DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.
We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less
The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417
NASA Astrophysics Data System (ADS)
Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle
2017-01-01
Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.
The planetary nebula IC 4776 and its post-common-envelope binary central star
NASA Astrophysics Data System (ADS)
Sowicka, Paulina; Jones, David; Corradi, Romano L. M.; Wesson, Roger; García-Rojas, Jorge; Santander-García, Miguel; Boffin, Henri M. J.; Rodríguez-Gil, Pablo
2017-11-01
We present a detailed analysis of IC 4776, a planetary nebula displaying a morphology believed to be typical of central star binarity. The nebula is shown to comprise a compact hourglass-shaped central region and a pair of precessing jet-like structures. Time-resolved spectroscopy of its central star reveals a periodic radial velocity variability consistent with a binary system. Whilst the data are insufficient to accurately determine the parameters of the binary, the most likely solutions indicate that the secondary is probably a low-mass main-sequence star. An empirical analysis of the chemical abundances in IC 4776 indicates that the common-envelope phase may have cut short the asymptotic giant branch evolution of the progenitor. Abundances calculated from recombination lines are found to be discrepant by a factor of approximately 2 relative to those calculated using collisionally excited lines, suggesting a possible correlation between low-abundance discrepancy factors and intermediate-period post-common-envelope central stars and/or Wolf-Rayet central stars. The detection of a radial velocity variability associated with the binarity of the central star of IC 4776 may be indicative of a significant population of (intermediate-period) post-common-envelope binary central stars that would be undetected by classic photometric monitoring techniques.
Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars
NASA Technical Reports Server (NTRS)
Feibelman, W. A.
1999-01-01
We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.
VizieR Online Data Catalog: VLT-FLAMES Tarantula Survey. 30 Dor luminous stars (Doran+, 2013)
NASA Astrophysics Data System (ADS)
Doran, E. I.; Crowther, P. A.; de Koter, A.; Evans, C. J.; McEvoy, C.; Walborn, N. R.; Bastian, N.; Bestenlehner, J. M.; Grafener, G.; Herrero, A.; Kohler, K.; Maiz Apellaniz, J.; Najarro, F.; Puls, J.; Sana, H.; Schneider, F. R. N.; Taylor, W. D.; van Loon, J. T.; Vink, J. S.
2013-08-01
A census was compiled of all the hot luminous stars within the central 10 arcminutes of 30 Doradus. Candidate hot luminous stars were selected from a series of photometric catalogues, using a set of criteria explained in the paper. All stars meeting this photometric criteria are listed in Tabled1.dat. In addition, Table D1 includes all known Wolf-Rayet and Of/WN stars in the region, which may not have been selected due to photometric effects. Spectral Types were then matched to as many of the candidate stars in Tabled1.dat as possible. Stellar parameters were determined for all stars with the following spectral types: W-R, Of/WN, O-type, B-supergiant, B-giant B1I or earlier, B-dwarf, B0.5V or earlier. These parameters are listed in Tabled2.dat. Parameters of all O-type and B-type stars were derived through various calibrations. Parameters of W-R and Of/WN stars were based on previous work or various template models explained in the paper. (2 data files).
NASA Astrophysics Data System (ADS)
Zasov, A. V.; Cherepashchuk, A. M.
2013-11-01
The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.
Wolf-Rayet stars in the central region of the Milky Way
NASA Astrophysics Data System (ADS)
Hamann, Wolf-Rainer; Graefener, Goetz; Oskinova, Lidia; Zinnecker, Hans
2004-09-01
We propose to take mid-IR spectra of two Wolf-Rayet stars in the inner part of our Galaxy, within 30pc projected distance from the central Black Hole. Massive stars dominate the central galactic region by their mass-loss and ionizing radiation. A quantitative analysis of this stellar inventory is essential for understanding the energy, momentum and mass budget, for instance with respect to the feeding of the central black hole. Our group developed a highly advanced model code for the expanding atmospheres of WR stars. Recently we extended the spectrum synthesis to IR wavelengths. These models will be applied for the analysis of the Spitzer IRS data. The proposed mid-IR observations will provide a wide spectral range with many lines which are needed to determine the stellar parameters, such as stellar luminosity, effective temperature, mass-loss rate and chemical composition. Near-IR spectra of the program stars are available and will augment the analysis. The capability of our code to reproduce the observed mid-IR spectrum of a WN star has been demonstrated. The two targets we selected are sufficiently isolated, while the Galactic center cluster is too crowded for the size of Spitzer's spectrograph slit. As estimated from the K-band spectra, one of the stars (WR102ka) is of very late subtype (WN9), while the other star (WR102c) has the early subtype WN6. Hence they represent different stages in the evolutionary sequence of massive stars, the late-WN just having entered the Wolf-Rayet phase and the early WN being further evolved. We expect that the parameters of massive stars in the inner galaxy differ from the usual Galactic population. One reason is that higher metallicity should lead to stronger mass-loss, which affects the stellar evolution. The Spitzer IRS, with its high sensitivity, provides a unique opportunity to study representative members of the stellar population in the vicinity of the Galactic center.
Stellar populations in the dwarf elliptical galaxy NGC 185
NASA Technical Reports Server (NTRS)
Lee, Myung G.; Freedman, Wendy L.; Madore, Barry F.
1993-01-01
The study presents BVRI CCD photometry of about 5300 stars in the central area of the dwarf elliptical galaxy NGC 185 in the Local Group. The color-magnitude diagram shows three distinct stellar populations: a dominant RGB population, AGB stars located above the tip of the RGB stars, and a small number of young stars having blue to yellow colors. The foreground reddening is estimated to be 0.19 +/- 0.03 mag using the (B - V) - (V - I) diagram for the bright foreground stars with good photometry. Surface photometry of the central area of NGC 185 is presented; it shows that the colors become rapidly bluer inside R of about 10 arcsec. Structural parameters indicate that the mass-to-luminosity ratio ranges from 3 to 5.
VizieR Online Data Catalog: Galactic Center old stars distribution (Gallego-Cano+, 2018)
NASA Astrophysics Data System (ADS)
Gallego-Cano, E.; Schoedel, R.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.
2017-09-01
Photometric and astrometric parameters for the point source detections in the central parsec in the Galactic Centre. As we described in the manuscript, we work on four pointings which we do not combine to a final mosaic to avoid distortion issues. We analyse those four pointings in four different ways, applying different sets of StarFinder parameters. Therefore we present 16 tables, one for each pointing in the observations and StarFinder parameters. We present the extinction and completeness-corrected stellar density in three different magnitudes ranges. The tables are used to represent Figure 9 in the paper. (20 data files).
Hydrogen-deficient Central Stars of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.
2015-06-01
A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.
The Dense Gas Fraction in the Central Molecular Zone in the Milky Way
NASA Astrophysics Data System (ADS)
Vargas-Salazar, Irene; Battersby, Cara; Walker, Daniel; Zhang, Qizhou; CMZoom
2017-01-01
The Central Molecular Zone (CMZ), a large reservoir of dense molecular gas occupying the central 500pc of the Milky Way, is an extreme star-formation environment where the validity of star formation prescriptions can be tested. The star formation rate (SFR) in the CMZ is about an order of magnitude lower than predicted by the currently accepted prescriptions. An international team lead by PIs Battersby and Keto conducted a survey from 2013-2016 called CMZoom using the Submillimeter Array (SMA) to characterize star formation within resolved molecular clouds in this extreme region. One of the main goals of this survey is to further quantify and understand the low SFR found in this region of the Galaxy. Here, we use the CASA software package to run synthetic observations of hydrodynamical simulations of molecular clouds and vary the observation parameters in such a way that we explore the real parameter space that was probed during the survey. The purpose of this is to investigate how the different observational parameters affect the resultant data. Afterwards, we estimate the “dense gas fraction” (DGF) found in regions across the CMZ. This estimate was found by using the interferometric flux from SMA and the single-dish flux from the Bolocam Galactic Plane Survey. We analyzed the effects that different locations of the CMZ had on these approximate DGF. With these simulations and DGF estimates, we are able to generate improved methods to analyze the data from this survey that will help understand star formation in an extreme environment.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no.1262851, and by the Smithsonian Institution.
On the physical parameters for Centaurus X-3 and Hercules X-1.
NASA Technical Reports Server (NTRS)
Mccluskey, G. E., Jr.; Kondo, Y.
1972-01-01
It is shown how upper and lower limits on the physical parameters of X-ray sources in Centaurus X-3 and Hercules X-1 may be determined from a reasonably simple and straightforward consideration. The basic assumption is that component A (the non-X-ray emitting component) is not a star collapsing toward its Schwartzschild radius (i.e., a black hole). This assumption appears reasonable since component A (the radius of the central occulting star) appears to physically occult component X. If component A is a 'normal' star, both observation and theory indicate that its mass is not greater than about 60 solar masses. The possibility in which component X is either a neutron star or a white dwarf is considered.
Charged boson stars and black holes with nonminimal coupling to gravity
NASA Astrophysics Data System (ADS)
Verbin, Y.; Brihaye, Y.
2018-02-01
We find new spherically symmetric charged boson star solutions of a complex scalar field coupled nonminimally to gravity by a "John-type" term of Horndeski theory, that is a coupling between the kinetic scalar term and Einstein tensor. We study the parameter space of the solutions and find two distinct families according to their position in parameter space. More widespread is the family of solutions (which we call branch 1) existing for a finite interval of the central value of the scalar field starting from zero and ending at some finite maximal value. This branch contains as a special case the charged boson stars of the minimally coupled theory. In some regions of parameter space we find a new second branch ("branch 2") of solutions which are more massive and more stable than those of branch 1. This second branch exists also in a finite interval of the central value of the scalar field, but its end points (either both or in some cases only one) are extremal Reissner-Nordström black hole solutions.
NASA Astrophysics Data System (ADS)
Habibi, M.; Gillessen, S.; Martins, F.; Eisenhauer, F.; Plewa, P. M.; Pfuhl, O.; George, E.; Dexter, J.; Waisberg, I.; Ott, T.; von Fellenberg, S.; Bauböck, M.; Jimenez-Rosales, A.; Genzel, R.
2017-10-01
We study the young S-stars within a distance of 0.04 pc from the supermassive black hole in the center of our Galaxy. Given how inhospitable the region is for star formation, their presence is more puzzling the younger we estimate their ages. In this study, we analyze the result of 12 years of high-resolution spectroscopy within the central arcsecond of the Galactic Center (GC). By co-adding between 55 and 105 hr of spectra we have obtained high signal-to-noise H- and K-band spectra of eight stars orbiting the central supermassive black hole. Using deep H-band spectra, we show that these stars must be high surface gravity (dwarf) stars. We compare these deep spectra to detailed model atmospheres and stellar evolution models to infer the stellar parameters. Our analysis reveals an effective temperature of 21,000-28,500 K, a rotational velocity of 60-170 km s-1, and a surface gravity of 4.1-4.2. These parameters imply a spectral type of B0-B3V for these stars. The inferred masses lie within 8-14 {M}⊙ . We derive an age of {6.6}-4.7+3.4 Myr for the star S2, which is compatible with the age of the clockwise-rotating young stellar disk in the GC. We estimate the ages of all other studied S-stars to be less than 15 Myr, which is compatible with the age of S2 within the uncertainties. The relatively low ages for these S-stars favor a scenario in which the stars formed in a local disk rather than a field binary-disruption scenario that occurred over a longer period of time.
Two-flavor hybrid stars with the Dyson-Schwinger quark model
NASA Astrophysics Data System (ADS)
Wei, J. B.; Chen, H.; Schulze, H.-J.
2017-11-01
We study the properties of two-flavor quark matter in the Dyson-Schwinger model and investigate the possible consequences for hybrid neutron stars, with particular regard to the two-solar-mass limit. We find that with some extreme values of the model parameters, the mass fraction of two-flavor quark matter in heavy neutron stars can be as high as 30 percent and the possible energy release during the conversion from nucleonic neutron stars to hybrid stars can reach 1052 erg. Supported by NSFC (11305144, 11475149, 11303023), Central Universities (CUGL 140609) in China, “NewCompStar,” COST Action MP1304
SED Modeling of 20 Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.
The spatial extent of star formation in interacting galaxies
NASA Astrophysics Data System (ADS)
Moreno, Jorge
2015-08-01
We employ a suite of 75 simulations of galaxies in idealized major mergers (stellar mass ratio ˜2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at larger galactocentric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter’s impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.Co-authors: Paul Torrey, Sara Ellison, David Patton, Asa Bluck, Gunjan Bansal & Lars Hernquist
Implications of tachyon-like matter for superdense stars.
NASA Technical Reports Server (NTRS)
Bhatia, M. S.; Pande, L. K.
1972-01-01
Derivation of a new equation of state of superdense matter by treating superdense matter as a perfect, degenerate tachyon gas. Model calculations for superdense stars based on this equation of state are presented. By appropriately choosing a certain parameter, dynamical stability can be achieved for arbitrarily large central densities. Also, a somewhat larger than usual value for the maximum mass is obtained.
A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; Quataert, Eliot; MacFadyen, Andrew I., E-mail: duffell@berkeley.edu
2015-11-01
We use two-dimensional relativistic hydrodynamic numerical calculations to show that highly collimated relativistic jets can be produced in neutron star merger models of short-duration gamma-ray bursts (GRBs) without the need for a highly directed engine or a large net magnetic flux. Even a hydrodynamic engine generating a very wide sustained outflow on small scales can, in principle, produce a highly collimated relativistic jet, facilitated by a dense surrounding medium that provides a cocoon surrounding the jet core. An oblate geometry to the surrounding gas significantly enhances the collimation process. Previous numerical simulations have shown that the merger of two neutronmore » stars produces an oblate, expanding cloud of dynamical ejecta. We show that this gas can efficiently collimate the central engine power much like the surrounding star does in long-duration GRB models. For typical short-duration GRB central engine parameters, we find jets with opening angles of an order of 10° in which a large fraction of the total outflow power of the central engine resides in highly relativistic material. These results predict large differences in the opening angles of outflows from binary neutron star mergers versus neutron star–black hole mergers.« less
Relativistic stars in degenerate higher-order scalar-tensor theories after GW170817
NASA Astrophysics Data System (ADS)
Kobayashi, Tsutomu; Hiramatsu, Takashi
2018-05-01
We study relativistic stars in degenerate higher-order scalar-tensor theories that evade the constraint on the speed of gravitational waves imposed by GW170817. It is shown that the exterior metric is given by the usual Schwarzschild solution if the lower order Horndeski terms are ignored in the Lagrangian and a shift symmetry is assumed. However, this class of theories exhibits partial breaking of Vainshtein screening in the stellar interior and thus modifies the structure of a star. Employing a simple concrete model, we show that for high-density stars the mass-radius relation is altered significantly even if the parameters are chosen so that only a tiny correction is expected in the Newtonian regime. We also find that, depending on the parameters, there is a maximum central density above which solutions cease to exist.
The spectroscopic orbits and physical parameters of GG Carinae
NASA Astrophysics Data System (ADS)
Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.
2012-04-01
Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of GG Car, we obtain Teff = 23 000 K and log g = 3. The central star is surrounded by a spherical envelope consisting of a layer of 3.5 stellar radii composed of ionized gas and other outermost dust layers with EB - V = 0.39. These calculations are not strongly modified if we consider two similar B-type stars instead of a central star, provided our model suggests that the second star might contribute less than 10% of the primary flux. The calculated effective temperature is consistent with an spectral type B0-B2 and a distance to the object of 5 ± 1 kpc was determined. Based on observations taken at Complejo Astronómico EL LEONCITO, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.
The Unusual Central Star of the Planetary Nebula Sh 2-71
NASA Astrophysics Data System (ADS)
Močnik, Teo
2013-08-01
This thesis presents new photometric and spectroscopic observational results for the unusual central star of bipolar planetary nebula Sh2-71. The combined lightcurve, composed from the photometric datasets of three different telescopes, was in agreement with the reported ephemeris of the sinusoidal brightness variations with a period of 68 days. The two sharp brightness dips, indicated by the preliminary automated data reduction process, were confirmed. The presence of three additional dips tentatively suggested that the dips, possibly eclipses, are occurring periodically with a period of 17.2 days. The comparison between U and V lightcurves revealed that the 68 day brightness variations are accompanied by a variable reddening effect. Spectroscopic observations revealed pronounced spectral variations, which were not correlated with the 68 days brightness phase. On the other hand, the high-cadence echelle spectra did not exhibit any variability on hourly timescales, which implied that the spectral variations must occur on timescales of a few days. Radial velocity measurements suggested an amplitude of ±40 km/s but were not correlated with the brightness phase. The measured average radial velocity of the observed star 26 km/s was in near agreement with the reported mean radial velocity of the planetary nebula. As some doubt has been raised recently that the central star could be another field star, this near agreement between the radial velocities provided supporting evidence that the observed star actually is the central star of the planetary nebula. The comparison between the measured and synthetic spectra yielded stellar atmospheric parameters T_eff 12000 K, log(g) 4.0 cm/s^2, vrot\\cdot sin(i) 200 km/s with an indicated high value of metallicity. Fitted stellar parameters and the comparison with standard spectra classified the star as B8V. The obtained spectrophotometric observations have been used to construct a model for the central star. A previously suggested cataclysmic binary model has been revisited. The required <1 day orbital period for the mass transfer to establish should be reflected in pronounced spectral profile and radial velocity variations on similarly short timescales. Instead, the high resolution 30 minutes cadence echelle spectra did not exhibit any variations in the timespan of 4.5 hours and thus rejected the cataclysmic model. From the various considered potential models, the spectrophotometric properties of the observed star were best reproduced with a precessing Be disc in a misaligned close binary model. This model could also provide the required collimation for the resulting bipolar shape of the planetary nebula. However, due to the lack of spectra with Hα and Hβ wavelength coverage with a daily cadence, the proposed model should be regarded as tentative.
Kaon femtoscopy in Au+Au collisions at √SNN = 200 GeV at the STAR experiment
NASA Astrophysics Data System (ADS)
Lidrych, Jindřich
2018-02-01
In this proceedings, the STAR preliminary results on femtoscopic correlations of identical kaons from Au+Au collisions at =200 GeV are presented. The measured kaon source radii are studied as a function of collision energy as well as centrality and transverse pair mass mT. In addition, extracted kaon blast-wave freeze-out parameters are presented.
Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.
Effects of disc warping on the inclination evolution of star-disc-binary systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-07-01
Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.
P-MaNGA: GRADIENTS IN RECENT STAR FORMATION HISTORIES AS DIAGNOSTICS FOR GALAXY GROWTH AND DEATH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cheng; Wang, Enci; Lin, Lin
2015-05-10
We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000 Å break (D{sub n}(4000)), Hδ absorption (EW(Hδ{sub A})), and Hα emission (EW(Hα)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D{sub n}(4000) measured in the central spaxel of each datacube exceeds 1.6. For each spaxel we generate both 2D maps and radialmore » profiles of D{sub n}(4000), EW(Hδ{sub A}), and EW(Hα). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D{sub n}(4000) decreases, while both EW(Hδ{sub A}) and EW(Hα) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence.« less
On the analysis of large data sets
NASA Astrophysics Data System (ADS)
Ruch, Gerald T., Jr.
We present a set of tools and techniques for performing detailed comparisons between computational models with high dimensional parameter spaces and large sets of archival data. By combining a principal component analysis of a large grid of samples from the model with an artificial neural network, we create a powerful data visualization tool as well as a way to robustly recover physical parameters from a large set of experimental data. Our techniques are applied in the context of circumstellar disks, the likely sites of planetary formation. An analysis is performed applying the two layer approximation of Chiang et al. (2001) and Dullemond et al. (2001) to the archive created by the Spitzer Space Telescope Cores to Disks Legacy program. We find two populations of disk sources. The first population is characterized by the lack of a puffed up inner rim while the second population appears to contain an inner rim which casts a shadow across the disk. The first population also exhibits a trend of increasing spectral index while the second population exhibits a decreasing trend in the strength of the 20 mm silicate emission feature. We also present images of the giant molecular cloud W3 obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) on board the Spitzer Space Telescope. The images encompass the star forming regions W3 Main, W3(OH), and a region that we refer to as the Central Cluster which encloses the emission nebula IC 1795. We present a star count analysis of the point sources detected in W3. The star count analysis shows that the stellar population of the Central Cluster, when compared to that in the background, contains an over density of sources. The Central Cluster also contains an excess of sources with colors consistent with Class II Young Stellar Objects (YSOs). A analysis of the color-color diagrams also reveals a large number of Class II YSOs in the Central Cluster. Our results suggest that an earlier epoch of star formation created the Central Cluster, created a cavity, and triggered the active star formation in the W3 Main and W3(OH) regions. We also detect a new outflow and its candidate exciting star.
Driven neutron star collapse: Type I critical phenomena and the initial black hole mass distribution
NASA Astrophysics Data System (ADS)
Noble, Scott C.; Choptuik, Matthew W.
2016-01-01
We study the general relativistic collapse of neutron star (NS) models in spherical symmetry. Our initially stable models are driven to collapse by the addition of one of two things: an initially ingoing velocity profile, or a shell of minimally coupled, massless scalar field that falls onto the star. Tolman-Oppenheimer-Volkoff (TOV) solutions with an initially isentropic, gamma-law equation of state serve as our NS models. The initial values of the velocity profile's amplitude and the star's central density span a parameter space which we have surveyed extensively and which we find provides a rich picture of the possible end states of NS collapse. This parameter space survey elucidates the boundary between Type I and Type II critical behavior in perfect fluids which coincides, on the subcritical side, with the boundary between dispersed and bound end states. For our particular model, initial velocity amplitudes greater than 0.3 c are needed to probe the regime where arbitrarily small black holes can form. In addition, we investigate Type I behavior in our system by varying the initial amplitude of the initially imploding scalar field. In this case we find that the Type I critical solutions resemble TOV solutions on the 1-mode unstable branch of equilibrium solutions, and that the critical solutions' frequencies agree well with the fundamental mode frequencies of the unstable equilibria. Additionally, the critical solution's scaling exponent is shown to be well approximated by a linear function of the initial star's central density.
Predictions from star formation in the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Leichenauer, Stefan
2010-03-15
We compute trivariate probability distributions in the landscape, scanning simultaneously over the cosmological constant, the primordial density contrast, and spatial curvature. We consider two different measures for regulating the divergences of eternal inflation, and three different models for observers. In one model, observers are assumed to arise in proportion to the entropy produced by stars; in the others, they arise at a fixed time (5 or 10x10{sup 9} years) after star formation. The star formation rate, which underlies all our observer models, depends sensitively on the three scanning parameters. We employ a recently developed model of star formation in themore » multiverse, a considerable refinement over previous treatments of the astrophysical and cosmological properties of different pocket universes. For each combination of observer model and measure, we display all single and bivariate probability distributions, both with the remaining parameter(s) held fixed and marginalized. Our results depend only weakly on the observer model but more strongly on the measure. Using the causal diamond measure, the observed parameter values (or bounds) lie within the central 2{sigma} of nearly all probability distributions we compute, and always within 3{sigma}. This success is encouraging and rather nontrivial, considering the large size and dimension of the parameter space. The causal patch measure gives similar results as long as curvature is negligible. If curvature dominates, the causal patch leads to a novel runaway: it prefers a negative value of the cosmological constant, with the smallest magnitude available in the landscape.« less
Estado evolutivo de estrellas con fenómeno B[e
NASA Astrophysics Data System (ADS)
Aidelman, Y. J.; Cidale, L.; Borges Fernandes, M.; Kraus, M.
The B[e] phenomenon is related to certain peculiar features observed in the spectrum of some B stars, which are mainly linked to the physical conditions of their circumstellar medium. As these stars are embedded in dense and optically thick circumstellar media, the determination of the spectral type and luminosity class of the central objects is quite difficult. As a consequence, their evolutionary stage and distances present huge uncertainties. In this work we study 4 B[e] stars and discuss their stellar fundamental parameters and evolutionary stages using the BCD spectrophotometric system. FULL TEXT IN SPANISH
The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology
NASA Astrophysics Data System (ADS)
Cowley, C. R.; Przybilla, N.; Hubrig, S.
2015-06-01
Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.
NASA Astrophysics Data System (ADS)
Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart
2017-02-01
Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.
Rapid Spectral Variability of the Symbiotic Star CH Cyg During One Night
NASA Astrophysics Data System (ADS)
Mikayilov, Kh. M.; Rustamov, B. N.; Alakbarov, I. A.; Rustamova, A. B.
2017-06-01
During one night (15.07.2015), within 6 hours 14 echelle spectrograms of this star were obtained. It was revealed that the profile of Ha and Hβ lines have two-component emission structure with a central absorption, parameters which vary from spectrum to spectrum during the night. The intensity of blue emission component (V) have been changed strongly during the night: the value of ratio of intensities of violet and red components (V/R) of line Hα decreased from 0:93 to 0:49 in the beginning and then increased to a value of 0.97. The synchronous variations of values of V/R for the Hα and Hβ lines have been revealed. The parameters of blue emission components of Hα and of line Hel λ5876 Å are correlated. We propose that revealed by us the rapid spectral changes in the spectrum of the star CH Cyg could be connected with a flickering in the optical brightness of the star that is typical for the active phase of this system.
An accurate metric for the spacetime around rotating neutron stars
NASA Astrophysics Data System (ADS)
Pappas, George
2017-04-01
The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parametrized metric, I.e. a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work, we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parametrized by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parametrization of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a three-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, He; You, Zhi-Qiang; Lei, Wei-Hua
Recently, the first association between an ultra-long gamma-ray burst (GRB) and a supernova was reported, i.e., GRB 111209A/SN 2011kl, enabling us to investigate the physics of central engines or even progenitors for ultra-long GRBs. In this paper, we inspect the broadband data of GRB 111209A/SN 2011kl. The late-time X-ray light curve exhibits a GRB 121027A-like fallback bump, suggesting a black hole (BH) central engine. We thus propose a collapsar model with fallback accretion for GRB 111209A/SN 2011kl. The required model parameters, such as the total mass and radius of the progenitor star, suggest that the progenitor of GRB 111209A ismore » more likely a Wolf–Rayet star instead of a blue supergiant, and the central engine of this ultra-long burst is a BH. The implications of our results are discussed.« less
NASA Astrophysics Data System (ADS)
Adak, Rama Prasad; Das, Supriya; Ghosh, Sanjay K.; Ray, Rajarshi; Samanta, Subhasis
2017-07-01
We estimate chemical freeze-out parameters in Hadron Resonance Gas (HRG) and Excluded Volume HRG (EVHRG) models by fitting the experimental information of net-proton and net-charge fluctuations measured in Au + Au collisions by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider (RHIC). We observe that chemical freeze-out parameters obtained from lower and higher order fluctuations are almost the same for √{sNN}>27 GeV, but tend to deviate from each other at lower √{sNN}. Moreover, these separations increase with decrease of √{sNN}, and for a fixed √{sNN} increase towards central collisions. Furthermore, we observe an approximate scaling behavior of (μB/T ) /(μB/T)central with (Npart) /(Npart)central for the parameters estimated from lower order fluctuations for 11.5 ≤√{sNN}≤200 GeV. Scaling is violated for the parameters estimated from higher order fluctuations for √{sNN}=11.5 and 19.6 GeV. It is observed that the chemical freeze-out parameter, which can describe σ2/M of net protons very well in all energies and centralities, cannot describe the s σ equally well, and vice versa.
Star Count Density Profiles and Structural Parameters of 26 Galactic Globular Clusters
NASA Astrophysics Data System (ADS)
Miocchi, P.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Vesperini, E.; Pasquato, M.; Beccari, G.; Pallanca, C.; Sanna, N.
2013-09-01
We used an appropriate combination of high-resolution Hubble Space Telescope observations and wide-field, ground-based data to derive the radial stellar density profiles of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system, a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This collection of data represents the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13, and M62 is not confirmed; (2) the majority of clusters in our sample are fit equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distance; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at ~0.3 for about 80% of the clusters and a secondary peak at ~0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with that expected from simulations of cluster dynamical evolution and the ratio between these two radii correlates well with an empirical dynamical-age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.
Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity
NASA Astrophysics Data System (ADS)
Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.
The shortest-known-period star orbiting our Galaxy's supermassive black hole.
Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K
2012-10-05
Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.
IC 4663: The First Unambiguous [WN] Wolf-Rayet Central Star of a Planetary Nebula
NASA Astrophysics Data System (ADS)
Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.
2013-01-01
Several [WC]-type central stars of planetary nebulae (PNe) are known to mimic the spectroscopic appearance of massive carbon-rich or WC-type Wolf-Rayet stars. In stark contrast, no [WN]-type central stars have yet been identified as clear-cut analogues of the common nitrogen-rich or WN-type Wolf-Rayet stars. We have identified the [WN3] central star of IC 4663 to be the first unambiguous example in PNe. The low luminosity nucleus and an asymptotic giant branch (AGB) halo surrounding the main nebula prove the bona-fide PN nature of IC 4663. Model atmosphere analysis reveals the [WN3] star to have an exotic chemical composition of helium (95%), hydrogen (<2%), nitrogen (0.8%), neon (0.2%) and oxygen (0.05%) by mass. Such an extreme helium-dominated composition cannot be predicted by current evolutionary scenarios for hydrogen deficient [WC]-type central stars. Only with the discovery of IC 4663 and its unusual composition can we now connect [WN] central stars to the O(He) central stars in a second H-deficient and He-rich evolutionary sequence, [WN]→O(He), that exists in parallel to the carbon-rich [WC]→PG1159 sequence. This suggests a simpler mechanism, perhaps a binary merger, can better explain H-deficiency in PNe and potentially other H-deficient/He-rich stars. In this respect IC 4663 is the best supported case for a possible merged binary central star of a PN.
NASA Astrophysics Data System (ADS)
Lehmann, I.; Scholz, R.-D.
1997-04-01
We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962) we derived the following structural parameters: tidal radius r_t_, core radius r_c_ and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al. 1995).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... Request Under Blanket Authorization; Southern Star Central Gas Pipeline, Inc. Take notice that on October 21, 2013 Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro... Counties, Missouri, under authorization issued to Southern Star in Docket No. CP82-479-000 pursuant to...
Episodic Mass Loss from the Hydrogen-deficient Central Star of the Planetary Nebula Longmore 4
NASA Astrophysics Data System (ADS)
Bond, Howard E.
2014-09-01
A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ~5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found. Based on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.
Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes
NASA Astrophysics Data System (ADS)
Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica
2016-04-01
In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.
A perfect starburst cluster made in one go: The NGC 3603 young cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sambaran; Kroupa, Pavel
2014-06-01
Understanding how distinct, near-spherical gas-free clusters of very young, massive stars shape out of vast, complex clouds of molecular hydrogen is one of the biggest challenges in astrophysics. A popular thought dictates that a single gas cloud fragments into many newborn stars which, in turn, energize and rapidly expel the residual gas to form a gas-free cluster. This study demonstrates that the above classical paradigm remarkably reproduces the well-observed central, young cluster (HD 97950) of the Galactic NGC 3603 star-forming region, in particular, its shape, internal motion, and mass distribution of stars naturally and consistently follow from a single modelmore » calculation. Remarkably, the same parameters (star formation efficiency, gas expulsion timescale, and delay) reproduce HD 97950, as were found to reproduce the Orion Nebula Cluster, Pleiades, and R136. The present results therefore provide intriguing evidence of formation of star clusters through single-starburst events followed by significant residual gas expulsion.« less
VizieR Online Data Catalog: OGLE RR Lyrae in LMC (Soszynski+, 2003)
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2003-11-01
We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/lmc/rrlyr (6 data files).
[WN] central stars of planetary nebulae
NASA Astrophysics Data System (ADS)
Todt, H.; Miszalski, B.; Toalá, J. A.; Guerrero, M. A.
2017-10-01
While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.
The central spheroids of Milky Way mass-sized galaxies
NASA Astrophysics Data System (ADS)
Tissera, Patricia B.; Machado, Rubens E. G.; Carollo, Daniela; Minniti, Dante; Beers, Timothy C.; Zoccali, Manuela; Meza, Andres
2018-01-01
We study the properties of the central spheroids located within 10 kpc of the centre of mass of Milky Way mass-sized galaxies simulated in a cosmological context. The simulated central regions are dominated by stars older than 10 Gyr, mostly formed in situ, with a contribution of ∼30 per cent from accreted stars. These stars formed in well-defined starbursts, although accreted stars exhibit sharper and earlier ones. The fraction of accreted stars increases with galactocentric distance, so that at a radius of ∼8-10 kpc, a fraction of ∼40 per cent, on average, is detected. Accreted stars are slightly younger, lower metallicity, and more α-enhanced than in situ stars. A significant fraction of old stars in the central regions come from a few (2-3) massive satellites (∼1010 M⊙). The bulge components receive larger contributions of accreted stars formed in dwarfs smaller than ∼109.5 M⊙. The difference between the distributions of ages and metallicities of old stars is thus linked to the accretion histories - those central regions with a larger fraction of accreted stars are those with contributions from more massive satellites. The kinematical properties of in situ and accreted stars are consistent with the latter being supported by their velocity dispersions, while the former exhibit clear signatures of rotational support. Our simulations demonstrate a range of characteristics, with some systems exhibiting a co-existing bar and spheroid in their central regions, resembling in some respect the central region of the Milky Way.
76 FR 31599 - Southern Star Central Gas Pipeline, Inc.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-481-000] Southern Star Central Gas Pipeline, Inc.; Notice of Application On May 13, 2011, Southern Star Central Gas Pipeline, Inc. (Southern Star) filed with the Federal Energy Regulatory Commission (Commission) an application under...
77 FR 41975 - Southern Star Central Gas Pipeline, Inc.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-479-000] Southern Star Central Gas Pipeline, Inc.; Notice of Application Take notice that on June 27, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42301, filed an application...
77 FR 28867 - Southern Star Central Gas Pipeline, Inc.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-285-000] Southern Star Central Gas Pipeline, Inc.; Notice of Application Take notice that on April 27, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42304, filed in Docket No...
76 FR 67160 - Southern Star Central Gas Pipeline, Inc.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-481-001] Southern Star Central Gas Pipeline, Inc.; Notice of Application On October 19, 2011, Southern Star Central Gas Pipeline, Inc. (Southern Star) filed with the Federal Energy Regulatory Commission (Commission) an amendment to...
Dynamical histories of the IC 348 and NGC 1333 star-forming regions in Perseus
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Alves de Oliveira, Catarina
2017-07-01
We present analyses of the spatial distributions of stars in the young (1-3 Myr) star-forming regions IC 348 and NGC 1333 in the Perseus giant molecular cloud. We quantify the spatial structure using the Q-parameter and find that both IC 348 and NGC 1333 are smooth and centrally concentrated with Q-parameters of 0.98 and 0.89, respectively. Neither region exhibits mass segregation (Λ _MSR = 1.1^{+0.2}_{-0.3} for IC 348 and Λ _MSR = 1.2^{+0.4}_{-0.3} for NGC 1333, where ΛMSR ˜ 1 corresponds to no mass segregation) nor do the most massive stars reside in areas of enhanced stellar surface density compared to the average surface density, according to the ΣLDR method. We then constrain the dynamical histories and hence initial conditions of both regions by comparing the observed values to N-body simulations at appropriate ages. Stars in both regions likely formed with subvirial velocities that contributed to merging of substructure and the formation of smooth clusters. The initial stellar densities were no higher than ρ ˜ 100-500 M⊙ pc-3 for IC 348 and ρ ˜ 500-2000 M⊙ pc-3 for NGC 1333. These initial densities, in particular that of NGC 1333, are high enough to facilitate dynamical interactions that would likely affect ˜10 per cent of protoplanetary discs and binary stars.
Binding the diproton in stars: anthropic limits on the strength of gravity
NASA Astrophysics Data System (ADS)
Barnes, Luke A.
2015-12-01
We calculate the properties and investigate the stability of stars that burn via strong (and electromagnetic) interactions, and compare their properties with those that, as in our Universe, include a rate-limiting weak interaction. It has been suggested that, if the diproton were bound, stars would burn ~1018 times brighter and faster via strong interactions, resulting in a universe that would fail to support life. By considering the representative case of a star in our Universe with initially equal numbers of protons and deuterons, we find that stable, "strong-burning" stars adjust their central densities and temperatures to have familiar surface temperatures, luminosities and lifetimes. There is no "diproton disaster". In addition, strong-burning stars are stable in a much larger region of the parameter space of fundamental constants, specifically the strength of electromagnetism and gravity. The strongest anthropic bound on stars in such universes is not their stability, as is the case for stars limited by the weak interaction, but rather their lifetime. Regardless of the strength of electromagnetism, all stars burn out in mere millions of years unless the gravitational coupling constant is extremely small, αGlesssim 10-30.
Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster
NASA Astrophysics Data System (ADS)
Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.
2017-01-01
We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.
NASA Astrophysics Data System (ADS)
Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.
2017-11-01
Aims: We investigate the Na abundance distribution of asymptotic giant branch (AGB) stars in Galactic globular clusters (GCs) and its possible dependence on GC global properties, especially age and metallicity. Methods: We analyze high-resolution spectra of a large sample of AGB and red giant branch (RGB) stars in the Galactic GCs NGC 104, NGC 6121, and NGC 6809 obtained with FLAMES/GIRAFFE at ESO/VLT, and determine their Na abundances. This is the first time that the AGB stars in NGC 6809 are targeted. Moreover, to investigate the dependence of AGB Na abundance dispersion on GC parameters, we compare the AGB [Na/H] distributions of a total of nine GCs, with five determined by ourselves with homogeneous method and four from literature, covering a wide range of GC parameters. Results: NGC 104 and NGC 6809 have comparable AGB and RGB Na abundance distributions revealed by the K-S test, while NGC 6121 shows a lack of very Na-rich AGB stars. By analyzing all nine GCs, we find that the Na abundances and multiple populations of AGB stars form complex picture. In some GCs, AGB stars have similar Na abundances and/or second-population fractions as their RGB counterparts, while some GCs do not have Na-rich second-population AGB stars, and various cases exist between the two extremes. In addition, the fitted relations between fractions of the AGB second population and GC global parameters show that the AGB second-population fraction slightly anticorrelates with GC central concentration, while no robust dependency can be confirmed with other GC parameters. Conclusions: Current data roughly support the prediction of the fast-rotating massive star (FRMS) scenario. However, considering the weak observational and theoretical trends where scatter and exceptions exist, the fraction of second-population AGB stars can be affected by more than one or two factors, and may even be a result of stochasticity. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 093.D-0818(A).Full Tables 3, 5, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knobel, Christian; Lilly, Simon J.; Woo, Joanna
2015-02-10
We re-examine the fraction of low-redshift Sloan Digital Sky Survey satellites and centrals in which star formation has been quenched, using the environment quenching efficiency formalism that separates out the dependence of stellar mass. We show that the centrals of the groups containing the satellites are responding to the environment in the same way as their satellites (at least for stellar masses above 10{sup 10.3} M {sub ☉}), and that the well-known differences between satellites and the general set of centrals arise because the latter are overwhelmingly dominated by isolated galaxies. The widespread concept of ''satellite quenching'' as the causemore » of environmental effects in the galaxy population can therefore be generalized to ''group quenching''. We then explore the dependence of the quenching efficiency of satellites on overdensity, group-centric distance, halo mass, the stellar mass of the satellite, and the stellar mass and specific star formation rate (sSFR) of its central, trying to isolate the effect of these often interdependent variables. We emphasize the importance of the central sSFR in the quenching efficiency of the associated satellites, and develop the meaning of this ''galactic conformity'' effect in a probabilistic description of the quenching of galaxies. We show that conformity is strong, and that it varies strongly across parameter space. Several arguments then suggest that environmental quenching and mass quenching may be different manifestations of the same underlying process. The marked difference in the apparent mass dependencies of environment quenching and mass quenching which produces distinctive signatures in the mass functions of centrals and satellites will arise naturally, since, for satellites at least, the distributions of the environmental variables that we investigate in this work are essentially independent of the stellar mass of the satellite.« less
Study of magnetized accretion flow with variable Γ equation of state
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Chattopadhyay, Indranil
2018-05-01
We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.
A simple way to model nebulae with distributed ionizing stars
NASA Astrophysics Data System (ADS)
Jamet, L.; Morisset, C.
2008-04-01
Aims: This work is a follow-up of a recent article by Ercolano et al. that shows that, in some cases, the spatial dispersion of the ionizing stars in a given nebula may significantly affect its emission spectrum. The authors found that the dispersion of the ionizing stars is accompanied by a decrease in the ionization parameter, which at least partly explains the variations in the nebular spectrum. However, they did not research how other effects associated to the dispersion of the stars may contribute to those variations. Furthermore, they made use of a unique and simplified set of stellar populations. The scope of the present article is to assess whether the variation in the ionization parameter is the dominant effect in the dependence of the nebular spectrum on the distribution of its ionizing stars. We examined this possibility for various regimes of metallicity and age. We also investigated a way to model the distribution of the ionizing sources so as to bypass expensive calculations. Methods: We wrote a code able to generate random stellar populations and to compute the emission spectra of their associated nebulae through the widespread photoionization code cloudy. This code can process two kinds of spatial distributions of the stars: one where all the stars are concentrated at one point, and one where their separation is such that their Strömgren spheres do not overlap. Results: We found that, in most regimes of stellar population ages and gas metallicities, the dependence of the ionization parameter on the distribution of the stars is the dominant factor in the variation of the main nebular diagnostics with this distribution. We derived a method to mimic those effects with a single calculation that makes use of the common assumptions of a central source and a spherical nebula, in the case of constant density objects. This represents a computation time saving by a factor of at least several dozen in the case of H ii regions ionized by massive clusters.
Equilibrium star formation in a constant Q disc: model optimization and initial tests
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Meurer, Gerhardt R.; Heckman, Timothy M.; Thilker, David A.; Zwaan, Martin A.
2013-10-01
We develop a model for the distribution of the interstellar medium (ISM) and star formation in galaxies based on recent studies that indicate that galactic discs stabilize to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the star formation law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the H I Nearby Galaxy Survey sample. Our tests focus on intermediate radii (0.3 to 1 times the optical radius) because there are insufficient data to test the outer discs and the fits are less accurate in detail in the centre. Nevertheless, the model produces reasonable agreement with the ISM mass and star formation rate integrated over the central region in all but one case. To optimize the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eight versions of the SFL. We find no clear-cut best prescription for the two-fluid (gas and stars) stability parameter Q2f and therefore for simplicity, we use the Wang and Silk approximation (QWS). We found that an empirical scaling between the molecular-to-neutral ISM ratio (Rmol) and the stellar surface mass density proposed by Leroy et al. works marginally better than the other two prescriptions for this ratio in predicting the ISM profiles, and noticeably better in predicting the star formation intensity from the ISM profiles produced by our model with the SFLs we tested. Thus, in the context of our modelled ISM profiles, the linear molecular SFL and the two-component SFL work better than the other prescriptions we tested. We incorporate these relations into our `constant Q disc' model.
NASA Astrophysics Data System (ADS)
Driebe, T.; Riechers, D.; Balega, Y. Y.; Hofmann, K.-H.; Men'shchikov, A. B.; Weigelt, G.
We present near-infrared speckle interferometry of the OH/IR star OH 26.5+0.6 in the K' band obtained with the 6m telescope of the Special Astrophysical Observatory (SAO) in Oct. 2003. At a wavelength of λ = 2.13 μm the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. In accordance with the deep silicate absorption feature in the spectral energy distribution (SED), the drop of the visibility function to a value of 0.36 at the cutoff frequency indicates a rather large optical depth of the CDS. To determine the structure and the properties of the CDS of OH 26.5+0.6, radiative transfer calculations using the code DUSTY[3] were performed to simultaneously model its visibility and the SED. Since OH 26.5+0.6 is highly variable, the observational data taken into consideration for the modeling correspond to different phases of the object's variability cycle. As in the case of another OH/IR star, OH 104.9+2.4 (see [5] and Riechers et al., this volume), we used these observational constraints at different epochs to derive several physical parameters of the central star and the CDS of OH 26.5+0.6 as a function of phase
Initial Parameters of Neutron Stars
NASA Astrophysics Data System (ADS)
Popov, S. B.; Turolla, R.
2012-12-01
A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.
An Observational Study of Accretion Dynamics in Short-Period Pre-Main Sequence Binaries
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin; Mathieu, Robert; Herczeg, Greg; Johns-Krull, Christopher; Akeson, Rachel; Ciardi, David
2018-01-01
Over the past thirty years, a detailed picture of star formation has emerged that highlights the importance of the interaction between a pre-main sequence (pre-MS) star and its protoplanetary disk. The properties of an emergent star, the lifetime of a protoplanetary disk, and the formation of planets are all, in part, determined by this star-disk interaction. Many stars, however, form in binary or higher-order systems where orbital dynamics are capable of fundamentally altering this star-disk interaction. Orbital resonances, especially in short-period systems, are capable of clearing the central region of a protoplanetary disk, leaving the possibility for three stable accretion disks: a circumstellar disk around each star and a circumbinary disk. In this model, accretion onto the stars is predicted to proceed in periodic streams that form at the inner edge of the circumbinary disk, cross the dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars themselves. This pulsed-accretion paradigm predicts bursts of accretion that are periodic with the orbital period, where the duration, amplitude, location in orbital phase, and which star if preferentially fed, all depend on the orbital parameters. To test these predictions, we have carried out intensive observational campaigns combining time-series, optical and near-infrared photometry with time-series, optical spectroscopy. These data are capable of monitoring the stellar accretion rate, the properties of warm circumstellar dust, and the kinematics of accretion flows, all as a function of orbital phase. In our sample of 9 pre-MS binaries with diverse orbital parameters, we search for evidence of periodic accretion events and seek to determine the role orbital parameters have on the characteristics of accretion events. Two results from our campaign will be highlighted: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system. We compare these findings to the results of numerical simulations and comment on the role of magnetospheric accretion in pre-MS binaries.
STAR COUNT DENSITY PROFILES AND STRUCTURAL PARAMETERS OF 26 GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miocchi, P.; Lanzoni, B.; Ferraro, F. R.
We used an appropriate combination of high-resolution Hubble Space Telescope observations and wide-field, ground-based data to derive the radial stellar density profiles of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system, a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This collection ofmore » data represents the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13, and M62 is not confirmed; (2) the majority of clusters in our sample are fit equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distance; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at {approx}0.3 for about 80% of the clusters and a secondary peak at {approx}0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with that expected from simulations of cluster dynamical evolution and the ratio between these two radii correlates well with an empirical dynamical-age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.« less
NASA Astrophysics Data System (ADS)
Wang, Enci; Li, Cheng; Xiao, Ting; Lin, Lin; Bershady, Matthew; Law, David R.; Merrifield, Michael; Sanchez, Sebastian F.; Riffel, Rogemar A.; Riffel, Rogerio; Yan, Renbin
2018-04-01
We investigate radial gradients in the recent star formation history (SFH) of 1917 galaxies with 0.01 < z < 0.14 from the Mapping Nearby Galaxies at Apache Point Observatory project. For each galaxy, we obtain two-dimensional maps and radial profiles for three spectroscopically measured parameters that are sensitive to the recent SFH: D n (4000) (the 4000 Å break), EW(Hδ A ), and EW(Hα) (the equivalent width of the Hδ absorption and the Hα emission line). The majority of the spaxels are consistent with models of a continuously declining star formation rate, indicating that starbursts occur rarely in local galaxies with regular morphologies. We classify the galaxies into three classes: fully star-forming (SF), partly quenched (PQ), and totally quenched (TQ). The galaxies that are less massive than 1010 M ⊙ present at most weak radial gradients in the diagnostic parameters. In contrast, massive galaxies with a stellar mass above 1010 M ⊙ present significant gradients in the three diagnostic parameters if they are classified as SF or PQ but show weak gradients in D n (4000) and EW(Hδ A ) and no gradients in EW(Hα) if they are in the TQ class. This implies the existence of a critical stellar mass (∼1010 M ⊙) above which the star formation in a galaxy is shut down from the inside out. Galaxies tend to evolve synchronously from the inner to the outer regions before their mass reaches the critical value. We have further divided the sample at a fixed mass by both bulge-to-total luminosity ratio and morphological type, finding that our conclusions hold regardless of these factors; it appears that the presence of a central dense object is not a driving parameter but rather a by-product of the star formation cessation process.
Constraining parameters of the neutron star in the supernova remnant HESS J1731-347
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Puehlhofer, G.; Werner, K.; Santangelo, A.
2014-07-01
The Central Compact Object (CCO) in HESS J1731-347, presumably a neutron star, is one of the brightest sources in this class. Like other CCOs, it potentially provides an "undisturbed" view of thermal radiation generated at the neutron star surface. The shape and normalization of the corresponding X-ray spectrum depends on the emitting area, surface redshift, and gravity acceleration. Thus, its modeling under certain assumptions allows the mass and radius of the neutron star to be constrained. In our analysis, we model the spectrum of the CCO accumulated with XMM-Newton over ˜100 ksec exposure time in three observations. The exposure time has increased by a factor of five since our previous analysis of the source. For the spectral fitting, we use our hydrogen and carbon atmosphere models calculated assuming hydrostatic and radiative equilibria and taking into account pressure ionization and the presence of spectral lines (in case of carbon). We present the resulting constraints on the mass, radius, distance, and temperature of the neutron star.
NASA Astrophysics Data System (ADS)
Smith, Alexander; De Marco, O.
2007-12-01
Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.
Transit timing variations for planets co-orbiting in the horseshoe regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vokrouhlický, David; Nesvorný, David, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu
2014-08-10
Although not yet detected, pairs of exoplanets in 1:1 mean motion resonance probably exist. Low eccentricity, near-planar orbits, which in the comoving frame follow horseshoe trajectories, are one of the possible stable configurations. Here we study transit timing variations (TTVs) produced by mutual gravitational interaction of planets in this orbital architecture, with the goal to develop methods that can be used to recognize this case in observational data. In particular, we use a semi-analytic model to derive parametric constraints that should facilitate data analysis. We show that characteristic traits of the TTVs can directly constrain the (1) ratio of planetarymore » masses and (2) their total mass (divided by that of the central star) as a function of the minimum angular separation as seen from the star. In an ideal case, when transits of both planets are observed and well characterized, the minimum angular separation can also be inferred from the data. As a result, parameters derived from the observed transit timing series alone can directly provide both planetary masses scaled to the central star mass.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP14-15-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky... of the Commission's Regulations under the Natural Gas Act (NGA). Southern Star seeks authorization to...
75 FR 40802 - Southern Star Central Gas Pipeline, Inc.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-2-001] Southern Star... Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42301, filed in... CP10-2-000. Specifically, Southern Star proposes to increase the working gas capacity and amend the...
NASA Astrophysics Data System (ADS)
Alfaro-Cuello, M.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Amram, P.
2015-10-01
We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and Hα emission, stellar continuum, velocity dispersion, electron density, Hα equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(Hα) ˜ 14 × 1041 erg s-1 and the star formation rate, SFR ˜11 M⊙ yr-1 for the central merging region of HCG 31A+C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.
Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters
NASA Astrophysics Data System (ADS)
Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon
2018-01-01
We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.
Star-disc interaction in galactic nuclei: orbits and rates of accreted stars
NASA Astrophysics Data System (ADS)
Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer
2016-07-01
We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.
Extended transiting discs and rings around planets and brown dwarfs: theoretical constraints
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2017-02-01
Newly formed planets (or brown dwarfs) may possess discs or rings which occupy an appreciable fraction of the planet's Hill sphere and extend beyond the Laplace radius, where the tidal torque from the host star dominates over the torque from the oblate planet. Such a disc/ring can exhibit unique, detectable transit signatures, provided that the disc/ring is significantly misaligned with the orbital plane of the planet. There exists tentative evidence for an extended ring system around the young K5 star 1 SWASP J140747-354542. We present a general theoretical study of the inclination (warp) profile of circumplanetary discs under the combined influences of the tidal torque from the central star, the torque from the oblate planet, and the self-gravity of the disc. We calculate the equilibrium warp profile (`generalized Laplace surface') and investigate the condition for coherent precession of the disc. We find that to maintain a non-negligible misalignment between the extended outer disc and the planet's orbital plane, and to ensure coherent disc precession, the disc surface density must be sufficiently large so that the self-gravity torque overcomes the tidal torque from the central star. Our analysis and quantitative results can be used to constrain the parameters of transiting circumplanetary discs which may be detected in the future.
Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.
Mpolya, Emmanuel A; Yashima, Kenta; Ohtsuki, Hisashi; Sasaki, Akira
2014-02-21
We develop a star-network of connections between a central city and peripheral villages and analyze the epidemic dynamics of a vector-borne disease as influenced by daily commuters. We obtain an analytical solution for the global basic reproductive number R0 and investigate its dependence on key parameters for disease control. We find that in a star-network topology the central hub is not always the best place to focus disease intervention strategies. Disease control decisions are sensitive to the number of commuters from villages to the city as well as the relative densities of mosquitoes between villages and city. With more commuters it becomes important to focus on the surrounding villages. Commuting to the city paradoxically reduces the disease burden even when the bulk of infections are in the city because of the resulting diluting effects of transmissions with more commuters. This effect decreases with heterogeneity in host and vector population sizes in the villages due to the formation of peripheral epicenters of infection. We suggest that to ensure effective control of vector-borne diseases in star networks of villages and cities it is also important to focus on the commuters and where they come from. © 2013 Published by Elsevier Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-179-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky... free). For TTY, call (202) 502-8659. Specifically, Southern Star proposes to abandon in place four...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-76-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, P.O. Box 20010... public inspection. Specifically, Southern Star proposes to construct a new compressor site gas and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-475-000] Southern Star..., Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42301, filed... amended and Southern Star's blanket certificate issued in Docket No. CP82-479-000 \\1\\ for authorization to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-531-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky.... Southern Star's prior notice request is more fully set forth in the application, which is on file with the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-73-000] Southern Star..., 2012 Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 State Highway 56, Owensboro... Star proposes to replace 3 miles of 12-inch diameter XT pipeline by constructing approximately 3 miles...
75 FR 8053 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-48-000] Southern Star... that on January 29, 2010, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 State Highway... TTY, (202) 502-8659. Specifically, Southern Star proposes to replace two miles of 12- inch diameter XT...
Binding the diproton in stars: anthropic limits on the strength of gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Luke A., E-mail: L.Barnes@physics.usyd.edu.au
2015-12-01
We calculate the properties and investigate the stability of stars that burn via strong (and electromagnetic) interactions, and compare their properties with those that, as in our Universe, include a rate-limiting weak interaction. It has been suggested that, if the diproton were bound, stars would burn ∼10{sup 18} times brighter and faster via strong interactions, resulting in a universe that would fail to support life. By considering the representative case of a star in our Universe with initially equal numbers of protons and deuterons, we find that stable, 'strong-burning' stars adjust their central densities and temperatures to have familiar surfacemore » temperatures, luminosities and lifetimes. There is no 'diproton disaster'. In addition, strong-burning stars are stable in a much larger region of the parameter space of fundamental constants, specifically the strength of electromagnetism and gravity. The strongest anthropic bound on stars in such universes is not their stability, as is the case for stars limited by the weak interaction, but rather their lifetime. Regardless of the strength of electromagnetism, all stars burn out in mere millions of years unless the gravitational coupling constant is extremely small, α{sub G}∼< 10{sup −30}.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Eugene T.
2002-03-01
We present the first measurement of mid-rapidity ϕ vector meson production in Au + Au collisions at RHIC (√ {sNN}= 130\\ GeV) from the STAR detector. For the 11% most central collisions, the slope parameter from an exponential fit to the transverse mass distribution is T= 379 ± 51(stat) ± 45(syst) MeV, the yield dN/dy = 5.73 ± 0.37(stat) ± 0.57(syst) per event and the ratio Nϕ/N
Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation
NASA Astrophysics Data System (ADS)
O. Silva, Hector; Berti, Emanuele; Sotani, Hajime
2016-03-01
Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.
VizieR Online Data Catalog: Tidal radii of 7 globular clusters (Lehmann+ 1997)
NASA Astrophysics Data System (ADS)
Lehmann, I.; Scholz, R.-D.
1998-02-01
We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962AJ.....67..471K) we derived the following structural parameters: tidal radius rt, core radius rc and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al., 1995AJ....109.2553G). (1 data file).
NASA Astrophysics Data System (ADS)
Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin
2018-05-01
An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, R. B. C.; Miller, T. R.; Balick, B.
The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well withmore » the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R.; Wilner, David J.; MacGregor, Meredith A.
2013-08-01
Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We alsomore » synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central emission peak that was suggested to be the result of an inner 'asteroid belt' within 3 AU of the star. However, it is also possible that the central 1.3 mm peak is caused by a combination of active coronal emission and a bright inner source of dusty debris. Additional observations of this source's spatial extent and spectral energy distribution at millimeter and radio wavelengths will better constrain the relative contributions of the proposed mechanisms.« less
The Optical Gravitational Lensing Experiment. Catalog of RRLyr Stars from the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2002-12-01
We present the catalog of RRLyrae stars from 2.4 square degrees of central parts of the Small Magellanic Cloud (SMC). The photometric data were collected during four years of the OGLE-II microlensing survey. Photometry of each star was obtained using the Difference Image Analysis (DIA) method. The catalog contains 571 objects, including 458RRab, 56RRc variables, and 57 double mode RRLyr stars (RRd). Additionally we attach a list of variables with periods between 0.18-0.26 days, which are probably delta Sct stars. Period, BVI photometry, astrometry, amplitude, and parameters of the Fourier decomposition of the I-band light curve are provided for each object. We also present the Petersen diagram for double mode pulsators. We found that the SMC RRLyr stars are fairly uniformly distributed over the studied area, with no clear correlation to any location. The most preferred periods for RRab and RRc stars are 0.589 and 0.357 days, respectively. We noticed significant excess of stars with periods of about 0.29 days, which might be second-overtone RRLyr stars (RRe). The mean extinction free magnitudes derived for RRab stars are 18.97, 19.45 and 19.73 mag for the I, V and B-band, respectively. All presented data, including individual BVI observations, are available from the OGLE Internet archive.
Supernova remnants in the GC region
NASA Astrophysics Data System (ADS)
Asvarov, Abdul
2016-07-01
Along with the central Black hole the processes of active star formation play very important role in the energetics of the Galactic center region. The SNe and their remnants (SNRs) are the main ingredients of the processes of star formation. SNRs are also the sources of electromagnetic radiation of all wavelengths from the optical to hard gamma rays. In the presented work we consider the physics of supernova remnants evolving in extreme environmental conditions which are typical for the region of the Galactic center. Because of the high density and strong inhomogeneity of the surrounding medium these objects remain practically invisible at almost all wavelengths. We model evolution of SNR taking into account the pressure of the surrounding medium and the gravitational field of the matter (stars, compact clouds, dark matter) inside the remnant. As it is well established, considerable portion of the kinetic energy of the SNR can be converted into the cosmic ray particles by diffusive shock acceleration mechanism. Therefore the effect of particle acceleration is also included in the model (with the effectiveness of acceleration as a free parameter). Using the observed radiation fluxes at different wavelengths we attempt to obtain limits on the parameters of the model of the Galactic Center, namely, the frequency of star birth, the average density of the matter and radiation field, etc.
Stability of planetary orbits in triple star systems
NASA Astrophysics Data System (ADS)
Busetti, Franco; Beust, Hervé; Harley, Charis
2018-06-01
Triple stellar systems comprising a central binary orbited by a third star at a larger distance are fairly common. However, there have been very few studies on the stability of planetary orbits in such systems. There has been almost no work on generalised systems, little on retrograde planetary orbits and none on retrograde stellar orbits, with nearly all being for coplanar orbits and for a limited number of orbital parameters. We provide a generalised numerical mapping of the regions of planetary stability in triples, using the symplectic N-body code HJS (Beust 2003) designed for the dynamics of multiple hierarchical systems. We investigate all these orbit types and extend the parameters used to all relevant orbital elements of the triple’s stars, also expanding these elements and mass ratios to wider ranges.This establishes the regions of secular stability and results in empirical models describing the stability bounds for planets in each type of triple configuration, as functions of the various system parameters. These results are compared to the corresponding results for binaries in the limit of a vanishing mass of the third star. A general feature is that retrograde planetary orbits appear more stable than prograde ones, and that stable regions also tend to be wider when the third star's motion is retrograde. Conversely, we point out the destabilizing role of Kozai-Lidov resonance in non-coplanar systems, which shrinks the stability regions as a result of large induced eccentricity variations. Nonetheless, large enough stability regions for planets do exist in triples, and this should motivate future observational campaigns.Refs : Beust, 2003, A&A 400, 1129 Busetti, Beust, Harley, 2018, to be submitted to A&A
NASA Astrophysics Data System (ADS)
Ferraro, F. R.; Lanzoni, B.; Raso, S.; Nardiello, D.; Dalessandro, E.; Vesperini, E.; Piotto, G.; Pallanca, C.; Beccari, G.; Bellini, A.; Libralato, M.; Anderson, J.; Aparicio, A.; Bedin, L. R.; Cassisi, S.; Milone, A. P.; Ortolani, S.; Renzini, A.; Salaris, M.; van der Marel, R. P.
2018-06-01
The parameter A +, defined as the area enclosed between the cumulative radial distribution of blue straggler stars (BSSs) and that of a reference population, is a powerful indicator of the level of BSS central segregation. As part of the Hubble Space Telescope UV Legacy Survey of Galactic globular clusters (GCs), here we present the BSS population and the determination of A + in 27 GCs observed out to about one half-mass radius. In combination with 21 additional clusters discussed in a previous paper, this provides us with a global sample of 48 systems (corresponding to ∼32% of the Milky Way GC population), for which we find a strong correlation between A + and the ratio of cluster age to the current central relaxation time. Tight relations have also been found with the core radius and the central luminosity density, which are expected to change with the long-term cluster dynamical evolution. An interesting relation is emerging between A + and the ratio of the BSS velocity dispersion relative to that of main sequence turn-off stars, which measures the degree of energy equipartition experienced by BSSs in the cluster. These results provide further confirmation that BSSs are invaluable probes of GC internal dynamics and that A + is a powerful dynamical clock.
NASA Astrophysics Data System (ADS)
Spindler, Ashley; Wake, David; Belfiore, Francesco; Bershady, Matthew; Bundy, Kevin; Drory, Niv; Masters, Karen; Thomas, Daniel; Westfall, Kyle; Wild, Vivienne
2018-05-01
We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of `centrally suppressed' galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density.
Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs
NASA Astrophysics Data System (ADS)
Aleman, I.; Gruenwald, R.
2011-05-01
The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces is more important in the NLR than in the ionized region of PNe.
The evolved central star of the planetary nebula ESO 166-PN 21.
NASA Astrophysics Data System (ADS)
Pena, M.; Ruiz, M. T.; Bergeron, P.; Torres-Peimbert, S.; Heathcote, S.
1997-02-01
Optical and UV spectrophotometric data of the nebula and the central star of the planetary nebula ESO 166-PN 21 are presented. The analysis of the nebular lines confirms that it is a He- and N-rich PN, with He/H=0.138+/-0.005 and N/O=0.58+/-0.08. The oxygen abundance is 12+logO/H=8.60+/-0.10. A distance of 1.2+/-0.2 kpc is derived for the nebula. The central star is very faint and blue, with an apparent magnitude V=17.94+/-0.03mag and a dereddened color index (B-V)_0_=-0.38mag. It shows faint wide H and He absorption lines typical of a DAO star. By modeling the line profiles we derived T_eff_=69200+/-8700K, logg=7.14+/-0.39 and logHe/H=-1.50+/-0.49 for the star. The position of the star in a HR diagram compared with evolutionary tracks indicates a stellar mass of ~0.55Msun_. The bolometric correction derived from the model atmosphere is -5.6mag which, combined with the mass, yields an absolute visual magnitude M_V_=6.95, a luminosity of 22Lsun_ and a distance of 1185+/-700pc, in good agreement with the nebular distance. Therefore, ESO 166-PN 21 central star is among the hottest and most helium-rich DAO stars and it is one of the most evolved PN nuclei known, similar to the central stars of S216 and NGC7293. A kinematical age of 16100yr is deduced for the nebula which is lower by about two orders of magnitude than the age of the central star. The possibility that this object is a member of a close binary system is suggested.
Very massive runaway stars from three-body encounters
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Gualandris, Alessia
2011-01-01
Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.
Parameters of oscillation generation regions in open star cluster models
NASA Astrophysics Data System (ADS)
Danilov, V. M.; Putkov, S. I.
2017-07-01
We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.
Asymmetric Planetary Nebulae VI: the conference summary
NASA Astrophysics Data System (ADS)
De Marco, O.
2014-04-01
The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.
THE TWO CENTRAL STARS OF NGC 1514: CAN THEY ACTUALLY BE RELATED?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Méndez, Roberto H.; Kudritzki, Rolf-Peter; Urbaneja, Miguel A., E-mail: mendez@ifa.hawaii.edu
The central star of the planetary nebula NGC 1514 is among the visually brightest central stars in the sky ( V = 9.5). It has long been known to show a composite spectrum, consisting of an A-type star and a much hotter star responsible for the ionization of the surrounding nebula. These two stars have always been assumed to form a binary system. High-resolution spectrograms obtained with Espadons at the Canada–France–Hawaii Telescope on Maunakea have allowed us to measure good radial velocities for both stars: they differ by 13 ± 2 km s{sup −1}. The stellar velocities were unchanged aftermore » 500 days. We have also estimated the metallicity of the cooler star. Combining these data with other information available in the literature, we conclude that, unless all the published nebular radial velocities are systematically wrong, the cooler star is just a chance alignment, and the two stars are not orbiting each other. The cooler star cannot have played any role in the formation of NGC 1514.« less
Interferometric view of the circumstellar envelopes of northern FU Orionis-type stars
NASA Astrophysics Data System (ADS)
Fehér, O.; Kóspál, Á.; Ábrahám, P.; Hogerheijde, M. R.; Brinch, C.
2017-11-01
Context. FU Orionis-type objects are pre-main sequence, low-mass stars with large outbursts in visible light that last for several years or decades. They are thought to represent an evolutionary phase during the life of every young star when accretion from the circumstellar disk is enhanced during recurring time periods. These outbursts are able to rapidly build up the star while affecting the physical conditions inside the circumstellar disk and thus the ongoing or future planet formation. In many models, infall from a circumstellar envelope seems to be necessary to trigger the outbursts. Aims: We characterise the morphology and the physical parameters of the circumstellar material around FU Orionis-type stars using the emission of millimetre-wavelength molecular tracers. The high-spatial-resolution study provides insight into the evolutionary state of the objects, the distribution of parameters in the envelopes and the physical processes forming the environment of these stars. Methods: We observed the J = 1-0 rotational transition of 13CO and C18O towards eight northern FU Orionis-type stars (V1057 Cyg, V1515 Cyg, V2492 Cyg, V2493 Cyg, V1735 Cyg, V733 Cep, RNO 1B and RNO 1C) and determine the spatial and velocity structure of the circumstellar gas on a scale of a few thousand AU. We derive temperatures and envelope masses and discuss the kinematics of the circumstellar material. Results: We detected extended CO emission associated with all our targets. Smaller-scale CO clumps were found to be associated with five objects with radii of 2000-5000 AU and masses of 0.02-0.5 M⊙; these are clearly heated by the central stars. Three of these envelopes are also strongly detected in the 2.7 mm continuum. No central CO clumps were detected around V733 Cep and V710 Cas which can be interpreted as envelopes but there are many other clumps in their environments. Traces of outflow activity were observed towards V1735 Cyg, V733 Cep and V710 Cas. Conclusions: The diversity of the observed envelopes enables us to set up an evolutionary sequence between the objects. We find their evolutionary state to range from early, embedded Class I stage to late, Class II-type objects with very-low-mass circumstellar material. We also find evidence of larger-scale circumstellar material influencing the detected spectral features in the environment of our targets. These results reinforce the idea of FU Orionis-type stars as representatives of a transitory stage between embedded Class I young stellar objects and classical T Tauri stars.
Discovery of a [WO] central star in the planetary nebula Th 2-A
NASA Astrophysics Data System (ADS)
Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.
2008-09-01
Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.
Super massive black hole in galactic nuclei with tidal disruption of stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters formore » a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.« less
Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars
NASA Astrophysics Data System (ADS)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
2014-09-01
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.
Measurements of mass accretion rates in Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Donehew, Brian
Herbig Ae/Be stars(HAeBes) are young stellar objects of spectral class F2 through B0, with the central star often surrounded by a circumstellar disk of gas and dust. They are the higher mass analogs to T Tauri stars. The interaction between the star and the disk is not well understood, nor is the disk structure. The central star will often accrete mass from the disk, and the mass accretion rate is an important parameter for modeling the disk structure and evolution. The methods for measuring mass accretion rates of T Tauri stars are generally not applicable to HAeBe stars. As such, reliable measurements of mass accretion rates for HAeBes are rare. Garrison(1978) saw that the Balmer Discontinuity of HAeBes was veiled, and attributed this veiling to accretion luminosity. Building on Garrison(1978) and the work of Muzerolle et al. (2004), I determine the mass accretion rates and accretion luminosities of a large sample of HAeBe stars by measuring the veiling of the Balmer Discontinuity due to the accretion luminosity. Muzerolle et al. (1998) established a strong correlation between the accretion luminosity of T Tauri stars and the luminosity of Br gamma, and this correlation seems to extend to the evolutionary precursors to HAeBes, intermediate T Tauri stars, as well Calvet et al. (2004). I test this correlation for HAeBes and discover that it is valid for HAe stars but not for HBe stars. From examining the HAeBes of my sample from spectral range A3 to B7, there does not seem to be a particular spectral type at which the correlation fails. A few of the late HBe stars are consistent with the correlation, but most of the HBe stars have Br gamma luminosities much larger than what one would expect from the correlation. This suggests that there might be a significant stellar wind component to the Br gamma luminosity for many of the HBe stars. T Tauri stars accrete mass from their disks magnetospherically, in which the strong stellar field of the star truncates the disk at some distance from the star and the disk material than falls to the stellar surface along the magnetic field lines. HAeBe stars are not expected to have strong stellar magnetic fields, and observations have failed to find any such fields for most HAeBes (Alecian 2007). However, circumstantial evidence suggests that some HAeBe stars are accreting magnetospherically (Muzerolle et al. 2004, Brittain et al. 2009). Since the correlation between accretion luminosity and Br γ luminosity is valid for both T Tauri stars and HAe stars, this suggests that the same basic accretion process is occuring for both.
Central stars of planetary nebulae: New spectral classifications and catalogue
NASA Astrophysics Data System (ADS)
Weidmann, W. A.; Gamen, R.
2011-02-01
Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.
Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Kniazev, A. Y.
2017-02-01
Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.
Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.
2018-05-01
We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.
NASA Astrophysics Data System (ADS)
Aller, A.; Lillo-Box, J.; Vučković, M.; Van Winckel, H.; Jones, D.; Montesinos, B.; Zorotovic, M.; Miranda, L. F.
2018-05-01
LoTr 5 is a planetary nebula with an unusual long-period binary central star. As far as we know, the pair consists of a rapidly rotating G-type star and a hot star, which is responsible for the ionization of the nebula. The rotation period of the G-type star is 5.95 d and the orbital period of the binary is now known to be ˜2700 d, one of the longest in central star of planetary nebulae. The spectrum of the G central star shows a complex H α double-peaked profile which varies with very short time-scales, also reported in other central stars of planetary nebulae and whose origin is still unknown. We present new radial velocity observations of the central star which allow us to confirm the orbital period for the long-period binary and discuss the possibility of a third component in the system at ˜129 d to the G star. This is complemented with the analysis of archival light curves from Super Wide Angle Search for Planets, All Sky Automated Survey, and Optical Monitoring Camera. From the spectral fitting of the G-type star, we obtain an effective temperature of Teff = 5410 ± 250 K and surface gravity of log g = 2.7 ± 0.5, consistent with both giant and subgiant stars. We also present a detailed analysis of the H α double-peaked profile and conclude that it does not present correlation with the rotation period and that the presence of an accretion disc via Roche lobe overflow is unlikely.
SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin
2018-03-01
We study radial profiles in Hα equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M_\\star diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, both in an integrated and spatially-resolved sense. Flat sSFR radial profiles are observed for log(M_\\star / M_⊙ ) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M_\\star / M_⊙ ) > 10.0 are classified spectroscopically as central low-ionisation emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star forming galaxies with the same M_\\star and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Howard E., E-mail: heb11@psu.edu
A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates,more » 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.« less
A search for ejecta nebulae around Wolf-Rayet stars using the SHS Hα survey
NASA Astrophysics Data System (ADS)
Stock, D. J.; Barlow, M. J.
2010-12-01
Recent large-scale Galactic plane Hα surveys allow a re-examination of the environs of Wolf-Rayet (WR) stars for the presence of a circumstellar nebula. Using the morphologies of WR nebulae known to be composed of stellar ejecta as a guide, we constructed ejecta nebula criteria similar to those of Chu and searched for likely WR ejecta nebulae in the Southern Hα Survey (SHS). A new WR ejecta nebula around WR 8 is found and its morphology is discussed. The fraction of WR stars with ejecta-type nebulae is roughly consistent between the Milky Way (MW) and Large Magellanic Cloud (LMC) at around 5-6 per cent, with the MW sample dominated by nitrogen-rich WR central stars (WN type) and the LMC stars having a higher proportion of carbon-rich WR central stars (WC type). We compare our results with those of previous surveys, including those of Marston and Miller & Chu, and find broad consistency. We investigate several trends in the sample: most of the clear examples of ejecta nebulae have WNh central stars, and very few ejecta nebulae have binary central stars. Finally, the possibly unique evolutionary status of the nebula around the binary star WR 71 is explored.
Singularity-free anisotropic strange quintessence star
NASA Astrophysics Data System (ADS)
Bhar, Piyali
2015-04-01
Present paper provides a new model of anisotropic strange star corresponding to the exterior Schwarzschild metric. The Einstein field equations have been solved by utilizing the Krori-Barua (KB) ansatz (Krori and Barua in J. Phys. A, Math. Gen. 8:508, 1975) in presence of quintessence field characterized by a parameter ω q with . The obtained solutions are free from central singularity. Our model is potentially stable. The numerical values of mass of the different strange stars SAXJ1808.4-3658(SS1) (radius=7.07 km), 4U1820-30 (radius=10 km), Vela X-12 (radius=9.99 km), PSR J 1614-2230 (radius=10.3 km) obtained from our model is very close to the observational data that confirms the validity of our proposed model. The interior solution is also matched to the exterior Schwarzschild spacetime in presence of thin shell where negative surface pressure is required to hold the thin shell against collapsing.
Grid of Supergiant B[e] Models from HDUST Radiative Transfer
NASA Astrophysics Data System (ADS)
Domiciano de Souza, A.; Carciofi, A. C.
2012-12-01
By using the Monte Carlo radiative transfer code HDUST (developed by A. C. Carciofi and J..E. Bjorkman) we have built a grid of models for stars presenting the B[e] phenomenon and a bimodal outflowing envelope. The models are particularly adapted to the study of B[e] supergiants and FS CMa type stars. The adopted physical parameters of the calculated models make the grid well adapted to interpret high angular and high spectral observations, in particular spectro-interferometric data from ESO-VLTI instruments AMBER (near-IR at low and medium spectral resolution) and MIDI (mid-IR at low spectral resolution). The grid models include, for example, a central B star with different effective temperatures, a gas (hydrogen) and silicate dust circumstellar envelope with a bimodal mass loss presenting dust in the denser equatorial regions. The HDUST grid models were pre-calculated using the high performance parallel computing facility Mésocentre SIGAMM, located at OCA, France.
NASA Astrophysics Data System (ADS)
Stringfellow, Guy; Gvaramadze, Vasilii
2010-02-01
Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.
Central stars of planetary nebulae. II. New OB-type and emission-line stars
NASA Astrophysics Data System (ADS)
Weidmann, W. A.; Gamen, R.
2011-07-01
Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172
QUIESCENCE CORRELATES STRONGLY WITH DIRECTLY MEASURED BLACK HOLE MASS IN CENTRAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrazas, Bryan A.; Bell, Eric F.; Henriques, Bruno M. B.
Roughly half of all stars reside in galaxies without significant ongoing star formation. However, galaxy formation models indicate that it is energetically challenging to suppress the cooling of gas and the formation of stars in galaxies that lie at the centers of their dark matter halos. In this Letter, we show that the dependence of quiescence on black hole and stellar mass is a powerful discriminant between differing models for the mechanisms that suppress star formation. Using observations of 91 star-forming and quiescent central galaxies with directly measured black hole masses, we find that quiescent galaxies host more massive blackmore » holes than star-forming galaxies with similar stellar masses. This observational result is in qualitative agreement with models that assume that effective, more-or-less continuous active galactic nucleus feedback suppresses star formation, strongly suggesting the importance of the black hole in producing quiescence in central galaxies.« less
Photoionization modeling of Magellanic Cloud planetary nebulae. I
NASA Technical Reports Server (NTRS)
Dopita, M. A.; Meatheringham, S. J.
1991-01-01
The results of self-consistent photoionization modeling of 38 Magellanic Cloud PNe are presented and used to construct an H-R diagram for the central stars and to obtain both the nebular chemical abundances and the physical parameters of the nebulae. T(eff)s derived from nebular excitation analysis are in agreement with temperatures derived by the classical Zanstra method. There is a linear correlation between log T(eff) and the excitation class. The majority of the central stars in the sample with optically thick nebulae have masses between 0.55 and 0.7 solar mass and are observed during their hydrogen-burning excursion toward high temperatures. Optically thin objects are found scattered throughout the H-R diagram, but tend to have a somewhat smaller mean mass. Type I PN are found to have high core masses and to lie on the descending branch of the evolutionary tracks. The nebular mass of the optically thick objects is closely related to the nebular radius, and PN with nebular masses over one solar are observed.
ON THE FATE OF THE MATTER REINSERTED WITHIN YOUNG NUCLEAR STELLAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hueyotl-Zahuantitla, Filiberto; Palous, Jan; Wuensch, Richard
2013-04-01
This paper presents a hydrodynamical model describing the evolution of the gas reinserted by stars within a rotating young nuclear star cluster (NSC). We explicitly consider the impact of the stellar component on the flow by means of a uniform insertion of mass and energy within the stellar cluster. The model includes the gravity force of the stellar component and a central supermassive black hole (SMBH), and accounts for the heating from the central source of radiation and the radiative cooling of the thermalized gas. By using a set of parameters typical for NSCs and SMBHs in Seyfert galaxies, ourmore » simulations show that a filamentary/clumpy structure is formed in the inner part of the cluster. This 'torus' is Compton-thick and covers a large fraction of the sky (as seen from the SMBH). In the outer parts of the cluster a powerful wind is produced that inhibits the infall of matter from larger scales and thus the NSC-SMBH interplay occurs in isolation.« less
Ionized gas outflow in the isolated S0 galaxy NGC 4460
NASA Astrophysics Data System (ADS)
Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim
2010-04-01
We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com
Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories
NASA Astrophysics Data System (ADS)
Graves, Genevieve J.
Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies systematically across it. Furthermore the FP relation, although relatively tight, shows more scatter in surface brightness (at fixed s and R e ) than is predicted by observational errors. This finite thickness indicates that M dyn /L also varies at a fixed point on the FP. We observe that the stellar populations of early type galaxies vary through the thickness of the FP. These differences translate into variations in the stellar mass-to-light ratio ( M [low *] /L ) that contribute to both the tilt and the thickness of the FP. However, the mass-to-light variations due to stellar population differences are too small to explain either the tilt of the FP or its thickness. This implies that the tilt and thickness of the FP are driven by systematic variations in either the central dark matter fraction in galaxies or in the IMF with which they form stars. Furthermore, because star formation histories can be mapped onto locations in FP-space, the variations in central dark matter fraction or IMF differences must be correlated with differences in the galaxies' star formation histories.
NASA Astrophysics Data System (ADS)
Liu, Tong; Liang, En-Wei; Gu, Wei-Min; Hou, Shu-Jin; Lei, Wei-Hua; Lin, Lin; Dai, Zi-Gao; Zhang, Shuang-Nan
2012-11-01
Soft extended emission (EE) following initial hard spikes up to 100 s was observed with Swift/BAT for about half of known short-type gamma-ray bursts (SGRBs). This challenges the conversional central engine models of SGRBs, i.e., compact star merger models. In the framework of black-hole-neutron-star merger models, we study the roles of radial angular momentum transfer in the disk and the magnetic barrier around the black hole in the activity of SGRB central engines. We show that radial angular momentum transfer may significantly prolong the lifetime of the accretion process, which may be divided into multiple episodes by the magnetic barrier. Our numerical calculations based on models of neutrino-dominated accretion flows suggest that disk mass is critical for producing the observed EE. In the case of the mass being ~0.8 M ⊙, our model can reproduce the observed timescale and luminosity of both the main and the EE episodes in a reasonable parameter set. The predicted luminosity of the EE component is lower than the observed EE within about one order of magnitude and the timescale is shorter than 20 s if the disk mass is ~0.2 M ⊙. Swift/BAT-like instruments may be not sensitive enough to detect the EE component in this case. We argue that the EE component could be a probe for the merger process and disk formation for compact star mergers.
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.
2015-01-01
Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is exceptionally hot for the estimated age of ~30 kyr. We discuss possible cooling scenarios to explain this property, as well as possible additional constraints on the star mass and radius from cooling theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp
The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending onmore » the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.« less
Deep Imaging of Eridanus II and Its Lone Star Cluster
NASA Astrophysics Data System (ADS)
Crnojević, D.; Sand, D. J.; Zaritsky, D.; Spekkens, K.; Willman, B.; Hargis, J. R.
2016-06-01
We present deep imaging of the most distant dwarf discovered by the Dark Energy Survey, Eridanus II (Eri II). Our Magellan/Megacam stellar photometry reaches ˜3 mag deeper than previous work and allows us to confirm the presence of a stellar cluster whose position is consistent with Eri II’s center. This makes Eri II, at {M}V=-7.1, the least luminous galaxy known to host a (possibly central) cluster. The cluster is partially resolved, and at {M}V=-3.5 it accounts for ˜4% of Eri II’s luminosity. We derive updated structural parameters for Eri II, which has a half-light radius of ˜280 pc and is elongated (ɛ ˜ 0.48) at a measured distance of D ˜ 370 kpc. The color-magnitude diagram displays a blue, extended horizontal branch, as well as a less populated red horizontal branch. A central concentration of stars brighter than the old main-sequence turnoff hints at a possible intermediate-age (˜3 Gyr) population; alternatively, these sources could be blue straggler stars. A deep Green Bank Telescope observation of Eri II reveals no associated atomic gas. This paper includes data gathered with the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile.
NASA Astrophysics Data System (ADS)
Charpinet, S.; Van Grootel, V.; Fontaine, G.; Green, E. M.; Brassard, P.; Randall, S. K.; Silvotti, R.; Østensen, R. H.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Kawaler, S. D.; Clarke, B. D.; Li, J.; Wohler, B.
2011-06-01
Context. Contemporary high precision photometry from space provided by the Kepler and CoRoT satellites generates significant breakthroughs in terms of exploiting the long-period, g-mode pulsating hot B subdwarf (sdBVs) stars with asteroseismology. Aims: We present a detailed asteroseismic study of the sdBVs star KIC02697388 monitored with Kepler, using the rich pulsation spectrum uncovered during the ~27-day-long exploratory run Q2.3. Methods: We analyse new high-S/N spectroscopy of KIC02697388 using appropriate NLTE model atmospheres to provide accurate atmospheric parameters for this star. We also reanalyse the Kepler light curve using standard prewhitening techniques. On this basis, we apply a forward modelling technique using our latest generation of sdB models. The simultaneous match of the independent periods observed in KIC02697388 with those of models leads objectively to the identification of the pulsation modes and, more importantly, to the determination of some of the parameters of the star. Results: The light curve analysis reveals 43 independent frequencies that can be associated with oscillation modes. All the modulations observed in this star correspond to g-mode pulsations except one high-frequency signal, which is typical of a p-mode oscillation. Although the presence of this p-mode is surprising considering the atmospheric parameters that we derive for this cool sdB star (Teff = 25 395 ± 227 K, log g = 5.500 ± 0.031 (cgs), and log N(He) /N(H) = -2.767 ± 0.122), we show that this mode can be accounted for particularly well by our optimal seismic models, both in terms of frequency match and nonadiabatic properties. The seismic analysis leads us to identify two model solutions that can both account for the observed pulsation properties of KIC02697388. Despite this remaining ambiguity, several key parameters of the star can be derived with stringent constraints, such as its mass, its H-rich envelope mass, its radius, and its luminosity. We derive the properties of the core proposing that it is a relatively young sdB star that has burnt less than ~34% (in mass) of its central helium and has a relatively large mixed He/C/O core. This latter measurement is in line with the trend already uncovered for two other g-mode sdB pulsators analysed with asteroseismology and suggests that extra mixing is occurring quite early in the evolution of He cores on the horizontal branch. Conclusions: Additional monitoring with Kepler of this particularly interesting sdB star should reveal the inner properties of KIC02697388 and provide important information about the mode driving mechanism and the helium core properties. Tables 3 and 4 are available in electronic form at http://www.aanda.org
SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components
NASA Astrophysics Data System (ADS)
Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin
2016-11-01
We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, I.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.
Far-Ultraviolet Temperature Diagnostics for Hot Central Stars of Planetary Nebulae
NASA Technical Reports Server (NTRS)
Sonneborn, G.; Ipin, R. C.; Herald, J.
2007-01-01
The effective temperature of hot central stars of planetary nebulae is usually determined from the ratios of optical He II lines. However, far-ultraviolet spectra from the FUSE satellite of several hot (T(sub eff) > 70,000 K) hydrogen-rich central stars have stellar features that imply a significantly hotter effective temperature than that determined from He II. There are many stellar features in the long wavelength portion of the FUSE spectrum. These include O VI 1146-47, F VI 1039.5, FeVII 1118.6, 1141.4, FeVI 1120.9, 1131.5, and NiVI 1124.2, 1148.2. The strong FVI 1139.5 line is of interest because of the large overabundance (over 100X solar) of F in some PG1159 stars reported recently by Werner et al. (2005). Modeling these spectral features may provide an method for measuring the effective temperature of these stars independent of the He II lines. An example of HD 200516, the central star of NGC 7009 (T(sub eff)= 82000 K from He II vs 95000 K from Far-W metal lines) is presented.
Unrecognized astrometric confusion in the Galactic Centre
NASA Astrophysics Data System (ADS)
Plewa, P. M.; Sari, R.
2018-06-01
The Galactic Centre is a crowded stellar field and frequent unrecognized events of source confusion, which involve undetected faint stars, are expected to introduce astrometric noise on a sub-mas level. This confusion noise is the main non-instrumental effect limiting the astrometric accuracy and precision of current near-infrared imaging observations and the long-term monitoring of individual stellar orbits in the vicinity of the central supermassive black hole. We self-consistently simulate the motions of the known and the yet unidentified stars to characterize this noise component and show that a likely consequence of source confusion is a bias in estimates of the stellar orbital elements, as well as the inferred mass and distance of the black hole, in particular if stars are being observed at small projected separations from it, such as the star S2 during pericentre passage. Furthermore, we investigate modelling the effect of source confusion as an additional noise component that is time-correlated, demonstrating a need for improved noise models to obtain trustworthy estimates of the parameters of interest (and their uncertainties) in future astrometric studies.
Continuous-time quantum walk on an extended star graph: Trapping and superradiance transition
NASA Astrophysics Data System (ADS)
Yalouz, Saad; Pouthier, Vincent
2018-02-01
A tight-binding model is introduced for describing the dynamics of an exciton on an extended star graph whose central node is occupied by a trap. On this graph, the exciton dynamics is governed by two kinds of eigenstates: many eigenstates are associated with degenerate real eigenvalues insensitive to the trap, whereas three decaying eigenstates characterized by complex energies contribute to the trapping process. It is shown that the excitonic population absorbed by the trap depends on the size of the graph, only. By contrast, both the size parameters and the absorption rate control the dynamics of the trapping. When these parameters are judiciously chosen, the efficiency of the transfer is optimized resulting in the minimization of the absorption time. Analysis of the eigenstates reveals that such a feature arises around the superradiance transition. Moreover, depending on the size of the network, two situations are highlighted where the transport efficiency is either superoptimized or suboptimized.
The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5
NASA Astrophysics Data System (ADS)
Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O.
2017-04-01
The importance of long-period binaries for the formation and evolution of planetary nebulae is still rather poorly understood, which in part is due to the lack of central star systems that are known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30°623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric (e 0.5) double-lined binary with a period of 3300 days. Previous studies indicated that the cool component might be a horizontal branch star of mass 0.55 M⊙, but the observed radial velocity amplitudes rule out such a low mass. If we assume that the nebular symmetry axis and binary orbital plane are perpendicular, then the data are more consistent with a post-main-sequence star ascending towards the giant branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P 2700 days) and eccentricity (e 0.3) to be derived. To date, the orbital periods of BD+30°623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33°2642, comprise the only spectroscopic wide-binary central stars currently known. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The radial velocity data for both objects are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/L9
Accretion Disks around Young Stars: An Observational Perspective
NASA Astrophysics Data System (ADS)
Ménard, F.; Bertout, C.
Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today to understand the mechanism leading to the formation of planets.
Accretion Disks and the Formation of Stellar Systems
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin Michelle
2011-02-01
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5
NASA Astrophysics Data System (ADS)
Mahy, L.; Hutsemékers, D.; Nazé, Y.; Royer, P.; Lebouteiller, V.; Waelkens, C.
2017-03-01
Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, in Chile.
NASA Astrophysics Data System (ADS)
Kauffmann, Jens; Thushara Pillai, G. S.; Zhang, Qizhou; Lu, Xing; Immer, Katharina
2015-08-01
The Central Molecular Zone of the Milky Way (CMZ; innermost ~100pc) hosts a number of remarkably dense and massive clouds. These are subject to extreme environmental conditions, including very high cosmic ray fluxes and strong magnetic fields. Exploring star formation under such exceptional circumstances is essential for several of reasons. First, the CMZ permits to probe an extreme point in the star formation parameter space, which helps to test theoretical models. Second, CMZ clouds might help to understand the star formation under extreme conditions in more distant environments, such as in starbursts and the early universe.One particularly striking aspect is that — compared to the solar neighborhood — CMZ star formation in dense gas is suppressed by more than an order of magnitude (Longmore et al. 2012, Kauffmann et al. 2013). This questions current explanations for relations between the dense gas and the star formation rate (e.g., Gao & Solomon 2004, Lada et al. 2012). In other words, the unusually dense and massive CMZ molecular clouds form only very few stars, if any at all. Why is this so?Based on data from ALMA, CARMA, and SMA interferometers, we present results from the Galactic Center Molecular Cloud Survey (GCMS), the first study of a comprehensive sample of molecular clouds in the CMZ. This research yields a curious result: most of the major CMZ clouds are essentially devoid of significant substructure of the sort usually found in regions of high-mass star formation (Kauffmann et al. 2013). Preliminary analysis indicates that some clouds rather resemble homogeneous balls of gas. This suggests a highly dynamic picture of cloud evolution in the CMZ where clouds form, disperse, and re-assemble constantly. This concept is benchmarked against a new ALMA survey and first results from a legacy survey on the SMA.It is plausible that dense clouds in other galaxies have a similar internal structure. Instruments like ALMA and the JWST will soon permit to resolve such regions in nearby galaxies.
NASA Technical Reports Server (NTRS)
Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.
2003-01-01
We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M 13 and M 3, which form a famous "second parameter" pair. F rom the spectra and Stromgren photometry we derived - for the first time in M 13 - atmospheric parameters (effective temperature and surface gravity). For stars with Stromgren temperatures between 10,000 and 12,000 K we found excellent agreement between the atmospheric parameters derived from Stromgren photometry and those derived from Balmer line profile fits. However, for cooler stars there is a disagreement in the parameters derived by the two methods, for which we have no satisfactory explanation. Stars hotter than 12,000 K show evidence for helium depletion and iron enrichment, both in M 3 and M 13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars affected by diffusion. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars. Key words. Stars: atmospheres - Stars: evolution - Stars: horizontal branch - Globular clusters: individual: M 3 - Globular clusters: individual: M 13
Chandra Detects Enigmatic Point X-ray Sources in the Cat's Eye and the Helix Nebulae
NASA Astrophysics Data System (ADS)
Guerrero, M. A.; Gruendl, R. A.; Chu, Y.-H.; Kaler, J. B.; Williams, R. M.
2000-12-01
Central stars of planetary nebulae (PNe) with Teff greater than 100,000 K are expected to emit soft X-rays that peak below 0.1 keV. Chandra ACIS-S observations of the Cat's Eye Nebula (NGC 6543) and the Helix Nebula (NGC 7293) have detected point X-ray sources at their central stars. The point X-ray source at the central star of the Cat's Eye is both unknown previously and unexpected because the stellar temperature is only ~50,000 K. In contrast, the point X-ray source at the central star of the Helix was previously detected by ROSAT and its soft X-ray emission is expected because the stellar temperature is ~100,000 K. However, the Helix X-ray source also shows a harder X-ray component peaking at 0.8 keV that is unexpected and for which Chandra has provided the first high-resolution spectrum for detailed analysis. The spectra of the point X-ray sources in the Cat's Eye and the Helix show line features indicating an origin of thermal plasma emission. The spectrum of the Helix source can be fit by Raymond & Smith's model of plasma emission at ~9*E6 K. The spectrum of the Cat's Eye source has too few counts for a spectral fit, but appears to be consistent with plasma emission at 2-3*E6 K. The X-ray luminosities of both sources are ~5*E29 erg s-1. The observed plasma temperatures are too high for accretion disks around white dwarfs, but they could be ascribed to coronal X-ray emission. While central stars of PNe are not known to have coronae, the observed spectra are consistent with quiescent X-ray emission from dM flare stars. On the other hand, neither the central star of the Helix or the Cat's Eye are known to have a binary companion. It is possible that the X-rays from the Cat's Eye's central star originate from shocks in the stellar wind, but the central star of the Helix does not have a measurable fast stellar wind. This work is supported by the CXC grant number GO0-1004X.
NASA Technical Reports Server (NTRS)
2007-01-01
This is an artist's rendition of the one-million-year-old star system called UX Tau A, located approximately 450 light-years away. Observations from NASA's Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system's central sun-like star. Spitzer saw a gap in UX Tau A's disk that extends from 0.2 to 56 astronomical units (an astronomical unit is the distance between the sun and Earth). The gap extends from the equivalent of Mercury to Pluto in our solar system, and is sandwiched between thick inner and outer disks on either side. Astronomers suspect that the gap was carved out by one or more forming planets. Such dusty disks are where planets are thought to be born. Dust grains clump together like snowballs to form larger rocks, and then the bigger rocks collide to form the cores of planets. When rocks revolve around their central star, they act like cosmic vacuum cleaners, picking up all the gas and dust in their path and creating gaps. Although gaps have been detected in disks swirling around young stars before, UX Tau A is special because the gap is sandwiched between two thick disks of dust. An inner thick dusty disk hugs the central star, then, moving outward, there is a gap, followed by another thick doughnut-shaped disk. Other systems with gaps contain very little to no dust near the central star. In other words, those gaps are more like big holes in the centers of disks. Some scientists suspect that these holes could have been carved out by a process called photoevaporation. Photoevaporation occurs when radiation from the central star heats up the gas and dust around it to the point where it evaporates away. The fact that there is thick disk swirling extremely close to UX Tau A's central star rules out the photoevaporation scenario. If photoevaporation from the star played a role, then large amounts of dust would not be floating so close to the star.Magnetic fields in central stars of planetary nebulae?
NASA Astrophysics Data System (ADS)
Jordan, S.; Bagnulo, S.; Werner, K.; O'Toole, S. J.
2012-06-01
Context. Most planetary nebulae have bipolar or other non-spherically symmetric shapes. Magnetic fields in the central star may be responsible for this lack of symmetry, but observational studies published to date have reported contradictory results. Aims: We search for correlations between a magnetic field and departures from the spherical geometry of the envelopes of planetary nebulae. Methods: We determine the magnetic fields from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars were previously presented and discussed in the literature, while the observations of six stars, plus additional measurements of a star previously observed, are presented here for the first time. Results: All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections using data acquired with FORS1 (FOcal Reducer and low dispersion Spectrograph) of the Unit Telescope 1 (UT1) of the Very Large Telescope (VLT) were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate. Conclusions: There is currently no observational evidence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 072.D-0089 (PI = Jordan) and 075.D-0289 (PI = Jordan).
INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr
2015-08-01
We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.
2008-08-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.
2009-02-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.
2008-02-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A key factor to the spin parameter of uniformly rotating compact stars: crust structure
NASA Astrophysics Data System (ADS)
Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua
2016-04-01
We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.
NASA Astrophysics Data System (ADS)
Silva, K. M.; Flagey, N.; Noriega-Crespo, A.; Carey, S.; Ingallinera, A.
2017-03-01
We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8″-by-8″ regions of 55 MIPSGAL “bubbles” (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf-Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells’ morphologies in the mid-IR and central sources spectral types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, K. M.; Flagey, N.; Noriega-Crespo, A.
We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H - and K -band spectra of potential central stars within the inner 8″-by-8″ regions of 55 MIPSGAL “bubbles” (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer /MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. Wemore » also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf–Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells’ morphologies in the mid-IR and central sources spectral types.« less
Formation of intermediate-mass black holes through runaway collisions in the first star clusters
NASA Astrophysics Data System (ADS)
Sakurai, Yuya; Yoshida, Naoki; Fujii, Michiko S.; Hirano, Shingo
2017-12-01
We study the formation of massive black holes in the first star clusters. We first locate star-forming gas clouds in protogalactic haloes of ≳107 M⊙ in cosmological hydrodynamics simulations and use them to generate the initial conditions for star clusters with masses of ∼105 M⊙. We then perform a series of direct-tree hybrid N-body simulations to follow runaway stellar collisions in the dense star clusters. In all the cluster models except one, runaway collisions occur within a few million years, and the mass of the central, most massive star reaches ∼400-1900 M⊙. Such very massive stars collapse to leave intermediate-mass black holes (IMBHs). The diversity of the final masses may be attributed to the differences in a few basic properties of the host haloes such as mass, central gas velocity dispersion and mean gas density of the central core. Finally, we derive the IMBH mass to cluster mass ratios, and compare them with the observed black hole to bulge mass ratios in the present-day Universe.
Abell 48 - a rare WN-type central star of a planetary nebula
NASA Astrophysics Data System (ADS)
Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.
2013-04-01
A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.
VizieR Online Data Catalog: Binarity in planetary nebula central stars (De Marco+ 2013)
NASA Astrophysics Data System (ADS)
De Marco O.; Passy, J.-C.; Frew, D. J.; Moe, M.; Jacoby, G. H.
2014-01-01
The sample presented here consists of 30 central stars of PN which were selected solely based on their low PN surface brightness (radius of the PN is larger than ~25arcsec in most cases) as well as on the faint V magnitudes of their central stars. The observations were acquired during eight nights between 2007 October 30 and November 6 at the 2.1-m telescope at the Kitt Peak National Observatory. However, the data from nights 2 and 8 were not photometric. (5 data files).
Well behaved parametric class of relativistic charged fluid ball in general relativity
NASA Astrophysics Data System (ADS)
Pant, Neeraj
2011-04-01
The paper presents a class of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0≤ K≤42) for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=2 and X=0.30, the maximum mass of the star comes out to be 4.96 M Θ with linear dimension 34.16 km and central redshift and surface redshift 2.1033 and 0.683 respectively. In absence of the charge we are left behind with the well behaved fourth model of Durgapal (J. Phys., A, Math. Gen. 15:2637, 1982).
NASA Astrophysics Data System (ADS)
van Hoof, P. A. M.; Van de Steene, G. C.; Exter, K. M.; Barlow, M. J.; Ueta, T.; Groenewegen, M. A. T.; Gear, W. K.; Gomez, H. L.; Hargrave, P. C.; Ivison, R. J.; Leeks, S. J.; Lim, T. L.; Olofsson, G.; Polehampton, E. T.; Swinyard, B. M.; Van Winckel, H.; Waelkens, C.; Wesson, R.
2013-12-01
As part of the Herschel guaranteed time key project Mass loss of Evolved StarS (MESS) we have imaged a sample of planetary nebulae. In this paper we present the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) images of the classical bipolar planetary nebula NGC 650. We used these images to derive a temperature map of the dust. We also constructed a photoionization and dust radiative transfer model using the spectral synthesis code Cloudy. To constrain this model, we used the PACS and SPIRE fluxes and combined them with hitherto unpublished International Ultraviolet Explorer (IUE) and Spitzer InfraRed Spectrograph (IRS) spectra as well as various other data from the literature. A temperature map combined with a photoionization model were used to study various aspects of the central star, the nebula, and in particular the dust grains in the nebula. The central star parameters are determined to be Teff = 208 kK and L = 261 L⊙ assuming a distance of 1200 pc. The stellar temperature is much higher than previously published values. We confirm that the nebula is carbon-rich with a C/O ratio of 2.1. The nebular abundances are typical for a type IIa planetary nebula. With the photoionization model we determined that the grains in the ionized nebula are large (assuming single-sized grains, they would have a radius of 0.15 μm). Most likely these large grains were inherited from the asymptotic giant branch phase. The PACS 70/160 μm temperature map shows evidence of two radiation components heating the grains. The first component is direct emission from the central star, while the second component is diffuse emission from the ionized gas (mainly Lyα). We show that previous suggestions of a photo-dissociation region surrounding the ionized region are incorrect. The neutral material resides in dense clumps inside the ionized region. These may also harbor stochastically heated very small grains in addition to the large grains. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 2-5 are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wünsch, R.; Palouš, J.; Ehlerová, S.
We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structuresmore » that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.« less
The growth of the central region by acquisition of counterrotating gas in star-forming galaxies
Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A.; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A.; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A.; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin
2016-01-01
Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars. PMID:27759033
The growth of the central region by acquisition of counterrotating gas in star-forming galaxies.
Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin
2016-10-19
Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars.
Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng
2018-05-01
The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.
Chemical Abundances of Planetary Nebulae in the Bulge and Disk of M31
NASA Technical Reports Server (NTRS)
Jacoby, George H.; Ciardullo, Robin
1998-01-01
We derive abundances and central star parameters for 15 planetary nebulae (PNe) in M31: 12 in the bulge and 3 in a disk field 14 kpc from the nucleus. No single abundance value characterizes the bulge stars: although the median abundances of the sample are similar to those seen for PNe in the LMC, the distribution of abundances is several times broader, spanning over 1 decade. None of the PNe in our sample approach the super metal-rich ([Fe/H] approximately 0.25) expectations for the bulge of M31, although a few PNe in the sample of Stasinska, Richer, & Mc Call (1998) come close. This [O/H] vs [Fe/H] discrepancy is likely due to a combination of factors, including an inability of metal-rich stars to produce bright PNe, a luminosity selection effect, and an abundance gradient in the bulge of M31. We show that PNe that are near the bright limit of the [O III] lambda.5007 planetary nebula luminosity function (PNLF) span nearly a decade in oxygen abundance, and thus, support the use of the PNLF for deriving distances to galaxies (Jacoby 1996) with differing metallicities. We also identify a correlation between central star mass and PN dust formation that partially alleviates any dependence of the PNLF maximum magnitude on population age. Additionally, we identify a spatially compact group of 5 PNe having unusually high O/H; this subgroup may arise from a recent merger, but velocity information is needed to assess the true nature of the objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro-Corzo, Sinhue A. R.; Velazquez, Pablo F.; Raga, Alejandro C.
We present three-dimensional hydrodynamical simulations of a jet launched from the secondary star of a binary system inside a protoplanetary nebula. The secondary star moves around the primary in a close eccentric orbit. From the gasdynamic simulations we compute synthetic [N II] lambda 6583 emission maps. Different jet axis inclinations with respect to the orbital plane, as well as different orientations of the flow with respect to the observer, are considered. For some parameter combinations, we obtain structures that show point- or mirror-symmetric morphologies depending on the orientation of the flow with respect to the observer. Furthermore, our models canmore » explain some of the emission distribution asymmetries that are summarized in the classification given by Soker and Hadar.« less
Proper motions of five OB stars with candidate dusty bow shocks in the Carina Nebula
NASA Astrophysics Data System (ADS)
Kiminki, Megan M.; Smith, Nathan; Reiter, Megan; Bally, John
2017-06-01
We constrain the proper motions of five OB stars associated with candidate stellar wind bow shocks in the Carina Nebula using Hubble Space Telescope ACS imaging over 9-10 yr baselines. These proper motions allow us to directly compare each star's motion to the orientation of its candidate bow shock. Although these stars are saturated in our imaging, we assess their motion by the shifts required to minimize residuals in their airy rings. The results limit the direction of each star's motion to sectors less than 90° wide. None of the five stars are moving away from the Carina Nebula's central clusters as runaway stars would be, confirming that a candidate bow shock is not necessarily indicative of a runaway star. Two of the five stars are moving tangentially relative to the orientation of their candidate bow shocks, both of which point at the OB cluster Trumpler 14. In these cases, the large-scale flow of the interstellar medium, powered by feedback from the cluster, appears to dominate over the motion of the star in producing the observed candidate bow shock. The remaining three stars all have some component of motion towards the central clusters, meaning that we cannot distinguish whether their candidate bow shocks are indicators of stellar motion, of the flow of ambient gas or of density gradients in their surroundings. In addition, these stars' lack of outward motion hints that the distributed massive-star population in Carina's South Pillars region formed in place, rather than migrating out from the association's central clusters.
An Evaluation of the Early Alert (STAR) Program at Central Piedmont Community College
ERIC Educational Resources Information Center
Gammon, J. B.
2017-01-01
Central Piedmont Community College is exploring ways to help at-risk students achieve academic success by utilizing an early-alert system called Success Through Academic Reporting (STAR). All First-Time, Full-time Degree-seeking students (FFD) receive an opportunity for follow-up services that support a centralized strategy, which has the…
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.
Moments of inertia for neutron and strange stars: Limits derived for the Crab pulsar
NASA Astrophysics Data System (ADS)
Bejger, M.; Haensel, P.
2002-12-01
Recent estimates of the properties of the Crab nebula are used to derive constraints on the moment of inertia, mass and radius of the pulsar. To this purpose, we employ an approximate formula combining these three parameters. Our ``empirical formula'' I =~ a(x) M R2, where x=(M/Msun) (km/R), is based on numerical results obtained for thirty theoretical equations of state of dense matter. The functions a(x) for neutron stars and strange stars are qualitatively different. For neutron stars aNS(x)=x/(0.1+2x) for x<=0.1 (valid for M>0.2 Msun) and aNS(x)={2/ 9}(1+5x) for x>0.1. For strange stars aSS(x)={2/ 5}(1+x) (not valid for strange stars with crust and M<0.1 Msun). We obtain also an approximate expression for the maximum moment of inertia Imax,45 =~ (-0.37 + 7.12* xmax) (Mmax/Msun)(RM_max/ {10 km})2, where I45 = I/1045 g* cm2, valid for both neutron stars and strange stars. Applying our formulae to the evaluated values of ICrab, we derive constraints on the mass and radius of the pulsar. { A very conservative evaluation of the expanding nebula mass, Mneb=2 Msun, yields MCrab>1.2 Msun and RCrab= 10-14 km. Setting the most recent evaluation (``central value'') Mneb=4.6 Msun rules out most of the existing equations of state, leaving only the stiffest ones: MCrab>1.9 Msun, RCrab= 14-15 km.
NASA Astrophysics Data System (ADS)
George, K.; Joseph, P.; Mondal, C.; Devaraj, A.; Subramaniam, A.; Stalin, C. S.; Côté, P.; Ghosh, S. K.; Hutchings, J. B.; Mohan, R.; Postma, J.; Sankarasubramanian, K.; Sreekumar, P.; Tandon, S. N.
2018-05-01
Context. Some post-merger galaxies are known to undergo a starburst phase that quickly depletes the gas reservoir and turns it into a red-sequence galaxy, though the details are still unclear. Aims: Here we explore the pattern of recent star formation in the central region of the post-merger galaxy NGC 7252 using high-resolution ultraviolet (UV) images from the UVIT on ASTROSAT. Methods: The UVIT images with 1.2 and 1.4 arcsec resolution in the FUV and NUV are used to construct a FUV-NUV colour map of the central region. Results: The FUV-NUV pixel colour map for this canonical post-merger galaxy reveals a blue circumnuclear ring of diameter 10'' (3.2 kpc) with bluer patches located over the ring. Based on a comparison to single stellar population models, we show that the ring is comprised of stellar populations with ages ≲300 Myr, with embedded star-forming clumps of younger age (≲150Myr). Conclusions: The suppressed star formation in the central region, along with the recent finding of a large amount of ionised gas, leads us to speculate that this ring may be connected to past feedback from a central super-massive black hole that has ionised the hydrogen gas in the central 4'' 1.3 kpc.
A well-behaved class of charged analogue of Durgapal solution
NASA Astrophysics Data System (ADS)
Mehta, R. N.; Pant, Neeraj; Mahto, Dipo; Jha, J. S.
2013-02-01
We present a well behaved class of charged analogue of M.C. Durgapal (J. Phys. A, Math. Gen. 15:2637, 1982) solution. This solution describes charged fluid balls with positively finite central pressure, positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. This solution gives us wide range of parameter for every positive value of n for which the solution is well behaved hence, suitable for modeling of super dense stars. Keeping in view of well behaved nature of this solution, one new class of solution is being studied extensively. Moreover, this class of solution gives us wide range of constant K (0≤ K≤2.2) for which the solution is well behaved hence, suitable for modeling of super dense stars like strange quark stars, neutron stars and pulsars. For this class of solution the mass of a star is maximized with all degree of suitability, compatible with quark stars, neutron stars and pulsars. By assuming the surface density ρ b =2×1014 g/cm3 (like, Brecher and Capocaso, Nature 259:377, 1976), corresponding to K=0 with X=0..235, the resulting well behaved model has the mass M=4.03 M Θ , radius r b =19.53 km and moment of inertia I=1.213×1046 g cm2; for K=1.5 with X=0.235, the resulting well behaved model has the mass M=4.43 M Θ , radius r b =18.04 km and moment of inertia I=1.136×1046 g cm2; for K=2.2 with X=0.235, the resulting well behaved model has the mass M=4.56 M Θ , radius r b =17.30 km and moment of inertia I=1.076×1046 g cm2. These values of masses and moment of inertia are found to be consistent with the crab pulsars.
The ionisation parameter of star-forming galaxies evolves with the specific star formation rate
NASA Astrophysics Data System (ADS)
Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan
2018-04-01
We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z < 0.3, star-forming galaxies we show that high ionisation parameters are directly linked to high sSFRs and are not simply the byproduct of an evolution in metallicity. Our results are physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.
Theories of central engine for long gamma-ray bursts
NASA Astrophysics Data System (ADS)
Nagataki, Shigehiro
2018-02-01
Long GRBs are the most powerful explosions in the universe since the Big Bang. At least, some fraction of long GRBs are born from the death of massive stars. Likewise, only some fraction of massive stars that satisfy additional special conditions explode as long GRBs associated with supernovae/hypernovae. In this paper, we discuss the explosion mechanism of long GRBs associated with hypernovae: ‘the central engine of long GRBs’. The central engine of long GRBs is very different from that of core-collapse supernovae, although the mechanism of the engine is still not firmly established. In this paper, we review theoretical studies of the central engine of long GRBs. First, we discuss possible progenitor stars. Then several promising mechanisms of the central engine—such as black hole and magnetar formation—will be reviewed. We will also mention some more exotic models. Finally, we describe prospects for future studies of the central engine of long GRBs.
NASA Astrophysics Data System (ADS)
Hartley, W. G.; Conselice, C. J.; Mortlock, A.; Foucaud, S.; Simpson, C.
2015-08-01
We explore the redshift evolution of a curious correlation between the star formation properties of central galaxies and their satellites (`galactic conformity') at intermediate to high redshift (0.4 < z < 1.9). Using an extremely deep near-infrared survey, we study the distribution and properties of satellite galaxies with stellar masses, log(M*/M⊙) > 9.7, around central galaxies at the characteristic Schechter function mass, M ˜ M*. We fit the radial profiles of satellite number densities with simple power laws, finding slopes in the range -1.1 to -1.4 for mass-selected satellites, and -1.3 to -1.6 for passive satellites. We confirm the tendency for passive satellites to be preferentially located around passive central galaxies at 3σ significance and show that it exists to at least z ˜ 2. Meanwhile, the quenched fraction of satellites around star-forming galaxies is consistent with field galaxies of equal stellar masses. We find no convincing evidence for a redshift-dependent evolution of these trends. One simple interpretation of these results is that only passive central galaxies occupy an environment that is capable of independently shutting off star formation in satellite galaxies. By examining the satellites of higher stellar mass star-forming galaxies (log(M*/M⊙) > 11), we conclude that the origin of galactic conformity is unlikely to be exclusively due to the host dark matter halo mass. A halo-mass-independent correlation could be established by either formation bias or a more physical connection between central and satellite star formation histories. For the latter, we argue that a star formation (or active galactic nucleus) related outburst event from the central galaxy could establish a hot halo environment which is then capable of quenching both central and satellite galaxies.
Galactic cold cores. VII. Filament formation and evolution: Methods and observational constraints
NASA Astrophysics Data System (ADS)
Rivera-Ingraham, A.; Ristorcelli, I.; Juvela, M.; Montillaud, J.; Men'shchikov, A.; Malinen, J.; Pelkonen, V.-M.; Marston, A.; Martin, P. G.; Pagani, L.; Paladini, R.; Paradis, D.; Ysard, N.; Ward-Thompson, D.; Bernard, J.-P.; Marshall, D. J.; Montier, L.; Tóth, L. V.
2016-06-01
Context. The association of filaments with protostellar objects has made these structures a priority target in star formation studies. However, little is known about the link between filament properties and their local environment. Aims: The datasets from the Herschel Galactic Cold cores key programme allow for a statistical study of filaments with a wide range of intrinsic and environmental characteristics. Characterisation of this sample can therefore be used to identify key physical parameters and quantify the role of the environment in the formation of supercritical filaments. These results are necessary to constrain theoretical models of filament formation and evolution. Methods: Filaments were extracted from fields at distance D< 500 pc with the getfilaments algorithm and characterised according to their column density profiles and intrinsic properties. Each profile was fitted with a beam-convolved Plummer-like function, and the filament structure was quantified based on the relative contributions from the filament "core", represented by a Gaussian, and "wing" component, dominated by the power-law behaviour of the Plummer-like function. These filament parameters were examined for populations associated with different background levels. Results: Filaments increase their core (Mline,core) and wing (Mline,wing) contributions while increasing their total linear mass density (Mline,tot). Both components appear to be linked to the local environment, with filaments in higher backgrounds having systematically more massive Mline,core and Mline,wing. This dependence on the environment supports an accretion-based model of filament evolution in the local neighbourhood (D ≤ 500 pc). Structures located in the highest backgrounds develop the highest central AV, Mline,core, and Mline,wing as Mline,tot increases with time, favoured by the local availability of material and the enhanced gravitational potential. Our results indicate that filaments acquiring a significantly massive central region with Mline,core≳Mcrit/2 may become supercritical and form stars. This translates into a need for filaments to become at least moderately self-gravitating to undergo localised star formation or become star-forming filaments. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Technical Concept Document. Central Archive for Reusable Defense Software (CARDS)
1994-02-28
FeNbry 1994 INFORMAL TECHNICAL REPORT For The SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS (STARS) Technical Concept Document Central Archive for...February 1994 INFORMAL TECHNICAL REPORT For The SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS (STARS) Technical Concept Document Central Archive...accordance with the DFARS Special Works Clause Developed by: This document, developed under the Software Technology for Adaptable, Reliable Systems
A search for SiO, OH, CO and HCN radio emission from silicate-carbon stars
NASA Technical Reports Server (NTRS)
Little-Marenin, I. R.; Sahai, R.; Wannier, P. G.; Benson, P. J.; Gaylard, M.; Omont, A.
1994-01-01
We report upper limits for radio emission of SiO at 86 and 43 GHz, of OH at 1612 and 1665/1667 MHz, of CO at 115 GHz and HCN at 88.6 GHz in the silicate-carbon stars. These upper limits of SiO imply that oxygen-rich material has not been detected within 2R(sub star) of a central star even though the detected emission from silicate dust grains, H2O and OH maser establishes the presence of oxygen-rich material from about tens to thousands of AU of a central star. The upper limit of the SiO abundance is consistent with that found in oxygen-rich envelopes. Upper limits of the mass loss rate (based on the CO data) are estimated to be between 10(exp -6) to 10(exp -7) solar mass/yr assuming a distance of 1.5 kpc for these stars. The absence of HCN microwave emission implies that no carbon-rich material can be detected at large distances (thousands of AU) from a central star. The lack of detections of SiO, CO, and HCN emission is most likely due to the large distances of these stars. A number of C stars were detected in CO and HCN, but only the M supergiant VX Sgr was detected in CO.
Population gradient in the Sextans dSph: comprehensive mapping of a dwarf galaxy by Suprime-Cam
NASA Astrophysics Data System (ADS)
Okamoto, S.; Arimoto, N.; Tolstoy, E.; Jablonka, P.; Irwin, M. J.; Komiyama, Y.; Yamada, Y.; Onodera, M.
2017-05-01
We present the deep and wide V and Ic photometry of the Sextans dwarf spheroidal galaxy (dSph) taken by the Suprime-Cam imager on the Subaru Telescope, which extends out to the tidal radius. The colour-magnitude diagram (CMD) reaches two magnitudes below the main-sequence (MS) turn-off, showing a steep red giant branch, a blue and a red horizontal branch (BHB and RHB, respectively), a sub-giant branch (SGB), an MS and blue stragglers (BSs). We construct the radial profile of each evolutionary phase and demonstrate that blue HB stars are more spatially extended, while red HB stars are more centrally concentrated than the other components. The colour distribution of SGB stars also varies with the galactocentric distance; the inner SGB stars shift bluer than those in the outskirts. The radial differences in the CMD morphology indicate the existence of the age gradient. The relatively younger stars (˜10 Gyr) are more centrally concentrated than the older ones (˜13 Gyr). The spatial contour maps of stars in different age bins also show that the younger population has a higher concentration and higher ellipticity than the older one. We also detect the centrally concentrated bright BS stars, the number of which is consistent with the idea that a part of these stars belongs to the remnant of a disrupted star cluster discovered in the previous spectroscopic studies.
SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco A.; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin
2018-07-01
We study radial profiles in H α equivalent width and specific star formation rate (sSFR) derived from spatially resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M⋆ diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, in both an integrated and spatially resolved sense. Flat sSFR radial profiles are observed for log(M⋆/M⊙) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M⋆/M⊙) > 10.0 are classified spectroscopically as central low-ionization emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star-forming galaxies with the same M⋆ and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.
Goldsmith, Harry-Dean Kenchington; Cvetojevic, Nick; Ireland, Michael; Madden, Stephen
2017-02-20
Understanding exoplanet formation and finding potentially habitable exoplanets is vital to an enhanced understanding of the universe. The use of nulling interferometry to strongly attenuate the central star's light provides the opportunity to see objects closer to the star than ever before. Given that exoplanets are usually warm, the 4 µm Mid-Infrared region is advantageous for such observations. The key performance parameters for a nulling interferometer are the extinction ratio it can attain and how well that is maintained across the operational bandwidth. Both parameters depend on the design and fabrication accuracy of the subcomponents and their wavelength dependence. Via detailed simulation it is shown in this paper that a planar chalcogenide photonic chip, consisting of three highly fabrication tolerant multimode interference couplers, can exceed an extinction ratio of 60 dB in double nulling operation and up to 40 dB for a single nulling operation across a wavelength window of 3.9 to 4.2 µm. This provides a beam combiner with sufficient performance, in theory, to image exoplanets.
Sigma model Q-balls and Q-stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbin, Y.
2007-10-15
A new kind of Q-balls is found: Q-balls in a nonlinear sigma model. Their main properties are presented together with those of their self-gravitating generalization, sigma model Q-stars. A simple special limit of solutions which are bound by gravity alone ('sigma stars') is also discussed briefly. The analysis is based on calculating the mass, global U(1) charge and binding energy for families of solutions parametrized by the central value of the scalar field. Two kinds (differing by the potential term) of the new sigma model Q-balls and Q-stars are analyzed. They are found to share some characteristics while differing inmore » other respects like their properties for weak central scalar fields which depend strongly on the form of the potential term. They are also compared with their ordinary counterparts and although similar in some respects, significant differences are found like the existence of an upper bound on the central scalar field. A special subset of the sigma model Q-stars contains those which do not possess a flat space limit. Their relation with sigma star solutions is discussed.« less
Probing hybrid modified gravity by stellar motion around Galactic Center
NASA Astrophysics Data System (ADS)
Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.
2016-06-01
We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.
Records of Migration in the Exoplanet Configurations
NASA Astrophysics Data System (ADS)
Michtchenko, Tatiana A.; Rodriguez Colucci, A.; Tadeu Dos Santos, M.
2013-05-01
Abstract (2,250 Maximum Characters): When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.
New open cluster candidates discovered in the XSTPS-GAC survey
NASA Astrophysics Data System (ADS)
Guo, Jin-Cheng; Zhang, Hua-Wei; Zhang, Hui-Hua; Liu, Xiao-Wei; Yuan, Hai-Bo; Huang, Yang; Wang, Song; Chen, Li; Zhao, Hai-Bin; Liu, Ji-Feng; Chen, Bing-Qiu; Xiang, Mao-Sheng; Tian, Zhi-Jia; Huo, Zhi-Ying; Wang, Chun
2018-03-01
The Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC) is a photometric sky survey that covers nearly 6000 deg2 towards the Galactic Anti-center (GAC) in the g, r, i bands. Half of its survey field is located on the Galactic Anti-center disk, which makes XSTPS-GAC highly suitable to search for new open clusters in the GAC region. In this paper, we report new open cluster candidates discovered in this survey, as well as properties of these open cluster candidates, such as age, distance and reddening, derived by isochrone fitting in the color-magnitude diagram (CMD). These open cluster candidates are stellar density peaks detected in the star density maps by applying the method from Koposov et al. Each candidate is inspected in terms of its true color image composed from three XSTPS-GAC band images. Then its CMD is checked, in order to identify whether the central region stars have a clear isochrone-like trend differing from background stars. The parameters derived from isochrone fitting for these candidates are mainly based on three band photometry of XSTPS-GAC. Moreover, when these new candidates are able to be seen clearly in 2MASS data, their parameters are also derived based on the 2MASS (J – H, J) CMD. There are a total of 320 known open clusters rediscovered and 24 new open cluster candidates discovered in this work. Furthermore, the parameters of these new candidates, as well as another 11 previously known open clusters, are properly determined for the first time.
Deriving physical parameters of unresolved star clusters. V. M 31 PHAT star clusters
NASA Astrophysics Data System (ADS)
de Meulenaer, P.; Stonkutė, R.; Vansevičius, V.
2017-06-01
Context. This study is the fifth of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations in external galaxies when using HST broad-band photometry. Aims: In this work we aim to derive parameters of star clusters using models with fixed and free metallicity based on the HST WFC3+ACS photometric system. The method is applied to derive parameters of a subsample of 1363 star clusters in the Andromeda galaxy observed with the HST. Methods: Following Paper III, we derive the star cluster parameters using a large grid of stochastic models that are compared to the six observed integrated broad-band WFC3+ACS magnitudes of star clusters. Results: We show that the age, mass, and extinction of the M 31 star clusters, derived assuming fixed solar metallicity, are in agreement with previous studies. We also demonstrate the ability of the WFC3+ACS photometric system to derive metallicity of star clusters older than 1 Gyr. We show that the metallicity derived using broad-band photometry of 36 massive M 31 star clusters is in good agreement with the metallicity derived using spectroscopy. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A112
The ionization parameter of star-forming galaxies evolves with the specific star formation rate
NASA Astrophysics Data System (ADS)
Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan
2018-07-01
We investigate the evolution of the ionization parameter of star-forming galaxies using a high-redshift (z˜ 1.5) sample from the FMOS-COSMOS (Fibre Multi-Object Spectrograph-COSMic evOlution Survey) and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR), and specific star formation rate (sSFR) are matched to the high-redshift sample, we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionization parameter of each sample. We find an evolution in the ionization parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z< 0.3, star-forming galaxies we show that high ionization parameters are directly linked to high sSFRs and are not simply the by-product of an evolution in metallicity. Our results are physically consistent with the definition of the ionization parameter, a measure of the hydrogen ionizing photon flux relative to the number density of hydrogen atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, Tomer; Illingworth, Garth D.; Magee, Daniel
2014-07-10
We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach massesmore » as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.« less
NASA Technical Reports Server (NTRS)
Tal, Tomer; Dekel, Avishai; Marchesini, Danilo; Momcheva, Ivelina; Nelson, Erica J.; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.;
2014-01-01
We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 less than z less than 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z approximately 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M=6.5x10(exp 10) M/solar mass) to nearby massive ellipticals (M=1.5x10(exp 11) M/solar mass). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M=6.5x10(exp 9) M/solar mass). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10(exp 12) and 10(exp 13) M/solar mass, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.
NASA Technical Reports Server (NTRS)
Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.
2002-01-01
We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M13 and M3, which form a famous second parameter pair. From the spectra we derived - for the first time in M13 - atmospheric parameters (effective temperature and surface gravity) as well as abundances of helium, magnesium, and iron. Consistent with analyses of hot HB stars in other globular clusters we find evidence for helium depletion and iron enrichment in stars hotter than about 12,000 K in both M3 and M13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars with radiative levitation. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars.
NASA Technical Reports Server (NTRS)
Romanishin, W.
1988-01-01
Preliminary results are given for a program to measure color gradients in the central galaxies in clusters with a variety of cooling flow rates. The objectives are to search for extended blue continuum regions indicative of star formation, to study the spatial distribution of star formation, and to make a quantitative measure of the amount of light from young stars, which can lead to a measure of the star formation rate (for an assumed initial mass function). Four clusters with large masses and large cluster H-alpha emission fluxes are found to have an excess of blue light concentrated to the centers of the cluster central galaxy. Assumption of a disk IMF leads to the conclusion that the starlight might play a major role in ionizing the emission line gas in these clusters.
NuSTAR and XMM-Newton Observations of the Hard X- Ray Spectrum of Centaurus A
NASA Technical Reports Server (NTRS)
Furst, F.; Muller, C.; Madsen, K. K.; Lanz, L.; Rivers, E.; Brightman, M.; Arevalo, P.; Balokovic, M.; Beuchert, T.; Zhang, W.
2016-01-01
We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Gamma = 1.8150 +/- 0.005 and a fluorescent Fe Kaline in good agreement with literature values. The spectrum is greater than 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between approximately 100-300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R is less than 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.
NASA Astrophysics Data System (ADS)
Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.
2001-09-01
We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Stromgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best chi^2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.
NASA Astrophysics Data System (ADS)
Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.
2001-12-01
We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Strömgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best χ2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.
NASA Astrophysics Data System (ADS)
Bonatto, C.; Lima, E. F.; Bica, E.
2012-04-01
Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.
Order parameter analysis of synchronization transitions on star networks
NASA Astrophysics Data System (ADS)
Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang
2017-12-01
The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.
Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.
2016-08-01
We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.
Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses
NASA Astrophysics Data System (ADS)
Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James
2012-12-01
Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.
The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2003-06-01
We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We present density map of RR Lyr stars in the observed fields which shows that the variables are strongly concentrated toward the LMC center. The modal values of the period distribution for RRab, RRc and RRe stars are 0.573, 0.339 and 0.276 days, respectively. The period-luminosity diagrams for BVI magnitudes and for extinction insensitive index W_I are constructed. We provide the log P-I, log P-V and log P-W_I relations for RRab, RRc and RRe stars. The mean observed V-band magnitudes of RR Lyr stars in the LMC are 19.36 mag and 19.31 mag for ab and c types, respectively, while the extinction free values are 18.91 mag and 18.89 mag. We found a large number of RR Lyr stars pulsating in two modes closely spaced in the power spectrum. These stars are believed to exhibit non-radial pulsating modes. We discovered three stars which simultaneously reveal RR Lyr-type and eclipsing-type variability. If any of these objects were an eclipsing binary system containing RR Lyr star, then for the first time the direct determination of the mass of RR Lyr variable would be possible. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raso, S.; Ferraro, F. R.; Lanzoni, B.
We used data from the Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters to select the Blue Straggler Star (BSS) population in four intermediate/high density systems (namely NGC 2808, NGC 6388, NGC 6541, and NGC 7078) through a “UV-guided search.” This procedure consists of using the F275W images in each cluster to construct the master list of detected sources, and then force it to the images acquired in the other filters. Such an approach optimizes the detection of relatively hot stars and allows the detection of a complete sample of BSSs even in the central region of high-densitymore » clusters, because the light from the bright cool giants, which dominates the optical emission in old stellar systems, is sensibly reduced at UV wavelengths. Our UV-guided selections of BSSs have been compared to the samples obtained in previous, optical-driven surveys, clearly demonstrating the efficiency of the UV approach. In each cluster we also measured the parameter A {sup +}, defined as the area enclosed between the cumulative radial distribution of BSSs and that of a reference population, which traces the level of BSS central segregation and the level of dynamical evolution suffered by the system. The values measured for the four clusters studied in this paper nicely fall along the dynamical sequence recently presented for a sample of 25 clusters.« less
NASA Astrophysics Data System (ADS)
Rauch, T.; Reindl, N.
2014-04-01
In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.
UGC 8508 - A dwarf galaxy associated with the M 101 group
NASA Technical Reports Server (NTRS)
Mould, J. R.; Schneider, D. P.; Harding, P.; Bothun, G. D.
1986-01-01
Two-color CCD photometry of UGC 8508 has resolved the system into stars. The color-magnitude diagram shows blue and red supergiants, the apparent magnitudes of the brightest stars indicate that UGC 8508 lies within 2 Mpc of the adopted 6 Mpc distance of the M 101 group. The galaxy contains a significant color gradient; star formation is confined to the central 1.5 scale lengths (0.8 kpc). UGC 8508 has a central surface brightness intermediate between bursting and quiescent dwarf irregular galaxies.
NASA Astrophysics Data System (ADS)
Ivanov, P. B.; Papaloizou, J. C. B.
2011-10-01
In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5-6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4-5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet's semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5-2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet-planet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.
Study the performance of star sensor influenced by space radiation damage of image sensor
NASA Astrophysics Data System (ADS)
Feng, Jie; Li, Yudong; Wen, Lin; Guo, Qi; Zhang, Xingyao
2018-03-01
Star sensor is an essential component of spacecraft attitude control system. Spatial radiation can cause star sensor performance degradation, abnormal work, attitude measurement accuracy and reliability reduction. Many studies have already been dedicated to the radiation effect on Charge-Coupled Device(CCD) image sensor, but fewer studies focus on the radiation effect of star sensor. The innovation of this paper is to study the radiation effects from the device level to the system level. The influence of the degradation of CCD image sensor radiation sensitive parameters on the performance parameters of star sensor is studied in this paper. The correlation among the radiation effect of proton, the non-uniformity noise of CCD image sensor and the performance parameter of star sensor is analyzed. This paper establishes a foundation for the study of error prediction and correction technology of star sensor on-orbit attitude measurement, and provides some theoretical basis for the design of high performance star sensor.
NASA Astrophysics Data System (ADS)
Cicuéndez, L.; Battaglia, G.; Irwin, M.; Bermejo-Climent, J. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Conn, A. R.; de Boer, T. J. L.; Gallart, C.; Guglielmo, M.; Ibata, R.; McConnachie, A.; Tolstoy, E.; Fernando, N.
2018-01-01
Aims: We present results from deep and very spatially extended CTIO/DECam g and r photometry (reaching out to 2 mag below the oldest main-sequence turn-off and covering 20 deg2) around the Sextans dwarf spheroidal galaxy. We aim to use this dataset to study the structural properties of Sextans overall stellar population and its member stars in different evolutionary phases, as well as to search for possible signs of tidal disturbance from the Milky Way, which would indicate departure from dynamical equilibrium. Methods: We performed the most accurate and quantitative structural analysis to-date of Sextans' stellar components by applying Bayesian Monte Carlo Markov chain methods to the individual stars' positions. Surface density maps are built by statistically decontaminating the sample through a matched filter analysis of the colour-magnitude diagram, and then analysed for departures from axisymmetry. Results: Sextans is found to be significantly less spatially extended and more centrally concentrated than early studies suggested. No statistically significant distortions or signs of tidal disturbances were found down to a surface brightness limit of 31.8 mag/arcsec2 in V-band. We identify an overdensity in the central regions that may correspond to previously reported kinematic substructure(s). In agreement with previous findings, old and metal-poor stars such as Blue Horizontal Branch stars cover a much larger area than stars in other evolutionary phases, and bright Blue Stragglers (BSs) are less spatially extended than faint ones. However, the different spatial distribution of bright and faint BSs appears consistent with the general age and metallicity gradients found in Sextans' stellar component. This is compatible with Sextans BSs having formed by evolution of binaries and not necessarily due to the presence of a central disrupted globular cluster, as suggested in the literature. We provide structural parameters for the various populations analysed and make publicly available the photometric catalogue of point-sources as well as a catalogue of literature spectroscopic measurements with updated membership probabilities. Full Tables 2 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A53
Brightness Variations in the Central Star of Eta Carinae From 1998 to the Present
NASA Technical Reports Server (NTRS)
Martin, J. C.; Koppelman, M. D.
2004-01-01
Recently, Eta Carinae has varied suprisingly in brightness combining a long term brightening trend with a 5.5-year cycle and unpredictable sporadic jumps. Only the Hubble Space Telescope had been able to provide reliable photometry of the central star resolved separately from its bright ejecta. We present data from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) and the Advanced Camera for Surveys High Resolution Camera (ACS/HRC) which chronicle the dramatic brightening of the central star of Eta Carinae from the 1998 "event" through 2000 and show that is has continued to slowly brighten. More frequent photometry during its recent "event" and a continued rise afterward. These data are compared to the more long term data compiled by the American Association of Variable Star Observers (AAVSO) which also shows substantial brightening between events and other intervening fluctuations in the brightness of Eta Carinae at visual wavelengths.
2MASS J22560844+5954299: the newly discovered cataclysmic star with the deepest eclipse
NASA Astrophysics Data System (ADS)
Kjurkchieva, D.; Khruzina, T.; Dimitrov, D.; Groebel, R.; Ibryamov, S.; Nikolov, G.
2015-12-01
Context. The SW Sex stars are assumed to represent a distinguished stage in cataclysmic variable (CV) evolution, making it especially important to study them. Aims: We discovered a new cataclysmic star and carried out prolonged and precise photometric observations, as well as medium-resolution spectral observations. Modelling these data allowed us to determine the physical parameters and to establish its peculiarities. Methods: To obtain a light curve solution we used model whose emission sources are a white dwarf surrounded by an accretion disk with a hot spot, a gaseous stream near the disk's lateral side, and a secondary star filling its Roche lobe. The obtained physical parameters are compared with those of other SW Sex-subtype stars. Results: The newly discovered cataclysmic variable 2MASS J22560844+5954299 shows the deepest eclipse amongst the known nova-like stars. It was reproduced by totally covering a very luminous accretion disk by a red secondary component. The temperature distribution of the disk is flatter than that of steady-state disk. The target is unusual with the combination of a low mass ratio q ~ 1.0 (considerably below the limit q = 1.2 of stable mass transfer of CVs) and an M-star secondary. The intensity of the observed three emission lines, Hα, He 5875, and He 6678, sharply increases around phase 0.0, accompanied by a Doppler jump to the shorter wavelength. The absence of eclipses of the emission lines and their single-peaked profiles means that they originate mainly in a vertically extended hot-spot halo. The emission Hα line reveals S-wave wavelength shifts with semi-amplitude of around 210 km s-1 and phase lag of 0.03. Conclusions: The non-steady-state emission of the luminous accretion disk of 2MASS J22560844+5954299 was attributed to the low viscosity of the disk matter caused by its unusually high temperature. The star shows all spectral properties of an SW Sex variable apart from the 0.5 central absorption. Based on data collected with the telescopes at Rozhen National Astronomical Observatory.Spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A40
NASA Astrophysics Data System (ADS)
De Marchi, Guido; Panagia, Nino; Beccari, Giacomo
2017-09-01
We report on the properties of the low-mass stars that recently formed in the central ˜ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ˜ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5< m/{M}⊙ < 1.5 and t< 16 {Myr} in six star-forming regions in the Large and Small Magellanic Clouds and Milky Way with metallicities in the range of 0.1-1.0 {{Z}}⊙ . We find a=-0.59+/- 0.02 and b=0.78+/- 0.08. The residuals are systematically different between the six regions and reveal a strong correlation with metallicity Z, of the type c=(-3.69+/- 0.02)-(0.30+/- 0.04)× {log}Z/{Z}⊙ . A possible interpretation of this trend is that when the metallicity is higher so is the radiation pressure, and this limits the accretion process, in both its rate and duration. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.
NASA Astrophysics Data System (ADS)
Savage, B.; Murdin, P.
2000-11-01
The enormous volume of space between the stars in the Milky Way Galaxy is filled with interstellar matter (ISM). The ISM plays a central role in the processes of STAR FORMATION and GALAXY EVOLUTION. Stars form from the ISM in dense molecular clouds. The radiant and mechanical energy produced by stars heats, ionizes, and produces structures in the ISM. Gradual or catastrophic mass loss from stars ...
Hubble Space Telescope imaging of the central star forming region in NGC 1140 (exp 1)
NASA Technical Reports Server (NTRS)
Hunter, Deidre A.; O'Connell, Robert W.; Gallagher, John S. Iii
1994-01-01
We present broadband images taken with the Hubble Space Telescope's Planetary Camera of the central supergiant H II region in the amorphous galaxy NGC 1140. These images allow observations to a resolution of about 13 pc at the galaxy, and they reveal that its central 1/2 kpc contains 6-7 blue, luminous, compact super star clusters, many of which would be comparable in luminosity to globular clusters at the same age. A blue arc-shaped structure near the center may be a grouping of less luminous, R136/NGC 2070-sized clusters or a sheet of OB stars. Additional somewhat less luminous and redder clusters are also found farther out from the center. If these clusters are older, they too could have had luminosities comparable to those of the central six clusters at a comparable age. Thus, we find that NGC 1140 is remarkable in the number of extreme clusters that it has formed recently in a relatively small area of the galaxy. Since NGC 1140 exhibits global characteristics that are consistent with a recent merger, these clusters are likely to be a product of that event. This galaxy adds to the number of cases where rapid star formation has evidently produced super star clusters.
ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump
Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/
A Disk Origin for S-Stars in the Galactic Center?
NASA Astrophysics Data System (ADS)
Haislip, G.; Youdin, A. N.
2005-12-01
Young massive stars in the central 0.5" of our Galaxy probe dynamics around supermassive black holes, and challenge our understanding of star formation in extreme environments. Recent observations (Ghez et al. 2005, Eisenhauer et al. 2005) show large eccentricities and a seemingly random distribution of inclinations, which seems to contradict formation in a disk. We investigate scenarios in which the massive S-stars are born with circular, coplanar orbits and perturbed to their current relaxed state. John Chambers' MERCURY code is modified to include post-Newtonian corrections to the gravitational central force of a Schwarzchild hole and Lense-Thirring precession about a Kerr black hole. The role of resonant relaxation (Rauch & Tremaine, 1996) of angular momentum between S-stars and a background stellar halo is studied in this context.
A model for collisionally induced disturbed structure in disk galaxies
NASA Technical Reports Server (NTRS)
Gerber, Richard A.; Lamb, Susan A.
1994-01-01
We derive analytic expressions, using the impulse and epicycle approximations, which describe the kinematic response of a disk galaxy following a collision with a second spherical galaxy which collides perpendicular to, but not through the center of, the disk. This model can reporduce the morphologies found in n-body experiments in which distant encounters produce two-armed spiral patterns and more central collisions produce rings in the disk galaxy, thereby confirming that simple kinematics can be used to describe the early evolution of these systems. Application of this procedure provides a convenient method with which to conduct parameter studies of these collisions. Comparison of the kinematic description with a fully self-gravitating, three-dimensional n-body/gasdynamics computer model shows that the disk galaxy's response is initially well represented by the kinematic model but that the self-gravity of the disk becomes important at longer times after the collision. The flows of gas and stars decouple from one another where stellar orbits cross, leaving regions of elevated gas density behind as the stars move freely past each other. If star formation rates are enhanced in these regions of high gas density, active star formation could be taking place where there is no corresponding dense feature in the old stellar population.
Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-contrast Imaging
NASA Astrophysics Data System (ADS)
Jovanovic, N.; Guyon, O.; Martinache, F.; Pathak, P.; Hagelberg, J.; Kudo, T.
2015-11-01
State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.
NASA Astrophysics Data System (ADS)
Walker, Daniel Lewis
2017-08-01
The process of converting gas into stars underpins much of astrophysics, yet many fundamental questions surrounding this process remain unanswered. For example - how sensitive is star formation to the local environmental conditions? How do massive and dense stellar clusters form, and how does this crowded environment influence the stars that form within it? How do the most massive stars form and is there an upper limit to the stellar initial mass function (IMF)? Answering questions such as these is crucial if we are to construct an end-to-end model of how stars form across the full range of conditions found throughout the Universe. The research described in this thesis presents a study that utilises a multi-scale approach to identifying and characterising the early precursors to young massive clusters and high-mass proto-stars, with a specific focus on the extreme environment in the inner few hundred parsecs of the Milky Way - the Central Molecular Zone (CMZ). The primary sources of interest that are studied in detail belong to the Galactic centre dust ridge - a group of six high-mass (M 10^(4-5) Msun), dense (R 1-3 pc, n > 10^(4) cm^(-3)), and quiescent molecular clouds. These properties make these clouds ideal candidates for representing the earliest stages of high-mass star and cluster formation. The research presented makes use of single-dish and interferometric far-infrared and (sub-)millimetre observations to study their global and small-scale properties. A comparison of the known young massive clusters (YMCs) and their likely progenitors (the dust ridge clouds) in the CMZ shows that the stellar content of YMCs is much more dense and centrally concentrated than the gas in the clouds. If these clouds are truly precursors to massive clusters, the resultant stellar population would have to undergo significant dynamical evolution to reach central densities that are typical of YMCs. This suggests that YMCs in the CMZ are unlikely to form monolithically. Extending this study to include YMCs in the Galactic disc again shows that the known population of YMC precursor clouds throughout the Galaxy are not sufficiently dense or central concentrated that they could form a cluster that then expands due to gas expulsion. The data also reveal an evolutionary trend, in which clouds contract and accrete gas towards their central regions along with concurrent star formation. This is argued to favour a conveyor-belt mode of YMC formation and is again not consistent with a monolithic formation event. High angular resolution observations of the dust ridge clouds with the Submillimeter Array are presented. They reveal an embedded population of compact and massive cores, ranging from 50 - 2150 Msun within radii of 0.1 - 0.25 pc. These are likely formation sites of high-mass stars and clusters, and are strong candidates for representing the initial conditions of extremely massive stars. Two of these cores are found to be young, high-mass proto-stars, while the remaining 13 are quiescent. Comparing these cores with high-mass proto-stars in the Galactic disc, along with models in which star formation is regulated by turbulence, shows that these cores are consistent with the idea that the critical density threshold for star formation is greater in the turbulent environment at the Galactic centre.
VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)
NASA Astrophysics Data System (ADS)
Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.
2016-06-01
Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).
Using Kepler K2 to Measure the Binary Fraction of PN Central Stars
NASA Astrophysics Data System (ADS)
Jacoby, George H.; Hillwig, Todd; De Marco, Orsola; Hurowitz, Jonathan; Jones, David; Kronberger, Matthias; Harmer, Dianne
2018-01-01
During the initial Kepler mission, 5 Planetary Nebula (PN) central stars were observed. The light curves for 4 of these central stars indicated a history of close binary interactions. That large fraction was suggestive that the actual fraction of PN harboring close binaries is much larger than the known lower limit of 20%, but that sample is far too small to be compelling. We have since acquired Kepler K2 data for Campaigns 0, 2, 7, and 11, hosting PN samples of 3, 4, 8, and 185 targets, respectively. We will provide an update on the number of binary candidates found in each field, and in particular, the Galactic Bulge field of Campaign 11. We also will discuss the challenges of working with Kepler observations in the crowded Campaign 11 field and the impact of those challenges on our ability to estimate the fraction of PN central stars that are binaries. This study was supported in part by NASA grants NNX17AE64G and NNX17AF80G.
What Feeds the Beast in a Galaxy Cluster?
2015-09-10
A massive cluster of galaxies, called SpARCS1049+56, can be seen in this multi-wavelength view from NASA Hubble and Spitzer space telescopes. At the middle of the picture is the largest, central member of the family of galaxies (upper right red dot of central pair). Unlike other central galaxies in clusters, this one is bursting with the birth of new stars. Scientists say this star birth was triggered by a collision between a smaller galaxy and the giant, central galaxy. The smaller galaxy's wispy, shredded parts, called a tidal tail, can be seen coming out below the larger galaxy. Throughout this region are features called "beads on a string," which are areas where gas has clumped to form new stars. This type of "feeding" mechanism for galaxy clusters -- where gas from the merging of galaxies is converted to new stars -- is rare. The Hubble data in this image show infrared light with a wavelength of 1 micron in blue, and 1.6 microns in green. The Spitzer data show infrared light of 3.6 microns in red. http://photojournal.jpl.nasa.gov/catalog/PIA19837
Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2
NASA Astrophysics Data System (ADS)
Mosleh, Moein; Tacchella, Sandro; Renzini, Alvio; Carollo, C. Marcella; Molaeinezhad, Alireza; Onodera, Masato; Khosroshahi, Habib G.; Lilly, Simon
2017-03-01
We study the history from z˜ 2 to z˜ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose, we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with {M}* > {10}10 {M}⊙ , corrected for mass-to-light ratio ({M}* /L) variations, and derive the half-mass-radius (R m ), central stellar mass surface density within 1 kpc ({{{Σ }}}1) and surface density at R m ({{{Σ }}}m) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z˜ 2 to z˜ 0 by a factor of ˜ 3-5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ˜2. The central densities {{{Σ }}}1 of quiescent galaxies decline slightly (by a factor of ≲ 1.7) from z˜ 2 to z˜ 0, while for star-forming galaxies {{{Σ }}}1 increases with time, at fixed mass. We show that the central density {{{Σ }}}1 has a tighter correlation with specific star-formation rate (sSFR) than {{{Σ }}}m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ({{{Σ }}}1≳ {10}10 {M}⊙ {{kpc}}2) seems to be a prerequisite for the cessation of star formation, though a causal link between high {{{Σ }}}1 and quenching is difficult to prove and their correlation can have a different origin.
Monitoring pulsating giant stars in M33: star formation history and chemical enrichment
NASA Astrophysics Data System (ADS)
Javadi, A.; van Loon, J. Th
2017-06-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].
On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars
NASA Astrophysics Data System (ADS)
Ryabchikova, T.; Piskunov, N.; Shulyak, D.
2015-04-01
During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, δ Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars—π Cet, 21 Peg, and Procyon—the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.
An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures
NASA Astrophysics Data System (ADS)
Generozov, A.; Stone, N. C.; Metzger, B. D.; Ostriker, J. P.
2018-05-01
A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. (2018). While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ˜1 - 4 × 104 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ˜60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. (2018). A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (˜10-4 per year at z=0).
HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA
NASA Technical Reports Server (NTRS)
2002-01-01
This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA
Estimation of distances to stars with stellar parameters from LAMOST
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...
2015-06-05
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
Estimation of distances to stars with stellar parameters from LAMOST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montez, R. Jr.; Kastner, J. H.; Freeman, M.
2015-02-10
We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-raymore » emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.« less
The Core-Collapse Supernova-Black Hole Connection
NASA Astrophysics Data System (ADS)
O'Connor, Evan
The death of a massive star is typically associated with a bright optical transient known as a core-collapse supernova. However, there is growing evidence that not all massive stars end their lives with a brillant optical display, but rather in a whimper. These failed supernovae, or unnovae, result from the central engine failing to turn the initial implosion of the iron core into an explosion that launches the supernova shock wave, unbinds the majority of the star, and creates the supernova as we know it. In these unnovae, the failure of the central engine is soon followed by the collapse of the would-be neutron star into a stellar mass black hole. Instead of the bright optical display following successful supernovae, little to no optical emission is expected from typical failed supernovae as most of the material quietly accretes onto the black hole. This makes the hunt for failed supernovae difficult. In this chapter for the Handbook of Supernovae, I present the growing observational evidence for failed supernovae and discuss the current theoretical understanding of how and in what stars the supernova central engine fails.
Reprocessing of Archival Direct Imaging Data of Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Safsten, Emily; Stephens, Denise C.
2017-01-01
Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. They are the higher mass analogs of the better-known T Tauri stars. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales, particularly around massive stars. So far, only one planet, HD 100546b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars.Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the central star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We present here current work with the PSF subtraction program PynPoint, which employs a method of principal component analysis, to reprocess archival images of HAeBe stars to increase the likelihood of detecting a planet in their disks.
The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS
NASA Astrophysics Data System (ADS)
Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.
2017-11-01
We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.
Integral field spectroscopy of H II regions in M33
NASA Astrophysics Data System (ADS)
López-Hernández, Jesús; Terlevich, Elena; Terlevich, Roberto; Rosa-González, Daniel; Díaz, Ángeles; García-Benito, Rubén; Vílchez, José; Hägele, Guillermo
2013-03-01
Integral field spectroscopy is presented for star-forming regions in M33. A central area of 300 × 500 pc2 and the external H II region IC 132, at a galactocentric distance ˜19 arcmin (4.69 kpc), were observed with the Potsdam Multi-Aperture Spectrophotometer instrument at the 3.5-m telescope of the Centro Astronómico Hispano-Alemán (CAHA, aka Calar Alto Observatory). The spectral coverage goes from 3600 Å to 1 μm to include from [O II] λ3727 Å to the near-infrared lines required for deriving sulphur electron temperature and abundance diagnostics. Local conditions within individual H II regions are presented in the form of emission-line fluxes and physical conditions for each spatial resolution element (spaxel) and for segments with similar Hα surface brightness. A clear dichotomy is observed when comparing the central to outer disc H II regions. While the external H II region has higher electron temperature plus larger Hβ equivalent width, size and excitation, the central region has higher extinction and metal content. The dichotomy extends to the Baldwin-Phillips-Terlevich (BPT) diagnostic diagrams that show two orthogonal broad distributions of points. By comparing with pseudo-3D photoionization models, we conclude that the bulk of observed differences are probably related to a different ionization parameter and metallicity. Wolf-Rayet (WR) features are detected in IC 132, and resolved into two concentrations whose integrated spectra were used to estimate the characteristic number of WR stars. No WR features were detected in the central H II regions despite their higher metallicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Benjamin; Tan, Jonathan C.; Christie, Duncan
We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMCmore » collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.« less
Investigating the Environmental Properties of Galaxies in the SDSS-MaNGA Survey
NASA Astrophysics Data System (ADS)
Spindler, Ashley
2018-05-01
This thesis presents a study of galaxy evolution in the local universe. I study how environments shape the structures of galaxies, and how internal and external processes affect star formation. I perform four investigations of galaxy properties: a study of the relations between size, mass and velocity dispersion of 124,524 galaxies from SDSS DR7; I estimate star formation rates using Hα and Dn4000 for galaxies in the MaNGA survey; a study of the spatial distribution of star formation in 1494 MaNGA galaxies; and finally, a study of 215 barred and 402 unbarred galaxies, to investigate how bars affect star formation. I find that environment plays a key role in the evolution of galaxies, both structurally and in terms of their star formation. Using core velocity dispersion to study the effects of minor mergers and tidal/ram pressure stripping, I find that central galaxies are up to 30% larger and more massive than satellites. I suggest that minor mergers play a crucial role in the increase in size and mass of centrals. In addition, I find that satellites have a uniform radial suppression of star formation, compared to centrals, which may be due to the strangulation of their cold gas supplies. I study the internal processes that affect star formation and find that specific star formation rate is suppressed at all radii for high mass galaxies. Massive galaxies are more likely to have suppressed star formation in their cores, which I determined is caused by a combination of morphological quenching and AGN feedback. Finally, I study the role of galaxy bars in regulating the circumnuclear and disk star formation in late-type galaxies. I find that barred galaxies have lower star formation in their disks than unbarred galaxies, and that they are more likely to have enhanced star formation in their cores.
SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin
2017-04-01
Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2004-02-06
We present STAR measurements of the azimuthal anisotropy parameter v(2) and the binary-collision scaled centrality ratio R(CP) for kaons and lambdas (Lambda+Lambda) at midrapidity in Au+Au collisions at square root of s(NN)=200 GeV. In combination, the v(2) and R(CP) particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p(T) approximately 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K(0)(S) and Lambda+Lambda v(2) values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
Trajectories of Cepheid variable stars in the Galactic nuclear bulge
NASA Astrophysics Data System (ADS)
Matsunaga, Noriyuki
2012-06-01
The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, 10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, 25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.
STAR results on central exclusive production in proton-proton collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przybycien, Mariusz
2015-04-10
We present a preliminary measurement of the Central Exclusive Production of the two oppositely charged pions produced in the process pp → ppπ{sup +} π{sup −}, obtained with the STAR detector at RHIC at √(s)=200 GeV. Silicon strip detectors placed in Roman Pots were used for tagging forward protons while pion pair tracks were reconstructed in the STAR Time Projection Chamber. Predictions of models based on Regge phenomenology are compared to the spectra of the kinematical variables corrected for detector acceptance and efficiency.
NASA Astrophysics Data System (ADS)
Bluck, Asa; Teimoorinia, Hossen; Ellison, Sara L.; Mendel, Trevor
2018-01-01
One of the most striking features of the population of local galaxies is that the distributions of several key galaxy properties are highly bimodal (e.g. color and star formation rate). In general, high mass galaxies in dense environments, with bulge-dominated morphologies and pressure supported kinematics are more frequently passive (non-star forming) than lower mass galaxies in low density environments, with disc-dominated morphologies and rotationally supported kinematics. Understanding which, if any, of these correlations is causally related to the ‘quenching’ of star formation in galaxies remains an active and hotly debated area of investigation in modern astrophysics.Theoretically, a wealth of physical processes have been evoked to account for central galaxy quenching, including halo mass quenching from virial shocks, feedback from active galactic nuclei (AGN; in either the quasar or radio mode), stabilizing torques from central mass concentrations, feedback from supernovae, or even magnetic fields interacting with the hot gas halo.I will present strong new statistical evidence which suggests that the quenched fraction of local central galaxies is primarily related to their central kinematics (Bluck et al. 2016; 2017 in prep.). I will show that this is broadly consistent with quenching from AGN feedback, through a detailed comparison with a semi-analytic model and a cosmological hydrodynamical simulation.Using a sample of over half a million local galaxies from the SDSS DR7, we go on to develop a number of sophisticated techniques, including machine learning with artificial neural networks, to rank the importance of galaxy properties to quenching (Teimoorinia, Bluck & Ellison 2016). We find that properties closely correlated with the central supermassive black hole are highly favoured statistically to predict whether a galaxy will be star forming or not. Perhaps surprisingly, stellar mass and halo mass have no impact on star formation activity in central galaxies selected at a fixed black hole mass; and environment is totally uncorrelated to quenching in centrals.I will conclude by assessing which physical mechanisms for quenching are viable in light of our new results.
Turbovelocity Stars: Kicks Resulting from the Tidal Disruption of Solitary Stars
NASA Astrophysics Data System (ADS)
Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.
2013-07-01
The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that {\\mathord {\\sim }} 10^5 stars, {\\mathord {\\sim }} 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these "turbovelocity" stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.
UIT ultraviolet imaging of 30 Doradus
NASA Technical Reports Server (NTRS)
Hintzen, P.; Cheng, K.-P.; Michalitsianos, A.; Bohlin, R.; O'Connell, R.; Cornett, R.; Roberts, M.; Smith, A.; Smith, E.; Stecher, T.
1992-01-01
During the Astro-1 mission, near- and far-UV images of the 30 Doradus region were obtained using the Ultraviolet Imaging Telescope (UIT). These wide-field, 40 min in diameter, high spatial resolution, 2-3 sec, UIT UV images reveal a rich field of luminous UV-bright stars, clusters, and associations. There are 181 stars brighter than m(sub 2558A) = 16.5 and 197 stars brighter than m(sub 1615A) = 16.4 within 3 min diameter of the 30 Doradus central cluster. We have derived UV fluxes emitted from the 30 Doradus central cluster and from its UV bright core, R136. The region within 5 sec of R136 produces approximately 14% of the far-UV flux (lambda = 1892 A) and approximately 16% of the near-UV flux (lambda = 2558 A) emitted from the 3 min diameter central cluster. The derived UV luminosity of R136 at 1892 A is only 7.8 times that of the nearby O6-7 Iaf star, R139, and the m(sub 1892) - m(sub v) colors of R136 are similar to other O or Wolf-Rayet stars in the same region. These UIT data, combined with other published observations at longer wavelengths, indicate that there is no observational evidence for a supermassive star in R136.
UIT ultraviolet imaging of 30 Doradus
NASA Astrophysics Data System (ADS)
Hintzen, P.; Cheng, K.-P.; Michalitsianos, A.; Bohlin, R.; O'Connell, R.; Cornett, R.; Roberts, M.; Smith, A.; Smith, E.; Stecher, T.
During the Astro-1 mission, near- and far-UV images of the 30 Doradus region were obtained using the Ultraviolet Imaging Telescope (UIT). These wide-field, 40 min in diameter, high spatial resolution, 2-3 sec, UIT UV images reveal a rich field of luminous UV-bright stars, clusters, and associations. There are 181 stars brighter than m2558A = 16.5 and 197 stars brighter than m1615A = 16.4 within 3 min diameter of the 30 Doradus central cluster. We have derived UV fluxes emitted from the 30 Doradus central cluster and from its UV bright core, R136. The region within 5 sec of R136 produces approximately 14% of the far-UV flux (lambda = 1892 A) and approximately 16% of the near-UV flux (lambda = 2558 A) emitted from the 3 min diameter central cluster. The derived UV luminosity of R136 at 1892 A is only 7.8 times that of the nearby O6-7 Iaf star, R139, and the m1892 - mv colors of R136 are similar to other O or Wolf-Rayet stars in the same region. These UIT data, combined with other published observations at longer wavelengths, indicate that there is no observational evidence for a supermassive star in R136.
Drivers of Turbulence in the Neutral Interstellar Medium of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Stilp, Adrienne M.
The cause of HI velocity dispersions in the interstellar medium (ISM) of galaxies is often attributed to star formation, but recent evidence has shown these two quantities are not connected in regions of low star formation. This lack of connection is most apparent in dwarf galaxies and the outer disks of spiral galaxies. However, unique data sets have recently been collected that can help address this discrepancy. The ACS Nearby Survey Treasury Project (ANGST) has measured time-resolved star formation histories (SFHs) in ˜ 70 nearby galaxies. The followup Very Large Array-ANGST survey (VLA-ANGST) provides complementary HI observations of a subset of ANGST galaxies. In this thesis, I explore the connection between star formation and HI kinematics in a number of nearby dwarf galaxies. I first present the Very Large Array-ACS Nearby Galaxy Survey Treasury Project (ANGST). VLA-ANGST was designed to provide high spatial and velocity resolution observations of the HI component of the interstellar medium (ISM) in ANGST galaxies. I describe the data calibration and imaging procedures, and then present the publicly-available data products. The observations from this survey and from The HI Nearby Galaxy Survey (THINGS) comprise the majority of data in my thesis. Using VLA-ANGST and THINGS data, I present a method to measure the average HI kinematics in a number of nearby dwarf galaxies by co-adding individual line-of-sight profiles. These "superprofiles" are composed of a central narrow peak (˜ 6-10 km s-1) with higher velocity wings to either side. When scaled to the same half-width half-maximum, the shapes of the superprofiles are very similar. I interpret the central peak as representative of the average turbulent motion; the wings are then due to HI moving faster than expected compared to the average kinematics. I then compare the superprofile parameters to physical properties such as mass surface density and star formation intensity. The average velocity dispersion correlate most strongly with HI surface density, and do not show correlations with star formation intensity unless higher mass galaxies were included. The properties of the wings are more connected with star formation. By applying energy arguments, I determine that star formation can provide enough energy to drive the HI kinematics over ˜ 10 Myr timescales, while a gravitational instability cannot. I then extend this analysis to spatially-resolved scales in these galaxies, and generated superprofiles in regions determined by radius or by star formation intensity. These superprofiles provide a more direct comparison between H I kinematics and local ISM properties compared to the analysis on global scales. The spatially-resolved superprofiles indicate that star formation does not uniquely determine the HI velocity dispersion, but it does appear to provide a lower floor below which velocity dispersions cannot fall. I also find that the coupling efficiency between star formation and HI kinematics decreases with increasing star formation surface density, which may indicate that star formation energy couples more consistently to other phases of the ISM. I finally explore the timescale over which HI responds to star formation using a combination of VLA-ANGST, THINGS, and ANGST data. Using time-resolved SFHs from ANGST, I measure the average star formation rate as a function of time and compared it to present-day HI kinematics. I find that the HI kinematics are most strongly correlated with star formation that occurred ˜ 30 -- 40 Myr ago, which supports the idea that supernova explosions are one driver of HI kinematics even in low star formation systems.
Bimodal star formation - Constraints from the solar neighborhood
NASA Technical Reports Server (NTRS)
Wyse, Rosemary F. G.; Silk, J.
1987-01-01
The chemical evolution resulting from a simple model of bimodal star formulation is investigated, using constraints from the solar neighborhood to set the parameters of the initial mass function and star formation rate. The two modes are an exclusively massive star mode, which forms stars at an exponentially declining rate, and a mode which contains stars of all masses and has a constant star formation rate. Satisfactory agreement with the age-metallicity relation for the thin disk and with the metallicity structure of the thin-disk and spheroid stars is possible only for a small range of parameter values. The preferred model offers a resolution to several of the long-standing problems of galactic chemical evolution, including explanations of the age-metallicity relation, the gas consumption time scale, and the stellar cumulative metallicity distributions.
Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen
2015-03-01
To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agertz, Oscar; Kravtsov, Andrey V., E-mail: o.agertz@surrey.ac.uk
We use cosmological zoom-in simulations of galaxy formation in a Milky-Way-sized halo started from identical initial conditions to investigate the evolution of galaxy sizes, baryon fractions, morphologies, and angular momenta in runs with different parameters of the star formation–feedback cycle. Our fiducial model with a high local star formation efficiency, which results in efficient feedback, produces a realistic late-type galaxy that matches the evolution of basic properties of late-type galaxies: stellar mass, disk size, morphology dominated by a kinematically cold disk, stellar and gas surface density profiles, and specific angular momentum. We argue that feedback’s role in this success ismore » twofold: (1) removal of low angular momentum gas, and (2) maintaining a low disk-to-halo mass fraction, which suppresses disk instabilities that lead to angular momentum redistribution and a central concentration of baryons. However, our model with a low local star formation efficiency, but large energy input per supernova, chosen to produce a galaxy with a similar star formation history as our fiducial model, leads to a highly irregular galaxy with no kinematically cold component, overly extended stellar distribution, and low angular momentum. This indicates that only when feedback is allowed to become vigorous via locally efficient star formation in dense cold gas do resulting galaxy sizes, gas/stellar surface density profiles, and stellar disk angular momenta agree with observed z = 0 galaxies.« less
Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud
2016-04-01
We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.
Cosmic Web of Galaxies in the COMOS Field
NASA Astrophysics Data System (ADS)
Darvish, Behnam; Martin, Christopher D.; Mobasher, Bahram; Scoville, Nicholas; Sobral, David; COSMOS science Team
2017-01-01
We use a mass complete sample of galaxies with accurate photometric redshifts in the COSMOS field to estimate the density field and to extract the components of the cosmic web. The comic web extraction algorithm relies on the signs and the ratio of eigenvalues of the Hessian matrix and is enable to integrate the density field into clusters, filaments and the field. We show that at z < 0.8, the median star-formation rate in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellite galaxies (~1 dex vs. ~0.4 dex for centrals). However, at z > 0.8, the trend flattens out. For star-forming galaxies only, the median star-formation rate declines by ~ 0.3-0.4 dex from the field to clusters for both satellites and centrals, only at z < 0.5. We argue that for satellite galaxies, the main role of the cosmic web environment is to control their star-forming/quiescent fraction, whereas for centrals, it is mainly to control their overall star-formation rate. Given these, we suggest that most satellite galaxies experience a rapid quenching mechanism as they fall from the field into clusters through the channel of filaments, whereas for central galaxies, it is mostly due to a slow quenching process. Our preliminary results highlight the importance of the large-scale cosmic web on the evolution of galaxies.
The emerging planetary nebula CRL 618 and its unsettled central star(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balick, B.; Riera, A.; Raga, A.
We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whosemore » compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.« less
The TGAS HR diagram of S-type stars
NASA Astrophysics Data System (ADS)
Shetye, Shreeya; van Eck, Sophie; Jorissen, Alain; van Winckel, Hans; Siess, Lionel
2018-04-01
S-type stars are late-type giants enhanced with s-process elements originating either from nucleosynthesis during the Asymptotic Giant Branch (AGB) or from a pollution by a binary companion. The former are called intrinsic S stars, and the latter extrinsic S stars. The atmospheric parameters of S stars are more numerous than those of M-type giants (C/O ratio and s-process abundances affect the thermal structure and spectral synthesis), and hence they are more difficult to derive. Nevertheless, high-resolution spectroscopic data of S stars combined with the TGAS (Tycho-Gaia Astrometric solution) parallaxes were used to derive effective temperatures, surface gravities, and luminosities. These parameters allow to locate the intrinsic and extrinsic S stars in the Hertzsprung-Russell diagram.
Spectral Analysis of the O(He)-Type Central Stars of the Planetary Nebulae K 1-27 and LoTr 4
NASA Technical Reports Server (NTRS)
Reindl, N.; Ringat, E.; Rauch, T.; Werner, K.; Kruk, J. W.
2011-01-01
The four known O(He) stars are the only amongst the hottest post-AGB stars whose atmospheres are composed of almost pure helium. Thus, their evolution deviates from the hydrogen-defiCient post-AGB evolutionary sequence of carbon-dominated stars like e.g. PG 1159 stars. The origin of the O(He) stars is still not explained. They might be either post-early AGB stars or the progeny of R Coronae Borealis stars. We present preliminary results of a non-LTE spectral analysis based on FUSE and HST/COS observations.
Sgr A* envelope explosion and the young stars in the centre of the Milky Way
NASA Astrophysics Data System (ADS)
Nayakshin, Sergei; Zubovas, Kastytis
2018-05-01
Sgr A* is the super massive black hole residing in the centre of the Milky Way. There is plenty of observational evidence that a massive gas cloud fell into the central parsec of the Milky Way ˜6 million years ago, triggering formation of a disc of young stars and activating Sgr A* . In addition to the disc, there is an unexplained population of young stars on randomly oriented orbits. Here we hypothesize that these young stars were formed by fragmentation of a massive quasi-spherical gas shell driven out from Sgr A* potential well by an energetic outflow. To account for the properties of the observed stars, the shell must be more massive than 105 Solar masses, be launched from inside ˜0.01 pc, and the feedback outflow has to be highly super-Eddington albeit for a brief period of time, producing kinetic energy of at least 1055 erg. The young stars in the central parsec of the Galaxy may be a unique example of stars formed from atomic rather than molecular hydrogen, and forged by extreme pressure of black hole outflows.
Random forest classification of stars in the Galactic Centre
NASA Astrophysics Data System (ADS)
Plewa, P. M.
2018-05-01
Near-infrared high-angular resolution imaging observations of the Milky Way's nuclear star cluster have revealed all luminous members of the existing stellar population within the central parsec. Generally, these stars are either evolved late-type giants or massive young, early-type stars. We revisit the problem of stellar classification based on intermediate-band photometry in the K band, with the primary aim of identifying faint early-type candidate stars in the extended vicinity of the central massive black hole. A random forest classifier, trained on a subsample of spectroscopically identified stars, performs similarly well as competitive methods (F1 = 0.85), without involving any model of stellar spectral energy distributions. Advantages of using such a machine-trained classifier are a minimum of required calibration effort, a predictive accuracy expected to improve as more training data become available, and the ease of application to future, larger data sets. By applying this classifier to archive data, we are also able to reproduce the results of previous studies of the spatial distribution and the K-band luminosity function of both the early- and late-type stars.
VizieR Online Data Catalog: PTPS stars. III. The evolved stars sample (Niedzielski+, 2016)
NASA Astrophysics Data System (ADS)
Niedzielski, A.; Deka-Szymankiewicz, B.; Adamczyk, M.; Adamow, M.; Nowak, G.; Wolszczan, A.
2015-11-01
We present basic atmospheric parameters (Teff, logg, vt and [Fe/H]), rotation velocities and absolute radial velocities as well as luminosities, masses, ages and radii for 402 stars (including 11 single-lined spectroscopic binaries), mostly subgiants and giants. For 272 of them we present parameters for the first time. For another 53 stars we present estimates of Teff and log g based on photometric calibrations. We also present basic properties of the complete list of 744 stars that form the PTPS evolved stars sample. We examined stellar masses for 1255 stars in five other planet searches and found some of them likely to be significantly overestimated. Applying our uniformly determined stellar masses we confirm the apparent increase of companions masses for evolved stars, and we explain it, as well as lack of close-in planets with limited effective radial velocity precision for those stars due to activity. (5 data files).
HUBBLE SEES DISKS AROUND YOUNG STARS
NASA Technical Reports Server (NTRS)
2002-01-01
[Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA
HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the nursery are not visible because they are still encased in their cocoons of gas and dust. Some of the nascent stars are forming in long columns of gas and dust. Previous Hubble observations revealed that the process of 'triggered' star formation often involves massive pillars of material that point toward the central cluster. Such pillars form when particularly dense clouds of gas and dust shield columns of material behind them from the blistering radiation and strong winds released by massive stars, like the stars in R136. This protected material becomes the pillars where stars can form and grow. The Hubble telescope first spied these pillars of stellar creation when it captured close-up views of the Eagle Nebula. The new image of 30 Doradus shows numerous pillars -- each about several light-years long -- oriented toward the central cluster. These pillars, which resemble tiny fingers, are similar in size to those in the Eagle Nebula. Without Hubble's resolution, they would not be visible. One pillar is visible within the oval-shaped structure to the left of the cluster. Two [one dark and one bright] are next to each other below and to the right of the cluster. One pillar is at upper right, and still another is just above the cluster. Newborn stars within most of these pillars already have been discovered in pictures taken by Hubble's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, which can penetrate the dust to detect embryonic stars. Eventually, intense radiation and stellar winds from the developing stars will blow off the tops of the pillars. The Hubble image shows that one such eruption already has occurred in 30 Doradus. A trio of young stars has just been 'born' by breaking out of its natal pillar. These new stars are just a few hundred thousand years old. In another 2 million years, the new generation of stars will be in full bloom. But the massive stars in R136 will have burned themselves out. And the nebula's central region will be a giant shell, devoid of gas and dust. Still later, all of the most massive stars and gas will have disappeared from the entire region. Only older, less massive stars will remain in a region cleared of gas and dust. The mosaic image of 30 Doradus consists of five overlapping pictures taken between January 1994 and September 2000 by Hubble's Wide Field and Planetary Camera 2. Several color filters were used to enhance important details in the stars and the nebula. Blue corresponds to the hot stars. The greenish color denotes hot gas energized by the central cluster of stars. Pink depicts the glowing edges of the gas and dust clouds facing the cluster, which are being bombarded by winds and radiation. Reddish-brown represents the cooler surfaces of the clouds, which are not receiving direct radiation from the central cluster. Credits: NASA, N. Walborn and J. Ma`iz-Apell`aniz (Space Telescope Science Institute, Baltimore, MD), R. Barb`a (La Plata Observatory, La Plata, Argentina)
Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae
NASA Technical Reports Server (NTRS)
Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.
1988-01-01
Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.
The role of black holes in galaxy formation and evolution.
Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L
2009-07-09
Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.
Astrophysical parameters of open star clusters using 2MASS JHKs data
NASA Astrophysics Data System (ADS)
Durgapal, Alok; Bisht, Devendra; Yadav, Ramakant Singh
2018-04-01
In the present analysis we have estimated the fundamental parameters of two poorly studied open star clusters, namely Teutsch 61 and Czernik 3, using 2MASS JHKs data. We have used the color-magnitude and colour-colour diagrams to determine their fundamental parameters.
NASA Astrophysics Data System (ADS)
Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi
2011-02-01
We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.
Empirical relationship of ultraviolet extinction and the interstellar diffuse bands
NASA Astrophysics Data System (ADS)
Wu, C.-C.; York, D. G.; Snow, T. P.
1981-05-01
New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.
Empirical relationship of ultraviolet extinction and the interstellar diffuse bands
NASA Technical Reports Server (NTRS)
Wu, C.-C.; York, D. G.; Snow, T. P.
1981-01-01
New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.
A software package for evaluating the performance of a star sensor operation
NASA Astrophysics Data System (ADS)
Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant
2017-02-01
We have developed a low-cost off-the-shelf component star sensor ( StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.
NASA Astrophysics Data System (ADS)
Henry, Richard B. C.; Balick, Bruce; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Corradi, Romano
2015-01-01
We present detailed photoionization models of eight Galactic planetary nebulae (IC2165, IC3568, NGC2440, NGC3242, NGC5315, NGC5882, NGC7662, & PB6) based on recently obtained HST STIS spectra. Our interim goal is to infer Teff, luminosity, and current and progenitor masses for each central star, while the ultimate goal is to constrain published stellar evolution models which predict nebular CNO abundances. The models were produced by using the code CLOUDY to match closely the measured line strengths derived from high-quality HST STIS spectra (see poster by Dufour et al., this session) extending in wavelength from 1150-10270 Angstroms. The models assumed a blackbody SED. Variable input parameters included Teff, a radially constant nebular density, a filling factor, and elemental abundances. For the eight PNs we found a birth mass range of 1.5-2.9 Msun, a range in log(L/Lsun) of 3.10-3.88, and a Teff range of 51-150k K. Finally, we compare CNO abundances of the eight successful models with PN abundances of these same elements that are predicted by published stellar evolution models. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO12600.
The Carina Project. I. Bright Variable Stars
NASA Astrophysics Data System (ADS)
Dall'Ora, M.; Ripepi, V.; Caputo, F.; Castellani, V.; Bono, G.; Smith, H. A.; Brocato, E.; Buonanno, R.; Castellani, M.; Corsi, C. E.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Walker, A. R.
2003-07-01
We present new BV time series data of the Carina dwarf spheroidal galaxy (dSph). Current data cover an area of ~0.3 deg2 around the center of the galaxy and allow us to identify 92 variables. Among them 75 are RR Lyrae stars, 15 are bona fide anomalous Cepheids, one might be a Galactic field RR Lyrae star, and one is located along the Carina red giant branch. Expanding upon the seminal photographic investigation by Saha, Monet, & Seitzer we supply, for the first time, accurate estimates of their pulsation parameters (periods, amplitudes, mean magnitudes, and colors) on the basis of CCD photometry. Approximately 50% of both RR Lyrae stars and anomalous Cepheids are new identifications. Among the RR Lyrae sample, six objects are new candidate double-mode (RRd) variables. On the basis of their pulsation properties we estimate that two variables (V158, V182) are about 50% more massive than typical RR Lyrae stars, while the bulk of the anomalous Cepheids are roughly a factor of 2 more massive than fundamental-mode (RRab) RR Lyrae stars. This finding supports the evidence that these objects are intermediate-mass stars during central He-burning phases. We adopted three different approaches to estimate the Carina distance modulus, namely, the first-overtone blue edge method, the period-luminosity-amplitude relation, and the period-luminosity-color relation. We found DM=20.19+/-0.12, a result that agrees quite well with similar estimates based on different distance indicators. The data for Carina, together with data available in the literature, strongly support the conclusion that dSph's can barely be classified into the classical Oosterhoff dichotomy. The mean period of RRab's in Carina resembles that found for Oosterhoff type II clusters, whereas the ratio between first-overtone (RRc) pulsators and the total number of RR Lyrae stars is quite similar to that found in Oosterhoff type I clusters. Based on observations collected at the European Southern Observatory, La Silla, Chile, on Osservatorio Astronomico di Capodimonte guaranteed time.
Little or no star formation in the central 30 pc of Seyfert 2s from STIS observations
NASA Astrophysics Data System (ADS)
Sarzi, Marc
2011-11-01
We present a study of the stellar populations in the central parsecs of a sample of 22 Seyfert 2 galaxies, based on a careful separation of nebular emission and stellar light in high-spatial resolution HST-STIS spectra. 14% of the surveyed nuclei display stellar populations of intermediate age, ~1-2~Gyr old, whereas the remaining targets appear to be evenly split between objects showing only very old stellar populations and nuclei requiring also an additional blue featureless component, which we initially characterise by means of very young, few-Myr-old stars. The small fraction of stellar population of intermediate age seems to argue against the presence of such a young component, however, since the short lifetime of O-stars would imply recurrent star-formation episodes and the build-up over the last 1-2~Gyr of a detectable intermediate-age population. Additionally, the doing of correlations between the luminosity of such a blue component and the strength of the nebular emission from highly-ionised species or broad-line regions, together with the general absence of Wolf-Rayet features, further indicate that the featureless continuum arises generally from the central engine rather than from star-forming regions. We discuss our results in the framework of the unification paradigm and of models for star formation close to supermassive black holes.
VizieR Online Data Catalog: Parameters and IR excesses of Gaia DR1 stars (McDonald+, 2017)
NASA Astrophysics Data System (ADS)
McDonald, I.; Zijlstra, A. A.; Watson, R. A.
2017-08-01
Spectral energy distribution fits are presented for stars from the Tycho-Gaia Astrometric Solution (TGAS) from Gaia Data Release 1. Hipparcos-Gaia stars are presented in a separate table. Effective temperatures, bolometric luminosities, and infrared excesses are presented (alongside other parameters pertinent to the model fits), plus the source photometry used. (3 data files).
Stromgren photometry of A-stars - A test of physical parameter determination
NASA Astrophysics Data System (ADS)
Torra, J.; Figueras, F.; Jordi, C.; Rossello, G.
1990-08-01
By use of known published values for Teff, log g, and Mv, a check on a procedure (Figueras et al, 1990) for determining the physical parameters of A v-type stars from Stromgren photometry has been performed. External errors for the calculated physical parameters have been obtained.
Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters
NASA Astrophysics Data System (ADS)
Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.
2016-04-01
Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.
Optical Time-Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN
NASA Astrophysics Data System (ADS)
Smith, Krista Lynne
Active galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux distributions possibly consistent with passing obscuring material. We also conclude that this regime of optical variability is not produced by simple X-ray reprocessing. Finally, we explain how this work supports future robust accretion studies with upcoming large timing surveys.
SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilikova, Jana; Chu Youhua; Gruendl, Robert A.
2012-05-01
Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of the dust disks and the presence of companions are needed for models to discern between the possible dust production mechanisms.« less
The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem
NASA Astrophysics Data System (ADS)
Kelson, Daniel David
2015-08-01
Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that
Anomalous double-mode RR Lyrae stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Soszyński, I.; Smolec, R.; Dziembowski, W. A.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D.; Skowron, J.; Mróz, P.; Pawlak, M.
2016-12-01
We report the discovery of a new subclass of double-mode RR Lyrae stars in the Large and Small Magellanic Clouds. The sample of 22 pulsating stars has been extracted from the latest edition of the Optical Gravitational Lensing Experiment collection of RR Lyrae variables in the Magellanic System. The stars pulsating simultaneously in the fundamental (F) and first-overtone (1O) modes have distinctly different properties than regular double-mode RR Lyrae variables (RRd stars). The P1O/PF period ratios of our anomalous RRd stars are within a range of 0.725-0.738, while `classical' double-mode RR Lyrae variables have period ratios in the range of 0.742-0.748. In contrast to the typical RRd stars, in the majority of the anomalous pulsators, the F-mode amplitudes are higher than the 1O-mode amplitudes. The light curves associated with the F-mode in the anomalous RRd stars show different morphology than the light curves of, both, regular RRd stars and single-mode RRab stars. Most of the anomalous double-mode stars show long-term modulations of the amplitudes (Blazhko-like effect). Translating the period ratios into the abundance parameter, Z, we find for our stars Z ∈ (0.002, 0.005) - an order of magnitude higher values than typical for RR Lyrae stars. The mass range of the RRd stars inferred from the WI versus PF diagram is (0.55-0.75) M⊙. These parameters cannot be accounted for with single star evolution assuming a Reimers-like mass-loss. Much greater mass-loss caused by interaction with other stars is postulated. We blame the peculiar pulsation properties of our stars to the parametric resonance instability of the 1O-mode to excitation of the F- and 2O-modes as with the inferred parameters of the stars 2ω1O ≈ ωF + ω2O.
The distribution of stars around the Milky Way's central black hole. I. Deep star counts
NASA Astrophysics Data System (ADS)
Gallego-Cano, E.; Schödel, R.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.
2018-01-01
Context. The existence of dynamically relaxed stellar density cusps in dense clusters around massive black holes is a long-standing prediction of stellar dynamics, but it has so far escaped unambiguous observational confirmation. Aims: In this paper we aim to revisit the problem of inferring the innermost structure of the Milky Way's nuclear star cluster via star counts, to clarify whether it displays a core or a cusp around the central black hole. Methods: We used judiciously selected adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through image stacking and improved point spread function fitting we pushed the completeness limit about one magnitude deeper than in previous, comparable work. Crowding and extinction corrections were derived and applied to the surface density estimates. Known young, and therefore dynamically not relaxed stars, are excluded from the analysis. Contrary to previous work, we analyse the stellar density in well-defined magnitude ranges in order to be able to constrain stellar masses and ages. Results: We focus on giant stars, with observed magnitudes K = 12.5-16, and on stars with observed magnitudes K ≈ 18, which may have similar mean ages and masses than the former. The giants display a core-like surface density profile within a projected radius R ≤ 0.3 pc of the central black hole, in agreement with previous studies, but their 3D density distribution is not inconsistent with a shallow cusp if we take into account the extent of the entire cluster, beyond the radius of influence of the central black hole. The surface density of the fainter stars can be described well by a single power-law at R < 2 pc. The cusp-like profile of the faint stars persists even if we take into account the possible contamination of stars in this brightness range by young pre-main sequence stars. The data are inconsistent with a core-profile for the faint stars. Finally, we show that a 3D Nuker law provides a good description of the cluster structure. Conclusions: We conclude that the observed density of the faintest stars detectable with reasonable completeness at the Galactic centre, is consistent with the existence of a stellar cusp around the Milky Way's central black hole, Sagittarius A*. This cusp is well developed inside the influence radius of Sagittarius A* and can be described by a single three-dimensional power-law with an exponent γ = 1.43 ± 0.02 ± 0.1sys. This corroborates existing conclusions from Nbody simulations performed in a companion paper. An important caveat is that the faint stars analysed here may be contaminated significantly by dynamically unrelaxed stars that formed about 100 Myr ago. The apparent lack of giants at projected distances of R ≲ 0.3 pc (R ≲ 8'') of the massive black hole may indicate that some mechanism may have altered their distribution or intrinsic luminosity. We roughly estimate the number of possibly missing giants to about 100. 19 additional tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cacciari, C.; Clementini, G.
Attention is given to the folowing topics: population I and II variable stars; LP variables, the sun, and mass determination; and predegenerate and degenerate variables. Particular papers are presented on alternative evolutionary approaches to the absolute magnitude of the RR Lyrae variables; the evolution of the Cepheid stars; nonradial pulsations in rapidly rotating Delta Scuti stars; dynamical models of dust shells around Mira variables; and pulsations of central stars of planetary nebulae.
Galaxy structure from multiple tracers - III. Radial variations in M87's IMF
NASA Astrophysics Data System (ADS)
Oldham, Lindsay; Auger, Matthew
2018-03-01
We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.
A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters
NASA Astrophysics Data System (ADS)
Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie
2010-08-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.
Self-similar Hot Accretion Flow onto a Neutron Star
NASA Astrophysics Data System (ADS)
Medvedev, Mikhail V.; Narayan, Ramesh
2001-06-01
We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r<~102.5, where r is the radius in Schwarzschild units; and a one-temperature solution that is valid in an outer zone, r>~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.
On stars, galaxies and black holes in massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enander, Jonas; Mörtsell, Edvard, E-mail: enander@fysik.su.se, E-mail: edvard@fysik.su.se
In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes andmore » stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.« less
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Darvish, Behnam; Seibert, Mark
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
NASA Astrophysics Data System (ADS)
Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David
2017-06-01
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.
Star-Jet Interactions and Gamma-Ray Outbursts from 3C454.3
NASA Astrophysics Data System (ADS)
Khangulyan, D. V.; Barkov, M. V.; Bosch-Ramon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.
2013-09-01
We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M BH ~= 109 M ⊙, the total jet power: L j ~= 1048 erg s-1, and the Doppler factor of the gamma-ray emitting clouds: δ ~= 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution vpropE -1 or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.
Star-jet Interactions and Gamma-ray Outbursts from 3C454.3
NASA Technical Reports Server (NTRS)
Khangulyan, D. V.; Barkov, M. V.; Bosch-Romon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.
2013-01-01
We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: Blackhole Mass is approx. equal to 10(exp 9) Solar Mass, the total jet power: L(j) is approx. equal to 10(exp 48) erg s(exp -1), and the Doppler factor of the gamma-ray emitting clouds: Delta is approx. equal to 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model.We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution varies as E(exp -1) or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.
High rotational CO lines in post-AGB stars and PNe
NASA Technical Reports Server (NTRS)
Justtanont, K.; Tielens, Alexander G. G. M.; Skinner, C. J.; Haas, Michael R.
1995-01-01
A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.
Composite Image of the Cat's Eye From Chandra X-Ray Observatory and Hubble Space Telescope
NASA Technical Reports Server (NTRS)
2001-01-01
Left image: The x-ray data from the Chandra X-Ray Observatory (CXO) has revealed a bright central star surrounded by a cloud of multimillion-degree gas in the planetary nebula known as the Cat's Eye. This CXO image, where the intensity of the x-ray emission is correlated to the brightness of the orange coloring, captures the expulsion of material from a star that is expected to collapse into a white dwarf in a few million years. The intensity of x-rays from the central star was unexpected, and it is the first time astronomers have seen such x-ray emission from the central star of a planetary nebula. Right image: An image of Cat's Eye taken by the Hubble Space Telescope (HST). By comparing the CXO data with that from the HST, researchers are able to see where the hotter, x-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by the HST. The CXO team found that the chemical abundance in the region of hot gas (its x-ray intensity is shown in purple) was not like those in the wind from the central star and different from the outer cooler material (the red and green structures.) Although still incredibly energetic and hot enough to radiate x-rays, CXO shows the hot gas to be somewhat cooler than scientists would have expected for such a system. CXO image credit: (NASA/UIUC/Y. Chu et al.) HST image credit: (NASA/HST)
History of Chandra X-Ray Observatory
2001-01-01
Left image: The x-ray data from the Chandra X-Ray Observatory (CXO) has revealed a bright central star surrounded by a cloud of multimillion-degree gas in the planetary nebula known as the Cat's Eye. This CXO image, where the intensity of the x-ray emission is correlated to the brightness of the orange coloring, captures the expulsion of material from a star that is expected to collapse into a white dwarf in a few million years. The intensity of x-rays from the central star was unexpected, and it is the first time astronomers have seen such x-ray emission from the central star of a planetary nebula. Right image: An image of Cat's Eye taken by the Hubble Space Telescope (HST). By comparing the CXO data with that from the HST, researchers are able to see where the hotter, x-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by the HST. The CXO team found that the chemical abundance in the region of hot gas (its x-ray intensity is shown in purple) was not like those in the wind from the central star and different from the outer cooler material (the red and green structures.) Although still incredibly energetic and hot enough to radiate x-rays, CXO shows the hot gas to be somewhat cooler than scientists would have expected for such a system. CXO image credit: (NASA/UIUC/Y. Chu et al.) HST image credit: (NASA/HST)
Understanding the Physical Structure of the Comet Shoemaker-Levy 9 Fragments
NASA Astrophysics Data System (ADS)
Rettig, Terrence
2000-07-01
Images of the fragmented comet Shoemaker-Levy 9 {SL9} as it approached Jupiter in 1994 provided a unique opportunity to {1} probe the comae, {2} understand the structure of the 20 cometary objects, and {3} provide limits on the Jovian impact parameters. The primary cometary questions were: how were the fragments formed and what was their central structure? There still remains a diversity of opinion regarding the structure of the 21 comet-like fragments as well as the specifics of the disruption event itself. We have shown from Monte Carlo modeling of surface brightness profiles that SL9 fragments had unusual dust size distributions and outflow velocities. Further work of a preliminary nature showed some of the central reflecting area excesses derived from surface brightness profile fitting {w/psf} appeared distributed rather than centrally concentrated as would be expected for comet- like objects, some central excesses were negative and also, the excesses could vary with time. With an improved coma subtraction technique we propose to model each coma surface brightness profile, extract central reflecting areas or central brightness excesses for the non-star-contaminated WFPC-2 SL9, to determine the behavior and characteristics of the central excesses as the fragments approached Jupiter. A second phase of the proposal will be to use numerical techniques {in conjunction with D. Richardson} to investigate the various fragment models. This is a difficult modeling process that will allow us to model the structure and physical characteristics of the fragments and thus constrain parameters for the Jovian impact events. The results will be used to constrain the structure of the central fragment cores of SL9 and how the observed dust comae were produced. The results will provide evidence to discriminate between the parent nucleus models {i.e., were the fragments solid objects or swarms of particles?} and provide better constraints on the atmospheric impact models. The physical characteristics of cometary nuclei are not well understood and the SL9 data provides an important opportunity to constrain these parameters.
S stars in the Gaia era: stellar parameters and nucleosynthesis
NASA Astrophysics Data System (ADS)
van Eck, Sophie; Karinkuzhi, Drisya; Shetye, Shreeya; Jorissen, Alain; Goriely, Stéphane; Siess, Lionel; Merle, Thibault; Plez, Bertrand
2018-04-01
S stars are s-process and C-enriched (0.5
NASA Astrophysics Data System (ADS)
Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.
2017-06-01
The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.
MOLECULAR GAS AND STAR-FORMATION PROPERTIES IN THE CENTRAL AND BAR REGIONS OF NGC 6946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Hsi-An; Sorai, Kazuo; Kuno, Nario
In this work, we investigate the molecular gas and star-formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star-formation tracers. A high-resolution image (100 pc) of {sup 13}CO (1–0) is created for the inner 2 kpc disk by the single-dish Nobeyama Radio Observatory 45 m telescope and interferometer Combined Array for Research in Millimeter-wave Astronomy, including the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single-dish HCN (1–0) observations were also made to constrain the amount of dense gas. The physical properties of molecular gas are inferred from (1)more » the large velocity gradient calculations using our observations and archival {sup 12}CO (1–0), {sup 12}CO(2–1) data, (2) the dense gas fraction suggested by the luminosity ratio of HCN to {sup 12}CO (1–0), and (3) the infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. The dense gas fraction of the central region is similar to that of luminous infrared galaxies/ultraluminous infrared galaxies, whereas the offset ridges are close to the global average of normal galaxies. The coolest and least-dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. The star-formation efficiency (SFE) changes by about five times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by the galactic bar. We find a consistency between the star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of subkiloparsec-scale temperature is driven by star formation.« less
NASA Astrophysics Data System (ADS)
Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.
2018-02-01
Context. Stellar physical properties of star clusters are poorly known and the cluster parameters are often very uncertain. Methods: Our goals are to perform a spectrophotometric study of the B star population in open clusters to derive accurate stellar parameters, search for the presence of circumstellar envelopes, and discuss the characteristics of these stars. The BCD spectrophotometric system is a powerful method to obtain stellar fundamental parameters from direct measurements of the Balmer discontinuity. To this end, we wrote the interactive code MIDE3700. The BCD parameters can also be used to infer the main properties of open clusters: distance modulus, color excess, and age. Furthermore, we inspected the Balmer discontinuity to provide evidence for the presence of circumstellar disks and identify Be star candidates. We used an additional set of high-resolution spectra in the Hα region to confirm the Be nature of these stars. Results: We provide Teff, log g, Mv, Mbol, and spectral types for a sample of 68 stars in the field of the open clusters NGC 6087, NGC 6250, NGC 6383, and NGC 6530, as well as the cluster distances, ages, and reddening. Then, based on a sample of 230 B stars in the direction of the 11 open clusters studied along this series of three papers, we report 6 new Be stars, 4 blue straggler candidates, and 15 B-type stars (called Bdd) with a double Balmer discontinuity, which indicates the presence of circumstellar envelopes. We discuss the distribution of the fraction of B, Be, and Bdd star cluster members per spectral subtype. The majority of the Be stars are dwarfs and present a maximum at the spectral type B2-B4 in young and intermediate-age open clusters (<40 Myr). Another maximum of Be stars is observed at the spectral type B6-B8 in open clusters older than 40 Myr, where the population of Bdd stars also becomes relevant. The Bdd stars seem to be in a passive emission phase. Conclusions: Our results support previous statements that the Be phenomenon is present along the whole main sequence band and occurs in very different evolutionary states. We find clear evidence of an increase of stars with circumstellar envelopes with cluster age. The Be phenomenon reaches its maximum in clusters of intermediate age (10-40 Myr) and the number of B stars with circumstellar envelopes (Be plus Bdd stars) is also high for the older clusters (40-100 Myr). Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba, and San Juan, Argentina.Tables 1, 2, 9-16 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A30
GETTING TO THE HEART OF A GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This collage of images in visible and infrared light reveals how the barred spiral galaxy NGC 1365 is feeding material into its central region, igniting massive star birth and probably causing its bulge of stars to grow. The material also is fueling a black hole in the galaxy's core. A galaxy's bulge is a central, football-shaped structure composed of stars, gas, and dust. The black-and-white image in the center, taken by a ground-based telescope, displays the entire galaxy. But the telescope's resolution is not powerful enough to reveal the flurry of activity in the galaxy's hub. The blue box in the galaxy's central region outlines the area observed by the NASA Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The red box pinpoints a narrower view taken by the Hubble telescope's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). A barred spiral is characterized by a lane of stars, gas, and dust slashing across a galaxy's central region. It has a small bulge that is dominated by a disk of material. The spiral arms begin at both ends of the bar. The bar is funneling material into the hub, which triggers star formation and feeds the bulge. The visible-light picture at upper left is a close-up view of the galaxy's hub. The bright yellow orb is the nucleus. The dark material surrounding the orb is gas and dust that is being funneled into the central region by the bar. The blue regions pinpoint young star clusters. In the infrared image at lower right, the Hubble telescope penetrates the dust seen in the WFPC2 picture to reveal more clusters of young stars. The bright blue dots represent young star clusters; the brightest of the red dots are young star clusters enshrouded in dust and visible only in the infrared image. The fainter red dots are older star clusters. The WFPC2 image is a composite of three filters: near-ultraviolet (3327 Angstroms), visible (5552 Angstroms), and near-infrared (8269 Angstroms). The NICMOS image, taken at a wavelength of 16,000 Angstroms, was combined with the visible and near-infrared wavelengths taken by WFPC2. The WFPC2 image was taken in January 1996; the NICMOS data were taken in April 1998. Credits for the ground-based image: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for the WFPC2 image: NASA and John Trauger (Jet Propulsion Laboratory) Credits for the NICMOS image: NASA, ESA, and C. Marcella Carollo (Columbia University)
SPIPS: Spectro-Photo-Interferometry of Pulsating Stars
NASA Astrophysics Data System (ADS)
Mérand, Antoine
2017-10-01
SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.
Masses and luminosities for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search
NASA Astrophysics Data System (ADS)
Adamczyk, M.; Deka-Szymankiewicz, B.; Niedzielski, A.
2016-03-01
Aims: We present revised basic astrophysical stellar parameters: the masses, luminosities, ages, and radii for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search. For 327 stars the atmospheric parameters were already available in the literature. For the other 15 objects we also present spectroscopic atmospheric parameters: the effective temperatures, surface gravities, and iron abundances. Methods: Spectroscopic atmospheric parameters were obtained with a standard spectroscopic analysis procedure, using ARES and MOOG, or TGVIT codes. To refine the stellar masses, ages, and luminosities, we applied a Bayesian method. Results: The revised stellar masses for 342 stars and their uncertainties are generally lower than previous estimates. Atmospheric parameters for 13 objects are determined here for the first time. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A119
VizieR Online Data Catalog: Massive stars in 30 Dor (Schneider+, 2018)
NASA Astrophysics Data System (ADS)
Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Grafener, G.; Langer, N.; Ramirez-Agudelo, O. H.; Sabin-Sanjulian, C.; Simon-Diaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Henault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Apellaniz, J. M.; Markova, N.; Najarro, F.; Podsiadlowski, P.; Puls, J.; Taylor, W. D.; van Loon, J. T.; Vink, J. S.; Norman, C.
2018-02-01
Through the use of the Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (VLT), the VLT-FLAMES Tarantula Survey (VFTS) has obtained optical spectra of ~800 massive stars in 30 Dor, avoiding the core region of the dense star cluster R136 because of difficulties with crowding. Repeated observations at multiple epochs allow determination of the orbital motion of potentially binary objects. For a sample of 452 apparently single stars, robust stellar parameters-such as effective temperatures, luminosities, surface gravities, and projected rotational velocities-are determined by modeling the observed spectra. Composite spectra of visual multiple systems and spectroscopic binaries are not considered here because their parameters cannot be reliably inferred from the VFTS data. To match the derived atmospheric parameters of the apparently single VFTS stars to stellar evolutionary models, we use the Bayesian code Bonnsai. (2 data files).
The Pleiades apex and its kinematical structure
NASA Astrophysics Data System (ADS)
Elsanhoury, W. H.; Postnikova, E. S.; Chupina, N. V.; Vereshchagin, S. V.; Sariya, Devesh P.; Yadav, R. K. S.; Jiang, Ing-Guey
2018-03-01
A study of cluster characteristics and internal kinematical structure of the middle-aged Pleiades open star cluster is presented. The individual star apexes and various cluster kinematical parameters including the velocity ellipsoid parameters are determined using both Hipparcos and Gaia data. Modern astrometric parameters were taken from the Gaia Data Release 1 (DR1) in combination with the Radial Velocity Experiment Fifth Data Release (DR5). The necessary set of parameters including parallaxes, proper motions and radial velocities are used for n=17 stars from Gaia DR1+RAVE DR5 and for n=19 stars from the Hipparcos catalog using SIMBAD data base. Single stars are used to improve accuracy by eliminating orbital movements. RAVE DR5 measurements were taken only for the stars with the radial velocity errors not exceeding 2 km/s. For the Pleiades stars taken from Gaia, we found mean heliocentric distance as 136.8 ± 6.4 pc, and the apex position is calculated as: A_{CP}=92°.52± 1°.72, D_{CP}=-42°.28± 2°.56 by the convergent point method and A0=95°.59± 2°.30 and D0=-50°.90± 2°.04 using AD-diagram method (n=17 in both cases). The results are compared with those obtained historically before the Gaia mission era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.
2014-10-20
Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less
VizieR Online Data Catalog: Close encounters to the Sun in Gaia DR1 (Bailer-Jones, 2018)
NASA Astrophysics Data System (ADS)
Bailer-Jones, C. A. L.
2017-08-01
The table gives the perihelion (closest approach) parameters of stars in the Gaia-DR1 TGAS catalogue which are found by numerical integration through a Galactic potential to approach within 10pc of the Sun. These parameters are the time (relative to the Gaia measurement epoch), heliocentric distance, and heliocentric speed of the star at perihelion. Uncertainties in these have been calculated by a Monte Carlo sampling of the data to give the posterior probability density function (PDF) over the parameters. For each parameter three summary values of this PDF are reported: the median, the 5% lower bound, the 95% upper bound. The latter two give a 90% confidence interval. The table also reports the probability that each star approaches the Sun within 0.5, 1.0, and 2.0pc, as well as the measured parallax, proper motion, and radial velocity (plus uncertainties) of the stars. Table 3 in the article lists the first 20 lines of this data table (stars with median perihelion distances below 2pc). Some stars are duplicated in this table, i.e. there are rows with the same ID, but different data. Stars with problematic data have not been removed, so some encounters are not reliable. Most IDs are Tycho, but in a few cases they are Hipparcos. (1 data file).
NASA Astrophysics Data System (ADS)
Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail
2014-10-01
Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.
An application of deep learning in the analysis of stellar spectra
NASA Astrophysics Data System (ADS)
Fabbro, S.; Venn, K. A.; O'Briain, T.; Bialek, S.; Kielty, C. L.; Jahandar, F.; Monty, S.
2018-04-01
Spectroscopic surveys require fast and efficient analysis methods to maximize their scientific impact. Here, we apply a deep neural network architecture to analyse both SDSS-III APOGEE DR13 and synthetic stellar spectra. When our convolutional neural network model (StarNet) is trained on APOGEE spectra, we show that the stellar parameters (temperature, gravity, and metallicity) are determined with similar precision and accuracy as the APOGEE pipeline. StarNet can also predict stellar parameters when trained on synthetic data, with excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. In addition, the statistical uncertainties in the stellar parameter determinations are comparable to the differences between the APOGEE pipeline results and those determined independently from optical spectra. We compare StarNet to other data-driven methods; for example, StarNet and the Cannon 2 show similar behaviour when trained with the same data sets; however, StarNet performs poorly on small training sets like those used by the original Cannon. The influence of the spectral features on the stellar parameters is examined via partial derivatives of the StarNet model results with respect to the input spectra. While StarNet was developed using the APOGEE observed spectra and corresponding ASSET synthetic data, we suggest that this technique is applicable to other wavelength ranges and other spectral surveys.
Conversion of gas into stars in the Galactic center
NASA Astrophysics Data System (ADS)
Longmore, S. N.
2014-05-01
The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.
Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up
NASA Astrophysics Data System (ADS)
Penev, Kaloyan; Bouma, L. G.; Winn, Joshua N.; Hartman, Joel D.
2018-04-01
Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter {Q}\\star {\\prime } follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period <3.5 days and a “cool” host star (T eff < 6100 K). We find evidence that the tidal dissipation parameter ({Q}\\star {\\prime }) increases sharply with forcing frequency, from 105 at 0.5 day‑1 to 107 at 2 day‑1. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.
FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosén, L.; Kochukhov, O.; Wade, G. A.
Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters ofmore » the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.« less
Black-hole-regulated star formation in massive galaxies.
Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn
2018-01-18
Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.
Black-hole-regulated star formation in massive galaxies
NASA Astrophysics Data System (ADS)
Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn
2018-01-01
Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.
Scale relativity and hierarchical structuring of planetary systems
NASA Astrophysics Data System (ADS)
Galopeau, P. H. M.; Nottale, L.; da Rocha, D.; Tran Minh, N.
2003-04-01
The theory of scale relativity, applied to macroscopic gravitational systems like planetary systems, allows one to predict quantization laws of several key parameters characterizing those systems (distance between planets and central star, obliquity, eccentricity...) which are organized in a hierarchical way. In the framework of the scale relativity approach, one demonstrates that the motion (at relatively large time-scales) of the bodies in planetary systems, described in terms of fractal geodesic trajectories, is governed by a Schrödinger-like equation. Preferential orbits are predicted in terms of probability density peaks with semi-major axis given by: a_n = GMn^2/w^2 (M is the mass of the central star and w is a velocity close to 144 km s-1 in the case of our inner solar system and of the presently observed exoplanets). The velocity of the planet orbiting at this distance satisfies the relation v_n = w/n. Moreover, the mass distribution of the planets in our solar system can be accounted for in this model. These predictions are in good agreement with the observed values of the actual orbital parameters. Furthermore, the exoplanets which have been recently discovered around nearby stars also follow the same law in terms of the same constant in a highly significant statistical way. The theory of scale relativity also predicts structures for the obliquities and inclinations of the planets and satellites: the probability density of their distribution between 0 and pi are expected to display peaks at particular angles θ_k = kpi/n. A statistical agreement is obtained for our solar system with n=7. Another prediction concerns the distribution of the planets eccentricities e. The theory foresees a quantization law e = k/n where k is an integer and n is the quantum number that characterizes semi-major axes. The presently known exoplanet eccentricities are compatible with this theoretical prediction. Finally, although all these planetary systems may look very different from our solar system, they actually present universal structures comparable to ours, so that a high probability to discover exoplanets having orbital characteristics very similar to the Earth's ones can be expected.
75 FR 4372 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... Report filings: Docket Numbers: RP09-1090-000. Applicants: Southern Star Center Gas Pipeline, Inc... January 27, 2010. Docket Numbers: RP09-1090-001. Applicants: Southern Star Central Gas Pipeline, Inc...
Continuous-time quantum walks on star graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salimi, S.
2009-06-15
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
NASA Astrophysics Data System (ADS)
Wen, Yong-Mei; Wen, De-Hua
2017-06-01
By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.
Blue lobes in the Hydra A cluster central galaxy
NASA Technical Reports Server (NTRS)
Mcnamara, Brian R.
1995-01-01
We present new U- and I-band images of the centrally dominant galaxy in the Hydra A cluster, obtained with the 2.5 m Isaac Newton Telescope at La Palma. The galaxy is centered in a poor, X-ray-luminous cluster whose gaseous intracluster medium is apparently cooling at a rate of m-dot(sub CF) approximately 3000 solar masses/yr. The galaxy's structure is that of a normal giant elliptical galaxy, apart from the central approximately 8 x 6 arcsec (approximately 12 x 9 kpc) region which contains an unusually blue, lobelike structure that is spatially coincident with a luminous emission-line nebula in rotation about the nucleus. Based on near spatial coincidence of the central continuum structure and the emission-line nebula, we suggest that the blue continuum is due to a warm stellar population in a central disk. In order to isolate and study the structure of the disk, we have subtracted a smooth galactic background model from the U-band image. The disk's surface brightness profiles along its major and minor axes decline roughly exponentially with radius. The disk's axial ratio is consistent with a nearly edge-on thick disk or a thin disk that is inclined with respect to the line of sight. The bluest regions, located a few arcsec on either side of the nucleus (giving the lobelike appearance), may be due to locally enhanced star formation or a seeing-blurred ring of young stars embedded in the disk observed nearly edge-on. If star-formation is occurring with the local initial mass function, the central color, surface brightness, and dynamical mass would be consistent with models for star formation at a rate of less than and approximately 1 solar masses/yr which has persisted for the past approximately 10(exp 9) yr, a short burst (10(exp 7) yr) of star formation at a rate of approximately 30 solar masses/yr which occurred less than and approximately 10(exp 8) yr ago, or an instantaneous burst of star formation which occurred approximately 5 x 10(exp 7) yr ago. While the young population contributes approximately 30%-40% of the central U-band luminosity, its mass would be less than and approximately 1% to less than and approximately 10% (10(exp 8) solar masses - 2 x 10(exp 9) solar masses of the galaxy's central dynamical mass. We consider a number of possible origins for the disk material.
On-orbit calibration for star sensors without priori information.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, Chengfen; Yang, Yanqiang
2017-07-24
The star sensor is a prerequisite navigation device for a spacecraft. The on-orbit calibration is an essential guarantee for its operation performance. However, traditional calibration methods rely on ground information and are invalid without priori information. The uncertain on-orbit parameters will eventually influence the performance of guidance navigation and control system. In this paper, a novel calibration method without priori information for on-orbit star sensors is proposed. Firstly, the simplified back propagation neural network is designed for focal length and main point estimation along with system property evaluation, called coarse calibration. Then the unscented Kalman filter is adopted for the precise calibration of all parameters, including focal length, main point and distortion. The proposed method benefits from self-initialization and no attitude or preinstalled sensor parameter is required. Precise star sensor parameter estimation can be achieved without priori information, which is a significant improvement for on-orbit devices. Simulations and experiments results demonstrate that the calibration is easy for operation with high accuracy and robustness. The proposed method can satisfy the stringent requirement for most star sensors.
Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko
2018-04-01
Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
A Semiautomatic Pipeline for Be Star Light Curves
NASA Astrophysics Data System (ADS)
Rímulo, L. R.; Carciofi, A. C.; Rivinius, T.; Okazaki, A.
2016-11-01
Observational and theoretical studies from the last decade have shown that the Viscous Decretion Disk (VDD) scenario, in which turbulent viscosity is the physical mechanism responsible for the transport of material and angular momentum ejected from the star to the outer regions of the disk, is the only viable model for explaining the circumstellar disks of Be stars. In the α-disk approach applied to the VDD, the dimensionless parameter α is a measure of the turbulent viscosity. Recently, combining the time-dependent evolution of a VDD α-disk with non-LTE radiative transfer calculations, the first measurement of the α parameter was made, for the disk dissipation of the Be star ω CMa. It was found that α≍ 1 for that Be disk. The main motivation of this present work is the statistical determination of the α parameter. For this purpose, we present a pipeline that will allow the semiautomatic determination of the α parameter of several dozens of light curves of Be stars available from photometric surveys, In this contribution, we describe the pipeline, outlining the main staps required for the semiautomatic analysis of light curves
Characteristic Structure of Star-forming Clouds
NASA Astrophysics Data System (ADS)
Myers, Philip C.
2015-06-01
This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.
Scalar Resonant Relaxation of Stars around a Massive Black Hole
NASA Astrophysics Data System (ADS)
Bar-Or, Ben; Fouvry, Jean-Baptiste
2018-06-01
In nuclear star clusters, the potential is governed by the central massive black hole (MBH), so that stars move on nearly Keplerian orbits and the total potential is almost stationary in time. Yet, the deviations of the potential from the Keplerian one, due to the enclosed stellar mass and general relativity, will cause the stellar orbits to precess. Moreover, as a result of the finite number of stars, small deviations of the potential from spherical symmetry induce residual torques that can change the stars’ angular momentum faster than the standard two-body relaxation. The combination of these two effects drives a stochastic evolution of orbital angular momentum, a process named “resonant relaxation” (RR). Owing to recent developments in the description of the relaxation of self-gravitating systems, we can now fully describe scalar resonant relaxation (relaxation of the magnitude of the angular momentum) as a diffusion process. In this framework, the potential fluctuations due to the complex orbital motion of the stars are described by a random correlated noise with statistical properties that are fully characterized by the stars’ mean field motion. On long timescales, the cluster can be regarded as a diffusive system with diffusion coefficients that depend explicitly on the mean field stellar distribution through the properties of the noise. We show here, for the first time, how the diffusion coefficients of scalar RR, for a spherically symmetric system, can be fully calculated from first principles, without any free parameters. We also provide an open source code that evaluates these diffusion coefficients numerically.
The Red Spiral Galaxy UGC11680: Clues for the Inside-Out Quenching.
NASA Astrophysics Data System (ADS)
Bárcenas, J.; Sanchez, S. F.
2016-06-01
Broadly, galaxies can be divided in two groups, thanks to the Color-Magnitude Diagram: the lively star formation ones, ``The blue Cloud'' and galaxies which halted their star formation, ``The Red Sequence''. It is a currently accepted that the galaxies start their lifespan as a blue objects, turning red when they stop to assembly more mass and thus more stars. Nevertheless, This change need to be quick (˜ 1 Gyr), due to the dearth of galaxies between this two populations (the so called ``green valley'').Previous works have found two distinct stellar mass assembly modes, they are termed as ``the inside-out'' and ``the outside-in'' growth scenarios in the literature. In the ``inside-out'' scenario, mass assembly is finished in the galactic central region. In some cases, the inflow gas can fuel the central SuperMassive BlackHole. The subsequent AGN feedback will then shut-off the central star formation. One possible case of this scenario is the galaxy UGC11680, an unusual face-on red spiral galaxy with an AGN type 2, at the red sequence belonging to the CALIFA survey. We used the so called fossil method to study its star formation history and try to understand what happened to its stellar populations.
Performance of Transit Model Fitting in Processing Four Years of Kepler Science Data
NASA Astrophysics Data System (ADS)
Li, Jie; Burke, Christopher J.; Jenkins, Jon Michael; Quintana, Elisa V.; Rowe, Jason; Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph D.
2014-06-01
We present transit model fitting performance of the Kepler Science Operations Center (SOC) Pipeline in processing four years of science data, which were collected by the Kepler spacecraft from May 13, 2009 to May 12, 2013. Threshold Crossing Events (TCEs), which represent transiting planet detections, are generated by the Transiting Planet Search (TPS) component of the pipeline and subsequently processed in the Data Validation (DV) component. The transit model is used in DV to fit TCEs and derive parameters that are used in various diagnostic tests to validate planetary candidates. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. In the latest Kepler SOC pipeline codebase, the light curve of the target for which a TCE is generated is initially fitted by a trapezoidal model with four parameters: transit epoch time, depth, duration and ingress time. The trapezoidal model fit, implemented with repeated Levenberg-Marquardt minimization, provides a quick and high fidelity assessment of the transit signal. The fit parameters of the trapezoidal model with the minimum chi-square metric are converted to set initial values of the fit parameters of the standard transit model. Additional parameters, such as the equilibrium temperature and effective stellar flux of the planet candidate, are derived from the fit parameters of the standard transit model to characterize pipeline candidates for the search of Earth-size planets in the Habitable Zone. The uncertainties of all derived parameters are updated in the latest codebase to take into account for the propagated errors of the fit parameters as well as the uncertainties in stellar parameters. The results of the transit model fitting of the TCEs identified by the Kepler SOC Pipeline, including fitted and derived parameters, fit goodness metrics and diagnostic figures, are included in the DV report and one-page report summary, which are accessible by the science community at NASA Exoplanet Archive. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
Eclipsing binary stars with a δ Scuti component
NASA Astrophysics Data System (ADS)
Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.
2017-09-01
Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.
NASA Astrophysics Data System (ADS)
Crowther, Paul A.; Caballero-Nieves, S. M.; Bostroem, K. A.; Maíz Apellániz, J.; Schneider, F. R. N.; Walborn, N. R.; Angus, C. R.; Brott, I.; Bonanos, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Langer, N.; Lennon, D. J.; Puls, J.; Sana, H.; Vink, J. S.
2016-05-01
We introduce a Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS spectroscopy of R136 using 17 contiguous 52 arcsec × 0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90 per cent of the 57 sources brighter than mF555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4 If/WN8). We measure wind velocities for 52 early-type stars from C IVλλ1548-51, including 16 O2-3 stars. For the first time, we spectroscopically classify all Weigelt and Baier members of R136a, which comprise three WN5 stars (a1-a3), two O supergiants (a5-a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung-Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5^{+0.3}_{-0.7} Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played by the most luminous stars in producing the prominent He II λ1640 emission line. This emission is totally dominated by very massive stars with initial masses above ˜100 M⊙. The presence of strong He II λ1640 emission in the integrated light of very young star clusters (e.g. A1 in NGC 3125) favours an initial mass function extending well beyond a conventional upper limit of 100 M⊙. We include montages of ultraviolet spectroscopy for Large Magellanic Cloud O stars in the appendix. Future studies in this series will focus on optical STIS medium resolution observations.
Star tracking method based on multiexposure imaging for intensified star trackers.
Yu, Wenbo; Jiang, Jie; Zhang, Guangjun
2017-07-20
The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.
The global structure of hot star winds: Constraints from spectropolarimetry
NASA Astrophysics Data System (ADS)
Eversberg, Thomas
2000-11-01
Chapter 1. We present time-series of ultra-high S/N, high resolution spectra of the He II λ 4686 Å emission line in the O4I(n)f supergiant ζ Puppis, the brightest early-type O-star in the sky. These reveal stochastic, variable substructures in the line, which tend to move away from the line-center with time. Similar scaled-up features are well established in the strong winds of Wolf-Rayet stars (the presumed descendants of O stars), where they are explained by outward moving inhomogeneities (e.g., blobs, clumps, shocks) in the winds. If all hot-star winds are clumped like that of ζ Pup, as is plausible, then mass-low rates based on recombination-line intensities will have to be revised downwards. Using a standard `β' velocity law we deduce a value of β = 1.0-1.2 to account for the kinematics of these structures in the wind of ζ Pup. In addition to the small-scale stochastic variations we also find a slow systematic variation of the mean central absorption reversal. Chapter 2. We introduce a new polarimeter unit which, mounted at the Cassegrain focus of any telescope and fiber-connected to a fixed CCD spectrograph, is able to measure all Stokes parameters I, Q, U and V across spectral lines of bright stellar targets and other point sources in a quasi-simultaneous manner. Applying standard reduction techniques for linearly and circularly polarized light we are able to obtain photon-noise limited line polarization. We briefly outline the technical design of the polarimeter unit and the linear algebraic Mueller calculus for obtaining polarization parameters of any point source. In addition, practical limitations of the optical elements are outlined. We present first results obtained with our spectropolarimeter for four bright, hot-star targets: We confirm previous results for Hα in the bright Be star γ Cas and find linear depolarization features across the emission line complex C III/C IV (λ 5696/λ 5808 Å) of the WR+O binary γ2 Vel. We also find circular line polarization in the strongly magnetic Ap star 53 Cam across its Hα absorption line. No obvious line polarization features are seen across Hα in the variable O star θ1 Ori C above the σ ~ 0.2% instrumental level. Chapter 3. We present low resolution (~6 Å), high signal-to noise spectropolarimetric observations obtained with the new William-Wehlau spectropolarimeter for the apparently brightest Wolf-Rayet star in the sky, the 78.5d WR+O binary γ2 Velorum. Quasi- simultaneous monitoring of all four Stokes parameters I(λ), q(λ), u(λ) and v(λ) was carried out over an interval of 31 nights centered on periastron. All emission lines in our observed wavelength interval (5200-6000 Å) show highly stochastic variations over the whole run. The phase-dependent behavior of the excess emission in the C III λ 5696 line can be related to the wind-wind collision phenomenon. Varying features of Stokes q and u are seen across the strong lines, probably as a result of variable electron scattering of mainly continuum light. The spherical symmetry of the WR wind is thus broken by the presence of the O companion and clumping in the WR wind. Similar features in the extended red wing of the C III λ 5696 emission line remain unexplained. No obvious circular line polarization features are seen across any emission line above the 3σ ~ 0.03% instrumental level.
The Spots and Activity of Stars in the Beehive Cluster Observed by the Kepler Space Telescope (K2)
NASA Astrophysics Data System (ADS)
Savanov, I. S.; Kalinicheva, E. S.; Dmitrienko, E. S.
2018-05-01
The spottedness parameters S (the fraction of the visible surface of the star occupied by spots) characterizing the activity of 674 stars in the Beehive Cluster (age 650 Myr) are estimated, together with variations of this parameter as a function of the rotation period, Rossby number Ro and other characteristics of the stars. The activity of the stars in this cluster is lower than the activity of stars in the younger Pleiades (125 Myr). The average S value for the Beehive Cluster stars is 0.014, while Pleiades stars have the much higher average value 0.052. The activity parameters of 61 solar-type stars in the Beehive Cluster, similar Hyades stars (of about the same age), and stars in the younger Pleiades are compared. The average S value of such objects in the Beehive Cluster is 0.014± 0.008, nearly coincident with the estimate obtained for solar-type Hyades stars. The rotation periods of these objects are 9.1 ± 3.4 day, on average, in agreement with the average rotation period of the Hyades stars (8.6 d ). Stars with periods exceeding 3-4 d are more numerous in the Beehive Cluster than in the Pleiades, and their periods have a larger range, 3-30 d . The characteristic dependence with a kink at Ro (saturation) = 0.13 is not observed in the S-Rossby number diagram for the Beehive and Hyades stars, only a clump of objects with Rossby numbers Ro > 0.7. The spottedness data for the Beehive Cluster and Hyades stars are in good agreement with the S values for dwarfs with ages of 600-700 Myr. This provides evidence for the reliability of the results of gyrochronological calibrations. The data for the Beehive and Pleiades stars are used to analyze variations in the spot-forming activity for a large number of stars of the same age that are members of a single cluster. A joint consideration of the data for two clusters can be used to draw conclusions about the time evolution of the activity of stars of different masses (over a time interval of the order of 500 Myr).
The origin of the eccentricity of the hot Jupiter in CI Tau
NASA Astrophysics Data System (ADS)
Rosotti, G. P.; Booth, R. A.; Clarke, C. J.; Teyssandier, J.; Facchini, S.; Mustill, A. J.
2017-01-01
Following the recent discovery of the first radial velocity planet in a star still possessing a protoplanetary disc (CI Tau), we examine the origin of the planet's eccentricity (e ˜0.3). We show through long time-scale (105 orbits) simulations that the planetary eccentricity can be pumped by the disc, even when its local surface density is well below the threshold previously derived from short time-scale integrations. We show that the disc may be able to excite the planet's orbital eccentricity in <1 Myr for the system parameters of CI Tau. We also perform two-planet scattering experiments and show that alternatively the observed planet may plausibly have acquired its eccentricity through dynamical scattering of a migrating lower mass planet, which has either been ejected from the system or swallowed by the central star. In the latter case the present location and eccentricity of the observed planet can be recovered if it was previously stalled within the disc's magnetospheric cavity.
Accretion-induced variability links young stellar objects, white dwarfs, and black holes.
Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C
2015-10-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.
Accretion-induced variability links young stellar objects, white dwarfs, and black holes
Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.
2015-01-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307
VizieR Online Data Catalog: Activity cycles in 3203 Kepler stars (Reinhold+, 2017)
NASA Astrophysics Data System (ADS)
Reinhold, T.; Cameron, R. H.; Gizon, L.
2017-05-01
Rvar time series, sine fit parameters, mean rotation periods, and false alarm probabilities of all 3203 Kepler stars are presented. For simplicity, the KIC number and the fit parameters of a certain star are repeated in each line. The fit function to the Rvar(t) time series equals y_fit=Acyc*sin(2*pi/(Pcyc*365)*(t-t0))+Offset. (2 data files).
Data reduction and calibration for LAMOST survey
NASA Astrophysics Data System (ADS)
Luo, Ali; Zhang, Jiannan; Chen, Jianjun; Song, Yihan; Wu, Yue; Bai, Zhongrui; Wang, Fengfei; Du, Bing; Zhang, Haotong
2014-01-01
There are three data pipelines for LAMOST survey. The raw data is reduced to one dimension spectra by the data reduction pipeline(2D pipeline), the extracted spectra are classified and measured by the spectral analysis pipeline(1D pipeline), while stellar parameters are measured by LASP pipeline. (a) The data reduction pipeline. The main tasks of the data reduction pipeline include bias calibration, flat field, spectra extraction, sky subtraction, wavelength calibration, exposure merging and wavelength band connection. (b) The spectra analysis pipeline. This pipeline is designed to classify and identify objects from the extracted spectra and to measure their redshift (or radial velocity). The PCAZ (Glazebrook et al. 1998) method is applied to do the classification and redshift measurement. (c) Stellar parameters LASP. Stellar parameters pipeline (LASP) is to estimate stellar atmospheric parameters, e.g. effective temperature Teff, surface gravity log g, and metallicity [Fe/H], for F, G and K type stars. To effectively determine those fundamental stellar measurements, three steps with different methods are employed. The first step utilizes the line indices to approximately define the effective temperature range of the analyzed star. Secondly, a set of the initial approximate values of the three parameters are given based on template fitting method. Finally, we exploit ULySS (Koleva et al. 2009) to give the final values of parameters through minimizing the χ 2 value between the observed spectrum and a multidimensional grid of model spectra which is generated by an interpolating of ELODIE library. There are two other classification for A type star and M type star. For A type star, standard MK system is employed (Gray et al. 2009) to give each object temperature class and luminosity type. For M type star, they are classified into subclasses by an improved Hammer method, and metallicity of each objects is also given. During the pilot survey, algorithms were improved and the pipelines were tested. The products of LAMOST survey will include extracted and calibrated spectra in FITS format, a catalog of FGK stars with stellar parameters, a catalog of M dwarf with subclass and metallicity, and a catalog of A type star with MK classification. A part of the pilot survey data, including about 319 000 high quality spectra with SNR > 10, a catalog of stellar parameters of FGK stars and another catalog of a subclass of M type stars have been released to the public in August 2012 (Luo et al. 2012). The general survey started from October 2012, and completed the first year survey. The formal data release one (DR1) is being prepared, which will include both pilot survey and first year general survey, and planed to be released under the LAMOST data policy.
The SAMI Galaxy Survey: spatially resolving the main sequence of star formation
NASA Astrophysics Data System (ADS)
Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus
2018-04-01
We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.
Chandra Reveals The X-Ray Glint In The Cat's Eye
NASA Astrophysics Data System (ADS)
2001-01-01
SAN DIEGO -- Scientists have discovered a glowing bubble of hot gas and an unexpected X-ray bright central star within the planetary nebula known as the Cat's Eye using NASA's Chandra X-ray Observatory. The new results, presented today at the American Astronomical Society meeting, provide insight into the ways that stars like our Sun end their lives. Scientists believe they are witnessing the expulsion of material from a star that is in the last stages of its existence as a normal star. Material shed by the star is flying away at a speed of about 4 million miles per hour, and the star itself is expected to collapse to become a white dwarf star in a few million years. The X-ray data from the Cat's Eye Nebula, also known as NGC 6543, clearly show a bright central star surrounded by a cloud of multimillion-degree gas. By comparing the Chandra data with those from the Hubble Space Telescope, researchers are able to see where the hotter, X-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by Hubble. "Despite the complex optical appearance of the nebula, the X-ray emission illustrates unambiguously that the hot gas in the central bubble is driving the expansion of the optical nebula," said You-Hua Chu of the University of Illinois and lead author of the paper submitted to the Astrophysical Journal. "The Chandra data will help us to better understand how stars similar to our Sun produce planetary nebulas and evolve into white dwarfs as they grow old." With Chandra, astronomers measured the temperature of the central bubble of X-ray emitting material, and this presents a new puzzle. Though still incredibly energetic and hot enough to emit X-rays, this hot gas is cooler than scientists would have expected from the stellar wind that has come to stagnation from the initial high speed of 4 million miles per hour. At first, the researchers thought that the cooler, outer shell might have mixed with the energetic material closer to the central star to create this "lukewarm" area. However, this theory apparently does not apply for NGC 6543. Chu and her colleagues found that the chemical abundances within the hot gas were like those in the wind from the star, and different from the cooler outer material. These results indicate that mixing is not occurring, and that the cooling between the inner and outer shells of material is due to some other process. The intensity of the X-rays from the central star was also unexpected. The star itself has a surface temperature of about 60,000 degrees, whereas the X-ray measurement indicates a temperature of a few million degrees. "We could be seeing shock waves in the fast stellar wind itself," said Martin Guerrero of the University of Illinois, lead author on a companion paper that describes the central star. "This is the first time we see such X-ray emission from the central star of a planetary nebula." A planetary nebula (so called because it looks like a planet when viewed with a small telescope) is formed when a dying red giant star puffs off its outer layer, leaving behind a hot core that will eventually collapse to form a dense star called a white dwarf. A fast wind emanating from the hot core rams into the ejected atmosphere, pushes it outward, and creates the graceful filamentary structures seen with optical telescopes. With Chandra, it is now possible to see the high-pressure hot bubble inside these filaments and study how the nebula is formed in more detail. The Cat's Eye Nebula, which is about 3,000 light years from Earth, was formed about a thousand years ago. Other members of the research team include Robert Gruendl, and James Kaler (University of Illinois), and Rosa Williams (National Research Council). NGC 6543 was observed with the Advanced CCD Imaging Spectrometer (ACIS) on May 10-11, 1999, for a total exposure time of 46,000 seconds. The ACIS X-ray camera was developed for NASA by Pennsylvania State University and MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. The color composite of optical and X-ray images was made by Zoltan G. Levay (Space Telescope Science Institute). The optical images were taken by J.P. Harrington and K.J. Borkowski (University of Maryland) with the Hubble Space Telescope. During the AAS meeting, the scientists involved in this release can be reached at the AAS Press Room at the Town & Country Resort in San Diego, CA. The phone numbers for the Press Room are (619) 908-5057, (619) 908-5040, and (619) 908-5041 from January 8-11. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Propierties of dust in circumstellar gas around Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Jiménez-Hernández, P.; Arthur, S. J.; Toalá, J. A.
2017-11-01
Using archive photometric observations from Herschel (70μm, 100μm, 160μm and 250μm), Spitzer (24μm) and WISE (22μm and 12μm) we obtained infrared SED's of nebulae around the Wolf-Rayet stars WR 124, WR 16 and WR 7. We used the photoionization code Cloudy to construct models of the nebulae, taking into account the spectrum of the central star and varying the density and distance of the photoionized shell as well as the size distribution and chemical composition of the dust grains mixed with the gas, and we compared the resulting SEDs with the observations in order to study the properties of the dust in these objects. We discuss whether the dust properties depend on the spectral type of the central star and the age of the nebulae.
Well behaved anisotropic compact star models in general relativity
NASA Astrophysics Data System (ADS)
Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.
2016-11-01
Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).
VizieR Online Data Catalog: OGLE II SMC eclipsing binaries (Wyrzykowski+, 2004)
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszinski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2009-03-01
We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog with individual photometry is accessible from the OGLE INTERNET archive, at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/smc/ecl . Regular observations of the SMC fields started on June 26, 1997 and covered about 2.4 square degrees of central parts of the SMC. Reductions of the photometric data collected up to the end of May 2000 were performed with the Difference Image Analysis (DIA) package. (1 data file).
NuSTAR view of the central region of M31
NASA Astrophysics Data System (ADS)
Stiele, H.; Kong, A. K. H.
2018-04-01
Our neighbouring large spiral galaxy, the Andromeda galaxy (M31 or NGC 224), is an ideal target to study the X-ray source population of a nearby galaxy. NuSTAR observed the central region of M31 in 2015 and allows studying the population of X-ray point sources at energies higher than 10 keV. Based on the source catalogue of the large XMM-Newton survey of M31, we identified counterparts to the XMM-Newton sources in the NuSTAR data. The NuSTAR data only contain sources of a brightness comparable (or even brighter) than the selected sources that have been detected in XMM-Newton data. We investigate hardness ratios, spectra, and long-term light curves of individual sources obtained from NuSTAR data. Based on our spectral studies, we suggest four sources as possible X-ray binary candidates. The long-term light curves of seven sources that have been observed more than once show low (but significant) variability.
Star Formation in the Central Regions of Galaxies
NASA Astrophysics Data System (ADS)
Tsai, Mengchun
2015-08-01
The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous Seyfert galaxy with inner structure as an example. In this thesis, we present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1-0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 micron dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.
NASA Astrophysics Data System (ADS)
Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei
2017-07-01
Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should be able to distinguish between binary black holes and these binary boson stars.
NASA Astrophysics Data System (ADS)
Andreasen, D. T.; Sousa, S. G.; Tsantaki, M.; Teixeira, G. D. C.; Mortier, A.; Santos, N. C.; Suárez-Andrés, L.; Delgado-Mena, E.; Ferreira, A. C. S.
2017-04-01
Context. Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. Aims: In this paper we present new precise atmospheric parameters for a sample of 50 stars with planets. The results are presented in the catalogue: SWEET-Cat. Methods: Stellar atmospheric parameters and masses for the 50 stars were derived assuming local thermodynamic equilibrium and using high-resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths with ARES2 for a list of iron lines. The line abundances were derived using MOOG. We then used the curve of growth analysis to determine the parameters. We implemented a new minimization procedure which significantly improves the computational time. Results: The stellar parameters for the 50 stars are presented and compared with previously determined literature values. For SWEET-Cat, we compile values for the effective temperature, surface gravity, metallicity, and stellar mass for almost all the planet host stars listed in the Extrasolar Planets Encyclopaedia. This data will be updated on a continuous basis. The data can be used for statistical studies of the star-planet correlation, and for the derivation of consistent properties for known planets. Based on observations collected at the La Silla Observatory, ESO (Chile), with FEROS/2.2 m (run 2014B/020), with UVES/VLT at the Cerro Paranal Observatory (runs ID 092.C-0695, 093.C-0219, 094.C-0367, 095.C-0324, and 096.C-0092), and with FIES/NOT at Roque de los Muchachos (Spain; runs ID 14AF14 and 53-202).The compiled SWEET-Cat is available online, http://https://www.astro.up.pt/resources/sweet-cat/
Testing the Planet-Metallicity Correlation in M-dwarfs with Gemini GNIRS Spectra
NASA Astrophysics Data System (ADS)
Hobson, M. J.; Jofré, E.; García, L.; Petrucci, R.; Gómez, M.
2018-04-01
While the planet-metallicity correlation for FGK main-sequence stars hosting giant planets is well established, it is less clear for M-dwarf stars. We determine stellar parameters and metallicities for 16 M-dwarf stars, 11 of which host planets, with near-infrared spectra from the Gemini Near-Infrared Spectrograph (GNIRS). We find that M-dwarfs with planets are preferentially metal-rich compared to those without planets. This result is supported by the analysis of a larger catalogue of 18 M stars with planets and 213 M stars without known planets T15, and demonstrates the utility of GNIRS spectra to obtain reliable stellar parameters of M stars. We also find that M dwarfs with giant planets are preferentially more metallic than those with low-mass planets, in agreement with previous results for solar-type stars. These results favor the core accretion model of planetary formation.
GRB 060313: A New Paradigm for Short-Hard Bursts?
NASA Astrophysics Data System (ADS)
Roming, Peter W. A.; Vanden Berk, Daniel; Pal'shin, Valentin; Pagani, Claudio; Norris, Jay; Kumar, Pawan; Krimm, Hans; Holland, Stephen T.; Gronwall, Caryl; Blustin, Alex J.; Zhang, Bing; Schady, Patricia; Sakamoto, Takanori; Osborne, Julian P.; Nousek, John A.; Marshall, Frank E.; Mészáros, Peter; Golenetskii, Sergey V.; Gehrels, Neil; Frederiks, Dmitry D.; Campana, Sergio; Burrows, David N.; Boyd, Patricia T.; Barthelmy, Scott; Aptekar, R. L.
2006-11-01
We report the simultaneous observations of the prompt emission in the gamma-ray and hard X-ray bands by the Swift BAT and the Konus-Wind instruments of the short-hard burst, GRB 060313. The observations reveal multiple peaks in both the gamma-ray and hard X-ray bands suggesting a highly variable outflow from the central explosion. We also describe the early-time observations of the X-ray and UV/optical afterglows by the Swift XRT and UVOT instruments. The combination of the X-ray and UV/optical observations provides the most comprehensive light curves to date of a short-hard burst at such an early epoch. The afterglows exhibit complex structure with different decay indices and flaring. This behavior can be explained by the combination of a structured jet, radiative loss of energy, and decreasing microphysics parameters occurring in a circumburst medium with densities varying by a factor of approximately two on a length scale of 1017 cm. These density variations are normally associated with the environment of a massive star and inhomogeneities in its windy medium. However, the mean density of the observed medium (n~10-4 cm3) is much less than that expected for a massive star. Although the collapse of a massive star as the origin of GRB 060313 is unlikely, the merger of a compact binary also poses problems for explaining the behavior of this burst. Two possible suggestions for explaining this scenario are that some short bursts may arise from a mechanism that does not invoke the conventional compact binary model, or that soft late-time central engine activity is producing UV/optical but no X-ray flaring.
NASA Astrophysics Data System (ADS)
Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.
2015-05-01
Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (<14 Myr) with overline{E(B-V) = 0.58 ± 0.05} mag and overline{(mv - M_v)0 = 12.18 ± 0.30} mag. The cluster parameters of NGC 3114 are overline{E(B-V) = 0.10 ± 0.01} mag and overline{(mv - M_v)0 = 9.20 ± 0.15} mag. This cluster presents an important population of Be star, but it is difficult to define the cluster membership of stars because of the high contamination by field stars or the possible overlapping with a nearby cluster. Finally, we derive the following cluster parameters of NGC 6025: overline{E(B-V) = 0.34 ± 0.02} mag, overline{(mv - M_v)0 = 9.25 ± 0.17} mag, and an age between 40 Myr and 69 Myr. In all the cases, new Be candidate stars are reported based on the appearance of a second Balmer discontinuity. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina.
NASA Astrophysics Data System (ADS)
Casey, Andrew R.; Hawkins, Keith; Hogg, David W.; Ness, Melissa; Rix, Hans-Walter; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C.; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary
2017-05-01
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature T eff, surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.
CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing, E-mail: zhang.grb@gmail.com
Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that themore » central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.« less
Star Formation and Young Population of the H II Complex Sh2-294
NASA Astrophysics Data System (ADS)
Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.
2012-08-01
The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.
STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, M. R.; Pandey, A. K.; Chauhan, N.
The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 {mu}m observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H{sub 2} (2.12 {mu}m) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Classmore » I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H{sub 2} emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M{sub Sun }) YSOs; however, we also detected a massive YSO ({approx}9 M{sub Sun }) of Class I nature, embedded in a cloud of visual extinction of {approx}24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age {approx} 4.5 Multiplication-Sign 10{sup 6} yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a {approx}4 Multiplication-Sign 10{sup 6} yr B0 main-sequence star.« less
NASA Astrophysics Data System (ADS)
Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea
2017-11-01
Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed
NGC 346: Looking in the Cradle of a Massive Star Cluster
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.; Hony, Sacha
2017-03-01
How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.
Chemical composition of δ Scuti stars: 1. AO CVn, CP Boo, KW Aur
NASA Astrophysics Data System (ADS)
Galeev, A. I.; Ivanova, D. V.; Shimansky, V. V.; Bikmaev, I. F.
2012-11-01
We used high-resolution echelle spectra acquired with the 1.5-m Russian-Turkish Telescope to determine the fundamental atmospheric parameters and abundances of 30 chemical elements for three δ Scuti stars: AOCVn, CP Boo, and KWAur. The chemical compositions we find for these stars are similar to those for Am-star atmospheres, though some anomalies of up to 0.6-0.7 dex are observed for light and heavy elements. We consider the effect of the adopted stellar parameters (effective temperature, log g, microturbulent velocity) and the amplitude of pulsational variations on the derived elemental abundances.
VizieR Online Data Catalog: Fundamental parameters of Kepler stars (Silva Aguirre+, 2015)
NASA Astrophysics Data System (ADS)
Silva Aguirre, V.; Davies, G. R.; Basu, S.; Christensen-Dalsgaard, J.; Creevey, O.; Metcalfe, T. S.; Bedding, T. R.; Casagrande, L.; Handberg, R.; Lund, M. N.; Nissen, P. E.; Chaplin, W. J.; Huber, D.; Serenelli, A. M.; Stello, D.; van Eylen, V.; Campante, T. L.; Elsworth, Y.; Gilliland, R. L.; Hekker, S.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lundkvist, M. S.
2016-02-01
Our sample has been extracted from the 77 exoplanet host stars presented in Huber et al. (2013, Cat. J/ApJ/767/127). We have made use of the full time-base of observations from the Kepler satellite to uniformly determine precise fundamental stellar parameters, including ages, for a sample of exoplanet host stars where high-quality asteroseismic data were available. We devised a Bayesian procedure flexible in its input and applied it to different grids of models to study systematics from input physics and extract statistically robust properties for all stars. (4 data files).
Going Beyond Einstein with the Constellation-X Mission
NASA Technical Reports Server (NTRS)
White, Nicholas
2007-01-01
The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution X-ray spectroscopy.'The mission will also perform routine high-resolution X-ray spectroscopy of faint 2nd extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity; and ionization state for a wide range of astrophysical problems, including new constraints on the Neutron Star equation of state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Bradley E.; Edwards, Zachary I.
Up until around 1980, the Stingray was an ordinary B1 post-AGB star, but then it suddenly sprouted bright emission lines like in a planetary nebula (PN), and soon after this the Hubble Space Telescope (HST) discovered a small PN around the star, so apparently we have caught a star in the act of ionizing a PN. We report here on a well-sampled light curve from 1889 to 2015, with unique coverage of the prior century plus the entire duration of the PN formation plus three decades of its aftermath. Surprisingly, the star anticipated the 1980s ionization event by declining frommore » B = 10.30 in 1889 to B = 10.76 in 1980. Starting in 1980, the central star faded fast, at a rate of 0.20 mag year{sup −1}, reaching B = 14.64 in 1996. This fast fading is apparently caused by the central star shrinking in size. From 1994 to 2015, the V-band light curve is almost entirely from the flux of two bright [O iii] emission lines from the unresolved nebula, and it shows a consistent decline at a rate of 0.090 mag year{sup −1}. This steady fading (also seen in the radio and infrared) has a timescale equal to that expected for ordinary recombination within the nebula, immediately after a short-duration ionizing event in the 1980s. We are providing the first direct measure of the rapidly changing luminosity of the central star on both sides of a presumed thermal pulse in 1980, with this providing a strong and critical set of constraints, and these are found to sharply disagree with theoretical models of PN evolution.« less
VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.
2013-04-10
Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403more » giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.« less
NASA Technical Reports Server (NTRS)
Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.;
2012-01-01
We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.
Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center
NASA Astrophysics Data System (ADS)
Frazer, Chris; Heitsch, Fabian
2018-01-01
Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.
Stellar parameters of Be stars observed with X-shooter
NASA Astrophysics Data System (ADS)
Shokry, A.; Rivinius, Th.; Mehner, A.; Martayan, C.; Hummel, W.; Townsend, R. H. D.; Mérand, A.; Mota, B.; Faes, D. M.; Hamdy, M. A.; Beheary, M. M.; Gadallah, K. A. K.; Abo-Elazm, M. S.
2018-01-01
Aims: The X-shooter archive of several thousand telluric standard star spectra was skimmed for Be and Be shell stars to derive the stellar fundamental parameters and statistical properties, in particular for the less investigated late-type Be stars and the extension of the Be phenomenon into early A stars. Methods: An adapted version of the BCD method is used, using the Balmer discontinuity parameters to determine effective temperature and surface gravity. This method is optimally suited for late B stars. The projected rotational velocity was obtained by profile fitting to the Mg ii lines of the targets, and the spectra were inspected visually for the presence of peculiar features such as the infrared Ca ii triplet or the presence of a double Balmer discontinuity. The Balmer line equivalent widths were measured, but they are only useful for determining the pure emission contribution in a subsample of Be stars owing to uncertainties in determining the photospheric contribution. Results: A total of 78, mostly late-type, Be stars, were identified in the X-shooter telluric standard star archive, out of which 48 had not been reported before. We confirm the general trend that late-type Be stars have more tenuous disks and are less variable than early-type Be stars. The relatively large number (48) of relatively bright (V> 8.5) additional Be stars casts some doubt on the statistics of late-type Be stars; they are more common than currently thought. The Be/B star fraction may not strongly depend on spectral subtype. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 60.A-9022, 60.A-9024, 077.D-0085, 085.A-0962, 185.D-0056, 091.B-0900, and 093.D-0415.Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A108
A Dynamical N-body model for the central region of ω Centauri
NASA Astrophysics Data System (ADS)
Jalali, B.; Baumgardt, H.; Kissler-Patig, M.; Gebhardt, K.; Noyola, E.; Lützgendorf, N.; de Zeeuw, P. T.
2012-02-01
Context. Supermassive black holes (SMBHs) are fundamental keys to understand the formation and evolution of their host galaxies. However, the formation and growth of SMBHs are not yet well understood. One of the proposed formation scenarios is the growth of SMBHs from seed intermediate-mass black holes (IMBHs, 102 to 105 M⊙) formed in star clusters. In this context, and also with respect to the low mass end of the M• - σ relation for galaxies, globular clusters are in a mass range that make them ideal systems to look for IMBHs. Among Galactic star clusters, the massive cluster ω Centauri is a special target due to its central high velocity dispersion and also its multiple stellar populations. Aims: We study the central structure and dynamics of the star cluster ω Centauri to examine whether an IMBH is necessary to explain the observed velocity dispersion and surface brightness profiles. Methods: We perform direct N-body simulations on GPU and GRAPE special purpose computers to follow the dynamical evolution of ω Centauri. The simulations are compared to the most recent data-sets in order to explain the present-day conditions of the cluster and to constrain the initial conditions leading to the observed profiles. Results: We find that starting from isotropic spherical multi-mass King models and within our canonical assumptions, a model with a central IMBH mass of 2% of the cluster stellar mass, i.e. a 5. × 104 M⊙ IMBH, provides a satisfactory fit to both the observed shallow cusp in surface brightness and the continuous rise towards the center of the radial velocity dispersion profile. In our isotropic spherical models, the predicted proper motion dispersion for the best-fit model is the same as the radial velocity dispersion one. Conclusions: We conclude that with the presence of a central IMBH in our models, we reproduce consistently the rise in the radial velocity dispersion. Furthermore, we always end up with a shallow cusp in the projected surface brightness of our model clusters containing an IMBH. In addition, we find that the M/L ratio seems to be constant in the central region, and starts to rise slightly from the core radius outwards for all models independent of the presence of a black hole. Considering our initial parameter space, it is not possible to explain the observations without a central IMBH for ω Centauri. To further strengthen the presence of an IMBH as a unique explanation of the observed light and kinematics more detailed analysis such as investigating the contribution of primordial binaries and different anisotropy profiles should be studied.
Chang, Chung-Hsin; Yeh, Jiann-Horng
2004-12-01
Star fruit ingestion may induce severe neurological complications in chronic renal failure patients. We present a case on maintenance dialysis therapy who developed a consciousness disturbance without convulsion after eating star fruit. The symptoms became aggravated after haemodialysis. The brain computed tomography scan showed no abnormal findings, but the electroencephalogram found active focal sharp waves in the left central regions and diffusion-weighted magnetic resonance imaging also showed hyperintense lesions in the left central regions that were compatible with non-convulsive status epilepticus. His condition improved dramatically after anticonvulsant therapy and regular haemodialysis. The patient was discharged 20 days later without neurological sequela.
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Ferrini, Federico; Palla, Francesco
1987-01-01
The evolution of models for star formation in galaxies with disk and halo components is discussed. Two phases for the halo (gas and stars) and three for the disk (including clouds) are used in these calculations. The star-formation history is followed using nonlinear phase-coupling models which completely determine the populations of the phases as a function of time. It is shown that for a wide range of parameters, including the effects of both spontaneous and stimulated star formation and mass exchange between the spatial components of the system, the observed chemical history of the galaxy can easily be obtained. The most sensitive parameter in the detailed metallicity and star-formation history for the system is the rate of return of gas to the diffuse phase upon stellar death.
Discovery of a New Wolf-Rayet Star Using SAGE-LMC
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Chené, A.-N.; Kniazev, A. Y.; Schnurr, O.
2012-12-01
We report the first-ever discovery of an extragalactic Wolf-Rayet (WR) star with Spitzer. A new WR star in the Large Magellanic Cloud (LMC) was revealed via detection of its circumstellar shell using 24 μm images obtained in the framework of the Spitzer Survey of the Large Magellanic Cloud (SAGE-LMC). Subsequent spectroscopic observations with the Gemini South resolved the central star in two components, one of which is a WN3b+abs star, while the second one is a B0 V star. We consider the lopsided brightness distribution over the circumstellar shell as an indication that the WR star is a runaway and use this interpretation to identify a possible parent cluster of the star.
Star formation history: Modeling of visual binaries
NASA Astrophysics Data System (ADS)
Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.
2018-05-01
Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.
NASA Technical Reports Server (NTRS)
Heap, S. R.
1981-01-01
The ways in which the IUE has proved useful in studying highly evolved stars are reviewed. The importance of high dispersion spectra for abundance analyses of the sd0 stars and for studies of the wind from the central star of NGC 6543 and the wind from the 0 type component of Vela X-1 is shown. Low dispersion spectra are used for absolute spectrophotometry of the dwarf nova, Ex Hya. Angular resolution is important for detecting and locating UV sources in globular clusters.
He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations
NASA Technical Reports Server (NTRS)
Heasley, J. N.; Timothy, J. G.; Wolff, S. C.
1982-01-01
Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-04-21
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Andrew R.; Hawkins, Keith; Koposov, Sergey
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho- Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon . For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundancesmore » for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC . We derive and validate effective temperature T {sub eff}, surface gravity log g , and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.« less
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-01-01
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters. PMID:28430132
NASA Astrophysics Data System (ADS)
Mortier, A.; Santos, N. C.; Sousa, S. G.; Adibekyan, V. Zh.; Delgado Mena, E.; Tsantaki, M.; Israelian, G.; Mayor, M.
2013-09-01
Context. It is still being debated whether the well-known metallicity-giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Precise stellar parameters are also crucial to planetary research for several other reasons. Different methods can provide different results that lead to discrepancies in the analysis of planet hosts. Aims: To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity-giant planet connection for evolved stars. Methods: A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. Results: All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets (log g < 3.0 dex) with respect to red giants without planets. The data presented here are based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 70.C-0084, 088.C-0892, 089.C-0444, and 090.C-0146) and the HARPS spectrograph at the 3.6 m telescope (ESO run ID 72.C-0488); at the Paranal Observatory, ESO (Chile) with the UVES spectrograph at the VLT Kueyen telescope (ESO runs ID 074.C-0134, 079.C-0131, 380.C-0083, and 083.C-0174); at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with the FIES spectrograph at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden (program ID 44-210); and at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France with the SOPHIE spectrographs at the 1.93 m telescope (program ID 11B.DISC.SOUS).Tables 1, 5, 6 and Appendix A are available in electronic form at http://www.aanda.orgTables 5, 6, and A.1 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A70
Trigonometric Parallaxes of Central Stars of Planetary Nebulae
2007-02-01
is a large nebula with a larger outer halo (Hewett et al. 2003; Rauch et al. 2004). Frew& Parker (2006) find that the nebula may be ionized ISM. 3...TRIGONOMETRIC PARALLAXES OF CENTRAL STARS OF PLANETARY NEBULAE Hugh C. Harris,1 Conard C. Dahn, Blaise Canzian, Harry H. Guetter, S. K. Leggett,2...parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new
Starbursts triggered by central overpressure in interacting galaxies
NASA Technical Reports Server (NTRS)
Jog, Chanda J.; Das, Mousumi
1993-01-01
A triggering mechanism for the origin of enhanced, massive-star formation in the central regions of interacting spiral galaxy pairs is proposed. Our mechanism is based on the detailed evolution of a realistic interstellar medium in a galaxy following an encounter. As a disk giant molecular cloud (GMC) tumbles into the central region following a galaxy encounter, it undergoes a radiative shock compression via the pre-existing high pressure of the central intercloud medium. The shocked outer shell of a GMC becomes gravitationally unstable and begins to fragment thus resulting in a burst of star formation, when the growth time for the gravitational instabilities in the shell becomes smaller than the crossing time of the shock. The resulting values of typical infrared luminosity agree with observations.
NASA Astrophysics Data System (ADS)
Bublitz, Jesse
Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (<1.5 kpc) planetary nebulae using the 30 m telescope at the Institut de Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.
NASA Astrophysics Data System (ADS)
Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot
2018-04-01
Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).
Medium-resolution Spectroscopy of Red Giant Branch Stars in ω Centauri
NASA Astrophysics Data System (ADS)
An, Deokkeun; Lee, Young Sun; In Jung, Jae; Rey, Soo-Chang; Rhee, Jaehyon; Lee, Jae-Woo; Lee, Young-Wook; Joe, Young Hoon
2017-10-01
We present [Fe/H] and [Ca/Fe] of ˜600 red giant branch (RGB) members of the globular cluster Omega Centauri (ω {Cen}). We collect medium-resolution (R˜ 2000) spectra using the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory equipped with Hydra, the fiber-fed multi-object spectrograph. We demonstrate that blending of stellar light in optical fibers severely limits the accuracy of spectroscopic parameters in the crowded central region of the cluster. When photometric temperatures are taken in the spectroscopic analysis, our kinematically selected cluster members, excluding those that are strongly affected by flux from neighboring stars, include relatively fewer stars at intermediate metallicity ([{Fe}/{{H}}]˜ -1.5) than seen in the previous high-resolution survey for brighter giants in Johnson & Pilachowski. As opposed to the trend of increasing [Ca/Fe] with [Fe/H] found by those authors, our [Ca/Fe] estimates, based on Ca II H & K measurements, show essentially the same mean [Ca/Fe] for most of the metal-poor and metal-intermediate populations in this cluster, suggesting that mass- or metallicity-dependent SN II yields may not be necessary in their proposed chemical evolution scenario. Metal-rich cluster members in our sample show a large spread in [Ca/Fe], and do not exhibit a clear bimodal distribution in [Ca/Fe]. We also do not find convincing evidence for a radial metallicity gradient among RGB stars in ω {Cen}.
Imprints of feedback in young gasless clusters?
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Dale, James E.
2013-06-01
We present the results of N-body simulations in which we take the masses, positions and velocities of sink particles from five pairs of hydrodynamical simulations of star formation by Dale et al. and evolve them for further 10 Myr. We compare the dynamical evolution of star clusters that formed under the influence of mass-loss driven by photoionization feedback to the evolution of clusters that formed without feedback. We remove any remaining gas and follow the evolution of structure in the clusters (measured by the Q-parameter), half-mass radius, central density, surface density and the fraction of bound stars. There is little discernible difference in the evolution of clusters that formed with feedback compared to those that formed without. The only clear trend is that all clusters which form without feedback in the hydrodynamical simulations lose any initial structure over 10 Myr, whereas some of the clusters which form with feedback retain structure for the duration of the subsequent N-body simulation. This is due to lower initial densities (and hence longer relaxation times) in the clusters from Dale et al. which formed with feedback, which prevents dynamical mixing from erasing substructure. However, several other conditions (such as supervirial initial velocities) also preserve substructure, so at a given epoch one would require knowledge of the initial density and virial state of the cluster in order to determine whether star formation in a cluster has been strongly influenced by feedback.
NASA Astrophysics Data System (ADS)
Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot
2018-07-01
Stars approaching supermassive black holes (SMBHs) in the centres of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the `frozen-in' approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106 M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2-7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the `frozen-in' model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly {˜ } 18-40 per cent of disruptions will have short rise times (trise ˜ 1-10 d) and highly super-Eddington peak return rates (\\dot{M}_peak / \\dot{M}_Edd ˜ 2 × 10^2-3 × 10^3).
LSS 2018: A double-lined spectroscopic binary central star with an extremely large reflection effect
NASA Technical Reports Server (NTRS)
Drilling, J. S.
1985-01-01
LSS 2018, the central star of the planetry nebulae DS1, was found to be a double-lined spectroscopic binary with a period of 8.571 hours. Light variations with the same period were observed in U, B, and V; in the wavelength regions defined by the two IUE cameras; and in the strength of the CIII 4647 emission line. The light variations can be accurately predicted by a simple reflection effect, and an analysis of the light curves yields the angular diameter and effective temperature of the primary, the radii of the two stars in terms of their separation, and the inclination of the system. Analysis of the radial velocities then yields the masses of the two stars, their separation, the distance of the system, the absolute magnitude of the primary, and the size of the nebula.
The nature of the central parsec of the Galaxy
NASA Technical Reports Server (NTRS)
Lacy, J. H.; Townes, C. H.; Hollenbach, D. J.
1982-01-01
Observations of infrared fine-structure line emission from compact clouds of ionized gas in the galactic center have been reported by Lacy et al (1979, 1980). These observations suggest the existence of a central black hole of nearly 3,000,000 solar masses and require mechanisms to generate, ionize, and dispose of the gas clouds. It is found that the best model to fulfill these requirements involves cloud generation through disruption of red giants by stellar collisions, ionization by a population of stars which is affected either by enhanced metal abundances or the death of the most massive stars, and gas disposal by star formation. Although the existence of a massive black hole cannot be ruled out, it would play no necessary role in this model and may cause the tidal disruption of stars at a rate such that their accretion into the black hole would produce more radiation than is observed.
NASA Astrophysics Data System (ADS)
Blanco-Cuaresma, S.; Anderson, R. I.; Eyer, L.; Mowlavi, N.
2017-03-01
Classical Cepheids and RR Lyrae stars are radially pulsating stars where the spectral type varies according to pulsation phase. Several studies used synthesis and the equivalent width method to determine the variations of effective temperature, surface gravity and metallicity for classical Cepheids and RR Lyrae stars (Luck and Andrievsky 2004; Kovtyukh et al. 2005; Andrievsky et al 2005; Luck et al 2008; Takeda et al. 2013; Fossati et al. 2014). We evaluated the applicability of iSpec (Blanco-Cuaresma et al. 2014 - http://www.blancocuaresma.com/s/), which has been extensively used with non-pulsating FGK stars, and derived atmospheric parameters as a function of phase for δ Cephei and RR Lyrae (the two prototypes stars for each class). The results showed that when we apply a non-adapted traditional spectroscopic method to pulsating stars, derived gravities do not seem to follow a physically logical evolution. Nevertheless, metallicity is globally stable and effective temperature variations globally agree with expectations from the radius variations indicated by the radial velocity variability. Max/min values and average results agree with the literature. In terms of broadening parameters, macroturbulent and projected rotation velocities are very difficult to disentangle even if their profiles are not exactly the same. Individual chemical abundances as function of phase are stable as it was expected (the chemical composition of the star should not vary). We plan to use this information to identify absorption lines that are reliable and stable (less affected by blending) during the whole pulsating cycle. This new line selection may help to improve the determination of atmospheric parameters and it could allow us to be more confident in the study of other less known Cepheids and RR Lyrae stars.
"Horseshoe" Structures in the Debris Disks of Planet-Hosting Binary Stars
NASA Astrophysics Data System (ADS)
Demidova, T. V.
2018-03-01
The formation of a planetary system from the protoplanetary disk leads to destruction of the latter; however, a debris disk can remain in the form of asteroids and cometary material. The motion of planets can cause the formation of coorbital structures from the debris disk matter. Previous calculations have shown that such a ring-like structure is more stable if there is a binary star in the center of the system, as opposed to a single star. To analyze the properties of the coorbital structure, we have calculated a grid of models of binary star systems with a circumbinary planet moving in a planetesimal disk. The calculations are performed considering circular orbits of the stars and the planet; the mass and position of the planet, as well as the mass ratio of the stars, are varied. The analysis of the models shows that the width of the coorbital ring and its stability significantly depend on the initial parameters of the problem. Additionally, the empirical dependences of the width of the coorbital structure on the parameters of the system have been obtained, and the parameters of the models with the most stable coorbital structures have been determined. The results of the present study can be used for the search of planets around binary stars with debris disks.
Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario
NASA Astrophysics Data System (ADS)
Zhou, En-Ping; Zhou, Xia; Li, Ang
2018-04-01
The LIGO/VIRGO detection of the gravitational waves from a binary merger system, GW170817, has put a clean and strong constraint on the tidal deformability of the merging objects. From this constraint, deep insights can be obtained in compact star equation of states, which has been one of the most puzzling problems for nuclear physicists and astrophysicists. Employing one of the most widely used quark star EOS models, we characterize the star properties by the strange quark mass (ms ), an effective bag constant (Beff), the perturbative QCD correction (a4), as well as the gap parameter (Δ ) when considering quark pairing, and investigate the dependences of the tidal deformablity on them. We find that the tidal deformability is dominated by Beff and insensitive to ms, a4. We discuss the correlation between the tidal deformability and the maximum mass (MTOV) of a static quark star, which allows the model possibility to rule out the existence of quark stars with future gravitational wave observations and mass measurements. The current tidal deformability measurement implies MTOV≤2.18 M⊙ (2.32 M⊙ when pairing is considered) for quark stars. Combining with two-solar-mass pulsar observations, we also make constraints on the poorly known gap parameter Δ for color-flavor-locked quark matter.
NASA Astrophysics Data System (ADS)
Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.
2017-04-01
Context. Recently published work has made high-precision fundamental parameters available for the binary system TZ Fornacis, making it an ideal target for the calibration of stellar models. Aims: Relying on these observations, we attempt to constrain the initial helium abundance, the age and the efficiency of the convective core overshooting. Our main aim is in pointing out the biases in the results due to not accounting for some sources of uncertainty. Methods: We adopt the SCEPtER pipeline, a maximum likelihood technique based on fine grids of stellar models computed for various values of metallicity, initial helium abundance and overshooting efficiency by means of two independent stellar evolutionary codes, namely FRANEC and MESA. Results: Beside the degeneracy between the estimated age and overshooting efficiency, we found the existence of multiple independent groups of solutions. The best one suggests a system of age 1.10 ± 0.07 Gyr composed of a primary star in the central helium burning stage and a secondary in the sub-giant branch (SGB). The resulting initial helium abundance is consistent with a helium-to-metal enrichment ratio of ΔY/ ΔZ = 1; the core overshooting parameter is β = 0.15 ± 0.01 for FRANEC and fov = 0.013 ± 0.001 for MESA. The second class of solutions, characterised by a worse goodness-of-fit, still suggest a primary star in the central helium-burning stage but a secondary in the overall contraction phase, at the end of the main sequence (MS). In this case, the FRANEC grid provides an age of Gyr and a core overshooting parameter , while the MESA grid gives 1.23 ± 0.03 Gyr and fov = 0.025 ± 0.003. We analyse the impact on the results of a larger, but typical, mass uncertainty and of neglecting the uncertainty in the initial helium content of the system. We show that very precise mass determinations with uncertainty of a few thousandths of solar mass are required to obtain reliable determinations of stellar parameters, as mass errors larger than approximately 1% lead to estimates that are not only less precise but also biased. Moreover, we show that a fit obtained with a grid of models computed at a fixed ΔY/ ΔZ - thus neglecting the current uncertainty in the initial helium content of the system - can provide severely biased age and overshooting estimates. The possibility of independent overshooting efficiencies for the two stars of the system is also explored. Conclusions: The present analysis confirms that to constrain the core overshooting parameter by means of binary systems is a very difficult task that requires an observational precision still rarely achieved and a robust statistical treatment of the error sources.
The Comparative Observational Study of Timescale of Feedback by Bar Structure in Late-type Galaxies
NASA Astrophysics Data System (ADS)
Woong-bae Woong-bae Zee, Galaxy; Yoon, Suk-jin
2018-01-01
We investigate star formation activities of ~400 barred and ~1400 unbarred faced-on late-type galaxies from the SDSS DR13. We find that gas-poor and barred galaxies are considerably show enhanced high central star formation activities, while there is no difference among gas-rich barred and unbarred galaxies regardless of their HI gas content. This seems counter-intuitive given that gas contents simply represent the total star formation rate of galaxies and suggests that there is a time delation between the central gas migration/consumption through bar structures and the enhancement of star formation activity at the centre. We analysed the distribution of the stellar population of specific galaxies with MaNGA (Mapping Nearby Galaxies at APO) IFU survey among the total samples. The gas-poor and barred galaxies show the flatter gradient in metallicity and age with respect to the stellar mass than other types of galaxies, in that their centre is more metal-rich and younger. There is an age difference, about 5-6 Gyrs, between centrally star-forming gas-poor barred galaxies and gas-rich galaxies and this value is a plausible candidate of the longevity of bar feedback. The results indicate that the gas migration/mixing driven by bar structure plays a significant role in the evolution of galaxies in a specific of timescale.
Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae
NASA Astrophysics Data System (ADS)
Buemi, C. S.; Trigilio, C.; Leto, P.; Umana, G.; Ingallinera, A.; Cavallaro, F.; Cerrigone, L.; Agliozzo, C.; Bufano, F.; Riggi, S.; Molinari, S.; Schillirò, F.
2017-03-01
We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arc-shaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6 M⊙ yr-1 in 1994-1995 to 1.17 × 10-5 M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.
Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt; Lhoussaine, Cédric; Hersen, Pascal; Batt, Gregory
2017-02-01
With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar , a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. © 2017 The Authors.
Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt
2017-01-01
With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar, a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. PMID:28179544
FORMATION OF STABLE MAGNETARS FROM BINARY NEUTRON STAR MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomazzo, Bruno; Perna, Rosalba
2013-07-10
By performing fully general relativistic magnetohydrodynamic simulations of binary neutron star mergers, we investigate the possibility that the end result of the merger is a stable magnetar. In particular, we show that, for a binary composed of two equal-mass neutron stars (NSs) of gravitational mass M {approx} 1.2 M{sub Sun} and equation of state similar to Shen et al. at high densities, the merger product is a stable NS. Such NS is found to be differentially rotating and ultraspinning with spin parameter J/M{sup 2} {approx} 0.86, where J is its total angular momentum, and it is surrounded by a diskmore » of Almost-Equal-To 0.1 M{sub Sun }. While in our global simulations the magnetic field is amplified by about two orders of magnitude, local simulations have shown that hydrodynamic instabilities and the onset of the magnetorotational instability could further increase the magnetic field strength up to magnetar levels. This leads to the interesting possibility that, for some NS mergers, a stable and magnetized NS surrounded by an accretion disk could be formed. We discuss the impact of these new results for the emission of electromagnetic counterparts of gravitational wave signals and for the central engine of short gamma-ray bursts.« less
Collisionless relaxation in spiral galaxy models
NASA Technical Reports Server (NTRS)
Hohl, F.
1974-01-01
The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2017-07-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, Ignacio; Curé, Michel
2017-11-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Flares from Galactic Centre pulsars: a new class of X-ray transients?
NASA Astrophysics Data System (ADS)
Giannios, Dimitrios; Lorimer, Duncan R.
2016-06-01
Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.NASA Astrophysics Data System (ADS)
Arellano Ferro, A.; Ahumada, J. A.; Calderón, J. H.; Kains, N.
2014-10-01
CCD time-series observations of the central region of the globular cluster NGC 3201 were obtained with the aim of performing the Fourier decomposition of the light curves of the RR Lyrae stars present in that field. This procedure gave the mean values, for the metallicity, of [Fe/H] [ZW] = - 1.483±0.006 (statistical) ±0.090 (systematic), and for the distance, 5.000±0.001 kpc (statistical) ±0.220 (systematic). The values found from two RRc stars are consistent with those derived previously. The differential reddening of the cluster was investigated and individual reddenings for the RR Lyrae stars were estimated from their V - I curves. We found an average value of E(B - V) = 0.23±0.02. An investigation of the light curves of stars in the blue straggler region led to the discovery of three new SX Phe stars. The period-luminosity relation of the SX Phe stars was used for an independent determination of the distance to the cluster and of the individual reddenings. We found a distance of 5.0 kpc.
On the Origin and Evolution of Wolf-Rayet Central Stars of Planetary Nebulae
NASA Astrophysics Data System (ADS)
DePew, K. D.
2011-03-01
The origin of hydrogen-deficiency in the central stars of planetary nebulae (CSPNe) is currently a topic of heated debate. This class of objects is comprised of Wolf-Rayet ([WR]) stars, weak emission-line stars (WELS), and PG 1159 stars, each differentiated by a set of unique spectral characteristics. For some time, there have been questions surrounding the evolutionary status of these rare stars: what environmental conditions, such as chemical abundances, are necessary for their emergence, whether any of them represent different stages of development in the same class of stars, and what the characteristics of their progenitors may be. However, such investigations have been hampered by a lack of a sufficient number of these stars and their various sub-classes until recently. This thesis presents the significant discovery of 22 new [WR] stars and 10 new WELS, many uncovered specifically during this thesis in the course of the MASH survey and through serendipitous fibre placement during follow-up of MASH objects. All examples have been carefully classified as accurately as possible using the best current available data though for many this remains a preliminary assignment pending deeper spectra. This work expands the known sample of H-deficient stars by 30%, allowing a more detailed study of their properties than previously possible and moving us closer to a more complete census of local H-deficient CSPNe. In the course of our classifications, Abell 48 was found to be a particularly interesting object. Further analysis of nebular chemical abundances, modeled temperature, and ionization state as indicated by the chemical species present suggests that the CSPN of Abell 48 is very similar to the CSPN of PB 8, which has recently been re-designated as the founding member of a new and rare [WN/WC] class (Todt et al. 2010). Its similarity to and differences with other oxygen-rich [WO] and carbon-rich [WC] stars as well as previously identified [WN] stars are examined. All these stars have also been studied in the context of a new subclass-dynamical age relationship that we have also discovered. This major finding is the first to show evidence of an evolutionary trend amongst the [WR] population and was made possible by use of the powerful new surface brightness-radius (SB-r) relation of Frew (2008) that can, at last, provide accurate distances to PN (and hence also their central stars). Key data acquired here as well as modeled effective temperatures and excitation classes of other [WR]s, WELS and PG 1159 central stars found in the literature were also utilized in generating this relationship. Finally, continuing with the SB-r relation, the scale heights of the most complete available sample of [WR], WELS and PG 1159 CS populations are determined and compared. These data show that both WELS and PG 1159 stars are found to possess significantly higher Galactic heights than the members of the [WR] class, implying that PG 1159s do not all descend from [WR]s, and that WELS are not evolutionarily related to [WR]s. This is another major finding of this work. It is possible, however, that the WELS class, and perhaps the PG 1159 class as well, are heterogeneous groups.
Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388
NASA Technical Reports Server (NTRS)
Moehler, S.; Sweigart, A. V.
2006-01-01
The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction, most likely due to remaining background light in the spectra, which would affect the fainter hot blue tail stars much more strongly than the brighter cool blue tail stars. Our study of the hot blue tail stars in NGC 6388 illustrates the obstacles which are encountered when attempting to determine the atmospheric parameters of hot HB stars in very crowded fields using ground-based observations. We discuss these obstacles and offer possible solutions for future projects.
NASA Astrophysics Data System (ADS)
Imamura, James
2008-05-01
Type II Supernovae are produced by the collapse of the cores of massive stars at the ends of their nuclear lifetimes. The basic picture for the outburst mechanism of Type II Supernova explosions is rather secure with only the details of the shock generation and the outburst uncertain. However, broad issues remain concerning our understanding of Type II Supernovae when the less studied, but more general case of rotating and/or magnetic progenitor stars is considered. That rotation and magnetic fields may play large roles in core collapse has been suggested for almost 40 years dating from the discovery that pulsars, the remnants of Type II Supernovae, are strongly magnetic, rapidly rotating neutron stars. This fact has been further reinforced by the discovery of the class of neutron stars with ultra-strong magnetic fields known as Magnetars. The role that rotation plays in core collapse can be appreciated by noting that stable, stationary, degenerate equilibrium configurations are possible only for stars with central density ρc 10^4-10^9 g cm-3 (white dwarf densities) and ρc 10^14-10^15 g cm-3 (neutron star densities). Nonrotating objects with ρc between that of white dwarfs (typical of the densities of the precollapse cores of Type II Supernovae) and neutron stars are unstable to radial collapse because of the low effective γ of their equations-of-state (EOS) (see Shapiro & & Teukolsky 1983). Stars at intermediate ρc may be stabilized against collapse by rapid rotation. This possibility gives rise to what were coined fizzlers by Gold (1974) to describe fizzled core collapses of massive rotating stars through formation of rotation-supported stars with densities intermediate between those of the white dwarf-like precollapse core and a neutron star. Interest in fizzlers waned in the 1980s when it was showed that, although fizzlers could exist, they only occupied a small part of the precollapse core parameter space for cold equations-of-state (EOS). Interest in fizzlers was revived in the late 1990s when it was found that fizzlers could form under a wider range of conditions than had been suggested if hot dense EOSs were considered. Observationally, interest in fizzlers was also driven by the recognition that fizzlers could lead to the generation of gravitational wave emission in Type II Supernovae, emission potentially observable by LIGO, the Laser Interferometer Gravitational Wave Observatory), and other gravitational wave observatories, and that fizzlers could perhaps play roles in the γ-ray burster phenomenon and the formation of strange stars. We review the properties of fizzlers and consider their applications to LIGO, strange stars, and Magnetars.
NASA Astrophysics Data System (ADS)
Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.; Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer, N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.; Vink, J. S.
2007-04-01
We have studied the optical spectra of a sample of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star forming region N11. Our observations sample the central associations of LH9 and LH10, and the surrounding regions. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005), which combines the stellar atmosphere code fastwind (Puls et al. 2005) with the genetic algorithm based optimisation routine pikaia (Charbonneau 1995). We derive an age of 7.0 ± 1.0 and 3.0 ± 1.0 Myr for LH9 and LH10, respectively. The age difference and relative distance of the associations are consistent with a sequential star formation scenario in which stellar activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2. From helium and hydrogen line fitting we find the hottest three of these stars to be 49{-}54 kK (compared to 45{-}46 kK for O3 stars). Detailed determination of the helium mass fraction reveals that the masses of helium enriched dwarfs and giants derived in our spectroscopic analysis are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally enhanced mixing leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. (2006). For bright giants and supergiants no such mass discrepancy is found; these stars therefore appear to follow tracks of modestly or non-rotating objects. The set of programme stars was sufficiently large to establish the mass loss rates of OB stars in this Z ˜ 1/2 Z⊙ environment sufficiently accurate to allow for a quantitative comparison with similar objects in the Galaxy and the SMC. The mass loss properties are found to be intermediate to massive stars in the Galaxy and SMC. Comparing the derived modified wind momenta D_mom as a function of luminosity with predictions for LMC metallicities by Vink et al. (2001) yields good agreement in the entire luminosity range that was investigated, i.e. 5.0 < log L/L⊙< 6.1. Appendix A is only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration
2015-01-01
The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the environmental effects involved in the evolution of such objects.
A reanalysis of the SWP-HI IUE observations of Capella
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Ayres, T. R.
1995-01-01
We have reanalyzed the numerous high-resolution, far-ultraviolet observations of Capella made by the International Ultraviolet Explorer (IUE) in its 16 yr lifetime. Our purpose was to search for long-term profile variations in Capella's ultraviolet emission lines and to complement the analysis of Goddard High Resolution Spectrograph (GHRS) observations of Capella, discussed in a companion paper (Linsky et al. 1995). We implemented a state-of-the-art photometric correction and spectral extraction procedure to improve S/N and control potential sources for systematic errors. Nevertheless, we were unable to find compelling evidence for any significant long-term profile variations. Previous work has shown that the G8 primary star is only a minor contributor to the high-excitation transition region lines but is a significant contributor to the low-excitation chromospheric lines. We have found exceptions to this rule, however. We find that the G8 star is responsible for a significant portion of Capella's N V lambda lambda 1239, 1243 emission, but is not a large contributor to the S I lambda 1296, Cl I lambda 1352, and O lambda 1356 lines. We suggest possible explanations for these behaviors. We also find evidence that the He II lambda 1640 emission from the G1 star is from the transition region, while the He II lambda 1640 emission from the G8 star is chromospheric, consistent with the findings of Linsky et al. (1994). The C II lambda 1336 line shows a weak central reversal. It is blueshifted by about 9 km/s with respect to the centroid of the emission from the G1 star. While the central reversal of the C II line is blueshifted by about 9 km/s with respect to the centroid of the emission from the G1 star. While the central reversal of the C II line is blueshifted, the central reversal of the Si III lambda 1207 line discussed by Linsky et al. (1994) is not.
Star-shaped feeding traces produced by echiuran worms on the deep-sea floor of the Bay of Bengal
NASA Astrophysics Data System (ADS)
Ohta, Suguru
1984-12-01
Many star-shaped foraging traces were observed in bottom photographs of the deep-sea floor taken in the Bay of Bengal between the depths of 5025 and 2635 m. They were classified into 10 types according to their dimensions, aspect ratios (length/width) of their spokes, features of the central structure, and possible production mechanisms. The proboscis of a deep-sea bonellid echiuran worm was photographed at a depth of 2635 m in the act of producing one of the star-shaped foraging traces. On the basis of photographic observations and observations of shallow-water forms, several types of the feeding traces can be ascribed to the foraging of deep-sea echiuran worms on surface detritus. At least four types of the star-shaped trace are probably produced by deep-sea bonellid worms, and a linear correlation could be found between the aspect ratios of the spokes and maximum number of spokes around the central hole. A geometrical model experiment stimulating the feeding behavior of a bonellid worm suggested simple behavioral principles which afford maximum utilization of the surface area around a central hole with least expenditure of energy. The prediction of the maximum number of spokes for a given aspect of spokes by the model experiment agreed well with those observed, both utilizing about 76% of the fresh sediment surface within the span of the probiscis around a central hole. This efficient feeding pattern may have adaptive value in deep-sea environments such as the central part of the Bay of Bengal, where energy input is limited.
MN112: a new Galactic candidate luminous blue variable
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.; Sholukhova, O.; Berdnikov, L. N.; Cherepashchuk, A. M.; Zharova, A. V.
2010-06-01
We report the discovery of a new Galactic candidate luminous blue variable (cLBV) via detection of an infrared circular nebula and follow-up spectroscopy of its central star. The nebula, MN112, is one of many dozens of circular nebulae detected at 24μm in the Spitzer Space Telescope archival data, whose morphology is similar to that of nebulae associated with known (c)LBVs and related evolved massive stars. Specifically, the core-halo morphology of MN112 bears a striking resemblance to the circumstellar nebula associated with the Galactic cLBV GAL079.29+00.46, which suggests that both nebulae might have a similar origin and that the central star of MN112 is an LBV. The spectroscopy of the central star showed that its spectrum is almost identical to that of the bona fide LBV PCygni, which also supports the LBV classification of the object. To further constrain the nature of MN112, we searched for signatures of possible high-amplitude (>~1mag) photometric variability of the central star using archival and newly obtained photometric data covering a 45-yr period. We found that the B magnitude of the star was constant within error margins, while in the I band the star brightened by ~=0.4mag during the last 17 yr. Although the non-detection of large photometric variability leads us to use the prefix `candidate' in the classification of MN112, we remind the readers that the long-term photometric stability is not unusual for genuine LBVs and that the brightness of PCygni remained relatively stable during the last three centuries. Partially based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF); olga@sao.ru (OS); berdnik@sai.msu.ru (LNB); cher@sai.msu.ru (AMC); alla@sai.msu.ru (AVZ)
VizieR Online Data Catalog: Abundances and stellar parameters of LAMOST stars (Lee+, 2015)
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Beers, T. C.; Carlin, J. L.; Newberg, H. J.; Hou, Y.; Li, G.; Luo, A.-L.; Wu, Y.; Yang, M.; Zhang, H.; Zhang, W.; Zhang, Y.
2016-04-01
By performing a coordinate match with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; see DR1 in Luo et al. 2015, cat. V/146) stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Majewski et al. 2015, submitted), the RAdial Velocity Experiment (RAVE; see Kordopatis et al. 2013, cat. III/272), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE; see Yanny et al. 2009, cat. J/AJ/137/4377). The LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey is an ongoing spectroscopic survey being conducted with the Guoshoujing telescope in northeast China. This telescope employs a fixed 4-m Schmidt-type reflector with 4000 optical fibers in the focal plane to obtain spectra of astronomical objects in a 5° field of view. The LEGUE and SEGUE surveys have very similar spectral coverage and resolving power (R~1800). The LAMOST stellar targets mostly comprise stars brighter than r< 17, whereas the SEGUE stars range from r=14 to r=21. SEGUE-1 was executed during the second phase of the Sloan Digital Sky Survey (SDSS-II). This effort was continued as SEGUE-2 during the third phase of SDSS (SDSS-III). APOGEE was designed to obtain high-resolution near-infrared spectra (in the H-band between 1.51 and 1.70μm). The spectra obtained by APOGEE have a resolving power R~22500 and high S/N (>100). APOGEE-1 was a sub-survey of SDSS-III, and is now completed. Its extension, APOGEE-2, is presently underway as part of SDSS-IV. The RAVE survey was designed to observe about a million stars in the southern hemisphere, and obtain optical spectra over the wavelength range 8410-8795Å, the region of the CaII triplet, at a resolving power R~7500. SEGUE-1 and SEGUE-2 have employed the SEGUE Stellar Parameter Pipeline (SSPP; Lee et al. 2008, cat. J/AJ/136/2050; Allende Prieto et al. 2008, cat. J/AJ/136/2070; Smolinski et al. 2011, cat. J/AJ/141/89; Lee et al. 2011, cat. J/AJ/141/90) to derive the stellar atmospheric parameters and available elemental abundance ratios. We modified and upgraded SSPP so that it can process the LAMOST stellar spectra and derive the fundamental stellar parameters as well as the α-element abundances ([α/Fe]) and carbon-to-iron ratios ([C/Fe]) for these stars. The derived atmospheric parameters and chemical abundances obtained by SSPP for LAMOST stars are then compared with those from the stars also observed by SEGUE, APOGEE, and RAVE. Table1 lists the LAMOST stars with appropriate stellar parameters from APOGEE, RAVE, and SEGUE. It also lists the LAMOST/SEGUE Stellar Parameter Pipeline (LSSPP) parameters and abundances. We do not report [α/Fe] and [C/Fe] for stars with S/N<20 and the range outside of Teff=4400-6700K in the table. (1 data file).
Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favata, Marc
Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions causemore » an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars.« less
The Structure of the Star-forming Cluster RCW 38
NASA Astrophysics Data System (ADS)
Winston, E.; Wolk, S. J.; Bourke, T. L.; Megeath, S. T.; Gutermuth, R.; Spitzbart, B.
2011-12-01
We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 μm) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N H and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.
NASA Astrophysics Data System (ADS)
Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.
2013-02-01
We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.
NASA Astrophysics Data System (ADS)
Imai, Rieko; Sugitani, Koji; Miao, Jingqi; Fukuda, Naoya; Watanabe, Makoto; Kusune, Takayoshi; Pickles, Andrew J.
2017-08-01
We carried out near-infrared (IR) observations to examine star formation toward the bright-rimmed cloud SFO 12, of which the main exciting star is O7V star in W5-W. We found a small young stellar object (YSO) cluster of six members embedded in the head of SFO 12 facing its exciting star, aligned along the UV radiation incident direction from the exciting star. We carried out high-resolution near-IR observations with the Subaru adaptive optics (AO) system and revealed that three of the cluster members appear to have circumstellar envelopes, one of which shows an arm-like structure in its envelope. Our near-IR and {L}\\prime -band photometry and Spitzer IRAC data suggest that formation of two members at the tip side occurred in advance of other members toward the central part, under our adopted assumptions. Our near-IR data and previous studies imply that more YSOs are distributed in the region just outside the cloud head on the side of the main exciting star, but there is little sign of star formation toward the opposite side. We infer that star formation has been sequentially occurring from the exciting star side to the central part. We examined archival data of far-infrared and CO (J=3-2) which reveals that, unlike in the optical image, SFO 12 has a head-tail structure that is along the UV incident direction. This suggests that SFO 12 is affected by strong UV from the main exciting star. We discuss the formation of this head-tail structure and star formation there by comparing with a radiation-driven implosion (RDI) model.
NASA Astrophysics Data System (ADS)
Schnurr, Olivier
2008-09-01
This thesis presents the results of an intense, spectroscopic survey of 41 of the 47 known, late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) which could be observed with ground-based, optical telescopes. For the study of the remaining 6 WNL located in the extremely dense central object of 30 Dor, R136, adaptive-optics assisted, near-infrared spectroscopy was required. The results of this study will be published elsewhere. Our survey concludes the decade-long effort of the Montreal Massive-Star Group to monitor all known WR stars in the Magellanic Clouds for radial-velocity (RV) variations due to binarity, a point which has been debated since the true, evolved nature of WR stars has been recognized in the late 1960s. From model calculations, it was expected that with decreasing metallicity, the binary frequency among WR stars increases, or otherwise the progenitor stars could not have turned into a WR star. Our survey set out to observationally test this assumption. After summarizing the general importance of massive stars, we describe the spectroscopic observations of our program stars. We then detail the data analysis process, which encompasses careful calibration and proper choice of RV standards. We also include publicly available, visible and X-ray photometric data in our analysis. We are able to identify four previously unknown binaries in our sample, bringing the total number of known WNL binaries in the LMC to only nine. As a direct result, we question the assumption that binarity is required to form WR stars at lower metallicity. At least some of the hydrogen-containing WNL stars in our sample seem not to be genuine, evolved, helium-burning WR stars, but rather unevolved, hydrogen- burning objects. There is ample evidence that some of these stars are the most massive stars known. As a second and most remarkable result, all but one of our nine binaries harbor such extreme objects; this greatly enlarges the sample of such known binaries, and paves the way for an independent mass determination via Keplerian orbits in further studies, some of which we have already initiated. The results of those studies will be crucial for calibrating stellar models. One of these binaries, R145, is then studied in greater detail, combining previously published and unpublished data with ours, to present, for the first time, a full set of orbital parameters for both components of the binary system. Since we also determine the orbital inclination angle, we are able to derive the absolute masses of this extreme object. It is found that R145 very likely harbors the most massive star known and properly "weighed" so far.
Membership and Dynamical Parameters of the Open Cluster NGC 1039
NASA Astrophysics Data System (ADS)
Wang, Jiaxin; Ma, Jun; Wu, Zhenyu; Zhou, Xu
2017-11-01
In this paper, we analyze the open cluster NGC 1039. This young open cluster is observed as a part of Beijing-Arizona-Taiwan-Connecticut Multicolor Sky Survey. Combining our observations with the Sloan Digital Sky Survey photometric data, we employ the Padova stellar model and the zero-age main-sequence curve to the data to derive a reddening, E(B-V)=0.10+/- 0.02, and a distance modulus, {(m-M)}0=8.4+/- 0.2, for NGC 1039. The photometric membership probabilities of stars in the region of NGC 1039 are derived using the spectral energy distribution-fitting method. According to the membership probabilities ({P}{SED}) obtained here, 582 stars are cluster members with {P}{SED} larger than 60%. In addition, we determine the structural parameters of NGC 1039 by fitting its radial density profile with the King model. These parameters are a core radius, {R}{{c}}=4.44+/- 1.31 {pc}; a tidal radius, {R}{{t}}=13.57+/- 4.85 {pc}; and a concentration parameter of {C}0={log}({R}{{t}}/{R}{{c}})=0.49+/- 0.20. We also fit the observed mass function of NGC 1039 with masses from 0.3 {M}⊙ to 1.65 {M}⊙ with a power-law function {{Φ }}(m)\\propto {m}α to derive its slopes of mass functions of different spatial regions. The results obtained here show that the slope of the mass function of NGC 1039 is flatter in the central regions (α = 0.117), becomes steeper at larger radii (α = -2.878), and breaks at {m}{break}≈ 0.80 {M}⊙ . In particular, for the first time, our results show that the mass segregation appears in NGC 1039.
2007-11-28
This artist concept is of the one-million-year-old star system called UX Tau A, approximately 450 light-years away. NASA Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system central sun-like star.
Fundamental parameters of He-weak and He-strong stars
NASA Astrophysics Data System (ADS)
Cidale, L. S.; Arias, M. L.; Torres, A. F.; Zorec, J.; Frémat, Y.; Cruzado, A.
2007-06-01
Context: He-weak and He-strong stars are chemically peculiar AB objects whose He lines are anomalously weak or strong for their MK spectral type. The determination of fundamental parameters for these stars is often more complex than for normal stars due to their abundance anomalies. Aims: We discuss the determination of fundamental parameters: effective temperature, surface gravity, and visual and bolometric absolute magnitudes of He-weak and He-strong stars. We compare our values with those derived independently from methods based on photometry and model fitting. Methods: We carried out low resolution spectroscopic observations in the wavelength range 3400-4700 Å of 20 He-weak and 8 He-strong stars to determine their fundamental parameters by means of the Divan-Chalonge-Barbier (BCD) spectrophotometric system. This system is based on the measurement of the continuum energy distribution around the Balmer discontinuity (BD). For a few He-weak stars we also estimate the effective temperatures and the angular diameters by integrating absolute fluxes observed over a wide spectral range. Non-LTE model calculations are carried out to study the influence of the He/H abundance ratio on the emergent radiation of He-strong stars and on their T_eff determination. Results: We find that the effective temperatures, surface gravities and bolometric absolute magnitudes of He-weak stars estimated with the BCD system and the integrated flux method are in good agreement between each other, and they also agree with previous determinations based on several different methods. The mean discrepancy between the visual absolute magnitudes derived using the hipparcos parallaxes and the BCD values is on average ±0.3 mag for He-weak stars, while it is ±0.5 mag for He-strong stars. For He-strong stars, we note that the BCD calibration, based on stars in the solar environment, leads to overestimated values of T_eff. By means of model atmosphere calculations with enhanced He/H abundance ratios we show that larger He/H ratios produce smaller BD which naturally explains the T_eff overestimation. We take advantage of these calculations to introduce a method to estimate the He/H abundance ratio in He-strong stars. The BD of HD 37479 suggests that the T_eff of this star remains fairly constant as the star spectrum undergoes changes in the intensity of H and He absorption lines. Data for the He-strong star HD 66765 are reported for the first time. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina. Tables [see full text]-[see full text] and Appendix A are only available in electronic form at http://www.aanda.org
The STAR Data Reporting Guidelines for Clinical High Altitude Research.
Brodmann Maeder, Monika; Brugger, Hermann; Pun, Matiram; Strapazzon, Giacomo; Dal Cappello, Tomas; Maggiorini, Marco; Hackett, Peter; Bärtsch, Peter; Swenson, Erik R; Zafren, Ken
2018-03-01
Brodmann Maeder, Monika, Hermann Brugger, Matiram Pun, Giacomo Strapazzon, Tomas Dal Cappello, Marco Maggiorini, Peter Hackett, Peter Baärtsch, Erik R. Swenson, Ken Zafren (STAR Core Group), and the STAR Delphi Expert Group. The STARdata reporting guidelines for clinical high altitude research. High AltMedBiol. 19:7-14, 2018. The goal of the STAR (STrengthening Altitude Research) initiative was to produce a uniform set of key elements for research and reporting in clinical high-altitude (HA) medicine. The STAR initiative was inspired by research on treatment of cardiac arrest, in which the establishment of the Utstein Style, a uniform data reporting protocol, substantially contributed to improving data reporting and subsequently the quality of scientific evidence. The STAR core group used the Delphi method, in which a group of experts reaches a consensus over multiple rounds using a formal method. We selected experts in the field of clinical HA medicine based on their scientific credentials and identified an initial set of parameters for evaluation by the experts. Of 51 experts in HA research who were identified initially, 21 experts completed both rounds. The experts identified 42 key parameters in 5 categories (setting, individual factors, acute mountain sickness and HA cerebral edema, HA pulmonary edema, and treatment) that were considered essential for research and reporting in clinical HA research. An additional 47 supplemental parameters were identified that should be reported depending on the nature of the research. The STAR initiative, using the Delphi method, identified a set of key parameters essential for research and reporting in clinical HA medicine.
Stellar parameters and H α line profile variability of Be stars in the BeSOS survey
NASA Astrophysics Data System (ADS)
Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.
2018-03-01
The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.
1999-12-01
A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope. The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://hubblesite.org/newscenter/archive/releases/2001/21/image/a/. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars. The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago. The stars in R136 produce intense "stellar winds," streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust. This mosaic image of 30 Doradus consists of five overlapping pictures taken between January 1994 and September 2000 by the Wide Field and Planetary Camera 2. Several color filters enhance important details in the stars and the nebula. Blue corresponds to the hot stars. The greenish color denotes hot gas energized by the central cluster of stars. Pink depicts the glowing edges of the gas and dust clouds facing the cluster, which are being bombarded by winds and radiation. Reddish-brown represents the cooler surfaces of the clouds, which are not receiving direct radiation from the central cluster. http://photojournal.jpl.nasa.gov/catalog/PIA04200
NASA Astrophysics Data System (ADS)
Waisberg, Idel; Dexter, Jason; Gillessen, Stefan; Pfuhl, Oliver; Eisenhauer, Frank; Plewa, Phillip M.; Bauböck, Michi; Jimenez-Rosales, Alejandra; Habibi, Maryam; Ott, Thomas; von Fellenberg, Sebastiano; Gao, Feng; Widmann, Felix; Genzel, Reinhard
2018-05-01
Astrometric and spectroscopic monitoring of individual stars orbiting the supermassive black hole in the Galactic Center offer a promising way to detect general relativistic effects. While low-order effects are expected to be detected following the periastron passage of S2 in Spring 2018, detecting higher order effects due to black hole spin will require the discovery of closer stars. In this paper, we set out to determine the requirements such a star would have to satisfy to allow the detection of black hole spin. We focus on the instrument GRAVITY, which saw first light in 2016 and which is expected to achieve astrometric accuracies 10-100 μas. For an observing campaign with duration T years, total observations Nobs, astrometric precision σx, and normalized black hole spin χ, we find that a_orb(1-e^2)^{3/4} ≲ 300 R_S √{T/4 {yr}} (N_obs/120)^{0.25} √{10 μ as/σ _x} √{χ /0.9} is needed. For χ = 0.9 and a potential observing campaign with σ _x = 10 μas, 30 observations yr-1 and duration 4-10 yr, we expect ˜0.1 star with K < 19 satisfying this constraint based on the current knowledge about the stellar population in the central 1 arcsec. We also propose a method through which GRAVITY could potentially measure radial velocities with precision ˜50 km s-1. If the astrometric precision can be maintained, adding radial velocity information increases the expected number of stars by roughly a factor of 2. While we focus on GRAVITY, the results can also be scaled to parameters relevant for future extremely large telescopes.
JASMINE: galactic structure surveyor
NASA Astrophysics Data System (ADS)
Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Yamauchi, Masahiro; Kawakatsu, Yasuhiro; Matsuhara, Hideo; Noda, Atsushi; Tsuiki, Atsuo; Utashima, Masayoshi; Ogawa, Akira
2006-06-01
We introduce a Japanese plan of infrared(z-band:0.9μm) space astrometry(JASMINE-project). JASMINE is the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure distances and apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure parallaxes, positions with the accuracy of 10 micro-arcsec and proper motions with the accuracy of ~ 4microarcsec/ year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of stars with σ/π < 0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed in optical bands, where π is a parallax and σ is an error of the parallax. With the completely new "map of the bulge in the Milky Way", it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt the following instrument design of JASMINE in order to get the accurate positions of many stars. A 3-mirrors optical system(modified Korsch system)with a primary mirror of~ 0.85m is one of the candidate for the optical system. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. The accurate measurements of the astrometric parameters requires the instrument line-of-sight highly stability and the opto-mechanical highly stability of the payload in the JASMINE spacecraft. The consideration of overall system(bus) design is now going on in cooperation with Japan Aerospace Exploration Agency(JAXA).
OB Stars and Cepheids From the Gaia TGAS Catalogue: Test of their Distances and Proper Motions
NASA Astrophysics Data System (ADS)
Bobylev, Vadim V.; Bajkova, Anisa T.
2017-12-01
We consider young distant stars from the Gaia TGAS catalog. These are 250 classical Cepheids and 244 OB stars located at distances up to 4 kpc from the Sun. These stars are used to determine the Galactic rotation parameters using both trigonometric parallaxes and proper motions of the TGAS stars. In this case the considered stars have relative parallax errors less than 200%. Following the well-known statistical approach, we assume that the kinematic parameters found from the line-of-sight velocities Vr are less dependent on errors of distances than the found from the velocity components Vl. From values of the first derivative of the Galactic rotation angular velocity '0, found from the analysis of velocities Vr and Vl separately, the scale factor of distances is determined.We found that from the sample of Cepheids the scale of distances of the TGAS should be reduced by 3%, and from the sample of OB stars, on the contrary, the scale should be increased by 9%.
Features of globular cluster's dynamics with an intermediate-mass black hole
NASA Astrophysics Data System (ADS)
Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.
2018-02-01
In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.
Insignia for the Apollo program
NASA Technical Reports Server (NTRS)
1966-01-01
The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2004-03-01
We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.
Spectroscopy of Planetary Nebulae at the Bright End of the Luminosity Function
NASA Astrophysics Data System (ADS)
Rilinger, Anneliese; Kwitter, Karen B.; Balick, Bruce; Corradi, R. L. M.; Galera Rosillo, Rebeca; Jacoby, George H.; Shaw, Richard A.
2017-01-01
We have obtained spectra of 8 luminous planetary nebulae (PNe) in M31 and 4 in the Large Magellanic Cloud with the goal of understanding their properties and those of their progenitor stars. These PNe are at or near the M* region (the most luminous PNe) in their respective galaxies. M31 PNe were observed at the Gran Telescopio Canarias using the OSIRIS spectrograph; LMC PNe were observed with the FORS2 spectrograph at the Very Large Telescope. Line intensities were measured in IRAF. Using our n-level atom program, ELSA (Johnson, et.al, 2006, Planetary Nebulae in our Galaxy and Beyond, 234, 439), we determined temperature, density, and elemental abundances for each nebula. We then modeled the nebulae and central stars with Cloudy (Ferland, et al. 1998, PASP, 110, 761). We plan to use these models of the central stars to estimate the masses and ages of the progenitor stars. We hope to discover whether the progenitor stars of M* PNe exhibit consistently different characteristics from those of other PNe progenitors.
NASA Astrophysics Data System (ADS)
Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi
2013-08-01
We develop a novel abundance matching method to construct a mock catalogue of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), using catalogues of haloes and subhaloes in N-body simulations for a Λ-dominated cold dark matter model. Motivated by observations suggesting that LRGs are passively evolving, massive early-type galaxies with a typical age ≳5 Gyr, we assume that simulated haloes at z = 2 (z2-halo) are progenitors for LRG-host subhaloes observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG `stars'. We then identify the subhaloes containing these stars to z = 0.3 (SDSS redshift) in descending order of the masses of z2-haloes until the comoving number density of the matched subhaloes becomes comparable to the measured number density of SDSS LRGs, bar{n}_LRG=10^{-4} h^3 Mpc^{-3}. Once the above prescription is determined, our only free parameter is the number density of haloes identified at z = 2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalogue, the distributions of central and satellite LRGs and their internal motions in each host halo at z = 0.3. While the SDSS LRGs are galaxies selected by the magnitude and colour cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalogue reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected autocorrelation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing) and the non-linear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum. The mock catalogue generated based on our method can be used for removing or calibrating systematic errors in the cosmological interpretation of LRG clustering measurements as well as for understanding the nature of LRGs such as their formation and assembly histories.
Kinematic model for the space-variant image motion of star sensors under dynamical conditions
NASA Astrophysics Data System (ADS)
Liu, Chao-Shan; Hu, Lai-Hong; Liu, Guang-Bin; Yang, Bo; Li, Ai-Jun
2015-06-01
A kinematic description of a star spot in the focal plane is presented for star sensors under dynamical conditions, which involves all necessary parameters such as the image motion, velocity, and attitude parameters of the vehicle. Stars at different locations of the focal plane correspond to the slightly different orientation and extent of motion blur, which characterize the space-variant point spread function. Finally, the image motion, the energy distribution, and centroid extraction are numerically investigated using the kinematic model under dynamic conditions. A centroid error of eight successive iterations <0.002 pixel is used as the termination criterion for the Richardson-Lucy deconvolution algorithm. The kinematic model of a star sensor is useful for evaluating the compensation algorithms of motion-blurred images.
NASA Astrophysics Data System (ADS)
Kahraman Aliçavuş, F.; Niemczura, E.; Polińska, M.; Hełminiak, K. G.; Lampens, P.; Molenda-Żakowicz, J.; Ukita, N.; Kambe, E.
2017-10-01
δ Scuti stars are remarkable objects for asteroseismology. In spite of decades of investigations, there are still important questions about these pulsating stars to be answered, such as their positions in log Teff-log g diagram, or the dependence of the pulsation modes on atmospheric parameters and rotation. Therefore, we performed a detailed spectroscopic study of 41 δ Scuti stars. The selected objects are located near the γ Doradus instability strip to make a reliable comparison between both types of variables. Spectral classification, stellar atmospheric parameters (Teff, log g, ξ) and v sin I values were determined. The spectral types and luminosity classes of stars were found to be A1-F5 and III-V, respectively. The Teff ranges from 6600 to 9400 K, whereas the obtained log g values are from 3.4 to 4.3. The v sin I values were found between 10 and 222 km s-1. The derived chemical abundances of δ Scuti stars were compared to those of the non-pulsating stars and γ Doradus variables. It turned out that both δ Scuti and γ Doradus variables have similar abundance patterns, which are slightly different from the non-pulsating stars. These chemical differences can help us to understand why there are non-pulsating stars in classical instability strip. Effects of the obtained parameters on pulsation period and amplitude were examined. It appears that the pulsation period decreases with increasing Teff. No significant correlations were found between pulsation period, amplitude and v sin I.
NASA Technical Reports Server (NTRS)
Weigelt, G.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.
1991-01-01
R136 is the luminous central object of the giant H II region 30 Doradus in the LMC. The first high-resolution observations of R136 with the Faint Object Camera on board the Hubble Space Telescope are reported. The physical nature of the brightest component R136a has been a matter of some controversy over the last few years. The UV images obtained show that R136a is a very compact star cluster consisting of more than eight stars within 0.7 arcsec diameter. From these high-resolution images a mass upper limit can be derived for the most luminous stars observed in R136.
STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027
NASA Technical Reports Server (NTRS)
2002-01-01
The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an elongated region of gas and dust cast off by the star. This gas (appearing as white) has a temperature of several tens of thousands of degrees Fahrenheit. The object has two 'cones' of cool molecular hydrogen gas (the red material) glowing in the infrared. The gas has been energized by ultraviolet light from the star - a process known as fluorescence. Most of the material shed by the star remains outside of the bright regions. It is invisible in this image because the layers of material in and near the bright regions are still shielding it from the central star's intense radiation. NGC 7027 is one of the smallest objects of its kind to be imaged by the Hubble telescope. However, the region seen here is approximately 14,000 times the average distance between Earth and the sun. THE INFRARED AND VISIBLE LIGHT VIEW -- This visible and infrared light picture of NGC 7027 (on the right) provides a more complete view of how this planetary nebula is being shaped, revealing steps in its evolution. This image is composed of three exposures, one from the Wide Field and Planetary Camera 2 (WFPC2) and two from NICMOS. The blue represents the WFPC2 image; the green and red, NICMOS exposures. The white is emission from the hot gas surrounding the central star; the red and pink represent emission from cool molecular hydrogen gas. In effect, the colors represent the three layers in the material ejected by the dying star. Each layer depicts a change in temperature, beginning with a hot, bright central region, continuing with a thin boundary zone where molecular hydrogen gas is glowing and being destroyed, and ending with a cool, blue outer region of molecular gas and dust. NICMOS has allowed astronomers to clearly see the transition layer from hot, glowing atomic gas to cold molecular gas. The origin of the newly seen filamentary structures is not yet understood. The transition region is clearly seen as the pink- and red-colored cool molecular hydrogen gas. An understanding of the atomic and chemical processes taking place in this transition region are of importance to other areas of astronomy as well, including star formation regions. WFPC2 is best used to study the hot, glowing gas, which is the bright, oval-shaped region surrounding the central star. With WFPC2 we also see material beyond this core with light from the central star that is reflecting off dust in the cold gas surrounding the nebula. Combining exposures from the two cameras allows astronomers to clearly see the way the nebula is being shaped by winds and radiation. This information will help astronomers understand the complexities of stellar evolution. NGC 7027 is located about 3,000 light-years from the sun in the direction of the constellation Cygnus the Swan. Credits: William B. Latter (SIRTF Science Center/Caltech) and NASA Other team investigators are: J. L. Hora (Smithsonian Astrophysical Observatory), J. H. Bieging (Steward Observatory), D. M. Kelly (University of Wyoming), A. Dayal (JPL/Caltech), A.G.G.M. Tielens (University of Groningen), and S. Trammell (University of North Carolina at Charlotte).
Refining Parameters of the XO-5 Planetary System with High-Precision Transit Photometry
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Seeliger, M.; Adam, Ch.; Raetz, St.; Neuhäuser, R.
2011-03-01
Studies of transiting extrasolar planets provide unique opportunity to get to know the internal structure of those worlds. The transiting exoplanet XO-5 b was found to have an anomalously high Safronov number and surface gravity. Our aim was to refine parameters of this intriguing system and search for signs of transit timing variations. We gathered high-precision light curves for two transits of XO-5 b. Assuming three different limb darkening laws, we found the best-fitting model and redetermined parameters of the system, including planet-to-star radius ratio, impact parameter and central time of transits. Error estimates were derived by the prayer bead method and Monte Carlo simulations. Although system's parameters obtained by us were found to agree with previous studies within one sigma, the planet was found to be notable smaller with the radius of 1.03+0.06-0.05 Jupiter radii. Our results confirm the high Safronov number and surface gravity of the planet. With two new mid-transit times, the ephemeris was refined to BJDTDB=(2454485.66842±0.00028)+(4.1877537±0.000017)E. No significant transit timing variation was detected.
NASA Astrophysics Data System (ADS)
Sitnova, Tatyana; Mashonkina, Lyudmila; Ezzeddine, Rana; Frebel, Anna
2018-06-01
The most metal-poor stars provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Accurate atmospheric parameters is a prerequisite of determination of accurate abundances. We present atmospheric parameters and abundances of calcium and magnesium for a sample of 16 ultra-metal poor (UMP) stars. In spectra of UMP stars, iron is represented only by lines of Fe I, while calcium is represented with lines of Ca I and Ca II, which can be used for determination/checking of effective temperature and surface gravity. Accurate calculations of synthetic spectra of UMP stars require non-local thermodynamic equilibrium (NLTE) treatment of line formation, since deviations from LTE grow with metallicity decreasing. The method of atmospheric parameter determination is based on NLTE analysis of lines of Ca I and Ca II, multi-band photometry, and isochrones. The method was tested in advance with the ultra metal-poor giant CD-38 245, where, in addition, trigonometric parallax measurements from Gaia DR1 and lines of Fe I and Fe II are available. Using photometric Teff = 4900 K and distance based log g = 2.0 for CD-38 245, we derived consistent within error bars NLTE abundances from Fe I and Fe II and Ca I and Ca II, while LTE leads to a discrepancy of 0.6 dex between Ca I and Ca II. We determined NLTE and LTE abundances of magnesium and calcium in 16 stars of the sample. For the majority of stars, as expected, [Ca/Mg] NLTE abundance ratios are close to 0, while LTE leads to systematically higher [Ca/Mg], by up to 0.3 dex, and larger spread of [Ca/Mg] for different stars. Three stars of our sample are strongly enhanced in magnesium, with [Mg/Ca] of 1.3 dex. It is worth noting that, for these three stars, we got very similar [Mg/Ca] of 1.30, 1.45, and 1.29, in contrast to the data from the literature, where, for the same stars, [Mg/Ca] vary from 0.7 to 1.4. Very similar [Mg/Ca] abundance ratios of these stars argue that their abundances originate from a similar nucleosynthetic event.
NASA Astrophysics Data System (ADS)
Wu, T.; Li, Y.; Hekker, S.
2014-01-01
Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (\\sqrt{T_eff} \\sim g^pR^q) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - νmax relation for red giant branch stars.
Scattering linear polarization of late-type active stars
NASA Astrophysics Data System (ADS)
Yakobchuk, T. M.; Berdyugina, S. V.
2018-05-01
Context. Many active stars are covered in spots, much more so than the Sun, as indicated by spectroscopic and photometric observations. It has been predicted that star spots induce non-zero intrinsic linear polarization by breaking the visible stellar disk symmetry. Although small, this effect might be useful for star spot studies, and it is particularly significant for a future polarimetric atmosphere characterization of exoplanets orbiting active host stars. Aims: Using models for a center-to-limb variation of the intensity and polarization in presence of continuum scattering and adopting a simplified two-temperature photosphere model, we aim to estimate the intrinsic linear polarization for late-type stars of different gravity, effective temperature, and spottedness. Methods: We developed a code that simulates various spot configurations or uses arbitrary surface maps, performs numerical disk integration, and builds Stokes parameter phase curves for a star over a rotation period for a selected wavelength. It allows estimating minimum and maximum polarization values for a given set of stellar parameters and spot coverages. Results: Based on assumptions about photosphere-to-spot temperature contrasts and spot size distributions, we calculate the linear polarization for late-type stars with Teff = 3500 K-6000 K, log g = 1.0-5.0, using the plane-parallel and spherical atmosphere models. Employing random spot surface distribution, we analyze the relation between spot coverage and polarization and determine the influence of different input parameters on results. Furthermore, we consider spot configurations with polar spots and active latitudes and longitudes.
A parameter free model for HgMn stars
NASA Astrophysics Data System (ADS)
Michaud, G.
Consideration is given to hydrodynamic and radiative acceleration calculations that may be performed within the context of a parameter-free model of HgMn stars. The model accounts for the formation of HgMn stars at temperatures too high to support an outer hydrogen convection zone by the settling of helium through a He II convection zone which eventually disappears, leaving a diffusive atmosphere with envelope heavy element abundances. Calculations of meridional circulation and the He II diffusion velocity are presented which demonstrate that the He II convection zone can disappear for equatorial rotation velocities less than or equal to 90 km/sec. Detailed radiative acceleration calculations performed for various elements are then reviewed which have reproduced the maximum anomalies observed for He, B, Si, Ca, Sr and Mn abundances in HgMn stars. The parameter-free model is noted to fail, however, in the case of Be.
NASA Astrophysics Data System (ADS)
Zakharov, Alexander
It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).
The Problem of Spectral Mimicry of Supergiants
NASA Astrophysics Data System (ADS)
Klochkova, V. G.; Chentsov, E. L.
2018-01-01
The phenomenon of spectral mimicry refers to the fact that hypergiants and post-AGB supergiants—stars of different masses in fundamentally different stages of their evolution—have similar optical spectra, and also share certain other characteristics (unstable extended atmospheres, expanding dust-gas envelopes, high IR excesses). As a consequence, it is not always possible to distinguish post-AGB stars from hypergiants based on individual spectral observations in the optical. Examples of spectral mimicry are analyzed using uniform, high-quality spectral material obtained on the 6-m telescope of the Special Astrophysical Observatory in the course of long-term monitoring of high-luminosity stars. It is shown that unambiguously resolving the mimicry problem for individual stars requires the determination of a whole set of parameters: luminosity, wind parameters, spectral energy distribution, spectral features, velocity field in the atmosphere and circumstellar medium, behavior of the parameters with time, and the chemical composition of the atmosphere.
Near-infrared line and continuum emission from the blue dwarf galaxy II Zw 40
NASA Technical Reports Server (NTRS)
Joy, Marshall; Lester, Daniel F.
1988-01-01
A multicolor analysis of new near-infrared line and continuum measurements indicates that nebular recombination emission and photospheric radiation from young blue stars produce most of the near-infrared continuum emission in the central 6 arcsec of the dwarf galaxy II Zw 40. The derived nebular recombination level is in excellent agreement with independent observations of the radio free-free continuum. It is found that evolved stars, which dominate the near-infrared emission from normal galaxies, contribute no more than 25 percent of the total 2.2 micron flux in the central region of II Zw 40. It is concluded that the total mass of the evolved stellar population in the central 400 pc of the galaxy is less than about two hundred million solar. The total mass of recently formed stars is about two million solar, and the stellar mass ratio is exceptionally large. Thus, II Zw 40 is a quintessential starburst galaxy.
Comparisons between different techniques for measuring mass segregation
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Goodwin, Simon P.
2015-06-01
We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.
Is the Critical Rotation of Be Stars Really Critical for the Be Phenomenon?
NASA Astrophysics Data System (ADS)
Stee, Ph.; Meilland, A.
We aim to study the effect of the fast rotation, stellar wind and circumstellar disks around active hot stars and their effects on the formation and evolution of these massive stars. For that purpose, we obtained, for the first time, interferometric measurements of three active hot stars, namely α Arae, κ CMa and Achernar, using the VLTI /AMBER and VLTI/MIDI instruments which allow us to study the kinematics of the central star and its surrounding circumstellar matter. These data coupled with our numerical code SIMECA (SIMulation pour Etoiles Chaudes Actives) seem to indicate that the presence of equatorial disks and polar stellar wind around Be stars are not correlated. A polar stellar wind was detected for α Arae and Achernar whereas κ CMa seems to exhibit no stellar wind. On the other hand, these two first Be stars are certainly nearly critical rotators whereas the last one seems to be far from the critical rotation. Thus a polar stellar wind may be due to the nearly critical rotation which induces a local effective temperature change following the von Zeipel theorem, producing a hotter polar region triggering a polar stellar wind. This critical rotation may also explain the formation of a circumstellar disk which is formed by the centrifugal force balancing the equatorial effective gravity of the central star. Following these results we try to investigate if critical rotation may be the clue for the Be phenomenon.
NASA Astrophysics Data System (ADS)
Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea
2017-09-01
We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.
Black Hole Hyperaccretion Inflow–Outflow Model. I. Long and Ultra-long Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Liu, Tong; Song, Cui-Ying; Zhang, Bing; Gu, Wei-Min; Heger, Alexander
2018-01-01
Long-duration gamma-ray bursts (LGRBs) and ultra-LGRBs (ULGRBs) originate from collapsars, in the center of which a newborn rotating stellar-mass black hole (BH) surrounded by a massive accretion disk may form. In the scenario of the BH hyperaccretion inflow–outflow model and Blandford–Znajek (BZ) mechanism to trigger gamma-ray bursts (GRBs), the real accretion rate to power a BZ jet is far lower than the mass supply rate from the progenitor star. The characteristics of the progenitor stars can be constrained by GRB luminosity observations, and the results exceed usual expectations. LGRBs lasting from several seconds to tens of seconds in the rest frame may originate from solar-metallicity (Z∼ 1 {Z}ȯ , where Z and {Z}ȯ are the metallicities of progenitor stars and the Sun), massive (M≳ 34 {M}ȯ , where M and {M}ȯ are the masses of progenitor stars and the Sun) stars or some zero-metallicity (Z∼ 0) stars. A fraction of low-metallicity (Z≲ {10}-2 {Z}ȯ ) stars, including Population III stars, can produce ULGRBs such as GRB 111209A. The fraction of LGRBs lasting less than tens of seconds in the rest frame is more than 40%, which cannot conform to the fraction of the demanded type of progenitor star. It possibly implies that the activity timescale of the central engine may be much longer than the observed timescale of prompt emission phase, as indicated by X-ray late-time activities. Alternatively, LGRBs and ULGRBs may be powered by a millisecond magnetar central engine.
NASA Astrophysics Data System (ADS)
Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss
2018-03-01
Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.
The diskmass survey. VIII. On the relationship between disk stability and star formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westfall, Kyle B.; Verheijen, Marc A. W.; Andersen, David R.
2014-04-10
We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averagingmore » over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.« less
NASA Technical Reports Server (NTRS)
Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.
1991-01-01
The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.
Massive black hole factories: Supermassive and quasi-star formation in primordial halos
NASA Astrophysics Data System (ADS)
Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad
2013-10-01
Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.
NASA Astrophysics Data System (ADS)
Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge
2018-02-01
The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.
2015-10-05
This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the Sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its centre. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the Universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Serge Meunier.
Masses and ages of Delta Scuti stars in eclipsing binary systems
NASA Astrophysics Data System (ADS)
Tsvetkov, Ts. G.; Petrova, Ts. C.
1993-05-01
By using data mainly from Frolov et al. (1982) for four Delta Scuti stars in eclipsing binary systems, AB Cas, Y Cam, RS Cha, and AI Hya, their physical parameters, distances, and radial pulsation modes are determined. The evolutionary track systems of Iben (1967), Paczynski (1970), and Maeder and Meynet (1988) are interpolated in order to estimate evolutionary masses Me and ages t of these variables. Their pulsation masses MQ are estimated from the fitting formulae of Faulkner (1977) and Fitch (1981). Our estimates of evolutionary masses M(e) and pulsation masses M(Q) are close to the masses M determined by Frolov et al. from the star binarity. The only exception is AB Cas, for which there is no agreement between certain star parameters. Another, independent approach is also applied to the stars RS Cha and AI Hya: by using their photometric indices b - y and c(1) from the catalog of Lopez de Coca et al. (1990) and appropriate photometric calibrations, other sets of physical parameters, distances, modes, ages, and evolutionary and pulsation masses of both variables are obtained.
MOCCA code for star cluster simulation: comparison with optical observations using COCOA
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz
2016-02-01
We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.
Taxonomy of the extrasolar planet.
Plávalová, Eva
2012-04-01
When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.
Main-sequence magnetic CP stars: II. Physical parameters and chemical composition of the atmosphere
NASA Astrophysics Data System (ADS)
Romanyuk, I. I.
2007-03-01
This paper continues a series of reviews dedicated to magnetic CP stars. The occurrence frequency of CP stars among B5 F0-type main-sequence stars is shown to be equal to about 15 20%. The problems of identification and classification of these objects are addressed. We prefer the classification of Preston, which subdivides chemically peculiar stars into the following groups: Am, λ Boo, Ap/Bp, Hg-Mn, He-weak, and He-strong stars. The main characteristic features of objects of each group are briefly analyzed. The rotation velocities of CP stars are shown to be about three times lower than those of normal stars of the same spectral types (except for λ Boo and He-strong objects). The rotation periods of CP stars range from 0.5 to 100 days, however, there is also a small group of objects with especially long (up to several tens of years) variability periods. All kinds of peculiar stars can be found in visual binaries, with Am-and Hg-Mn-type stars occurring mostly in short-period binaries with P < 10 days, and the binary rate of these stars is close to normal. The percentage of binaries among magnetic stars (20%) is lower than among normal stars. A rather large fraction of CP1-and CP2-type stars was found to occur in young clusters (with ages smaller than 107 years). Photometric and spectral variability of peculiar stars of various types is discussed, and it is shown that only objects possessing magnetic fields exhibit light and spectral variations. The chemical composition of the atmospheres of CP stars of various types is considered. The abundances of various elements are usually determined by comparing the line profiles in the observed spectrum with those of the synthetic spectra computed for various model atmospheres. Different mechanisms are shown to contribute to chemical inhomogeneity at the star’s surface, and the hypothesis of selective diffusion of atoms in a stable atmosphere is developed. Attention is also paid to the problems of the determination of local chemical composition including the stratification of elements. Some of the coolest SrCrEu peculiar stars are found to exhibit fast light variations with periods ranging from 6 to 15 min. These variations are unassociated with rotation, but are due to nonradial pulsations. The final part of the the review considers the fundamental parameters of CP stars. The effective temperatures, luminosities, radii, and masses of these objects are shown to agree with the corresponding physical parameters of normal main-sequence stars of the same spectral types.
Magnetically Controlled Spasmodic Accretion during Star Formation. II. Results
NASA Astrophysics Data System (ADS)
Tassis, Konstantinos; Mouschovias, Telemachos Ch.
2005-01-01
The problem of the late accretion phase of the evolution of an axisymmetric, isothermal magnetic disk surrounding a forming star has been formulated in a companion paper. The ``central sink approximation'' is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 1011 cm-3 and radii smaller than a few AU. Only the electrons are assumed to be attached to the magnetic field lines, and the effects of both negatively and positively charged grains are accounted for. After a mass of 0.1 Msolar accumulates in the central cell (forming star), a series of magnetically driven outflows and associated outward-propagating shocks form in a quasi-periodic fashion. As a result, mass accretion onto the protostar occurs in magnetically controlled bursts. We refer to this process as spasmodic accretion. The shocks propagate outward with supermagnetosonic speeds. The period of dissipation and revival of the outflow decreases in time, as the mass accumulated in the central sink increases. We evaluate the contribution of ambipolar diffusion to the resolution of the magnetic flux problem of star formation during the accretion phase, and we find it to be very significant albeit not sufficient to resolve the entire problem yet. Ohmic dissipation is completely negligible in the disk during this phase of the evolution. The protostellar disk is found to be stable against interchange-like instabilities, despite the fact that the mass-to-flux ratio has temporary local maxima.
NASA Astrophysics Data System (ADS)
Frasca, A.; Molenda-Żakowicz, J.; De Cat, P.; Catanzaro, G.; Fu, J. N.; Ren, A. B.; Luo, A. L.; Shi, J. R.; Wu, Y.; Zhang, H. T.
2016-10-01
Aims: A comprehensive and homogeneous determination of stellar parameters for the stars observed by the Kepler space telescope is necessary for statistical studies of their properties. As a result of the large number of stars monitored by Kepler, the largest and more complete databases of stellar parameters published to date are multiband photometric surveys. The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, was the first large spectroscopic project, which started in 2011 and aimed at filling that gap. In this work we present the results of our analysis, which is focused on selecting spectra with emission lines and chromospherically active stars by means of the spectral subtraction of inactive templates. The spectroscopic determination of the atmospheric parameters for a large number of stars is a by-product of our analysis. Methods: We have used a purposely developed version of the code ROTFIT for the determination of the stellar parameters by exploiting a wide and homogeneous collection of real star spectra, namely the Indo US library. We provide a catalog with the atmospheric parameters (Teff, log g, and [Fe/H]), radial velocity (RV), and an estimate of the projected rotation velocity (vsini). For cool stars (Teff≤ 6000 K), we also calculated the Hα and Ca II-IRT fluxes, which are important proxies of chromospheric activity. Results: We have derived the RV and atmospheric parameters for 61 753 spectra of 51 385 stars. The average uncertainties, which we estimate from the stars observed more than once, are about 12 km s-1, 1.3%, 0.05 dex, and 0.06 dex for RV, Teff, log g, and [Fe/H], respectively, although they are larger for the spectra with a very low signal-to-noise ratio. Literature data for a few hundred stars (mainly from high-resolution spectroscopy) were used to peform quality control of our results. The final accuracy of the RV is about 14 km s-1. The accuracy of the Teff, log g, and [Fe/H] measurements is about 3.5%, 0.3 dex, and 0.2 dex, respectively. However, while the Teff values are in very good agreement with the literature, we noted some issues with the determination of [Fe/H] of metal poor stars and the tendency, for log g, to cluster around the values typical for main-sequence and red giant stars. We propose correction relations based on these comparisons and we show that this does not have a significant effect on the determination of the chromospheric fluxes. The RV distribution is asymmetric and shows an excess of stars with negative RVs that are larger at low metallicities. Despite the rather low LAMOST resolution, we were able to identify interesting and peculiar objects, such as stars with variable RV, ultrafast rotators, and emission-line objects. Based on the Hα and Ca II-IRT fluxes, we found 442 chromospherically active stars, one of which is a likely accreting object. The availability of precise rotation periods from the Kepler photometry allowed us to study the dependency of these chromospheric fluxes on the rotation rate for a very large sample of field stars. Based on observations collected with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) located at the Xinglong observatory, China.Full Tables A.3 and A.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A39
Stellar and Planetary Parameters for K2 's Late-type Dwarf Systems from C1 to C5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Arturo O.; Crossfield, Ian J. M.; Peacock, Sarah
The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R ≈ 1000 J -, H -, and K -band (0.95–2.52 μ m) spectra of 34 late-type K2 planetmore » and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R {sub ⊙} (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2 . We find a median planet radius and an equilibrium temperature of approximately 3 R {sub ⊕} and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.« less
NEAT: a spatial telescope to detect nearby exoplanets using astrometry
NASA Astrophysics Data System (ADS)
Crouzier, Antoine
2015-01-01
With the present state of exoplanet detection techniques, none of the rocky planets of the Solar System would be discovered, yet their presence is a very strong constraint on the scenarios of formation of planetary systems. Astrometry, by measuring the reflex effect of planets on their central host stars, lead us to the mass of planets and to their orbit determination. This technique is used frequently and is very successful to determine the masses and the orbits of binary stars. From space, it is possible to use differential astrometry around nearby Solar-type stars to detect exoplanets down to one Earth mass in habitable zone, where the sensitivity of the technique is optimal. Finding habitable Earths in the Solar neighborhood would be a major step forward for exoplanet detection and these planets would be prime targets for attempting to find life outside of the Solar System, by searching for bio-markers in their atmospheres. A scientific consortium has formed to promote this kind of astrometric space mission. A mission called NEAT (Nearby Earth Astrometric Telescope) has been proposed to ESA in 2010. A laboratory testbed called NEAT-demo was assembled at IPAG, its main goal is to demonstrate CCD detector calibration to the required accuracy. During my PhD, my activities were related to astrophysical aspects as well as instrumental aspects of the mission. Regarding the scientific case, I compiled a catalog of mission target stars and reference stars (needed for the differential astrometric measurements) and I estimated the scientific return of NEAT-like missions in terms of number of detected exoplanets and their parameter distributions. The second aspect of the PhD is relative to the testbed, which mimics the NEAT telescope configuration. I am going to present the testbed itself, the data analysis methods and the results. An accuracy of 3e-4 pixel was obtained for the relative positions of artificial stars and we have determined that measures of pixel positions by the metrology is currently limited by stray light.
Fine Guidance Sensing for Coronagraphic Observatories
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.
2011-01-01
Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Jung, Christof
2018-01-01
The escape dynamics of the stars in a barred galaxy composed of a spherically symmetric central nucleus, a bar, a flat thin disc and a dark matter halo component is investigated by using a realistic three degrees of freedom (3-d.o.f.) dynamical model. Modern colour-coded diagrams are used for distinguishing between bounded and escaping motion. In addition, the smaller alignment index method is deployed for determining the regular, sticky or chaotic nature of bounded orbits. We reveal the basins of escape corresponding to the escape through the two symmetrical escape channels around the Lagrange points L2 and L3 and also we relate them with the corresponding distribution of the escape times of the orbits. Furthermore, we demonstrate how the stable manifolds, around the index-1 saddle points, accurately define the fractal basin boundaries observed in the colour-coded diagrams. The development scenario of the fundamental vertical Lyapunov periodic orbit is thoroughly explored for obtaining a more complete view of the unfolding of the singular behaviour of the dynamics at the cusp values of the parameters. Finally, we examine how the combination of the most important parameters of the bar (such as the semimajor axis and the angular velocity) influences the observed stellar structures (rings and spirals), which are formed by escaping stars guided by the invariant manifolds near the saddle points.
The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817
NASA Astrophysics Data System (ADS)
Ai, Shunke; Gao, He; Dai, Zi-Gao; Wu, Xue-Feng; Li, Ang; Zhang, Bing; Li, Mu-Zi
2018-06-01
Due to the limited sensitivity of the current gravitational wave (GW) detectors, the central remnant of the binary neutron star (NS) merger associated with GW170817 remains an open question. In view of the relatively large total mass, it is generally proposed that the merger of GW170817 would lead to a short-lived hypermassive NS or directly produce a black hole (BH). There is no clear evidence to support or rule out a long-lived NS as the merger remnant. Here, we utilize the GW and electromagnetic (EM) signals to comprehensively investigate the parameter space that allows a long-lived NS to survive as the merger remnant of GW170817. We find that for some stiff equations of state, the merger of GW170817 could, in principle, lead to a massive NS, which has a millisecond spin period. The post-merger GW signal could hardly constrain the ellipticity of the NS. If the ellipticity reaches 10‑3, in order to be compatible with the multi-band EM observations, the dipole magnetic field of the NS (B p ) is constrained to the magnetar level of ∼1014 G. If the ellipticity is smaller than 10‑4, B p is constrained to the level of ∼109–1011 G. These conclusions weakly depend on the adoption of the NS equation of state.
NASA Astrophysics Data System (ADS)
Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.
2017-10-01
We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H II region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H II region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H II region metallicity derived here with those of H II regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Jin-Jun; Zhang, Bing; Kuiper, Rolf, E-mail: gengjinjun@gmail.com, E-mail: zhang@physics.unlv.edu
The prompt emission of gamma-ray bursts (GRBs) is characterized by rapid variabilities, which may be a direct reflection of the unsteady central engine. We perform a series of axisymmetric 2.5-dimensional simulations to study the propagation of relativistic, hydrodynamic, intermittent jets through the envelope of a GRB progenitor star. A realistic rapidly rotating star is incorporated as the background of jet propagation, and the star is allowed to collapse due to the gravity of the central black hole. By modeling the intermittent jets with constant-luminosity pulses with equal on and off durations, we investigate how the half period, T , affectsmore » the jet dynamics. For relatively small T values (e.g., 0.2 s), the jet breakout time t {sub bo} depends on the opening angle of the jet, with narrower jets more penetrating and reaching the surface at shorter times. For T ≤ 1 s, the reverse shock (RS) crosses each pulse before the jet penetrates through the stellar envelope. As a result, after the breakout of the first group of pulses at t {sub bo}, several subsequent pulses vanish before penetrating the star, causing a quiescent gap. For larger half periods ( T = 2.0 and 4.0 s), all the pulses can successfully penetrate through the envelope, since each pulse can propagate through the star before the RS crosses the shell. Our results may interpret the existence of a weak precursor in some long GRBs, given that the GRB central engine injects intermittent pulses with a half period T ≤ 1 s. The observational data seem to be consistent with such a possibility.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Thampan, A. V.; Bombaci, I.
2001-06-01
We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius (r_orb) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of dr_orb/dJ on the rate of change of the radial gradient of the Keplerian angular velocity at r_orb with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.
SWIRLING GALAXY PARENTS GENERATIONS OF STARS IN ITS CENTER
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA/ESA Hubble Space Telescope has snapped a view of several star generations in the central region of the Whirlpool Galaxy (M51), a spiral region 23 million light-years from Earth in the constellation Canes Venatici (the Hunting Dogs). The galaxy's massive center, the bright ball of light in the center of the photograph, is about 80 light-years across and has a brightness of about 100 million suns. Astronomers estimate that it is about 400 million years old and has a mass 40 million times larger than our Sun. The concentration of stars is about 5,000 times higher than in our solar neighborhood, the Milky Way Galaxy. We would see a continuously bright sky if we lived near the bright center. The dark 'y' across the center is a sign of dust absorption. The bright dot in the middle of the 'y' has a brightness of about one million suns, but a size of less than five light-years. Its power and its tiny size suggest that we have located the elusive central black hole that produces powerful radio jets. Surrounding the center is a much older stellar population that covers a region of about 1,500 light-years in diameter and is at least 8 billion years old, and may be as old as the Universe itself, about 13 billion years. Further away, there is a 'necklace' of very young star-forming regions, clusters of infant stars, younger than 10 million years, which are about 700 light-years away from the center. Normally, young stars are found thousands of light-years away. Astronomers believe that stars in the central region were formed when a dwarf companion galaxy - which is not in the photograph - passed close to it, about 400 million years ago, stirring up dust and material for new star birth. The close encounter has been felt for a long time and is believed to be responsible also for the unusually high star formation activity in the bright necklace of young stars. The color image was assembled from four exposures taken Jan. 15, 1995 with Wide Field Planetary Camera-2 in blue, green, and red wavelengths. CREDIT: Nino Panagia (Space Telescope Science Institute and European Space Agency) and NASA
'Peony Nebula' Star Settles for Silver Medal
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way. Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina. If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity. The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle. The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope. This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.Worldwide Radionavigation Systems
1993-09-01
apparent pole star changes over time. In 3,000 BC the pole star was a Draconis, the brightest star in the constellation Draco (the Dragon), located...the yet-to-be-completed Global Positioning System (GPS), have added a new dimension to the science of navigation. The gyrocompass and inertial platforms...funded as an IDA Central Research Project, is a collection of technical descriptions of worldwide radionavigation systems written by the author over a
Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity
NASA Astrophysics Data System (ADS)
Turimov, Bobur; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Bambi, Cosimo
2018-06-01
In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it is found that the maximum value of the parameter of conformal gravity is less than L ≲9.5 ×105 cm (L /M ≲5 ).
NASA Astrophysics Data System (ADS)
Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.
2017-01-01
We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission, we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M*; 108.1-1010.95 M⊙) and in fifth nearest neighbour local environment density (Σ5; 10-1.3-102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re^{-1} in galaxies with stellar masses in the range 10^{10} < M_{*}/M_{⊙} < 10^{11} and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density, the star formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50,Hα/r50,cont), which compares the extent of ongoing star formation to previous star formation. With this metric, we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4 per cent in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15 per cent in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density, the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.
The Nature and Evolutionary History of GRO J1744-28
NASA Technical Reports Server (NTRS)
Rappaport, S.
1997-01-01
GRO J1744-28 is the first known X-ray source to display bursts, periodic pulsations, and quasi-periodic oscillations. This source may thus provide crucial clues that will lead to an understanding of the differences in the nature of the X-ray variability from various accreting neutron stars. The orbital period is 11.8 days, and the measured mass function of 1.31 x 10(exp -4) solar mass is one of the smallest among all known binaries. If we assume that the donor star is a low-mass giant transferring matter through the inner Lagrange point, then we can show that its mass is lower than approximately 0.7 solar mass and probably closer to 0.25 solar mass. Higher mass, but unevolved, donor stars are shown to be implausible. We also demonstrate that the current He core mass of the donor star lies in the range of 0.20-0.25 solar mass. Thus, this system is most likely in the final stages of losing its hydrogen-rich envelope, with only a small amount of mass remaining in the envelope. If this picture is correct, then GRO J1744-28 may well represent the closest observational link that we have between the low-mass X-ray binaries and recycled binary pulsars in wide orbits. We have carried out a series of binary evolution calculations and explored, both systematically and via a novel Monte Carlo approach, the range of initial system parameters and input physics that can lead to the binary parameters of the present-day GRO J1744-28 system. The input parameters include both the initial total mass and the core mass of the donor star, the neutron-star mass, the strength of the magnetic braking, the mass-capture fraction, and the specifics of the core mass/radius relation for giants. Through these evolution calculations, we compute probability distributions for the current binary system parameters (i.e., the total mass, core mass, radius, luminosity, and K-band magnitude of the donor star, the neutron star mass, the orbital inclination angle, and the semimajor axis of the binary). Our calculations yield the following values for the GRO J1744-28 system parameters (with 95% confidence limits in parentheses): donor star mass: 0.24 solar mass (0.2-0.7 solar mass); He core mass of the donor star: 0.22 solar mass (0.20-0.25 solar mass); neutron-star mass: 1.7 solar mass (1.39-1.96 solar mass); orbital inclination angle: 18deg (7deg-22deg); semi- major axis: 64 lt-s (60-67 lt-s); radius of the donor star: 6.2 solar radius(6-9 solar radius); luminosity of donor star: 23 solar luminosity (15-49 solar luminosity), and long-term mass transfer rate at the current epoch: 5 x 10(exp -10)solar mass/yr (2 x 10(exp -10) to 5 x 10(exp -9)solar mass/yr). We deduce that the magnetic field of the underlying neutron star lies in the range of approximately 1.8 x 10(exp 11)G to approximately 7 x 10(exp 11)G, with a most probable value of 2.7 x 10(exp 11)G. This is evidently sufficiently strong to funnel the accretion flow onto the magnetic polar caps and suppress the thermonuclear flashes that would otherwise give rise to the type 1 X-ray bursts observed in most X-ray bursters. We present a simple paradigm for magnetic accreting neutron stars where X-ray pulsars, GRO J1744-28, the Rapid Burster, and the type 1 X-ray bursters may form a continuum of possible behaviors among accreting neutron stars, with the strength of the neutron-star magnetic field serving as a crucial parameter that determines the mode of X-ray variability from a given object.
Hot Star Extension to the Hubble Space Telescope Stellar Spectral Library
NASA Astrophysics Data System (ADS)
Khan, Islam; Worthey, Guy
2017-01-01
CCD spectra of 36 stars were obtained from the Space Telescope Imaging Spectrograph (STIS) installed in the Hubble Space Telescope (HST) using three low resolution gratings - G230LB, G430L, and G750L, combined in processing to make single, continuous spectra from 0.2 to 1.0 micrometers. These spectra will be added to the Next Generation Stellar Library (NGSL) after completing the data analysis, reduction, and the required corrections. The stars include normal O-type stars, helium-burning stars, and post-asymptotic giant branch (PAGB) stars. Difficult steps in the data reduction process were removing the cosmic rays from the raw images and defringing of the G750L spectra using fringe flats. Most stars have detectable dust extinction. To aid in analysis, synthetic spectra were generated with various effective temperatures and surface gravities. A five parameter analytic model for the dust extinction correction was adopted. The parameters were varied in order to fit especially the ultraviolet portion of the observed and comparison synthetic spectra. Cross-correlation was used to bring the spectra to a common, final, zero velocity wavelength scale. Some star temperatures obtained from fitting synthetic versus observed spectra vary significantly from literature values. The dust extinction correction parameters also varied for several stars, mostly O stars, indicating variations in dust properties for different lines of sight. Analysis of scattered light effects showed that it was significant only for our two coolest stars.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.Support for this work was provided by NASA through grant number HST-GO-14141 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Cold Dust and its Heating Sources in M 33
NASA Astrophysics Data System (ADS)
Komugi, Shinya; Tosaki, Tomoka; Kohno, Kotaro; Tsukagoshi, Takashi; Tamura, Yoichi; Miura, Rie; Onodera, Sachiko; Kuno, Nario; Kawabe, Ryohei; Nakanishi, Koichiro; Sawada, Tsuyoshi; Ezawa, Hajime; Wilson, Grant W.; Yun, Min S.; Scott, Kimberly S.; Hughes, David H.; Aretxaga, Itziar; Perera, Thushara A.; Austermann, Jason E.; Tanaka, Kunihiko; Muraoka, Kazuyuki; Egusa, Fumi
2011-12-01
We have mapped the nearby face-on spiral galaxy M 33 in the 1.1 mm dust continuum using AzTEC on Atacama Submillimeter Telescope Experiment (ASTE). The preliminary results are presented here. The observed dust has a characteristic temperature of ~ 21 K in the central kpc, radially declining down to ~ 13 K at the edge of the star forming disk. We compare the dust temperatures with KS band flux and star formation tracers. Our results imply that cold dust heating may be driven by long-lived stars even nearby star forming regions.
NuSTAR Seeks Hidden Black Holes
2015-07-06
Top: An illustration of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, in orbit. The unique school bus-long mast allows NuSTAR to focus high energy X-rays. Lower-left: A color image from NASA's Hubble Space Telescope of one of the nine galaxies targeted by NuSTAR in search of hidden black holes. Bottom-right: An artist's illustration of a supermassive black hole, actively feasting on its surroundings. The central black hole is hidden from direct view by a thick layer of encircling gas and dust. http://photojournal.jpl.nasa.gov/catalog/PIA19348
A dynamical model for the formation of gas rings and episodic starbursts near galactic centres
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Kruijssen, J. M. Diederik
2015-10-01
We develop a simple dynamical model for the evolution of gas in the centres of barred spiral galaxies, using the Milky Way's Central Molecular Zone (CMZ, i.e. the central few hundred pc) as a case study. We show that, in the presence of a galactic bar, gas in a disc in the central regions of a galaxy will be driven inwards by angular momentum transport induced by acoustic instabilities within the bar's inner Lindblad resonance. This transport process drives turbulence within the gas that temporarily keeps it strongly gravitationally stable and prevents the onset of rapid star formation. However, at some point the rotation curve must transition from approximately flat to approximately solid body, and the resulting reduction in shear reduces the transport rates and causes gas to build up, eventually producing a gravitationally unstable region that is subject to rapid and violent star formation. For the observed rotation curve of the Milky Way, the accumulation happens ˜100 pc from the centre of the Galaxy, in good agreement with the observed location of gas clouds and young star clusters in the CMZ. The characteristic time-scale for gas accumulation and star formation is of the order of 10-20 Myr. We argue that similar phenomena should be ubiquitous in other barred spiral galaxies.
The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability
NASA Astrophysics Data System (ADS)
Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.
2015-07-01
We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.
Galileo spacecraft autonomous attitude determination using a V-slit star scanner
NASA Technical Reports Server (NTRS)
Mobasser, Sohrab; Lin, Shuh-Ren
1991-01-01
The autonomous attitude determination system of Galileo spacecraft, consisting of a radiation hardened star scanner and a processing algorithm is presented. The algorithm applying to this system are the sequential star identification and attitude estimation. The star scanner model is reviewed in detail and the flight software parameters that must be updated frequently during flight, due to degradation of the scanner response and the star background change are identified.
Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers
Sun, Ting; Xing, Fei; You, Zheng
2013-01-01
The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2015-07-01
We present results of analyses of two-pion interferometry in Au +Au collisions at √{sNN}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the BNL Relativistic Heavy Ion Collider Beam Energy Scan program. The extracted correlation lengths (Hanbury-Brown-Twiss radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.
Gas Heating, Chemistry and Photoevaporation in Protostellar Disks
NASA Technical Reports Server (NTRS)
Hollenbach, David
2004-01-01
We model the thermal balance, the chemistry, and the radiative transfer in dusty disks orbiting young, low mass stars. These models are motivated by observations of infrared and ultraviolet transitions of H2 from protoplanetary disks, as well as millimeter and submillimeter observations of other molecules such as CO, and infrared continuum observations of the dust. The dust grains are heated primarily by the stellar radiation and the infrared radiation field produced by the dust itself. The gas is heated by collisions with warmer dust grains, X-rays from the region close to the stellar surface, UV pumping of hydrogen molecules, and the grain photoelectric heating mechanism initiated by UV photons from the central star. We treat cases where the gas to dust ratio is high, because the dust has settled to the midplane and coagulated into relatively large objects. We discuss situations in which the infrared emission from H2 can be detected, and how the comparison of the observations with our models can deduce physical parameters such as the mass and the density and temperature distribution of the gas.
Review on the Role of Planetary Factors on Habitability.
Kereszturi, A; Noack, L
2016-11-01
In this work various factors on the habitability were considered, focusing on conditions irrespective of the central star's radiation, to see the role of specific planetary body related effects. These so called planetary factors were evaluated to identify those trans-domain issues where important information is missing but good chance exit to be filled by new knowledge that might be gained in the next decade(s). Among these strategic knowledge gaps, specific issues are listed, like occurrence of radioactive nucleides in star forming regions, models to estimate the existence of subsurface liquid water from bulk parameters plus evolutionary context of the given system, estimation on the existence of redox gradient depending on the environment type etc. These issues require substantial improvement of modelling and statistical handling of various cases, as "planetary environment types". Based on our current knowledge it is probable that subsurface habitability is at least as frequent, or more frequent than surface habitability. Unfortunately it is more difficult from observations to infer conditions for subsurface habitability, but specific argumentation might help with indirect ways, which might result in new methods to approach habitability in general.
Measuring consistent masses for 25 Milky Way globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmig, Brian; Seth, Anil; Ivans, Inese I.
2015-02-01
We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trendsmore » of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.« less
Di-jet Hadron Correlations in Central Au+Au Collisions at √{sNN} = 200 GeV at STAR
NASA Astrophysics Data System (ADS)
Elsey, Nicholas; STAR Collaboration
2017-09-01
Jets and their modifications due to partonic energy loss provide a powerful tool to study the properties of the QGP created in ultrarelativistic heavy-ion collisions. For jets reconstructed with the anti-kT algorithm with resolution parameter R = 0.4 , previous measurements of the di-jet asymmetry AJ at STAR) indicate that the observed imbalance of an initial ``hard-core'' di-jet selection with pTconst > 2.0 GeV/c, pTlead > 20.0 GeV/c and pTsub > 10.0 GeV/c is restored to the balance of the pp reference when soft constituents are included. The lost energy recovered with soft constituents suggests soft gluon radiation by high pT partons. Jet-hadron correlations with respect to di-jets allow a differential assessment of the kinematic properties of the soft gluon radiation spectrum induced by partonic energy loss in the QGP. We present charged hadron correlations with respect to the di-jets found in the above AJ analysis, and compare to similar measurements using a jet trigger at RHIC.
Adamczyk, L.
2015-07-10
In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.
In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less
NASA Technical Reports Server (NTRS)
Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, Allen V.; Grundahl, F.
2014-01-01
Context. NGC288 is a globular cluster with a well developed blue horizontal branch covering the so-called u-jump which indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. Aims. We compare observed abundances to predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition we investigate the nature of the overluminous blue HB stars around the u-jump. Methods. We define a new photometric index sz from uvby measurements that is gravity sensitive between 8 000K and 12 000 K. Using medium-resolution spectra and Stroemgren photometry we determine atmospheric parameters (Teff, logg) and abundances for the blue HB stars. We use both homogeneous and stratified model spectra for our spectroscopic analyses. Results. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9 000K and 14 000 K. Outside this temperature range, however, they follow rather the results found for such stars in (omega)Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10(exp -7) M. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. The use of stratified model spectra to determine effective temperatures, surface gravities and masses moves the hotter stars to a closer agreement with canonical evolutionary predictions. Conclusions. Our results show definite promise towards solving the long-standing issue of surface gravity and mass discrepancies for hot HB stars, but there is still much work needed to arrive at a self-consistent solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.; Li, Y.; Hekker, S., E-mail: wutao@ynao.ac.cn, E-mail: ly@ynao.ac.cn, E-mail: hekker@mps.mpg.de
2014-01-20
Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on amore » relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.« less
NASA Astrophysics Data System (ADS)
Baldeschi, Adriano; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.; Gatti, M.; Serra, A.; Merello, M.; Benedettini, M.; Di Giorgio, A. M.; Liu, J. S.
2017-04-01
The degradation of spatial resolution in star-forming regions, observed at large distances (d ≳ 1 kpc) with Herschel, can lead to estimates of the physical parameters of the detected compact sources (clumps), which do not necessarily mirror the properties of the original population of cores. This paper aims at quantifying the bias introduced in the estimation of these parameters by the distance effect. To do so, we consider Herschel maps of nearby star-forming regions taken from the Herschel Gould Belt survey, and simulate the effect of increased distance to understand what amount of information is lost when a distant star-forming region is observed with Herschel resolution. In the maps displaced to different distances we extract compact sources, and we derive their physical parameters as if they were original Herschel infrared Galactic Plane Survey maps of the extracted source samples. In this way, we are able to discuss how the main physical properties change with distance. In particular, we discuss the ability of clumps to form massive stars: we estimate the fraction of distant sources that are classified as high-mass stars-forming objects due to their position in the mass versus radius diagram, that are only 'false positives'. We also give a threshold for high-mass star formation M>1282 (r/ [pc])^{1.42} M_{⊙}. In conclusion, this paper provides the astronomer dealing with Herschel maps of distant star-forming regions with a set of prescriptions to partially recover the character of the core population in unresolved clumps.
Theoretical studies of binaries in astrophysics
NASA Astrophysics Data System (ADS)
Dischler, Johann Sebastian
This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers
NASA Astrophysics Data System (ADS)
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-01
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-16
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
NASA Astrophysics Data System (ADS)
Koliopanos, Filippos; Vasilopoulos, Georgios; Godet, Olivier; Bachetti, Matteo; Webb, Natalie A.; Barret, Didier
2017-12-01
Aims: In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods: We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results: We confirm the previously noted presence of the low-energy (≲6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" (≳1 keV) and a "cool" (≲0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B ≳ 1012 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy (≳15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T r-0.75. Conclusions: We have offered a new and robust physical interpretation for the dual-thermal spectra of ULXs. We find that the best-fit derived parameters of our model, are in excellent agreement with recent theoretical predictions that favour super-critically accreting NSs as the engines of a large fraction of ULXs. Nevertheless, the considerable degeneracy between models and the lack of unequivocal evidence cannot rule out other equally plausible interpretations. Deeper broadband observations and time-resolved spectroscopy are warranted to further explore this newly emerging framework.
Star formation in infrared bright and infrared faint starburst interacting galaxies
NASA Technical Reports Server (NTRS)
Lamb, Susan A.; Bushouse, Howard A.; Towns, John W.
1990-01-01
Short wavelength IUE spectra of Arp 248b and UGC 8315N are combined with optical spectra and interpreted using a combination of spectrum synthesis and spectral diagnostics to place constraints on the massive star populations of the central regions of these galaxies and to deduce information about the star formation histories in the last 10(exp 8) years. The authors find that both galaxies have substantial fractions of their optical light coming from massive stars and that Arp 248b may be dominated in the UV by WR stars. The UV spectra are dominated by radiation from evolved massive stars and the authors place and age on the burst in Arp 248b of a few tens of millions of years.
SiO maser polarization in evolved stars: magnetic field
NASA Astrophysics Data System (ADS)
Herpin, F.; Baudry, A.; Thum, C.; Morris, D.; Wiesemeyer, H.
The maser theory still needs to be improved, in particular in terms of polarization. The study of the maser geometry inside the circumstellar envelopes can also be achieved through polarization studies (e.g., VLBI observations). But the most exciting point is the determination of the magnetic field that can be made from polarization measurements: this is definitively a new field of investigation for these evolved objects. The magnetic field probably plays an important role in the AGB star's life and can be a major factor (magnetic rotator theory) on the origin of the high mass loss rates observed in evolved objects. Measurement of the magnetic field is thus essential to study the mass loss mechanisms and also the Alfven waves. During its transition most quasi spherical AGB stars (i.e. envelopes) become complicated aspherical objects. This shaping is well explained by the Interacting Stellar Winds theory (Kwok works), but the ISW model fails to reproduce very complicated structures with jets and ansae. A new model (Magnetized Wind Blown Bubble theory) was thus developed by Blackman et al. (2001) and A. Franck: a weak toroidal magnetic field, embedded in the stellar wind, acts as a collimating agent (cf. Garcia-Segura 1997) and can produce such structures. Three molecules can show polarized maser emission in the circumstellar envelopes: - OH traces the envelope far from the central star (1000-10000 AU) - H2O at intermediate distances (a few 100 AU) - SiO in the inner circumstellar layers (5-10 AU) Measurement of the polarization rate of the maser radiation emitted by these molecules can give us the averaged value B// of the magnetic field along the line of sight (for a single dish observation). We present here the first complete study of the SiO maser polarization in a large sample of evolved stars (more than 100). The 4 Stokes parameters I, U, Q, V were simultaneously measured with the polarimeter on the IRAM-30m telescope. From the Stokes parameters values we derive the linear (pL) and circular (pC) polarization rates and polarization angle. The circular polarization rate gives us directly the magnetic field B//: B// varies from 1 to 32 Gauss depending on the source, with an average value of 9 Gauss.
NASA Astrophysics Data System (ADS)
Bowman, Dominic M.; Kurtz, Donald W.
2018-05-01
The δ Sct stars are a diverse group of intermediate-mass pulsating stars located on and near the main sequence within the classical instability strip in the Hertzsprung-Russell diagram. Many of these stars are hybrid stars pulsating simultaneously with pressure and gravity modes that probe the physics at different depths within a star's interior. Using two large ensembles of δ Sct stars observed by the Kepler Space Telescope, the instrumental biases inherent to Kepler mission data and the statistical properties of these stars are investigated. An important focus of this work is an analysis of the relationships between the pulsational and stellar parameters, and their distribution within the classical instability strip. It is found that a non-negligible fraction of main-sequence δ Sct stars exist outside theoretical predictions of the classical instability boundaries, which indicates the necessity of a mass-dependent mixing length parameter to simultaneously explain low and high radial order pressure modes in δ Sct stars within the Hertzsprung-Russell diagram. Furthermore, a search for regularities in the amplitude spectra of these stars is also presented, specifically the frequency difference between pressure modes of consecutive radial order. In this work, it is demonstrated that an ensemble-based approach using space photometry from the Kepler mission is not only plausible for δ Sct stars, but that it is a valuable method for identifying the most promising stars for mode identification and asteroseismic modelling. The full scientific potential of studying δ Sct stars is as yet unrealized. The ensembles discussed in this paper represent a high-quality data set for future studies of rotation and angular momentum transport inside A and F stars using asteroseismology.
NASA Technical Reports Server (NTRS)
Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)
1988-01-01
Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.
NASA Astrophysics Data System (ADS)
Sichevskij, S. G.
2018-01-01
The feasibility of the determination of the physical conditions in star's atmosphere and the parameters of interstellar extinction from broad-band photometric observations in the 300-3000 nm wavelength interval is studied using SDSS and 2MASS data. The photometric accuracy of these surveys is shown to be insufficient for achieving in practice the theoretical possibility of estimating the atmospheric parameters of stars based on ugriz and JHK s photometry exclusively because such determinations result in correlations between the temperature and extinction estimates. The uncertainty of interstellar extinction estimates can be reduced if prior data about the temperature are available. The surveys considered can nevertheless be potentially valuable sources of information about both stellar atmospheric parameters and the interstellar medium.
Absolute parameters and chemical composition of the binary star OU Gem
NASA Astrophysics Data System (ADS)
Glazunova, L. V.; Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.
2014-10-01
The absolute parameters and chemical composition of the BY Dra-type spectroscopic binary OU Gem (HD 45088) were determined on the basis of 10 high-resolution spectra. A new orbital solution of the binary system was determined, the binary ephemerides were specified, and the main physical and atmospheric parameters of the binary components were obtained. The chemical composition of both components was estimated for the first time for the stars of such type.
NASA Astrophysics Data System (ADS)
Peters, Matthew L.; Wisniewski, John; Choi, Yumi; Williams, Ben; Lomax, Jamie; Bjorkman, Karen; Durbin, Meredith; Johnson, Lent Cliff; Lewis, Alexia; Lutz, Julie; Sigut, Aaron; Wallach, Aislynn; Dalcanton, Julianne
2018-01-01
We identify Be candidate stars in M31 using two-epoch F625W + F658N photometry from HST/ACS+WFC3 combined with the Panchromatic Hubble Andromeda Treasury (PHAT) Catalog. Using the PHAT catalog allows us to extract stellar parameters such as surface temperature and gravity, thereby allowing us to identify the main sequence B type stars in the field of view. Be candidate stars are identified by comparing their HST narrow-band Hα excess magnitudes with that predicted by Kurucz spectra. We find 314 Be candidate stars out of 5699 B + Be candidate stars (5.51%) in our first epoch and 301 Be candidate stars out of 5769 B + Be candidate stars (5.22%) in our second epoch. Our Be fraction, while lower than that of the SMC, LMC, and MW, is possibly consistent with the fact the M31 has a higher metallicity than the other galaxies because Be fraction varies inversely with metallicity. We note that earlier spectral types have the largest Be fraction, and that the Be fraction strictly declines as the spectral type increases to later types. We then match our Be candidate stars with clusters, establishing that 39 of 314 are cluster stars in epoch one and 36 of 301 stars are cluster stars in epoch two. We assign ages, using the cluster age to characterize cluster Be candidate stars and star formation histories to characterize field Be candidate stars. Finally, we determine which Be candidate stars exhibited disk loss or disk growth between epochs, finding that, of the Be stars that did not show source confusion or low SNR in one of the epochs, 65 / 265 (24.5%) showed disk loss or renewal, while 200 / 265 (75.5%) showed only small changes in Hα excess. Our research provides context for the parameters of candidate Be stars in M31, which will be useful in further determining the nature of Be stars. This paper was supported by a grant from STScI via GO-13857.
Comparison of calculated and observed integral magnitudes for the globular cluster M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerashchenko, A.N.; Kadla, Z.I.
On the basis of a study of the distribution of stars in the central region of the globular cluster M13 it is found that integral photoelectric observations cover stars down to about the point of turnoff from the main sequence. Here the distribution of giants and stars of the horizontal branch as a function of distance from the center of the cluster is the same within limits of 0
CO observations of nearby galaxies and the efficiency of star formation
NASA Technical Reports Server (NTRS)
Young, Judith S.
1987-01-01
The CO distributions and total molecular content of 160 galaxies were observed using the 14 meter millimeter telescope of the FCRAO. For the luminous, relatively face-on Sc galaxies, the azimuthally averaged CO distributions are centrally peaked, while for the Sb and Sa galaxies the Co distributions often exhibit central CO holes up to 5 kpc across. None of the Sc galaxies have CO distributions which resemble the Milky Way. A general correlation was found between total CO and IR luminosities in galaxies. The scatter in this relation is highly correlated with dust temperature. No strong correlation of IR luminosities was found with HI masses, and it was thereby concluded that the infrared emission is more directly tied to the molecular content of galaxies. It is suggested that galaxies which have high Star Formation Effiencies (SFEs) produce more stars per unit molecular mass, thereby increasing the average temperature of the dust in the star forming regions. Irregular galaxies and galaxies previously identified as mergers have the highest observed star formation efficiencies. For the mergers, evidence was found that the IR/CO luminosity ratio increases with the merger age estimated by Joseph and Wright (1985).
NASA Astrophysics Data System (ADS)
Polkowski, Marcin; Grad, Marek
2016-04-01
Passive seismic experiment "13BB Star" is operated since mid 2013 in northern Poland and consists of 13 broadband seismic stations. One of the elements of this experiment is dedicated on-line data acquisition system comprised of both client (station) side and server side modules with web based interface that allows monitoring of network status and provides tools for preliminary data analysis. Station side is controlled by ARM Linux board that is programmed to maintain 3G/EDGE internet connection, receive data from digitizer, send data do central server among with additional auxiliary parameters like temperatures, voltages and electric current measurements. Station side is controlled by set of easy to install PHP scripts. Data is transmitted securely over SSH protocol to central server. Central server is a dedicated Linux based machine. Its duty is receiving and processing all data from all stations including auxiliary parameters. Server side software is written in PHP and Python. Additionally, it allows remote station configuration and provides web based interface for user friendly interaction. All collected data can be displayed for each day and station. It also allows manual creation of event oriented plots with different filtering abilities and provides numerous status and statistic information. Our solution is very flexible and easy to modify. In this presentation we would like to share our solution and experience. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
The RR Lyrae variables in the globular cluster M68
NASA Technical Reports Server (NTRS)
Clement, Christine M.; Ferance, Stephen; Simon, Norman R.
1993-01-01
New observations, made with the Helen Sawyer Hogg telescope at Las Campanas, have been analyzed in a search for double-mode pulsators (RRd stars) in the metal-poor globular cluster, Messier 68. Of the 30 stars studied, nine have been identified as RRd stars; V33, which exhibited the characteristics of an RRd star in 1950, now appears to be an RRc star. Reliable periods and period ratios have been determined for six of the RRd stars. Masses for these RRd stars, calculated from fitting formulas given by Kovacs et al. (1991), range from 0.75 to 0.90 solar mass, depending on the assumed luminosity and metal abundance. These masses are in the same range as those for the RRd stars in M 15, whose RRd sample resembles that of M68 very closely. Fourier parameters determined for the light curves of the M68 variables show that the RRc stars in the two clusters are also very similar. In particular, on the plot of phase parameter phi sub 31 with period, the M15 and M68 RRc samples are virtually indistinguishable. A comparison of the new M68 observations with observations made 40 yr ago shows that the periods of some of the stars have changed, but the 40 yr interval is too short for detecting period changes caused by evolutionary effects.
Gaia FGK benchmark stars: Metallicity
NASA Astrophysics Data System (ADS)
Jofré, P.; Heiter, U.; Soubiran, C.; Blanco-Cuaresma, S.; Worley, C. C.; Pancino, E.; Cantat-Gaudin, T.; Magrini, L.; Bergemann, M.; González Hernández, J. I.; Hill, V.; Lardo, C.; de Laverny, P.; Lind, K.; Masseron, T.; Montes, D.; Mucciarelli, A.; Nordlander, T.; Recio Blanco, A.; Sobeck, J.; Sordo, R.; Sousa, S. G.; Tabernero, H.; Vallenari, A.; Van Eck, S.
2014-04-01
Context. To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or "benchmark stars", with well-defined parameters to be used as a reference. Aims: We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities. Methods: Up to seven different methods were used to analyze an observed spectral library of high resolutions and high signal-to-noise ratios. The metallicity was determined by assuming a value of effective temperature and surface gravity obtained from fundamental relations; that is, these parameters were known a priori and independently from the spectra. Results: We present a set of metallicity values obtained in a homogeneous way for our sample of benchmark stars. In addition to this value, we provide detailed documentation of the associated uncertainties. Finally, we report a value of the metallicity of the cool giant ψ Phe for the first time. Based on NARVAL and HARPS data obtained within the Gaia DPAC (Data Processing and Analysis Consortium) and coordinated by the GBOG (Ground-Based Observations for Gaia) working group and on data retrieved from the ESO-ADP database.Tables 6-76 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A133
Effects of mass variation on structures of differentially rotating polytropic stars
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan
2018-07-01
A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.
Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald
2017-01-01
The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.
A Study of the Long Term Behavior of the SX Phe Star KZ Hya1
NASA Astrophysics Data System (ADS)
Peña, J. H.; Piña, D. S.; Rentería, A.; Villarreal, C.; Soni, A. A.; Guillen, J.; Calderón, J.
2018-04-01
From the newly determined times of maximum light of the SX Phe star KZ Hya and others from the literature, as well as from uvby - β photoelectric photometry, we determined the nature of this star and its physical parameters.
Spectroscopy of Dwarf Stars Around the North Celestial Pole
NASA Astrophysics Data System (ADS)
Mikolaitis, Šarūnas; Tautvaišienė, Gražina; Drazdauskas, Arnas; Minkevičiūtė, Renata; Klebonas, Lukas; Bagdonas, Vilius; Pakšienė, Erika; Janulis, Rimvydas
2018-07-01
New space missions (e.g., NASA-TESS and ESA-PLATO) will perform an in-depth analysis of bright stars in large fields of the celestial sphere searching for extraterrestrial planets and investigating their host-stars. Asteroseismic observations will search for exoplanet-hosting stars with solar-like oscillations. In order to achieve all the goals, a full characterization of the stellar objects is important. However, accurate atmospheric parameters are available for less than 30% of bright dwarf stars of the solar neighborhood. In this study we observed high-resolution (R = 60,000) spectra for all bright (V < 8 mag) and cooler than F5 spectral class dwarf stars in the northern-most field of the celestial sphere with radius of 20° from the α(2000) = 161.°03 and δ(2000) = 86.°60 that is a center of one of the preliminary ESO-PLATO fields. Spectroscopic atmospheric parameters were determined for 140 slowly rotating stars, for 73% of them for the first time. The majority (83%) of the investigated stars are in the TESS object lists and all of them are in the preliminary PLATO field. Our results have no systematic differences when compared with other recent studies. We have 119 stars in common with the Geneva–Copenhagen Survey, where stellar parameters were determined photometrically, and find a 14 ± 125 K difference in effective temperatures, 0.01 ± 0.16 in log g, and ‑0.02 ± 0.09 dex in metallicities. Comparing our results for 39 stars with previous high-resolution spectral determinations, we find only a 7 ± 73 K difference in effective temperatures, 0.02 ± 0.09 in log g, and ‑0.02 ± 0.09 dex in metallicities. We also determined basic kinematic and orbital parameters for this sample of stars. From the kinematical point of view, almost all our stars belong to the thin disk substructure of the Milky Way. The derived galactocentric metallicity gradient is ‑0.066 ± 0.024 dex kpc‑1 (2.5σ significance) and the vertical metallicity gradient is ‑0.102 ± 0.099 dex kpc‑1 (1σ significance) that comply with the latest inside-out thin disk formation models, including those with stellar migration taken into account. Based on observations collected with the 1.65 m telescope and VUES spectrograph at the Molėtai Astronomical Observatory of Institute of Theoretical Physics and Astronomy, Vilnius University, for the SPFOT survey.
Población de estrellas Be en cúmulos abiertos galácticos
NASA Astrophysics Data System (ADS)
Aidelman, Y. J.; Cidale, L. S.; Panei, J. A.
2017-10-01
We study the population of Be stars in open clusters with the objective of finding relationships between the intrinsic properties of Be stars and the characteristics of their circumstellar envelopes. In this way, we can provide data for a better understanding of this phenomenon. With the spectrofotometric BCD system we determine fundamental parameters of these stars and analyze their spectra. We detect late B-type stars with circumstellar envelopes, but without H emission. These stars can be considered as the coldest counterpart of the Be stars.
The K2-HERMES Survey. I. Planet-candidate Properties from K2 Campaigns 1–3
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Sharma, Sanjib; Stello, Dennis; Buder, Sven; Kos, Janez; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Ness, Melissa; Zwitter, Tomaz; Horner, Jonathan; Clark, Jake; Kane, Stephen R.; Huber, Daniel; Bland-Hawthorn, Joss; Casey, Andrew R.; De Silva, Gayandhi M.; D’Orazi, Valentina; Freeman, Ken; Martell, Sarah; Simpson, Jeffrey D.; Zucker, Daniel B.; Anguiano, Borja; Casagrande, Luca; Esdaile, James; Hon, Marc; Ireland, Michael; Kafle, Prajwal R.; Khanna, Shourya; Marshall, J. P.; Saddon, Mohd Hafiz Mohd; Traven, Gregor; Wright, Duncan
2018-02-01
Accurate and precise radius estimates of transiting exoplanets are critical for understanding their compositions and formation mechanisms. To know the planet, we must know the host star in as much detail as possible. We present first results from the K2-HERMES project, which uses the HERMES multi-object spectrograph on the Anglo-Australian Telescope to obtain R ∼ 28000 spectra of up to 360 stars in one exposure. This ongoing project aims to derive self-consistent spectroscopic parameters for about half of K2 target stars. We present complete stellar parameters and isochrone-derived masses and radii for 46 stars hosting 57 K2 candidate planets in Campaigns 1–3. Our revised host-star radii cast severe doubt on three candidate planets: EPIC 201407812.01, EPIC 203070421.01, and EPIC 202843107.01, all of which now have inferred radii well in excess of the largest known inflated Jovian planets.
Cracking on anisotropic neutron stars
NASA Astrophysics Data System (ADS)
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Tidal capture of stars by a massive black hole
NASA Technical Reports Server (NTRS)
Novikov, I. D.; Pethick, C. J.; Polnarev, A. G.
1992-01-01
The processes leading to tidal capture of stars by a massive black hole and the consequences of these processes in a dense stellar cluster are discussed in detail. When the amplitude of a tide and the subsequent oscillations are sufficiently large, the energy deposited in a star after periastron passage and formation of a bound orbit cannot be estimated directly using the linear theory of oscillations of a spherical star, but rather numerical estimates must be used. The evolution of a star after tidal capture is discussed. The maximum ratio R of the cross-section for tidal capture to that for tidal disruption is about 3 for real systems. For the case of a stellar system with an empty capture loss cone, even in the case when the impact parameter for tidal capture only slightly exceeds the impact parameter for direct tidal disruption, tidal capture would be much more important than tidal disruption.
Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies
NASA Astrophysics Data System (ADS)
Scharwächter, J.; Husemann, B.; Busch, G.; Komossa, S.; Dopita, M. A.
2017-10-01
We present optical integral field spectroscopy for five z< 0.062 narrow-line Seyfert 1 (NLS1) galaxies, probing their host galaxies at ≳ 2{--}3 {kpc} scales. Emission lines from the active galactic nucleus (AGN) and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of ≳ 2{--}3 {kpc}, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates (SFRs) exceeding the main sequence of low-redshift star-forming galaxies. The specific SFRs for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific SFRs, intermediate to the main sequence and the red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.
The environment of the wind-wind collision region of η Carinae
NASA Astrophysics Data System (ADS)
Panagiotou, C.; Walter, R.
2018-02-01
Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.
28SiO v = 0 J = 1-0 emission from evolved stars
NASA Astrophysics Data System (ADS)
de Vicente, P.; Bujarrabal, V.; Díaz-Pulido, A.; Albo, C.; Alcolea, J.; Barcia, A.; Barbas, L.; Bolaño, R.; Colomer, F.; Diez, M. C.; Gallego, J. D.; Gómez-González, J.; López-Fernández, I.; López-Fernández, J. A.; López-Pérez, J. A.; Malo, I.; Moreno, A.; Patino, M.; Serna, J. M.; Tercero, F.; Vaquero, B.
2016-05-01
Aims: Observations of 28SiO v = 0J = 1-0 line emission (7-mm wavelength) from asymptotic giant branch (AGB) stars show in some cases peculiar profiles, composed of a central intense component plus a wider plateau. Very similar profiles have been observed in CO lines from some AGB stars and most post-AGB nebulae and, in these cases, they are clearly associated with the presence of conspicuous axial symmetry and bipolar dynamics. We aim to systematically study the profile shape of 28SiO v = 0J = 1-0 lines in evolved stars and to discuss the origin of the composite profile structure. Methods: We present observations of 28SiO v = 0J = 1-0 emission in 28 evolved stars, including O-rich, C-rich, and S-type Mira-type variables, OH/IR stars, semiregular long-period variables, red supergiants and one yellow hypergiant. Most objects were observed in several epochs, over a total period of time of one and a half years. The observations were performed with the 40 m radio telescope of the Instituto Geográfico Nacional (IGN) in Yebes, Spain. Results: We find that the composite core plus plateau profiles are systematically present in O-rich Miras, OH/IR stars, and red supergiants. They are also found in one S-type Mira (χ Cyg) and in two semiregular variables (X Her and RS Cnc) that are known to show axial symmetry. In the other objects, the profiles are simpler and similar to those observed in other molecular lines. The composite structure appears in the objects in which SiO emission is thought to come from the very inner circumstellar layers, prior to dust formation. The central spectral feature is found to be systematically composed of a number of narrow spikes, except for X Her and RS Cnc, in which it shows a smooth shape that is very similar to that observed in CO emission. These spikes show a significant (and mostly chaotic) time variation, while in all cases the smooth components remain constant within the uncertainties. The profile shape could come from the superposition of standard wide profiles and a group of weak maser spikes confined to the central spectral regions because of tangential amplification. Alternatively, we speculate that the very similar profiles detected in objects that are known to be conspicuously axisymmetric, such as X Her and RS Cnc, and in O-rich Mira-type stars, such as IK Tau and TX Cam, may be indicative of the systematic presence of a significant axial symmetry in the very inner circumstellar shells around AGB stars; such symmetry would be independent of the presence of weak maser effects in the central spikes.
Slowly-rotating neutron stars in massive bigravity
NASA Astrophysics Data System (ADS)
Sullivan, A.; Yunes, N.
2018-02-01
We study slowly-rotating neutron stars in ghost-free massive bigravity. This theory modifies general relativity by introducing a second, auxiliary but dynamical tensor field that couples to matter through the physical metric tensor through non-linear interactions. We expand the field equations to linear order in slow rotation and numerically construct solutions in the interior and exterior of the star with a set of realistic equations of state. We calculate the physical mass function with respect to observer radius and find that, unlike in general relativity, this function does not remain constant outside the star; rather, it asymptotes to a constant a distance away from the surface, whose magnitude is controlled by the ratio of gravitational constants. The Vainshtein-like radius at which the physical and auxiliary mass functions asymptote to a constant is controlled by the graviton mass scaling parameter, and outside this radius, bigravity modifications are suppressed. We also calculate the frame-dragging metric function and find that bigravity modifications are typically small in the entire range of coupling parameters explored. We finally calculate both the mass-radius and the moment of inertia-mass relations for a wide range of coupling parameters and find that both the graviton mass scaling parameter and the ratio of the gravitational constants introduce large modifications to both. These results could be used to place future constraints on bigravity with electromagnetic and gravitational-wave observations of isolated and binary neutron stars.
Photospheres of hot stars. IV - Spectral type O4
NASA Technical Reports Server (NTRS)
Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.
1990-01-01
The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.
StePar: an automatic code for stellar parameter determination
NASA Astrophysics Data System (ADS)
Tabernero, H. M.; González Hernández, J. I.; Montes, D.
2013-05-01
We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.
The Star Formation History in the M31 Bulge
NASA Astrophysics Data System (ADS)
Dong, Hui; Olsen, Knut; Lauer, Tod; Saha, Abhijit; Li, Zhiyuan; García-Benito, Ruben; Schödel, Rainer
2018-05-01
We present the study of stellar populations in the central 5.5' (˜1.2 kpc) of the M31 bulge by using the optical color magnitude diagram derived from HST ACS WFC/HRC observations. In order to enhance image quality and then obtain deeper photometry, we construct Nyquist-sampled images and use a deconvolution method to detect sources and measure their photometry. We demonstrate that our method performs better than DOLPHOT in the extremely crowded region. The resolved stars in the M31 bulge have been divided into nine annuli and the color magnitude diagram fitting is performed for each of them. We confirm that the majority of stars (>70%) in the M31 bulge are indeed very old (> 5 Gyr) and metal-rich ([Fe/H]˜0.3). At later times, the star formation rate decreased and then experienced a significant rise around 1 Gyr ago, which pervaded the entire M31 bulge. After that, stars formed at less than 500 Myr ago in the central 130" . Through simulation, we find that these intermediate-age stars cannot be the artifacts introduced by the blending effect. Our results suggest that although the majority of the M31 bulge are very old, the secular evolutionary process still continuously builds up the M31 bulge slowly. We compare our star formation history with an older analysis derived from the spectral energy distribution fitting, which suggests that the latter one is still a reasonable tool for the study of stellar populations in remote galaxies.
NASA Astrophysics Data System (ADS)
Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.
2018-04-01
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.
Prospects of the "WSO-UV" Project for Star Formation Study in Nearby Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Makarova, L. N.; Makarov, D. I.
2017-12-01
In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.
Probing crustal structures from neutron star compactness
NASA Astrophysics Data System (ADS)
Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro
2017-10-01
With various sets of the parameters that characterize the equation of state (EOS) of nuclear matter, we systematically examine the thickness of a neutron star crust and of the pasta phases contained therein. Then, with respect to the thickness of the phase of spherical nuclei, the thickness of the cylindrical phase and the crust thickness, we successfully derive fitting formulas that express the ratio of each thickness to the star's radius as a function of the star's compactness, the incompressibility of symmetric nuclear matter and the density dependence of the symmetry energy. In particular, we find that the thickness of the phase of spherical nuclei has such a strong dependence on the stellar compactness as the crust thickness, but both of them show a much weaker dependence on the EOS parameters. Thus, via determination of the compactness, the thickness of the phase of spherical nuclei as well as the crust thickness can be constrained reasonably, even if the EOS parameters remain to be well-determined.
A study of the kinematic dynamo equation with time-dependent coefficients
NASA Technical Reports Server (NTRS)
Ko, Chung-Ming
1990-01-01
During an active star formation epoch the interstellar medium of a galaxy is in a hyperactive state, and the average turbulent velocity is higher than in the long periods between star formation epochs. The galactic magnetic field generated by dynamo action depends strongly on the turbulent velocity, so that generation of magnetic field should vary with star formation activity. This paper is a preliminary study of the kinematic dynamo equation with time-dependent coefficients simulating the time dependence of the star formation activities. Ko and Parker argued in a simple model that the thickness of the dynamo region is the most sensitive dynamo parameter. The present work shows that the effect of inflating the galactic disk suddenly is to transform a stationary magnetic field into a growing field while keeping the profile more or less intact. Plane wave solutions for a dynamo with power-law time-dependent parameters show that the field may decay first and then grow, and vice versa, which is quite different from a constant parameter dynamo.
New color-magnetic defects in dense quark matter
NASA Astrophysics Data System (ADS)
Haber, Alexander; Schmitt, Andreas
2018-06-01
Color-flavor locked (CFL) quark matter expels color-magnetic fields due to the Meissner effect. One of these fields carries an admixture of the ordinary abelian magnetic field and therefore flux tubes may form if CFL matter is exposed to a magnetic field, possibly in the interior of neutron stars or in quark stars. We employ a Ginzburg–Landau approach for three massless quark flavors, which takes into account the multi-component nature of color superconductivity. Based on the weak-coupling expressions for the Ginzburg–Landau parameters, we identify the regime where CFL is a type-II color superconductor and compute the radial profiles of different color-magnetic flux tubes. Among the configurations without baryon circulation we find a new solution that is energetically preferred over the flux tubes previously discussed in the literature in the parameter regime relevant for compact stars. Within the same setup, we also find a new defect in the 2SC phase, namely magnetic domain walls, which emerge naturally from the previously studied flux tubes if a more general ansatz for the order parameter is used. Color-magnetic defects in the interior of compact stars allow for sustained deformations of the star, potentially strong enough to produce detectable gravitational waves.
NASA Astrophysics Data System (ADS)
Reid, Piper
2013-01-01
A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.