Between 33°-35° S, strike of the western slope main structures shifts southwards, from N-S to NNE-SSW, defining the Maipo Orocline. Likely, width of the Principal Cordillera increases southwards. Despite, a progressive southward decrease in orogenic volume has been determined for the segment. To understand such latitudinal variations, and to provide explanations for overall vergence, we carry out analogue models of contractional wedges to explore upper-crustal thrust system development with a progressive variation of the convergence vector. The model setup consisted of a fixed plate on which a mobile plate generated a velocity discontinuity. The upper-crust was simulated using low-cohesive quartz sand. The mobile plate was fixed at its northern end to a pivot, thus progressively incrementing shortening and the obliquity of convergence southwards. PIV photogrammetry recorded wedge evolution. A classical doubly-vergent wedge was formed, consisting of a steep 35° dipping, static thrust on the retro-side, an uplifted core, and an incipient forward-breaking, 25° critically tapered imbricated thrust fan on the pro-side, wider (in plan-view) where the imposed shortening reached the maximum. The resulting wedge is reminiscent of: the steep western Andean slope, in which the bordering thrust has maintained its present position during the Neogene; and the east-vergent fold-and-thrust belt of the eastern slope. The asymmetrical doubly vergence of the model suggests west-directed subduction of the South American continent beneath the orogen. The southward width increase is geometrically comparable to the natural analogue, yet we observe a flat contrast with orogenic shortening and volume estimates for the region. This can be attributed to the fact that uplift and erosion interplay, and the role of pre-Andean structures are not addressed in this approach. Rotation within the model wedge is consistent with paleomagnetic data for the 33°-35°S segment. Nevertheless, our model fails to explain curvature of the Maipo Orocline, suggesting that other lithospheric processes might control bending of the range.
NASA Astrophysics Data System (ADS)
Wang, Hao Y. C.; Wang, Juan; Wang, Guo-Dong; Lu, Jun-Sheng; Chen, Hong-Xu; Peng, Tao; Zhang, Hui C. G.; Zhang, Qian W. L.; Xiao, Wen-Jiao; Hou, Quan-Lin; Yan, Quan-Ren; Zhang, Qing; Wu, Chun-Ming
2017-03-01
Garnet-bearing mafic granulites and amphibolites from the Hongliuxia area of the southern Dunhuang orogenic belt, northwestern China, commonly occur as lenses or boudinages enclosed within metapelite or marble, which represent the block-in-matrix feature typical of orogenic mélange. Three to four generations of metamorphic mineral assemblages are preserved in these rocks. In the high-pressure amphibolites, prograde mineral assemblages (M1) occur as inclusions (hornblende + plagioclase + quartz ± chlorite ± epidote ± ilmenite) preserved within garnet porphyroblasts, and formed at 550-590 °C and 7.7-9.2 kbar based on geothermobarometry. The metamorphic peak mineral assemblages (M2) are composed of garnet + hornblende + plagioclase + quartz + clinopyroxene, as well as titanite + zircon + rutile + apatite as accessory minerals in the matrix, and are estimated to have formed at 640-720 °C and 14.1-16.0 kbar. The first retrograde assemblages (M3) are characterized by "white-eye socket" symplectites (hornblende + plagioclase + quartz ± biotite ± epidote ± magnetite) rimming garnet porphyroblasts, which formed at the expense of the garnet rims and adjacent matrix minerals during the decompression stage under P-T conditions of 610-630 °C and 5.6-11.8 kbar. The second retrograde assemblages (M4) are intergrowths of actinolite and worm-like quartz produced by the breakdown of the matrix hornblendes, and formed under P-T conditions of ∼490 °C and ∼2.8 kbar. For the high-pressure mafic granulites, the prograde assemblages (M1) are represented by plagioclase + quartz preserved within the garnet porphyroblasts. The metamorphic peak assemblages (M2) are garnet + matrix minerals (clinopyroxene + plagioclase + quartz + hornblende + rutile + zircon) and were estimated to have formed at ∼680 °C and ∼15.4 kbar. The retrograde assemblages (M3) are characterized by fine-grained patches of hornblende + plagioclase + quartz rimming the garnet porphyroblasts, as well as hornblende rimming clinopyroxene in the matrix, and were inferred to have formed at ∼620 °C and ∼4.2 kbar. For the metapelitic gneiss, the metamorphic peak assemblages are the garnet porphyroblasts plus the matrix minerals (biotite + plagioclase + quartz + ilmenite + zircon), which were estimated to have formed at ∼630 °C and ∼8.9 kbar. The mafic granulites and amphibolites record fairly similar clockwise P-T paths that include nearly isothermal decompression processes, which suggest that they experienced subduction and subsequent rapid tectonic exhumation. SIMS and LA-ICP-MS U-Pb dating of zircons and 40Ar/39Ar dating of hornblende suggest that the metamorphism occurred at ∼430-390 Ma. Field occurrences, different protolith ages of the mafic granulites and amphibolites, and the considerable gap in peak P-T conditions between the amphibolite and mafic granulite boudinages and their country rock may suggest a mélange accumulation process during the Paleozoic caused by the Silurian-Devonian orogeny, which is possibly associated with the closure of the Liuyuan ocean, a branch of the Paleo-Asian ocean near the southern Central Asian Orogenic Belt.
NASA Astrophysics Data System (ADS)
Siame, Lionel L.; Lee, Jian-Cheng
2016-12-01
In Taiwan, tectonic and climatic processes are exacerbated, involving deformation and erosion rates that are among the highest ones in the world. The combination of these internal and external forcing factors results in frequent and severe natural hazards in many aspects, including earthquake, landslide, mud/debris flows, floods, tsunamis, etc., which became a real concern not only for in the Taiwanese society but also applying for many countries or areas in the world. Within this general context, Taiwan orogen is thus a quite exceptional natural laboratory to study the coupling relationships between internal and external processes, and thus better cope with implications on society and economics. From a fundamental science point of view, Taiwan orogen has long been recognized as one of the best places in the world to study mountain building processes including lithosphere and crustal deformation, mechanisms of mountain building, seismic cycle and seismic behaviour of active faults. In fact, Taiwan orogen is probably one of the rare mountain belts where processes of mountain building can be apprehended from oceanic to continental subduction and post-orogenic extension.
Izaguirre, Aldo; Kunk, Michael J.; Iriondo, Alexander; McAleer, Ryan J.; Caballero-Martinez, Juan Antonio; Espinosa-Arámburu, Enrique
2016-02-12
The COGB is approximately 600 kilometers long and 60 to 80 km wide, trends northwest, and extends from west-central Sonora to southern Arizona and California. The COGB contains mineralized gold-rich quartz veins that contain free gold associated with white mica (sericite), carbonate minerals (calcite and ankerite), and sulfides such as pyrite and galena. Limited geochronologic studies exist for parts of the COGB, and previous work was concentrated in mining districts. These previous studies recorded mineralization ages of approximately 70 to 40 Ma. Therefore, some workers proposed that the orogenic gold mineralization in the region occurred during a single pulse that was associated with the Laramide Orogeny that took place during the Cretaceous to early Eocene in the western margin of North America. However, the geochronologic dataset was quite limited, making any regional interpretations tenuous. Accordingly, one of the objectives of this geochronology study was to get a better representative sampling of the COGB in order to obtain a more complete record of the mineralization history. The 63 samples presented in this work are broadly distributed throughout the area of the COGB and allow us to better test the hypothesis that mineralization occurred in a single pulse.
NASA Astrophysics Data System (ADS)
Berger, A. L.; Spotila, J. A.; Chapman, J. B.; Pavlis, T. L.; Enkelmann, E.; Buscher, J. T.
2007-12-01
The kinematics and architecture of orogenic systems may be heavily influenced by climate, but little research has focused on the long term effects of glacial erosion on orogenesis. Apatite and zircon (U-Th)/He thermochronometry on >75 bedrock samples across the St. Elias orogen, one of the best examples of a glaciated orogenic wedge, is the basis for a new kinematic model and demonstrates an association between glacial denudation and orogenic architecture. The spatial pattern of low temperature cooling indicates that exhumation and deformation are focused within a thin-skinned fold and thrust belt on the windward flank, whereas the leeward flank of the orogen functions as a deformational backstop. A previously unrecognized structure beneath the Bagley ice field must separate these domains with south-side-up motion. We propose this structure is a backthrust making the orogen doubly-vergent. Suggestive of accelerated backthrust motion in response to climate change, cooling rates within the hanging wall block and across the entire windward flank of the orogen accelerated ten-fold coeval with enhanced glaciation. As backthrust motion increased, glacial unroofing also coincided with a regional shift in deformation away from prominent forethrusts including the North American-Yakutat terrane suture (Chugach St. Elias fault) and the seaward deformation front (Pamplona zone). Across the windward flank of the orogen, exhumation, at rates of up to 5 mm/yr, is focused within a narrow zone, where the glacial equilibrium line altitude (ELA) intersects the orogenic wedge. This zone of rapid exhumation, not present prior to the onset of enhanced glaciation, cuts across the structural trend of the orogen and is more narrowly focused than orographic precipitation. Accelerated denudation at the ELA thus appears to have redistributed strain along a series of forethrusts that lie at the zone of heaviest glacial flux, while the backthrust progressively truncates the southward-vergent forethrusts. In a cause and effect response, the expansion of glaciers therefore appears to have resulted in a narrowing of the orogenic wedge due to increased backthrust motion and a landward propagation of deformation in order to preserve topographic slope. This focusing of long- term glacial erosion and deformation at the ELA matches predictions from analytical models of orogenic wedges (i.e. Tomkin and Braun, 2002) and implies a high degree of coupling between climate and tectonics in this glacially-dominated orogen.
Tucker, R.D.; Roig, J.-Y.; Delor, C.; Amlin, Y.; Goncalves, P.; Rabarimanana, M.H.; Ralison, A.V.; Belcher, R.W.
2011-01-01
The Precambrian shield of Madagascar is reevaluated with recently compiled geological data and new U-Pb sensitive high-resolution ion microprobe (SHRIMP) geochronology. Two Archean domains are recognized: the eastern Antongil-Masora domain and the central Antananarivo domain, the latter with distinctive belts of metamafic gneiss and schist (Tsaratanana Complex). In the eastern domain, the period of early crust formation is extended to the Paleo-Mesoarchean (3.32-3.15 Ga) and a supracrustal sequence (Fenerivo Group), deposited at 3.18 Ga and metamorphosed at 2.55 Ga, is identified. In the central domain, a Neoarchean period of high-grade metamorphism and anatexis that affected both felsic (Betsiboka Suite) and mafic gneisses (Tsaratanana Complex) is documented. We propose, therefore, that the Antananarivo domain was amalgamated within the Greater Dharwar Craton (India + Madagascar) by a Neoarchean accretion event (2.55-2.48 Ga), involving emplacement of juvenile igneous rocks, high-grade metamorphism, and the juxtaposition of disparate belts of mafic gneiss and schist (metagreenstones). The concept of the "Betsimisaraka suture" is dispelled and the zone is redefined as a domain of Neoproterozoic metasedimentary (Manampotsy Group) and metaigneous rocks (Itsindro-Imorona Suite) formed during a period of continental extension and intrusive igneous activity between 840 and 760 Ma. Younger orogenic convergence (560-520 Ma) resulted in east-directed overthrusting throughout south Madagascar and steepening with local inversion of the domain in central Madagascar. Along part of its length, the Manampotsy Group covers the boundary between the eastern and central Archean domains and is overprinted by the Angavo-Ifanadiana high-strain zone that served as a zone of crustal weakness throughout Cretaceous to Recent times.
Episodicity of Orogeny Revisited
NASA Astrophysics Data System (ADS)
Condie, K. C.; Aster, R. C.
2008-12-01
Although it is well established that orogeny is episodic, the duration, correlation and geographic distribution of orogenic episodes is not well constrained. Using large numbers of concordant U/Pb zircon ages from subduction-related granitoids (> 7000), it is now possible to better constrain these variables. Monte Carlo simulation probabilistic histograms of zircon age spectra remove questionable and spurious age peaks, yet allow resolution of peaks with >10 My duration with the data sets. Orogenic episodes with durations < 20 My, herein called pulses, are generally of regional geographic extent, whereas long-lived events (100-250 My), herein called periods, may be of regional or global extent. Orogenic periods comprise several to many pulses. Most orogenic pulses reflect geographic variations in intensity of subduction or/and plate collisions as for instance recorded around the perimeter of the Pacific basin in the last 100 My. Neither of the widely recognized pulses at 2.7 nor 1.9 Ga is global in extent. Orogenic pulses at 2700 and 2680 Ma occur on four continents each (2700: Superior, Hearne-Rae, Nain, North China; 2680: Yilgarn, Africa, Slave, Wyoming). Likewise, an orogenic pulse at 1880 is found on four continents (Laurentia, Baltica, East Asia, South America), and another pulse at 1860 Ma occurs on three continents (Africa, Siberia, Australia). Some orogenic pulses track lateral continental growth, such as 2730, 2715, and 2700 Ma pulses in the Abitibi greenstone belt, and 850, 800 and 750 Ma pulses in the Arabian-Nubian shield. Major orogenic periods are recognized at 2750-2650, 1900-1650, and 1250-1000 Ma and each of these is associated with supercontinent formation. Orogenic periods at 2600-2500 (China and India) and 2150-2050 Ma (West Africa, Amazonia, Rio de la Plata) may be associated with the formation of small supercontinents. Our results suggest that orogenic periods with intervening gaps may not require sudden and short-lived changes in mantle behavior, but may be associated primarily with the supercontinent cycle, and thus be a characteristic feature of planets with plate tectonics.
NASA Astrophysics Data System (ADS)
Savignano, Elisa; Mazzoli, Stefano; Zattin, Massimiliano; Gautheron, Cécile; Franchini, Marta
2017-04-01
The study of the Cretaceous - Cenozoic evolution of the Patagonian Andes represents a great opportunity to investigate the effects of coupling between deep lithospheric processes and near-surface deformation. Low-temperature thermochronological systems are ideally suited for detecting events involving rocks in the uppermost part of the crust because they record time and rates of cooling related to exhumation of the top few kilometers of the crust. The Patagonia region, although characterized by a general continuity of the Andean orogen along its strike, shows an appreciable internal tectonic segmentation (marked by a variable position of the magmatic arc and of the deformation front in the retroarc area) at various latitudes. This complex structural architecture has been interpreted as the result of different processes acting since the Late Cretaceous. The present-day configuration of the southern Andes is interpreted to have been controlled by alternating stages of flat- and steep-slab subduction, which produced shortening and upper plate extension episodes,, respectively. Furthermore, the deformation in this whole retroarc sector varied not only in time (i.e. with major 'cycles' of mountain building and orogenic collapse), but also in space, due to the variable transmission of horizontal compressive stress away from the orogen, that produced an irregular unroofing pattern. In this study, we have integrated field structural observations with new apatite (U-Th)/He data (AHe) and apatite fission-track (AFT) ages in the north Patagonia region (at latitudes between 40° and 44°S) in order to analyse and compare the exhumation patterns from the frontal part of the orogen and from the adjacent foreland sector, as well as to gain new insights into the timing and modes of coupling vs. uncoupling of the deformation between the northern Patagonian fold and thrust belt and its foreland. The obtained data indicate a markedly different unroofing pattern between the 'broken foreland' area (characterized by Late Cretaceous to Paleogene exhumation) and the adjacent Andean sector to the west, which is dominated by Miocene-Pliocene exhumation. Our study supports the idea that the configuration of the slab (flat vs. steep) during subduction controls the coupling vs. uncoupling of the deformation between the thrust belt and the foreland. Along the studied transect, late Miocene to Pliocene AHe ages from the frontal part of the northern Patagonian Andes correlate well with a rapid recent shortening and exhumation stage that took place in the thrust belt during steep-slab subduction and rollback. On the other hand, AHe ages obtained for the 'broken foreland' unravelled exhumation at near-surface conditions during Late Cretaceous to Paleogene times, when a prolonged phase of flat-slab subduction favoured the coupling between the thrust belt and the foreland area and associated widespread shortening able to reactivate inherited rift-related structures.
NASA Astrophysics Data System (ADS)
Sun, Chuang; Jia, Dong; Yin, Hongwei; Chen, Zhuxin; Li, Zhigang; Li, Shen; Wei, Dongtao; Li, Yiquan; Yan, Bin; Wang, Maomao; Fang, Shaozhi; Cui, Jian
2017-02-01
Tan et al. comment that the preexisting topographic relief in our sandbox is opposed to its prototype in the central Longmen Shan. Therefore, the comparison between our sandbox modeling and the natural topography is questionable and does not agree with our conclusion that the Xiaoyudong fault is a tear fault. First, we are grateful to the authors for their approval of our sandbox modeling and its contribution to understanding fault behavior within thrust wedges. However, after reading the comment carefully, we found that they misunderstood the meaning of topographic relief we conveyed. In response, we would like to address the differences between the topography in their comment and the orogen-scale topography we investigated in our modeling to defend our conclusion.
NASA Astrophysics Data System (ADS)
Shi, Guanzhong; Wang, Hua; Liu, Entao; Huang, Chuanyan; Zhao, Jianxin; Song, Guangzeng; Liang, Chao
2018-04-01
The petrogenesis of the Permian magmatic rocks in the Shalazhashan Belt is helpful for us to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB) in the northern margin of the Alxa Block. The Permian volcanic rocks in the Shalazhashan Belt include basalts, trachyandesites and trachydacites. Our study shows that two basalt samples have negative εNd(t) values (-5.4 to -1.5) and higher radiogenic Pb values, which are relevant to the ancient subcontinental lithospheric mantle. One basalt sample has positive εNd(t) value (+10) representing mafic juvenile crust and is derived from depleted asthenosphere. The trachyandesites are dated at 284 ± 3 Ma with εNd(t) = +2.7 to +8.0; ISr = 0.7052 to 0.7057, and they are generated by different degrees of mixing between mafic magmas and crustal melts. The trachydacites have high εNd(t) values and slightly higher ISr contents, suggesting the derivation from juvenile sources with crustal contamination. The isotopic comparisons of the Permian magmatic rocks of the Shalazhashan Belt, the Nuru-Langshan Belt (representing the northern margin of the Alxa Block), the Solonker Belt (Mandula area) and the northern margin of the North China Craton (Bayan Obo area) indicate that the radiogenic isotopic compositions have an increasingly evolved trend from the south (the northern margins of the Alxa Block and the North China Craton) to the north (the Shalazhashan Belt and the Solonker Belt). Three end-member components are involved to generate the Permian magmatic rocks: the ancient subcontinental lithospheric mantle, the mafic juvenile crust or newly underplated mafic rocks that were originated from depleted asthenosphere, and the ancient crust. The rocks correlative with the mafic juvenile crust or newly underplated mafic rocks are predominantly distributed along the Shalazhashan Belt and the Solonker Belt, and the rocks derived from ancient, enriched subcontinental lithospheric mantle are mainly distributed along the northern margins of the Alxa Block and the North China Craton. The magmatic rock types, isotopic features and their temporal, spatial distributions suggest an extensional regime probably related to rifting.
NASA Astrophysics Data System (ADS)
Hou, Wenzhu
2017-04-01
The tectonic evolution of the Paleo-Asian Ocean (PAO) witnessed the cycling of two supercontinents, Rodinia and Pangea, in Earth's geological history. This long-lasting paleo-ocean was initiated by the breakup of the supercontinent Rodinia during the Early Neoproterozoic (1,2) and terminated by the final collage of the supercontinent Pangea from Central to Eastern (current coordinates) Asia, likely lasting to the Late Permian or Early Triassic (3,4). Numerous continental and island arcs, seamounts, mid-ocean ridges and micro-blocks were amalgamated responding to the subduction and consumption of the oceanic crust of the PAO, to form the most complex and long-living Phanerozoic accretionary orogenic belt, the Central Asian Orogenic Belt (CAOB) (5,6). Trapped by the collision and amalgamation of the eastern segment of CAOB, several rock suites of oceanic affinity were reported along the Xinlin-Xiguitu belt that connects the Erguna block to the northwest and the Xing'an block to the southeast in NE China, including the Toudaoqiao blueschist (7), Jifeng ophiolite (although the forming environment remains debatable, see 8 and 9), and Xinlin ophiolite (10,11). All these suites have been proposed to be the relics of the NE branch of the PAO. However, along the northeastern extension of this belt, outcropped the Xinghuadukou group that was previously thought Paleoproterozoic in age yet has been reconsidered to be Cambrian (12), the relationship of which and this belt remains unclear. In this study, a suite of amphibolite was collected from the Xinghuadukou group outcropped in the easternmost Xinlin-Xiguitu belt in NE China and conducted geochemical analysis to discuss their forming environment and tectonic implications. Samples display low SiO2 (45%-49%wt), low K2O (0.55%-1.07%wt) compositions, low in A/CNK, but high in A/NK and FeOt/MgO ratios. REE compositions are relative low (ΣREE=52-122ppm) showing a flat chondrite normative pattern with slight enrichment in LREE ((La/Ya)N=1.5-2.4) and no Eu anomaly (Eu/Eu*=0.9-1.0). The LILE fractionation is indistinctive ((Sr/Y)N=1.1-1.8). Samples show an evident E-MORB affinity. Along with the previous studies, it can be concluded: 1) the protolith of the amphibolite of the Xinghuadukou group is a suite of tholeiitic basalt that formed in the oceanic islands environment; 2) with all the oceanic suites reported in Xinlin-Xiguitu belt, a branch of the Eastern PAO can be well defined, which likely existed from the Late Neoproterozoic to Late Cambrian, so called the Xinlin-Xiguitu Ocean. Acknowledgements: This study was financially supported by the National Natural Science Foundation of China (Projects 41190075, 41190070, 41230207, 41390441), the Hong Kong Research Grants Council General Research Fund (HKU7063/13P and 17301915), and the HKU Seed Funding Programme for Basic Research (201311159126). References: 1. N. L. Dobretsov et al., Gondwana Res. 6(2), 143-159 (2003). 2. J. Tang et al., Precambrian Res. 224, 597-611 (2013). 3. J. Y. Li, J. Asian Earth Sci. 26(3), 207-224 (2006). 4. P. R. Eizenhöfer et al., Tectonics 33(4), 441-463 (2014). 5. B. F. Windley et al., J. Geol. Soc. 164(1), 31-47 (2007). 6. W. Xiao et al., Annu. Rev. Earth Planet. Sci. 43, 477-507 (2015). 7. J. B. Zhou et al., J. Asian Earth Sci. 97, 197-210 (2015). 8. Z. Feng et al., Int. J. Earth Sci. 105(2), 491-505 (2016). 9. D. H. Ni, Int. J. Earth Sci. (2016). doi:10.1007/s00531-016-1412-2 10. R. S. Li, Heilongjiang Geology, 2(1), 21-32 (1991). 11. W. Yan et al., Earth Sci. - J. Chin. Uni. Geo. 8 (2014). 12. L. Miao et al., Chin. Sci. Bull. 52(8), 1112-1124 (2007).
Sediment aggradation and erosional dynamics of intermontane basins in NW Argentina
NASA Astrophysics Data System (ADS)
Bookhagen, Bodo; Castino, Fabiana; Purinton, Ben; Strecker, Manfred
2017-04-01
The NW Argentine Andes constitute the Andean Plateau (Altiplano-Puna), the second-largest orogenic plateau on Earth, an internally drained highland with a mean elevation of 4.0 ± 0.5 km (±2 sigma). The Puna is flanked by the externally drained Eastern Cordillera thrust belt and the adjacent broken foreland that are connected to the Atlantic Ocean. These mountain ranges lie in the south-central Andes and are characterized by steep topographic and climatic gradients: The first windward topographic rise east of the Puna forms a significant orographic barrier resulting in high orographic rainfall causing some of the wettest places on Earth. In contrast, the higher-elevation areas of the windward flanks become progressively drier westward, until arid conditions are attained in the central Puna. During the Quaternary the south-central Andes have repeatedly experienced significant paleoclimatic changes associated with deeper penetration of moisture into the orogen, and thus an orogenward shift of the climate gradient. This mechanism has resulted in large variations in erosion dynamics and sediment transfer toward the foreland, resulting in thick valley fills and multiple terrace levels. At much shorter timescales, climate variability during the Holocene has caused similar, yet less pronounced hydrologic trends and associated sedimentation- and erosion processes. Here, we use a time series of Digital Elevation Models (DEMs) to reconstruct land-level changes in the intramontane basins in NW Argentina. We generated the DEMs and height measurements based on stereo airphotos from the 1980s, ASTER satellite imagery, ICESat and dGPS measurements during the past decade, and several TerraSAR-X and TanDEM-X CoSSC pairs starting in 2013. Our data show a strong signal of fluvial sediment aggradation during the past 30 years, in places up to 0.5m per decade, which explains the regionally observed, modern sediment accumulation in basins that has caused major infrastructural problems. We link the increased sediment flux to cascading processes reflecting environmental and climatic changes of the southern-central Andes.
NASA Astrophysics Data System (ADS)
Kováč, Michal; Plašienka, Dušan; Soták, Ján; Vojtko, Rastislav; Oszczypko, Nestor; Less, György; Ćosović, Vlasta; Fügenschuh, Bernhard; Králiková, Silvia
2016-05-01
The data about the Paleogene basin evolution, palaeogeography, and geodynamics of the Western Carpathian and Northern Pannonian domains are summarized, re-evaluated, supplemented, and newly interpreted. The presented concept is illustrated by a series of palinspastic and palaeotopographic maps. The Paleogene development of external Carpathian zones reflects gradual subduction of several oceanic realms (Vahic, Iňačovce-Kričevo, Szolnok, Magura, and Silesian-Krosno) and growth of the orogenic accretionary wedge (Pieniny Klippen Belt, Iňačovce-Kričevo Unit, Szolnok Belt, and Outer Carpathian Flysch Belt). Evolution of the Central Western Carpathians is characterized by the Paleocene-Early Eocene opening of several wedge-top basins at the accretionary wedge tip, controlled by changing compressional, strike-slip, and extensional tectonic regimes. During the Lutetian, the diverging translations of the northward moving Eastern Alpine and north-east to eastward shifted Western Carpathian segment generated crustal stretching at the Alpine-Carpathian junction with foundation of relatively deep basins. These basins enabled a marine connection between the Magura oceanic realm and the Northern Pannonian domain, and later also with the Dinaridic foredeep. Afterwards, the Late Eocene compression brought about uplift and exhumation of the basement complexes at the Alpine-Carpathian junction. Simultaneously, the eastern margin of the stretched Central Western Carpathians underwent disintegration, followed by opening of a fore-arc basin - the Central Carpathian Paleogene Basin. In the Northern Hungarian Paleogene retro-arc basin, turbidites covered a carbonate platform in the same time. During the Early Oligocene, the rock uplift of the Alpine-Carpathian junction area continued and the Mesozoic sequences of the Danube Basin basement were removed, along with a large part of the Eocene Hungarian Paleogene Basin fill, while the retro-arc basin depocentres migrated toward the east. The Rupelian basins gained a character of semi-closed sea spreading from the Magura Basin across the Central Western Carpathians up to the Hungarian Paleogene Basin. In the Late Oligocene, the Magura Basin connection with the Northern Hungarian Paleogene Basin remained open, probably along the northern edge of the Tisza microplate, and anoxic facies were substituted by open marine environments.
NASA Astrophysics Data System (ADS)
Mock, Samuel; Allenbach, Robin; Wehrens, Philip; Reynolds, Lance; Kurmann-Matzenauer, Eva; Michael, Salomè; Herwegh, Marco
2017-04-01
The Swiss Molasse Basin (SMB) forms part of the North Alpine Foreland Basin. It is a typical peripheral foreland basin, which developed in Paleogene and Neogene times in response to flexural bending of the European lithosphere induced by the orogenic loading of the advancing Alpine thrust wedge. The tectonics of the SMB and the role of Paleozoic and Mesozoic structures are still poorly understood. It is widely accepted that during the main deformation phase of the Jura fold-and-thrust belt, the SMB was riding piggy-back above a major detachment horizon situated within Triassic evaporites. In recent years it has been observed that the Jura fold-and-thrust belt is today deforming in a thick-skinned tectonic style. As for the western and central SMB, most authors still argue in favor of a classical foreland type, thin-skinned style of deformation. Based on the geological 3D modeling of seismic interpretations, we present new insights into the structural configuration of the central SMB. Revised and new interpretations of 2D reflection seismic data from the 1960s to the 1980s reveal a major strike-slip fault zone affecting not only the Mesozoic and Cenozoic cover, but also the crystalline basement beneath. The fault zone reactivated late Paleozoic synsedimentary normal faults bounding a Permo-Carboniferous trough. Basement-involved thrusting observed in the southern part of the SMB seems to be controlled by the presence of slightly inverted Permo-Carboniferous troughs as well. These observations, combined with a compiled structural map and the distribution of recent earthquake hypocenters suggest a late stage, NNW-SSE directed, compressional thick-skinned and strike-slip dominated tectonic activity of the central SMB, post-dating the main deformation phase of the Jura fold-and-thrust belt. This still ongoing deformation might be related to the slab rollback of the European plate and the associated lower crustal delamination as recently suggested by Singer et al. (2014). References: Singer, J., Diehl, T., Husen, S., Kissling, E., Duretz, T., 2014. Alpine lithosphere slab rollback causing lower crustal seismicity in northern foreland. Earth Planet. Sci. Lett. 397, 42-56. doi:10.1016/j.epsl.2014.04.002
NASA Astrophysics Data System (ADS)
Cavalcante, Geane C. G.; Egydio-Silva, Marcos; Vauchez, Alain; Camps, Pierre; Oliveira, Eurídice
2013-10-01
The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E-W and NE-SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.
NASA Astrophysics Data System (ADS)
Wang, Jialin; Gu, Xuexiang; Zhang, Yongmei; Zhou, Chao; He, Ge; Liu, Ruiping
2018-03-01
The Sanfengshan copper deposit, located in the Beishan orogenic belt, Northwestern China, is hosted in the lower member of the Hongliuyuan Formation, an early Carboniferous metavolcanic-sedimentary sequence. Mineralization occurs as stratiform, stratiform-like and lenticular orebodies, and comprises of laminated, brecciated, banded, massive, and disseminated ores. The mineralogy is dominated by pyrite, chalcopyrite and sphalerite. Fe-Mn chert is widely distributed and generally occurs as massive, laminated, bands or lenses, which are consistent with the orebody. Alteration at Sanfengshan displays a clear concentric zoning pattern and the footwall alteration is more intense and somewhat thicker than the hanging-wall alteration. Systematic geochemical investigation on the volcanic rocks in this area shows that the basalts of the Hongliuyuan Formation (HLY) are predominantly tholeiites with nearly flat rare earth element (REE) pattern, insignificant negative anomalies of high field strength elements (HFSEs), and low Ti/V and Th/Nb ratios. They were most likely derived from partial melting of depleted asthenospheric mantle and formed in a fore-arc setting during initiation of the southward subduction of the Paleo-Asian Ocean. The basalts of the Maotoushan Formation (MTS) display a calc-alkaline nature and are enriched in large ion lithophile elements (LILEs) and depleted in HFSEs, suggesting an active continental margin setting. Sulfur isotope (δ34S) values of the sulfide and sulfate minerals vary between 0‰ and 5.4‰, which are consistent with sulfur derivation from leaching of the host volcanic rocks, although a direct magmatic contribution cannot be ruled out. The Re-Os isotope data of pyrite yield an isochron age of 353 ± 35 Ma, consistent with the age of the host HLY basalts. Thus, a syngenetic (volcanogenic massive sulfide) model is proposed and it is concluded that the Sanfengshan copper deposit is a typical Cyprus-type VMS deposit that formed in an early Carboniferous fore-arc setting in the Beishan orogenic belt.
Lithospheric buckling and far-foreland deformation during the Laramide and Appalachian orogenies
NASA Astrophysics Data System (ADS)
Tikoff, B.; Siddoway, C. S.
2017-12-01
Major intraplate tectonics within North America (Laurentia) occurs during times of major orogenesis along the plate margins. During mountain building, typical structures of the hinterland are an orogenic plateau and fold-and-thrust belts, while in the far foreland (intraplate) areas long-wavelength ( 200 km or longer) folds and fault-reactivation features form. Long-wavelength folds are evident in both the Appalachian and Laramide orogenic forelands, with the stratigraphy recording the timing of the uplift. This contribution examines the model of lithospheric buckling - periodic folding associated with a horizontal endload on the edge of the plate - based on scaled, physical experiments and corroborated by numerical models. The Laramide (75-55 Ma) intraplate orogen in the classical location in Wyoming contains basement-cored arches spaced 200 km apart, for which the mechanism of uplift is questioned. Seismic evidence obtained for the Bighorn uplift, Wyoming, obtained by the EarthScope Bighorn project, shows an upwarp of the Moho beneath, but oblique to the trend of the surface exposure of the basement arch. Both the surface and Moho exhibit approximately the same structural relief. The seismic data exhibit no evidence for a regionally continuous decollement, nor is there evidence of rotation of structural markers within these features, of the type that is observed in the detached fold-and-thrust belt. The intraplate region affected by long-wavelength folding includes western Wyoming, with continuation of some features across the E-W-oriented Cheyenne belt (e.g., Rock Springs-Douglas Creek arch), Colorado Plateau, and High Plains east of the Rocky Mountains, where surface and subsurface structures display a series of anticlinal arches ("plains-type" folds). Appalachian mountain building also caused long-wavelength folding, with a spacing consistent with lithospheric buckling, mostly associated with the Devonian Acadian orogeny. The Laramide arches in the High Plains seem to occur on arches inherited from the Appalachian orogeny, suggesting the permanence of these lithospheric buckles once they have formed.
Geological evolution of the late Proterozoic ``Mozambique Belt'' of Kenya
NASA Astrophysics Data System (ADS)
Mosley, P. N.
1993-05-01
Within the "Mozambique Belt" of Kenya at least four distinct tectonothermal episodes are recognised on Rb-Sr isotopics. The dates are in broad agreement with those from surrounding countries; principal ages/age ranges being 830 - 800, ~ 760, 630 - 580 and 560 - 520 Ma. All except the last attained at least upper amphibolite/granulite grade (with local melts). The first event was responsible for the primary transformation of an essentially sedimentary sequence to paragneisses with an initial near-horizontal fabric parallel to the compositional layering. Associated with the later part of the first phase, and linked to the second, is the emplacement of allochthonous ophiolitic and volcanosedimentary "packages", coupled with thrusting and imbrication of the paragneiss groups. The subsequent phases record progressive shortening across the orogenic belt during collision between two major continental fragments (east and west Gondwana), involving extensive structural reorganisation and isotopic resetting. During the progressive 630 - 580 Ma event, regional N-S- to NNW-SSE-trending ductile shear zones (generally sinistral) were produced giving the dominant regional fabric (including a regional N-S-stretching lineation), and controlling the present gross distribution of gneiss groups. Cooling and uplift post a ~ 560 Ma thermal event has exposed high-grade gneisses with a distinct structural and metamorphic asymmetry across the orogen. The western part of the orogen shows clockwise P- T- t paths and involves overthrusting of, and imbrication with, the Tanzanian craton which probably obscures older (1900 and 1100 Ma) tectonothermal episodes. In contrast, the eastern part has anti-clockwise P- T- t paths, is characterised by extensive crustal melts, and retains the isotopic imprint of earlier Proterozoic events. The present level of uplift exposes tectonised high-grade gneisses of more than one age. Current evidence supports the suggestion that low-grade ophiolitic/volcanosedimentary sequences are allochthonous and structurally emplaced over the higher-grade gneisses.
NASA Astrophysics Data System (ADS)
Vezinet, Adrien; Nicoli, Gautier; Moyen, Jean-François; Laurent, Oscar; Stevens, Gary
2014-05-01
The Kaapvaal craton (KC) in South Africa, one of the oldest cratonic nuclei on Earth, is bounded to the North by the Limpopo belt, whose Southern Marginal Zone (SMZ) is regarded as a ca. 2.7Ga collisional orogeny. This is substantiated by structural data, such as the south verging thrust system that bounds the SMZ to the South (HRSZ); metamorphic data, demonstrating that metapelites from the SMZ underwent a very fast (˜40Ma) clockwise PTt loop at ca. 2.7Ga, with a peak of metamorphism dated at 2713±8Ma. The SMZ is therefore interpreted as representing a partially molten orogenic channel behaving like modern Himalaya. However, a review of geochronological data of Limpopo Belt, KC and Zimbabwean Craton shows that geological activity at around 2.7Ga was not restricted to the Limpopo belt, but was instead scattered throughout the KC. That is not in agreement with a Himalayan model but could be a response to a general thermal event, which is recorded by: 1) The massive flood basalts of the Vendersdorp Supergroup in central South Africa. This supergroup crops out from Johannesburg in the North to Prieska in the South and records the most widespread sequence of volcanic rocks of the KC. This massive basaltic extrusion occurs between 2714±8Ma (Klipriviersberg Group) and ˜2650Ma (Transvaal Supergroup lower limit). 2) A series of granitic plutons immediately south of the HRSZ, emplaced at 2670-2680Ma; all of them include a mantle-derived component whose composition is similar to the Ventersdorp basalts. A similar and synchronous pluton, the Mashishimale, emplaces South-East of the HRSZ. 3) Further afield, in the Eastern KC, slightly older plutons (I-type (high-Ca) granitoids) emplace in Swaziland between 2720 and 2700Ma. 4) Granulite-facies metamorphism in Swaziland at ca. 2.7Ga. 5) Finally, in the Zimbabwe Craton intermediate to felsic lavas erupted at the same time as well as gneisses and granitoids from northern Botswawa However, interactions of Zimbabwe craton with Limpopo Complex and KC are still vagueness. Collectively, the data demonstrate that during the evolution of the SMZ, the whole of the KC crust underwent significant heating, permitting partial melting and extraction of granitic melts even far away from the main collision. The crustal heating is linked to mantle activity, as mafic, mantle-derived melts also form and emplace at the same time. The coexistence of both an Himalayan-style belt, and the far-field heating (apparently not related to any plate boundary), can be interpreted in different ways: (i) Coexistence of a mantle hotspot and a collision orogeny in close vicinity; (ii) Small-scale convections in the asthenospheric mantle, driven by differences in thickness of the lithosphere and resulting in heating of the foreland; (iii) Alternatively, the combination of apparently distinct events can actually reflect specificities of neo-Archaean orogenic style and could be the response of a hot, possibly molten or near-melting crust to regional convergence, permitting generation or extraction of melt over a zone much wider than in typical modern orogens.
Experiments on schistosity and slaty cleavage
Becker, George Ferdinand
1904-01-01
Schistosity as a structure is important, and it is a part of the business of geologists to explain its origin. Slaty cleavage has further and greater importance as a possible tectonic feature. Scarcely a great mountain range exists, or has existed, along the course of which belts of slaty rock are not found, the dip of the cleavage usually approaching verticality. Are these slate belts equivalent to minutely distributed step faults of great total throw, or do they indicate compression perpendicular to the cleavage without attendant relative dislocation? Evidently the answer to this question is of first importance in the interpretation of orogenic phenomena.
Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China
Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace
2002-01-01
The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan border and the epithermal and replacement deposits of the Kanggurtag belt to the east in the Chol Tagh range. Gold deposits of approximately the same age in the Yili block include the Axi hot springs/epithermal deposit near the Kazakhstan border and a series of small orogenic gold deposits south of Urumqi (e.g. Wangfeng). Gold-rich porphyry copper deposits (e.g. Tuwu) define important new exploration targets in the northern Tian Shan of Xinjiang. The northern foothills of the Kunlun Shan of southern Xinjiang host scattered, small placer gold deposits. Sources for the gold have not been identified, but are hypothesized to be orogenic gold veins beneath the icefields to the south. They are predicted to have formed in the Tianshuihai terrane during its early Mesozoic accretion to the amalgamated Tarim–Qaidam–Kunlun cratonic block.
Topographic Response to the Yakutat Block Collision
NASA Technical Reports Server (NTRS)
Stock, Joann M.
2000-01-01
The principal objective of this grant and this research were to investigate the topographic development of an active glaciated orogenic belt in southern Alaska as that development relates to patterns of erosion and crustal deformation. A specific objective of the research was to investigate feedbacks between mountain building, orographic affects on climate, and patterns of exhumation and rock uplift. To that end, an orogen-scale analysis of topography was conducted with the aid of digital elevation models, magnitudes and patterns of crustal deformation were compiled from existing literature, present and past climate patterns were constrained using the modern and past distribution of glaciers, and styles, magnitudes, and extent of erosion were constrained with observations from the 1998 field season.
Topographically driven crustal flow and its implication to the development of pinned oroclines
NASA Technical Reports Server (NTRS)
Hsui, Albert T.; Wilkerson, M. Scott; Marshak, Stephen
1990-01-01
Pinned oroclines, a type of curved orogen which results from lateral pinning of a growing fold-thrust belt, tend to resemble parabolic Newtonian curvature modified by different degrees of flattening at the flow front. It is proposed that such curves can be generated by Newtonian crustal flow driven by topographic variations. In this model, regional topographic differences create a regional flow which produces a parabolic flow front on interaction with lateral bounding obstacles. Local topographic variations modify the parabolic curves and yield more flat-crested, non-Newtonian-type curvatures. A finite-difference thin-skin tectonic simulation demonstrates that both Newtonian and non-Newtonian curved orogens can be produced within a Newtonian crust.
NASA Astrophysics Data System (ADS)
Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques
2010-05-01
Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen-normal shortening, (4) emplacement of late prolate shape plutons in the direction of flow, and (5) late, conjugate strike-slip shearing. The macroscopic- to regional scale tectonoplutonic pattern produced by longitudinal flow forms a flat composite anisotropy throughout the lower crust. In the light of GPS data, these results suggest that bulk longitudinal flow accounts for observed deformation of the Tibetan plateau as well as for its seismic structure. This flow mode may be preferred to lateral, east-directed channel flow because it combines both lateral gravity-driven thinning and distributed, orogen-normal shortening of the crust. These results further suggest that lower crustal seismic reflectivity in orogenic belts may not necessarily images fabrics produced by extensional tectonics, as commonly thought, but crustal layering produced by syn-convergence lateral flow.
NASA Astrophysics Data System (ADS)
Song, Xie-Yan; Xie, Wei; Deng, Yu-Feng; Crawford, Anthony J.; Zheng, Wen-Qin; Zhou, Guo-Fu; Deng, Gang; Cheng, Song-Lin; Li, Jun
2011-11-01
The Baishiquan and Pobei Early Permian mafic-ultramafic intrusions were emplaced into Proterozoic metamorphic rocks in the Central Tianshan and the Beishan Fold Belt, northern Xinjiang, NW China. The Baishiquan intrusion comprises mainly gabbro, and mela-gabbro sills occurring within and along the margins of the gabbro body. In the Pobei intrusion, two distinct gabbroic packages, a lower gabbro and the main gabbro, are intruded and overlain by small cumulate wehrlite bodies. Both intrusions are characterized by enrichments of large ion lithophile elements and Th and U relative to the high field strength elements, and show strong negative Nb and Ta anomalies and positive K and Pb anomalies, leading to higher Th/Yb and Nb/Yb than in mid-ocean ridge basalt and ocean island basalt. These features are comparable with subduction-related mafic rocks and post-collisional magmas. Geological and geochemical considerations indicate that the parental magmas of the two intrusions were derived from decompression melting of ascending asthenosphere and reacted with overlying subduction-modified lithospheric mantle. We believe that these parental magmas were generated by post-collisional extension along the Chinese Tianshan, perhaps triggered by slab break-off or delamination of thickened lithosphere. Relatively lower (143Nd/144Nd)i and higher (87Sr/86Sr)i than other Permian mafic-ultramafic intrusions in the eastern Chinese Tianshan indicate that the parental magmas of these two intrusions experienced significant contamination by old crustal rocks.
NASA Astrophysics Data System (ADS)
Peucat, J. J.; Mascarenhas, J. F.; Barbosa, J. S. F.; de Souza, S. L.; Marinho, M. M.; Fanning, C. M.; Leite, C. M. M.
2002-07-01
Felsic metavolcanics associated with supracrustal rocks provide U-Pb zircon and Sm-Nd TDM ages of approximately 3.3 Ga, which establish an Archean age of the Mundo Novo greenstone belt. A granodioritic gneiss from the Mairi complex, located on the eastern boundary of the Mundo Novo greenstone belt, exhibits a zircon evaporation minimum age of 3.04 Ga and a Nd model age of 3.2 Ga. These results constrain the occurrence of at least three major geological units in this area: the Archean Mundo Novo greenstone belt, the Archean Mairi gneisses, and the adjoining Paleoproterozoic (<2.1 Ga) Jacobina sedimentary basin. The Jacobina basin follows the same trend as the Archean structure, extending southward to the Contendas-Mirante belt, in which a similar Archean-Paleoproterozoic association appears. We postulate that during the Paleoproterozoic in the eastern margin of the Gavião block, these Archean greenstone belts constituted a zone of weakness along which a late-stage orogenic sedimentary basin developed.
NASA Astrophysics Data System (ADS)
Schwabe, E.; Fitzgerald, P. G.; Munoz, J. A.; Baldwin, S. L.
2006-12-01
The Pyreneean orogen extends for ~ 440 km from the Bay of Biscay to the Mediterranean Sea, forming a WNW-ESE topographic barrier between France and Spain. The mountain belt, formed by the Late Cretaceous-Early Miocene oblique collision and partial subduction of the Iberian Plate beneath the European Plate. Restored and balanced cross sections show a decrease in crustal shortening from ~165 km in the central Pyrenees to ~ 50 km in the Cantabrian margin, further to the west. The variation in shortening and crustal style is due to the decrease westward in convergence and differences in inherited geometry of pre- existing extensional faults. We propose the variation must also be reflected in the denudation record, with relative timing of the main denudational events younging to the west, as well as the magnitude and rates of denudation decreasing westward. In this study we analyze AFT data collected from vertical profiles on the southern flank of the mountains in the west-central Pyrenees. The results constrain the relative timing of structures between the central and west-central Pyrenees. AFTT data from the Bielsa and Millares massifs, located in the Bielsa and Millares thrust sheets on the southern flank of the axial zone, west-central Pyrenees yield AFT ages from 30 to 20 Ma. The data, including constraints from inverse thermal modeling, indicate denudation at rates ca. 300 m/my underway in the middle Oligocene, slowing in the Miocene. Denudation is likely related to erosion following thrusting during which the granites were transported within the south-vergent Bielsa and Millares thrust sheets. The Late Oligocene-Early Miocene AFT PAZ has since been exhumed to its present elevation. In form, results are similar to those from the central Pyrenees (Fitzgerald et al., 1999) but that Oligocene denudation in the west-central Pyrenees occurred later, was slower, and of reduced magnitude when compared to extremely rapid Oligocene denudation recorded ~50 km east in the central Pyrenees. There, as demonstrated in results from the Maladeta profile, denudation in the Early Oligocene is extremely rapid (km/my) followed by a slowing or cessation of exhumation. The Miocene PAZ preserved in both profiles suggests a similar post- orogenic history most likely related to filling and subsequent re-excavation of the Ebro Basin.
Tectono-metamorphic evolution of the Chinese Altai, central Asia: new insights from microstructures
NASA Astrophysics Data System (ADS)
Jiang, Yingde; Zhang, Jian; Schulmann, Karel; Sun, Min; Zhao, Guochun
2013-04-01
The Altai Orogen, extending from Russia, through northeast Kazakhstan and northwest China, to western and southern Mongolia, occupies a pivotal position in understanding the accretionary process of the Central Asian Orogenic Belt and has drawn much attention in recent years. However, its orogenic evolution remains poorly constrained, because previous studies were mainly focused on the geochronological and geochemical signatures and much less work has been done on metamorphic and structural studies. Metamorphic rocks widely occur in the southern Altai Range and have previously been separated into high-T/low-P and medium-P types. Recent studies demonstrated that these two kinds of rocks may have similar protoliths, i.e. early Paleozoic arc-related assemblages, but experienced different metamorphic histories. The development of biotite, garnet, staurolite and kyanite metamorphic zonal sequences in the low- to medium- grade rocks, demonstrate typical medium-pressure metamorphism that has been suggested as a major consequence of the orogenesis. The high-T/low-P metamorphism, represented by the growth of garnet+cordierite+sillimanite+k-feldspar and was accompanied by extensive anatexis, remains its tectonic significance poorly constrained. Field structural investigation in the Chinese Altai reveals that the high-T/low-P metamorphic rocks have major S-L fabrics (defined by the strongly aligned biotite and sillimanite) exactly in the same orientations as those developed in the associated medium-P grade rocks. Geochronological studies constrain the major fabrics in both kinds of rocks developed during mid-Devonian, coeval with the strong magmatism in the region. Micro-structural investigation on both kinds of rocks show similar prograde metamorphic history featured by clockwise P-T path evolution. Phase equilibrium modeling in the MnNCKFMASH system indicates that the development of major fabrics in the medium-P metamorphic rocks mainly recorded the notable increase of pressure and that in the high-T rocks was featured by the significant increase of temperature. The pressure increase could attribute to the progressive crustal thickening that may be correlated to the accretionary regime of the southern Altai in the mid-Devonian and the high temperature conditions most likely imply a significant heat input from the deep depth, consistent with the syn-chronologically emplacement of juvenile magmas on a large scale. Our study indicates the development of high-T metamorphism was genetically linked with that of the medium-P metamorphism and suggests that the crustal thickening during the orogenic process of the Altai region was accompanied by large heat input. This study is supported by Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048), IGCP #592 Project "Continental construction in Central Asia" and Research grant of State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (SKLIG-KF-12-06) .
NASA Astrophysics Data System (ADS)
Jaguin, J.; Poujol, M.; Boulvais, P.; Robb, L. J.; Paquette, J. L.
2012-10-01
The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35 km, which hosts a series of structurally controlled Sb-Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper-Zinc Line where a series of small, ca. 2.97 Ga Cu-Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964 ± 7 and 2,970 ± 7 Ma, respectively (zircon U-Pb), while pyrite associated with gold mineralization yielded a Pb-Pb age of 2,967 ± 48 Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97 Ga. It is, thus, suggested that the major styles of orogenic Au-Sb and the Cu-Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au-Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu-Zn VMS mineralization.
Deformation and seismicity of Taiwan.
Vita-Finzi, C
2000-10-10
14C-dated Holocene coastal uplift, conventional and satellite geodetic measurements, and coseismic and aseismic fault slip reveal the pattern of distributed deformation at Taiwan resulting from convergence between the Philippine Sea plate and Eurasia; as in other subduction orogenic settings, the locus of strain release and accumulation is strongly influenced by changes in fault geometry across strike. Uplift evidence from the islands of Lutao and Lanhsu is consistent with progressive oblique collision between the Luzon arc and the Chinese continental margin. In the Coastal Range, geodetic and seismic records show that shortening is taken up serially by discontinuous slip on imbricate faults. The geodetic data point to net extension across the Central Range, but deformed Holocene shorelines in the Hengchun Peninsula at its southern extremity suggest that the extension is a superficial effect partly caused by blind reverse faulting. The fastest shortening rates indicated by geodesy are recorded on the Longitudinal Valley fault and across the Chukou fault within the fold-and-thrust belt. In the former, the strain is dissipated mainly as aseismic reverse and strike-slip displacement. In contrast, the fold-and-thrust belt has witnessed five earthquakes with magnitudes of 6.5 or above in the 20th century, including the 1999.9.21 Chi-Chi earthquake (magnitude approximately 7.6) on a branch of the Chukou fault. The neotectonic and geodetic data for Taiwan as a whole suggest that the fold-and-thrust belt will continue to host the majority of great earthquakes on the island.
Accretionary orogens through Earth history
Cawood, Peter A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F.
2009-01-01
Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero. ?? The Geological Society of London 2009.
NASA Astrophysics Data System (ADS)
Rolland, Yann; Loury, Chloé; Guillot, Stéphane; Mikolaichuk, Alexander
2014-05-01
Mechanisms and history of the Late Palaeozoic accretion followed by formation of trunscurrent strike-slip faults were studied in the southern segment of the Central Asian Orogenic Belt (CAOB) within Kyrgyz South Tianshan. 1. South Tianshan Suture: ending accretion process after docking of Tarim craton This study gives insights into the crustal-scale structure and Upper Paleozoic history of this mountain belt, currently intensely reactivated by the India-Asia collision. Structural, petrological and geochronological studies were carried out within South Tianshan suture east of the Talas-Ferghana Fault (TFF). New data highlight a south-dipping structure featured by a HP metamorphic core complex comprised of c. 320 Ma continental and oceanic eclogites exhumed by top-to-North motion. A large massif (10 x 50 km) of continental HP rocks in the Atbashi Range is comprised of hectometric boudins of eclogites embedded in metapelites and gneissesMetamorphic units exhibit blueschist to eclogite facies conditions, with oceanic (MORB) rocks in the blueschist facies representing the accretionary oceanic prism being thrusted by oceanic rocks and a continental unit in the eclogite facies (510 ± 50°C and 24 ± 2 kbar). Evidence for eclogite facies both in metasediments and mafic lithologies and geological structure are in agreement with a previously thinned continental margin. Subduction of this thinned COT (Continent-Ocean Transition) probably occurred by slab pull in a south-dipping subduction zone, while another north-dipping subduction was active below Middle Tianshan. Final stacking of Middle and South Tianshan occurred at 320-310 Ma. These opposite subduction zones are still reflected in the main structures of Tianshan. Reactivation of the South-dipping structures since 30-25 Ma is ascribed to explain the current Tianshan intra-continental subduction from seismology. 2. Talas-Ferghana Fault (TFF) activity & Basin formation After this accretionary episode, the South Tianshan suture was cross-cut by the TFF, which was active in several stages from 320 Ma to present. The main events of basin formation are ascribed to the activity of the dextral TFF (Rolland et al. 2013, JAES). Ar-Ar dating undertaken on syn-kinematic minerals that feature the phases of motion of the TFF show a first stage of activation occurred at 312 ± 4 Ma, followed by a main stage of dextral motion in the Late Permian at 256 - 250 Ma, while late stages of reactivation of TFF is featured by emplacement of 195 ± 3 Ma pegmatitic dykes, formation of transtensional basins during Jurassic, dextral offsets of river valleys and ongoing seismicity. 3. Reactivation of South Tian Shan Suture Most prominent topography in Central Asia corresponds to the former South Tianshan suture which has been reactivated since about 30 Ma, the former Carboniferous thrusts are reactivated in a pop-up structure with top-north and top-south faults bounding the high mountains of Khan Tengri and Pobeda peaks (7440 m a.s.l.).
How fast is the denudation of the Taiwan Mountains? (Invited)
NASA Astrophysics Data System (ADS)
Siame, L. L.; Derrieux, F.; KANG, C.; Bourles, D. L.; Braucher, R.; Léanni, L.; Chen, R.; Lee, J.; Chu, H.; Chang, C.; Byrne, T. B.
2013-12-01
Orogenic settings are particularly well suited to study and quantify the coupling relations between tectonics, topography, climate and erosion since they record tectonic evolution along convergent margins and the connection between deep and surface processes. However, the interaction of deep and shallow processes is still poorly understood and the role they play in the exhumation of rocks, the structural and kinematic evolution of orogenic wedges, and the relation between tectonics and climate-dependent surface processes are still debated. Therefore, quantification of denudation rates in a wide range of climatic and tectonic settings, as well as at various time and space scales, is a critical step in calibrating and validating landscape evolution models. In this study, we focus on the mountains of the arc-continent collision in Taiwan, which serve as one of the best examples in the world to understand and study mountain building processes. We investigate the pattern and magnitude of denudation rates at the scale of the orogenic system, deriving denudation rates from in situ-produced cosmogenic nuclide 10Be concentrations measured in (1) river-borne quartz minerals sampled at major watersheds outlets, and (2) bedrock outcrops along ridge crests and at summits located along the major drainage divide of the belt. We determined a denudation pattern showing a clear discrepancy between the western (1.7×0.2 mm/yr) and eastern (4.1×0.5 mm/yr) sides of the range. Conversely, bedrock denudation determined along ridge crests, summits and flat surfaces preserved at high elevations are characterized by significantly lower denudation rates on the order of 0.24×0.03 mm/yr. Altogether, the cosmogenic-derived denudation pattern at the orogen-scale reflects fundamental mountain building processes from frontal accretion in the Western Foothills to basal accretion and fast exhumation in the Central Range. Applied to the whole orogen, such field-based approach thus provides important input data to validate and calibrate the parameters to be supplied to landscape evolution models. Moreover, the comparison between cosmogenic bedrock-derived and basin-derived denudation rates allows discussing how the topographic relief of Taiwan has evolved through the last thousands of years, and thus documenting whether or not the Taiwan Mountains are in a topographic steady state.
NASA Astrophysics Data System (ADS)
Heberer, Bianca; Neubauer, Franz
2017-04-01
Curvature is an intriguing feature within many mountain belts worldwide. Several proposals have been made for deciphering the origin of curvature, however, there is still significant debate about the bend-forming mechanisms, the consequences as well as on how bending is accommodated within the lithosphere. Only few of the worldwide oroclines have been studied in detail and a variety of alternative controlling factors, such as the role of inherited structures, the rheological coupling between lower and upper plates, the presence of a basement promontory in the foreland and its particular geometry, and lateral orogen-parallel extrusion are likely underestimated or not considered at all. This study focuses on oroclinal bending at the transition from the W-E trending Eastern Alps to the SW-NE oriented Western Carpathians. There, the orogenic front is concave towards the Alpine foreland and the greatest degree of curvature (ca. 55°) is found adjacent to the Bohemian massif. The oroclinal axis runs from the Bohemian promontory to the South Burgenland high. Various competing mechanisms occurred, i.e. rotation around a stiff foreland promontory and lateral extrusion induced by tectonic escape due to the indentation of a microplate and extensional collapse due to slab-rollback beneath the Carpathians. Little is known for such cases, where bending around as well as overriding of a promontory occurs, particularly on how it controls the exhumational and structural architecture within the orogen itself. Based on a synthesis of low-T thermochronology and structural data we find a significant impact of oroclinal bending on exhumation and structures: Highest amounts of erosion occur in the immediate vicinity of the Bohemian promontory and along its prolongation in the South Burgenland high, corroborating that shortening and exhumation are most pronounced there and should decrease along-strike of the orogenic front. In the outer bend strong Miocene extensional thinning parallel to the orogen occurred contemporaneously with sediment deposition to the east (Danube basin) and west (Styrian basin) of the oroclinal axis. We speculate that the location of extension at least from the Vienna and Danube basins are in part controlled by Jurassic extensional structures. The central sector along the oroclinal axis is largely overprinted by lateral block extrusion where the influence of oroclinal bending and a protruding promontory in the subsurface has yet to be demonstrated.
Potential field signatures along the Zagros collision zone in Iran
NASA Astrophysics Data System (ADS)
Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.
2018-01-01
The Zagros orogenic belt, known as an active fold-thrust belt, was formed in southwestern Iran due to the convergence of the Arabian and Eurasian plates. In this study, potential field data are inverted in 3D to image the variations of magnetic susceptibility and density contrast along the collision zone, resulting in better tectonic understanding of the studied region. Geophysical data measured by airborne magnetic and ground-based gravity systems are used to construct an integrated model that facilitates the interpretations of various tectonic zones across a 450-km line. This line intersects the main structural units from the SW portion of the Zagros belt. The constructed model reveals a contrast that indicates the transition between the two continental plates coinciding with the western boundaries of the Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT) fault. The subduction of the Arabian continental crust below the Iranian one is evident because of its lower susceptibility property and alternating sequence of high and low density regions. Higher susceptibility, magnetic remanence and density are the mainstays of the Urumieh-Dokhtar Magmatic Assemblage (UDMA) zone at the NE of the studied route, whereas lower values of these properties correspond to (1) the thin massive Tertiary-Neogene and Quaternary sediments of the central domain (CD) zone, and (2) the thick sedimentary and salt intrusion cover over the Zagros Fold-and-Thrust belt (ZFTB). Higher density of regions in the Arabian crust below the ZFTB implies that fault activities have caused significant vertical displacement of the basement. Finally, a simplified geological model is presented based upon the inversions of the geophysical data, in which the main geological units are divided along the studied route.
Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran)
NASA Astrophysics Data System (ADS)
Authemayou, Christine; Bellier, Olivier; Chardon, Dominique; Malekzade, Zaman; Abassi, Mohammad
2005-04-01
Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).
The tectonics of anorthosite massifs
NASA Technical Reports Server (NTRS)
Seyfert, C. K.
1981-01-01
Anorthosite massifs developed approximately 1.4 to 1.5 billion years ago along an arch which developed parallel to a zone of continental separation as a block which included North America, Europe, and probably Asia separated from a block which included parts of South America, Africa, India, and Australia. Anorthosite massifs also developed at the same time along a belt which runs through the continents which comprise Gondwanaland (South America), Africa, India, Australia, and Antarctica. This was a zone of continental separation which subsequently became a zone of continental collision about 1.2 billion years ago. The northern anorthosite belt also parallels an orogenic belt which was active between 1.8 and 1.7 billion years ago. Heat generated during this mountain building period helped in the formation of the anorthosites.
NASA Astrophysics Data System (ADS)
Allen, M. B.; Saville, C.; Blanc, E. J.-P.; Talebian, M.; Nissen, E.
2013-03-01
This paper shows how the Turkish-Iranian Plateau grows laterally by incrementally incorporating adjacent parts of the Zagros fold-and-thrust belt. The limit of significant, seismogenic, thrusting in the Zagros (Mw > 5) occurs close to the regional 1250 m elevation contour. The seismicity cutoff is not a significant bedrock geology boundary. Elevations increase northward, toward regional plateau elevations of 2 km, implying that another process produced the extra elevation. Between the seismogenic limit of thrusting and the suture, this process is a plausibly ductile thickening of the basement, suggesting depth-dependent strain during compression. Similar depth-dependant crustal strain may explain why the Tibetan plateau has regional elevations 1500 m greater than the elevation limit of seismogenic thrusting at its margins. We estimate 68 km shortening across the Zagros Simply Folded Belt in the Fars region, and 120 km total shortening of the Arabian plate. The Dezful Embayment is a low strain zone in the western Zagros. Deformation is more intense to its northeast, in the Bakhtyari Culmination. The orogenic taper (across strike topographic gradient) across the Dezful Embayment is 0.0004, and across the Bakhtyari Culmination, 0.022. Lateral plateau growth is more pronounced farther east (Fars), where a more uniform structure has a taper of 0.010 up to elevations of 1750 m. A >100 km wide region of the Zagros further northeast has a taper of 0.002 and is effectively part of the Turkish-Iranian Plateau. Internal drainage enhances plateau development but is not a pre-requisite. Aspects of the seismicity, structure, and geomorphology of the Zagros do not support critical taper models for fold-and-thrust belts.
NASA Astrophysics Data System (ADS)
Hubbard, S. M.; Sharman, G.; Covault, J. A.
2014-12-01
We integrate detrital zircon geochronology and 3D seismic-reflection data to reconstruct Oligo-Miocene paleogeography and sediment routing from the Alpine hinterland to Austrian Molasse foreland basin. Three-dimensional seismic-reflection data image a network of deepwater tributaries and a long-lived (>8 Ma) foredeep-axial channel belt through which predominantly southerly and westerly turbidity currents are interpreted to have transported Alpine detritus >100 km. We analyzed 793 detrital zircon grains from ten sandstone samples collected from the seismically mapped network of channel fill. Grain age populations correspond with major Alpine orogenic cycles: the Cadomian (750-530 Ma), the Caledonian (500-400 Ma), and the Variscan orogenies (350-250 Ma). Additional age populations correspond with Eocene-Oligocene Periadriatic magmatism (40-30 Ma) and pre-Alpine, Precambrian sources >750 Ma. The abundances of these age populations vary between samples. Sediment that entered the foredeep-axial channel belt from the west (freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable, well-distributed detrital zircon ages. Sandstone from a shallow marine unit that was deposited proximal to the northern basin margin consists of >75% Variscan (350-300 Ma) zircon, which is believed to have originated from the Bohemian Massif to the north. Mixing calculations based on the Kolmogorov-Smirnoff statistic suggest that the Alpine fold-thrust belt was an important source of detritus to the deepwater Molasse basin. We document east-to-west provenance dilution within the axial channel belt via one or more southern tributaries. Our results have important implications for sediment dispersal patterns within continental-scale orogens, including the relative role of longitudinal versus transverse sediment delivery in peripheral foreland basins.
NASA Astrophysics Data System (ADS)
Bahlburg, Heinrich; Vervoort, Jeffrey D.; Du Frane, S. Andrew; Bock, Barbara; Augustsson, Carita; Reimann, Cornelia
2009-12-01
Accretionary orogens are considered major sites of formation of juvenile continental crust. In the central and southern Andes this is contradicted by two observations: siliciclastic fills of Paleozoic basins in the central Andean segment of the accretionary Terra Australis Orogen consist almost exclusively of shales and mature sandstones; and magmatic rocks connected to the Famatinian (Ordovician) and Late Paleozoic magmatic arcs are predominantly felsic and characterized by significant crustal contamination and strongly unradiogenic Nd isotope compositions. Evidence of juvenile crustal additions is scarce. We present laser ablation (LA)-ICPMS U-Pb ages and LA-MC-ICPMS Hf isotope data of detrital zircons from seven Devonian to Permian turbidite sandstones incorporated into a Late Paleozoic accretionary wedge at the western margin of Gondwana in northern Chile. The combination with Nd whole-rock isotope data permits us to trace the evolution of the South American continental crust through several Proterozoic and Paleozoic orogenic cycles. The analyzed detrital zircon spectra reflect all Proterozoic orogenic cycles representing the step-wise evolution of the accretionary SW Amazonia Orogenic System between 2.0 and 0.9 Ga, followed by the Terra Australis Orogen between 0.9 and 0.25 Ga. The zircon populations are characterized by two prominent maxima reflecting input from Sunsas (Grenville) age magmatic rocks (1.2-0.9 Ga) and from the Ordovician to Silurian Famatinian magmatic arc (0.52-0.42 Ga). Grains of Devonian age are scarce or absent from the analyzed zircon populations. The Hf isotopic compositions of selected dated zircons at the time of their crystallization ( ɛHf ( T) ; T = 3.3-0.25 Ga) vary between - 18 and + 11. All sandstones have a significant juvenile component; between 20 and 50% of the zircons from each sedimentary rock have positive ɛHf ( T) and can be considered juvenile. The majority of the juvenile grains have Hf-depleted mantle model ages (Hf TDM) between 1.55 and 0.8 Ga, the time of the Rondonia-San Ignacio and Sunsas orogenic events on the Amazonia craton. The corresponding whole-rock ɛNd ( T) values fot these same rocks are between - 8 and - 3 indicating a mixture of older evolved and juvenile sources. Nd-depleted mantle model ages (Nd TDM*) are between 1.5 and 1.2 Ga and coincide broadly with the zircon Hf model ages. Our data indicate that the Paleo- and Mesoproterozoic SW Amazonia Orogenic System, and the subsequent Neoproterozoic and Paleozoic Terra Australis Orogen in the region of the central and southern Andes, developed following two markedly different patterns of accretionary orogenic crustal evolution. The SW Amazonia Orogenic System developed by southwestward growth over approximately 1.1 Ga through a combination of accretion of juvenile material and crustal recycling typical of the extensional or retreating mode of accretionary orogens. In contrast, the central Andean segment of the Terra Australis Orogen evolved from 0.9 to 0.25 Ga in the compressional or advancing mode in a relatively fixed position without the accretion of oceanic crustal units or large scale input of juvenile material to the orogenic crust. Here, recycling mainly of Mesoproterozoic continental crust has been the dominant process of crustal evolution.
Reduced to pole long-wavelength magnetic anomalies of Africa and Europe
NASA Technical Reports Server (NTRS)
Olivier, R.; Hinze, W. J.; Vonfrese, R. R. B.
1985-01-01
To facilitate analysis of the tectonic framework for Africa, Europe and adjacent marine areas, MAGSAT scalar anomaly data are differentially reduced to the pole and compared to regional geologic information and geophysical data including surface free-air gravity anomaly data upward continued to satellite elevation (350 km) on a spherical Earth. Comparative analysis shows magnetic anomalies correspond with both ancient as well as more recent Cenozoic structural features. Anomalies associated with ancient structures are primarily caused by intra-crustal lithologic variations such as the crustal disturbance associated with the Bangui anomaly in west-central Africa. Anomalies correlative with Cenozoic tectonic elements appear to be related to Curie isotherm perturbations. A possible example of the latter is the well-defined trend of magnetic minima that characterize the Alphine orogenic belt from the Atlas mountains to Eurasia. In contrast, a well-defined magnetic satellite minimum extends across the stable craton from Finland to the Ural mountains. Prominent magnetic maxima characterize the Arabian plate, Iceland, the Kursk region of the central Russian uplift, and generally the Precambrian shields of Africa.
Reduced to Pole Long-wavelength Magnetic Anomalies of Africa and Europe
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.
1984-01-01
To facilitate analysis of the tectonic framework for Africa, Europe and adjacent marine areas, MAGSAT scalar anomaly data are differentially reduced to the pole and compared to regional geologic information and geophysical data including surface free-air gravity anomaly data upward continued to satellite elevation (350 km) on a spherical Earth. Comparative analysis shows magnetic anomalies correspond with both ancient as well as more recent Cenozoic structural features. Anomalies associated with ancient structures are primarily caused by intra-crustal lithologic variations such as the crustal disturbance associated with the Bangui anomaly in west-central Africa. Anomalies correlative with Cenozoic tectonic elements appear to be related to Curie isotherm perturbations. A possible example of the latter is the well-defined trend of magnetic minima that characterize the Alpine orogenic belt from the Atlas mountains to Eurasia. In contrast, a well-defined magnetic satellite minimum extends across the stable craton from Finland to the Ural mountains. Prominent magnetic maxima characterize the Arabian plate, Iceland, the Kursk region of the central Russian uplift, and generally the Precambrian shields of Africa.
Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R.
2003-01-01
Metamorphic belts are complex regions where accretion or collision has added to, or thickened, continental crust. Gold-rich deposits can be formed at all stages of orogen evolution, so that evolving metamorphic belts contain diverse gold deposit types that may be juxtaposed or overprint each other. This partly explains the high level of controversy on the origin of some deposit types, particularly those formed or overprinted/remobilized during the major compressional orogeny that shaped the final geometry of the hosting metamorphic belts. These include gold-dominated orogenic and intrusion-related deposits, but also particularly controversial gold deposits with atypical metal associations. There are a number of outstanding problems for all types of gold deposits in metamorphc belts. These include the following: (1) definitive classifications, (2) unequivocal recognition of fluid and metal sources, (3) understanding of fluid migration and focusing at all scales, (4) resolution of the precise role of granitoid magmatism, (5) precise gold-depositional mechanisms, particularly those producing high gold grades, and (6) understanding of the release of CO2-rich fluids from subducting slabs and subcreted oceanic crust and granitoid magmas at different crustal levels. Research needs to be better coordinated and more integrated, such that detailed fluid-inclusion, trace-element, and isotopic studies of both gold deposits and potential source rocks, using cutting-edge technology, are embedded in a firm geological framework at terrane to deposit scales. Ultimately, four-dimensional models need to be developed, involving high-quality, three-dimensional geological data combined with integrated chemical and fluid-flow modeling, to understand the total history of the hydrothermal systems involved. Such research, particularly that which can predict superior targets visible in data sets available to exploration companies before discovery, has obvious spin-offs for global- to deposit-scale targeting of deposits with superior size and grade in the covered terranes that will be the exploration focus of the twenty-first century.
NASA Astrophysics Data System (ADS)
Yang, Zhao; Shen, Chuanbo; Ratschbacher, Lothar; Enkelmann, Eva; Jonckheere, Raymond; Wauschkuhn, Bastian; Dong, Yunpeng
2017-06-01
Combining 121 new fission track and (U-Th)/He ages with published thermochronologic data, we investigate the Late Cretaceous-Cenozoic exhumation/cooling history of the eastern Tibetan Plateau, Qinling, Daba Shan, and Sichuan Basin of east central China. The Qinling orogen shows terminal southwestward foreland growth in the northern Daba Shan thrust belt at 100-90 Ma and in the southern Daba Shan fold belt at 85-70 Ma. The eastern margin of Tibetan Plateau experienced major exhumation phases at 70-40 Ma (exhumation rate 0.05-0.08 mm/yr), 25-15 Ma (≤1 mm/yr in the Pengguan Massif; 0.2 mm/yr in the imbricated western Sichuan Basin), and since 11-10 Ma along the Longmen Shan ( 0.80 mm/yr) and the interior of the eastern Tibetan Plateau (Dadu River gorge, Min Shan; 0.50 mm/yr). The Sichuan Basin records two basin-wide denudation phases, likely a result of the reorganization of the upper Yangtze River drainage system. The first phase commenced at 45 Ma and probably ended before the Miocene; >1 km of rocks were eroded from the central and eastern Sichuan Basin. The second phase commenced at 12 Ma and denudated the central Sichuan Basin, Longmen Shan, and southern Daba Shan; more than 2 km of rocks were eroded after the lower Yangtze River had cut through the Three Gorges and captured the Sichuan Basin drainage. In contrast to the East Qinling, which was weakly effected by late Cenozoic exhumation, the West Qinling and Daba Shan have experienced rapid exhumation/cooling since 15-13 Ma, a result of growth of the Tibetan Plateau beyond the Sichuan Basin.
Permanent GPS network around the bend of the Jura Arc: preliminary results
NASA Astrophysics Data System (ADS)
Sue, Christian; Walpersdorf, Andrea; Sakic, Pierre; Rabin, Mickael; Champagnac, Jean daniel
2014-05-01
The Jura Mountain, the westernmost belt of the alpine orogeny, is one of the best-studied orogenic arcs in the world. The Jura arc is a typical fold-and-thrust belt, with a main décollement thrust localized in the Triasic evaporites under the Jurassic-Cretaceous series. It is directly linked to the alpine orogenic wedge, especially in term of critical taper. It is supposed to be still active in collision mode, which would rise up the issue of its relation with the Alps to the East, currently undergoing post-orogenic gravitational potential adjustment. Nevertheless, its current activity and recent deformation remain a matter of debate, few neotectonic-related data being available in this area. The Jura is crosscut by left-lateral strike-slip faults in a radial scheme with respect to the arc, and recent seismicity along one of them, the Vuache fault (Annecy earthquake Ml 5.3 1996), and at the northern front of the belt (Beaume-les-Dames earthquake, Ml 5.1, 2004), argues for ongoing active deformation across the Jura Mountain. Here we present preliminary results of permanent GPS network surrounding the Jura belt (RENAG and RPG data), which tend to show very slow, yet self-consistent strain pattern of the order of some tenth of mm/yr over 100 km-long typical baselines, with shortening perpendicular to the arc, and extension parallel to its axial trend. We also characterize a slow uplift in the same order of magnitude, which appears to be correlated to the current uplift observed in the Alps. Indeed, the uplift velocities are continuously decreasing from the core of the Alps (+2 mm/yr) to the westernmost part of the Jura (+0,4 mm/yr) and to the stable foreland (-0.1 mm/yr). Actually, from the Po plain to the Jura foreland, the GPS-related uplift velocities are well correlated to the topography, and the Jura arc appears connected to the Alps from this point of view. In order to better determine the deformation pattern in the Jura arc, we present a new regional GNSS permanent network (GPS-JURA, Besançon observatory) developed at the end of 2013, which will allow in a near future to accurately characterize and quantify the current strain pattern of this emblematic arc.
NASA Astrophysics Data System (ADS)
Chen, Cong; Ren, Yunsheng; Zhao, Hualei; Yang, Qun; Shang, Qingqing
2017-08-01
The eastern margin of the Xing'an-Mongolian Orogenic Belt is characterised by widespread Phanerozoic granitic magmatism, some of which is closely related to significant ore mineralisation. This paper presents new geochronological, petrogenetic, and tectonic data for selected intrusions. Zircon U-Pb geochronology for five granitoid plutons indicates they were emplaced during the middle-late Permian (264-255 Ma) and Cretaceous (106-94 Ma), and thus granitic magmatism occurred throughout the Phanerozoic, Permian (268-252 Ma), Early-Middle Triassic (248-240 Ma), Early Jurassic (183 Ma), and Cretaceous (112-94 Ma). The Permian granitoids consist of monzogranite, granodiorite, tonalite, and quartz diorite, characterised by enrichment in Na2O (3.60-4.72 wt.%), depletion in K2O (0.97-2.66 wt.%), and a negative correlation between P2O5 and SiO2. Together with the presence of hornblende, these geochemical features are indicative of an I-type affinity. The Permian granitic magmatism is associated with quartz-vein-type tungsten deposits (252 Ma; unpublished Sm-Nd isochron age), which formed in an active continental margin setting related to subduction of the Palaeo-Asian Ocean. The Cretaceous quartz diorites have an adakitic affinity, having relatively high Sr (374-502 ppm), low Yb (0.51-0.67 ppm) and Y (8.7-10.7 ppm), and high Sr/Y (39.4-46.8) and (La/Yb)N values (16.2-34.7), suggesting that they were related to the partial melting of subducted oceanic crust. In addition, they are associated with porphyry Au-Cu deposits. We conclude that the Cretaceous granitic rocks and associated porphyry Au-Cu mineralisation occurred in an extensional tectonic setting related to the subduction of the Palaeo-Pacific Plate beneath the Eurasian Plate. In addition, the large-scale Early-Middle Triassic syn-collisional granite belt at the eastern margin of the Xing'an-Mongolian Orogenic Belt extends from the middle of Jilin Province to the Wangqing-Hunchun region, constraining the timing of the final collision between the North China Craton and the Jiamusi-Khanka Massif, and suggesting that the Xra Moron River-Changchun Suture likely extends eastward into the eastern Hunchun region. This collision caused the Middle Triassic mesothermal lode gold mineralisation.
NASA Astrophysics Data System (ADS)
Vitale Brovarone, Alberto; Beyssac, Olivier; Malavieille, Jacques; Molli, Giancarlo; Beltrando, Marco; Compagnoni, Roberto
2013-01-01
Alpine Corsica consists of a stack of variably metamorphosed units of continental and Tethys-derived rocks. It represents an excellent example of high-pressure (HP) orogenic belt, such as the Western Alps, exposed over a small and accessible area. Compared to the Western Alps, the geology of Alpine Corsica is poorly unraveled. During the 1970s-80s, based on either lithostratigraphic or metamorphic field observations, various classifications of the belt have been proposed, but these classifications have been rarely matched together. Furthermore, through time, the internal complexity of large domains has been progressively left aside in the frame of large-scale geodynamic reconstructions. As a consequence, major open questions on the internal structure of the belt have remained unsolved. Apart from a few local studies, Alpine Corsica has not benefited of modern developments in petrology and basin research. This feature results in several uncertainties when combining lithostratigraphic and metamorphic patterns and, consequently, in the definition of an exhaustive architecture of the belt. In this paper we provide a review on the geology of Alpine Corsica, paying particular attention to the available lithostratigraphic and metamorphic classifications of the metamorphic terranes. These data are completed by a new and exhaustive metamorphic dataset obtained by means of thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM). This technique provides reliable insights on the peak temperature of the metamorphic history for CM-bearing metasediments. A detailed metamorphic characterization of metasediments, which have been previously largely ignored due to retrogression or to the lack of diagnostic mineralogy, is thus obtained and fruitfully coupled with the available lithostratigraphic data. Nine main tectono-metamorphic units are defined, from subgreenschist (ca. 280-300 °C) to the lawsonite-eclogite-facies (ca. 500-550 °C) condition. These units are homogeneous in metamorphism, laterally continuous and have characteristic lithostratigraphic features. This study also suggests a direct link between the pre-orogenic extensional setting and the present-day compressional structure of Alpine Corsica, indicating that large sections of subducted lithosphere were subducted and exhumed as coherent domains. These features provide important insight on the mechanism of stacking and exhumation of HP rocks, and make Alpine Corsica a unique reference for mountain-building processes in Tethyan-type orogens.
How was the Triassic Songpan-Ganzi basin filled? A provenance study
Enkelmann, E.; Weislogel, A.; Ratschbacher, L.; Eide, E.; Renno, A.; Wooden, J.
2007-01-01
The Triassic Songpan-Ganzi complex comprises >200,000 km2 of 5-15 km thick turbiditic sediments. Although surrounded by several magmatic and orogenic belts, the Triassic high- and ultrahigh-pressure Qinling-Tongbai-Hong'an-Dabie (QTHD) orogen, located several hundred kilometers to the east, was proposed as its major source. Middle to Late Triassic samples from the northern and southern Songpan-Ganzi complex, studied using detrital white mica 40Ar/39Ar ages, Si-in-white mica content, and detrital zircon U/Pb ages, suggest that the northern Songpan-Ganzi deposystem obtained detritus from the north: the north China block, east Kunlun, northern Qaidam, Qilian, and western Qinling; the southern Songpan-Ganzi deposystem was supplied from the northeasterly located Paleozoic QTHD area throughout the Ladinian and received detritus from the Triassic Hong'an-Dabie orogen during the Carnian, indicative of exhumation of the orogen at that time. The QTHD orogen fed the Norian samples in the southeastern southern Songpan-Ganzi deposystem, signifying long drainage channels along the western margin of the south China block. An additional supply from the Emeishan magmatic province and/or the Yidun arc is suggested by the paucity of white mica in the southern Songpan-Ganzi deposystem. Mica ages of Rhaetian sediments from the northwestern Sichuan basin best correlate with those of the Triassic QTHD orogen. Our Si-in-white mica data demonstrate that the high- and ultrahigh-pressure rocks of the Hong'an-Dabie Shan were not exposed in the Middle to Late Triassic. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong
2015-12-01
The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by widespread intracontinental orogeny and continental reconstruction, are commonly termed the Yanshan Revolution (Movement) in the Chinese literature.
NASA Astrophysics Data System (ADS)
Mao, Ling-Juan; He, Zhen-Yu; Zhang, Ze-Ming; Klemd, Reiner; Xiang, Hua; Tian, Zuo-Lin; Zong, Ke-Qing
2015-12-01
The Chinese Tianshan in the southwestern part of the Central Asian Orogenic Belt (CAOB) is characterized by a variety of high-grade metamorphic rocks, which provide critical constraints for understanding the geodynamic evolution of the CAOB. In this paper, we present detailed petrological and zircon U-Pb geochronological studies of the Weiya low-pressure and high-temperature (LP-HT) granulites of the Chinese Eastern Tianshan. These granulites were previously considered to be a product of a regional metamorphic orogenic event. Due to different bulk-rock chemistries the Weiya granulites, which occur as lenses within the contact metamorphic aureole of the Weiya granitic ring complex, have a variety of felsic-pelitic and mafic granulites with different textural equilibrium mineral assemblages including garnet-cordierite-sillimanite-bearing granulites, cordierite-sillimanite-bearing granulites, cordierite-orthopyroxene-bearing granulites, and orthopyroxene-clinopyroxene-bearing granulites. Average P-T thermobarometric calculations and conventional geothermobarometry indicates that the Weiya granulites underwent early prograde metamorphism under conditions of 600-650 °C at 3.2-4.2 kbar and peak metamorphism of 750-840 °C at 2.9-6.3 kbar, indicating a rather high geothermal gradient of ca. 60 °C/km. Zircon U-Pb LA-ICP-MS dating revealed metamorphic ages between 244 ± 1 to 237 ± 3 Ma, which are in accordance with the crystallization age of the Weiya granitic ring complex. We suggest that the formation of the Weiya granulites was related to contemporaneous granitic magmatism instead of a regional metamorphic orogenic event. In addition, a Late Devonian metamorphic age of ca. 380 Ma was recorded in zircon mantle domains from two pelitic samples which is consistent with the metamorphic age of the Xingxingxia metamorphic complex in the Chinese Eastern Tianshan. This suggests that the mantle domains of the zircon grains of the Weiya granulites probably formed during the Late Devonian regional metamorphism and were overprinted by the Early Triassic contact metamorphism. Therefore, Early Triassic geodynamic models for the southwestern part of the CAOB, which are based on a previously suggested regional metamorphic orogenic event of the Weiya granulites, need to be viewed with caution.
Volcanogenic massive sulphide and orogenic gold deposits of northern southeast Alaska
Sack, Patrick J; Karl, Susan M.; Steeves, Nathan; Gemmell, J Bruce
2016-01-01
This five-day field trip visits the most significant mineral deposits in northern southeast Alaska. The trip begins and ends with regional transects in the interior Intermontane terranes around Whitehorse, Yukon, and the Insular terranes along the northern Chatham Strait region of southeast Alaska (Fig. A-1 and Fig. A-2; Plate-1). To put the deposits in a regional tectonic framework, the guidebook begins with an introduction to northern Cordilleran geology, tectonics and metallogeny. The foci of the deposit portion of the field trip are Late Triassic volcanogenic massive sulphide (VMS) deposits of the Alexander Triassic metallogenic belt and Paleogene orogenic gold deposits of the Juneau gold belt. Details of the local geology are further elaborated in each segment of the guide book (Days 1-5). The data that provide the basis for the VMS deposit interpretations come from a series of PhD and MSc studies by the Centre of Excellence in Ore Deposit Research (CODES) at the University of Tasmania and the University of Ottawa. These deposit-scale studies are complimented by a long history of regional mapping and research by the U.S. Geological Survey (USGS).
NASA Technical Reports Server (NTRS)
Yuan, D. W.
1984-01-01
Magnetic anomalies of the South American continent are generally more positive and variable than the oceanic anomalies. There is better correlation between the magnetic anomalies and the major tectonic elements of the continents than between the anomalies and the main tectonic elements of the adjacent oceanic areas. Oceanic areas generally show no direct correlation to the magnetic anomalies. Precambrian continental shields are mainly more magnetic than continental basins and orogenic belts. Shields differ markedly from major aulacogens which are generally characterized by negative magnetic anomalies and positive gravity anomalies. The Andean orogenic belt shows rather poor correlation with the magnetic anomalies. The magnetic data exhibit instead prominent east-west trends, which although consistent with some tectonic features, may be related to processing noise derived from data reduction procedures to correct for external magnetic field effects. The pattern over the Andes is sufficiently distinct from the generally north trending magnetic anomalies occurring in the adjacent Pacific Ocean to separate effectively the leading edge of the South American Plate from the Nazea Plate. Eastern South America is characterized by magnetic anomalies which commonly extend across the continental margin into the Atlantic Ocean.
Boucot, A.J.; Poole, F.G.; Amaya-Martinez, R.; Harris, A.G.; Sandberg, C.A.; Page, W.R.
2008-01-01
Three brachiopod faunas discussed herein record different depositional and tectonic settings along the southwestern margin of Laurentia (North America) during Devonian time. Depositional settings include inner continental shelf (Cerros de Los Murcielagos), medial continental shelf (Rancho Placeritos), and offshelf continental rise (Rancho Los Chinos). Ages of Devonian brachiopod faunas include middle Early (Pragian) at Rancho Placeritos in west-central Sonora, late Middle (Givetian) at Cerros de Los Murcielagos in northwestern Sonora, and late Late (Famennian) at Rancho Los Chinos in central Sonora. The brachiopods of these three faunas, as well as the gastropod Orecopia, are easily recognized in outcrop and thus are useful for local and regional correlations. Pragian brachiopods dominated by Acrospirifer and Meristella in the "San Miguel Formation" at Rancho Placeritos represent the widespread Appohimchi Subprovince of eastern and southern Laurentia. Conodonts of the early to middle Pragian sulcatus to kindlei Zones associated with the brachiopods confirm the ages indicated by the brachiopod fauna and provide additional information on the depositional setting of the Devonian strata. Biostratigraphic distribution of the Appohimchi brachiopod fauna indicates continuous Early Devonian shelf deposition along the entire southern margin of Laurentia. The largely emergent southwest-trending Transcontinental arch apparently formed a barrier preventing migration and mixing of many genera and species of brachiopods from the southern shelf of Laurentia in northern Mexico to the western shelf (Cordilleran mio-geocline) in the western United States. Middle Devonian Stringocephalus brachiopods and Late Devonian Orecopia gastropods in the "Los Murcielagos Formation" in northwest Sonora represent the southwest-ernmost occurrence of these genera in North America and date the host rocks as Givetian and Frasnian, respectively. Rhynchonelloid brachiopods (Dzieduszyckia sonora) and associated worm tubes in the Los Pozos Formation of the Sonora allochthon in central Sonora are also found in strati-form-barite facies in the upper Upper Devonian (Famennian) part of the Slaven Chert in the Roberts Mountains allochthon (upper plate) of central and western Nevada. Although these brachiopods and worm tubes occur in similar depositional settings along the margin of Laurentia in Mexico, they occur in allochthons that exhibit different tectonic styles and times of emplacement. Thus, the allochthons containing the brachiopods and worm tubes in Sonora and Nevada are parts of separate orogenic belts and have different geographic settings and tectonic histories. Devonian facies belts and faunas in northern Mexico indicate a continuous continental shelf along the entire southern margin of Laurentia. These data, in addition to the continuity of the late Paleozoic Ouachita-Marathon-Sonora orogen across northern Mexico, contradict the early Late Jurassic Mojave-Sonora megashear as a viable hypothesis for large-magnitude offset (600-1100 km) of Proterozoic through Middle Jurassic rocks from California to Sonora. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Lynch, E. A.; van der Pluijm, B.; Vennemann, T. W.
2017-12-01
The eastern margin of North America has a protracted and intricate tectonic history. The terminal collision of Gondwana and Laurentia in the late Paleozoic formed the Appalachian mountain belt, a trans-continental orogen that persisted for almost 100 million years until Mesozoic break-up of the supercontinent Pangea. A host of studies have targeted the evolution and migration of fluids through Appalachian crust in an effort to understand how fluid promotes mass and heat redistribution, and mediates crustal deformation, particularly during the assembly of Pangea. Folded clay units from the Central Appalachian Valley and Ridge province were sampled for stable and radiogenic isotope analysis. Separation of samples into different grain-size fractions characterizes detrital (host) and authigenic (neomineralized) clays. Stable H-isotope compositions reveal a systematic pattern with varying proportions of illite polytypes—the finer, younger fraction is D-depleted compared to the coarser, primarily detrital fraction. For each individual location, the H-isotopic composition of the fluid from which the authigenic population was grown is calculated. δDVSMOW of these fluids has a range from -77 to -52 ± 2 ‰, consistent with a surface-derived fluid source. The notably negative values for several samples indicates a meteoric composition of moderate to high elevation origin, suggesting that they are not connate waters, but instead preserve infiltration of fluids due to fracture-induced permeability. Key to this interpretation is 40Ar/39Ar-dating of a subset of these samples that reveals a post-orogenic age for authigenic clay mineralization in the Early Jurassic ( 180 Ma). These ages are evidence that surface fluid infiltration was unrelated to the Appalachian orogeny, but coeval with (upper) crustal extension from the initial break-up of Pangea and the emplacement of the Central Atlantic Magmatic Province.
Two modes of orogenic collapse of the Pamir plateau recorded by titanite
NASA Astrophysics Data System (ADS)
Stearns, M. A.; Hacker, B. R.; Ratschbacher, L.; Rutte, D.; Kylander-Clark, A. R.
2013-12-01
Processes that operate in the mid- to lower crust during and following continent-continent collision are important for understanding how orogenic plateaux transition from thickening to collapse. In the central and southern Pamir, mid- to lower crustal rocks crop out in two belts of extensional domes. The central Pamir domes were exhumed by symmetrical N-S extension. In contrast, the southern Pamir domes were exhumed by asymmetrical top to the south (NNW-SSE) extension via a rolling-hinge detachment. To investigate the high-temperature exhumation history, titanites were dated using LASS (laser ablation split stream-ICP-MS). A multi-collector ICP was used to collect U-Pb isotopic ratios and a single collector ICP-MS was used to measure trace-element abundances. The data indicate that the central Pamir domes began exhumation synchronously at ~17 Ma. Titanite from the southern Pamir record two periods of protracted (re)crystallization: older metamorphic dates ranging from ~35-18 Ma and younger igneous and metamorphic dates from ~15-7 Ma. Samples with single populations of titanite dates are present throughout both groups. Samples with more-complex date populations typically have distinct trace-element (e.g., Sr, Y, Zr, and Nb) groups that can be used to distinguish different date populations (e.g., older dates may have higher Zr and younger dates lower Zr). The distinct early exhumation histories of the north and south Pamir require either a diachronous single process or two semi-independent processes. The N to S sequence of exhumation, ranges of dates, and overall extension directions may be related to two important plate-tectonic events inferred from seismic data: 1) breakoff of the northward subducting Indian slab around ~20 Ma, and 2) southward subduction and northwestward rollback of the Asian lithosphere between ~15-10 Ma based on geodetic convergence rates and Benioff zone length. We interpret these two lithospheric-detachment events to have driven the exhumation in the Pamir by changing the gravitational potential energy and boundary forces of the plateau.
NASA Astrophysics Data System (ADS)
Thomas, R. M., Jr.; Carmichael, S. K.; Waters, J. A.; Batchelor, C. J.
2017-12-01
Two of the top five most devastating mass extinctions in Earth's history occurred during the Late Devonian (419.2 Ma - 358.9 Ma), and are commonly associated with the black shale deposits of the Kellwasser and Hangenberg ocean anoxia events. Our understanding of these extinction events is incomplete partly due to sample bias, as 95% of the field sites studying the Late Devonian are limited to continental shelves and continental marine basins, and 77% of these sites are derived from the Euramerican paleocontinent. The Samnuuruul Formation at the Hoshoot Shiveetiin Gol locality (HSG), located in southwestern Mongolia, offers a unique opportunity to better understand global oceanic conditions during the Late Devonian. The HSG locality shows a continuous sequence of terrestrial to marine sediments on the East Junggar arc; an isolated, open-ocean island arc within the Central Asian Orogenic Belt (CAOB). Samples from this near shore locality consist of volcanogenic silts, sands and immature conglomerates as well as calc-alkalic basalt lava flows. Offshore sections contain numerous limestones with Late Devonian fossil assemblages. Preliminary biostratigraphy of the associated marine and terrestrial sequences can only constrain the section to a general Late Devonian age, but TIMS analysis of detrital zircons from volcanogenic sediments from the Samnuuruul Formation in localities 8-50 km from the site suggests a late Frasnian age (375, 376 Ma). To provide a more precise radiometric age of the HSG locality, zircon geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) will be performed at UNC-Chapel Hill. If the HSG section crosses the Frasnian-Famennian boundary, geochemical, mineralogical, and ichnological signatures of the Kellwasser Event are expected to be preserved, if the Kellwasser Event was indeed global in scope (as suggested by Carmichael et al. (2014) for analogous sites on the West Junggar arc in the CAOB). Black shale accumulation anywhere in the CAOB would be unlikely due to the paleoenvironment and arc topography, so additional multiproxy techniques are required for recognition of the Kellwasser Event in regions such as the HSG, which are outside of the basins where they have historically been studied. Carmichael et al. (2014) Paleo3 399, 394-403.
NASA Astrophysics Data System (ADS)
Wang, Zhi-wei; Xu, Wen-liang; Pei, Fu-ping; Wang, Feng; Guo, Peng
2016-09-01
This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China, in order to constrain the early Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt (CAOB). Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern Songnen-Zhangguangcai Range Massif (SZM) can be subdivided into four stages: Middle Cambrian ( 505 Ma), Late Cambrian ( 490 Ma), Early-Middle Ordovician ( 470 Ma), and Late Ordovician (460-450 Ma). The Middle Cambrian monzogranites are K-rich, weakly to strongly peraluminous, and characterized by pronounced heavy rare earth element (HREE) depletions, high Sr/Y ratios, low Y concentrations, low primary zircon εHf(t) values (- 6.79 to - 1.09), and ancient two-stage model (TDM2) ages (1901-1534 Ma). These results indicate derivation from partial melting of thickened ancient crustal materials that formed during the amalgamation of the northern SZM and the northern Jiamusi Massif (JM). The Late Cambrian monzonite, quartz monzonite, and monzogranite units are chemically similar to A-type granites, and contain zircons with εHf(t) values of - 2.59 to + 1.78 and TDM2 ages of 1625-1348 Ma. We infer that these rocks formed from primary magmas generated by partial melting of Mesoproterozoic accreted lower crustal materials in a post-collisional extensional environment. The Early-Middle Ordovician quartz monzodiorite, quartz monzonite, monzogranite, and rhyolite units are calc-alkaline, relatively enriched in light REEs (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), depleted in HREEs and high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and contain zircons with εHf(t) values of - 7.33 to + 4.98, indicative of formation in an active continental margin setting. The Late Ordovician alkali-feldspar granite and rhyolite units have A-type granite affinities that suggest they formed in an extensional environment. A comparison of early Paleozoic magmatic events and Hf isotopic model ages between the northern SZM and the JM indicates that these two massifs have similar histories of Mesoproterozoic and early Paleozoic crustal accretion and reworking, although the SZM contains much older crustal materials than the JM.
NASA Astrophysics Data System (ADS)
Bazhenov, Mikhail L.; Van der Voo, Rob; Menzo, Zachary; Dominguez, Ada R.; Meert, Joseph G.; Levashova, Natalia M.
2016-04-01
Paleomagnetic results on thick lava series are among the most important sources of information on the characteristics of ancient geomagnetic fields. Most paleo-secular variation data from lavas (PSVL) are of late Cenozoic age. There are far fewer results from lavas older than 5 Ma. The Central Asia Orogenic Belt that occupies several million square kilometers in Asia is probably the world's largest area of Paleozoic volcanism and is thus an attractive target for PSVL studies. We studied a ca. 1700 m thick lava pile in eastern Kazakhstan of Early Permian age. Magmatic zircons, successfully separated from an acid flow in this predominantly basaltic sequence, yielded an Early Permian age of 286.3 ± 3.5 Ma. Oriented samples were collected from 125 flows, resulting in 88 acceptable quality flow-means (n ⩾ 4 samples, radius of confidence circle α95 ⩽ 15°) of the high-temperature magnetization component. The uniformly reversed component is pre-tilting and arguably of a primary origin. The overall mean direction has a declination = 242.0° and an inclination = -56.2° (k = 71.5, α95 = 1.8°; N = 88 sites; pole at 44.1°N, 160.6°E, A95 = 2.2°). Our pole agrees well with the Early Permian reference data for Baltica, in accord with the radiometric age of the lava pile and geological views on evolution of the western part of the Central Asia Orogenic Belt. The new Early Permian result indicates a comparatively low level of secular variation especially when compared to PSVL data from intervals with frequent reversals. Still, the overall scatter of dispersion estimates that are used as proxies for SV magnitudes, elongation values and elongation orientations for PSVL data is high and cannot be fitted into any particular field model with fixed parameters. Both observed values and numerical simulations indicate that the main cause for the scatter of form parameters (elongation values and elongation orientations) is the too small size of collections. Dispersion estimates (concentration parameter and standard angular deviation) are more robust, and their scatter stems from other sources, which may include non-stochastic features of datasets like clusters, loops etc., or non-stationary behavior of secular variation magnitude over time intervals of many million years.
Geophysical constraints for terrane boundaries in southern Mongolia
NASA Astrophysics Data System (ADS)
Guy, Alexandra; Schulmann, Karel; Munschy, Marc; Miehe, Jean-Marc; Edel, Jean-Bernard; Lexa, Ondrej; Fairhead, Derek
2014-05-01
The Central Asian Orogenic Belt (CAOB) is a typical accretionary orogen divided into numerous lithostratigraphic terranes corresponding to magmatic arcs, back arcs, continental basement blocks, accretionary wedges and metamorphic blocks. These terranes should be in theory characterized by contrasting magnetic and gravity signatures thanks to their different petrophysical properties. To test this hypothesis, the stratigraphically defined terranes in southern Mongolia were compared with potential field data to constrain their boundaries and extent. The existence of terranes in southern Mongolia cannot be attested by the uniform geophysical fabrics due to the lack of systematic correspondence between the high/low amplitude and high/low frequency geophysical domains and major terranes. Processed magnetic and gravity grids show that both gravity and magnetic lineaments are E-W trending in the west and correlate with direction of some geological units. In the east, both magnetic and gravity lineaments are disrupted by NE-SW trending heterogeneities resulting in complete blurring of the geophysical pattern. Correlation of magnetic signal with geological map shows that the magnetic highs coincide with late Carboniferous-early Permian volcanic and plutonic belts. The matched-filtering shows good continuity of signal to the depth located along the boundaries of these high magnetic anomalies which may imply presence of deeply rooted tectono-magmatic zones. The axes of high density bodies in the western and central part of the studied CAOB are characterized by periodic alternations of NW-SE trending high frequency and high amplitude gravity anomalies corresponding to late Permian to Triassic cleavage fronts up to 20 km wide. The matched-filtering analysis shows that the largest deformation zones are deeply rooted down to 20 km depth. Such a gravity signal is explained by the verticalization of high density mantle and lower crustal rocks due to localized vertical shearing associated to upright folding. The magnetic signal is interpreted to result from a giant Permo-Triassic magmatic event associated lithosphere scale deformation whereas the gravity pattern is related to post-accretionary shortening of the CAOB in between North China and Siberia cratons. The blurring of the gravity signals to the west is attributed to activity of Triassic dextral shear zones parallel to the eastern Siberian boundary later on affected by Cretaceous extension and magmatism affecting the whole of eastern Asia.
Structure and thermochronology of the metamorphic core of the Brooks Range, Alaska
NASA Astrophysics Data System (ADS)
Toro, Jaime
1999-11-01
Detailed field studies were undertaken in two key areas of the Central Belt of the Brooks Range: (1) the north flank of Mt. Igikpak in the Survey Pass Quadrangle and (2) in the Shishakshinovik Pass area in the eastern Ambler River Quadrangle. In both areas structural, stratigraphic, petrologic, 40Ar/39Ar, apatite fission-track and U-Pb data were used to constrain the kinematic and thermal history of metamorphic rocks of those areas. North of the Mt. Igikpak massif a crustal section ˜15 km thick is exposed. There are upper greenschist facies rocks in the deeper portions, and very low grade metamorphic rocks at higher structural levels. Two foliations are found: a higher grade relict S1 fabric and a lower grade S 2 fabric that controls the metamorphic layering. 40Ar/ 39Ar analyses from S1 white mica in the low-grade rocks at the northern end of the transect indicate that peak M1 metamorphism occurred before ˜112 Ma. We ascribe M1 to shortening that occurred during collision of an island arc against the Arctic Alaska margin. S 2 involved the retrogression of earlier assemblages. Kinematic indicators on S2 are top-to-the-north. A rapid cooling event from 500 +/- 50°C to 300 +/- 50°C took place between ˜98 and ˜90 Ma. The driving mechanism for ductile deformation during S2, and for rapid cooling documented by our thermochronologic data, was probably the gravitational collapse of the core of the orogen, over-thickened during the preceding collision. At Shishakshinovik Pass there are Mississippian Lisburne Group strata surrounded by metamorphic rocks typical of the Central Belt of the Brooks Range. All the rocks at Shishakshinovik Pass are intensely deformed, so that one cannot distinguish between an autochthonous and an allochthonous sequence. Furthermore the Mississippian rocks, instead of being attached to the underlying basement, are in the hanging wall of a northwest dipping shear zone. Based on the variations in metamorphic grade and the 40Ar/ 39Ar thermochronology, we argue that this shear zone was an extensional structure active during the mid-Cretaceous orogenic collapse of the Brooks Range. A consequence of this structural interpretation is that the Endicott Mountains allochthon need not be restored south of the Shishakshinovik orthogneiss.
Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.
2010-01-01
To test the idea that the voluminous upper Middle to Upper Triassic turbidite strata in the Songpan-Ganzi complex of central China archive a detrital record of Dabie ultrahigh-pressure (UHP) terrane unroofing, we report 2080 single detrital U-Pb zircon ages by sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis from 29 eastern Songpan-Ganzi complex sandstone samples. Low (<0.07) Th/U zircons, consistent with crystallization under UHP conditions, are rare in eastern Songpan-Ganzi complex zircon, and U-Pb ages of low Th/U zircons are incompatible with a Dabie terrane source. An unweighted pair group method with arithmetic mean nearest-neighbor analysis of Kolmogorov-Smirnov two-sample test results reveals that the eastern Songpan-Ganzi complex is not a single contiguous turbidite system but is instead composed of three subsidiary depocenters, each associated with distinct sediment sources. The northeastern depocenter contains zircon ages characterized by Paleozoic and bimodally distributed Precambrian zircon populations, which, together with south-to southeast-directed paleocurrent data, indicate derivation from the retro-side of the Qinling-Dabie (Q-D) collisional orogen wedge. In the central depocenter, the dominantly Paleozoic detrital zircon signature and south-to southwest-oriented paleocurrent indicators reflect a profusion of Paleozoic zircon grains. These data are interpreted to reflect an influx of material derived from erosion of Paleozoic supra-UHP rocks of the Dabie terrane in the eastern Qinling-Dabie orogen, which we speculate may have been enhanced by development of a monsoonal climate. This suggests that erosional unroofing played a significant role in the initial phase of UHP exhumation and likely influenced the petrotectonic and structural evolution of the Qinling-Dabie orogen, as evidenced by compressed Triassic isotherms/grads reported in the Huwan shear zone that bounds the Dabie terrane to the north. The central depocenter deposits reflect a later influx of bimodally distributed Precambrian zircon, signifying either a decrease in the influx of Paleozoic zircon grains due to stalled UHP exhumation and/or dilution of the same influx of Paleozoic zircons by spilling of Precambrian zircon from the northeastern depocenter into the central depocenter basin, perhaps due to infilling and bypass of sediment from the northern depocenter or due to initial collapse and constriction of the eastern Songpan-Ganzi complex basin. The southeastern depocenter of the eastern Songpan-Ganzi complex bears significant Paleozoic, Neoproterozoic, and Paleoproterozoic zircon populations derived from the South China block and Yidun arc complex, likely recording nascent uplift of the Longmenshan deformation belt due to impingement of the Yidun arc complex upon the western margin of the South China block. ?? 2010 Geological Society of America.
The Gogebic Iron Range - A Sample of the Northern Margin of the Penokean Fold and Thrust Belt
Cannon, William F.; LaBerge, Gene L.; Klasner, John S.; Schulz, Klaus J.
2008-01-01
The Gogebic iron range is an elongate belt of Paleoproterozoic strata extending from the west shore of Lake Gogebic in the upper peninsula of Michigan for about 125 km westward into northern Wisconsin. It is one of six major informally named iron ranges in the Lake Superior region and produced about 325 million tons of direct-shipping ore between 1887 and 1967. A significant resource of concentrating-grade ore remains in the western and eastern parts of the range. The iron range forms a broad, gently southward-opening arc where the central part of the range exposes rocks that were deposited somewhat north of the eastern and western parts. A fundamental boundary marking both the tectonic setting of deposition and the later deformation within the Penokean orogen lies fortuitously in an east-west direction along the range so that the central part of the range preserves sediments deposited north of that boundary, whereas the eastern and western parts of the range were deposited south of the boundary. Thus, the central part of the range provides a record of sedimentation and very mild deformation in a part of the Penokean orogen farthest from the interior of the orogen to the south. The eastern and western parts of the range, in contrast, exhibit a depositional and deformational style typical of parts closer to the interior of the orogen. A second fortuitous feature of the iron range is that the entire area was tilted from 40° to 90° northward by Mesoproterozoic deformation so that the map view offers an oblique cross section of the Paleoproterozoic sedimentary sequence and structures. Together, these features make the Gogebic iron range a unique area in which to observe (1) the lateral transition from deposition on a stable platform to deposition in a tectonically and volcanically active region, and (2) the transition from essentially undeformed Paleoproterozoic strata to their folded and faulted equivalents.Paleoproterozoic strata in the Gogebic iron range are part of the Marquette Range Supergroup. They were deposited unconformably on Neoarchean rocks consisting of a diverse volcanic suite (the Ramsay Formation) which was intruded by granitic rocks of the Puritan Quartz Monzonite. The Marquette Range Supergroup in this region consists of a basal sequence of orthoquartzite (Sunday Quartzite) and dolomite (Bad River Dolomite), both of which are part of the Chocolay Group. The group is preserved only in the eastern and western parts of the range but was probably present throughout before the erosion interval that separated it from the overlying Menominee Group. The Menominee Group consists of basal clastic rocks (Palms Formation) that grade upward into the Ironwood Iron-Formation, which is the principal iron-bearing unit of the range. The Ironwood interfingers with the Emperor Volcanic Complex in the eastern part of the range and with volcanic rocks and gabbro in the western part of the range. The Ironwood is overlain unconformably by the Tyler Formation in the central and western parts of the range and by the Tyler’s equivalent, the Copps Formation, in the eastern part of the range.Strata in the central part of the iron range are entirely sedimentary. Deposition occurred in a relatively stable tectonic setting, at least until the deposition of the Tyler Formation. The Tyler consists largely of turbidites deposited in a foreland basin in advance of accreting volcanic arcs to the south. Penokean deformation in the central part of the range was very minor; the evidence of deformation consists of steep faults with small offsets and a few bedding-parallel faults that also have small offsets and that are recognized only in mine workings. In both the eastern and western parts of the iron range, abrupt facies changes mark a passage into a more tectonically and volcanically active belt. These relationships are especially well displayed in the east where a graben, the Presque Isle trough, began to subside during deposition of the Ironwood Iron-Formation. The thickness of the Ironwood increases into the graben and its internal stratigraphy also changes. The most prominent changes in the graben are the presence of a thick volcanic unit, the Emperor Volcanic Complex of the Menominee Group, and comagmatic gabbro sills that interfinger with the Ironwood. In the western part of the range, volcanic rocks and comagmatic gabbro sills are also present in the Ironwood, but a graben that is equivalent to the Presque Isle trough is not evident.Penokean structures are well developed in both the eastern and western parts of the iron range. They consist of folds ranging from outcrop to regional scale and thrust faults which, in places, either repeated the section or detached it from Neoarchean basement. The sharp transition from the little-deformed central part of the range to the more intensely deformed eastern and western parts coincides closely with the earlier developed transition from the stable sedimentary setting in the central part to the tectonically active sedimentation in the east and west parts. The extensional structures that formed during sedimentation may have helped to control the extent of later Penokean compressional structures.
Sisson, V.B.; Ave Lallemant, H.G.; Ostos, M.; Blythe, A.E.; Snee, L.W.; Copeland, Peter; Wright, J.E.; Donelick, R.A.; Guth, L.R.
2005-01-01
The margin of northern Venezuela is a complex zone representing the orogenic events from basement formation to subsequent subduction and exhumation during transpressional collision. This boundary zone has six east-west-trending belts that each record a different segment of its development. This geologic complexity requires radiometric ages to unravel, and we herein provide 48 new ages including U-Pb (4), Rb-Sr (2), 40Ar/39Ar (24), zircon and apatite fission-track (17), and 14C (1) ages to constrain the evolution of three of these belts. These three belts are the Cordillera de la Costa, Caucagua-El Tinaco, and Serran??a del Interior belts. In the Cordillera de la Costa belt, U-Pb geochronologic data indicate portions of the basement igneous and metaigneous rocks formed in the Cambro-Ordovician (513-471 Ma). New 40Ar/39Ar data from Margarita Island indicate that some of the subduction complex was rapidly cooled and exhumed, whereas other portions indicate slower cooling. This contrasts with new 40Ar/39Ar data from the Puerto Cabello. ?? 2005 Geological Society of America.
Contemporary recent extension and compression in the central Andes
NASA Astrophysics Data System (ADS)
Tibaldi, A.; Bonali, F. L.
2018-02-01
Although extension in the high Andes vs. compression in the lowlands has already been widely discussed in the literature, for the first time we recognized both extensional and contractional structures that developed contemporaneously during late Pliocene-Quaternary times in a wide area of the central Andean chain (about 90,000 km2), where crustal earthquake data are missing. This area comprises north-eastern Chile, south-western Bolivia and north-western Argentina, and extends from the Puna Plateau to the Altiplano-volcanic belt. Late Pliocene-Quaternary folds, with hinge lines trending NNE-SSW to N-S, are mostly located along the westernmost part of the volcanic belt and the eastern part of the Western Cordillera. Locally, there are coeval reverse faults, parallel to the folds, which reach up to the surface; particularly, the Miscanti Ridge, Tolocha Fault and La Casualidad Ridge may be the morphostructural expression of tens-km-long fault-propagation folds, which locally show topographic scarps hundreds of meters high. North and east of the contractional structures, we found evidence of late Pliocene-Quaternary normal faults striking N-S in the southern part of the study area, and NW-SE in the northern part. Well-developed grabens are present in the higher areas of the volcanic belt and in the transition zone with the Puna Plateau. The surface rupture zones of normal fault swarms range 8-24 km in length, with single fault strands up to 18 km long, which are typical of tectonic structures. The distribution in space and time of the studied contractional and extensional structures indicates that they originated in the same time period; we thus address the challenging question regarding the possible origin of the stress sources, by analysing possible causes such as volcanotectonics, high topography, orogeny collapse, and gravitational spreading of the orogen, in relation also with the role played by inherited structures. We finally analyse the relations between the different structures and magma upwelling, and the potential for seismic hazard.
NASA Astrophysics Data System (ADS)
Janousek, Vojtech; Konopasek, Jiri; Ulrich, Stanislav
2010-05-01
Crucial information on the Neoproterozoic-Cambrian amalgamation of Western Gondwana is provided by studies of the large Pan-African collisional belt in central-northern Namibia. This so-called Damara Orogen (Miller, 1983) can be subdivided into two branches, the SW-NE trending Damara Belt and a roughly perpendicular, NNW-SSE trending Kaoko Belt further north. The Kaoko Belt consists of two principal crustal units. The easterly part has a Congo Craton affinity (a basement built mostly by ≥ 1.5 Ga granitic gneisses with Neoproterozoic metasedimentary cover), whereas the westerly Coastal Terrane consists of Neoproterozoic (c.850-650 Ma) metapsammites and minor metabasic bodies; no exposures of the basement were found. The at least 180 km long, NNW-SSE trending suture between both units was intruded by numerous syn-tectonic magmatic bodies with ages spanning the interval 580-550 Ma (Seth et al., 1998; Kröner et al., 2004) designated as the Boundary Igneous Complex by Konopásek et al. (2008). The most typical representatives of this syn-collision igneous association are c.550 Ma old K-feldspar-phyric, Bt ± Cam granites-granodiorites of the Amspoort suite, with minor Cpx gabbro and rare two-pyroxene dolerite bodies. The petrological character, whole-rock geochemistry and Sr-Nd isotopic signatures of the scarce Opx-Cpx-Bt dolerites indicate an origin from a CHUR-like mantle-derived melts (87Sr/86Sr550 ~ 0.7045, ɛNd550 ~ 0) modified by extensive (?Ol-) Cpx fractionation. The rest of the suite is interpreted as a product of a high-temperature anatexis of a heterogeneous lower crust, built mainly by immature metapsammites - rich in arc-derived detritus - with minor metabasite and intermediate metaigneous bodies. The most likely source appears to be the anatectic Coastal Terrane gneisses. Yet, partial melting of the so far little constrained Congo Craton cover, if formed by immature and youthful detritus unrelated to the basement, cannot be discounted. In any case, the rather primitive Sr-Nd isotopic compositions of the Amspoort suite (apart from dolerites; ɛNd550 = -3.4 to -5.3, 87Sr/86Sr550= 0.7063-0.711), rule out any major role for the Congo Craton-basement derived material. On a much broader scale, the contribution of Congo-derived material in the Pan-African granitoids in the Kaoko Belt seems to increase southwards from nearly nil in the studied suite, through minimal in Hoanib Valley (Seth et al., 2002) to maximum in southern extremity of the Belt (Jung et al., 2009 and, in particular, van de Flierdt et al., 2003). This research was financially supported by GAÄR Project 205/07/1409 (to JK). Jung, S., et al., 2009. Lithos, 111: 220-235. Konopásek, J., et al., 2008. Journal of the Geological Society, 165, 153-165. Kröner, S., et al., 2004. South African Journal of Geology, 107, 455-476. Miller, R.M., 1983. In: Miller, R.M. (Ed.), Evolution of the Damara Orogen of South West Africa/Namibia. Geological Society of South Africa Special Publications 11, 431-515. Seth, B., et al., 1998. Precambrian Research, 92, 341-363. Seth, B., et al., 2002. South African Journal of Geology, 105, 179-192. van de Flierdt, T. , et al., 2003. Lithos, 67, 205-226.
Seismic velocity structure of the crust in NW Namibia: Impact of rifting and mantle plume activity
NASA Astrophysics Data System (ADS)
Bauer, K.; Heit, B.; Muksin, U.; Yuan, X.
2017-12-01
The continental crust in northwestern Namibiamainly was formed during to the Neoproterozoic assembly of Gondwana. The collision of old African and South American cratonic coressuch as the Congo, Kalahari and Rio de la Plata cratons led tothe development of the Pan-African Damara orogen. The fold systemconsists of an intracratonic branch in northern central Namibia (named Damara Belt), and two coast-parallel branches, the Kaoko Belt in northern Namibia and the Gariep Belt in the border region between Namibia and theRepublic of South Africa. During the Early Cretaceous opening of the South Atlantic ocean, the crust in NW Namibia was prominently affected by the Tristan da Cunha mantle plume, as evidenced by the emplacement of the Etendeka continental flood basalts.A local earthquake tomography was carried out in NW Namibia to investigateif and to what degree the deeper continental crust was modified by the magmaticactivity during rifting and the impingement of the Tristan da Cunhamantle plume. We analyzed data from 28 onshore stations of the temporaryWALPASS seismic network. Stations were covering the continental marginaround the landfall of the Walvis Ridge, parts of the Kaoko Belt and Damara Belt,and marginally the southwestern edges of the Congo craton.First arrivals of P and S waves were identified and travel times werepicked manually. 1D inversion was carried out with VELEST to derivestarting models and the initial seismicity distribution, and SIMUL2000was used for the subsequent 3D tomographic inversion. The resultingseismicity distribution mainly follows the structures of the Pan-Africanorogenic belts. The majority of events was localized in the upper crust,but additional seismicity was also found in the deeper crust.An anomaly of increased P velocities is revealed in the deep crust under the Etendekaflood basalt province. Increased P velocities can be explained by mafic and ultra-maficmaterial which intruded in the lower crust. The anomaly appears to be rather spot-shaped and isolated than representing a more elongated feature in landward extension of the Walvis Ridge. Similar observations werereported from previous active seismic studies in the same region.
Vallini, D.A.; Cannon, W.F.; Schulz, K.J.; McNaughton, N.J.
2007-01-01
Paleoproterozoic strata in northern Michigan, Wisconsin, and Minnesota were deposited between 2.3 and 1.75 Ga within the rifted margin and subsequent foreland basin of the Penokean orogen. These strata show evidence for multiple regional metamorphic events previously attributed entirely to the Penokean orogeny (1875-1835 Ma). Metasandstones from the Marquette Range Supergroup and the Animikie, Mille Lacs, and North Range Groups were sampled at multiple localities across Minnesota, Wisconsin and Michigan for metamorphic xenotime suitable for in situ SHRIMP U-Pb geochronology. All samples are from the northern Penokean foreland basin where the metamorphic grade is greenschist to sub-greenschist and the strata are virtually undeformed. Xenotime U-Pb ages in these samples have a bimodal population with means of 1786 ?? 4 Ma (n = 32) and 1861 ?? 10 Ma (n = 9). Xenotime of both ages are contained in metasandstones from the basal Chocolay Group in Michigan and Wisconsin and the Mille Lacs Group and North Range Groups in Minnesota. The older age records a regional low-temperature thermal event that is slightly older than the overlying Menominee Group in Michigan and the Animikie Group in Minnesota and Ontario. This 1861 Ma event coincides with regional uplift that led to the formation of the unconformity between the Menominee Group and the overlying Baraga Group in Michigan; hence xenotime growth must have occurred at shallow burial depths. Younger units from the Menominee and Baraga Groups in Michigan and the Animikie Group in Minnesota, record only the 1786 Ma event. A dominant 1800-1790 Ma metamorphic monazite population that overprints Penokean-interval monazite has been documented within amphibolite- to granulite-facies rocks immediately north of the Niagara Fault Zone within the vicinity of gneiss domes and granitic plutons. In contrast, the 1786 Ma xenotime ages are from low-grade, virtually undeformed rocks 50-150 km from the high-grade zones and thus do not appear to reflect a local thermal imprint. Rather, the geographic extent of the 1786 Ma xenotime growth event suggests that it reflects a basin-wide, subtle thermal pulse. It is proposed that the xenotime ages record widespread subtle heating triggered by renewed subduction along the orogen due to Yavapai-interval convergence. The 1800-1700 Ma Yavapai terrane forms an accretionary belt throughout the central and southwestern U.S. and truncates the southern part of the Penokean orogen in central Wisconsin and southeastern Minnesota, about 200 km south of the sample sites. Alternatively, an 1800-1765 Ma interval of gravitational collapse of overthickened crust of the Penokean orogen immediately north of the Niagara Fault Zone may have driven a northward flow of hydrothermal fluids which subtly but pervasively altered the northern parts of the Penokean foreland and resulted in xenotime growth. ?? 2007 Elsevier B.V. All rights reserved.
Adriatic indentation of the Eastern Alps - nature vs. analogue models
NASA Astrophysics Data System (ADS)
Favaro, S.; Scharf, A.; Schuster, R.; Handy, M. R.
2013-12-01
The Eastern Alps underwent late Oligocene-Miocene indentation by the Adriatic microplate, followed by rapid Miocene exhumation in the Tauern Window and orogen-parallel escape. Analogue models of indentation in the Eastern Alps indicate that exhumation of orogenic crust in front of the Adriatic indenter was coeval, with faults and post-nappe folds forming an asymmetrical conjugate pattern in front of the indenting block (Ratschbacher et al 1991, Rosenberg et al 2007). The amount and rate of exhumation is greatest at this location, but decrease laterally towards an unconfined boundary of the models that represents the retreating Carpathian subduction orogen. In nature, however, isotopic age patterns of deeply buried and exhumed basements rocks in the Tauern Window of the Eastern Alps indicate that cooling and possibly also exhumation were diachronous along strike of the orogen. In the westernmost Tauern Window, previous thermal modeling of fission-track ages (Fügenschuh et al 1997) revealed that rapid exhumation (≥ 1mm/a) lasted from 20-13 Ma and appears to have been triggered by sinistral transpression along the Guidicarie Belt beginning in Late Oligocene time. Rapid cooling (≥25°C/Ma) from 550 to 270°C lasted from 18-12 Ma (von Blanckenburg et al 1989; Fügenschuh et al 1997). In the easternmost part, however, rapid cooling from a similar peak temperature lasted from 23-20 Ma and ended no later than 17 Ma. Thus, rapid exhumation cannot have begun later than 23-21 Ma. Cooling patterns in the eastern central part of the Tauern Window are more complex and reflect the combined effects of doming and extensional exhumation. New Rb-Sr mica ages in post-nappe basement domes generally decrease from NW (muscovite: 26 Ma; biotite: 22 Ma) to SE (muscovite: 22 Ma; biotite: 18 Ma). We interpret these trends to show that doming began in the south-central part of the Tauern Window and then migrated to the SE while the entire basement nappe pile underwent orogen-parallel stretching. Tectonic thinning and excision of nappe units is greatest in the footwalls of low-angle normal faults at either end of the Tauern Window, indicating that the contribution of tectonic unroofing to the total amount of denudation increased going from the center to the ends of the Tauern Window. Although the map pattern of folding, faulting and exhumation looks similar in nature as in analogue models of Adriatic indentation, the actual timing of deformation in front of the indenter is not coeval. We attribute this discrepancy to one or a combination of two factors: (1) counterclockwise N-ward subduction of Adriatic lithosphere below the Tauern Window such that indentation migrated from E to W; (2) the irregular geometry of the leading edge of the indenter, with more rigid crustal units in the east leading to earlier strain localization than in the west.
NASA Astrophysics Data System (ADS)
Liu, Shen; Hu, Ruizhong; Gao, Shan; Feng, Caixia; Qi, Youqiang; Wang, Tao; Feng, Guangying; Coulson, Ian M.
2008-12-01
Post-orogenic alkaline intrusions and associated mafic dikes from the Sulu orogenic belt of eastern China consist of quartz monzonites, A-type granites and associated mafic dikes. We report here U-Pb zircon ages, geochemical data and Sr-Nd-Pb-Hf isotopic data for these rocks. The SHRIMP U-Pb zircon analyses yield consistent ages ranging from 120.3 ± 2.1 Ma to 126.9 ± 1.9 Ma for five samples from the felsic rocks, and two crystallization ages of 119.0 ± 1.7 Ma and 120.2 ± 1.9 Ma for the mafic dikes. The felsic rocks and mafic dikes are characterized by high ( 87Sr/ 86Sr) i ranging from 0.7079 to 0.7089, low ɛNd( t) values from - 15.3 to - 19.2, 206Pb/ 204Pb = 16.54-17.25, 207Pb/ 204Pb = 15.38-15.63, 208Pb/ 204Pb = 37.15-38.45, and relatively uniform ɛHf( t) values of between - 21.6 ± 0.6 and - 23.7 ± 1.0, for the magmatic zircons. The results suggest that they were derived from a common enriched lithospheric mantle source that was metasomatized by foundered lower crustal eclogitic materials before magma generation. Geochemical and isotopic characteristics imply that the primary magma to these rocks originated through partial melting of ancient lithospheric mantle that was variably hybridized by melts derived from foundered lower crustal eclogite. The mafic dikes may have been generated by subsequent fractionation of clinopyroxene, whereas the felsic rocks resulted from fractionation of potassium feldspar, plagioclase and ilmenite or rutile. Both were not affected by crustal contamination. Combined with previous studies, these findings provide new evidence that the intense lithospheric thinning beneath the Sulu belt of eastern China occurred between 119 and 127 Ma, and that this was caused by the removal of the lower lithosphere (mantle and lower crust).
NASA Astrophysics Data System (ADS)
Wang, Chun-Long; Wang, Yi-Tian; Dong, Lian-Hui; Qin, Ke-Zhang; Evans, Noreen J.; Zhang, Bing; Ren, Yi
2018-01-01
Hosted by volcaniclastics of the Carboniferous Dahalajunshan Formation, the Songhu iron deposit is located in the central segment of the Awulale metallogenic belt, Chinese Western Tianshan. Mineralization and alteration are structurally controlled by orogen-parallel NWW-striking faults. Integrating with mineralogical and stable isotopic analyses based on paragenetic relationships, two types of iron mineralization have been identified. The deuteric mineralization (Type I) represented by brecciated, banded, and disseminated-vein ores juxtaposed with potassic-calcic alteration in the inner zone, which was formed from a magmatic fluid generated during the late stages of regional volcanism. In contrast, the volcanic-hydrothermal mineralization (Type II) is characterized by hydrothermal features occurring in massive and agglomerated ores with abundant sulfides, and was generated from the magmatic fluid with seawater contamination. Two volcaniclastic samples from the hanging and footwall of the main orebody yield zircon U-Pb ages of 327.8 ± 3.1 and 332.0 ± 2.0 Ma, respectively, which indicate Middle Carboniferous volcanism. Timing for iron mineralization can be broadly placed in the same epoch. By reviewing geological, mineralogical, and geochemical features of the primary iron deposits in the Awulale metallogenic belt, we propose that the two types of iron mineralization in the Songhu iron deposit are representative regionally. A summary of available geochronological data reveals Middle-Late Carboniferous polycyclic ore-related volcanism, and nearly contemporaneous iron mineralization along the belt. Furthermore, petro-geochemistry of volcanic-volcaniclastic host rocks indicates that partial melting of a metasomatized mantle wedge under a continental arc setting could have triggered the continuous volcanic activities and associated metallogenesis.
NASA Astrophysics Data System (ADS)
Capaldi, Tomas N.; Horton, Brian K.; McKenzie, N. Ryan; Stockli, Daniel F.; Odlum, Margaret L.
2017-12-01
This study analyzes detrital zircon U-Pb age populations from Andean rivers to assess whether active synorogenic sedimentation accurately records proportional contributions from varied bedrock source units across different drainage areas. Samples of modern river sand were collected from west-central Argentina (28-33°S), where the Andes are characterized by active uplift and deposition in diverse contractional provinces, including (1) hinterland, (2) wedge-top, (3) proximal foreland, and (4) distal broken foreland basin settings. Potential controls on sediment provenance were evaluated by comparing river U-Pb age distributions with predicted age spectra generated by a sediment mixing model weighted by relative catchment exposure (outcrop) areas for different source units. Several statistical measures (similarity, likeness, and cross-correlation) are employed to compare how well the area-weighted model predicts modern river age populations. (1) Hinterland basin provenance is influenced by local relief generated along thrust-bounded ranges and high zircon fertility of exposed crystalline basement. (2) Wedge-top (piggyback) basin provenance is controlled by variable lithologic durability among thrust-belt bedrock sources and recycled basin sediments. (3) Proximal foreland (foredeep) basin provenance of rivers and fluvial megafans accurately reflect regional bedrock distributions, with limited effects of zircon fertility and lithologic durability in large (>20,000 km2) second-order drainage systems. (4) In distal broken segments of the foreland basin, regional provenance signatures from thrust-belt and hinterland areas are diluted by local contributions from foreland basement-cored uplifts.
NASA Astrophysics Data System (ADS)
Kruk, Nikolai N.; Kuibida, Yana V.; Shokalsky, Sergey P.; Kiselev, Vladimir I.; Gusev, Nikolay I.
2018-06-01
The Cambrian-Ordovician transition was the time of several key events in the history of Central Asia. They were the accretion of Mariana-type island arc systems to the Siberian continent, the related large-scale orogeny and intrusions of basaltic and granitic magma and the formation of a huge turbidite basin commensurate with the Bengal Gulf basin in the western part of the Central Asian orogenic belt (CAOB). The structure of the basin, as well as the sources and environments of deposition remain open to discussion. This paper presents new major- and trace-element data on Late-Cambrian-Early Ordovician turbidites from different parts of the Russian Altai and a synthesis of Nd isotope composition and ages of detrital zircons. The turbidites share chemical similarity with material shed from weathered continental arcs. Broad variations of CIA (39-73) and ICV (0.63-1.66) signatures in sandstones suggest origin from diverse sources and absence of significant sorting. Trace elements vary considerably and have generally similar patterns in rocks from different terranes. On the other hand, there are at least two provinces according to Nd isotope composition and age of detrital zircons. Samples from eastern Russian Altai contain only Phanerozoic zircons and have Nd isotope ratios similar to those in Early Cambrian island arcs (εNdt + 4.4… + 5.4; TNd(DM)-2-st = 0.8-0.9 Ga). Samples from central, western, and southern parts of Russian Altai contain Precambrian zircons (some as old as Late Archean) and have a less radiogenic Nd composition (εNdt up to -3.6; TNd(DM)-2-st up to 1.5 Ga). The chemical signatures of Late Cambrian to Early Ordovician turbidites indicate a provenance chemically more mature than the island arc rocks, and the presence of zircons with 510-490 Ma ages disproves their genetic relation with island arcs. The turbidite basin formed simultaneously with peaks of granitic and alkali-basaltic magmatism in the western Central Asian orogen and resulted from interplay of plate tectonic and plume tectonic processes.
Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.
2015-01-01
The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided detritus to the early Brookian foreland basin of the western Brooks Range: (1) local sources in the oceanic Angayucham terrane, which forms the upper plate of the orogen, and (2) a sedimentary source region outside of northern Alaska. Pre-Jurassic zircons and continental grain types suggest the latter detritus was derived from a thick succession of Triassic turbidites in the Russian Far East that were originally shed from source areas in the Uralian-Taimyr orogen and deposited in the South Anyui Ocean, interpreted here as an early Mesozoic remnant basin. Structural thickening and northward emplacement onto the continental margin of Chukotka during the Brookian structural event are proposed to have led to development of a highland source area located in eastern Chukotka, Wrangel Island, and Herald Arch region. The abundance of detritus from this source area in most of the samples argues that the Colville Basin and ancestral foreland basins were supplied by longitudinal sediment dispersal systems that extended eastward along the Brooks Range orogen and were tectonically recycled into the active foredeep as the thrust front propagated toward the foreland. Movement of clastic sedimentary material from eastern Chukotka, Wrangel Island, and Herald Arch into Brookian foreland basins in northern Alaska confirms the interpretations of previous workers that the Brookian deformational belt extends into the Russian Far East and demonstrates that the Arctic Alaska–Chukotka microplate was a unified geologic entity by the Early Cretaceous.
Tracing Archean sulfur across stitched lithospheric blocks
NASA Astrophysics Data System (ADS)
LaFlamme, Crystal; Fiorentini, Marco; Lindsay, Mark; Wing, Boswell; Selvaraja, Vikraman; Occhipinti, Sandra; Johnson, Simon; Bui, Hao Thi
2017-04-01
Craton margins are loci for volatile exchange among lithospheric geochemical reservoirs during crust formation processes. Here, we seek to revolutionise the current understanding of the planetary flux and lithospheric transfer of volatiles during supercontinent formation by tracing sulfur from the atmosphere-hydrosphere through to the lithosphere during crust formation. To do so, we trace the transfer of sulfur by following mass independently fractionated sulfur at ancient tectonic boundaries has the potential to. Mass independent fractionation of sulfur (MIF-S) is a signature (quantified as Δ33S and Δ36S) that is unique to the Archean sedimentary rock record and imparted to sulfur reservoirs that interacted with the oxygen-poor atmosphere before the Great Oxidation Event (GOE) at ca. 2.4 Ga. Here we present multiple sulfur isotopes from across a Proterozoic post-GOE orogenic belt, formed when Archean cratons were stitched together during supercontinent amalgamation. For the first time, multiple sulfur isotope data are presented spatially to elucidate volatile pathways across lithospheric blocks. Across the orogenic belt, the Proterozoic granitoid and hydrothermal rock records proximal to Archean cratons preserve values of Δ33S up to +0.8\\permil and a Δ33S-Δ36S array of -1.2, whereas magmatic and hydrothermal systems located more distally from the margin do not display any evidence of MIF-S. This is the first study to identify MIF-S in a Proterozoic orogen indicates that tectonic processes controlling lithospheric evolution and crust formation at tectonic boundaries are able to transfer sulfur from Archean supracrustal rock reservoirs to newly formed Proterozoic granitoid crust. The observation of MIF-S in the Proterozoic granitoid rock record has the potential to revolutionise our understanding of secular changes in the evolution of crust formation mechanisms through time.
Seismic anisotropy and mantle creep in young orogens
Meissner, R.; Mooney, W.D.; Artemieva, I.
2002-01-01
Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.
The immature thrust belt of the northern front of the Tianshan
NASA Astrophysics Data System (ADS)
Chen, Ke; Gumiaux, Charles; Augier, Romain; Chen, Yan; Wang, Qingchen
2010-05-01
The modern Tianshan (central Asia), which extends east-west on about 2500 km long with an average of more than 2000 m in altitude, is considered as a direct consequence of the reactivation of a Paleozoic belt due to the India - Asia collision. At first order, the finite structure of this range obviously displays a significant uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. In order to characterize the coupling history of this Cenozoic orogeny with its northern foreland basin (Junggar basin), a detailed structural field work has been carried out on the northern piedmont of Tianshan. From Wusu to Urumqi, on about 250 km long, the thrusting of the Paleozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is remarkably exposed along several river valleys. In contrast, in other sections, the Triassic to Jurassic sedimentary series can be followed from the basin to the range where they unconformably overlie on the Carboniferous basement. These series are only gently folded along the "range front". These features imply that, at regional-scale, the Cenozoic reactivation of the Tianshan has not produced important deformation along its contact with the juxtaposed Junggar basin. The shortening ascribed to the Cenozoic intra-continental collision would either be localized in the range, mostly accommodated by reactivated Paleozoic structures or faults in the basement units, or in the distal parts of the Junggar basin, by folds and faults within the Cenozoic sedimentary series. Alternative hypothesis would be that the Tianshan uplift and the movements associated with along its northern front structures, which are traditionally assigned to its Cenozoic reactivation, might be reduced. Such characteristic significantly differs from other well-known orogenic ranges, such as the Canadian Rocky Mountains, the Appalachians, the Pyrenees which display highly folded foreland basins and thrust belts with rather well developed range front structures. This suggests that the Tianshan intra-continental range is rather "young" and still at a primary stage of its orogenic evolution. In other words, its front may be considered as an immature thrust belt. If considering the available tomographic data across the Tianshan, its actual uplift may probably be produced by an asymmetric intracontinental deformation mechanism, i.e. a deeper subduction of the Tarim plate below the Tianshan (to the south), with respect to the one of Junggar plate to the north of the range. Consequently, the Tianshan range offers an excellent natural laboratory to study the processes of the on-going orogeny-foreland basin coupling, ancient structures reactivation as well as initiation and development of range front structures.
Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees
NASA Astrophysics Data System (ADS)
Huyghe, Damien; Mouthereau, Frédéric; Emmanuel, Laurent
2012-09-01
Constraining paleoaltimetry of collisional orogens is critical to understand the dynamics of topographic evolution and climate/tectonics retroactions. Here, we use oxygen stable-isotope record on oyster shells, preserved in marine foreland deposits, to examine the past elevation of the Pyrenees during the Eocene. Our approach is based on the comparison with the Paris basin, an intracratonic basin not influenced by orogenic growth. The finding of a shift of 1.5‰ between 49 and 41 Ma, indicating more negative δ18Oc in the south Pyrenean foreland, is interpreted to reflect the inflow of river water sourced from higher elevation in the Pyrenees. To test this and provide paleoelevation estimate, we adopt a morphologic-hydrological model accounting for the hypsometry of drainage basin. Our best fitting model shows that the Pyrenees rose up to 2000 m. This indicates that the Pyrenees reached high elevation in the Eocene, thus providing new critical constraints on their long-term orogenic development. δ18O of marine mollusc shells are proved potentially attractive for paleoelevation studies, especially for mountain belts where elevated continental surfaces have not been preserved.
NASA Astrophysics Data System (ADS)
Walsh, L. S.; Martin, A. J.; Ojha, T. P.; Fedenczuk, T.
2009-12-01
To investigate feedbacks between tectonics and erosion in the Himalaya-Tibet orogen we compare high resolution digital topography with detailed geologic maps of the Modi Khola valley in central Nepal. We examine the influence of lithologic contacts and structures on river steepness and concavity. The trace of the Bhanuwa fault, a large normal fault in Greater Himalayan rocks, coincides with the steepest location on the river profile where river steepness (ksn) reaches 884 m0.9. Transitions in ksn also occur at 1) the Romi fault, another normal fault, 2) within the Kuncha formation, 3) within Greater Himalayan rocks at the Formation I - Formation II boundary, and 4) between quartzite- and phyllite-rich parts of the Fagfog Formation. We assess mechanisms for ksn transitions on the Modi Khola by examining the influence of precipitation variability, glacial and landslide dams, tributary junctions, changes in lithology, and rock uplift on the topography. Although changes in lithology and/or landslide dams potentially explain all ksn extrema and transitions, these changes in river steepness consistently occur at normal faults suggesting possible recent motion on some of them. In detail, the Main Central thrust appears not to be the location of a major steepness change. Correlations of ksn with normal faults and lithologic contacts exhibit an important component of the landscape evolution process occurring in central Nepal and potentially other mountain belts.
NASA Astrophysics Data System (ADS)
Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.
2013-04-01
Orogeny involves magmatic, metamorphic, deformational and erosional processes that are caused by or lead to crustal thickening and the development of high topography. In general, these processes operate along the margins of continental plates, either as a result of subduction of oceanic crust (accretionary) or collision between two or more continental plates (collisional). Many of these processes are common to accretionary and collisional orogeny, and do not uniquely discriminate between the two. With only a fragmented geological record, unravelling the style of orogenesis in ancient orogens may, therefore, be far from straightforward. Adding to the complexity, modern continental margins, e.g., the southern Asian margin, display significant variation in orogenic style along strike, rendering along-strike comparisons and correlations unreliable. The late Mesoproterozoic Sveconorwegian province in SW Baltica is traditionally interpreted as the eastward continuation of the Grenville province in Canada, resulting from collision with Amazonia and forming a central part in the assembly of the Rodinia supercontinent. We recently proposed that the Sveconorwegian segment of this orogen formed as a result of accretionary processes rather than collision. This hypothesis was based mainly on considerations of the Sveconorwegian magmatic evolution. Here, we show how the metamorphic/structural record supports (or at least may be integrated in) our model as well. The key elements in our accretionary model are: 1) formation of the Sirdal Magmatic Belt (SMB) between 1070 and 1020 Ma, most likely representing a continental arc batholith. Coeval deformation and high-grade metamorphism farther east in the orogen could represent deformation in the retroarc. 2) cessation of SMB magmatism at 1020 Ma followed by UHT conditions at 1010-1005 Ma, with temperatures in excess of 1000°C at 7.5 kbar. Subduction of a spreading ridge at ca. 1020 Ma would result in an end to arc magmatism and juxtaposition of hot asthenosphere and lower crust. This is a plausible explanation for the UTH event, in contrast to simple crustal thickening and radiogenic self-heating that are generally considered unable to produce such PT conditions. 3) long-lived (990-920 Ma) ferroan magmatism, temporally associated with high-grade metamorphism and large-scale deformation, probably reflecting formation inboard of an alternating compressional/extensional continental margin. We have no known record of events after ca. 920 Ma, but it is conceivable that the active margin persisted well into the Neoproterozoic, possibly indicated by metamorphic and magmatic activity recorded in Grenville/Sveconorwegian orogen-derived sedimentary rocks.
Lithosphere structure of the west Qinling orogenic belt revealed by deep seismic reflection profile
NASA Astrophysics Data System (ADS)
Wang, H.
2009-12-01
The west Qinling orogen located in the northeastern margin of the Qinghai-Tibet plateau, is transformation zone between the N-S-trending and E-W-trending tectonics in the Chinese continent. Further study of the fine crust structure of the west Qinling orogen and its relationships with surrounding basins have very important significance for understanding tectonic response of the northeastern margin of the plateau about collision convergence of the Indian block and Asian block and learning formation and evolution of the plateau. In 2009, we reprocessed the data of the Tangke-Hezuo deep seismic reflection profiles collected in 2004 across the west Qinling orogen and the northern Songpan block. The new results show the lithosphere fine structure of the west Qinling orogen. Reflection features indicate that an interface at 6.0-7.0s (TWT) divided the crust into the upper and lower crust, whose structural style and deformation are totally different. Integrating geological data, we deduce that the interface at 6.0-7.0s (depth with 18-21 km) was the basement detachment, which made deformation decoupled of the upper and lower crust. The multi-layered reflections in the upper crust reveal the sedimentary covers of the west Qinling orogen, disclose the thickness of the various structure layer and deformation degree, and provide a basis for the prospective evaluation of a multi-metallic mineral and energy exploration. The north dipping strong reflection characteristics of the lower crust in the west Qinling orogen constituted imbricate structure, such imbricate structural features provide seismology evidence for researching the west Qinling thrusting toward the northern Songpan block, and have great significance for studying formation and evolution of the Songpan-Garze structure. Moho reflections are observed around 17.0-17.2s, characterized by nearly horizontal reflections, which implies the west Qinling orogen underwent an intense extension post orogeny caused the lithosphere extensional thinning formed a nearly level Moho reflections. The study was financed by National Natural Science Foundation of china (No. 40830316 and 40604010),the Basic outlay of scientific research work from Ministry of Science and Technology of the People’s Republic of China and SINOPPROBE-02.
NASA Astrophysics Data System (ADS)
Malusà, Marco G.; Wang, Jiangang; Garzanti, Eduardo; Liu, Zhi-Chao; Villa, Igor M.; Wittmann, Hella
2017-10-01
Detrital thermochronology is often employed to assess the evolutionary stage of an entire orogenic belt using the lag-time approach, i.e., the difference between the cooling and depositional ages of detrital mineral grains preserved in a stratigraphic succession. The impact of different eroding sources to the final sediment sink is controlled by several factors, including the short-term erosion rate and the mineral fertility of eroded bedrock. Here, we use apatite fertility data and cosmogenic-derived erosion rates in the Po river catchment (Alps-Apennines) to calculate the expected percentage of apatite grains supplied to the modern Po delta from the major Alpine and Apenninic eroding sources. We test these predictions by using a cutting-edge dataset of trace-element and Nd-isotope signatures on 871 apatite grains from 14 modern sand samples, and we use apatite fission-track data to validate our geochemical approach to provenance discrimination. We found that apatite grains shed from different sources are geochemically distinct. Apatites from the Lepontine dome in the Central Alps show relative HREE enrichment, lower concentrations in Ce and U, and higher 147Sm/144Nd ratios compared to apatites derived from the External Massifs. Derived provenance budgets point to a dominant apatite contribution to the Po delta from the high-fertility Lepontine dome, consistent with the range independently predicted from cosmonuclide and mineral-fertility data. Our results demonstrate that the single-mineral record in the final sediment sink can be largely determined by high-fertility source rocks exposed in rapidly eroding areas within the drainage. This implies that the detrital thermochronology record may reflect processes affecting relatively small parts of the orogenic system under consideration. A reliable approach to lag-time analysis would thus benefit from an independent provenance discrimination of dated mineral grains, which may allow to proficiently reconsider many previous interpretations of detrital thermochronology datasets in terms of orogenic-wide steady state.
NASA Astrophysics Data System (ADS)
Zheng, Zhen; Chen, Yan-Jing; Deng, Xiao-Hua; Yue, Su-Wei; Chen, Hong-Jin; Wang, Qing-Fei
2018-01-01
The Qiman Tagh of the East Kunlun Orogen, NW China, lies within the Tethysides and hosts a large W-Sn belt associated with the Bashierxi monzogranite. To constrain the origin of the granitic magmatism and its relationship with W-Sn mineralization and the tectonic evolution of the East Kunlun Orogen and the Tethys, we present zircon U-Pb ages and Hf isotopic data, and whole-rock compositional and Sr-Nd-Pb isotopic data of the Bashierxi monzogranite. The granite comprises quartz, K-feldspar, plagioclase, and minor muscovite, tourmaline, biotite, and garnet. It contains high concentrations of SiO2, K2O, and Al2O3, and low concentrations of TiO2 and MgO, indicating a peraluminous high-K calc-alkaline affinity. The rocks are enriched in Rb, U, Pb, and light rare earth elements, and relatively depleted in Eu, Ba, Nb, Sr, P, and Ti, and are classified as S-type granites. Twenty zircon grains yield a weighted mean 238U/206Pb age of 432 ± 2.6 Ma (mean square weighted deviation = 1.3), indicating the occurrence of a middle Silurian magmatic event in the region. Magmatic zircons yield εHf(t) values of -6.7 to 0.7 and corresponding two-stage Hf model ages of 1663-1250 Ma, suggesting that the granite was derived from Mesoproterozoic crust, as also indicated by 207Pb/206Pb ages of 1621-1609 Ma obtained from inherited zircon cores. The inherited zircon cores yield εHf(t) values of 8.3-9.6, which indicate the generation of juvenile crust in the late Paleoproterozoic. Samples of the Bashierxi granite yield high initial 87Sr/86Sr ratios and radiogenic Pb concentrations, and negative εNd(t) values. Isotopic data from the Bashierxi granite indicate that it was derived from partial melting of ancient (early Paleozoic to Mesoproterozoic) sediments, possibly representing recycled Proterozoic juvenile crust. Middle Silurian granitic magmatism resulted from continental collision following closure of the Proto-Tethys Ocean. The Qiman Tagh represents a Caledonian orogenic belt containing S-type granites and associated W-Sn deposits.
NASA Astrophysics Data System (ADS)
Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic
2017-04-01
The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is recorded exclusively along the eastern margin of the Slave Province. Metamorphism ca. 1996 Ma, recorded in one high-grade gneiss from the central plutonic belt appears to reflect a regional contact metamorphism associated with intrusion of 2000 Ma plutons. Throughout the TTZ, a selection of monazite grains included in garnet porphyroblasts define a metamorphic event ca. 1962 Ma. One sample from the eastern margin of the Slave Province similarly records metamorphism at 1961 Ma in monazite grains in the matrix. This sample interestingly does not record the ca. 2580 Ma metamorphism typical of the Slave Province. The longest lived and most wide spread metamorphic event in the TTZ occurred ca. 1922 to 1883 Ma. This event is interpreted as the main compressional/collisional and anatectic event, with partial melting forming the extensive ca. 1910 Ma garnet-leucogranite belts. Three samples, located in the eastern margin of the Slave province, the Ellice River domain and the eastern plutonic belt, record younger metamorphism at ca. 1814 Ma. These events may represent post-collisional transpression coeval with movement along nearby regional-scale faults.
NASA Astrophysics Data System (ADS)
Vishnevskaya, V. S.; Filatova, N. I.
2017-09-01
Jurassic-Cretaceous siliceous-volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk-Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk-Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal-climate settings were juxtaposed into allochthonous units.
Deformation Mechanisms of Darreh Sary Metapelites, Sanandaj‒Sirjan Zone, Iran
NASA Astrophysics Data System (ADS)
Hemmati, O.; Tabatabaei Manesh, S. M.; Nadimi, A. R.
2018-03-01
The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275-375, 375-500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.
NASA Astrophysics Data System (ADS)
Zamani, Ahmad; Samiee, Jafar; Kirby, Jon F.
2014-11-01
The effective elastic thickness, Te, has been calculated in the collision zone between Arabia and Eurasia in Iran from the wavelet coherence. The wavelet coherence is calculated from Bouguer anomalies and topography data using the isotropic fan wavelet method, and gives Te values between 14.2 and 62.2 km. The lower value is found in the Central Iranian Blocks and the East Iranian Belt which are bounded by several large strike-slip faults with lithospheric origin. The higher value occurs in the east of the South Caspian Sea Basin. The resulting Te map shows positive and negative correlation with shear wave velocity and surface heat flow, respectively. A comparison between the seismogenic thickness (Ts) and Te in Iran suggests that Te > Ts. Results of the load ratio in Iran indicate that in most of the study area surface loads are much more prevalent than subsurface loads, except in the Central Iranian Blocks and NW of Iran. Intermediate to low Te values in Iran were inherited from multiple rifting and orogenic activities from Late Precambrian (∼650 Ma) to present day which are not only reflected in thin and warm lithosphere but also an increasing seismicity rate.
NASA Astrophysics Data System (ADS)
Gürer, Derya; Darin, Michael H.; van Hinsbergen, Douwe J. J.; Umhoefer, Paul J.
2017-04-01
Because subduction is a destructive process, the surface record of subduction-dominated systems is naturally incomplete. Sedimentary basins may hold the most complete record of processes related to subduction, accretion, collision, and ocean closure, and thus provide key information for understanding the kinematic evolution of orogens. In central and eastern Anatolia, the Late Cretaceous-Paleogene stratigraphic record of the Ulukışla and Sivas basins supports the hypothesis that these once formed a contiguous basin. Importantly, their age and geographic positions relative to their very similar basement units and ahead of the Arabian indenter provide a critical record of pre-, syn- and post-collisional processes in the Anatolian Orogen. The Ulukışla-Sivas basin was dissected and translated along the major left-lateral Ecemiş fault zone. Since then, the basins on either side of the fault evolved independently, with considerably more plate convergence accommodated to the east in the Sivas region (eastern Anatolia) than in the Ulukışla region (central Anatolia). This led to the deformation of marine sediments and underlying ophiolites and structural growth of the Sivas Fold-and-Thrust Belt (SSFTB) since latest Eocene time, which played a major role in marine basin isolation and disconnection, along with a regionally important transition to continental conditions with evaporite deposition starting in the early Oligocene. We use geologic mapping, fault kinematic analysis, paleomagnetism, apatite fission track (AFT) thermochronology, and 40Ar/39Ar geochronology to characterize the architecture, deformation style, and structural evolution of the region. In the Ulukışla basin, dominantly E-W trending normal faults became folded or inverted due to N-S contraction since the Lutetian (middle Eocene). This was accompanied by significant counter-clockwise rotations, and post-Lutetian burial of the Niǧde Massif along the transpressional Ecemiş fault zone. Since Miocene time, the Ecemiş fault zone has been active as an extensional structure responsible for the re-exhumation of the Niǧde Massif in its footwall. To the east and in front of the Arabian indenter, the Sivas Basin evolved during Paleogene collision of the Tauride micro-continent (Africa) with the Pontides (Eurasia), but prior to Arabia collision. The thin-skinned SSFTB is a >300 km-long by 30 km-wide E-W-elongate, convex-north arcuate belt of compressional structures in Late Cretaceous to Miocene strata. It is characterized by NE- to E-trending upright folds with slight northward asymmetry, south-dipping thrust faults, and overturned folds in Paleogene strata indicating predominantly northward vergence. Several thrusts are south-vergent, typically displacing younger (Miocene) units. Structural relationships and AFT data reveal a sequence of initial crustal shortening and rapid exhumation in the late Eocene and Oligocene, an early-middle Miocene phase of relative tectonic quiescence and regional unconformity development, and a final episode of contraction during the late Miocene. Pliocene and younger units are only locally deformed by either halokinesis or transpression along diffuse and low-strain faults. Paleomagnetic data from the SSFTB reveal significant counter-clockwise rotations since Eocene time. Miocene strata north of the SSFTB consistently show moderate clockwise rotations. Our results indicate that collision-related growth of the orogen ended by the latest Miocene, coeval with or shortly after initiation of the North Anatolian fault zone.
NASA Astrophysics Data System (ADS)
Arai, Tatsuyuki; Omori, Soichi; Komiya, Tsuyoshi; Maruyama, Shigenori
2015-11-01
The 3.7-3.8 Ga Isua Supracrustal Belt (ISB), southwest Greenland, might be the oldest accretionary complex on Earth. Regional metamorphism of the ISB has a potential to constrain the tectonothermal history of the Earth during the Eoarchean. Chemical and modal analyses of metabasite in the study area (i.e., the northeast part of the ISB) show that the metamorphic grade increases from greenschist facies in the northern part of the study area to amphibolite facies in the southern part. To determine the precise metamorphic P-T ranges, isochemical phase diagrams of minerals of metabasite were made using Perple_X. A synthesis of the estimated metamorphic P-T ranges of the ISB indicates that both the metamorphic pressure and temperature increase systematically to the south in the study area from 3 kbar and 380 °C to 6 kbar and 560 °C. The monotonous metamorphic P-T change suggests that the northeast part of the ISB preserves regional metamorphism resulting from the subduction of an accretionary complex although the ISB experienced metamorphic overprints during the Neoarchean. Both the presence of the regional metamorphism and an accretionary complex having originating at subduction zone suggest that the ISB may be the oldest Pacific-type orogenic belt. The progressive metamorphism can be considered as a record of intermediate-P/T type geothermal gradient at the subduction zone in the Eoarchean. Intermediate-P/T type geothermal gradient is typical at the current zones of subducting young oceanic crust, such as in the case of the Philippine Sea Plate in the southwest part of Japan. Considering the fact that almost all metamorphisms in the Archean are greenschist-amphibolite facies, the intermediate-P/T type geothermal gradient at the ISB might have been worldwide in the Archean. This would indicate that the subduction of young micro-plates was common because of the vigorous convection of hot mantle in the Archean.
Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China
Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.
2002-01-01
The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events occurred locally where extension-related Precambrian basement uplifting took place along the craton margin. Fluids for the orogenic gold deposits in the Xiaoqinling, Xiaoshan, and Xiong'ershan areas may have been released from evolving magmas or resulted from prograde metamorphic reactions within the uplift zones. Alternatively, for the epithermal gold deposits at shallower levels in the Xiong'ershan area, gold-transporting fluids were mainly exsolved from coeval magmas, although meteoric water was also involved in these hydrothermal systems.
Age distribution of lithium-cesium-tantalum enriched pegmatites and relationships to orogeny
NASA Astrophysics Data System (ADS)
McCauley, A.; Bradley, D. C.
2011-12-01
Pegmatites account for about one third of the world's lithium production, most of the tantalum, and all of the cesium. Pegmatites enriched in these elements (LCT pegmatites) are widely interpreted as extreme fractionation products of orogenic granitic melts, although it is not always possible to tie a particular pegmatite to a known granite of the same age. The global age distribution of LCT pegmatites is similar to the age distributions of common pegmatites, of orogenic granites, and of detrital zircons. Our geochronological synthesis expands on, and generally confirms, the recent study by Tkachev (2011, Geol. Soc. Spec. Publ. 350, 7). The LCT pegmatite maxima at ca. 2650, 1800, 525, 350, and 100 Ma correspond to times of collisional orogeny and, except for the comparatively minor peak at 100 Ma, to times of supercontinent assembly. Between these pulses are long intervals of few or no LCT pegmatites. Global minima in LCT pegmatite abundance overlap with supercontinent tenures at ca. 2450-2225, 1625-1000, 875-725, and 250-200 Ma, as established, for the Precambrian, from global minima in the abundances of passive margins and detrital zircons. A key question that bears on both metallogenesis and exploration strategies is why are some orogenic belts well endowed with LCT pegmatites, whereas other, seemingly similar orogens are barren? For the present study, LCT pegmatites from the Appalachian, Variscan, Damara, and Argentine Precordilleran orogens are being dated by the U-Pb method to relate pegmatite emplacement to other igneous events, shortening, metamorphism, foreland-basin sedimentation, and, on the broadest scale, to supercontinent assembly. Anecdotal evidence suggests that LCT pegmatites typically are emplaced late in orogenic cycles. In the Inland Branch of the Damaride orogen, about 45 m.y. elapsed between initial arc-passive margin collision at ca. 550 Ma and LCT pegmatite emplacement at ca. 505 Ma, very late in the assembly of this part of Gondwana. In the Appalachian orogen, LCT pegmatites evidently were emplaced at ca. 345 and ca. 275 Ma-long after initial arc-passive margin collision. Neither time is particularly remarkable in the long sequence of Appalachian orogenic events. The ca. 275 Ma event was coeval with the last increment of Appalachian plate convergence during the final assembly of Pangea. Possible triggers for melt generation in various pegmatite provinces include late collisional crustal thickening, shear heating, mantle plumes, slab break-off, and lower lithospheric delamination.
Kinematic stratification in the hinterland of the central Scandinavian Caledonides
Gilotti, J.A.; Hull, J.M.
1993-01-01
A transect through west-central Norway illustrates the changing geometry and kinematics of collision in the hinterland of the central Scandinavian Caledonides. A depth section through the crust is exposed on Fosen Peninsula, comprising three tectonic units separated by two shear zones. The lowest unit, exposed in the Roan window, is a modestly deformed, Caledonian granulite complex framed by a subhorizontal de??collement, with NW-SE oriented lineations and kinematic indicators showing top-to-the-northwest transport. The middle unit, the Vestranden gneiss complex, contains relict granulites, but was penetratively deformed at amphibolite facies to produce an orogen-parallel family of structures during translation on the de??collement. Shallow plunging lineations on steep schistosities are subparallel to fold axes of the dominant, upright, non-cylindrical folds. A small component of sinistral strike slip is also recorded. In contrast, southernmost Fosen Peninsula contains an abundance of cover rocks infolded with Proterozoic basement in a fold nappe, with shallow, E-dipping schistosities, down-dip lineations, and orogen-oblique, top-to-the-west shear sense indicators. A NE-striking, sinistral shear zone separates the gneisses from southern Fosen. Deformation in the Scandian hinterland was partitioned both in space and time, with orogen-parallel extension and shear at middle structural levels and orogen-oblique transport at shallower levels. ?? 1993.
Geology and tectonics of the Archean Superior Province, Canadian Shield
NASA Technical Reports Server (NTRS)
Card, K. D.
1986-01-01
Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.
Oroclines - a century of discourse about curved mountain belts (Petrus Peregrinus Medal Lecture)
NASA Astrophysics Data System (ADS)
Van der Voo, Rob
2014-05-01
Exactly a century ago, in early 2014, a discussion appeared in the Journal of Geology by William H. Hobbs entitled "Mechanics of formation of arcuate mountains". In it, he notes how the concept of nappes "has now overcome all opposition in Switzerland" and, presumably in other countries just as much. With horizontal transport so central to the nappe concept, this must have paved the way for the idea that emplacement of trust sheets may have involved rotations. Where such rotations form a coherent regional pattern, a curved mountain belt may be the result. While the paper by Hobbs does not mention the word orocline, and while the dynamics of the situation is not yet illuminated, one must give credit to him for his foresights. The term "orocline" was introduced by S. Warren Carey of Tasmania in 1955, as part of a kinematic analysis of rhomb- and triangle-shaped basins and curved mountain belts. When the displacements involved in the analysis are undone, as he did, for instance, in the western Mediterranean, a grand scheme of simple convergent and divergent patterns emerges. Noteworthy is, of course, the fact that this mobilistic analysis preceded plate tectonics by more than a decade. From Carey (although not exactly in his words) we have inherited the definition of orocline, as "a thrust belt or orogen that is curved in map-view due to it having been bent or buckled about a vertical axis of rotation". Because oroclinal bending involves rotations, the declinations of paleomagnetic studies can be utilized to support and quantify them, and early efforts were already made in the 1960's and early 1970's to do so (e.g., Krs in the Carpathians; Ries & Shackleton in Cantabria; Roy, Opdyke & Irving in the Central Appalachians; Packer & Stone in Alaska). Curved mountain belts everywhere were subsequently investigated, and typically shown by paleomagnetists to be of the oroclinal variety. Few curved belts turned out to be curved from the start. Because these studies were generally carried out in fold- and trust-belts, the allochthony of the rotated limbs of the thin-skinned belts implied transport above a basal décollement plane located in the upper crust. Some examples of these thin-skinned oroclines will be given. However, in recent years oroclines have also been proposed as resulting from buckling of ribbon continents (e.g., Panama; D'Entrecasteaux) with the noteworthy Great Alaskan Terrane Wreck, as discussed by Stephen Johnston of the University of Victoria, as prime example. And oroclines of truly continental dimensions have been presented on the basis of paleomagnetic and structural data in Hercynian Europe and Asia (the Kazakhstan and Mongol-Okhotsk oroclines). Because most of the fold- and trust-belt oroclines contain thick carbonate formations; paleomagnetists frequently find that these have been remagnetized in geological episodes that are coeval with mountain building nearby in time and space. A connection between remagnetization and clay diagenesis is a possibility that is currently being investigated. If this is shown to be the case, the last word on oroclines will not have been printed.
The Togo-Benin-Nigeria Shield: evidence of crustal aggregation in the Pan-African belt
NASA Astrophysics Data System (ADS)
Ajibade, A. C.; Wright, J. B.
1989-08-01
The importance of "suspect" or "exotic" (i.e. allochthonous) terranes as a major element in collisional orogenic belts is becoming well established. We propose that the southern Pan-African domain in West Africa is an aggregation or " mosaic" of island arcs, interarc (ensimatic) basins and continental fragments. A fracture zone in northwestern Nigeria, already identified as a possible crustal suture, is shown to separate two contrasted basement terranes. Elsewhere in the shield are flat-lying structures characteristic of those associated with crustal convergence, lying within or near to major fractures. Many small ultramafic/mafic bodies occur in the shield and some of them may be remnants of ophiolites caught up in suture zones. An aggregation of allochthonous terranes (island arcs, sedimentary basins and continental blocks) would help to explain: (a) the great width of the Pan-African belt; (b) the spread of ages within the "Pan-African" range (c. 750-450 Ma), also the relict Liberian and Eburnian ages (c. 2700 and 2000 Ma respectively); and the enigmatic Kibaran "event" (c. 1100 Ma); (c) the contrasted volcano-sedimentary characteristics of the different supracrustal belts.
NASA Astrophysics Data System (ADS)
Mazzotti, S.; Tarayoun, A.; Marechal, A.; Audet, P.
2017-12-01
The Northern Cordillera of North America is a type example of present-day strain distribution across a wide orogeny. Several geodynamic models are proposed to explain this large-scale tectonic activity, with two main end-members: strain transfer from the Yakutat collision zone (orogenic float) and strain transfer from upper mantle convection (lithosphere basal traction). One of the main differences between these is the lithosphere vertical rheology profile: the former requires significant crust - mantle decoupling to allow far field strain transfer, whereas the latter requires a vertically coupled lithosphere. Here we combine recent data across the eastern region of the Northern Cordillera (eastern Alaska, Yukon, western Northwest Territories) to characterize its states of strain rate, stress, and crustal and lithospheric structure, in order to test the role of the Yakutat collision and upper mantle convection in its present-day tectonics. Recent GPS data confirm the radial, east- to northeastward motion of the central Yukon and foreland belt (Mackenzie and Richardson Mountains), albeit at a much lower velocity than previously proposed. This motion is primarily accommodated by E-W to NE-SW shortening, mainly in the foreland belt, and small to near-zero lateral motion on the major Denali and Tintina strike-slip faults. Seismic anisotropy data further suggest that these two major faults, like most of the Yukon Cordillera, have kept their early Cenozoic crustal and upper mantle structures, as shown by the fault-parallel (NW-SE) fast anisotropy orientation. We use these new data, combined with numerical models of strain distribution under various boundary conditions, to provide constraints on the respective role of the Yakutat collision and upper mantle convection in the present-day tectonics. Preliminary results suggest that, whichever the driving mechanism (or combination thereof), the total strain associated with the present-day tectonics must remain small in order to preserve the inherited crustal and mantle fabrics. Such small cumulative strain appears in contradiction with a thin decoupling layer (such as lower crust decoupling in the orogenic float model) and seems more suggestive of distributed shear across a large part of the lithosphere.
Seismotectonics of New Guinea: a Model for Arc Reversal Following Arc-Continent Collision
NASA Astrophysics Data System (ADS)
Cooper, Patricia; Taylor, Brian
1987-02-01
The structure and evolution of the northern New Guinea collision zone is deduced from International Seismological Center (ISC) seismicity (1964-1985), new and previously published focal mechanisms and a reexamination of pertinent geological data. A tectonic model for the New Guinea margin is derived which illustrates the sequential stages in the collision and suturing of the Bewani-Toricelli-Adelbert-Finisterre-Huon-New Britain arc to central New Guinea followed by subduction polarity reversal in the west. East of 149°E, the Solomon plate is being subducted both to the north and south; bringing the New Britain and Trobriand forearcs toward collision. West of 149°E the forearcs have collided, and together they override a fold in the doubly subducted Solomon plate lithosphere, which has an axis that is parallel to the strike of the Ramu-Markham suture and that plunges westward at an angle of 5° beneath the coast ranges of northern New Guinea. Active volcanism off the north coast of New Guinea is related to subduction of the Solomon plate beneath the Bismarck plate. Active volcanism of the Papuan peninsula and Quaternary volcanism of the New Guinea highlands are related to slow subduction of the Solomon plate beneath the Indo-Australian plate along the Trobriand Trough and the trough's former extension to the west, respectively. From 144°-148°E, seismicity and focal mechanisms reveal that convergence between the sutured Bismarck and Indo-Australian plates is accommodated by thrusting within the Finisterre and Adelbert ranges and compression of the New Guinea orogenic belt, together with basement-involved foreland folding and thrusting to the south. The Finisterre block overthrusts the New Guinea orogenic belt, whereas the Adelbert block is sutured to New Guinea and overthrusts the oceanic lithosphere of the Bismarck Sea. Along the New Guinea Trench, west of 144°E, seismicity defines a southward dipping Wadati-Benioif zone, and focal mechanisms indicate oblique subduction. Only this oldest, westernmost portion of the collision has progressed past suturing to a full reversal in subduction polarity.
NASA Astrophysics Data System (ADS)
Li, D.
2015-12-01
In this study, we report results from integrated geological, geophysical and geochemical investigations on the Wulungu Depression of the Junggar Basin to understand the Late Paleozoic continental growth of the Junggar area and its amalgamation history with the Altai terrane, within the broad tectonic evolution of the Altai-Junggar area. Based on seismic and borehole data, the Wulungu Depression can be divided into two NW-trending tectonic units by southward thrust faults. The Suosuoquan Sag is composed of gray basaltic andesite, andesite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava gushes and marine sediments from a proximal juvenile provenance, compared to the andesite in the Hongyan High. The SIMS Zircon U-Pb ages for andesites from Late Paleozoic strata indicate that these volcanics in Suosuoquan Sag and Hongyan High erupted at 376.3Ma and 313.4Ma, respectively. Most of the intermediate-mafic volcanic rocks exhibit calc-alkaline affinity, low initial 87Sr/86Sr and positive ɛNd(t) and ɛHf(t) values. Furthermore, these rocks have high Th/Yb and low Ce/Pb and La/Yb ratios as well as variable Ba/Th and Ba/La ratios. These features imply that the rocks were derived from partial melting of a mantle wedge metasomatized by subduction-related components in an island arc setting. The basin filling pattern and the distribution of island arc-type volcanics and their zircon Hf model ages with the eruptive time suggest that the Wulungu Depression represents an island arc-basin system with the development of a Carboniferous retro-arc basin. The gravity and magnetic anomaly data suggest that Altai-Junggar area incorporates three arc-basin belts from north to south: the Karamaili-Luliang-Darbut, Yemaquan-Wulungu, and Dulate-Fuhai-Saur. The recognition of the Wulungu arc-basin system demonstrates that the northern Junggar area is built by amalgamation of multiple Paleozoic linear arcs and accretionary complexes and has important implications for continental crustal growth in Altai-Junggar in particular, and the world's largest Phanerozoic accretionary orogen-the CAOB-in general.
NASA Astrophysics Data System (ADS)
Ying, Yuancan; Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Yang, Yueheng
2017-10-01
The Miaoya carbonatite complex in the South Qinling orogenic belt hosts one of the largest rare earth element (REE)-Nb deposits in China that is composed of carbonatite and syenite. The emplacement age of the complex and the geochronological relationship between the carbonatite and syenite have long been debated. In this study, in situ U-Th-Pb ages have been obtained for the constituent minerals zircon, monazite and columbite from carbonatite and syenite of the Miaoya complex, together with their chemical and isotopic compositions. In situ trace element compositions for zircon from carbonatite and syenite are highly variable. The zircon displays slightly heavy REE (HREE)-enriched chondrite-normalized patterns with no Eu anomaly and various light REE (LREE) contents. In situ Th-Pb dating for zircon from the Miaoya complex by laser ablation ICP-MS yields ages of 442.6 ± 4.0 Ma (n = 53) for syenite and 426.5 ± 8.0 Ma (n = 23) for carbonatite. Monazite from carbonatite and syenite shows similar chondrite-normalized REE patterns and yields a consistent Th-Pb age of 240 Ma. Based on petrographic and chemical composition, columbite from the carbonatite can be identified into two groups. The columbite dispersed within carbonatite is characterized by slightly LREE-enriched chondrite-normalized REE patterns, whereas columbite associated with apatite is characterized by LREE-depleted trends. Columbite has been further determined to have a weighted mean 206Pb/238U age of 232.8 ± 4.5 Ma (n = 9) using LA-ICP-MS. Detailed geochronological and chemical investigations suggest that there were two major episodes of magmatic/metasomatic activities in the formational history of the Miaoya carbonatite complex. The early alkaline magmatism emplaced in the Silurian was related to the opening of the Mianlue Ocean, whereas the late metasomatism or hydrothermal overprint occurred during the Triassic South Qinling orogeny. The latter serves as the major ore formation period for both REE (e.g., monazite) and Nb (e.g., columbite).
NASA Astrophysics Data System (ADS)
Ayarza, P.; Carbonell, R.; Palomeras, I.; Levander, A.; Teixell, A.; Zelt, C. A.; Kchikach, A.
2013-12-01
The Atlas Mountains are an intra-continental Cenozoic orogenic belt located at the southern edge of the diffuse plate boundary zone separating Africa and Europe. Its western part, the Moroccan Atlas, has long been under the scope of geoscientists investigating the origin of its high topography, locally exceeding 4000 m. Geological studies indicate that this mountain belt has experienced low to moderate shortening (<24% from balanced sections) and that topography and shortening do not keep a direct relationship. Forward modelling of the SIMA (Seismic Imaging of the Moroccan Atlas) refraction/wide angle reflection seismic data suggests that the total orogenic shortening, is resolved at depth with a Moho offset and a limited lower crust duplication that defines a 40 km-deep root in the northern part of the central High Atlas. However, the shortening accomodated by this feature (50 km) exceeds that estimated with surface data, and the position of the root appears to the north of the highest topography. In order to achieve a better definition of the crust/mantle boundary and to outline a tectonic model more coherent with surface data, we have used the RAYINVR code to carry out travel-time inversion of the SIMA data set. Inversion results depict a small shift to the south of the crustal root, formerly positioned in the northern part of the High Atlas, and define a thrusted mantle wedge. A limited crustal imbrication also appears in the Middle Atlas. The new velocity model implies complex ray trajectories but provides a better travel-time fit between the observed and the calculated data. Also, the amount of shortening implied by the this model is in agreement with that estimated from geological cross-sections. The final crustal thickness, as yet not exceeding 40 km in the root zone and less than 35 km elsewhere, still implies the need of a significant contribution from the mantle to support the topography of the Atlas mountains
The Tethys Sea and the Alpine-Himalayan orogenic belt; mega-elements in a new global tectonic system
NASA Astrophysics Data System (ADS)
Storetvedt, K. M.
Analysis of Meso-Cainozoic palaeomagnetic data for Africa, India and Eurasia has led to the development of a new mobilistic Alpine plate tectonic model characterized by a hierarchical system of plates in relative rotation. The new model, which discounts seafloor spreading, implies that there have been no significant palaeogeographic changes in the overall distribution of continental and oceanic regions. The mid-oceanic ridges are interpreted as transpressive tectonic features caused by rotation of megaplates (containing both continental and oceanic crust), the isostatic uplift due to crustal/lithospheric thickening giving rise to the general ridge topography as well as to the ridge-parallel structural grain. The new plate tectonic theory gains strong support from a variety of geophysical, geological and palaeoclimatological evidence, and several observations that have remained enigmatic or awkward within the context of the orthodox model can be readily accounted for in the new tectonic framework. The model maintains the Tethys as a relatively narrow epicontinental sea which, during its maximum extent, stretched latitudinally from the Caribbean, across the Central Atlantic to SE Asia. The Alpine-Himalayan orogenic belt developed along the boundary of two megaplates in relative rotation, which provided a transpressive tectonic regime. The location of the plate boundary to the north of the Mediterranean has important implications for discussion of Mediterranean microplates. For example, it now seems that Italy has been subjected to 10-15° of clockwise microplate rotation; previous conclusions in favour of 30-40° of anticlockwise rotation are regarded as artefacts which arise from incorrectly linking the Mediterranean region to the European palaeomagnetic frame instead of to the African one. The model suggests further that the Indo-Pakistani plate was closely tied to Eurasia; this challenges the conventional view that the Peninsula was part of an alleged Gondwanaland. The new pre-drift configuration implies that the Indo-Pakistani plate rotated ˜ 135° clockwise at around the Cretaceous-Tertiary boundary before redocking with Asia in approximately its present relative orientation.
Kirschbaum, M.A.; McCabe, P.J.
1992-01-01
Alluvial strata of the Cretaceous Dakota Formation of southern Utah are part of a transgressive systems tract associated with a foreland basin developed adjacent to the Sevier orogenic belt. These strata contain valley fill deposits, anastomosed channel systems and widespread coals. The coals constitute a relatively minor part of the Dakota Formation in terms of sediment volume, but may represent a substantial amount of the time represented by the formation. The coals are separated by clastic units up to 20 m thick. The mires developed during periods when clastic influx was reduced either by high rates of subsidence close to the thrust belt or by deflection of rivers by emergent thrusts. -from Authors
NASA Astrophysics Data System (ADS)
Ansan, V.; Vergely, P.; Masson, P.
1994-03-01
For more than a decade, the mapping of Venus has revealed a surface that has had a complex volcanic and tectonic history, especially in the northern latitudes. Detailed morphostructural analysis and tectonic interpretations of Central Ishtar Terra, based both on Venera 15/16 and Magellan full-resolution radar images, have provided additional insight to the formation and evolution of Venusian terrains. Ishtar Terra, centered at 0 deg E longitude and 62 deg N latitude, consists of a broad high plateau, Lakshmi Planum, partly surrounded by two highlands, Freyja and Maxwell Montes, which have been interpreted as orogenic belts based on Venera 15 and 16 data. Lakshmi Planum, the oldest part of Ishtar Terra, is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. The plateau is partially covered by fluid lava flows similar to the Deccan traps in India, which underwent a late stage of extensional fracturing. After the extensional deformation of Lakshmi Planum, Freyja and Maxwell Montes were created by regional E-W horizontal shortening that produced a series of N-S folds and thrusts. However, this regional arrangement of folds and thrusts is disturbed locally, e.g. the compressive deformation of Freyja Montes was closely controlled by parallel WNW-ESE-trending left-lateral shear zones and the northwestern part of Maxwell Montes seems to be extruded laterally to the southwest, which implies a second oblique thrust front overlapping Lakshmi Planum. These mountain belts also shows evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trends, especially in Maxwell Montes.
NASA Astrophysics Data System (ADS)
Gianni, G. M.; Echaurren, A.; Folguera, A.; Likerman, J.; Encinas, A.; García, H. P. A.; Dal Molin, C.; Valencia, V. A.
2017-11-01
Contraction in intraplate areas is still poorly understood relative to similar deformation at plate margins. In order to contribute to its comprehension, we study the Patagonian broken foreland (PBF) in South America whose evolution remains controversial. Time constraints of tectonic events and structural characterization of this belt are limited. Also, major causes of strain location in this orogen far from the plate margin are enigmatic. To unravel tectonic events, we studied the Cenozoic sedimentary record of the central sector of the Patagonian broken foreland (San Bernardo fold and thrust belt, 44°30‧S-46°S) and the Andes (Meseta de Chalia, 46°S) following an approach involving growth-strata detection, U-Pb geochronology and structural modeling. Additionally, we elaborate a high resolution analysis of the effective elastic thickness (Te) to examine the relation between intraplate contraction location and variations in lithospheric strength. The occurrence of Eocene growth-strata ( 44-40 Ma) suggests that contraction in the Andes and the Patagonian broken foreland was linked to the Incaic phase. Detection of synextensional deposits suggests that the broken foreland collapsed partially during Oligocene to early Miocene. During middle Miocene times, the Quechua contractional phase produced folding of Neogene volcanic rocks and olistostrome deposition at 17 Ma. Finally, the presented Te map shows that intraplate contraction related to Andean phases localized preferentially along weak lithospheric zones (Te < 15 km). Hence, the observed strain distribution in the PBF appears to be controlled by lateral variations in the lithospheric strength. Variations in this parameter could be related to thermo-mechanical weakening produced by intraplate rifting in Paleozoic-Mesozoic times.
NASA Astrophysics Data System (ADS)
Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.
2004-05-01
The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.
NASA Astrophysics Data System (ADS)
Cao, Sebastián J.; Torres Carbonell, Pablo J.; Dimieri, Luis V.
2018-07-01
The structure of the Fuegian Andes central belt is characterized by a first phase of peak metamorphism and ductile deformation, followed by a brittle-ductile thrusting phase including juxtaposition of different (first phase) structural levels; both related to the closure and inversion of the Late Jurassic-Early Cretaceous Rocas Verdes basin. The second phase involved thrust sheets of pre-Jurassic basement, as well as Upper Jurassic and Lower Cretaceous units from the volcanic-sedimentary fill of the basin. Rock exposures in the Parque Nacional Tierra del Fuego reveal a diversity of metamorphic mineral assemblages, dynamic recrystallization grades and associated structures, evidencing a variety of protoliths and positions in the crust during their orogenic evolution. Among the units present in this sector, the Lapataia Formation portrays the higher metamorphic grade reported in the Argentine side of the Fuegian Andes, and since no precise radiometric ages have been established to date, its stratigraphic position remains a matter of debate: the discussion being whether it belongs to the pre-Jurassic basement, or the Upper Jurassic volcanic/volcaniclastic initial fill of the Rocas Verdes basin. The mapping and petrographic/microstructural study of the Lapataia Formation and those of undoubtedly Mesozoic age, allow to characterize the former as a group of rocks with great lithological affinity with the Upper Jurassic metamorphic rocks found elsewhere in the central belt of the Fuegian Andes. The main differences in metamorphic grade are indebted to its deformation at deeper crustal levels, but during the same stages than the Mesozoic rocks. Accordingly, we interpret the regional structure to be associated with the stacking of thrust sheets from different structural levels through the emplacement of a duplex system during the growth of the Fuegian Andes.
NASA Astrophysics Data System (ADS)
Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng
2018-03-01
The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a relatively strong tectonic reactivation took place along the Late Palaeozoic Bogda rift belt accompanied by relatively large-scale magmatism. The distinct basement structure between the eastern and western Bogda rift could be the structure basis of difference uplift in the Bogda area during the Mesozoic Era. The Early to Middle Jurassic episodic uplift of Eastern Bogda Mountains perhaps was related to the post-collisional convergence of the Qiangtang Block from late Badaowan to early Sangonghe, the closure of the western Mongol-Okhotsk Ocean at the Early-Middle Jurassic boundary and the tectonic accretion at the south Asian margin of Pamir Block during late Middle Jurassic times.
Upper Miocene-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea
NASA Astrophysics Data System (ADS)
Cui, Yuchi; Shao, Lei; Qiao, Peijun; Pei, Jianxiang; Zhang, Daojun; Tran, Huyen
2018-06-01
Provenance studies of the Central Canyon, Qiongdongnan Basin has provided significant insights into paleographic and sedimentology research of the South China Sea (SCS). A suite of geochemical approaches mainly including rare earth elemental (REE) analysis and detrital zircon U-Pb dating has been systematically applied to the "source-to-sink" system involving our upper Miocene-Pliocene Central Canyon sediments and surrounding potential source areas. Based on samples tracing the entire course of the Central Canyon, REE distribution patterns indicate that the western channel was generally characterized by positive Eu anomalies in larger proportion, in contrast to the dominance of negative values of its eastern side during late Miocene-Pliocene. Additionally, for the whole canyon and farther regions of Qiongdongnan Basin, the number of samples bearing negative Eu anomalies tended to increase within younger geological strata. On the other hand, U-Pb geochronology results suggest a wide Proterozoic to Mesozoic age range with peak complexity in Yanshanian, Indosinian, Caledonian and Jinningian periods. However in detail, age combination of most western samples displayed older-age signatures than the eastern. To make it more evidently, western boreholes of the Central Canyon are mainly characterized with confined Indosinian and Caledonian clusters which show great comparability with mafic-to-ultramafic source of Kontum Massif of Central Vietnam, while eastern samples largely bear with distinguishable Yanshanian and Indosinian peaks which more resemble with Hainan Island. Based on geochemistry and geochronology analyses, two significant suppliers and sedimentary infilling processes are generated: (1) the Indosinian collision orogenic belt in central-northern Vietnam, Indochina has ever played significant role in Central Canyon sedimentary evolution, (2) Hainan Island once as a typical provenance restricted within eastern Central Canyon, has been enlarging its influence into the whole channel, even into the farther western regions of Qiongdongnan Basin.
NASA Astrophysics Data System (ADS)
Schiffer, Christian; Stephenson, Randell; Oakey, Gordon N.; Jacobsen, Bo H.
2016-03-01
Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (˜82°-83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (˜35-36 km) and comparable velocity-depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ˜24-30 km in the Eurekan fold and thrust belt (˜79.7°-80.6°N) to ˜16-20 km in the Hazen Stable Block (HSB; ˜80.6°-81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (˜48 km) at ˜79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1-4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.
NASA Astrophysics Data System (ADS)
Hong, Tao; Klemd, Reiner; Gao, Jun; Xiang, Peng; Xu, Xing-Wang; You, Jun; Wang, Xin-Shui; Wu, Chu; Li, Hao; Ke, Qiang
2017-02-01
Precise geochronological constraints of the Irtysh tectonic belt situated between the Saur Island Arc and the Altay Terrane are crucial to a better understanding of the tectonic evolution of the Central Asian Orogenic Belt (CAOB). Recently, we discovered repeatedly deformed arc-related and collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh tectonic belt. In this study, we report new whole-rock geochemical, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our data reveal that 1) arc-related granodioritic porphyries formed at ca. 382-374 Ma. Recrystallized zircon grains from a (ultra-)mylonitic granodiorite of the Laoshankou zone in the southern KTB display a U-Pb age of ca. 360 Ma; 2) syn-collisional granodioritic porphyries, which distribute along faults and parallel to the cleavage, were emplaced at ca. 367-356 Ma, with εHf(t) values varying from + 7.8 to + 14.2 and Hf model ages from 873 to 459 Ma; 3) a post-collisional A-type granodioritic porphyry, which crosscuts the NW-NNW trending schistosity of the metasedimentary country rocks at a low angle, has an age of ca. 324-320 Ma, while the εHf(t) values range from + 7.6 to + 14.4 with Hf model ages from 850 to 416 Ma; 4) post-collisional strike-slip A-type granite dykes, exposed along strike-slip faults, gave ages between 287 and 279 Ma, whereas the εHf(t) values range from + 4.9 to + 12.7 and the Hf model ages from 995 to 500 Ma; and 5) A-type biotite granite dykes, which intruded along conjugate tension joints, have ages of 274-271 Ma, and εHf(t) values from + 1.5 to + 13.2 with Hf model ages from 1196 to 454 Ma. Consequently, we propose that the collision between the Saur Island Arc and the Altay Terrane occurred in the Early Carboniferous (ca. 367-356 Ma) and the subsequent post-collisional tectonic process continued to the Late Carboniferous (ca. 324-320 Ma). It is further suggested that the Irtysh tectonic belt underwent large-scale strike-slip deformation during the mid-Permian between 287 and 279 Ma. The termination of the Irtysh tectonic belt orogeny is thought to have also occurred during the mid-Permian between 274 and 271 Ma.
NASA Astrophysics Data System (ADS)
Paulsen, Timothy; Marshak, Stephen
1999-11-01
Structural trends in the Sevier fold-thrust belt define a pronounced concave-to-the-foreland map-view curve, the Uinta recess, in north-central Utah. This recess separates two convex-to-the-foreland curves, the Provo salient on the south and the Wyoming salient on the north. The two limbs of the recess comprise transverse zones (fault zones at a high-angle to the regional trend of the orogen) that border the flanks of the east-west-trending Uinta/Cottonwood arch. Our structural analysis indicates that the transverse zones formed during the Sevier orogeny, and that they differ markedly from each other in structural style. The Charleston transverse zone (CTZ), on the south side of the arch, initiated as a complex sinistral strike-slip fault system that defines the abrupt northern boundary of the Provo salient. The Mount Raymond transverse zone (MRTZ), on the north side of the arch, represents the region in which the southeast-verging southern limb of the gently curving Wyoming salient was tilted northwards during the Laramide phase of uplift of the Uinta/Cottonwood arch. In effect, the MRTZ represents an oblique cross section through a thrust belt. The contrasting architecture of these transverse zones demonstrates how pre-deformation basin geometry influences the geometry of a fold-thrust belt. Analysis of isopach maps indicates that, at the time the Sevier fold-thrust belt formed, the area just north of the present site of the Uinta/Cottonwood arch was a basement high, with a gently dipping north flank, and a steeply dipping south flank. Thus, predeformational sediment thickened abruptly to the south of the high and thickened gradually to the north of the high. As illustrated by sandbox models, the distance that a fold-thrust belt propagates into the foreland depends on the thickness of the sedimentary layer being deformed, so the shape of the salient mimics the longitudinal cross-sectional shape of the sedimentary basin. Where basins taper gradually along strike, the thrust belt curves gently, but where basins taper abruptly along strike, the thrust belt curves so tightly that it disarticulates and becomes bounded laterally by a strike-slip accommodation zone. The geometry of the Uinta recess provides a field example of this concept. Differential movement of Sevier thrusts led to formation of gradually curving thrusts on the north side of the high, because of the gradual slope of the high's north flank, but led to the along-strike disarticulation of thrusts on the south side of the high, because of the steep slope of the high's south flank. In effect, therefore, thrust belt map-view geometry provides insight into predeformational basin geometry.
NASA Astrophysics Data System (ADS)
Xue, Zhenhua; Martelet, Guillaume; Lin, Wei; Faure, Michel; Chen, Yan; Wei, Wei; Li, Shuangjian; Wang, Qingchen
2017-12-01
This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS) measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular gravity models not only support the imbricated shape of the Pengguan complex but also reveal an imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally, this suggests a basement-slice-imbricated structure that developed along the margin of the Yangtze Block, as shown by the regional gravity anomaly map, together with the published nearby seismic profile and the distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.
NASA Astrophysics Data System (ADS)
Perri, Francesco; Critelli, Salvatore; Dominici, Rocco; Muto, Francesco; Tripodi, Vincenzo; Ceramicola, Silvia
2012-12-01
The northern Calabria along the southeastern coast of Italy provides a favorable setting in which to study complete transects from continental to deep-marine environments. The present northern Ionian Calabrian Basin is a wedge-top basin within the modern foreland-basin system of southern Italy. The Ionian margin of northern Calabria consists of a moderately developed fluvial systems, the Crati and Neto rivers, and diverse smaller coastal drainages draining both the Calabria continental block (i.e., Sila Massif) and the southern Apennines thrust belt (i.e., Pollino Massif). The main-channel sand of the Crati and Neto rivers is quartzofeldspathic with abundant metamorphic and plutonic lithic fragments (granodiorite, granite, gneiss, phyllite and sedimentary lithic fragments). Sedimentary lithic fragments were derived from Jurassic sedimentary successions of the Longobucco Group. The mud samples contain mostly phyllosilicates, quartz, calcite, feldspars and dolomite. Traces of gypsum are present in some samples. The I-S mixed layers, 10 Å-minerals (illite and micas), chlorite and kaolinite are the most abundant phyllosilicates, whereas smectite and chlorite/smectite mixed layers are in small amounts. The geochemical signatures of the muds reflect a provenance characterized by both felsic and mafic rocks with a significant input from carbonate rocks. Furthermore, the degree of source-area weathering was most probably of low intensity rather than moderately intense because CIA values for the studied mud samples are low. Extrapolation of the mean erosion budget from 1 to 25 Ma suggests that at least 5 to 8 km of crust have been removed from the Calabrian orogenic belt and deposited in the marine basins. The Calabrian microplate played an important role in the dynamic evolution of southern Italian fossil and modern basins, representing the key tectonic element of the entire orogenic belt.
Strong feedbacks between hillslope sediment production and channel incision by saltation-abrasion
NASA Astrophysics Data System (ADS)
Lundbek Egholm, David; Faurschou Knudsen, Mads; Sandiford, Mike
2013-04-01
While it is well understood that rivers erode mountain ranges by incising the bedrock and by transporting sediments away from the ranges, the basic physical mechanisms that drive long-term bedrock erosion and control the lifespan of mountain ranges remain uncertain. A particularly challenging paradox is reconciling the dichotomy associated with the high incision rates observed in active mountain belts, and the long-term (108 years) preservation of significant topographic reliefs in inactive orogenic belts (e.g. von Blankenburg, 2005). We have performed three-dimensional computational experiments with a landscape evolution model that couples bedrock landslides and sediment flux-dependent river erosion by saltation-abrasion (Sklar & Dietrich, 2004). The coupled model experiments show strong feedbacks between the channel erosion and the hillslope delivery of sediments. The feedbacks point to hillslope sediment production rate as the main control on channel erosion rates where saltation-abrasion dominates over other fluvial erosion processes. Our models results thus highlight the importance of hillslope sediment production controlled by climate and tectonic activity for scaling erosion rates in fluvial systems. Because of variations in landslide frequency, the feedbacks make tectonic activity a primary driver of fluvial erosion and help clarifying the long-standing paradox associated with the persistence of significant relief in old orogenic belts, up to several hundred-million-years after tectonic activity has effectively ceased. References F. von Blankenburg. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462-479 (2005). L. S. Sklar, W. E. Dietrich. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 40, W06301 (2004).
NASA Astrophysics Data System (ADS)
Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook
2018-05-01
We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.
NASA Astrophysics Data System (ADS)
Shi, Xingjun; Wang, Tao; Zhang, Lei; Castro, Antonio; Xiao, XuChang; Tong, Ying; Zhang, Jianjun; Guo, Lei; Yang, Qidi
2014-11-01
The Late Paleozoic tectonic setting and location of the southernmost boundary of the Central Asian Orogenic Belt (CAOB) with respect to the Alxa Block or Alxa-North China Craton (ANCC) are debated. This paper presents new geochronological, petrological, geochemical and zircon Hf isotopic data of the Late Paleozoic intrusions from the Shalazhashan in northern Alxa and discusses the tectonic setting and boundary between the CAOB and ANCC. Using zircon U-Pb dating, intrusions can be broadly grouped as Late Carboniferous granodiorites (~ 301 Ma), Middle Permian gabbros (~ 264 Ma) and granites (~ 266 Ma) and Late Permian granodiorites, monzogranites and quartz monzodiorites (254-250 Ma). The Late Carboniferous granodiorites are slightly peraluminous and calcic. The remarkably high zircon Hf isotopes (εHf(t) = + 6-+ 10) and characteristics of high silica adakites suggest that these granodiorites were mainly derived from "hot" basaltic slab-melts of the subducted oceanic crust. The Middle Permian gabbros exhibited typical cumulate textures and were derived from the partial melting of depleted mantle. The Middle Permian granites are slightly peraluminous with high-K calc-alkaline and low εHf(t) values from - 0.9 to + 2.9. These granites were most likely derived from juvenile materials mixed with old crustal materials. The Late Permian granodiorites, monzogranites and quartz monzodiorites are characterized as metaluminous to slightly peraluminous, with variable Peacock alkali-lime index values from calc-alkalic to alkali-calcic. These rocks were mainly derived from juvenile crustal materials, as evidenced by their high εHf(t) values (+ 3.3 to + 8.9). The juvenile sources of the above intrusions in the Shalazhashan are similar to those of the granitoids from the CAOB but distinct from the granitoids within the Alxa Block. These findings suggest that the Shalazhashan Zone belongs to the CAOB rather than the Alxa Block and that its boundary with the Alxa block can be regarded as the southernmost boundary of the CAOB. The recognition of Late Carboniferous typical adakite magmatism in the region provides evidence for the subduction of the oceanic crust of the CAOB. The Middle-Late Permian magmatisms (266-250 Ma) display a bimodal association with high-K calc-alkaline features and are interpreted as forming in a post-collision setting. These studies, by interaction of regional geology, provide new constraints on the tectonic evolution of the southern CAOB during the Late Paleozoic and the location of the southernmost margin of the CAOB.
Lead mobilization during tectonic reactivation of the western Baltic Shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romer, R.L.; Wright, J.E.
Lead isotope data from sulfide deposits of the western part of the Baltic Shield define mixing lines in the [sup 206]Pb/[sup 204]Pb-[sup 207]Pb/[sup 204]Pb diagram. Lead from two types of sulfide deposits have been investigated: (1) Exhalative and volcanogenic deposits that are syngenetic with their host rocks; and (2) vein deposits. The syngenetic deposits locally show a very wide range of lead isotopic compositions that reflect a variable addition of highly radiogenic lead, while the vein deposits, although they have radiogenic lead isotopic compositions, exhibit only limited isotopic variations. In different provinces of the shield, both types of deposits fallmore » on the same lead mixing array. The slope of the lead mixing lines varies as a function of the age of basement rocks and the age of the tectonic event which produced the lead mobilization and therefore relates the source rock age with the age of lead mobilization. Calculated mixing ages fall into several short time periods that correspond either to orogenic events or to major phases of continental rifting. The orogenic events are the ca 360--430 Ma Caledonian, ca 900--1100 Ma Sveconorwegian, and the ca 1800--1900 Ma Svecofennian orogenic cycles. The rifting events correspond to the formation of the ca 280 Ma Oslo rift and the Ordovician (ca 450 Ma) graben system in the area of the present Gulf of Bothnia. Each mixing age indicates that lead was mobilized, probably as a consequence of mild thermal disturbances, and that the crust was permeable to lead migration. The data show that the geographic distribution of sulfide deposits with highly radiogenic lead isotopic compositions coincides with old graben systems, orogenic belts, and orogenic forelands on the Baltic Shield. The ages of vein deposits and their geographic distribution demonstrate multiple tectonic reactivation of the interior of the Baltic Shield in response to orogenic events at its margin. 68 refs., 6 refs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Chapman, R. J.; Allan, M. M.; Mortensen, J. K.; Wrighton, T. M.; Grimshaw, M. R.
2017-12-01
Porphyry-epithermal and orogenic gold are two of the most important styles of gold-bearing mineralization within orogenic belts. Populations of detrital gold resulting from bulk erosion of such regions may exhibit a compositional continuum wherein Ag, Cu, and Hg in the gold alloy may vary across the full range exhibited by natural gold. This paper describes a new methodology whereby orogenic and porphyry-epithermal gold may be distinguished according to the mineralogy of microscopic inclusions observed within detrital gold particles. A total of 1459 gold grains from hypogene, eluvial, and placer environments around calc-alkaline porphyry deposits in Yukon (Nucleus-Revenue, Casino, Sonora Gulch, and Cyprus-Klaza) have been characterized in terms of their alloy compositions (Au, Ag, Cu, and Hg) and their inclusion mineralogy. Despite differences in the evolution of the different magmatic hydrothermal systems, the gold exhibits a clear Bi-Pb-Te-S mineralogy in the inclusion suite, a signature which is either extremely weak or (most commonly) absent in both Yukon orogenic gold and gold from orogenic settings worldwide. Generic systematic compositional changes in ore mineralogy previously identified across the porphyry-epithermal transition have been identified in the corresponding inclusion suites observed in samples from Yukon. However, the Bi-Te association repeatedly observed in gold from the porphyry mineralization persists into the epithermal environment. Ranges of P-T-X conditions are replicated in the geological environments which define generic styles of mineralization. These parameters influence both gold alloy composition and ore mineralogy, of which inclusion suites are a manifestation. Consequently, we propose that this methodology approach can underpin a widely applicable indicator methodology based on detrital gold.
Paleozoic tectonics of the Ouachita Orogen through Nd isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, J.D.; Patchett, P.J.; Dickinson, W.R.
1992-01-01
A combined isotopic and trace-element study of the Late Paleozoic Ouachita Orogenic belt has the following goals: (1) define changing provenance of Ouachita sedimentary systems throughout the Paleozoic; (2) constrain sources feeding into the Ouachita flysch trough during the Late Paleozoic; (3) isolate the geochemical signature of proposed colliding terranes to the south; (4) build a data base to compare with possible Ouachita System equivalents in Mexico. The ultimate aim is to constrain the tectonic setting of the southern margin of North America during the Paleozoic, with particular emphasis on collisional events leading to the final suturing of Pangea. Ndmore » isotopic data identify 3 distinct groups: (1) Ordovician passive margin sequence; (2) Carboniferous proto-flysch (Stanley Fm.), main flysch (Jackfork and Atoka Fms.) and molasse (foreland Atoka Fm.); (3) Mississippian ash-flow tuffs. The authors interpret the Ordovician signature to be essentially all craton-derived, whereas the Carboniferous signature reflects mixed sources from the craton plus orogenic sources to the east and possibly the south, including the evolving Appalachian Orogen. The proposed southern source is revealed by the tuffs to be too old and evolved to be a juvenile island arc terrane. They interpret the tuffs to have been erupted in a continental margin arc-type setting. Surprisingly, the foreland molasse sequence is indistinguishable from the main trough flysch sequence, suggesting the Ouachita trough and the craton were both inundated with sediment of a single homogenized isotopic signature during the Late Carboniferous. The possibility that Carboniferous-type sedimentary dispersal patterns began as early as the Silurian has important implications for the tectonics and paleogeography of the evolving Appalachian-Ouachita Orogenic System.« less
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Torvela, Taija; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel
2017-04-01
Analogue models have successfully tested the role of different parameters on the orogenic curvature. Among them: (1) along-strike variations of the frictional properties of the detachment layer, (2) the topography of the basement, (3) the syn-tectonic sedimentation and/or erosion and (4) the indenter shape. Previous works have pointed out that, across-strike the central Betic fold-and-thrust belt (FTB), northern branch of the Gibraltar Arc, a change on the structural style and on the topographic envelope (α) coincide with the pinch-out of Triassic evaporites and with a change in the basement dip (β) that induced changes on the wedge geometry and the basal friction (Jiménez-Bonilla et al., 2016). In this work, we tried to constrain the external orogenic wedge geometry to study the evolution of the western Betics FTB and, comparing it with the central Betics FTB, to delve into the structural variations along-strike the Betic chain. In the present work, field data together with reflection seismic interpretations permit us to constrain the across-strike variations on the structural style of the western Betics FTB. The internal FTB is deformed by SW-NE, kilometric-scale, and non-cylindrical folds detached within Triassic evaporites. The middle FTB is characterized by the profusion of allochtonous Triassic mudstones and evaporites and it is deformed into a dextral transpressive band. In the frontal FTB, a Middle Miocene package, the Olistostromic Unit, is deformed by foreland-verging thrusts overlying paleomargin-derived units. Accordingly, these differences on the structural style across the western Betics FTB could be attributable to the variations on the frictional properties of the detachment level. Regarding the wedge geometry, the topographic relief envelope (α) of the western Betics FTB is similar to that one of the central Betics. However, β is significantly lower than in the central Betics (ca. 2° vs >4°). Moreover, neither Triassic pinch-out nor basement threshold is observed in the western Betics FTB. Thus, while the deformation front stagnated during Langhian in the central Betics because of the change of the basal friction, it would have experienced slight or no stagnation in the western Betics. Finally, the along-strike differences on the basal detachment of the Betics FTB could have contributed to the quick protrusion of western Gibraltar Arc during the Upper Miocene that has been evidenced by previous works (Crespo-Blanc et al., 2016). Crespo-Blanc A., Comas, M., Balanyá J.C. (2016): Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics, 2016, 683, 308-324. doi:10.1016/j.tecto.2016.05.045 Jiménez-Bonilla, A., Torvela, T., Balanyá, J.C., Expósito, I., Díaz-Azpiroz, M. (2016): Changes in dip and frictional properties of the basal detachment controlling orogenic wedge propagation and frontal collapse: the External central Betics case. Tectonics, in press. DOI: 10.1002/2016TC004196 Acknowledgements: RNM-415 and CGL-2013-46368-P
NASA Astrophysics Data System (ADS)
Lemirre, Baptiste; Cochelin, Bryan; de Saint Blanquat, Michel; Denele, Yoann; Lahfid, Abdeltif; Duchene, Stephanie
2017-04-01
The formation of the Pyrenean mountain belt since late Variscan times is responsible of the exhumation of the basement in the central part of the belt. This basement is mainly made of Proterozoic to Paleozoic rocks involved in the Variscan orogeny. Following the publication of the ECORS deep seismic profile of the Central Pyrenees in 1989, it has been proposed that the Pyrenees are an asymmetrical double verging belt implying crustal nappe stacking resulting from the inversion of the Iberian margin. Such alpine deformation implies important Meso-Cenozoic bloc rotations and internal deformation, overprinting the earlier Variscan deformations that would define the basement. In order to constrain how the crust was affected by both Variscan and Alpine orogenies, we present a structural and petrological study along the trace of the ECORS profile in the axial zone. The section is composed of Precambrian to Carboniferous low-grade metasedimentary rocks intruded by large late-Variscan calc-alkaline plutons. We highlight a transpressional event which can be divided into three progressive stages: (1) a N-S folding, producing regional-scale open to southward verging anticlines and synclines, prior to the metamorphic peak; (2) a strong N-S horizontal shortening synchronous to the maximum temperature recorded which increases from 500 °C in the north, to 350 °C in the south (Raman Spectroscopy of Carbonaceous Materials geothermometry combined with a petrological study). This deformation induces vertical stretching, isoclinal folding and formation of a steep pervasive cleavage defined by biotite and chlorite; (3) a strain localization into retrogressive reverse mylonitic shear zones, responsible for limited vertical offset of the sedimentary pile and a maximum offset of the isotherms of 50 °C. The presence of undeformed and unconformable Permian deposits at the top of the pile underlines the Variscan age of, at least, the two first stages of pervasive deformation. The continuity of Variscan structures, stratigraphy and isotherms all along the cross-section allows us to consider that the Axial Zone (the Iberian north margin) was only moderately affected by Cretaceous rifting, contrary to the European one. For the same reasons, we propose that the Axial Zone was neither affected by an intense pervasive deformation nor by large-scale internal rotation and vertical offset during the Alpine orogeny.
NASA Astrophysics Data System (ADS)
Tien, C. Y.; Lin, Y. C.; Chu, M. F.; Chung, S. L.; Bi˙ngöl, A. F.
2017-12-01
The Caucasus-Iran-Anatolia (CIA) orogenic belt formed by "Turkic-type orogeny" consists mainly of subduction-accretion complexes following the collision between Eurasia and Arabia and the closure of Neotethy. This study reports U-Pb and Hf isotopic data of detrital zircon separates from five Eocene to mid-Miocene sandstone samples from Divrigi and Duranlar in the west to the Mus basin in the east, all locating in the northern part of the Bitlis-Zagros suture zone. The U-Pb age data suggest four main magmatic episodes: (1) 100-70 Ma, (2) 60-40 Ma, (3) 30 Ma, and (4) 15 Ma. The Late Cretaceous zircons recovered mainly from the Mus basin are marked by a significant Hf isotopic variation over time, with ɛHf(T) values dropping from +15 to -10. Zircons from the second and third episodes show spatial variations in isotopic compositions, with positive ɛHf(T) values (+10 to +5) in the Mus basin and heterogeneous ɛHf(T) values (+10 to -10) in the west. The fourth and youngest episode of zircons, mainly from Duranlar area, shows uniform ɛHf(T) values around +5. We attribute the Late Cretaceous episode of zircons to the broadly coeval Elazig arc magmatism that, according to our counterpart study, occurred as a short-lived, intra-oceanic arc system by subduction initiation after the formation of Neotethyan ophiolites in the region. Moreover, we argue that this Late Cretaceous arc system may have existed more widely within the southern branch of Neothethys than that suggested by present-day outcrops. The dramatic change in Hf isotopic composition from 100 to 70 Ma, also observed in the rock record by our counterpart study, may be interpreted as a result of subduction to accretion processes. The remaining three episodes of zircons are related to younger stages of magmatism within or around the suture zone that remains poorly studied. Our results indicate that detrital zircon is a useful tool to uncover "hidden" magmatic records in the CIA and other "Turkic-type" orogenic belts where complex interaction of multiple micro-terrains may have taken place during accretionary and collisional orogenesis.
NASA Astrophysics Data System (ADS)
Menzies, Catriona D.; Wright, Sarah L.; Craw, Dave; James, Rachael H.; Alt, Jeffrey C.; Cox, Simon C.; Pitcairn, Iain K.; Teagle, Damon A. H.
2018-01-01
Collisional mountain building influences the global carbon cycle through release of CO2 liberated by metamorphic reactions and promoting mechanical erosion that in turn increases chemical weathering and drawdown of atmospheric CO2. The Southern Alps is a carbonate-poor, siliciclastic mountain belt associated with the active Australian Pacific plate boundary. On-going, rapid tectonic uplift, metamorphism and hydrothermal activity are mobilising carbon. Here we use carbon isotope measurements of hot spring fluids and gases, metamorphic host rocks, and carbonate veins to establish a metamorphic carbon budget. We identify three major sources for CO2 within the Southern Alps: (1) the oxidation of graphite; (2) consumption of calcite by metamorphic reactions at the greenschist-amphibolite facies boundary, and (3) the dissolution of groundmass and vein-hosted calcite. There is only a minor component of mantle CO2 arising on the Alpine Fault. Hot springs have molar HCO3-/Ca2+ ∼9, which is substantially higher than produced by the dissolution of calcite indicating that deeper metamorphic processes must dominate. The total CO2 flux to the near surface environment in the high uplift region of the Southern Alps is estimated to be ∼6.4 × 108 mol/yr. Approximately 87% of this CO2 is sourced from coupled graphite oxidation (25%) and disseminated calcite decarbonation (62%) reactions during prograde metamorphism. Dissolution of calcite and mantle-derived CO2 contribute ∼10% and ∼3% respectively. In carbonate-rich orogens CO2 production is dominated by metamorphic decarbonation of limestones. The CO2 flux to the atmosphere from degassing of hot springs in the Southern Alps is 1.9 to 3.2 × 108 mol/yr, which is 30-50% of the flux to the near surface environment. By contrast, the drawdown of CO2 through surficial chemical weathering ranges between 2.7 and 20 × 109 mol/yr, at least an order of magnitude greater than the CO2 flux to the atmosphere from this orogenic belt. Thus, siliciclastic mountain belts like the Southern Alps are net sinks for atmospheric CO2, in contrast to orogens involving abundant carbonate rocks, such as the Himalaya, that are net CO2 sources.
Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K
2008-07-29
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.
Was Himalayan normal faulting triggered by initiation of the Ramgarh-Munsiari Thrust?
Robinson, Delores M.; Pearson, Ofori N.
2013-01-01
The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.
Aulacogens and aulacogeosynclines: Regularities in setting and evolution
NASA Astrophysics Data System (ADS)
Milanovsky, E. E.
1992-12-01
Aulacogens and aulacogeosynclinal zones represent intra-continental palaeorifts and inverted palaeorifts. They were formed in the process of the break-up of continents during the Late Proterozoic. Inversion of such basins occurred variably during the Baikalian, Caledonian, Hercynian and Alpine orogenic cycles in response to the build-up of intraplate compressional stresses emanating from orogenic belts. Aulacogens were first recognized on the stable Russian Platform where they correspond to linear, graben type depressions filled with Proterozoic sediments, often buried beneath a thick cover of Palaeozoic and younger sediments. Some aulacogens have experienced a short period of reactivation during the Palaeozoic. Aulacogeosynclines differ from the genetically related aulacogens by their greater dimensions and the amount of lithospheric extension that can go to the extent of opening of small ocean basins; consequently they are characterized by a greater degree of destruction of the continental crust, the depth of subsidence and the complexity of their post-rift development which commonly terminates with their compressional deformation, giving rise to the development of intracontinental linear folded and thrusted structures, frequently associated with low-grade metamorphism and small intrusions. Many ancient platforms are characterized by aulacogens; metaplatforms are dissected by aulacogens and aulacogeosynclines, whereas geosynclinal troughs are the precursors of geosynclinal mobil belts. Aulacogens, aulacogeosynclines and geosynclinal troughs represent a group of negative, linear structures which are characterized by an increasing degree of crustal destruction during rifting processes and increasing mobility during lithospheric contraction.
Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.
Egholm, David L; Knudsen, Mads F; Sandiford, Mike
2013-06-27
An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.
NASA Astrophysics Data System (ADS)
Zhou, Jian-Bo; Wilde, Simon A.; Zhang, Xing-Zhou; Liu, Fu-Lai; Liu, Jian-Hui
2012-03-01
Rocks that crop out in the northern part of the Songliao Block are mainly consist of high-grade metamorphic gneiss, Paleozoic strata and Mesozoic granites. They are essentially similar to rocks reported from beneath the Songliao Basin that occupies the majority of the Songliao Block. Four samples of Paleozoic metasedimentary rocks from Tieli in the north-eastern part of the Songliao Block yield detrital zircon U-Pb ages ranging from 2690 to 501 Ma, with four age populations at: 2071-2690 Ma, with a peak at 2585 Ma; 1776-1997 Ma, with a peak at 1890 Ma; 719-991 Ma, with a peak at 800 Ma; and 501-592 Ma, with a peak at 518 Ma. These are similar to age populations in other parts of the Central Asian Orogenic Belt (CAOB), although sediments from the Songliao Block contain more abundant Archean and Proterozoic detrital zircons than the neighboring Jiamusi-Khanka Block to the east and Xing'an Block to the west. This may indicate that rocks of this age comprise a minor component of the Songliao Block. The Pan-African zircon ages from the Songliao Block, taken together with ˜500 Ma magmatic and high-grade metamorphic zircons obtained from the nearby Erguna, Xing'an and Jiamusi-Khanka blocks, indicate that Pan-African events affected all blocks of the CAOB in NE China. This suggests that these blocks not only share a common basement, but that they had a common history. An extensive Late Pan-African (˜500 Ma) orogenic terrane thus occupies much of the CAOB in NE China.
A Geological Model for the Evolution of Early Continents (Invited)
NASA Astrophysics Data System (ADS)
Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.
2013-12-01
Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (
Shaping mobile belts by small-scale convection.
Faccenna, Claudio; Becker, Thorsten W
2010-06-03
Mobile belts are long-lived deformation zones composed of an ensemble of crustal fragments, distributed over hundreds of kilometres inside continental convergent margins. The Mediterranean represents a remarkable example of this tectonic setting: the region hosts a diffuse boundary between the Nubia and Eurasia plates comprised of a mosaic of microplates that move and deform independently from the overall plate convergence. Surface expressions of Mediterranean tectonics include deep, subsiding backarc basins, intraplate plateaux and uplifting orogenic belts. Although the kinematics of the area are now fairly well defined, the dynamical origins of many of these active features are controversial and usually attributed to crustal and lithospheric interactions. However, the effects of mantle convection, well established for continental interiors, should be particularly relevant in a mobile belt, and modelling may constrain important parameters such as slab coherence and lithospheric strength. Here we compute global mantle flow on the basis of recent, high-resolution seismic tomography to investigate the role of buoyancy-driven and plate-motion-induced mantle circulation for the Mediterranean. We show that mantle flow provides an explanation for much of the observed dynamic topography and microplate motion in the region. More generally, vigorous small-scale convection in the uppermost mantle may also underpin other complex mobile belts such as the North American Cordillera or the Himalayan-Tibetan collision zone.
NASA Astrophysics Data System (ADS)
Faul, Ulrich H.; Garapić, Gordana; Lugović, Boško
2014-08-01
The Dinaride and Vardar zone ophiolite belts extend from the south-eastern margins of the Alps to the Albanian and Greek ophiolites. Detailed sampling of the Krivaja-Konjuh massif, one of the largest massifs in the Dinaride belt, reveals fertile compositions and an extensive record of deformation at spinel peridotite facies conditions. High Na2O clinopyroxene and spinel-orthopyroxene symplectites after garnet indicate a relatively high pressure, subcontinental origin of the southern and western part of Krivaja, similar to orogenic massifs such as Lherz, Ronda and the Eastern Central Alpine peridotites. Clinopyroxene and spinel compositions from Konjuh show similarities with fertile abyssal peridotite. In the central parts of the massif the spinel lherzolites contain locally abundant patches of plagioclase, indicating impregnation by melt. The migrating melt was orthopyroxene undersaturated, locally converting the peridotites to massive olivine-rich troctolites. Massive gabbros and more evolved gabbro veins cross-cutting peridotites indicate continued melt production at depth. Overall we infer that the massif represents the onset of rifting and early stages of formation of a new ocean basin. In the south of Krivaja very localized chromitite occurrences indicate that much more depleted melts with supra-subduction affinity traversed the massif that have no genetic relationship with the peridotites. This indicates that volcanics with supra-subduction affinity at the margins of the Krivaja-Konjuh massif record separate processes during closure of the ocean basin. Comparison with published compositional data from other Balkan massifs shows that the range of compositions within the Krivaja-Konjuh massif is similar to the compositional range of the western massifs of the Dinarides. The compositions of the Balkan massifs show a west to east gradient, ranging from subcontinental on the western side of the Dinarides to depleted mid-ocean ridge/arc compositions in the Vardar zone in the east. This is consistent with the hypothesis that both ophiolite belts originate in a single ocean, rather than from two separate basins. A distinct decrease in fertility occurs in the south of the Dinarides towards the Albanian ophiolites with supra-subduction affinity.
NASA Astrophysics Data System (ADS)
Reddy, S. M.; Collins, A. S.; Mruma, A.
2003-11-01
The Palaeoproterozoic Usagaran Orogen of Tanzania contains the Earth's oldest reported examples of subduction-related eclogite facies rocks. Detailed field mapping of gneisses exposed in the high-grade, eclogite-bearing part of the orogen (the Isimani Suite) indicates a complex deformation and thermal history. Deformation in the Isimani Suite can be broadly subdivided into five events. The first of these (D 1), associated with formation of eclogite facies metamorphism, is strongly overprinted by a pervasive deformation (D 2) at amphibolite facies conditions, which resulted in the accumulation of high strains throughout all of the exposed Isimani rocks. The geometry of foliations and lineations developed during D 2 deformation are variable and have different shear directions that enable five D 2 domains to be identified. Analysis of these domains indicates a geometrical and kinematic pattern that is interpreted to have formed by strain and kinematic partitioning during sinistral transpression. U-Pb SHRIMP zircon ages from a post-D 2 granite and previously published geochronological data from the Usagaran eclogites indicate this deformation took place between 2000 ± 1 Ma and 1877 ± 7 Ma (at 1σ error). Subsequent greenschist facies deformation, localised as shear zones on boundaries separating D 2 domains, have both contractional and extensional geometries that indicate post-1877 Ma reactivation of the Isimani Suite. This reactivation may have taken place during Palaeoproterozoic exhumation of the Usagaran Orogen or may be the result of deformation associated with the Neoproterozoic East African Orogen. U-Th-Pb SHRIMP zircon ages from an Isimani gneiss sample and xenocrysts in a "post-tectonic" granite yield ˜2.7 Ga ages and are similar to published Nd model ages from both the Tanzanian Craton and gneiss exposed east of the Usagaran belt in the East African Orogen. These age data indicate that the Isimani Suite of the Usagaran Orogen reflects reworking of Archaean continental crust. The extensive distribution of ˜2.7 Ga crust in both the footwall and hangingwall of the Usagaran Orogen can only be explained by the collision of two continents if the continents fortuitously had the same protolith ages. We propose that a more likely scenario is that the protoliths of the mafic eclogites were erupted in a marginal basin setting as either oceanic crust, or as limited extrusions along the rifted margin of the Tanzanian Craton. The Usagaran Orogen may therefore reflect the mid-Palaeoproterozoic reassembly of a continental ribbon partially or completely rifted off the craton and separated from it by a marginal basin.
NASA Astrophysics Data System (ADS)
Wang, Lu; Kusky, Timothy; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin
2015-04-01
Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence Numerous studies have described partial melting processes in low-high pressure meta-sedimentary rocks, some of which may generate melts that coalesce to form plutons. However, migmatized ultrahigh pressure (UHP) eclogite has never been clearly described from the microscale to macroscale, though experimental studies prove dehydration partial melting of eclogite at high pressure condition1 and low degrees of partially melted eclogite have been reported from the Qaidam UHP orogenic belt in NW China2,3 or inferred from multiphase solid (MS) inclusions within eclogite4 in the Sulu UHP belt. We present field-based documentation of decompression partial melting of UHP eclogite from Yangkou and General's Hill, Sulu Orogen. Migmatized eclogite shows successive stages of anatexis, initially starting from intragranular and grain boundary melt droplets, which grow into a 3D interconnected intergranular network, then segregate and accumulate in pressure shadow areas, and finally merge to form melt channels and dikes that transport melts to upper lithospheric levels. In-situ phengite breakdown-induced partial melting is directly identified by MS inclusions of Kfs+ barium-bearing Kfs + Pl in garnet, connected by 4-10 μm wide veinlets consisting of Bt + Kfs + Pl next to the phengite. Intergranular veinlets of plagioclase + K-feldspar first form isolated beads of melt along grain boundaries and triple junctions of quartz, and with higher degrees of melting, eventually form interconnected 3D networks along grain boundaries in the leucosome, allowing melt to escape from the intergranular realm and collect in low-stress areas. U-Pb (zircon) dating and petrological analyses on residue and leucocratic rocks shows that partial melting occurred at 228-219 Ma, shortly after peak UHP metamorphism (~230 Ma), and at depths of 30-90 km. Whole-rock trace element analyses show that the leucocratic rocks, residue and peak metamorphic stage eclogite (no decompression partial melting) show well matched mass balance relationships. Melts derived from eclogite partial melting lubricated the subducted eclogite slices and facilitated their buoyant rise from mantle depths to crustal levels. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behavior of subducted lithosphere and its rapid exhumation, controlling flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust. Deeply subducted, partially melted eclogite from General's Hill show that eclogites can develop regularly spaced melt channels, a meter or two thick, that would act as significant seismic anomalies5. This may provide direct evidence for the nature of enigmatic 'bright zones' presented in some deep-crustal seismic reflection profiles which have been interpreted to represent areas of melt, high fluid content or unusual rock compositions6. Hermann, J. & Green, D. H. (2001). Earth Planet. Sci. Lett. 188, 149-168. Song, S.G., et al. (2014). Geochim. Cosmochim. Acta 130 42-62. Zhang, G.B., et al. (2014). Lithos, doi: 10.1016/j.lithos.2014.12.009 Gao, X. Y., et al. (2012). J. Metamorph. Geol. 30, 193-212. Wang, L., et al. (2014). Nature Communications. 5:5604 doi: 10.1038/ncomms6604. Brown, L. et al. (1996). Science 274, 1688-1690.
Using Zircon Geochronology to Unravel the History of the Naga Hills Ophiolite
NASA Astrophysics Data System (ADS)
Roeder, T.; Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.
2014-12-01
Outcrops of the Naga Hills Ophiolite (NHO), a possible eastern extension of the ophiolitic belt running along the India-Asia suture, in Northeast India include a full suite of ophiolitic rocks. The ophiolite has been dated Upper Jurassic based on radiolarian studies of the unit (Baxter et al., 2011) but details of its emplacement onto the Indian margin have not been the subject of detailed investigation. Conglomerates of the Phokphur Formation unconformably overlie an eroded surface on top of dismembered ophiolite fragments and include sediments sourced from both the ophiolite and the margin of the Indian subcontinent. Notably no Asian margin-derived detritus is recognised (similar to the Liuqu conglomerates of Tibet (Davis et al., 2002)). Thus, a detailed study of the Phokphur sediments can produce valuable details of the NHO history, including constraining the timing of ophiolite emplacement. Studies of detrital sandstone petrography confirm a recycled orogen provenance for the Phokphur Formation and thus serve as validation of the methods of Dickinson and Suczek (1979) and Garzanti et al. (2007). Detrital zircon data provides further insight as to the age of source rocks of Phokphur sediments and help to further constrain the timing of ophiolite emplacement. We present results of sedimentary and detrital zircon geochronology analyses of Phokphur sediments from outcrops near the villages of Salumi and Wazeho as a contribution to furthering research on aspects of the India-Asia collision. Baxter, A.T., et al. 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research, 20: 638-644. Davis, A.M., et al. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150: 247-273. Dickinson, W.R. and Suczek, C.A., 1979. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164-2182, (1979). Garzanti, E., et al., 2007. Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115: 315-334.
From erosion to earthquakes: A geomorphic model for intraplate seismicity in post-orogenic settings
NASA Astrophysics Data System (ADS)
Gallen, S. F.; Thigpen, J. R.
2017-12-01
Intraplate seismicity does not conform to plate tectonics theory and its driving mechanisms remain uncertain, yet it is recognized as a relevant seismic hazard to populated regions, such as eastern North America. A variety of models, mostly geodynamic or tectonic in origin, have been proposed to explain this enigma, but conclusive supporting evidence remains elusive. In order to identify high hazard areas and derive predictive models, it is imperative to identify the underlying processes responsible for intraplate seismicity. Here we conduct an interdisciplinary study of the Eastern Tennessee Seismic Zone (ETSZ), the second most seismically active region east of the Rocky Mountains in the North American continent, to clarify the potential mechanisms driving intraplate seismicity in post-orogenic and passive margin settings. Previous studies document that the Upper Tennessee drainage basin, which lies directly above the ETSZ, is in a transient state of adjustment to 150 m of base level fall that was provoked by river capture in the Late Miocene. Using quantitative geomorphology, we demonstrate that base level fall enhanced erosion rates in a 75 km wide 400 km long corridor of highly erodible rocks in the late Paleozoic (Alleghanian orogen) fold-thrust belt. The total volume of rock preferentially removed above the ETSZ since 9 Ma is 3,600 ± 150 km3. Stress modeling indicates spatially focused erosion has of reduced clamping stresses on ancient basement normal faults beneath the Appalachian fold-thrust belt on the order of 3.5 MPa, with a time-averaged unclamping rate of 0.4 Pa yr-1. Under the assumption that the crust is critically stressed, we argue that the preferential erosion of less competent rock units reduced clamping stresses on relict faults such to induce seismic activity in the ambient stress field. This model for surface process-induced intraplate seismicity is generally transferable to other continental settings where complex geology and landscape dynamics conspire to spatially focus erosion and perturb the stress field in the mid-to-upper crust.
NASA Astrophysics Data System (ADS)
Valeriano, Claudio de Morisson; Mendes, Julio Cezar; Tupinambá, Miguel; Bongiolo, Everton; Heilbron, Monica; Junho, Maria do Carmo Bustamante
2016-07-01
This work presents an overview of the geology and chemical composition of the Cambrian-Ordovician post-collisional (COPC) granites and associated rocks of Ribeira belt, SE-Brazil. These COPC granites make up some of the most picturesque and highest (>2000 m) rocky peaks and cliffs of Rio de Janeiro state, an accessible case of post-orogenic granitic magmatism associated with the terminal stages of a hot Ediacaran-Cambrian (Brasiliano-Panafrican) orogen. The COPC magmatism intruded tonalitic to granitic orthogneisses of the Rio Negro arc (∼790-600 Ma) and associated paragneisses of the São Fidelis Group. Post-collisional magmatism started ∼10 m.y. after the latest collisional event, the Buzios Orogeny, lasting discontinuously from ∼510 Ma until ∼470 Ma. The 15 largest intrusive bodies in Rio de Janeiro State are referred to in the literature as the Parati/Mangaratiba, Vila Dois Rios, Pedra Branca, Suruí, Silva Jardim, Favela, Andorinha, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Sana and Itaoca granites. They crop out as rounded/elliptical stocks or gently-dipping sheets, always with sharp contacts with the country rocks, along with pegmatite and aplitic veins and dykes. COPC granites are grey and pink undeformed medium-grained biotite monzogranites with (K-feldspar) porphyritic, mega-crystic, equigranular and serial textures. Magmatic flow foliation is frequently observed. Peripheric xenolith zones are common as well as isolated xenoliths from the country rocks. In a compilation of more than 100 chemical compositions, SiO2 contents display a major mode at 71wt%. The COPC magmatism generated high-K calc-alkaline granites and quartz monzonites with predominantly metaluminous granites. Meso to melanocratic gabbroic and dioritic enclaves also have calc-alkaline affinity and likely represent more resistant mafic xenoliths from the Rio Negro Arc.
NASA Astrophysics Data System (ADS)
Chiang, C.; Chen, C.; Bertrand, E. A.; Unsworth, M. J.; Turkoglu, E.; Hsu, H.; Hill, G.
2007-12-01
The Taiwan orogen has formed as a result of the arc-continent collision between the Eurasian continental margin and the Luzon island arc over the last 3 million years. It is the type example of an arc-continent collision. In 2004, the Taiwan Integrated Geodynamical Research (TAIGER) project was formed and began a systematic investigation of the crustal and upper mantle structure beneath Taiwan. This included new magnetotelluric (MT) data collection to study the geo-electrical structure beneath Taiwan. High quality long period MT data has been collected through collaboration between National Central University, Taiwan, and the University of Alberta, Canada. In total, 82 long-period MT stations were deployed on 4 cross- island profiles in Taiwan with a remote reference station located on Penghu Island in the Taiwan Strait. The remote reference is ~50km from the main island of Taiwan and is used to reduce cultural noise effects in these data from the populated mainland. Dimensionality analysis from tensor decomposition has been performed on these data using the McNeice-Jones algorithm. The results of this analysis indicate that the electrical structures are two-dimensional with dominant strike directions N45° E, N37° E and N29 ° E in northern, central and southern Taiwan, respectively. As expected, these strike directions are essentially parallel to the regional geology. The decomposition parameters of shear, twist and anisotropy for these profiles are small, indicating the 2-D strike directions are well constrained. The dimensionality analysis presented implies that the generation of 2- D inversion models will be appropriate for these data. The results of 2-D inversion show that the collision boundary between the Eurasian and Philippine Sea Plates is beneath the central range in the southern profile. A low resistivity zone is located beneath the western foothills. At mid-crustal depth, a boundary is imaged between conductive western sedimentary rocks and the resistive metamorphic rocks to the east which form the main orogenic belts of the central ranges. This margin occurs near the trace of the Cauchow fault where there is evidence of a conductor rising to the surface. This conductor may be related to interconnected fluids and/or thermal effects in the mid crust. In this paper, the analysis of these data will be examined in detail and the tectonic implications discussed.
NASA Astrophysics Data System (ADS)
Ghorbal, B.; Stockli, D. F.; Mora, A.; Horton, B. K.; Blanco, V.; Sanchez, N.
2010-12-01
The Eastern Cordillera (EC) of Colombia marks the eastern boundary of Cenozoic fold-thrust deformation in the northern Andes. It is a classic example of an inversion belt formed in the retro-arc region, in this case superimposed on a Triassic/Jurassic to Cretaceous intracontinental rift system of northern South America. Ongoing thrust reactivation (inversion) in this contractional orogen provides an excellent opportunity to study the patterns of deformation and influence of preexisting anisotropies (Mora et al., 2006). The objective of this detailed (U-Th)/He study is to unravel the tectonic and thermal evolution of the EC from the Magdalena Valley basin in the west to the Llanos foreland basin in the east and reconstruct the temporal and spatial progression of deformation in the EC fold-thrust belt. Furthermore, the Subandean or foothills zone of Colombia is key for understanding the petroleum systems in the complex frontal zone of the inverted fold-thrust belt. We present detailed apatite and zircon (U-Th)/He thermochronometric data from surface samples along a ~220 km WNW-ESE transect across the EC from the frontal fold-thrust belt at the edge of the Llanos basin to the western edge of the EC, the Magdalena basin. Surface and borehole zircon and apatite (U-Th)/He data, integrated with structural data, show that the EC fold-thrust belt propagated foreland-ward from the axial zone to the modern edges of the fold-thrust belt from at least the early Oligocene to the early Miocene. Detailed apatite and zircon (U-Th)/He data from surface samples and borehole samples in the foothills-Llanos transition zone and the Middle Magdalena Valley basin, between the large-displacement Guaicaramo and Pajarito-Chámeza thrusts in the east and the La Salina fault system in the west show a temporally complex evolution. The frontal fold-thrust belt was characterized by continued progressive foreland-ward migration of deformation and an apparent phase of major out-of-sequence motion along both sides of the orogen in the latest Miocene to early Pliocene, with recent to active deformation again concentrated along the frontal-most faults of the EC. These detailed new apatite and zircon (U-Th)/He thermochronometric data elucidate the progressive deformation, thermal history, and along-long strike variation (Mora et al., 2010) of the fold-thrust belt in the EC of Colombia and provide important new insights into the complex interplay between hydrocarbon maturation and temporal and kinematic evolution of the frontal fold-thrust belt. References [1] Mora, A., M. Parra, M. R. Strecker, A. Kammer, C. Dimaté, and F. Rodriguez, 2006, Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia: Tectonics, v. 25, TC2010. [2] Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. and D.F. Stockli, 2010, Cenozoic deformation patterns in the Eastern Cordillera, Colombia: Inferences from fission track results and structural relationships. AAPG Bulletin, in press.
NASA Astrophysics Data System (ADS)
Polat, A.; Kerrich, R.; Wyman, D. A.
1998-04-01
The late Archean (ca. 2.80-2.68 Ga) Schreiber-Hemlo and White River-Dayohessarah greenstone belts of the Superior Province, Canada, are supracrustal lithotectonic assemblages of ultramafic to tholeiitic basalt ocean plateau sequences, and tholeiitic to calc-alkaline volcanic arc sequences, and siliciclastic turbidites, collectively intruded by arc granitoids. The belts have undergone three major phases of deformation; two probably prior to, and one during the assembly of the southern Superior Province. Imbricated lithotectonic assemblages are often disrupted by syn-accretion strike-slip faults, suggesting that strike-slip faulting was an important aspect of greenstone belt evolution. Field relations, structural characteristics, and high-precision ICP-MS trace-element data obtained for representative lithologies of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts suggest that they represent collages of oceanic plateaus, juvenile oceanic island arcs, in subduction-accretion complexes. Stratigraphic relationships, structural, and geochemical data from these Archean greenstone belts are consistent with a geodynamic evolution commencing with the initiation of a subduction zone at the margins of an oceanic plateau, similar to the modern Caribbean oceanic plateau and surrounding subduction-accretion complexes. All supracrustal assemblages include both ocean plateau and island-arc geochemical characteristics. The structural and geochemical characteristics of vertically and laterally dismembered supracrustal units of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts cannot be explained either by a simple tectonic juxtaposition of lithotectonic assemblages with stratified volcanic and sedimentary units, or cyclic mafic to felsic bimodal volcanism models. A combination of out-of-sequence thrusting, and orogen-parallel strike-slip faulting of accreted ocean plateaus, oceanic arcs, and trench turbidites can account for the geological and geochemical characteristics of these greenstone belts. Following accretion, all supracrustal assemblages were multiply intruded by syn- to post-tectonic high-Al, and high-La/Yb n slab-derived trondhjemite-tonalite-granodiorite (TTG) plutons. The amalgamation processes of these lithotectonic assemblages are comparable to those of Phanerozoic subduction-accretion complexes, such as the Circum-Pacific, the western North American Cordilleran, and the Altaid orogenic belts, suggesting that subduction-accretion processes significantly contributed to the growth of the continental crust in the late Archean. The absence of blueschist and eclogite facies metamorphic rocks in Archean subduction-accretion complexes may be attributed to elevated thermal gradients and shallow-angle subduction. The melting of a hotter Archean mantle at ridges and in plumes would generate relatively small, hot, and hence shallowly subducting oceanic plates, promoting high-temperature metamorphism, migmatization, and slab melting. Larger, colder, Phanerozoic plates typically subduct at a steeper angle, generating high-pressure low-temperature conditions for blueschists and eclogites in the subduction zones, and low-La/Yb n granitoids from slab dehydration, and wedge melting. Metasedimentary subprovinces in the Superior Province, such as the Quetico and English River Subprovinces, have formerly been interpreted as accretionary complexes, outboard of the greenstone belt magmatic arcs. Here the greenstone-granitoid subprovinces are interpreted as collages of subduction-accretion complexes, island arcs and oceanic plateaus amalgamated at convergent plate margins, and the neighbouring metasedimentary subprovinces as foreland basins.
Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia
NASA Astrophysics Data System (ADS)
Fridovsky, Valery; Polufuntikova, Lena
2017-04-01
The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits combined aggregate and intergranular cleavage. The third cataclastic-segregation morphologic type (Cd from 3.0 to 4.5) is distinguished by a wide distribution of lentelliptical grains of rock-forming minerals in a finely-crystalline matrix and by intergranular cleavage. The rocks of the fourth segregation-striate morphologic type (Cd >5.0) contain lenticular segregations of quartz and feldspar in an intensely linearized mylonite groundmass.
Tracing erosion patterns in Taiwan by quantitative provenance and geomorphological analysis
NASA Astrophysics Data System (ADS)
Resentini, Alberto; Goren, Liran; Castelltort, Sebastien; Garzanti, Eduardo
2016-04-01
Taiwan is one of the world's foremost natural laboratories for studies of orogenesis. After only a few Ma of ongoing collision between the Chinese continental margin and the Luzon Arc, the associated orogen has reached nearly 4 km in height and 100-150 km in width. High rates of convergence leading to rapid rock uplift combine with the wet stormy climate of the sub-tropical typhoon belt to deliver annually an average detrital mass of 9500 t/km2. The doubly-vergent thrust belt is composed of more than 85% of sedimentary rocks dominant in the pro-wedge, but metamorphic rocks as young as < 10 Ma are exposed in the retro-wedge, where zircon fission-track, apatite fission-track and (U-Th)/He ages are all reset and as young as 1 Ma or younger, indicating very recent fast exhumation. There is hardly another region where rock-uplift, unroofing and sediment production are of equal intensity. Quantitative analyses of tectonic and erosional processes around Taiwan have been carried out following diverse independent ways, including estimates of fluvial discharge of suspended solids, thermochronological techniques, cosmogenic measurements, and morphometry of river profiles (Dadson et al., 2003; Willett et al., 2003; Fox et al., 2014). Also the appearance and relative abundance of diagnostic rock fragments and other detrital minerals in Plio-Pleistocene sedimentary successions has been used to constrain unroofing rates, but a systematic description of compositional signatures of sediments shed by distinct tectonic domains has not been carried out so far. In this study we combine high-resolution petrographic and heavy-mineral analyses of modern sands carried by rivers all around Taiwan with their estimated sediment loads to calculate the detrital volumes generated from different lithologic assemblages within the orogen. River sediments are potent integrators of information that efficiently mediate provenance signals from different parts of the entire watershed, thus offering a great advantage relative to techniques analysing bedrock. This strategy allows us to calculate the sediment mass shed by each tectonic unit within each sub-catchment, and thus to trace erosion rates with continuity in space both along and across the orogenic belt. The results obtained were compared with the spatial pattern of estimated fluvial erosion rates calculated across the island by applying the stream power analysis relating river incision to basal shear stress (Finlayson and Montgomery, 2003). Initial investigation of sources of discrepancies between provenance analysis and morphometric analysis points toward the importance of lithological control on fluvial incision within the stream power model framework. CITED REFERENCES Dadson S.J., Hovius N., Chen H., Dade W.B., Hsieh M.L., Willett S.D., Hu J.C., Horng M.J., Chen, M.C., Stark, C.P., Lague D., Lin J.C. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426:648-651. Finlayson D.P., Montgomery D.R. 2003. Modeling large-scale fluvial erosion in geographic information systems. Geomorphology 53:147-164. Fox M., Goren L., May D.A., Willett S.D. 2014. Inversion of fluvial channels for paleorock uplift rates in Taiwan. Journal of Geophysical Research: Earth Surface 119:1853-1875. Willett S.D., Fisher D., Fuller C., Yeh E.C., Lu C.Y. 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31:945-948.
NASA Astrophysics Data System (ADS)
Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.
2018-04-01
The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.
Zhao, Wancang; Sun, Youbin; Balsam, William; Lu, Huayu; Liu, Lianwen; Chen, Jun; Ji, Junfeng
2014-01-01
Mineral dust provenances are closely related to the orogenic processes which may have distinct Hf-Nd isotopic signatures. Here we report the clay-sized (<2 μm) Hf-Nd isotope data from Asian dust sources to better constrain the source and transport dynamics of dust deposition in the North Pacific. Our results show that there is a more positive radiogenic Hf isotopic composition with clay-sized fractions than the corresponding bulk sample and a decoupling of the Hf-Nd couplets in the clay formation during the weathering process. The clay-sized Hf-Nd isotopic compositions of the desert samples from the Sino-Korean-Tarim Craton (SKTC) are different from those of the Gobi and deserts from the Central Asian Orogeny Belt (CAOB) due to varying tectonic and weathering controls. The Hf-Nd isotopic compositions of dust in the North Pacific central province (NPC) match closely with those from the Taklimakan, Badain Jaran and adjacent Tengger deserts, implying that the NPC dust was mainly transported from these potential sources by the westerly jet. Our study indicates that dusts from the CAOB Gobi deserts either didn't arrive in NPC or were quantitatively insignificant, but they were likely transported to the North Pacific margin province (NPM) by East Asian winter monsoon. PMID:25060781
Zhao, Wancang; Sun, Youbin; Balsam, William; Lu, Huayu; Liu, Lianwen; Chen, Jun; Ji, Junfeng
2014-07-25
Mineral dust provenances are closely related to the orogenic processes which may have distinct Hf-Nd isotopic signatures. Here we report the clay-sized (<2 μm) Hf-Nd isotope data from Asian dust sources to better constrain the source and transport dynamics of dust deposition in the North Pacific. Our results show that there is a more positive radiogenic Hf isotopic composition with clay-sized fractions than the corresponding bulk sample and a decoupling of the Hf-Nd couplets in the clay formation during the weathering process. The clay-sized Hf-Nd isotopic compositions of the desert samples from the Sino-Korean-Tarim Craton (SKTC) are different from those of the Gobi and deserts from the Central Asian Orogeny Belt (CAOB) due to varying tectonic and weathering controls. The Hf-Nd isotopic compositions of dust in the North Pacific central province (NPC) match closely with those from the Taklimakan, Badain Jaran and adjacent Tengger deserts, implying that the NPC dust was mainly transported from these potential sources by the westerly jet. Our study indicates that dusts from the CAOB Gobi deserts either didn't arrive in NPC or were quantitatively insignificant, but they were likely transported to the North Pacific margin province (NPM) by East Asian winter monsoon.
Metamorphism, Plate Tectonics, and the Supercontinent Cycle
NASA Astrophysics Data System (ADS)
Brown, Michael
Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G-UHTM and E-HPGM belts since the Neoarchean manifests the onset of a 'Proterozoic plate tectonics regime', although the style of tectonics likely involved differences. The 'Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the 'modern plate tectonics regime' characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM-UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).
NASA Astrophysics Data System (ADS)
Shen, Ji; Wang, Ying; Li, Shu-Guang
2014-10-01
We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between north and central or south Dabie zones during retro-grade metamorphism enhanced by the extensive magmatism in the Cretaceous has also been observed in the 207Pb/204Pb vs. 206Pb/204Pb and 208Pb/204Pb vs. 206Pb/204Pb diagrams. A combined study of common Pb isotopic compositions of Dabie orthogneisses and Sulu UHPM rocks from the Chinese Continental Scientific Drilling project demonstrates that a slab marked by extremely unradiogenic Pb observed in the main hole was absent in the Dabie orogen. However, occurrence of some Mesozoic granitoids with such unradiogenic character in the Dabie orogen suggests that their source may be a buried unradiogenic unit underlying below north Dabie zone. This case study clearly shows that whether the position of the Dabie data relative to the orogen curve of the plumbotectonic model is helpful in understanding the Pb isotopic structure and evolution of subducted continental crust.
Ernst, W.G.; McLaughlin, Robert J.
2012-01-01
The Franciscan Complex is a classic subduction-zone assemblage. In northwest California, it comprises a stack of west vergent thrust sheets: westernmost Eastern Belt outliers; Central Belt mélange; Coastal Belt Yager terrane; Coastal Belt Coastal terrane; Coastal Belt King Range/False Cape terranes. We collected samples and determined P-T conditions of recrystallization for 88 medium-fine-grained metasandstones to assess their subduction-exhumation histories and assembly of the host allochthons. Feebly recrystallized Yager, Coastal, and King Range strata retain clear detrital features. Scattered neoblastic prehnite occurs in several Coastal terrane metasandstones; traces of possible pumpellyite are present in three Yager metaclastic rocks. Pumpellyite ± lawsonite ± aragonite-bearing Central Belt metasandstones are moderately deformed and reconstituted. Intensely contorted, thoroughly recrystallized Eastern Belt affinity quartzose metagraywackes contain lawsonite + jadeitic pyroxene ± aragonite ± glaucophane. We microprobed neoblastic phases in 23 rocks, documenting mineral parageneses that constrain the tectonic accretion and metamorphic P-T evolution of these sheets. Quasi-stable mineral assemblages typify Eastern Belt metasandstones, but mm-sized domains in the Central and Coastal belt rocks failed to achieve chemical equilibrium. Eastern Belt slabs rose from subduction depths approaching 25–30 km, whereas structurally lower Central Belt mélanges returned from ∼15–18 km. Coastal Belt assemblages suggest burial depths less than 5–8 km. Eastern and Central belt allochthons sequentially decoupled from the downgoing oceanic lithosphere and ascended into the accretionary margin; K-feldspar-rich Coastal Belt rocks were stranded along the continental edge without undergoing appreciable subduction, probably during Paleogene unroofing of the older, deeply subducted units of the Franciscan Complex in east-vergent crustal wedges.
NASA Astrophysics Data System (ADS)
Chen, Sean Kuanhsiang; Wu, Yih-Min; Hsu, Ya-Ju; Chan, Yu-Chang
2017-07-01
We study internal deformation of the Taiwan orogen, a young arc-continental collision belt, which the spatial heterogeneity remains unclear. We aim to ascertain heterogeneity of the orogenic crust in depth when specifying general mechanisms of the Taiwan orogeny. To reach this goal, we used updated data of continuous GPS (cGPS) and earthquake focal mechanisms to reassess geodetic strain-rate and seismic stress fields of Taiwan, respectively. We updated the both data sets from 1990 to 2015 to provide large amount of constraints on surficial and internal deformation of the crust for a better understanding. We estimated strain-rate tensors by calculating gradient tensors of cGPS station velocities in horizontal 0.1°-spacing grids via Delaunay triangulation. We determined stress tensors within a given horizontal and vertical grid cell of 0.1° and 10 km, respectively, by employing the spatial and temporal stress inversion. To minimize effects of the 1999 Mw 7.6 Chi-Chi earthquake on trends of the strain and stress, we modified observational possible bias of the cGPS velocities after the earthquake and removed the first 15-month focal mechanisms within the fault rupture zone. We also calculated the Anderson fault parameter (Aϕ) based on stress ratios and rake angles to quantitatively describe tectonic regimes of Taiwan. By examining directions of seismic compressive axes and styles of faulting, our results indicate that internal deformation of the crust is presently heterogeneous in the horizontal and vertical spaces. Directions of the compressive axes are fan-shaped oriented between N10°W and N110°W in the western and mid-eastern Taiwan at the depths of 0-20 km and near parallel to orientations of geodetic compressional axes. The orientations agreed with predominantly reverse faulting in the western Taiwan at the same depth range, implying a brittle deformation regime against the Peikang Basement High. Orientations of the compressive axes most rotated counter-clockwise at the depths of 20-40 km, coinciding with transition of styles of faulting from reverse to strike-slip faulting along the depths as revealed by variation of the Aϕ values. The features indicate that internal deformation of the upper crust is primarily driven by the same compressional mechanism. It implies that geodetic strains could detect the deformation from surface down to a maximal depth of 20 km in most regimes of Taiwan. We find that heterogeneity in orientations of compressive axes and styles of faulting is strong in two regimes at the northern and southern Central Range, coinciding to areas of the orogenic thinned/thickened crust. Conversely, the heterogeneity is weak in the central Western Foothills at surrounding area of root of the overthickened crust. This observation, coupled with regional seismological observations, may imply that vertical deformation from crustal thickening and thinning and thinning-related dynamics from mantle flows may have joint influence on degree of stress heterogeneity.
NASA Astrophysics Data System (ADS)
Chen, Ming; Sun, Min
2017-04-01
The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of intermediate-felsic igneous rocks, highlighting both crustal growth and recycling. Importantly, a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sedimentary sequence of the GA. These detrital zircons possibly have the same source as their counterpart from the AM. This implies that the two terranes with countrary evolutionary history, i.e. the GA and AM, amalgamated before the early Devonian. To summary, the AM and GA represented two separated subduction-accretion systems in the early Paleozoic and subsequently amalgamated prior to the early Devonian, documenting complicated accretionary orogenesis and significant lateral crustal growth in the CAOB. Acknowledgement This study is financially supported by the Major Research Project of the Ministry of Science and Technology of China (2014CB44801 and 2014CB448000), Hong Kong Research Grant Council (HKU705313P and HKU17303415), National Science Foundation of China (41273048) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132731).
Tectonic evolution of the Northern Pyrenees. Results of the PYRAMID project
NASA Astrophysics Data System (ADS)
Ford, Mary; Mouthereau, Fredéric; Christophoul, Fredéric; de Saint Blanquat, Michel; Espurt, Nicolas; Labaume, Pierre; Vergés, Jaume; Teixell, Antonio; Bellahsen, Nicolas; Vacharat, Arnaud; Pik, Raphael; Pironon, Jacques; Carpentier, Cédric; Angrand, Paul; Grool, Arjan; Salardon, Roland; Huismans, Ritske; Bader, Anne-Gaëlle; Baudin, Thierry; Aubourg, Charles
2017-04-01
The aims of the PYRAMID project funded by the Agence Nationale de la Recherche of France, were to investigate and constrain the 3D structural style and architecture of the North Pyrenean retrowedge and foreland basin, their evolution through time, to define the character and role of inherited crustal geometries, to investigate the interactions between deformation, fluids and thermicity in the different structural units, and to carry out source to sink studies In this talk we present a series of restored cross sections through the central and eastern Pyrenean retrowedge to illustrate structural style, amount and type of deformation and how it was accommodated within the upper crust along the orogen. The total amount of convergence appears to have been constant and the timing of onset of convergence was synchronous. However, in the retrowedge the complexity of the Cretaceous oblique rift system has led to high lateral structural variability. Inherited vertical late Variscan faults trending NE-SW to ENE-WSW segment the European crust and have strongly compartmentalised both retrowedge and foreland basin evolution along the orogen. Crustal scale restorations provide new evolutionary models for the geometry and style of inversion of the pre-orogenic hyper-extended rift system where mantle was exhumed in the most distal domain. Numerical models provide insight into retrowedge inversion. A new stratigraphic scheme has been developed for the eastern and central foreland. Subsidence analyses and foreland basin reconstructions document two pulses of convergence (Late Santonian to Early Paleocene and Eocene to Oligocene) separated by a quiet phase during the Paleocene. These phases can be linked to deformation in the North Pyrenean Zone thrust belt. The first phase was caused mainly by inversion and emplacement of the Metamorphic Internal Zone onto external zones associated with subduction of the exhumed mantle domain. Little or no relief was created during this phase although thermochronological data records the beginning of inversion in the eastern retrowedge. Full collision began in Early Eocene, distributed between the pro- and retro wedges, with only about 30% of convergence accommodated in the retrowedge. Low temperature thermochronology data records southward migrating exhumation of the axial zone while external basement massifs were being exhumed in the North Pyrenean Zone. The Cretaceous rift system was inverted by a combined thin-skinned-thick-skinned style with a decoupling level in the Keuper evaporites. The North Pyrenean Frontal thrust consists of a series of inverted Cretaceous rift margin faults, which in the east represent the main breakaway fault system.
Tectonics and distribution of gold deposits in China - An overview
Zhou, T.; Goldfarb, R.J.; Phillips, G.N.
2002-01-01
Gold exploration in China has expanded rapidly during the last two decades since a modern approach to economic development has become a national priority. China currently produces 180 tonnes (t) of gold annually, which is still significantly less than South Africa, USA, and Australia. However, China is now recognized as possessing significant gold resources in a wide range of mineral deposit types. Present estimates of gold resources in China exceed 4,500 t, which comprise 60% in gold-only deposits, more than 25% in base metal-rich skarn, porphyry, and vein deposits, and more than 10% in placer accumulations. The major gold provinces in China formed during the main episodes of Phanerozoic tectonism. Such tectonism involved interaction of China's three major Precambrian cratons, North China, Tarim, and Yangtze (or South China when combined with Cathysia block), with the Angara (or Siberian), Kazakhstan-Kyrgyzstan, and Indian cratons. Resulting collisions included deformation of accreted oceanic sequences between the cratonic blocks. The most important ore-forming orogenies were (1) the late Paleozoic Variscan (405-270 Ma), which led to amalgamation of the Angara, North China and Yangtze cratons, (2) the Indosinian (270-208 Ma), which led to the collision of North China and South China cratons, (3) the Yanshanian (208-90 Ma), which was largely influenced by the subduction of the Izanagi-Pacific plates beneath eastern China, and (4) the Himalayan (<90 Ma) indentation of the Indian continent into Eurasia. No important Precambrian gold systems are recognized in China, mainly because of reworking of exposed Precambrian rocks by these younger orogenies, but there are a few Caledonian (600-405 Ma) gold-bearing system in northern Xinjiang. Most of China's orogenic, epithermal, and Carlinlike gold deposits are in the reworkerd margins of major cratonic blocks and in metasedimentary rock-dominated fold belts adjacent to these margins. Accordingly, the major gold provinces are present along the northern, southeastern and southern margins of the North China craton, along the southwestern and northwestern margins of the Yangtze craton, in the Tianshan and Altayshan orogenic belts in northern Xinjiang, and throughout the southeastern China fold belt. Gold-placer deposits derived from these primary deposits are concentrated in the northernmost part of northeastern China and along the northerwestern margin of the Yangtze craton. The major provinces with significant gold in porphyry-related copper systems and base metal skarns are present in the Yangtze River area along the northeastern and southeastern margin of the Yangtze craton, in the fold belt in southwestern China, and scattered through northern China. Three-quarters of the Chinese gold-only deposits occur within the North China craton margins. Half are located in the uplifted Precambrian metamorphie rocks and most of the remainder are hosted in the Phanerozoic granitoids that intruded the reworked Precambrian terranes. The abundance of granite-hosted gold contrasts the North China craton with other Precambrian cratons, such as those in Western Australia, central Canada, and Zimbabwe, where gold is mainly hosted in the Archean greenstone belts. This difference may be explained by the multiple episodes of Phanerozoic tectonism along the North China craton margins resulting from the collision of the Angara, North China, and South China cratons, and from subduction of the Izanagi-Pacific oceanic plates underneath the eastern China continent.
NASA Technical Reports Server (NTRS)
Schulz, K. J.; Laberge, G. L.
1986-01-01
The Wisconsin magmatic terrane (WMT) is an east trending belt of dominantly volcanic-plutonic complexes of Early Proterozoic age (approx. 1850 m.y.) that lies to the south of the Archean rocks and Early Proterozoic epicratonic sequence (Marquette Range Supergroup) in Michigan. It is separated from the epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is bounded on the south, in central Wisconsin, by Archean gneisses, is truncated on the west by rocks of the Midcontinent rift system, and is intruded on the east by the post-orogenic Wolf river batholith. The overall lithologic, geochemical, metallogenic, metamorphic, and deformational characteristics of the WMT are similar to those observed in recent volcanic arc terranes formed at sites of plate convergence. It is concluded that the WMT represents an evolved oceanic island-arc terrane accreated to the Superior craton in the Early Proterozoic. This conclusion is strengthened by the apparent absence of Archean basement from most of the WMT, and the recent recognition of the passive margin character of the epicratonic Marquette Range Supergroup.
Detrital zircon geochronology of pre- and syncollisional strata, Acadian orogen, Maine Appalachians
Bradley, Dwight C.; O'Sullivan, Paul B.
2017-01-01
The Central Maine Basin is the largest expanse of deep-marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep-water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard-derived units shows maxima at 988 and 429 Ma; a composite from the outboard-derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard-derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard-derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard-derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow-marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland-basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard-derived strata of the Central Maine Basin, which were shed from post-Taconic highlands located to the northwest. Next, southeasterly parts of this succession were deformed in the Acadian orogeny, shedding detritus towards the northwest into what remained of the basin. Finally, by Pragian time, all strata in the Central Maine Basin had been deformed and detritus from this new source accumulated as the Tarratine Formation in a new incarnation of the foreland basin. Silurian-Devonian strata from the Central Maine Basin have similar detrital zircon age distributions to coeval rocks from the Arctic Alaska and Farewell terranes of Alaska and the Northwestern terrane of Svalbard. We suggest that these strata were derived from different segments of the 6500-km-long Appalachian-Caledonide orogen.
Terrane accumulation and collapse in central Europe: seismic and rheological constraints
NASA Astrophysics Data System (ADS)
Meissner, R.
1999-05-01
An attempt is made to compare the tectonic units and their evolution in central Europe with the deep seismic velocity structure and patterns of reflectivity. Caledonian and Variscan terrane accretion and orogenic collapse dominate the tectonic development in central and western Europe and have left their marks in a distinct velocity structure and crustal thickness as well as in the various reflectivity patterns. Whereas the memory of old collisional structures is still preserved in the rigid upper crust, collapse processes have formed and modified the lower crust. They have generally created rejuvenated, thin crusts with shallow Mohos. In the Variscan internides, the center of collision and post-orogenic heat pulses, the lower crust developed strong and thick seismic lamellae, the (cooler) externides show a thrust and shear pattern in the whole crust, and the North German Basin experienced large mafic intrusions in the lower crust and developed a high-velocity structure with only very thin lamellae on top of the Moho. The various kinds of reflectivity patterns in the lithosphere can be explained by a thermo-rheological model from terrane collision, with crustal thickening to collapse in a hot, post-orogenic setting.
NASA Astrophysics Data System (ADS)
Chen, Shuo; Niu, Yaoling; Xue, Qiqi
2018-05-01
The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.
Dating Paleogene Subduction in the Alborán Domain (Alpujárride Complex, S. Spain)
NASA Astrophysics Data System (ADS)
Williams, J. R.; Ashley, K.; Loewy, S. L.; Platt, J. P.
2016-12-01
The multimineral 87Rb/86Sr method has been used in recent studies to date subduction in high-pressure (HP) metamorphic belts of the Mediterranean region. In the Alpujárride Complex, the largest tectonic unit of the Alborán Domain, southern Spain, the timing of burial and HP metamorphism is controversial, with published 40Ar/39Ar white mica ages that range from 48Ma to 25Ma. Dating the HP event is complicated by a pervasive high-temperature (HT) metamorphic overprint (23-19Ma) associated with late-orogenic extension. We have identified 5 rock samples for 87Rb/86Sr dating which preserve a HP equilibrium assemblage: a garnet-staurolite-chloritoid schist, two calcareous Mg-chloritoid schists and two calcareous phyllites with previous 40Ar/39Ar ages of 48Ma and 41Ma. Improved constraints on the time gap between HP and HT metamorphism are important to test geodynamic models of the Alborán Domain, which range from prolonged thickening of continental lithosphere followed by extensional collapse, to punctuated subduction followed by back-arc extension. Furthermore, determining the onset and duration of HP metamorphism has broad implications for whether the Alborán Domain formed in the context of a single Alpine belt, or a separate and local accretionary setting. Lastly, this study will test the advantages and limitations of the 87Rb/86Sr method in a HP domain with a late HT overprint, a very common issue in orogenic systems.
NASA Astrophysics Data System (ADS)
Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.
2018-01-01
This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above. To the west, oceanic subduction of the Bay of Biscay under the North Iberian margin is supported by an upper plate thrust wedge, gravity and magnetic anomalies, and 3D inclined sub-crustal reflections. However, discrepancies remain for the location of continent-ocean transitions in the Bay of Biscay and for the extent of oceanic subduction. The plate-kinematic evolution during the Mesozoic, which involves issues as the timing and total amount of opening, as well as the role of strike-slip drift, is also under debate, discrepancies arising from first-order interpretations of the adjacent oceanic magnetic anomaly record.
NASA Astrophysics Data System (ADS)
Nishikawa, O.
2016-12-01
Thermoluminescence (TL) dating is one of the geochronometry with a low closure temperature, which covers a wide range of younger ages from 1k to 1m yrs, and used to be applied to young volcanics and archeological burnt materials. These materials experienced an instant temperature drop under the closure temperature just after they are generated. If crust is rapidly uplifting, it may possible to apply TL dating even for basement rocks to reconstruct a young history of orogeny. TL age applied to basement is not the age of rock itself, but the age since the rock rising from the deeper part crossed the depth of the closure temperature. Therefore TL age of basement rock is the function of both uplifting rate and geothermal gradient. In this study, in order to evaluation of the late Quaternary uplifting of the central Shikoku, Japan, TL dating of quartz grain derived from the Sambagawa metamorphic rocks has been performed. The ages are in 100-1000 kyr orders and much older than TL ages obtained from the hanging wall of Alpine fault, New Zealand (Nishikawa et al., 2015; AGU Fall meeting). This can be due to the difference of geothermal gradient and uplifting rate between two orogenic belts, and interpreted that the hanging wall of the Alpine fault has been rapidly lifted up from the shallower closure temperature depth, while the rocks in central Shikoku have been rising slowly from deeper part.
NASA Astrophysics Data System (ADS)
Roberts, Nick M. W.; Slagstad, Trond; Parrish, Randall R.; Norry, Michael J.; Marker, Mogens; Horstwood, Matthew S. A.; Røhr, Torkil
2013-04-01
The Sveconorwegian orogen is traditionally interpreted as a Himalayan-scale continental collision, and the eastward continuation of the Grenville Province of Laurentia; however, it has recently been proposed that it represents an accretionary orogen without full-scale continental collision (Slagstad et al., in press). We suggest that magmatism is one of the key constraints to differentiate between different types of orogens; thus, detailed investigation of the timing and petrogenesis of the magmatic record is a requirement for better understanding of the Sveconorwegian orogen as a whole. Here, we present new U-Pb geochronology, zircon Hf-O isotope, and whole-rock geochemical data to constrain the petrogenesis of the early -Sveconorwegian Sirdal Magmatic Belt (SMB). The SMB is a batholithic-scale complex of intrusions that intrudes into most of the Rogaland-Hardangervidda Block in southwest Norway. Current age constraints put emplacement between ~1050 to 1020 Ma. New ages from the Suldal region indicate that the onset of SMB magmatism can be put back to 1070 Ma, which is some 30-50 Myrs prior to high-grade metamorphism. Average initial ɛHf signatures range from ~0 to 4; these overlap with later post-Sveconorwegian granites and with early-/pre-Sveconorwegian ferroan (A-type) granites. Average δ18O signatures range from ~5.7 to 8.7, except for one anomalous granite at ~11.6. The Hf-O signatures are compatible with a mixed mantle-crustal source. Crustal sources may include ~1500 Ma Telemarkian or ~1200 Ma juvenile crust. Hf-O bulk-mixing modelling using a 1500 Ma crustal source indicates >50 % mantle input. Although much further mapping and geochronological work is required, granitic magmatism appears to have persisted throughout much of the ~1100 to 900 Ma period that spans the Sveconorwegian orogen. This magmatism is consistently ferroan (i.e. dry); however, the SMB marks a clear transition to magnesian (i.e. wet) magmatism, with a return to ferroan magmatism at >990 Ma. We propose that this transition corresponds to subduction-driven dehydration-melting of the mantle, producing the SMB in a traditional continental volcanic arc environment. A large lower-crustal input is typical of continental arc batholiths (DeCelles et al., 2009). The interpretation of the SMB as a continental arc is key, but not exclusive, to an accretionary model for the Sveconorwegian orogen. The exact timing and setting of syn-/late-Sveconorwegian 990 to 940 Ma ferroan magmatism thus remains a critical link in the understanding of this orogen. Slagstad et al. (in press) A Non-Collisional, Accretionary Sveconorwegian Orogen. Terra Nova, DOI:10.1111/ter.120012 DeCelles et al. (2009) Cyclicity in Cordilleran orogenic systems. Nature Geoscience 2, 251-257.
Is the Ordos Basin floored by a trapped oceanic plateau?
NASA Astrophysics Data System (ADS)
Kusky, Tim; Mooney, Walter
2015-11-01
The Ordos Basin in China has about 10 km of Neoarchean to Quaternary sediments covering an enigmatic basement of uncertain origin. The basement is tectonically stable, has a thick mantle root, low heat flow, few earthquakes, and has been slowly subsiding for billions of years. The basement has geophysical signatures that indicate it is dominantly intermediate to mafic in composition, and is similar to some other cratons world-wide, and also to several major oceanic plateaus. It was accreted to the amalgamated Eastern Block and Central Orogenic belt of the North China Craton (NCC) in the Paleoproterozoic, then involved in several Proterozoic tectonic events including being over-thrust by an accretionary orogen, and intruded by Andean arc-related magmas, and then involved in a continent-continent collision during amalgamation with the Columbia Supercontinent. Thus, the basement rocks are deformed, metamorphosed to granulite facies, and determining their initial origin is difficult. We suggest that the data is consistent with an origin as an oceanic plateau that accreted to the NCC and, later experienced different episodes of differentiation associated with later subduction and collisions. Formation of cratonic lithosphere by accretion of oceanic plateaus may be one mechanism to create stable cratons. Other cratons that apparently formed by partial melting of underplated and imbricated oceanic slabs are stable in some cases, but also re-activated and ;de-cratonized; in some cases in Asia, where they have been affected by younger subduction, hydration, slab roll-back, and melt-peridotite reactions. This suggests that the initial mode of craton formation may be a factor in the preservation of stable cratons, and de-cratonization is not only influenced by younger tectonic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatcher, R.D. Jr.
Recently published interpretations of fossil fragments from the Walden Creek Group (Ocoee Supergroup) suggesting that these rocks are middle Paleozoic (Devonian to Early Carboniferous), and new geochronological data that yield late Paleozoic age dates on rocks and major faults in the Blue Ridge and piedmont, if taken alone, would permit speculation that most of the deformation and metamorphism affecting this part of the orogen is Alleghanian. The two Ordovician clastic wedges (Sevier, Llanvirn, and Martinsburg, Caradoc-Ashgill) and the Carboniferous-Permian wedge(s), along with many radiometric ages on plutons, indicate uplift and sediment dispersal from the interior of the southern and centralmore » Appalachians (SCA) that may have resulted from Taconian and Alleghanian deformation. Combining the reproducible fossil evidence, including that from Alabama and a recently discovered crinoid fragment from the upper part of the Murphy belt sequence, with the most current geochronological data requires that peak metamorphism and penetrative deformation be at least Devonian or younger at the southwestern end of the orogen, and Late Ordovician or younger in the Carolinas and northern Georgia. Zircon ages reported from large thrust and dextral strike-slip faults bounding the Pine Mountain window indicate all of the faults there may be Alleghanian, except the younger sinistral Mesozoic faults, and requires that both metamorphism and penetrative deformation there also be Alleghanian. As in New England, the southern Appalachian Alleghanian metamorphic core is now known to be much more extensive. The older data require that the Taconian and perhaps the Acadian orogenies were significant events in the SCA, but these new data reconfirm the dominance of Alleghanian continent-continent collision processes here.« less
Subduction-driven recycling of continental margin lithosphere.
Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S
2014-11-13
Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.
NASA Astrophysics Data System (ADS)
Baidder, L.; Michard, A.; Soulaimani, A.; Fekkak, A.; Eddebbi, A.; Rjimati, E.-C.; Raddi, Y.
2016-07-01
Conflicting views are expressed in literature concerning fold interference patterns in thick-skinned tectonic context (e.g. Central Anti-Atlas and Rocky Mountains-Colorado areas). Such patterns are referred to superimposed events with distinct orientation of compression or to the inversion of paleofaults with distinct strike during a single compressional event. The present work presents a case study where both types of control on fold interference are likely to be combined. The studied folds occur in the Tafilalt-Maider area of eastern Anti-Atlas, i.e. in the E-trending foreland fold belt of the Meseta Variscan Orogen in the area where it connects with the SE-trending, intracontinental Ougarta Variscan belt. Detail mapping documents unusual fold geometries such as sigmoidal and croissant- or boomerang-shaped folds associated with a complex major fault pattern. The folded rock material corresponds to a 6-8 km-thick Cambrian-Serpukhovian sedimentary pile that includes alternating competent and incompetent formations. The basement of the Paleozoic succession is made up of rhomboedric tilted blocks that formed during the Cambrian rifting of north-western Gondwana and the Devonian dislocation of the Sahara platform. The latter event is responsible for an array of paleofaults bounding the Maider and South Tafilalt Devonian-Early Carboniferous basins with respect to the adjoining high axes. The Variscan Orogeny began during the Bashkirian-Westphalian with a N-S direction of shortening that converted the NW-trending Ougnat-Ouzina paleogeographic high into a mega dextral shear zone. Folds developed on top of a moving mosaic of basement blocks, being oriented en echelon on the inverted paleofaults or above intensely sheared fault zones. However, a dominantly NE-SW compression responsible for the building of the Ougarta belt also affected the studied area, presumably during the latest Carboniferous-Early Permian. The resulting fold interference pattern and peculiar geometries (J. Tijekht croissant-shaped fold) would exemplify a dual control of deformation by both the variably oriented basement paleofaults and the evolution of the regional shortening direction with time.
NASA Astrophysics Data System (ADS)
Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang
2018-05-01
The architecture and tectonic evolution of the Hegenshan accretionary belt in the Central Asian Orogenic Belt (CAOB) remains debated. Here we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the Hegenshan volcanic-plutonic belt in central Inner Mongolia. Field observations and zircon U-Pb ages allow us to divide the intrusive complex into an early phase at 329-306 Ma and a late phase at 304 to 299 Ma. The intrusive bodies belong to two magma series: calc-alkaline rocks with I-type affinity and A-type granites. The early intrusions are composed of granodiorite, monzogranite and porphyritic granite, and the late calc-alkaline intrusions include gabbro though diorite to granodiorite. The calc-alkaline intrusive rocks exhibit a well-defined compositional trend from gabbro to granite, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. They also exhibit isotopic characteristics of mantle-derived magmas such as low initial 87Sr/86Sr (0.7029-0.7053), positive ɛNd(t) values (0.06-4.76) and low radiogenic Pb isotopic compositions ((206Pb/204Pb)I = 17.907-19.198, (207Pb/204Pb)I = 15.474-15.555, (208Pb/204Pb)I = 37.408-38.893). The marked consistency in geochemical and isotopic compositions between the intrusive rocks and the coeval Baoligaomiao volcanic rocks define a Carboniferous continental arc. Together with available regional data, we infer that this east-west trending continental arc was generated by northward subduction of the Hegenshan ocean during Carboniferous. The late alkali-feldspar granites and the high-Si rhyolites of the Baoligaomiao volcanic succession show similar geochemical compositions with high SiO2 and variable total alkali contents, and low TiO2, MgO and CaO. These rocks are characterized by unusually low Sr and Ba, and high abundances of Zr, Th, Nb, HREEs and Y, comparable to the features of typical A2-type granites including their high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the A-type granite was derived from a distinct magma source rather than through fractional crystallization of the coeval calc-alkaline magmas. Their Nd-Pb isotopic compositions are similar to those of calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile basaltic crust in the continental arc. Notably, the widespread eruptions of A2-type rhyolitic magmas (305.3 Ma-303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with bimodal magmatism with mantle-derived gabbro-diorites and A-type granites (304.3 Ma-299.03 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma-306 Ma). Such a marked change in the magma affinity likely indicates subducted slab break-off resulting in a change of the regional stress field to an extensional setting within the Carboniferous continental arc that runs E-W for few thousands of kilometers. Thus, the onset of the late magmatism (305-299 Ma) likely represents the maximum age for the cessation of the northward subduction in the Hegenshan ophiolite-arc-accretion belt.
NASA Astrophysics Data System (ADS)
Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei
2017-08-01
The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the onset of the subduction of the Paleo-Pacific Plate beneath the East Asian continental margin probably took place during the latest Triassic (ca. 215 Ma); (3) changes in the drifting direction of the Paleo-Pacific Plate were responsible for the intermittent magmatic activities; and (4) roll-back of the subducted plate resulted in the oceanwards migration of the magmatic arc and large-scale back-arc extension throughout NE China during the Early Cretaceous.
Magellan radar image of Danu Montes in Lakshmi Region of Venus
NASA Technical Reports Server (NTRS)
1990-01-01
This Magellan radar mosaic image is of part of the Danu Montes in the Lakshmi Region of Venus. The area in the image is located at 329.6 degrees east longitude and 58.75 degrees north latitude. This image shows an area 40 kilometers (km) (19.6 miles) wide and 60 km (39.2 miles) long. Danu Montes is a mountain belt located at the southern edge of the Ishtar Terra highland region. It rises one to three kilometers above a flat plain to the north known as Lakshmi Planum. On the basis of Pioneer Venus, Arecibo and Venera data, Danu Montes and the other mountain belts surrounding Lakshmi Planum have been interpreted to be orogenic belts marking the focus of compressional deformation, much like the Appalachian and Andes ranges on Earth. In the upper right part of this image, relatively bright, smooth-textured plains of Lakshmi Planum are seen to embay the heavily deformed mountain range to the south. In the mountain range south of these plains the geology is dominated by abundant faults at mu
Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera
Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.
2005-01-01
The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.
NASA Astrophysics Data System (ADS)
Jiang, Si-Hong; Chen, Chun-Liang; Bagas, Leon; Liu, Yuan; Han, Ning; Kang, Huan; Wang, Ze-Hai
2017-08-01
The Xing-Mong Orogenic Belt (XMOB) is located in the eastern part of the Central Asian Orogenic Belt (CAOB) and has experienced multiple tectonic events. The Baiyinnuoer Pb-Zn deposit may be a rare case that documents two periods of mineralization in the tectonically complex XMOB. There are two types of Pb-Zn mineralization in the deposit: (1) skarn-type ore, hosted by the skarn in the contact zone between marble and granodiorite and within the marble and (2) vein-type ore, hosted by crystal tuff and feldspar porphyry. This study revealed that the host rocks, mineral assemblages, mineralization occurrences, S-Pb isotopes, and ages between the two types of ore are notably different. Zircon U-Pb dating indicates that the granodiorite was emplaced in the Early Triassic (244 ± 1 to 242 ± 1 Ma), the crystal tuff was deposited in the Early Cretaceous (140 ± 1 to 136 ± 1 Ma), and the feldspar porphyry was intruded in the Early Cretaceous (138 ± 2 to 136 ± 2 Ma). The first skarn mineralization occurred at ∼240 Ma and the second vein-type Pb-Zn mineralization took place between 136 and 129 Ma. Thus the Triassic orebodies were overprinted by Early Cretaceous mineralization. The sphalerite and galena from the skarn mineralization have higher δ34S values (-4.7 to +0.3‰) than the sphalerite, galena and aresenopyrite from the vein-type mineralization (-7.5 to -4.2‰), indicating different sulfur sources or ore-forming processes for the two types of mineralization. The Pb isotopic compositions of the two types of ore are very similar, suggesting similar lead sources. Geochemistry and Nd-Pb-Hf isotopic systematics of the igneous rocks in the region show that the Triassic granodiorite was generated from hybridization of mafic and felsic magmas due to strong crust-mantle interaction under the collisional setting that resulted following the closure of the Paleo-Asian Ocean and the collision of North China and Siberian cratons at the end of the Permian; while the Cretaceous igneous rocks at Baiyinnuoer originated from the partial melting of a juvenile lower crust with minor input from the crust caused by the underplating of mafic magma in an extensional setting.
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Dickerson, P. W.; Stockli, D. F.
2017-12-01
The Devils River Uplift (DRU) in SW Texas records the evolution of the southern Laurentian margin from Grenvillian orogenesis and assembly of Rodinia, to its fragmentation by rifting, and to the amalgamation of Pangaea. It was cored by a well (Shell No. 1 Stewart), penetrating Precambrian gneisses and Cambrian metasediments and sandstones. New zircon LA-ICP-MS data from a total of 10 samples elucidate the crystallization and depositional ages, as well as the detrital provenance, of Precambrian and Cambrian rocks from the DRU. Zircons from five Precambrian crystalline basement samples (6000-9693') yield uniform U-Pb crystallization ages of 1230 Ma that are similar to ages for young gneisses of the Valley Spring Domain (Llano uplift) in central Texas, where they mark the cessation of arc magmatism within the Grenville orogenic belt. The 1230 Ma igneous basement is overlain by L.-M. Cambrian metasedimentary rocks ( 4000-6000') with maximum depositional ages of 533-545 Ma. Detrital zircons from Cambrian strata are dominated by a 1070-1080 Ma population, likely derived from basement units exposed in Texas (Llano uplift, Franklin Mts.), with minor contributions from local 1230 Ma Precambrian basement and the 1380-1500 Ma Granite Rhyolite Province. The L.-M. Cambrian interval is dominated (>80%) by Neoproterozoic detrital magmatic zircons with two major distinct age clusters at 570-700 Ma and 780-820 Ma, supporting a two-stage Rodinia rift model and providing strong evidence for major Cryogenian-Eocambrian intraplate magmatism along the southern margin of Rodinia. Moreover, detrital zircon signatures for L.-M. and U. Cambrian strata strongly correlate with those from the Cuyania terrane of W. Argentina - notably the W. Sierras Pampeanas (Sa. Pie de Palo, Sa. de Maz): 1230 Ma from metasandstones (PdP); 1081-1038 Ma from metasiliciclastics (PdP, SdM); Cryogenian-Eocambrian [774 & 570 Ma] plutons (SdM, PdP). In summary, these new zircon U-Pb data from DRU in SW Texas show that it is part of the Grenville orogenic belt, characterized by 1230 Ma magmatism, and that it experienced Cryogenian-Eocambrian intraplate magmatism as well. Significant correlations between DRU and the Cuyania terrane imply that both participated in Rodinia rifting and creation of the southern Laurentian margin.
NASA Astrophysics Data System (ADS)
Lentini, F.; Carbone, S.; Barreca, G.
2009-04-01
In the Central Mediterranean region the foreland domains are represented by two continental blocks, the Apulian Block to the north and the Pelagian Block to the south, respectively belonging to the Adria and to the Africa plates. They are separated since Permo-Triassic times by the oceanic crust of the Ionian Sea. The Apenninic-Maghrebian orogen is located between two oceanic crusts: the old Ionian crust, at present time subducting beneath the Calabrian Arc, and the new crust of the opening Tyrrhenian Sea. The orogenic belt is represented by a multilayer allochthonous edifice, composed of the Calabride Chain (CC) tectonically overlying the Apenninic-Maghrebian Chain (AMC), which in turn overthrust onto the Upper Miocene and Pliocene top-levels of a deep seated thrust system, originating by the deformation of the innermost carbonates of the Pelagian/Apulian blocks (External Thrust System: ETS). The AMC tectonic units derive from the orogenic transport during Oligo-Miocene times of sedimentary sequences deposited in palaeogeographical domains located between the Europe and the Afro-Adriatic plates. These units are composed of Meso-Cenozoic shallow-water carbonate successions detached from a continental type crust sector, the Panormide/Apenninic Block, recognizable by means of seismic lines shot in the Tyrrhenian offshore of Southern Apennines and Northern Sicily. The Meso-Cenozoic basinal units, that compose the AMC, can be distinguished into two main groups of sequences, originally located on oceanic crusts separated by the Panormide/Apenninic Block: the external ones (Ionides) related to an original basin belonging to branches of the Ionian Palaeobasin involved in the orogenesis, and the internal ones ascribed to the Alpine Tethys (Sicilide Units). The terrigenous deposits of the basinal sequences belonging to the Ionides are represented by Tertiary foreland/foredeep deposits, whose relationships with the substratum are occasionally preserved, although large detachments occurred with further forward transport, which generated repeated slices with an apparent increase to the original thickness. . The Alpine Tethydes are composed of sedimentary sequences, which were deposited in the Alpine Tethys, and originally were located between the European and the Panormide/Apenninic Block. They are represented by allochthonous far travelled tectonic units, resting on both the Panormide/Apenninic Platforms and the Ionides. The Calabride Chain originated by the delamination of the European margin. This roof thrust system includes nappes of Hercynian basement with remains of the original Meso-Cenozoic covers deformed during the Paleogene and sutured by the Late Oligocene-Early Burdigalian Capo d'Orlando Flysch. The geological, geophysical data and the volcanological characters permit to restore the palaeogeography and the geodynamic evolution, and allow to recognize three orogenic stages: the Eo-Alpine, originated during Cretaceous-Eocene times, evident in the western Calabria, in the Tyrrhenian basin and the Alpine Corsica; the Balearic stage (Late Oligocene-Early Miocene), in which the Corsica-Sardinia block rotated and collided with the Adria-Africa margins with thrusting of the Alpine Tethydes over Panormide/Apenninic platforms; and the Tyrrhenian stage (Middle Miocene to Present), when the onset of the Tyrrhenian back-arc basin occurred and after the closure of the interposed Palaeoionian branches the Ionides were tectonically transported onto the foreland blocks. The CROP crustal sections allow to distinguish thickness and distribution of the crusts in this area of the Mediterranean Sea, and their clear influence on geodynamic evolution of the Tyrrhenian stage. They confirm that both the foreland blocks extend below the orogenic belt, reaching the Tyrrhenian margins, with a gradual thinning and a transition to a Palaeo-Ionian slab, probably not active at present time, from which the Ionides detached and overrode the ETS. The seismogeological data indicate the presence of the Panormide/Apenninic blocks, that took part in the closure of the branches of the Palaeo-Ionian Sea interposed between the Panormide/Apenninic crust and the Pelagian/Apulian Blocks. At the present time the Panormide/Apenninic blocks are colliding with the foreland blocks. Such a collisional stage along the Tyrrhenian coast of north-western Sicily and the contemporaneous active subduction processes below the Calabrian Arc produce the NW-SE oriented South Tyrrhenian System. This system drives the transfer of the orogenic front towards areas characterized by still subducting oceanic crust of the Ionian sector. In particular it consists of predominantly NW-SE oriented right lateral faults system with antithetical NE-SW and coeval associated N-S normal faults and south-verging thrusts. All these structures are compatible with an unique cinematic framework dominated by transcurrent tectonics. Geological mapping carried out in the on-shore areas of Sicily, integrated with stratigraphical and structural analysis, permit to recognize some main structures in connection with the geodynamic evolution of the Tyrrhenian stage and allow to propose an updated structural model of this area.
Post-orogenic subsidence and uplift of the Carpathian belt: An integrated approach
NASA Astrophysics Data System (ADS)
Bertotti, G.; Matenco, L.; Drijkonigen, G.; Krijgsman, W.; Tarapoanca, M.; Panea, I.; Vasiliev, I.; Milea, M.; Cloetingh, S.
2003-04-01
Several hundred metres thick Pliocene to Quaternary sequences outcropping along the Carpathian front steeply dip away from the mountain belt towards the Carpathian foredeep. They overly the Carpathian fold-and-thrust belt and document that, following the main contractional stages, the orogenic wedge first subsided and was then uplifted. Uplift occurred coeval with substantial subsidence in the basin adjacent to the E, the Focsani Depression. To define the precise kinematics of such movements and thereby constrain these vertical movements taking place in the "wrong" place and in the "wrong" time, the Netherlands Research Center for Integrated Solid Earth Science has launched a large campaign of geological and geophysical investigation. The main components of the project are as follows: 1) acquisition of nearly 100km of seismic data designed to image the uppermost hundred metres of the Earth's crust and thereby making a precise connection between features visible in Industry lines and at the surface 2) paleomagnetic investigations in order to constrain the age of the poorly dated continental to lacustrine sediments 3) A seismic experiment designed to detect 3-D effects on 2-D acquisition 4) Structural work to determine the stress/strain conditions during subsidence and subsequent uplift At a larger scale, these activities are embedded in the effort made by ISES and connected groups to precisely constrain the kinematics of the Pannonian-Carpathian system. Seismic acquisition has been performed during the summer 2002 and has been technically very successful thanks also to the effort of the prospecting company Prospectiunii SA. Lines have been processed and are currently being interpreted. The most apparent feature is the lack of localized deformation demonstrating that subsidence and tilting affected areas of several tens of kilometers and are not related to single faults. Sampling for paleomagnetic studies has been carried out in 2002 along the same section where seismic acquisition took place. Preliminary measurements show good analytical results and will therefore produce relevant results in the coming months.
Scale independence of décollement thrusting
McBride, John H.; Pugin, Andre J.M.; Hatcher, Robert D.
2007-01-01
Orogen-scale décollements (detachment surfaces) are an enduring subject of investigation by geoscientists. Uncertainties remain as to how crustal convergence processes maintain the stresses necessary for development of low-angle fault surfaces above which huge slabs of rock are transported horizontally for tens to hundreds of kilometers. Seismic reflection profiles from the southern Appalachian crystalline core and several foreland fold-and-thrust belts provide useful comparisons with high-resolution shallow-penetration seismic reflection profiles acquired over the frontal zone of the Michigan lobe of the Wisconsinan ice sheet northwest of Chicago, Illinois. These profiles provide images of subhorizontal and overlapping dipping reflections that reveal a ramp-and-flat thrust system developed in poorly consolidated glacial till. The system is rooted in a master décollement at the top of bedrock. These 2–3 km long images contain analogs of images observed in seismic reflection profiles from orogenic belts, except that the scale of observation in the profiles in glacial materials is two orders of magnitude less. Whereas the décollement beneath the ice lobe thrust belt lies ∼70 m below thrusted anticlines having wavelengths of tens of meters driven by an advancing ice sheet, seismic images from overthrust terranes are related to lithospheric convergence that produces décollements traceable for thousands of kilometers at depths ranging from a few to over 10 km. Dual vergence or reversals in vergence (retrocharriage) that developed over abrupt changes in depth to the décollement can be observed at all scales. The strikingly similar images, despite the contrast in scale and driving mechanism, suggest a scale- and driving mechanism–independent behavior for décollement thrust systems. All these systems initially had the mechanical properties needed to produce very similar geometries with a compressional driving mechanism directed subparallel to Earth's surface. Subduction-related accretionary complexes also produce thrust systems with similar geometries in semi- to unconsolidated materials.
NASA Astrophysics Data System (ADS)
Meng, Yuanku; Santosh, M.; Li, Rihui; Xu, Yang; Hou, Fanghui
2018-07-01
The Dabie-Sulu orogenic belt in eastern China marks the boundary between the Yangtze Block and the North China Block. Here we investigate a suite of volcanic rocks from Lingshan Island in the Sulu belt comprising rhyolite, trachyte, trachyandesite and basaltic trachyandesite. We present petrological, geochemical and zircon Usbnd Pb ages and Hfsbnd O isotope data with a view to gain insights on the petrogenesis and tectonic implications. SHRIMP II analyses of zircon grains from the rhyolite yield 206Pb/238U age of 127.6 ± 1.3 Ma and LA-MC-ICP-MS dating show 126.3 ± 1.2 Ma and 127.3 ± 1.1 Ma, together constraining the eruption time as Early Cretaceous. LA-MC-ICP-MS analyses of zircon grains from the andesitic rocks yield 206Pb/238U ages of 129.0 ± 1.6 Ma, 129.8 ± 1.5 Ma and 130.9 ± 1.0 Ma. Geochemically, the rhyolite shows shoshonitic features with low MgO and Cr, but high Na2O + K2O. The zircon grains from these rocks yield negative εHf(t) values and low δ18O values, and these together with the presence of Neoproterozoic inherited zircons suggest that the magma source involved melting of the Yangtze crust. The andesitic rocks, including basaltic trachyandesite, trachyandesite and trachyte, show a wide range of SiO2, Mg# values, and Cr, enriched in LILE and LREE, depleted in HFSE (Nb, Ta and Ti), and have significantly negative zircon εHf(t) values, suggesting derivation from subcontinental lithosphere mantle that was metasomatized by felsic melts. Our results, integrated with those from previous studies suggest heterogeneous magma involving the mixing of mantle and crustal sources within an extensional setting in the Early Cretaceous.
NASA Astrophysics Data System (ADS)
Akaryali, Enver; Akbulut, Kübra
2016-03-01
The Eastern Pontide Orogenic Belt (EPOB) constitutes one of the best examples of the metallogenic provinces in on the Alpine-Himalayan belt. This study focuses on the genesis of the Ünlüpınar Pb-Zn ± Au deposit in the southern part of the Eastern Pontide Orogenic Belt. The main lithological units in the study area are the Early Carboniferous Kurtoğlu Metamorphic Complex the Late Carboniferous Köse Granitoid and the Early-Middle Jurassic Şenköy Formation. The studied deposit is hosted by the Şenköy Formation, which consists predominantly of basaltic-andesitic rocks and associated pyroclastic rocks that are calc-alkaline in composition. Silicic, sulfidic, argillic, chloritic, hematitic, carbonate and limonite are the most obvious alteration types observed in the deposit site. Ore microscopy studies exhibit that the mineral paragenesis in deposits includes pyrite, chalcopyrite, sphalerite, galena, gold, quartz and calcite. Electron microprobe analyses conducted on sphalerite indicate that the Zn/Cd ratio varies between 84 and 204, and these ratios point at a hydrothermal deposit related to granitic magmas. Fluid inclusion studies in calcite and quartz show that the homogenization temperature of the studied deposit ranges between 90-160 °C and 120-330 °C respectively. The values of sulfur isotope analysis of pyrite, sphalerite and galena minerals vary between 1.6‰ and 5.7‰, and the results of oxygen and carbon isotope analysis range between 8.4‰ and 18‰ and -5‰ and -3.6‰, respectively. The average formation temperature of the ore was calculated as 264 °C with a sulfur isotope geothermometer. All of the data indicate that the Ünlüpınar deposit is an epithermal vein-type mineralization that was formed depending on the granitic magmatism.
NASA Astrophysics Data System (ADS)
Li, Chusi; Zhang, Mingjie; Fu, Piaoer; Qian, Zhuangzhi; Hu, Peiqing; Ripley, Edward M.
2012-01-01
The Permian Kalatongke Ni-Cu deposits in the Central Asian Orogenic Belt are among the most important Ni-Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5 mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ˜15% of olivine crystallization from a primary magma, itself produced by 7-8% partial melting of depleted mantle peridotite. Positive ɛ Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6-18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc-arc or arc-continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal levels formed the parental magma of the Kalatongke intrusions. The parental magma of the Kalatongke intrusions was saturated with sulfide upon arrival primarily due to olivine fractional crystallization and selective assimilation of crustal sulfur. Sulfide mineralization in the Kalatongke intrusions can be explained by accumulation of immiscible sulfide droplets by flow differentiation, gravitational settling, and downward percolation which operated in different parts of the intrusions. Platinum-group element (PGE) depletion in the bulk sulfide ores of the Kalatongke deposits was due to depletion in the parental magma which in turn was likely due to depletion in the primary magma. PGE depletion in the primary magma can be explained by a relatively low degree of partial melting of the mantle and retention of coexisting sulfide liquid in the mantle.
NASA Astrophysics Data System (ADS)
Sang, Miao; Xiao, Wenjiao; Bakirov, Apas
2017-04-01
The exhumation and tectonic emplacement of eclogites and blueschists takes place in forearc accretionary complexes by either forearc- or backarc-directed extrusion, but few examples have been well analysed in detail. Here we present an example of oblique wedge extrusion of UHP/HP rocks in the Atbashi accretionary complex of the Kyrgyz South Tianshan. The Atbashi Eclogite-Blueschist Complex (AEBC) is a conventional, formal name for the Atbashi Formation that contains pelitic to siliceous schists alternating with HP/UHP eclogites and blueschists. The main belt of the AEBC strikes SW-NE mostly parallel to the Atbashi-Inylchek Fault. Our field mapping and structural analysis demonstrate that the Atbashi Eclogite-Blueschist Complex is situated in a complicated duplex formed by a northerly dextral transpression system and a southerly sinistral transtension system, both of which contain a series of strike-slip duplexese at several scales. The two shear systems suggest that the Atbashi Complex underwent a unique oblique south- westward extrusion with a general plunge to the NE, the horizontal projection of which is sub-parallel to the strike of the major structures. This indicates that the Atbashi Complex was extruded obliquely southwestwards during eastward penetration of the southern tip of the Yili- Central Tianshan Arc of the Kazakhstan Orocline during the Late Triassic. Also, to constrain the extrusion of the AEBC and to place it in its temporal framework during docking of the Tarim Craton to the southern margin of the Ili-Tianshan Arc, we report new zircon U-Pb isotopic data for four eclogites and one garnet-bearing quartz-schist, in order to document the timing event during extrusion. The youngest ages of the eclogites and the garnet-bearing quartz-schist may be Late Triassic of 217-221 Ma and 223.9 Ma, respectively, suggesting that the main extrusion was later than previously proposed and that the final orogenesis was not completed until the Late Triassic. The HP/UHP rocks have an oblique plunge to the NE and extrusion took place south-westwards during escape tectonics along the South Tianshan accretionary wedge in the Late Triassic. Our work shows that the movement of HP/UHP rocks had a 3D style with an arc-parallel structure, and sheds light on earlier 2D models with either forearc- or backarc-directed extrusions, which indicates that more systematic structural and geochronological work is needed to characterize the accretionary tectonics of many orogens around the world. Our data on the timing of extrusion and emplacement of the Atbashi Eclogite-Blueschist Complex also help to resolve the long-standing controversy about the time of terminal orogeny of the Central Asian Orogenic Belt.
NASA Astrophysics Data System (ADS)
Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.
2015-12-01
The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.
Geological implications of a permeability-depth curve for the continental crust
Ingebritsen, S.E.; Manning, C.E.
1999-01-01
The decrease in permeability (k) of the continental crust with depth (z), as constrained by geothermal data and calculated fluid flux during metamorphism, is given by log k = -14 - 3.2 log z, where A is in meters squared and z is in kilometers. At moderate to great crustal depths (>???5 km), this curve is defined mainly by data from prograde metamorphic systems, and is thus applicable to orogenic belts where the crust is being thickened and/or heated; lower permeabilities may occur in stable cratonic regions. This k-z relation implies that typical metamorphic fluid flux values of ???10-11 m/s are consistent with fluid pressures significantly above hydrostatic values. The k-z curve also predicts that metamorphic CO2 flux from large orogens may be sufficient to cause significant climatic effects, if retrograde carbonation reactions are minimal, and suggests a significant capacity for diffuse degassing of Earth (1015-1016 g/yr) in tectonically active regions.
NASA Astrophysics Data System (ADS)
Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li
2018-05-01
The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental orogenic event. These early Paleozoic granites occur near the ancient suture zone between the Yangtze and Cathaysia blocks and have high La/Yb and Sr/Y ratios, likely due to the existence of residual garnet in the source, suggesting the thickened crust at ca. 440 Ma. The 450-440 Ma gneissic S-type granites near the suture zone are earlier than those in the central part of the Cathaysia block (∼430 Ma). The crustal thickening along the ancient suture zone at 440 Ma propagated into the central part of the Cathaysia block as evidenced by the 430 Ma granites. Early Paleozoic I-type granites near the suture zone clearly show involvement of significant mantle-derived materials, in contrast to granites in the central part of the Cathaysia block. The ancient suture zone may have acted as channels for the emplacement of mafic magmas during the collapse of an intracontinental orogen.
NASA Astrophysics Data System (ADS)
Yokelson, Intan; Gehrels, George E.; Pecha, Mark; Giesler, Dominique; White, Chelsi; McClelland, William C.
2015-10-01
The Gravina belt consists of Upper Jurassic through Lower Cretaceous marine clastic strata and mafic-intermediate volcanic rocks that occur along the western flank of the Coast Mountains in southeast Alaska and coastal British Columbia. This report presents U-Pb ages and Hf isotope determinations of detrital zircons that have been recovered from samples collected from various stratigraphic levels and from along the length of the belt. The results support previous interpretations that strata in the western portion of the Gravina belt accumulated along the inboard margin of the Alexander-Wrangellia terrane and in a back-arc position with respect to the western Coast Mountains batholith. Our results are also consistent with previous suggestions that eastern strata accumulated along the western margin of the inboard Stikine, Yukon-Tanana, and Taku terranes and in a fore-arc position with respect to the eastern Coast Mountains batholith. The history of juxtaposition of western and eastern assemblages is obscured by subsequent plutonism, deformation, and metamorphism within the Coast Mountains orogen, but may have occurred along an Early Cretaceous sinistral transform system. Our results are inconsistent with models in which an east-facing subduction zone existed along the inboard margin of the Alexander-Wrangellia terrane during Late Jurassic-Early Cretaceous time.
NASA Astrophysics Data System (ADS)
Gao, Zhong; Zhang, Hong-Fei; Yang, He; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Pan, Fa-Bin
2018-06-01
Early Paleozoic boninites occur in the Central Qilian orogenic belt, Northwest China. Their petrogenesis provides insights into lithosphere process and tectonic evolution of the Qilian block. In this paper, we carry out a study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic boninites in the Lajishan area of the Central Qilian block. The Lajishan boninites (∼483 Ma) have high Al2O3/TiO2 (36.7-64.7) and CaO/TiO2 (31.1-49.6) ratios, and high MgO (7.86-10.47 wt%), Cr (439-599 ppm) and Ni (104-130 ppm) contents, indicating that the boninites result from a refractory mantle source. They are depleted in high field-strength elements (HFSE) and enriched in large ion lithophile elements (LILE), coupled with slightly high initial 87Sr/86Sr values of 0.7059-0.7074 and low εNd(t) values of -1.05 to +2.66, indicating that the mantle source was metasomatized by subducted slab-derived components. We found that an assemblage of low-Ca group and high-Ca group boninites occurred in the Lajishan belt. The high-Ca group boninites were derived from relatively fertile mantle with slightly higher melting degree, whereas the low-Ca group boninites were generated by partial melting of more refractory mantle wedge peridotites with slightly lower melting degree. The assemblage of low-Ca group and high-Ca group boninites reveals that the low-Ca group boninites were generated by the further melting of the more refractory mantle source after the segregation of the high-Ca group boninitic magmas in response to the back-arc basin opening. In the light of reported boninites worldwide, a diagram of Zr/Y vs. CaO/Al2O3 is used to identify boninites in fore-arc and back-arc regions. We suggest that the Lajishan boninites represent the products of back-arc basin development in response to the northward subduction of the Qaidam-West Qinling ocean slab.
Braathen, A.; Grenne, Tor; Selassie, M.G.; Worku, T.
2001-01-01
Amalgamation of East and West Gondwanaland during the Neoproterozoic East African Orogen is recorded by several shear-belts or 'suture zones', some of which are associated with ultramafic and mafic complexes that have been interpreted as ophiolite fragments. The Baruda shear-belt is a major structure of this type that belongs to the N-S trending Barka - Tulu Dimtu zone. The significance of this zone has been studied within a transect in western Ethiopia which covers a variety of metasedimentary and metavolcanic sequences, ultramafic rocks and synkinematic intrusive complexes. All rocks participated in the regional D1 event as reflected in a penetrative steep foliation in supracrustal rocks and marginal parts of the intrusions. Highly strained rocks contain a stretching lineation that plunge to the east. The several-km thick Baruda shear-belt, comprising mylonitic supracrustal and plutonic rocks including mafic-ultramafic mega-lenses, is the most prominent expression of this event. Shear-sense indicators demonstrate top-to-the-west shear. Subsequent D2 deformation is recorded in 2-300 m wide, N-S striking, subvertical shear-zones with subhorizontal stretching lineation relatable to sinistral transcurrent movements. Our data indicate that rock units on either side of the Baruda shear-belt are related, rather than being exotic to each other as implied in suture zone models, since there is no major lithologic or metamorphic difference, geochemical data on metavolcanic rocks and pre-tectonic intrusions suggest a paleotectonic link, and style and extent of deformation is similar across the shear-belt. A tentative model for the transect suggests an arc and back-arc setting which experienced later continental collision and tectonic shortening. The initial setting was that of a shallow marine platform characterised by carbonates and sandstones, which covered extensive areas prior to break-up of a pre-existing supercontinent. Continental convergence is first recorded in high-K calc-alkaline volcanism characterised by pyroclastic deposits of andesitic composition, at an active continental margin at about 800 Ma. Subaerial arc volcanism was temporally and spatially overlapping with limited arc rifting, represented by submarine basalts compositionally transitional between enriched MORB and calc-alkaline magmas, and associated dyke swarms in the older carbonate-sandstone platform sequence. It is suggested that the large, mafic-ultramafic, bodies relate to this event and were originally formed as intrusions along one or more propagating rift axis within the arc complex. The regional Baruda shear-belt formed in response to contractional D1 deformation, and its location may have been largely controlled by competence contrasts between the array of rift-related intrusions and the marble-dominated lithologies. Associated shortening of the arc and back-arc region led to crustal thickening and emplacement of synkinematic, composite, batholiths at about 570-550 Ma. These are composed of moderately peraluminous granite and coeval, intermediate to mafic intrusions of shoshonitic affinity. D2 sinistral movements succeeded the contractional deformation. ?? 2001 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.
2017-12-01
It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active, tropical mountain ranges and identifies glaciation as a trigger of autogenic behavior in flanking fluvial landscapes.
NASA Astrophysics Data System (ADS)
Song, Dongfang; Glorie, Stijn; Xiao, Wenjiao; Collins, Alan S.; Gillespie, Jack; Jepson, Gilby; Li, Yongchen
2018-01-01
The Central Asian Orogenic Belt (CAOB) is regarded to have undergone multiple phases of intracontinental deformation during the Meso-Cenozoic. Located in a key position along the southern CAOB, the Alxa Tectonic Belt (ATB) connects the northernmost Tibetan Plateau with the Mongolian Plateau. In this paper we apply apatite U-Pb and fission track thermochronological studies on varieties of samples from the southwestern ATB, in order to constrain its thermal evolution. Precambrian bedrock samples yield late Ordovician-early Silurian ( 430-450 Ma) and late Permian ( 257 Ma) apatite U-Pb ages; the late Paleozoic magmatic-sedimentary samples yield relatively consistent early Permian ages from 276 to 290 Ma. These data reveal that the ATB experienced multiple Paleozoic tectono-thermal events, as the samples passed through the apatite U-Pb closure temperature ( 350-550 °C). We interpret these tectonic events to record the long-lived subduction-accretion processes of the Paleo-Asian Ocean during the formation of the southern CAOB, with possible thermal influence of the Permian Tarim mantle plume. Apatite fission track (AFT) data and thermal history modelling reveal discrete low-temperature thermal events for the ATB, inducing cooling/reheating through the AFT partial annealing zone ( 120-60 °C). During the Permian, the samples underwent rapid cooling via exhumation or denudation from deep crustal levels to temperatures < 200 °C. Subsequent thermal events in the Triassic were thought to be associated with the final amalgamation of the CAOB or the closure of the Paleotethys. During the Jurassic-Cretaceous the study area experienced heating by burial, followed by renewed cooling, which may be related with the construction and subsequent collapse of the Mongol-Okhotsk Orogeny, or the Lhasa-Eurasia collision and subsequent slab break-off. These results indicate that the ATB may have been stable after late Cretaceous in contrast to the Qilian Shan and Tianshan. Finally, our results indicate differential exhumation scenario occurred across the southwestern ATB during the Cretaceous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, J.G. Jr.; Tull, J.F.
1993-03-01
The Lower Cambrian Chilhowee Group (CG) along the Blue Ridge (BR) foreland boundary may also be represented in more internal parts of the orogen. The relative palinspastic positions of these more internal CG( ) sequences are poorly constrained, but they are believed to represent more outboard facies than those along the frontal BR. Although correlation with CG rocks of the frontal BR is indefinite due to metamorphism and polydeformation, correlative sequences may include the cover of the Corbin and Salem Church gneisses (Pinelog Fm.), Grandfather Mountain window, Murphy belt (MB) (Hiwassee River Group), Tallulah and Toxaway domes (TTD) (quartzite-schist membermore » of the Tallulah Falls Fm.), Pine Mountain window (Hollis Quartzite), and Sauratown Mountains window (Hogan Creek and Sauratown Fms.). The CG is generally bounded on the west by the Great Smoky fault. Siliciclastics of the CG represent stacked, coarsening upward sequences, separated by transgressive facies, and capped by a highstand of the Shady Dolomite or its equivalents. CG correlations in the Kahatchee Mountain Group of the Talladega belt and the siliciclastics in the Hiwassee River Group of the MB are supported by fossil constraints. Other units are correlated with CG based upon intimate associations with marble believed to be equivalent to the overlying Lower Cambrian Shady Dolomite, or upon presumed uncomformable relationships above Grenville basement. The CG averages about 1,260 meters thickness at the frontal BR, whereas lower siliciclastics in the MB average 1,830 meters. The Pinelog Fm. is up to 600 meters thick. The Hollis Quartzite is approximately 325 meters thick, and the estimated thickness of the quartz-schist member at Tallulah Falls is up to 900 meters. More distal siliciclastics of the central BR in the MB and distal siliciclastics overlying basement were deposited farther out on the shelf as stratigraphic, litho-facies equivalents of shallower marine and continental deposits of the CG.« less
Cosca, M.A.; Essene, E.J.; Kunk, Michael J.; Sutter, J.F.
1992-01-01
An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between ??? 1000 and ??? 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By ??? 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before ??? 600 Ma as required by the deposition of overlying undeformed Cambrian and/or Ordovician sedimentary rocks. ?? 1992 Springer-Verlag.
Himalayan Strain Accumulation 100 ka Timescales
NASA Astrophysics Data System (ADS)
Cannon, J. M.; Murphy, M. A.; Liu, Y.
2015-12-01
Crustal scale fault systems and tectonostratigraphic units in the Himalaya can be traced for 2500 km along strike. However regional studies have shown that there is variability in the location and rate of strain accumulation which appears to be driven by Main Himalayan Thrust (MHT) geometry and convergence obliquity. GPS illuminates the modern interseismic strain rate and the historical record of great earthquakes elucidates variations in strain accumulation over 103 years. To connect these patterns with the 106 year structural and thermochronometric geologic record we examine normalized river channel steepness (ksn), a proxy for rock uplift rate, which develops over 104 - 105 years. Here we present a ksn map of the Himalaya and compare it with bedrock geology, precipitation, the historic earthquake record, GPS, seismicity, and seismotectonic models. Our map shows significant along strike changes in the magnitude of channel steepness, the areal extent of swaths of high ksn channels, and their location with respect to the range front. Differences include the juxtaposition of two narrow (30 - 40 km) range parallel belts of high ksn in west Nepal and Bhutan coincident with MHT duplexes and belts of microseismcity, with a single broad (70 km) swath of high ksn and microseismicity in central and eastern Nepal. Separating west and central Nepal a band of low ksn crosses the range coincident with the West Nepal Fault (WNF) and the lowest rate of microseismicity in Nepal. To the west the orogen is obliquely convergent and has less high ksn channels, while the orthogonally convergent region to the east contains the highest concentration of oversteepened channels in the Himalaya supporting the idea that the WNF is a strain partitioning boundary. The syntaxes are characterized by locally high channel steepness surrounded by low to moderate ksn channels consistent with the hypothesis that rapid exhumation within the syntaxes is sustained by an influx of lower crust.
NASA Astrophysics Data System (ADS)
Daoudene, Yannick; Tremblay, Alain; Ruffet, Gilles; Leclerc, François; Goutier, Jean
2015-04-01
Archean orogens mainly consist of greenstone belts juxtaposing deeper crustal domains of TTG-type plutonic rocks. The greenstone belts show regional folds, penetrative steeply-dipping fabrics, and localised shear zones, whereas the plutonic belts predominantly display dome structures. Concurrently, rocks in Archean orogens undergone MT/HT-LP/MP metamorphic conditions that vary, from upper to lower crustal domains, between greenschist- and granulite-facies, respectively. These structural and metamorphic variations are well-documented, but modes of deformation related to such orogens is still debated. Some studies suggest that the Archean tectonic processes were comparable to present-day plate tectonics and the Archean greenstone belts were interpreted as tectonic collages commonly documented in Phanerozoic subduction/collision zones. Alternative models propose that the Archean tectonics were different from those predicted by the plate tectonics paradigm, mainly due to the existence of a hotter mantle and a mechanically weak crust. In such models, the burying and exhumation of crustal rocks are attributed to the vertical transfer of material, resulting in the development of pop-down and domes structures. As a contribution of the study of mechanisms that might have operated during the Archean, we present a structural and metamorphic study of the contact zone between the Abitibi subprovince (ASP), which contains greenstone belts, and the Opatica subprovince (OSP), which is dominated by plutonic rocks, of the Superior Province. The 40Ar/39Ar dating of amphiboles and micas is used to constrain the age and duration of regional metamorphism and associated deformations. On the basis of seismic profiling, showing a north-dipping lithospheric-scale reflector, the ASP-OSP contact has been interpreted as the surficial trace of an Archean subduction zone. However, our structural analysis suggest that the ASP overlies the OSP and that the ASP-OSP contact does not show evidences of an important sub-vertical shearing deformation as expected if it was a major upper plate-lower plate boundary. Furthermore, the contact does not present significant metamorphic break between the two domains, but a progressive increasing of metamorphism toward the OSP, from greenschist- to amphibolite-facies conditions. Based on these structural and metamorphic characteristics, we suggest that the OSP exposes the deepest rocks at outcrop of an ASP-OSP crust in the study area. Regionally, the 40Ar/39Ar ages acquired during this study indicate that the ASP-OSP contact records a protracted metamorphic history that started around 2685 Ma. The structural and isotopic age data suggest that, from ~2685 Ma to ~2632 Ma, the deepest level of the ASP and the underlying OSP reached amphibolite-facies metamorphic conditions and that regional deformation was accommodated by an overall horizontal shortening and sub-vertical transfers of crustal material. Subsequently, the cooling of these crustal rocks was accompanied by strain localisation, which led to the development of oblique strike-slip shear zones from ~2600 Ma, when the lateral flowing of crustal material became predominant. Our 40Ar/39Ar data compared with metamorphic ages documented in adjacent areas of the Superior Province suggests that the peak and duration of regional metamorphism might have been coeval over a large region. This rather favours a mode of pervasive deformation as expected in vertical tectonics.
Sand fairway mapping as a tool for tectonic restoration in orogenic belts
NASA Astrophysics Data System (ADS)
Butler, Rob
2016-04-01
The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.
The Penokean orogeny in the Lake Superior region
Schulz, K.J.; Cannon, W.F.
2007-01-01
The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine-Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine-Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations). A thick succession of arc-derived turbidites constitutes most of the foreland basin-fill along with lesser volcanic rocks. In the southern fold and thrust belt tectonic thickening resulted in high-grade metamorphism of the sediments by 1830 Ma. At this same time, a suite of post-tectonic plutons intruded the deformed sedimentary sequence and accreted arc terranes marking the end of the Penokean orogeny. The Penokean orogen was strongly overprinted by younger tectonic and thermal events, some of which were previously ascribed to the Penokean. Principal among these was a period of vertical faulting in the Archean basement and overlying Paleoproterozoic strata. This deformation is now known to have post-dated the terminal Penokean plutons by at least several tens of millions of years. Evidence of the Penokean orogen is now largely confined to the Lake Superior region. Comparisons with more recent orogens formed by similar plate tectonic processes implies that significant parts of a once more extensive Penokean orogen have been removed or overprinted by younger tectonic events. ?? 2007 Elsevier B.V. All rights reserved.
Brew, D.A.; Himmelberg, G.R.; Loney, R.A.; Ford, A.B.
1992-01-01
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic-metamorphic complex; the Glacier Bay-Chichagof plutonic-metamorphic complex; and the Chugach plutonic-metamorphic complex. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay-Chichagof complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. -from Authors
NASA Astrophysics Data System (ADS)
Zanchetta, Stefano; Worthington, James; Angiolini, Lucia; Zanchi, Andrea
2017-04-01
The Pamir belts, located NW of the Himalaya, formed in response to the Cenozoic collision and indentation of India with Eurasia. Several crustal blocks separated by complex and scarcely studied suture zones form the present day tectonic architecture of the Pamirs. The extreme crustal shortening resulted in strong deformation and bending of pre-existing Paleozoic to Mesozoic orogens. Such deformation hinders straightforward correlations between tectonic terranes of the Himalaya-Tibetan area with their potential continuations through the Pamirs into Afghanistan and Iran. Central and SE Pamir, together with Karakoram and Qiangtang blocks separated from the Gondwana margin in the Early Permian, drifted northward, following the closure of the Paleotethys and other minor oceanic branches, and diachronously collided with Northern Pamir and Tian Shan. The Central and South Pamir are now separated by the poorly known Rushan-Pshart Suture Zone. South Pamir is separated into two units: SE Pamir consists of a Permian to Cenozoic sedimentary succession; SW Pamir is instead made of gigantic basement domes that are in contact with the SE block along crustal scale detachments. In SE Pamir, intensively folded and faulted Permian and Triassic units are unconformably covered by lowermost Jurassic terrigeneous deposits, testifying for Middle to Lower Triassic tectonics related to the Cimmerian orogenic events. Along the contact between the SE and SW Pamir, a small (a few tens of km2 wide) magmatic-metasedimetary unit occurs, reported in literature as the Bashgumbaz ophiolites. They consist of a low-grade metamorphic association of serpentinized harzburgites and gabbros, minor bodies of diorite and plagiogranite, basalts and intermediate volcanic rocks, metasediments, and a flyschoid unit containing olistolithic blocks with Triassic faunas attributed to Central Pamir block. Petrographic and geochemical data suggest a supra-subduction zone affinity for the gabbroic complex. U-Th-Pb dating of zircons from a diorite provides a Carnian crystallization age. Deformation and metamorphism (up to greenschist facies) that affected the Bashgumbaz complex should therefore been placed in the Late Triassic. We suggest that the Bashgumbaz unit formed in a supra-subduction setting and was later underthrusted and then obducted onto the southern margin of the closing Rushan-Pshart ocean. The obduction of the Bashgumbaz ophiolites could be considered as a time-marker for the accretion of the South Pamir terrane to the Eurasian margin.
NASA Astrophysics Data System (ADS)
Antić, Milorad D.; Kounov, Alexandre; Trivić, Branislav; Spikings, Richard; Wetzel, Andreas
2017-07-01
The Serbo-Macedonian Massif (SMM) represents a composite crystalline belt within the Eastern European Alpine orogen, outcropping from the Pannonian basin in the north to the Aegean Sea in the south. The central parts of this massif (south-eastern Serbia) consist of the medium- to high-grade Lower Complex and the low-grade Vlasina Unit. Outcrop- and micro-scale ductile structures in this area document three major stages of ductile deformation. The earliest stage D1 is related to isoclinal folding, commonly preserved as up to decimetre-scale quartz-feldspar rootless fold hinges. D2 is associated with general south-eastward tectonic transport and refolding of earlier structures into recumbent metre- to kilometre-scale tight to isoclinal folds. Stages D1 and D2 could not be temporally separated and probably took place in close sequence. The age of these two ductile deformation stages was constrained to the Variscan orogeny based on indirect geological evidence (i.e. ca. 408-ca. 328). During this period, the SMM was involved in a transpressional amalgamation of the western and eastern parts of the Galatian super-terrane and subsequent collision with Laurussia. Outcrop-scale evidence of the final stage D3 is limited to spaced and crenulation cleavage, which are probably related to formation of large-scale open upright folds as reported previously. 40Ar/39Ar thermochronology was applied on hornblende, muscovite, and biotite samples in order to constrain the age of tectonothermal events and activity along major shear zones. These 40Ar/39Ar data reveal three major cooling episodes affecting the central SMM. Cooling below greenschist facies conditions in the western part of the Vlasina Unit took place in a post-orogenic setting (extensional or transtensional) in the early Permian (284 ± 1 Ma). The age of activity along the top-to-the-west shear zone formed within the orthogneiss in the Božica area of the Vlasina Unit was constrained to Middle Triassic (246 ± 1 Ma). This age coincides with widespread extension related to the opening of the Mesozoic Tethys. The greenschist facies retrogression in the Lower Complex probably occurred in the Early Jurassic (195 ± 1 Ma), and it was related to the thermal processes in the overriding plate above the subducting slab of the Mesozoic Tethys Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.
1996-01-01
Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of [approx]139[degrees]E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.
1996-12-31
Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of {approx}139{degrees}E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less