Sample records for central volcanic complex

  1. Le volcanisme cambrien du Maroc central : implications géodynamiquesThe Central Morocco Cambrian volcanism: geodynamic implications

    NASA Astrophysics Data System (ADS)

    Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul

    2003-05-01

    In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).

  2. Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the island of Fuerteventura

    NASA Astrophysics Data System (ADS)

    Ancochea, E.; Brändle, J. L.; Cubas, C. R.; Hernán, F.; Huertas, M. J.

    1996-03-01

    Fuerteventura has been since early stages of its growth the result of three different adjacent large volcanic complexes: Southern, Central and Northern. The definition of these volcanic complexes and their respective growing episodes is based on volcano-stratigraphic, morphological and structural criteria, particularly radial dyke swarms. Each complex has its own prolonged history that might be longer than 10 m.y. During that time, several periods of activity alternating with gaps accompanied by important erosion took place. The evolution of each volcanic complex has been partially independent but all the three are affected by at least three Miocene tectonic phases that controlled considerably their activity. The volcanic complexes are deeply eroded and partially submerged. In the core of the Northern and the Central volcanic complexes there is a set of submarine and plutonic rocks intensely traversed by a dyke swarm, known as the Basal Complex. The Basal Complex has been interpreted in different ways but all previous authors have considered it to be prior to the subaerial shield stage of the island. Here we advance the idea that the Basal Complex represent the submarine growing stage of the volcanic complexes and the hypabyssal roots (plutons and dykes) of their successive subaerial growing episodes. Two seamounts situated nearby, southwest of the island, might be interpreted as remains of two other major volcanoes. These two volcanoes, together with those forming the present emerged island of Fuerteventura, and finally those of Famara and Los Ajaches situated further north on Lanzarote constitute a chain of volcanoes located along a lineation which is subparallel to the northwestern African coastline and which may relate to early Atlantic spreading trends in the area.

  3. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    USGS Publications Warehouse

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  4. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  5. Landslides density map of S. Miguel Island, Azores archipelago

    NASA Astrophysics Data System (ADS)

    Valadão, P.; Gaspar, J. L.; Queiroz, G.; Ferreira, T.

    The Azores archipelago is located in the Atlantic Ocean and is composed of nine volcanic islands. S. Miguel, the largest one, is formed by three active, E-W trending, trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas). Chains of basaltic cinder cones link those major volcanic structures. An inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste) comprise the easternmost part of the island. Since the settlement of the island early in the 15th century, several destructive landslides triggered by catastrophic rainfall episodes, earthquakes and volcanic eruptions occurred in different areas of S. Miguel. One unique event killed thousands of people in 1522. Houses and bridges were destroyed, roads were cut, communications, water and energy supply systems became frequently disrupted and areas of fertile land were often buried by mud. Based on (1) historical documents, (2) aerial photographs and (3) field observations, landslide sites were plotted on a topographic map, in order to establish a landslide density map for the island. Data obtained showed that landslide hazard is higher on (1) the main central volcanoes where the thickness of unconsolidated pyroclastic deposits is considerable high and (2) the old basaltic volcanic complex, marked by deep gullies developed on thick sequences of lava flows. In these areas, caldera walls, fault scarps, steep valley margins and sea cliffs are potentially hazardous.

  6. 3-D modeling of magnetotelluric data in the Paniri-Toconce volcanic chain, Central Andes.

    NASA Astrophysics Data System (ADS)

    Mancini, R.; Brasse, H.; Diaz, D.

    2017-12-01

    The research is located in the San Pedro-Toconce volcanic chain in the central volcanic zone of the Andes, North Chile. This area is interesting because of its proximity to several active volcanic centers, the geysers field of El Tatio and the recently opened geothermal plant Cerro Pabellon. Thermobarometry studies made in the area point to magma accumulated at 8 km below Lavas de Chao, and depths greater than 24 km below Toconce and Cerro de Leon. Regional geophysical studies show a distribution of conductive bodies around the complex, but the resolution of these studies at shallow depths are not conclusive. Data from wells show the possible presence of a large geothermal system in the southwest part of the complex, with depths of 2 km. Twenty broadband magnetotelluric (MT) stations were measured in the vicinity of the complex and combined with 15 long period MT stations measured in the 1990s, aiming at characterizing the deep conductive structures previously observed in the area, with magmatic bodies associated with the adjacent volcanic system. The results of a 3-D inversion show several conductive anomalies around the complex. Analyses of conductivity together with the 3-D models obtained indicate the presence of a geothermal system to the southwest of the complex with maximum depths of about 5 km, and two possible magmatic chambers below Paniri volcano and between Paniri and San Pedro volcanoes. In addition, the presence of a highly conductive structure to the east is obtained, associated with the Altiplano-Puna magma body (APMB).

  7. Earth Observation

    NASA Image and Video Library

    2013-06-11

    ISS036-E-007165 (11 June 2013) --- Nevados de Chillan, Chile is featured in this image photographed by an Expedition 36 crew member on the International Space Station. This photograph highlights a large volcanic area located near the Chile-Argentina border. Like other historically active volcanoes in the central Andes ranges, the Nevados de Chillan were created by upwelling magma generated by eastward subduction of the dense oceanic crust of the Pacific basin beneath the less dense continental crust of South America. Rising magmas associated with this type of tectonic environment frequently erupt explosively, forming widespread ash and ignimbrite layers. They can also produce less explosive eruptions that form voluminous lava flows – layering together with explosively erupted deposits to build the classic cone-shaped edifice of a stratovolcano over geologic time. The Nevados de Chillan includes three distinct volcanic structures, built within three overlapping calderas that extend along a north-northwest to south-southeast line. The snow-capped volcanic complex sits within the glaciated terrain of the central Andes – glacial valleys are visible at upper left, upper right, and lower right. The northwestern end of the chain is occupied by the 3,212-meter-high Cerro Blanco (also known as Volcan Nevado). The 3,089-meter-high Volcan Viejo (also known as Volcan Chillan) sits at the southeastern end; this volcano was active during the 17th-19th centuries. A group of lava domes known as Volcan Nuevo formed to the northwest of Volcan Viejo between 1906-1945, followed by an even younger dome complex that formed between 1973-1986 (Volcan Arrau; not indicated on the image). The last reported volcanic activity at Nevados de Chillan took place in 2009 (according to the Smithsonian Institution’s Global Volcanism Network).

  8. Trondhjemitic, 1.35-1.31 Ga gneisses of the Mount Holly Complex of Vermont: evidence for an Elzevirian event in the Grenville Basement of the United States Appalachians

    USGS Publications Warehouse

    Ratcliffe, N.M.; Aleinikoff, J.N.; Burton, W.C.; Karabinos, P.

    1991-01-01

    A newly recognized suite of trondhjemite-tonalite and dacitic gneiss forms a 10 km wide belt of rocks within the Mount Holly Complex in the central part of the Green Mountain massif. Field relationships and chemistry indicate that these gneisses are calc-alkaline, volcanic, and hypabyssal plutonic rocks older than the Middle Proterozoic regional deformation that affected the Mount Holly Complex. U-Pb zircon dates indicate ages as great as 1.35 Ga for crystallization of the volcanic protoliths and for intrusion of crossing trondhjemite. Tonalitic plutonism continued until 1.31 Ga. The Mount Holly intrusives and volcanics may have formed during 1.35-1.31 Ga ensialic volcanic-arc activity, contemporaneous with ensimatic arc activity during the early part of the Elzevirian phase of the Grenville orogeny. -from Authors

  9. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  10. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development

    NASA Astrophysics Data System (ADS)

    Korteniemi, J.; Kukkonen, S.

    2018-04-01

    Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.

  11. Geochronology of Cenozoic rocks in the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    Fleck, Robert J.; du Bray, Edward A.; John, David A.; Vikre, Peter G.; Cosca, Michael A.; Snee, Lawrence W.; Box, Stephen E.

    2015-01-01

    Four trachyandesite stratovolcanoes developed along the margins of the volcanic field and numerous silicic trachyandesite to rhyolite flow dome complexes erupted more centrally. Volcanism in the Bodie Hills volcanic field peaked at two periods, ~15.0 to 12.6 million years before present (Ma) and ~9.9 to 8.0 Ma, which were dominated by emplacement of large stratovolcanoes and large silicic trachyandesite-dacite lava domes, respectively. A final period of small-volume silicic dome emplacement began in the western part of the volcanic field at ~6 Ma and culminated at ~5.5 Ma (John and others, 2012).

  12. Magmatic history of Red Sea rifting: perspective from the central Saudi Arabian coastal plain.

    USGS Publications Warehouse

    Pallister, J.S.

    1987-01-01

    An early stage of magmatism related to Red Sea rifting is recorded by a Tertiary dyke complex and comagmatic volcanic rocks exposed on the central Saudi Arabian coastal plain. Field relations and new K/Ar dates indicate episodic magmatism from approx 30 m.y. to the present day and rift-related magmatism as early as 50 m.y. Localized volcanism and sheeted dyke injection ceased at approx 20 m.y. and were replaced by the intrusion of thick gabbro dykes, marking the onset of sea-floor spreading in the central Red Sea. Differences in the depths and dynamics of mantle-melt extraction and transport may account for the transition from mixed alkaline-subalkaline bimodal magmatism of the pre-20 m.y. rift basin to exclusively subalkaline (tholeiitic) magmatism of the Red Sea spreading axis and the alkali basalt volcanism inland.-L.C.H.

  13. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  14. Understanding the Evolution of an Oceanic Intraplate Volcano From Seismic Reflection Data: A New Model for La Réunion, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Lebas, E.; Le Friant, A.; Deplus, C.; de Voogd, B.

    2018-02-01

    High-resolution seismic reflection profiles gathered in 2006 on La Réunion submarine flanks and surrounding abyssal plain, enabled characterization of the seismostratigraphy architecture of the volcaniclastic apron. Four seismic units are defined beyond the edifice base: (1) a basal unit, interpreted as pelagic sediment predating La Réunion volcanism; (2) a second unit showing low- to medium-amplitude reflections, related to La Réunion emergence including the submarine explosive phase; (3) a high-amplitude seismic unit, associated with subaerial volcanic activity (i.e., mature island stage); and (4) an acoustically transparent unit, ascribed to erosion that currently affects the volcanic complex. Two prominent horizons delineate the base of the units II and III marking, respectively, the onset of La Réunion seamount explosive activity and the Piton des Neiges volcanic activity. Related isopach maps demonstrate: (1) the existence of a large proto-Piton des Neiges volcano during the first building phase of the volcanic complex, and (2) the central role of the Piton des Neiges volcano during the second phase. Shield growth stage of the Piton de la Fournaise volcano is also captured in the upper part of the volcaniclastic apron, attesting to its recent contribution. Seismic facies identified in the apron highlight a prevalence of sedimentary and reworking processes since the onset of the volcanism compared to catastrophic flank collapses. We present here a new model of evolution for La Réunion volcanic complex since the onset of the volcanism and argue that a major proto Piton des Neiges-Piton des Neiges volcanic complex controls La Réunion present-day morphology.

  15. A multidisciplinary study in the geodynamic active western Eger rift (Central Europe): The Quaternary volcanic complex Mytina and the recent CO2-degassing zone Hartousov

    NASA Astrophysics Data System (ADS)

    Flechsig, C.; Heinicke, J.; Kaempf, H. W.; Nickschick, T.; Mrlina, J.

    2013-12-01

    The Eger rift (Central Europe) belongs to the European Cenozoic rift system and represents an approximately 50 km wide and 300 km long ENE-WSW striking continental rift that formed during the Upper Cretaceous-Tertiary transition. This rift zone is one of the most active seismic regions in Central Europe. Especially, the western part of the Eger rift area is dominated by ongoing hidden magmatic processes in the intra-continental lithospheric mantle. Besides of known quaternary volcanoes, these processes take place in absence of any presently active volcanism at the surface. However, they are expressed by a series of phenomena distributed over a relatively large area, like occurrence of repeated earthquake swarms, surface exhalation of mantle-derived and CO2-enriched fluids at mofettes and mineral springs, and enhanced heat flow. At present this is the only known intra-continental region where such deep-seated, active lithospheric processes currently occur. The aim of the project is to investigate the tectonic/geologic near surface structure and the degassing processes of the mofette field of Hartousov, where soil gas measurements (concentration and flux rate) in an area of appr. 3x2 km traced a permeable NS extended segment of a fault zone and revealed highly permeable Diffuse Degassing Structures (DDS). The second target is volcanic environment of the Quaternary volcanic complex Mytina maar and the cinder cone Zelezna hurka/Eisenbühl. The investigations are intended to clarify: a) the spatio-temporal reconstruction of the maar complex, and the palaeo volcanic scenario (geological model, tectonic settings, distribution of pyroclastica, b) the geological structure and the tectonic control of the recent degassing zone, and c) the comperative interpretation of both regions in the consideration of potential future volcanic risk assessment in sub-regions of the western Eger Rift. To investigate both regions the following methods are used: geoelectrics, geomagnetics, shallow seismics, gravity and CO2-soil gas measurements, petrographic/petrophysical and remote sensing data. The results will be serve as for better understanding of geologic, volcanic and tectonic settings of the two regions as well as for the preparation of the ICDP drilling project 'Drilling the Eger rift' with a multidisciplinary approach consisting of geophysical, geochemical and other disciplines to understand the role of crustal fluid activity for swarm earthquake generation.

  16. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with the common hot mantle field of Central Asia.

  17. Petrogenesis of Challis Volcanic Group, east-central Idaho

    NASA Astrophysics Data System (ADS)

    Schleiffarth, W. K.; Larson, P. B.

    2013-12-01

    The Eocene Challis-Kamloops volcanic belt (CKVB) extends south and east from northern British Columbia to central Idaho and is related to the paleotectonic plate interaction between the Farallon and North American plates. Numerous volcanic fields are scattered throughout the CKVB and show a wide range of eruption styles, tectonic environments, and geochemical compositions. Several volcanic fields produced calc-alkaline rocks, while others produced moderately to strongly alkaline rocks. Some volcanic fields have a significant slab component, while others show no direct evidence of subduction-related magmatism. Proposed models for tectonic controls on the CKVB include continental volcanic arc delamination of subducted slab, rifted arc, slab window, and extensional continental tectonism. However, there is no generally accepted explanation for the petrogenesis of the CKVB. The Challis Volcanic Group (CVG) of central Idaho, located in the southern portion of the belt, is the largest of the Eocene volcanic fields (25,000 km2). The CVG is of interest because it exhibits very diverse volcanic deposits and compositions and may accurately represent the CKVB. Challis volcanism was synchronous with extension along the NE-SW-trending trans-Challis fault system and resulted in similarly oriented normal faults, dikes, calderas, and exhumation of the Pioneer core complex. The CVG covers much of central Idaho with exposures extending from the Sawtooth Mountains in the west to the Lemhi and Beaverhead ranges to the east. The CVG has high alkaline contents relative to calc-alkaline subduction-related volcanic rocks, varying isotopic signatures, and prevalent extensional features. These facts, coupled with the lack of obvious orientation of volcanic fields throughout the CKVB, explain why the petrogenesis of Eocene volcanism of the inland Pacific Northwest is controversial. Rare earth element concentrations and Sr, Nd, and Pb isotope ratios show that the CVG represents a mixture of crustal and mantle material. The increasing K concentrations away from the continental margin suggest that subduction was at least indirectly or partially related to the petrogenesis of the CKVB. Plate reconstructions show that a slab window existed beneath the Pacific Northwest due to a subducting spreading center. The anomalous geochemistry of the CKVB correlates with the position of the slab window and may have influenced the petrogenesis of the CVG.

  18. Rethinking Volcanic Plumbing Systems: The Prevalence of Offset Magma Reservoirs at Holocene Volcanoes

    NASA Astrophysics Data System (ADS)

    Lerner, A. H.; Karlstrom, L.; Hurwitz, S.; Anderson, K. R.; Ebmeier, S. K.

    2016-12-01

    Mechanical models of volcanic overpressure and interpretations of volcanic deposits are generally rooted in the classic paradigm of a magma reservoir being located directly beneath the main topographic high and central conduit of a volcano. We test this framework against recent decades of research on volcanic deformation, seismic tomography, earthquake hypocenter locations, and magnetotellurics, which have provided unprecedented geophysical views of volcanic plumbing systems. In a literature survey of Holocene strato- and shield volcanoes in arc, backarc, continental rift, and intraplate settings, we find that shallow to mid-crustal (< 20 km) magma reservoirs are equally likely to be laterally offset from principle volcanic edifices (n = 20) as they are to be centrally located beneath volcanic topographic highs (n = 19). We classify offset reservoirs as having imaged or modeled centroids that are at least 2 km laterally offset from the central volcanic edifice. The scale and geometry of offset magma reservoirs range widely, with a number of systems having discrete reservoirs laterally offset up to 15 km from the main volcanic edifice, at depths of 2 to 15 km. Other systems appear to have inclined magmatic reservoirs and/or fluid transport zones that continuously extend from beneath the main edifice to lateral distances up to 20 km, at depths of 3 to 18 km. Additionally, over a third of the studied systems have small, centrally located shallow magma or fluid reservoirs at depths of 1 to 5 km. Overall, we find that offset magma reservoirs are more common than is classically perceived, and offset reservoirs are more prevalent in intermediate to evolved stratovolcanoes (19 of 28) than in basaltic shield volcanoes (2 of 7). The reason for the formation of long-lived edifices that are offset from their source magma reservoir(s) is an open question; correlation to regional principal stresses or local tectonics, edifice size, lithology, and morphology, and climate may provide insights into this phenomenon. The commonality of offset magma reservoirs warrants reassessing the ways that volcanic systems have been traditionally modeled and monitored, which are principally focused around the topographic edifice, but may be missing critical features associated with lateral offset reservoirs and more complex conduit geometries.

  19. Late Cretaceous volcanism in south-central New Mexico: Conglomerates of the McRae and Love Ranch Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman-Fahey, J.L.; McMillan, N.J.; Mack, G.H.

    Evidence to support Late Cretaceous volcanism in south central New Mexico is restricted to a small area of 75-Ma-old andesitic rocks at Copper Flats near Hillsboro, and volcanic clasts in the McRae (Late Cretaceous/Paleocene ) and Love Ranch (Paleocene/Eocene). Formations located in the Jornada del Muerto basin east and northeast of the Caballo Mountains. Major and trace element data and petrographic analysis of 5 samples from Copper Flats lavas and 40 samples of volcanic clasts from the McRae and Love Ranch conglomerates will be used to reconstruct the Cretaceous volcanic field. The McRae Formation consists of two members: the lowermore » Jose Creek and the upper Hall Lake. The lowermost Love Ranch Formation is unconformable in all places on the Hall Lake Member. Stratigraphic variations in clast composition from volcanic rocks in the lower Love Ranch Formation to Paleozoic and Precambrian clasts in the upper Love Ranch Formation reflect the progressive unroofing of the Laramide Rio Grande Uplift. Volcanic clasts in the McRae and Love Ranch Formations were derived from the west and south of the depositional basin, but the source area for McRae clasts is less well constrained. Stratigraphic, chemical, and petrographic data will be used to reconstruct the volcanic complex and more clearly define magma genesis and metasomatism associated with Laramide deformation.« less

  20. More Olympica Fossae

    NASA Image and Video Library

    2016-02-22

    This image from NASA 2001 Mars Odyssey spacecraft shows a different part of Olympica Fossae. In this region lava channels dominate. The complex interaction of volcanic and tectonic processes is illustrated by the central feature in this image.

  1. Spatial and Temporal Evolution of Central Anatolian Volcanics

    NASA Astrophysics Data System (ADS)

    Gall, H. D.; Kürkçüoğlu, B.; Hanan, B. B.; Furman, T.

    2015-12-01

    The continental lithosphere beneath the Central Anatolian Volcanic Province has experienced a complex tectonic history with periods of convergence during closure of the Tethys Ocean followed by post-Miocene extension. The current environment reflects WSW movement of Anatolia in response to collision between the Afro-Arabian and Eurasian plates. Modern extensional basins bounded by oblique-slip faults provide the setting for mafic volcanism along the CAFZ and offer a window into the regional asthenosphere. We focus on Hasandag stratovolcano whose 13 Ma history includes three stages of edifice construction across which the erupted magmas have progressed from tholeiitic to calc-alkaline (Aydar and Gourgaud, 1998); the most recent lavas are of mildly alkaline affinity. Late Miocene to Quaternary Hasandag lavas have been interpreted as arc volcanism related to the Afro-Arabian and Eurasian collision, presenting a challenge as the calc-alkaline volcanism occurred within the modern extensional environment. Sr-Nd-Pb-Hf isotopic and major and trace element data on Hasandag alkaline basalts through dacites show that contributions from lithosphere previously enriched by subduction events have become less pronounced through time. Sr-Nd isotopic data indicate this temporal evolution, with older Hasandag lavas having higher values (~0.7050) than younger products (0.7041-0.7046) (Deniel et al. 1998, Alici Sen et al. 2004, this study). Geochemical data also reveal spatial differences along the Central Anatolian Volcanic Zone, e.g., 206Pb/204Pb and 143Nd/144Nd isotopic signatures vary consistently with latitude. The pronounced enrichment (Ba, Th, U) and depletion (Nb, Zr, Ta and Ti) patterns observed in primitive-mantle normalized element abundances at Hasandag are more prominent in southwestern volcanic complexes and less evident within northern centers. For example, Ba/Nb ratios increase from north to south along the CAFZ whereas Ba/Th ratios decrease. These data imply an overall increase in contribution from subduction-related materials from north to south along the CAFZ in post-Pliocene lavas. Evidence from Hasandag suggests that the signature may also decrease over time; perhaps as highly fusible metasomatized materials are exhausted during progressive melting.

  2. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    USGS Publications Warehouse

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  3. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia

    NASA Astrophysics Data System (ADS)

    Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan

    2017-04-01

    The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (<50 to 80 km). The Central Taurus Mountains, which have experienced 2 km of uplift in the past 6 Ma, are underlain by the fastest shear velocities in the region (>4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (<4.2 km/s) beneath the Central Anatolian Volcanic Province. These slow velocities are interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian Volcanic Province. Finally, we present a model for the evolution of central Anatolia that brings together the volcanism, extension in the Kirsehir Block, uplift of the southern margin of central Anatolia, and our seismic images.

  4. Crustal-scale electrical conductivity anomaly beneath inflating Lazufre volcanic complex, Central Andes

    NASA Astrophysics Data System (ADS)

    Budach, Ingmar; Brasse, Heinrich; Díaz, Daniel

    2013-03-01

    Large-scale surface deformation was observed at Lazufre volcanic center in the Central Andes of Northern Chile/Northwestern Argentina by means of Interferometric Synthetic Aperture Radar (InSAR). Uplift started there after 1998 and increased dramatically in the following years up to a rate of 3 cm/a. Lazufre is now one of the largest deforming volcano systems on Earth, but the cause for uplift - likely influx of magmatic material into the crust - is still poorly understood. In the beginning of 2010 a magnetotelluric survey was conducted to delineate the electrical conductivity distribution in the area. Several long-period magnetotelluric (LMT) sites and two broadband magnetotelluric (BBMT) sites were set up on an EW trending profile crossing the volcanic center; furthermore some LMT sites were arranged circularly around Lazufre complex and adjacent Lastarria volcano. Data were processed using an algorithm for robust and remote reference transfer function estimation. Electrical strike directions were estimated and induction arrows were derived. Although electrical strike is rather ambiguous, in a first step a 2-D resistivity model was calculated. The most prominent feature of this model is a well conducting structure rising from the upper mantle to the shallow crust beneath the center of elevation. This can be interpreted as partial melts ascending from the asthenospheric wedge and feeding a potential magma reservoir beneath Lazufre volcanic center. An improved model is finally achieved by 3-D inversion, supporting this feature. We assume that these rising melts are the source of the observed uplift at Lazufre complex.

  5. Geologic map of the Cochetopa Park and North Pass Calderas, northeastern San Juan Mountains, Colorado

    USGS Publications Warehouse

    Lipman, Peter W.

    2012-01-01

    The San Juan Mountains in southwestern Colorado have long been known as a site of exceptionally voluminous mid-Tertiary volcanism, including at least 22 major ignimbrite sheets (each 150-5,000 km3) and associated caldera structures active at 33-23 Ma. Recent volcanologic and petrologic studies in the San Juan region have focused mainly on several ignimbrite-caldera systems: the southeastern area (Platoro complex), western calderas (Uncompahgre-Silverton-Lake City), and the central cluster (La Garita-Creede calderas). Far less studied has been the northeastern San Juan region, which occupies a transition between earlier volcanism in central Colorado and large-volume younger ignimbrite-caldera foci farther south and west. The present map is based on new field coverage of volcanic rocks in seventeen 7.5' quadrangles in northeastern parts of the volcanic field, high-resolution age determinations for 120 new sites, and petrologic studies involving several hundred new chemical analyses. This mapping and the accompanying lab results (1) document volcanic evolution of the previously unrecognized North Pass caldera and the morphologically beautifully preserved but enigmatic Cochetopa basin, including unique features not previously described from ignimbrite calderas elsewhere; (2) provide evidence for a more rapid recurrence of large ignimbrite eruptions than previously known elsewhere; (3) quantify the regional time-space-volume progression from the earlier Sawatch magmatic trend southward into the San Juan region; and (4) permit more rigorous comparison between the broad mid-Tertiary magmatic belt in the western U.S. Cordillera and the type continental-margin arc volcanism in the central Andes.

  6. Palaeomagnetic study of the Kepezdaǧ and Yamadaǧ volcanic complexes, central Turkey: Neogene tectonic escape and block definition in the central-east Anatolides

    NASA Astrophysics Data System (ADS)

    Gürsoy, H.; Tatar, O.; Piper, J. D. A.; Koçbulut, F.; Akpınar, Zafer; Huang, Baochun; Roberts, A. P.; Mesci, B. L.

    2011-05-01

    The Anatolian accretionary collage between Afro-Arabia and Eurasia is currently subject to two tectonic regimes. Ongoing slip of Arabia relative to Africa along the Dead Sea Fault Zone in the east is extruding crustal blocks away from the indenter by a combination of strike-slip and rotation. This zone of compression gives way to an extensional province in western Turkey, which also includes the eastern sector of Aegean Province. Although it is now well established that rotational deformation throughout Anatolia is distributed and differential, the sizes of the blocks involved are poorly understood. As a contribution towards evaluating this issue in central-east Turkey, we report palaeomagnetic study of the mid-Miocene Kepezdağ and Yamadağ volcanic complexes in central-south Anatolia (38-39.5°N, 37.5-39°E). A distributed sample through the Yamadağ complex identifies eruption during an interval of multiple geomagnetic field reversals (40 normal, 36 reversed, 8 intermediate sites) with a selected mean defined by 63 sites of D/ I = 335.4/51.1° ( α95 = 4.4°). The smaller Kepezdağ complex (8 reversed, 4 normal and 1 intermediate site) yields a comparable mean direction from 12 sites of 338.7/49.8° ( α95 = 14.1°). In the context of a range of radiometric age evidence, two thick normal polarity zones within the Yamadağ succession probably correlate with zones C5ACn and C5ADn of the Geomagnetic Polarity Time Scale and imply that the bulk of the volcanic activity took place between ˜15 and 13.5 Ma. Comparison of the palaeomagnetic results with the adjoining major plate indenters shows that the Yamadağ complex has rotated CCW by 29.3 ± 5.2° relative to Eurasia; the much smaller dataset from the Kepezdağ complex indicates a comparable CCW rotation of 26.0 ± 11.8° with respect to Eurasia. The Arabian Indenter has also been rotating CCW since mid Miocene times, and the block incorporating these two volcanic complexes north of the East Anatolian Fault Zone (EAFZ) is determined to have rotated 18.2 ± 6.0° CCW relative to the northern perimeter of Arabia. Comparison with data to the north identifies quasi-uniform rotation across a ˜200 km wide block extending from the Central Anatolian Fault Zone in the northwest to close to the East Anatolian transform fault zone in the south east. Although absence of suitable younger rocks does not permit the timing of this rotation to be determined in the study area, analogies with results from the Sivas Basin suggest that it is young, and followed establishment of the major transform faults. Rotation has evidently taken place around bounding arcuate faults and accompanied westward expulsion as the accretionary collage north of Arabia has been subject to ongoing post-collisional indentation.

  7. Structural control on arc volcanism: The Caviahue Copahue complex, Central to Patagonian Andes transition (38°S)

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel; Folguera, Andrés; Ramos, Victor A.

    2006-11-01

    This paper describes the volcanostratigraphy, structure, and tectonic implications of an arc volcanic complex in an oblique subduction setting: the Caviahue caldera Copahue volcano (CAC) of the Andean margin. The CAC is located in a first-order morphotectonic transitional zone, between the low and narrow Patagonian and the high and broad Central Andes. The evolution of the CAC started at approximately 4-3 Ma with the opening of the 20 × 15 km Caviahue pull-apart caldera; Las Mellizas volcano formed inside the caldera and collapsed at approximately 2.6 Ma; and the Copahue volcano evolved in three stages: (1) 1.2-0.7 Ma formed the approximately 1 km thick andesitic edifice, (2) 0.7-0.01 Ma erupted andesitic-dacitic subglacial pillow lavas, and (3) 0.01-0 Ma erupted basaltic-andesites and pyroclastic flows from fissures, aligned cones, and summit craters. Magma ascent has occurred along planes perpendicular to the least principal horizontal stress, whereas hydrothermal activity and hot springs also occur along parallel planes. At a regional scale, Quaternary volcanism concentrates along the NE-trending, 90 km long Callaqui-Copahue-Mandolegüe lineament, the longest of the southern volcanic zone, which is here interpreted as an inherited crustal-scale transfer zone from a Miocene rift basin. At a local scale within the CAC, effusions are controlled by local structures that formed at the intersection of regional fault systems. The Central to Patagonian Andes transition occurs at the Callaqui-Copahue-Mandolegüe lineament, which decouples active deformation from the intra-arc strike-slip Liquiñe-Ofqui fault zone to the south and the backarc Copahue-Antiñir thrust system.

  8. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    NASA Astrophysics Data System (ADS)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of activity featured the edification of the central shoshonitic domes at c.a. 150 ka.

  9. Constraints for recently discovered ignimbrites in the Altiplano-Puna Volcanic Complex (APVC), northern Chile

    NASA Astrophysics Data System (ADS)

    Layana, S.; Aguilera, F.

    2014-12-01

    One of most voluminous ignimbrite provinces in the world (>30.000 km3) is located in the Central Andean Volcanic Zone (CAVZ), which has been continuously active since Upper Oligocene. Altiplano-Puna Volcanic Complex (APVC), located between 21 and 24ºS, is a volcano-tectonic province constituted by diverse caldera complexes and ignimbrite deposits (Upper Miocene - Lower Pleistocene) that covers an area ~50.000 km2. In this work, we present data from three new ignimbrites discovered in a portion of APVC (22°-22,4°S), with the objective to establish its origin and provenance. Were identified 3 new ignimbrites: 1) Cabana ignimbrite (>7.5 Ma), constituted by 3 pyroclastic flow and 1 pyroclastic surge units of crystal-glass rich dacitic tuffs, 80 m maximum thick, 0.18 km3 volume and 0.14 km3 DRE; 2) Inacaliri ignimbrite (7.5 Ma) constituted by two members, corresponding to glassy dacitic (basal member) and basaltic andesites (upper member) tuffs, the total thick reach up 20 m, 0.003 km3 volume and 0.002 km3 DRE; 3) Tolar ignimbrite (>1.3 Ma), constituted by a single pyroclastic flow and a basal fall glassy dacitic deposits, 50 m maximum thick, 0.04 km3 volume and 0.03 km3 DRE. Cabana ignimbrite seems to have been originated from a single caldera complex, whose cannot be recognized in the field. Inacaliri ignimbrite could be related to initial phases of building of Inacaliri and Apacheta-Aguilucho volcanic complexes, or originated to a buried caldera located below both volcanic complexes. Finally, Tolar ignimbrite corresponds to initial building stage of Toconce volcano, located 2 km at NE from these deposits.

  10. Carbonatite ring-complexes explained by caldera-style volcanism

    PubMed Central

    Andersson, Magnus; Malehmir, Alireza; Troll, Valentin R.; Dehghannejad, Mahdieh; Juhlin, Christopher; Ask, Maria

    2013-01-01

    Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas. PMID:23591904

  11. Carbonatite ring-complexes explained by caldera-style volcanism.

    PubMed

    Andersson, Magnus; Malehmir, Alireza; Troll, Valentin R; Dehghannejad, Mahdieh; Juhlin, Christopher; Ask, Maria

    2013-01-01

    Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas.

  12. The 10 April 2014 Nicaraguan Crustal Earthquake: Evidence of Complex Deformation of the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Muñoz, Angélica; Farraz, Isaac A.; Talavera, Emilio; Tenorio, Virginia; Novelo-Casanova, David A.; Sánchez, Antonio

    2016-10-01

    On 10 April 2014, an M w 6.1 earthquake struck central Nicaragua. The main event and the aftershocks were clearly recorded by the Nicaraguan national seismic network and other regional seismic stations. These crustal earthquakes were strongly felt in central Nicaragua but caused relatively little damage. This is in sharp contrast to the destructive effects of the 1972 earthquake in the capital city of Managua. The differences in damage stem from the fact that the 1972 earthquake occurred on a fault beneath the city; in contrast, the 2014 event lies offshore, under Lake Managua. The distribution of aftershocks of the 2014 event shows two clusters of seismic activity. In the northwestern part of Lake Managua, an alignment of aftershocks suggests a northwest to southeast striking fault, parallel to the volcanic arc. The source mechanism agrees with this right-lateral, strike-slip motion on a plane with the same orientation as the aftershock sequence. For an earthquake of this magnitude, seismic scaling relations between fault length and magnitude predict a sub-surface fault length of approximately 16 km. This length is in good agreement with the extent of the fault defined by the aftershock sequence. A second cluster of aftershocks beneath Apoyeque volcano occurred simultaneously, but spatially separated from the first. There is no clear alignment of the epicenters in this cluster. Nevertheless, the decay of the number of earthquakes beneath Apoyeque as a function of time shows the typical behavior of an aftershock sequence and not of a volcanic swarm. The northeast-southwest striking Tiscapa/Ciudad Jardín and Estadio faults that broke during the 1972 and 1931 Managua earthquakes are orthogonal to the fault where the 10 April earthquake occurred. These orthogonal faults in close geographic proximity show that Central Nicaragua is being deformed in a complex tectonic setting. The Nicaraguan forearc sliver, between the trench and the volcanic arc, moves to the northwest relative to the Caribbean plate at a rate of 14 mm/year. Part of the deformation is apparently accommodated by strain partitioning in the form of bookshelf faulting, on a system of orthogonal faults. The sinistral faults striking northeast-southwest rotate blocks of the Caribbean plate in a clockwise manner. The recent crustal earthquakes in central Nicaragua in 1931, 1972 and 2005 earthquakes took place on these left-lateral faults. The motion of the forearc sliver is also accommodated by a second set of right-lateral, strike-slip faults oriented parallel to the volcanic arc. Faults with this orientation and direction of motion are responsible for the 2014 and possibly the 1955 earthquakes. The presence of this geometry of orthogonal crustal faults highlights the seismic hazard posed by this complex faulting system, not only in the capital city of Managua, but also to the major Nicaraguan cities, which lie close to the volcanic arc.

  13. New seismo-stratigraphic and marine magnetic data of the Gulf of Pozzuoli (Naples Bay, Tyrrhenian Sea, Italy): inferences for the tectonic and magmatic events of the Phlegrean Fields volcanic complex (Campania)

    NASA Astrophysics Data System (ADS)

    Aiello, Gemma; Marsella, Ennio; Fiore, Vincenzo Di

    2012-06-01

    A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.

  14. Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008-2015)

    NASA Astrophysics Data System (ADS)

    Sánchez-Alzola, A.; Martí, J.; García-Yeguas, A.; Gil, A. J.

    2016-11-01

    In this paper we present the current crustal deformation model of Tenerife Island derived from daily CGPS time series processing (2008-2015). Our results include the position time series, a global velocity estimation and the current crustal deformation on the island in terms of strain tensors. We detect a measurable subsidence of 1.5-2 mm/yr. in the proximities of the Cañadas-Teide-Pico Viejo (CTPV) complex. These values are higher in the central part of the complex and could be explained by a lateral spreading of the elastic lithosphere combined with the effect of the drastic descent of the water table in the island experienced during recent decades. The results show that the Anaga massif is stable in both its horizontal and vertical components. The strain tensor analysis shows a 70 nstrain/yr. E-W compression in the central complex, perpendicular to the 2004 sismo-volcanic area, and 50 nstrain/yr. SW-NE extension towards the Northeast ridge. The residual velocity and strain patterns coincide with a decline in volcanic activity since the 2004 unrest.

  15. Pits and Scarps

    NASA Image and Video Library

    2015-04-08

    Lessing crater can be seen in the lower left of this image. Instead of the typical central peak found in a complex crater on Mercury, Lessing sports a central pit, likely formed by volcanic activity. A large tectonic scarp that formed when the planet's interior cooled and contracted can be seen running through a crater near the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA19276

  16. Young flood lavas in the Elysium Region, Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1990-01-01

    The nature and origin of a smooth plains unit (the Cerberus Plains) in southeastern Elysium and western Amazonis are reported. The interpretation that the Cerberus Plains resulted from flood plains style volcanism late in martian history is presented which carries implications for martian thermal history and volcanic evolution of a global scale. Although central construct volcanism (e.g., Olympus Mons) has long been recognized as occurring late in time, flood volcanism has not. Flood volcanism has been suggested as the origin of the ridged plains units (e.g., Lunae Planum, Solis, and Sinai Planum). This type of volcanic activity generally occurred early, and in Tharsis, the style of volcanism evolved from flood eruptions into centralized eruptions which built the large Tharsis Montes and Olympus Mons shields. Volcanism in the Elysium region seems to have followed a similar trend from flood eruptions to central construct building. But, the Cerberus Plains indicate that the volcanic style returned to flood eruption again after central constructional volcanism had ended.

  17. Dynamics of natural contamination by aluminium and iron rich colloids in the volcanic aquifers of Central Italy.

    PubMed

    Viaroli, Stefano; Cuoco, Emilio; Mazza, Roberto; Tedesco, Dario

    2016-10-01

    The dynamics of natural contamination by Al and Fe colloids in volcanic aquifers of central-southern Italy were investigated. Localized perched aquifers, and their relative discharges, are strongly affected by the presence of massive suspended solids, which confer a white-lacteous coloration to the water. This phenomenon occasionally caused the interruption of water distribution due to the exceeding of Al and Fe concentrations in aquifers exploited for human supply. The cause was ascribed to water seepage from perched aquifers. Water discharges affected by such contamination was investigated for the Rocca Ripesena area (north-eastern sector of Vulsini Volcanic District) and for the Rianale Stream Valley (Roccamonfina Volcanic Complex). Hydrogeological survey of both areas confirmed the presence of perched aquifers not previously considered due to their low productivity. Pluviometric data and chemical parameters were periodically monitored. Water mineralization decreased with increasing rainfall, conversely Al and Fe concentrations increased. Statistical analysis confirmed the dependence of all the chemical variables on rock leaching, with the sole exception of Al and Fe which were imputed to colloids mobilization from local, strongly pedogenized pyroclastic material. The similarities in hydrogeological settings and mobilization dynamics in both areas suggest that the Al and Fe colloidal contamination should be more abundant than currently known in quaternary volcanic areas.

  18. Change of Conditions of the Formation of the Karelian Province of the Baltic Shield Continental Crust during Transition from Meso- to Neoarchean: Geochemical Study Results

    NASA Astrophysics Data System (ADS)

    Chekulaev, V. P.; Arestova, N. A.; Egorova, Yu. S.; Kucherovskii, G. A.

    2018-05-01

    The compositions of the tonalite-trondhjemite-granodiorite (TTG) assemblage and volcanic rocks of the Archaean greenstone belts from different domains of the Karelian province of the Baltic Shield are compared. Neoarchean medium felsic volcanic rocks and TTG of the Central Karelian domain drastically differ from analogous Mesoarchean rocks of the neighboring Vodlozero and West Karelian domains in higher Rb, Sr, P, La, and Ce contents and, correspondingly, values of Sr/Y, La/Yb, and La/Sm, and also in a different REE content distribution owing to different rock sources of these domains. This fact is confirmed by differences in the composition and the nature of the REE distribution in the basic and ultrabasic volcanic rocks making up the greenstone belts of these domains. It is established that the average compositions of Mesoarchean TTG rocks and volcanic rocks of the Karelian province differ markedly from those of plagiogranitoids and volcanic rocks of the recent geotectonic environments in high Mg (mg#) and Sr contents. Neoarchean volcanic rocks of Karelia differ from recent island-arc volcanic rocks, but are similar in composition to recent volcanic rocks of the continental arcs. On the basis of the cumulative evidence, the Karelian province of the Baltic Shield was subject to dramatic changes in the crust formation conditions at the beginning of the Neoarchean at the turn of about 2.75-2.78 Ga. These changes led to formation of volcano-sedimentary and plutonic rock complexes, different in composition from Mesoarchean rocks, and specific complexes of intrusive sanukitoids and granites. Changes and variations in the rock composition were related to the mixing of plume sources with continental crust and/or lithospheric mantle material, likely as a result of the combined effect of plumes and plate tectonics. This process resulted in formation of a younger large fragment of the Archean crust such as the Central Karelian domain which factually connected more ancient fragments of the crust and likely contributed to development of the Neoarchean Kenorland Supercontinent.

  19. A direct approach to estimating the number of potential fatalities from an eruption: Application to the Central Volcanic Complex of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Marrero, J. M.; García, A.; Llinares, A.; Rodriguez-Losada, J. A.; Ortiz, R.

    2012-03-01

    One of the critical issues in managing volcanic crises is making the decision to evacuate a densely-populated region. In order to take a decision of such importance it is essential to estimate the cost in lives for each of the expected eruptive scenarios. One of the tools that assist in estimating the number of potential fatalities for such decision-making is the calculation of the FN-curves. In this case the FN-curve is a graphical representation that relates the frequency of the different hazards to be expected for a particular volcano or volcanic area, and the number of potential fatalities expected for each event if the zone of impact is not evacuated. In this study we propose a method for assessing the impact that a possible eruption from the Tenerife Central Volcanic Complex (CVC) would have on the population at risk. Factors taken into account include the spatial probability of the eruptive scenarios (susceptibility) and the temporal probability of the magnitudes of the eruptive scenarios. For each point or cell of the susceptibility map with greater probability, a series of probability-scaled hazard maps is constructed for the whole range of magnitudes expected. The number of potential fatalities is obtained from the intersection of the hazard maps with the spatial map of population distribution. The results show that the Emergency Plan for Tenerife must provide for the evacuation of more than 100,000 persons.

  20. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The Day 2 field route migrates to southern parts of the LOEA, where rocks of the CRBG are associated in space and time with lesser known and more complex silicic volcanic stratigraphy associated with middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the middle Miocene Mahogany Mountain caldera and middle to late Miocene calc-alkaline lavas of the Owyhee basalt. Stops on Day 3 will progress westward from the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt-Yellowstone province with a northwestward-younging magmatic trend of silicic volcanism that underlies the High Lava Plains of eastern Oregon. Initial field stops on Day 3 will examine key outcrops demonstrating the intercalated nature of middle Miocene tholeiitic CRBG flood basalts, prominent ash-flow tuffs, and “Snake River-type” large-volume rhyolite lava flows exposed along the Malheur River. Subsequent stops on Day 3 will focus upon the volcanic stratigraphy northeast of the town of Burns, which includes regional middle to late Miocene ash-flow tuffs, and lava flows assigned to the Strawberry Volcanics. The return route to Portland on Day 4 traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, middle Miocene Dinner Creek Tuff and aspects of Picture Gorge Basalt flows and northwest-trending feeder dikes situated in the central part of the CRBG province.

  1. Castro ring zone: a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho.

    USGS Publications Warehouse

    Criss, R.E.; Ekren, E.B.; Hardyman, R.F.

    1984-01-01

    The largest fossil hydrothermal system occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-hydrothermal system are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and hydrothermally metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal systems are surprisingly insensitive to the circulation scale.-L.-di H.

  2. The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar

    NASA Astrophysics Data System (ADS)

    Melluso, L.; Cucciniello, C.; le Roex, A. P.; Morra, V.

    2016-07-01

    The Ankaratra volcanic complex in central Madagascar consists of lava flows, domes, scoria cones, tuff rings and maars of Cenozoic age that are scattered over 3800 km2. The mafic rocks include olivine-leucite-nephelinites, basanites, alkali basalts and hawaiites, and tholeiitic basalts. Primitive samples have high Mg# (>60), high Cr and Ni concentrations; their mantle-normalized patterns peak at Nb and Ba, have troughs at K, and smoothly decrease towards the least incompatible elements. The Ankaratra mafic rocks show small variation in Sr-Nd-Pb isotopic compositions (e.g., 87Sr/86Sr = 0.70377-0.70446, 143Nd/144Nd = 0.51273-0.51280, 206Pb/204Pb = 18.25-18.87). These isotopic values differ markedly from those of Cenozoic mafic lavas of northern Madagascar and the Comoro archipelago, typical Indian Ocean MORB and oceanic basalt end-members. The patterns of olivine nephelinitic magmas can be obtained through 3-10% partial melting of a mantle source that was enriched by a Ca-rich alkaline melt, and that contained garnet, carbonates and phlogopite. The patterns of tholeiitic basalts can be obtained after 10-12% partial melting of a source enriched with lower amounts of the same alkaline melt, in the spinel- (and possibly amphibole-) facies mantle, hence in volumes where carbonate is not a factor. The significant isotopic change from the northernmost volcanic rocks of Madagascar and those in the central part of the island implicates a distinct source heterogeneity, and ultimately assess the role of the continental lithospheric mantle as source region. The source of at least some volcanic rocks of the still active Comoro archipelago may have suffered the same time-integrated geochemical and isotopic evolution as that of the northern Madagascar volcanic rocks.

  3. Petrogenesis and depositional history of felsic pyroclastic rocks from the Melka Wakena archaeological site-complex in South central Ethiopia

    NASA Astrophysics Data System (ADS)

    Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella

    2018-06-01

    The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.

  4. Multiple ash layers in late Quaternary sediments from the Central Indian Basin

    NASA Astrophysics Data System (ADS)

    Mascarenhas-Pereira, M. B. L.; Nagender Nath, B.; Iyer, S. D.; Borole, D. V.; Parthiban, G.; Jijin, R.; Khedekar, V.

    2016-04-01

    We have investigated three sediment cores collected from water depths > 5000 m along the transect 76°30‧E in close proximity to a fracture zone in the Central Indian Basin (CIB). The cores yielded five volcanic horizons of which four have visual and dispersed shards. Rhyolitic glass shards of bubble wall, platy, angular and blocky types were retrieved from various stratigraphic horizons in the cores. The abundance of glass shards, composition of bulk sediments, and 230Thexcess ages of the host sediments were used to distinguish the volcanic horizons. Of the four volcanic horizons, three are now newly reported and correspond to ages of ~ 85, 107-109 and 142-146 ka while the fourth horizon is of 70-75 ka. By using trace element ratios and Cr and Nb-based normative calculations, cryptotephra has been identified for the first time from the CIB sediment. The cryptotephra forms the fifth ash horizon and is of ~ 34 ka. A comparison with the published data on volcanic tephra in and around the Indian Ocean indicate the shard rich horizon (SRH) of 70-75 ka to resemble the Younger Toba Tuffs (YTT), while the other volcanic horizons that were deposited during different time periods do not correlate with any known marine or terrestrial records. These tephra layers have produced a tephrostratigraphic framework across the tectonically and volcanically complex regions of the CIB. Due to the lack of terrestrial equivalents of these tephra, it is hypothesized that the newly found volcanic horizons may have been derived from submarine volcanic eruptions. Multiple layers of submarine volcaniclastic deposits found at water depths as great as 5300 m reaffirm the growing belief that submarine phreatomagmatic eruptions are much more common in the intraplate region of the Indian Ocean than previously reported.

  5. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated hydrothermal systems are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore deposits, and their implications for global climate change, considering the heat transport, maturation of organic matter and the release of carbon-rich fluids associated to these systems. Hydrothermal vent complexes have been found all over the world in the fossil record related to large igneous provinces as those found in the North Atlantic margins. Nevertheless, studies focused on modern deep water magmatic hydrothermal systems are generally confined to ocean spreading centers, while scarce works address their study in deep oceanic intraplate basins. This study reports and documents for the first time the discovery of a recent deep water system of magmatic-induced hydrothermal vents at 4800-5200 m depth in an unexplored area of the Canary Basin (eastern central Atlantic), located about 500 km west of the Canary Islands. The analysis and interpretation of the newly acquired data set has shown that the study area is characterized by the presence of a huge magmatic complex of sills that intrudes the sedimentary sequence and exceptionally deep volcanoes so far unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH41B1789I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH41B1789I"><span>Swellable clay minerals in weathering products of volcanic sediments related to landslides by 2016 Kumamoto Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isobe, H.; Torii, M.</p> <p>2016-12-01</p> <p>2016 Kumamoto Earthquake triggered numerous landslides in Aso caldera area, Japan and incurred heavy casualties. Landslides occurred not only on steep slopes at the caldera cliffs or the barranco but also on relatively gradual slopes at the side of the central cones in the Aso caldera. The Aso volcano is a volcanic complex with huge caldera formed by catastrophic eruption at approximately 90ka and central cones formed by subsequent activities to recent years. The central cones are volcanic peaks contain various rocks including basaltic, andesitic and rhoyolitic lavas and pyroclastic materials. In this study, we analyzed the samples collected from the bottom surface of landslides occurred at the gradual hillside on the western flank of the Aso central cones. The subsurface geology of the site is Takanoobane rhyolite lava, 51ka, covered by dark silty or pelitic tuffs and black soil strata including Kusasenri pumice layer, 31ka. The bottom plane of the landslides can be seen as flat surfaces at boundaries between units in the Kusasenri pumice or bottom of the Kusasenri pumice on the pelitic tuff with charcoaled plants. The Kusasenri pumice layer is a coarse grained and highly permeable but poorly continuous. X-ray diffraction analysis revealed that the main component of the samples is halloysite (10Å). Halloysite (10Å) is alteration product of fine grained volcanic ash, and swellable clay with interlayer water molecules which bring sticky and deformable characteristics. The landslides caused by 2016 Kumamoto Earthquake occurred without precipitation within a week. Strong earthquake may fluidize swellable clay layers in gradual slopes and triggered heavy landslides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1414300A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1414300A"><span>Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.</p> <p>2012-04-01</p> <p>The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U-Th)/He zircon geochronology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810396P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810396P"><span>Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar</p> <p>2016-04-01</p> <p>Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been carried out since 2006, showing an average emission rate of 8.0 kg/d. This value showed an anomalous increase up to 29 kg/d in the summer of 2010. The number of seismic events registered in and around Tenerife Island by the National Geographic Institute (IGN) reached also the highest value (1,176) in 2010. This excellent agreement between both times series suggest that the anomalous seismicity registered in 2010 was likely due to strain/stress changes caused by input of magmatic fluids beneath the central volcanic system of the island. These results suggest that monitoring of He degassing rates in oceanic volcanic islands is an excellent early warning geochemical precursory signal for volcanic unrest. References Padrón et al., 2013. Geology, DOI: 10.1130/G34027.1. Pérez et al., 2013. J. Geol. Soc., DOI: 10.1144/jgs2012-125.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS13A0003P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS13A0003P"><span>Investigating Crustal Scale Fault Systems Controlling Volcanic and Hydrothermal Fluid Processes in the South-Central Andes, First Results from a Magnetotelluric Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.</p> <p>2017-12-01</p> <p>At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013770','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013770"><span>High-resolution 40Ar 39Ar chronology of Oligocene volcanic rocks, San Juan Mountains, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lanphere, M.A.</p> <p>1988-01-01</p> <p>The central San Juan caldera complex consists of seven calderas from which eight major ash-flow tuffs were erupted during a period of intense volcanic activity that lasted for approximately 2 m.y. about 26-28 Ma. The analytical precision of conventional K-Ar dating in this time interval is not sufficient to unambiguously resolve this complex history. However, 40Ar 39Ar incremental-heating experiments provide data for a high-resolution chronology that is consistent with stratigraphie relations. Weighted-mean age-spectrum plateau ages of biotite and sanidine are the most precise with standard deviations ranging from 0.08 to 0.21 m.y. The pooled estimate of standard deviation for the plateau ages of 12 minerals is about 0.5 percent or about 125,000 to 135,000 years. Age measurements on coexisting minerals from one tuff and on two samples of each of two other tuffs indicate that a precision in the age of a tuff of better than 100,000 years can be achieved at 27 Ma. New data indicate that the San Luis caldera is the youngest caldera in the central complex, not the Creede caldera as previously thought. ?? 1988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/0431/pdf/of2001-0431.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/0431/pdf/of2001-0431.pdf"><span>Volcano hazards at Fuego and Acatenango, Guatemala</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.</p> <p>2001-01-01</p> <p>The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SolED...5.1941S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SolED...5.1941S"><span>Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarifakioglu, E.; Dilek, Y.; Sevin, M.</p> <p>2013-11-01</p> <p>Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the Northern Neotethys. The Ankara Mélange thus exhibits the record of ~120-130 million years of oceanic magmatism in geological history of the Northern Neotethys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027716','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027716"><span>Late Cenozoic sedimentation and volcanism during transtensional deformation in Wingate Wash and the Owlshead Mountains, Death Valley</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Luckow, H.G.; Pavlis, T.L.; Serpa, L.F.; Guest, B.; Wagner, D.L.; Snee, L.; Hensley, T.M.; Korjenkov, A.</p> <p>2005-01-01</p> <p>New 1:24,000 scale mapping, geochemical analyses of volcanic rocks, and Ar/Ar and tephrochronology analyses of the Wingate Wash, northern Owlshead Mountain and Southern Panamint Mountain region document a complex structural history constrained by syntectonic volcanism and sedimentation. In this study, the region is divided into five structural domains with distinct, but related, histories: (1) The southern Panamint domain is a structurally intact, gently south-tilted block dominated by a middle Miocene volcanic center recognized as localized hypabyssal intrusives surrounded by proximal facies pyroclastic rocks. This Miocene volcanic sequence is an unusual alkaline volcanic assemblage ranging from trachybasalt to rhyolite, but dominated by trachyandesite. The volcanic rocks are overlain in the southwestern Panamint Mountains by a younger (Late Miocene?) fanglomerate sequence. (2) An upper Wingate Wash domain is characterized by large areas of Quaternary cover and complex overprinting of older structure by Quaternary deformation. Quaternary structures record ???N-S shortening concurrent with ???E-W extension accommodated by systems of strike-slip and thrust faults. (3) A central Wingate Wash domain contains a complex structural history that is closely tied to the stratigraphic evolution. In this domain, a middle Miocene volcanic package contains two distinct assemblages; a lower sequence dominated by alkaline pyroclastic rocks similar to the southern Panamint sequence and an upper basaltic sequence of alkaline basalt and basanites. This volcanic sequence is in turn overlain by a coarse clastic sedimentary sequence that records the unroofing of adjacent ranges and development of ???N-S trending, west-tilted fault blocks. We refer to this sedimentary sequence as the Lost Lake assemblage. (4) The lower Wingate Wash/northern Owlshead domain is characterized by a gently north-dipping stratigraphic sequence with an irregular unconformity at the base developed on granitic basement. The unconformity is locally overlain by channelized deposits of older Tertiary(?) red conglomerate, some of which predate the onset of extensive volcanism, but in most of the area is overlain by a moderately thick package of Middle Miocene trachybasalt, trachyandesitic, ash flows, lithic tuff, basaltic cinder, basanites, and dacitic pyroclastic, debris, and lahar flows with localized exposures of sedimentary rocks. The upper part of the Miocene stratigraphic sequence in this domain is comprised of coarse grained-clastic sediments that are apparently middle Miocene based on Ar/Ar dating of interbedded volcanic rocks. This sedimentary sequence, however, is lithologically indistinguishable from the structurally adjacent Late Miocene Lost Lake assemblage and a stratigraphically overlying Plio-Pleistocene alluvial fan; a relationship that handicaps tracing structures through this domain. This domain is also structurally complex and deformed by a series of northwest-southeast-striking, east-dipping, high-angle oblique, sinistral, normal faults that are cut by left-lateral strike-slip faults. The contact between the southern Panamint domain and the adjacent domains is a complex fault system that we interpret as a zone of Late Miocene distributed sinistral slip that is variably overprinted in different portions of the mapped area. The net sinistral slip across the Wingate Wash fault system is estimated at 7-9 km, based on offset of Proterozoic Crystal Springs Formation beneath the middle Miocene unconformity to as much as 15 km based on offset volcanic facies in Middle Miocene rocks. To the south of Wingate Wash, the northern Owlshead Mountains are also cut by a sinistral, northwest-dipping, oblique normal fault, (referred to as the Filtonny Fault) with significant slip that separates the Lower Wingate Wash and central Owlshead domains. The Filtonny Fault may represent a young conjugate fault to the dextral Southern Death Valley fault system and may be the northwest</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.G23C0847P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.G23C0847P"><span>Observations and modelling of inflation in the Lazufre volcanic region, South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearse, J.; Lundgren, P.</p> <p>2010-12-01</p> <p>The Central Volcanic Zone (CVZ) is an active volcanic arc in the central Andes, extending through Peru, southwestern Bolivia, Chile, and northwestern Argentina [De Silva, 1989; De Silva and Francis, 1991]. The CVZ includes a number of collapsed calderas, remnants of catastrophic eruptions, which are now thought to be inactive. However, recent Interferometric Synthetic Aperture Radar (InSAR) observations [Pritchard and Simons, 2004] show surface deformation occurring at some of these large ancient volcanic regions, indicating that magma chambers are slowly inflating beneath the surface. The mechanisms responsible for the initiation and growth of large midcrustal magma chambers remains poorly understood, and InSAR provides an opportunity for us to observe volcanic systems in remote regions that are otherwise difficult to monitor and observe. The Lastarria-Cordon del Azufre ("Lazufre" [Pritchard and Simons, 2002]) volcanic area is one such complex showing recent deformation, with average surface uplift rates of approximately 2.5 cm/year [Froger et al., 2007; Ruch et al, 2008]. We have processed InSAR data from ERS-1/2 and Envisat in the Lazufre volcanic area, including both ascending and descending satellite tracks. Time series analysis of the data shows steady uplift beginning in about 2000, continuing into 2010. We use boundary-element elastic models to invert for the depth and shape of the magmatic source responsible for the surface deformation. Given data from both ascending and descending tracks, we are able to resolve the ambiguity between the source depth and size, and constrain the geometry of the inflating magma source. Finite element modelling allows us to understand the effect of viscoelasticity on the development of the magma chamber.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJEaS.100.1967G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJEaS.100.1967G"><span>Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gencalioglu-Kuscu, Gonca</p> <p>2011-11-01</p> <p>Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an "orogenic" fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts ( sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb-Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the "alkaline" basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts ( sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts ( sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source characteristics. Indeed, HFS and other incompatible element ratios suggest the role of crustal contamination in the genesis of the CAVP monogenetic basalts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850015341&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmajor%2Bdepression','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850015341&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmajor%2Bdepression"><span>Valles Marineris Basin Beds: a Complex Story</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lucchitta, B. K.</p> <p>1985-01-01</p> <p>High resolution stereoimages of the central Valles Marineris enabled detailed geologic mapping on Ophir and Candor Chasmata. Abundant light colored deposits, both layered and massive, fill the chasmata in this region. Units within these deposits were identified by their erosional characteristics and superposition and cross cutting relations. The Valles Marineris beds reflect a history of repeated faulting, volcanic eruptions, and deposition and erosion, resulting in stratigraphic sequences with several unconformities. Because of the preponderance of apparent volcanic deposits inside the troughs, the chasmata may not be simple grabens, but rather giant volcano tectonic depressions. Major events in chasmata development are examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004EOSTr..85Q.437V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004EOSTr..85Q.437V"><span>Understanding Seismotectonic Aspects of Central and South American Subduction Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vargas-Jiménez, Carlos A.; Monsalve-Jaramillo, Hugo; Huérfano, Victor</p> <p>2004-10-01</p> <p>The Circum-Pacific, and particularly the Central and South America, subduction zones are complex structures that are subject to frequent, large-magnitude earthquakes, volcanic activity, tsunamis, and geological hazards. Among these natural hazards, earthquakes produce the most significant social and economic impacts in Latin America, and the subduction zones therefore demand constant vigilance and intensive study. The American continent has witnessed serveral earthquakes that rank among the most destrive in the world. Earthquakes such as the ones that occurred in Colombia-Ecuador [Mw = 8.9, 1906], Chile [Mw = 9.6, 1960; Mw = 8.9, 1995], Mexico [Mw = 9.6, 1985], and Peru [Mw = 8.0, 2001], as well as a number of destuctive events related to crustal fault systems and volcanic eruptions [e.g., Soufrière, El Ruiz, Galeras, ect.], have produced significant human and economic loss.The latent seismic hazards in the Caribbean, and Central and South America demand from the regional Earth sciences community accurate models to explain the mechanisms of these natural phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1684/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1684/report.pdf"><span>Geochemistry and Geochronology of Middle Tertiary Volcanic Rocks of the Central Chiricahua Mountains, Southeast Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.</p> <p>2004-01-01</p> <p>Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In contrast, compositions of the ash-flow tuffs, including the Rhyolite Canyon Tuff, vary significantly owing to eruption from compositionally zoned reservoirs. Reservoir zonation is consistent with fractional crystallization of observed phenocryst phases and resulting residual liquid compositional evolution. Rhyolite lavas preserved in the moat of the Turkey Creek caldera depict compositional zonation that is the reverse of that expected of magma extraction from progressively deeper parts of a normally zoned reservoir. Presuming that the source reservoir was sequentially tapped from its top downward, development of reverse zonation in the rhyolite lava sequence may indicate that later erupted, more evolved magma contains systematically less wallrock contamination derived from the geochemically primitive margins of its incompletely mixed reservoir. New 40Ar/39Ar geochronology data indicate that the principal middle Tertiary volcanic rocks in the central Chiricahua Mountains were erupted between about 34.2 and 26.2 Ma, and that the 5.2 m.y. period between 33.3 and 28.1 Ma was amagmatic. The initial phase of eruptive activity in the central Chiricahua Mountains, between 34.2 and 33.3 Ma, was associated with a regional tectonic regime dominated by subduction along the west edge of North America. We infer that the magmatic hiatus, nearly simultaneous with a hiatus of similar duration in parts of the Boot Heel volcanic field east of the central Chiricahua Mountains, is related to a period of more rapid convergence and therefore shallower subduction that may have displaced subduction-related magmatic activity to a position east of the present-day Boot Heel volcanic field. The hiatus also coincides with a major plate tectonic reorganization along the west edge of North America that resulted in cessation of subduction and initiation of transform faulting along the San Andreas fault. The final period of magmatism in the central Chiricahua Mountains, between 28.1 and 23.2 Ma, ap</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..341..119K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..341..119K"><span>Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian-Pannonian Region (Eastern-Central Europe, Romania)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kis, Boglárka-Mercédesz; Ionescu, Artur; Cardellini, Carlo; Harangi, Szabolcs; Baciu, Călin; Caracausi, Antonio; Viveiros, Fátima</p> <p>2017-07-01</p> <p>We provide the first high-resolution CO2 flux data for the Neogene to Quaternary volcanic regions of the entire Carpathian-Pannonian Region, Eastern-Central Europe, and estimate the CO2 emission of the seemingly inactive Ciomadul volcanic complex, the youngest volcano of this area. Our estimate includes data from focused and diffuse CO2 emissions from soil. The CO2 fluxes of focused emissions range between 277 and 8172 g d- 1, corresponding to a CO2 output into the atmosphere between 0.1 and 2.98 t per year. The investigated areas for diffuse soil gas emissions were characterized by wide range of CO2 flux values, at Apor Baths, ranging from 1.7 × 101 to 8.2 × 104 g m- 2 d- 1, while at Lăzărești ranging between 1.43 and 3.8 × 104 g m- 2 d- 1. The highest CO2 focused gas fluxes at Ciomadul were found at the periphery of the youngest volcanic complex, which could be explained either by tectonic control across the brittle older volcanic edifices or by degassing from a deeper crustal zone resulting in CO2 flux at the periphery of the supposed melt-bearing magma body beneath Ciomadul. The estimate of the total CO2 output in the area is 8.70 × 103 t y- 1, and it is consistent with other long (> 10 kyr) dormant volcanoes with similar age worldwide, such as in Italy and USA. Taking into account the isotopic composition of the gases that indicate deep origin of the CO2 emissions, this yields further support that Ciomadul may be considered indeed a dormant, or PAMS volcano (volcano with potentially active magma storage) rather than an inactive one. Furthermore, hazard of CO2 outpourings has to be taken into account and it has to be communicated to the visitors. Finally, we suggest that CO2 output of dormant volcanic systems has to be also accounted in the estimation of the global volcanic CO2 budget.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29938148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29938148"><span>Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W</p> <p>2018-02-01</p> <p>Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..612M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..612M"><span>Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.</p> <p>2018-02-01</p> <p>Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023731','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023731"><span>Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, C.F.</p> <p>2001-01-01</p> <p>The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 < Qp < 106 m3 s-1 for plausible breach erosion rates of 10-100 m h-1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103 < Qp < 104 m3 s-1 for plausible breach erosion rates. Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JVGR...60..273M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JVGR...60..273M"><span>Substorm wave base felsic hydroclastic deposits in the Archean Lac des Vents volcanic complex, Abitibi belt, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, Wulf; Chown, E. H.; Potvin, Robin</p> <p>1994-05-01</p> <p>Volcaniclastic deposits of the 2.3-km-thick Archean Lac des Vents volcanic complex are an integral part of major submarine volcanic construction. The volcanic edifice, which formed on a subaqueous basalt plain, is comparable to modern seamounts resting on the ocean floor. The initial 770 m of the mafic-felsic edifice, subject of this study, is composed of massive, brecciated and pillowed basalts, massive to brecciated felsic lava flows and abundant felsic fragmental rocks of hydroclastic origin. Four distinct volcaniclastic lithofacies constitute the latter: (1) the pumice lapilli-tuff lithofacies; (2) the lapilli-tuff breccia lithofacies characterized by two sublithofacies; (3) the turbidite tuff and tuff-breccia lithofacies; and (4) the volcanic sandstone and breccia lithofacies. These four volcaniclastic lithofacies are considered to be the result of explosive and non-explosive hydrovolcanic fragmentation processes operating at depths below storm wave base (> 200 m). Primary deposition or limited remobilization of unconsolidated hydroclastic debris is shown by the preservation of delicate clasts and volcanic textures, and heat retention structures. The principal transport agents are high-concentration sediment gravity flows occurring under laminar and turbulent flow conditions. High- and low-density turbiditic tuffs and fine-grained tuff fallout deposits, are related to either the dissipating stages of volcanic eruptions or slumping of syneruptive volcanic debris on the flanks of a subaqueous volcanic edifice. Ubiquitous interstratification of volcaniclastic turbidites, shale, and pillowed basalt flows with the felsic lava flows and fragmental debris favours subaqueous deposition. These features combined with the absence of wave-induced sedimentary structures, imply deposition in water depths in excess of 200 m. Viscous feldspar-phyric massive and brecciated felsic flows, and associated volcaniclastics cross cut by felsic dykes, suggest vent proximity. The abundance of breccia-size hydroclastic debris is consistent with this interpretation. Collectively, these criteria argue for subaqueous fragmentation and deposition of volcaniclastics of inferred hydroclastic origin close to the central vent area at depths below storm wave base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..354...39M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..354...39M"><span>The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan</p> <p>2018-04-01</p> <p>Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the volcanic eruptions were often separated by prolonged (ca. 100 to 200 kyr) quiescence periods. Demonstration of recurrence of volcanism even after such long dormancy has to be considered in assessing volcanic hazards, particularly in seemingly inactive volcanic areas, where no Holocene eruptions occurred. The term of 'volcanoes with Potentially Active Magma Storage' illustrates the potential of volcanic rejuvenation for such long-dormant volcanoes with the existence of melt-bearing crustal magma body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8532A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8532A"><span>Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.</p> <p>2016-04-01</p> <p>Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an apparent relation between higher diffuse CO2 emission values and the main N-S axis of the rift. The total CO2 output released to the atmosphere in a diffuse way has been estimated at 707 t d-1, which represents a value three times higher than the average of the three studies conducted previously. This observed increase suggests the occurrence of an episodic enhanced magmatic (endogenous) contribution. This also confirms the need of periodic diffuse emission surveys in the area as a powerful volcanic surveillance tool, mainly in volcanic systems where visible gas emanations are absent. References: Dóniz et al., 2008. J. Volcanol. Geotherm. Res. 173, 185. Kröchert and Buchner, 2008. Geol. Mag. 146, 161.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.V33A..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.V33A..04R"><span>Volcanic deformation in the Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riddick, S.; Fournier, T.; Pritchard, M.</p> <p>2009-05-01</p> <p>We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1124/of2006-1124.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1124/of2006-1124.pdf"><span>Field-trip guide to volcanic and volcaniclastic deposits of the lower Jurassic Talkeetna formation, Sheep Mountain, south-central Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Draut, Amy E.; Clift, Peter D.; Blodgett, Robert B.</p> <p>2006-01-01</p> <p>This guide provides information for a one-day field trip in the vicinity of Sheep Mountain, just north of the Glenn Highway in south-central Alaska. The Lower Jurassic Talkeetna Formation, consisting of extrusive volcanic and volcaniclastic sedimentary rocks of the Talkeetna arc complex, is exposed on and near Sheep Mountain. Field-trip stops within short walking distance of the Glenn Highway (approximately two hours’ drive from Anchorage) are described, which will be visited during the Geological Society of America Penrose meeting entitled Crustal Genesis and Evolution: Focus on Arc Lower Crust and Shallow Mantle, held in Valdez, Alaska, in July 2006. Several additional exposures of the Talkeetna Formation on other parts of Sheep Mountain that would need to be accessed with longer and more strenuous walking or by helicopter are also mentioned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029594','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029594"><span>Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clift, P.D.; Draut, A.E.; Kelemen, P.B.; Blusztajn, J.; Greene, A.</p> <p>2005-01-01</p> <p>The Early Jurassic Talkeetna Volcanic Formation forms the upper stratigraphic level of an oceanic volcanic arc complex within the Peninsular Terrane of south-central Alaska. The section comprises a series of lavas, tuffs, and volcaniclastic debris-How and flow turbidite deposits, showing significant lateral facies variability. There is a general trend toward more volcaniclastic sediment at the top of the section and more lavas and tuff breccias toward the base. Evidence for dominant submarine, mostly mid-bathyal or deeper (>500 m) emplacement is seen throughout the section, which totals ???7 km in thickness, similar to modern western Pacific arcs, and far more than any other known exposed section. Subaerial sedimentation was rare but occurred over short intervals in the middle of the section. The Talkeetna Volcanic Formation is dominantly calc-alkatine and shows no clear trend to increasing SiO2 up-section. An oceanic subduction petrogenesis is shown by trace element and Nd isotope data. Rocks at the base of the section show no relative enrichment of light rare earth elements (LREEs) versus heavy rare earth elements (REES) or in melt-incompatible versus compatible high field strength elements (HFSEs). Relative enrichment of LREEs and HFSEs increases slightly up-section. The Talkeetna Volcanic Formation is typically more REE depleted than average continental crust, although small volumes of light REE-enriched and heavy REE-depleted mafic lavas are recognized low in the stratigraphy. The Talkeetna Volcanic Formation was formed in an intraoceanic arc above a north-dipping subduction zone and contains no preserved record of its subsequent collisions with Wrangellia or North America. ?? 2005 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..320...40N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..320...40N"><span>Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Napoli, Rosalba; Currenti, Gilda</p> <p>2016-06-01</p> <p>High-resolution ground and marine magnetic data are exploited for a detailed definition of a 3D model of the Vulcano Island volcanic complex. The resulting 3D magnetic imaging, obtained by 3-D inverse modeling technique, has delivered useful constraints both to reconstruct the Vulcano Island evolution and to be used as input data for volcanic hazard assessment models. Our results constrained the depth and geometry of the main geo-structural features revealing more subsurface volcanic structures than exposed ones and allowing to elucidate the relationships between them. The recognition of two different magnetization sectors, approximatively coincident with the structural depressions of Piano caldera, in the southern half of the island, and La Fossa caldera at the north, suggests a complex structural and volcanic evolution. Magnetic highs identified across the southern half of the island reflect the main crystallized feeding systems, intrusions and buried vents, whose NNW-SSE preferential alignment highlights the role of the NNW-SSE Tindari-Letojanni regional system from the initial activity of the submarine edifice, to the more recent activity of the Vulcano complex. The low magnetization area, in the middle part of the island may result from hydrothermally altered rocks. Their presence not only in the central part of the volcano edifice but also in other peripheral areas, is a sign of a more diffuse historical hydrothermal activity than in present days. Moreover, the high magnetization heterogeneity within the upper flanks of La Fossa cone edifice is an imprint of a composite distribution of unaltered and altered rocks with different mechanical properties, which poses in this area a high risk level for failure processes especially during volcanic or hydrothermal crisis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12110886','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12110886"><span>A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pritchard, Matthew E; Simons, Mark</p> <p>2002-07-11</p> <p>Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SolE....5...77S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SolE....5...77S"><span>Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarifakioglu, E.; Dilek, Y.; Sevin, M.</p> <p>2014-02-01</p> <p>Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 256.9 ± 8.0 Ma, 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (∼ 67-63 Ma). All but the arc rocks occur in a shale-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ɛNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous-early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼ 120-130 million years of oceanic magmatism in geological history of the northern Neotethys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..307....1E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..307....1E"><span>Introduction to the 2012-2013 Tolbachik eruption special issue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Volynets, Anna</p> <p>2015-12-01</p> <p>The Tolbachik volcanic complex in central Kamchatka holds a special place in global volcanological studies. It is one of 4 areas of extensive historic volcanic activity in the northern part of the Central Kamchatka Depression (the others being Klyuchevskoy, Bezymianny, Shiveluch), and is part of the Klyuchevskoy volcanic group, which is one of the most active areas of volcanism on Earth. Tolbachik is especially well-known due largely to the massive 1975-1976 eruption that became known as the Great Tolbachik Fissure eruption (GTFE; Fedotov, 1983; Fedotov et al., 1984). This was one of the first eruptions in Russia to be predicted based on precursory seismic activity, based on M5 earthquakes approximately one week before the eruption started, and was intensively studied during its course by a large number of Russian scientists. A summary of those studies was published, first in Russian and then in English, and it became widely read for many reasons. One in particular is that the eruption was somewhat unusual for a subduction zone setting; although many subduction zone stratovolcanoes have associated basaltic tephra cone-lava fields, this was the first such Hawaiian-style eruption to be widely observed. After the end of the eruption in 1976, the complex showed no signs of activity until 27 November 2012, when increased seismic activity was registered by the Kamchatka Branch of the Russian Geophysical Survey and a red glow from the eruption site was first noticed through the snowstorm haze. This prompted them, and then the Kamchatka Volcanic Emergency Response Team (KVERT) to issue an alert that activity was coming from the south flank of Plosky Tolbachik volcano, the younger of two volcanic edifices (the older is Ostry Tolbachik) that together make up the bulk of the complex along with tephra cone-lava fields that lie along a NE-SW fissure zone that transects Plosky Tolbachik. The new eruption lasted for more than 250 days and, like the 1975-1976 eruption, was dominated by Hawaiian-style activity. With the start of the eruption coinciding with the onset of winter months in Kamchatka, field observations, while virtually continuous, were also not as numerous as those that documented the GTFE 36 years previously. Nonetheless the Institute of Volcanology and Seismology (IVS) in Petropavlovsk-Kamchatsky provided almost continuous field-based coverage throughout the eruption. Many of the research projects begun during the eruption comprise international teams of scientists who were able to partner with IVS through international funding, particularly through the United States National Science Foundation and the National Geographic Committee for Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CoMP..168.1078A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CoMP..168.1078A"><span>Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aydin, Faruk; Schmitt, Axel K.; Siebel, Wolfgang; Sönmez, Mustafa; Ersoy, Yalçın; Lermi, Abdurrahman; Dirik, Kadir; Duncan, Robert</p> <p>2014-11-01</p> <p>The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr-Nd-Pb and δ18O isotopes) and geochronological (U-Pb zircon and Ar-Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Niğde Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038-0.7053) and felsic (0.7040-0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70073940','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70073940"><span>Central San Juan caldera cluster: Regional volcanic framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lipman, Peter W.</p> <p>2000-01-01</p> <p>Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the symmetrically resurgent Creede caldera, the volcanic framework for Lake Creede, has been exceptionally preserved because of rapid infilling by moat sediments of the Creede Formation, which were preferentially eroded during the past few million years. The ash-flow tuffs and caldera of the central San Juan region have been widely recognized as exceptional sites for study of explosive volcanic processes, and the results reported here provide new insights into processes of pyroclastic eruption and emplacement, geometric interrelations between caldera subsidence and resurgence, the petrologic diversity of sequential ash-flow eruptions, recurrent eruption of intermediate-composition lavas after each caldera-forming event, associated regional fault development, volume relations between ash-flow eruptions and associated calderas, the emplacement of subvolcanic batholiths, and involvement of mantle-derived mafic phases in magma-generation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4661A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4661A"><span>Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael</p> <p>2017-04-01</p> <p>This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra Lake was only sampled in the summer season. The CO2 flux values range between 0.68 g m-2 d-1 (Paul lake) and 20.47 g m-2 d-1 (Negra). The total CO2 emission varies between 0.03 t d-1 (Negra and Peixinho lakes) and 0.30 t d-1 (Caiado lake) for the summer surveys, and between 0.04 t d-1 (Rosada lake) and 0.26 t d-1 (Caiado lake) for the winter data. The higher CO2 emission is observed for Rosada lake (8.89 t km-2 d-1) during summer and the lower corresponds to the Negra lake (1.67 t km-2 d-1) during summer. Considering the set of the studied volcanic lakes, the CO2 emission sums up to 64 t d-1 (winter campaign) and 72 t d-1 (summer). These emissions are probably mainly associated to a biogenic source, but the characterization of the CO2 emission in these volcanic lakes during periods of quiescence is relevant for any seismo-volcanic monitoring programme. Key words: volcanic lakes, CO2 flux, diffuse degassing, Pico Island, Azores</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358158','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358158"><span>The youngest silicic eruptions from the Valles Caldera and volcanic hazard potential in north-central New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>WoldeGabriel, Giday; Kelley, Richard E.; Miller, Elizabeth D.</p> <p></p> <p>Here, sporadic mafic and felsic eruptions, representing at least five major and several smaller pulses of effusive and explosive volcanic products that range in age from 25.5 Ma to 68.3 ka, crop out within the Jemez volcanic field and the surrounding areas in north central New Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358158-youngest-silicic-eruptions-from-valles-caldera-volcanic-hazard-potential-north-central-new-mexico','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358158-youngest-silicic-eruptions-from-valles-caldera-volcanic-hazard-potential-north-central-new-mexico"><span>The youngest silicic eruptions from the Valles Caldera and volcanic hazard potential in north-central New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>WoldeGabriel, Giday; Kelley, Richard E.; Miller, Elizabeth D.; ...</p> <p>2016-05-01</p> <p>Here, sporadic mafic and felsic eruptions, representing at least five major and several smaller pulses of effusive and explosive volcanic products that range in age from 25.5 Ma to 68.3 ka, crop out within the Jemez volcanic field and the surrounding areas in north central New Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900062008&hterms=active+volcanoes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dactive%2Bvolcanoes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900062008&hterms=active+volcanoes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dactive%2Bvolcanoes"><span>Potentially active volcanoes of Peru - Observations using Landsat Thematic Mapper and Space Shuttle imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De Silva, S. L.; Francis, P. W.</p> <p>1990-01-01</p> <p>A synoptic study of the volcanoes of southern Peru (14-17 deg S), the northernmost part of the Central Volcanic Zone (CVZ 14-28 deg S) of the Andes, was conducted on the basis of Landsat TM images and color photography. The volcanoes were classified and their relative ages determined using subtle glacial-morphological features. Eight of them were postulated as potentially active. These are located in a narrow volcanic zone which probably reflects a steep dip of the Nazca plate through the zone of magma generation. The break in the trend of the volcanic arc possibly reflects the complexity of the crustal stress field above a major segment boundary in the subducting plate. There are also fields of mafic monogenetic centers in this region. In comparison with the southern part of the CVZ, the general paucity of older volcanic edifices north of 17 deg S suggested a more recent onset of volcanism, a possible result of the oblique subduction of the Nazca ridge and the consequent northward migration of its intersection with the Peru-Chile trench. This, together with the lack of any large silicic caldera systems and youthful dacite domes, suggested that there are real differences in the volcanic evolution of the two parts of the CVZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017752','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017752"><span>Geochronology of the Sleeper deposit, Humboldt County, Nevada: epithermal gold-silver mineralization following emplacement of a silicic flow-dome complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Conrad, J.E.; McKee, E.H.; Rytuba, J.J.; Nash, J.T.; Utterback, W.C.</p> <p>1993-01-01</p> <p>The high-grade gold-silver deposits at the Sleeper mine are low sulfidation, quartz-adularia-type epithermal deposits, formed during the final stages of igneous hydrothermal activity of a small middle Miocene silicic flow-dome complex in north-central Nevada. There were multiple pulses of alteration and mineralization but all occurred within a period of less than 2 m.y. Later supergene alteration formed opal and alunite about 5.4 Ma but produced no Au or Ag mineralization other than some remobilization to produce locally rich pockets of secondary Au and Ag enrichment and is unrelated to the older magmatic hydrothermal system. The Sleeper deposit in the northern part of the Great Basin is genetically related to bimodal volcanism that followed a long period of arc-related andesitic volcanism in the same general region. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020015','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020015"><span>Rapid extension in an Eocene volcanic arc: Structure and paleogeography of an intra-arc half graben in central Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Janecke, S.U.; Hammond, B.F.; Snee, L.W.; Geissman, J.W.</p> <p>1997-01-01</p> <p>A study of extension, volcanism, and sedimentation in the middle Eocene Panther Creek half graben in central Idaho shows that it formed rapidly during an episode of voluminous volcanism. The east-southeast-tilted Panther Creek half graben developed across the northeast edge of the largest cauldron complex of the Challis volcanic field and along the northeast-trending Trans-Challis fault zone. Two normal fault systems bound the east side of the half graben. One fault system strikes northeast, parallel to the Trans-Challis fault zone, and the other strikes north to northwest. The geometry of the basin-fill deposits shows that movement on these two normal fault systems was synchronous and that both faults controlled the development of the Panther Creek half graben. Strikes of the synextension volcanic and sedimentary rocks are similar throughout the half graben, whereas dips decrease incrementally upsection from as much as 60?? to less than 10??. Previous K-Ar dates and a new 40Ar/39Ar plateau date from the youngest widespread tuff in the basin suggest that most of basin formation spanned 3 m.y. between about 47.7 Ma and 44.5 Ma. As much as 6.5 km of volcanic and sedimentary rocks were deposited during that time. Although rates of extension and subsidence were very high, intense volcanic activity continually filled the basin with ash-flow tuffs, outpacing subsidence and sedimentation, until the end of basin development. After the abrupt end of Challis volcanism, locally derived pebble to boulder conglomerate and massive, reworked ash accumulated in the half graben. These sedimentary rocks make up a small part of the basin fill in the Panther Creek half graben and were derived mainly from Proterozoic metasedimentary rocks uplifted in the footwall of the basin. The east-southeast tilt of the sedimentary rocks, their provenance and coarse grain size, and the presence of a gravity slide block derived from tilted volcanic rocks in the hanging wall attest to continued tectonism during conglomerate deposition. Provenance data from the sedimentary rocks imply that the highland in the footwall of the Panther Creek half graben was never thickly blanketed by synex-tension volcanic rocks, despite intense volcanic activity. Analysis of the Panther Creek half graben and other intra-arc rift basins supports previous interpretations that relative rates of volcanism and subsidence control the proportion of volcanic rocks deposited in intra-arc rifts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGP43C1487G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGP43C1487G"><span>Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.</p> <p>2007-12-01</p> <p>The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985E%26PSL..74...69V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985E%26PSL..74...69V"><span>Navajo minettes in the Cerros de las Mujeres, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaniman, D.; Laughlin, A. W.; Gladney, E. S.</p> <p>1985-06-01</p> <p>The Cerros de las Mujeres in west-central New Mexico are three mafic minette plugs that should be considered part of the Navajo volcanic fields on the central Colorado Plateau. This newly recognized occurrence extends the Navajo volcanic fields to the southeastern margin of the Colorado Plateau, within 45 km of the extensional tectonic setting in which the Mogollon ash-flow tuff cauldrons occur. The Cerros de las Mujeres provide additional evidence for contemporaneous sodic and potassic volcanism within the Navajo volcanic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJEaS.106.2575C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJEaS.106.2575C"><span>New paleomagnetic results from Upper Cretaceous arc-type rocks from the northern and southern branches of the Neotethys ocean in Anatolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cengiz Cinku, Mualla; Heller, Friedrich; Ustaömer, Timur</p> <p>2017-10-01</p> <p>A paleomagnetic study of Cretaceous arc type rocks in the Central-Eastern Pontides and in the Southeastern Taurides investigates the tectonic and paleolatitudinal evolution of three volcanic belts in Anatolia, namely the Northern and Southern Volcanic Belts in the Pontides and the SE Taurides volcanic belt. The paleomagnetic data indicate that magnetizations were acquired prior to folding at most sampling localities/sites, except for those in the Erzincan area in the Eastern Pontides. The Southern Volcanic Belt was magnetized at a paleolatitude between 23.8_{-3.8}^{+4.2}°N and 20.2_{-1.2}^{+1.3}°N. Hisarlı (J Geodyn 52:114-128, 2011) reported a more northerly paleolatitude (26.6_{-4.6}^{+5.1}°N) for the Northern Volcanic Belt. The comparison of the new paleomagnetic results with previous ones in Anatolia allows to conclude that the Southern Volcanic Belt in the Central-Eastern Pontides was emplaced after the Northern Volcanic Belt as a result of slab-roll back of the Northern Neotethys ocean in the Late Cretaceous. In the Southeast Taurides, Upper Cretaceous arc-related sandstones were at a paleolatitude of 16.8_{-3.8}^{+4.2} . The Late Cretaceous paleomagnetic rotations in the Central Pontides exhibit a counterclockwise rotation of R± Δ R=-37.1° ± 5.8° (Group 1; Çankırı, Yaylaçayı Formation) while Maastrichtian arc type rocks in the Yozgat area (Group 2) show clockwise rotations R + Δ R = 33.7° ± 8.4° and R + Δ R = 29.3° ± 6.0°. In the SE Taurides counterclockwise and clockwise rotations of R± Δ R=-48.6° ± 5.2° and R± Δ R=+34.1° ± 15.1° are obtained (Group 4; Elazığ Magmatic Complex). The Late Cretaceous paleomagnetic rotations in the Pontides follow a general trend in concordance with the shape of the suture zone after the collision between the Pontides and the Kırşehir block. The affect of the westwards excursion of the Anatolian plate and the associated fault bounded block rotations in Miocene are observed in the east of the study area and the SE Taurides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042390','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042390"><span>Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.</p> <p>2008-01-01</p> <p>Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..357..163B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..357..163B"><span>Origin of Holocene trachyte lavas of the Quetrupillán volcanic complex, Chile: Examples of residual melts in a rejuvenated crystalline mush reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brahm, Raimundo; Parada, Miguel Angel; Morgado, Eduardo; Contreras, Claudio; McGee, Lucy Emma</p> <p>2018-05-01</p> <p>The Quetrupillán Volcanic Complex (QVC) is a stratovolcano placed in the center of a NW-SE volcanic chain, between Villarrica volcano and Lanín volcano, in the Central Southern Volcanic Zone of the Andes. Its youngest effusive products are dominated by crystal-poor (most samples with <9 vol% phenocrysts), crystal clot-bearing trachytes (from 64.6 up to 66.2 wt% SiO2), whereas the oldest units are mainly basaltic andesites. Two-stage generation of QVC trachytes by differentiation at shallow depth (<1 kbar) and NNO-QFM oxidation conditions were obtained from initial melt compositions equivalent to the Huililco basalts, a small eruptive centre located ca. 12 km NE of the QVC main vent. Pyroxene-bearing crystal clots, locally abundant in the trachytes, were formed at 900-960 °C (±55 °C) and represent a dismembered crystal mush from which interstitial trachytic melts were extracted and transported upward before eruption. Heating of the crystal mush by a hotter magma recharge is inferred from complex zoned plagioclases formed at higher crystallization temperatures (50-90 °C) than those obtained from pyroxene. Ca-rich plagioclase overgrowths around more albitic cores, followed by an external rim of similar composition to the core are interpreted as restoration to the initial conditions of plagioclase crystallization after the mentioned heating event. Additionally, a late heating of up to 150 °C just prior to eruption is recorded by Fe-Ti oxide thermometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6961R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6961R"><span>3D structure of a complex of transform basins from gravity data, a case study from the central Dead Sea fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenthal, Michal; Schattner, Uri; Ben-Avraham, Zvi</p> <p>2017-04-01</p> <p>The Kinneret-Bet She'an (KBS) basin complex comprises the Sea of Galilee, Kinarot, and Bet She'an sub-basins. The complex developed at the intersection between two major tectonic boundaries: the Oligo-Miocene Azraq-Sirhan failed rift, that later developed into the southern Galilee basins and Carmel-Gilboa fault system; and the Dead Sea fault (DSF) plate boundary that developed since the Miocene. Despite numerous studies, KBS still remains one of the enigmatic basin complexes. Its structure, stratigraphy and development are vaguely understood - both inside the basin and in correlation with its surroundings. Our study presents a new and comprehensive 3D model for the structure of KBS complex. It is based on all available gravity measurements, adopted from the national gravity database, and new gravity measurements, collected in cooperation with the Geological Survey of Israel and funded by the Ministry of National Infrastructure, Energy and Water Resources. The gravity data were integrated with constraints from boreholes, surface geology, seismic surveys, potential field studies and teleseismic tomography. The dense distribution of gravity data [1] provides suitable coverage for modeling the deep structure in three dimensions. The model details the spatial distribution, depth, thickness and density of the following regional units within the KBS complex and across its surroundings: upper crust, pre-Senonian sediments, Senonian and Cenozoic sediments, Miocene volcanics, Pliocene and Quaternary volcanics. Additional local units include salt, gabbro and pyroclasts. Results indicate that the KBS complex comprises two sub-basins separated by a structural saddle: Kinneret-Kinarot ( 6-7 km deep, 45 km long) and Bet She'an ( 4 km deep, 10 km long) sub-basin. A 500 m thick layer of Miocene volcanics appears across the Bet She'an sub-basin, yet missing from the Kinneret-Kinarot sub-basin. Between the basins Zemah-1 borehole penetrated a salt unit. The model indicates that this unit is a part of a thick (1250 m) dome-shaped, perhaps diapiric, structure. A relatively thin (350 m) salt unit fills the Kinneret-Kinarot sub-basin. Above, a 700 m thick layer of Pliocene volcanics fills the entire KBS complex. These volcanics are uplifted in the Zemah area by 200 m. The Pliocene volcanics dip northward from Zemah towards the center of the Sea of Galilee, and further north the Pliocene volcanics dip southward from Korazim towards the center of the Sea of Galilee. The depth differences exceed 3 km across a distance of 15 km, forming a 11° slope below the younger Quaternary fill of the basin. A low-density, probably pyroclastic, lens is calculated within the uppermost 2 km of the Sea of Galilee fill. Scenarios for the development of the basin are discussed. [1] Rosenthal, M., Segev, A., Rybakov, M., Lyakhovsky, V. and Ben-Avraham, Z. (2015) The deep structure and density distribution of northern Israel and its surroundings. GSI Report No. GSI/12/2015, 33 pages, Jerusalem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EP%26S...68..180U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EP%26S...68..180U"><span>The 2016 Kumamoto-Oita earthquake sequence: aftershock seismicity gap and dynamic triggering in volcanic areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchide, Takahiko; Horikawa, Haruo; Nakai, Misato; Matsushita, Reiken; Shigematsu, Norio; Ando, Ryosuke; Imanishi, Kazutoshi</p> <p>2016-11-01</p> <p>The 2016 Kumamoto-Oita earthquake sequence involving three large events ( M w ≥ 6) in the central Kyushu Island, southwest Japan, activated seismicities in two volcanic areas with unusual and puzzling spatial gaps after the largest earthquake ( M w 7.0) of April 16, 2016. We attempt to reveal the seismic process during the sequence by following seismological data analyses. Our hypocenter relocation result implies that the large events ruptured different faults of a complex fault system. A slip inversion analysis of the largest event indicates a large slip in the seismicity gap (Aso gap) in the caldera of Mt. Aso, which probably released accumulated stress and resulted in little aftershock production. We identified that the largest event dynamically triggered a mid-M6 event at Yufuin (80 km northeast of the epicenter), which is consistent with existence of the 20-km long zone where seismicity was activated and surface offset was observed. These findings will help us study the contribution of the identified complexity in fault geometries and the geotherm in the volcanic areas to the revealed seismic process and consequently improve our understanding of the seismo-volcano tectonics.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T32D..02J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T32D..02J"><span>The unzipping of Africa and South America; New insights from the Etendeka and younger volcanic events along the Angola/Namibia margin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jerram, D. A.</p> <p>2015-12-01</p> <p>The volcanic margin along Angola is relatively poorly constrained. This study uses new petrographic, geochronological and geochemical observations on a new sample set collected along the margin to help understand the various types and relative timings of volcanic events along the margin. This new study has identified 3 main volcanic events that occur at ~100Ma (Sumbe event 1), 90-92Ma (Serra de Neve (SDN)-Elefantes event 2) and 80-81Ma (Namibe event 3), with the oldest event in the north of the margin and younging southwards. This is contrasting with the main Etendeka pulse in Namibia at around 130 Ma. There is a marked variety of igneous rocks along the margin with a grouping of evolved alkaline rocks in the central SDN-Elefantes section, basic submarine volcanics in the north, and basanite eruptions in the southern section. There is some overlap with geochemical types along the margin. The Sumbe event contains predominantly submarine volcanics and shallow Intrusions. SDN-Elefantes rocks have a mixed type but with a distinctive feldspar rich evolved alkali suite of rocks (nepheline syenites and variations around this composition) which occur as lava flows and shallow intrusions as well as making up the core of the SDN complex. The SDN complex itself is analogous in size to the main volcanic centres in Namibia (such as Messum, Brandberg etc.) and suggests that large volcanic feeding centres are still active along the margin as young as 90ma. These in turn will form large volcano-topographic features. In the south the Ponta Negra and Canico sites mainly contain basanites in the form of lava flows, invasive flows and shallow intrusions. At Canico one intrusive plug was sampled with a similar composition to the evolved SDN-Elefantes suite. In all three events it is clear that the volcanic systems have interacted with the sedimentary systems, in some cases dynamically, in others with regional implications for volcano-tectonic uplift. Specific thanks is given for Statoil and Sonangol for sponsorship and support in the field, and the Geological Survey of Namibia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916988H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916988H"><span>Large Early Permian eruptive complexes in northern Saxony, Germany: Volcanic facies analysis and geochemical characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hübner, Marcel; Breitkreuz, Christoph; Repstock, Alexander; Heuer, Franziska</p> <p>2017-04-01</p> <p>In the course of formation of extensional basins during the Early Permian a widespread volcanic activity led to the deposition of volcanic and volcanosedimentary units in Saxony (Walter 2006, Hoffmann et al. 2013). Situated east of Leipzig, the North Saxonian Volcanic Complex (NSVC) hosts two large caldera complexes, the Rochlitz and Wurzen Volcanic Systems, with diameters of 90 and 52 km, respectively. Volume estimates (> 1000 km3) qualify these as supereruptions according to Mason et al. (2004). In addition to the large caldera systems, the NSVC hosts several small pyroclastic flow deposits ranging from crystal-poor (e.g. Cannewitz and vitrophyric Ebersbach ignimbrites) to crystal-rich units (Wermsdorf and Dornreichenbach ignimbrites). Additionally rhyolitic lava and subvolcanic units are present. The Chemnitz basin (Schneider et al. 2012), located to the south of the NSVC, harbours caldera-outflow facies deposits of the Rochlitz eruption (Fischer 1991), i.e. the partially vitrophyric Planitz ignimbrite. The Rochlitz and Wurzen caldera-fill ignimbrites exhibit relatively high crystal contents with maxima up to 52 and 58 vol.-%, for corresponding 66 and 68 wt.-% SiO2. This is comparable with the 'monotonous intermediates' (Hildreth 1981) in the Cenozoic western USA investigated by Huber et al. (2012). In contrast, the Planitz ignimbrite in the Chemnitz basin reveals predominantly crystal-poor pyroclastics (<10 vol.-%) with higher SiO2-contents (from 67 to 79 wt.-%). For the comparative study of the NSVC and the Planitz ignimbrite, we use detailed investigation of the volcanosedimentary facies, whole rock geochemical data (> 70 analyses), and mineral geochemistry to reconstruct the eruption history and magma genesis of this large Late Paleozoic magmatic complex in Central Europe. Volcanic textures and geochemical trends indicate magma mingling and mixing to have been important during the formation of the Wurzen caldera system. Geothermometric and -barometric calculations based on composition of pyroxene and feldspar suggest deeply seated crustal magma chambers for the NSVC and the Planitz ignimbrite. Fischer, F. (1991): Das Rotliegende des ostthüringisch-westsächsischen Raumes (Vorerzgebirgs-Senke, Nordwestsächsischer Vulkanitkomplex, Geraer Becken). Unpublished PhD thesis, TU Bergakademie Freiberg. HILDRETH, W. (1981): Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research (86), p. 10153-10192. Hoffmann, U.; Breitkreuz, C.; Breiter, K.; Sergeev, S.; Stanek, K.; Tichomirowa, M. (2013): Carboniferous-Permian volcanic evolution in Central Europe - U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int. J. Earth Sci. (Geol. Rdsch.), 102: p. 73-99. Huber, C.; Bachmann, O.; Dufek, J. (2012): Crystal-poor versus crystal-rich ignimbrites: A competition between stirring and reactivation. Geology, 2 (40), p. 115-118. Mason, B. G., Pyle, D. M. & Oppenheimer, C. (2004): The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanology, 66, p. 735-748. Schneider, J.W.; Rößler, R.; Fischer, F. (2012): Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). - In: Deutsche Stratigraphische Kommission (Ed.): Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, Heft 61: pp. 530-588; Hannover. Walter, H. (2006): Das Rotliegend der Nordwestsächsischen Senke. Veröff. Museum Naturkunde, 29, p. 157-176.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..332..109N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..332..109N"><span>Holocene tephra succession of Puyehue-Cordón Caulle and Antillanca/Casablanca volcanic complexes, southern Andes (40-41°S)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naranjo, J. A.; Singer, B. S.; Jicha, B. R.; Moreno, H.; Lara, L. E.</p> <p>2017-02-01</p> <p>Puyehue-Cordón Caulle and Antillanca volcanic complexes are two of at least 50 active frontal arc volcanoes that define the 1400 km-long Southern Volcanic Zone of Chile. Holocene tephra deposits in Chile and Argentina (40-41°S) up to 100 km east of these volcanoes comprise at least five voluminous ( 1 to 8 km3) pyroclastic-fall layers that preceded several recently deposited Cordón Caulle pumice fallouts. Field observations of proximal, medium, and distal facies of the deposits, in conjunction with geochronology and geochemistry of the volcanic complexes, indicate that three fall layers are derived from Puyehue volcano (Puyehue 1 and 2, and Mil Hojas), whereas two are sourced from the Antillanca complex (Playas Blanca-Negra, and Nahuel Huapi Tephra), 20 km to the south. The oldest tephra (calibrated 14C age 10.49 ± 0.12 ka, 2σ), found only at medium-distal facies, is deposited directly on granitic moraine boulders and consists of deeply weathered, orange dacitic pumice lapilli. The next prominent tephra at 7 ka comprises dacitic pumice and its age is equivalent to a rhyodacitic dome exposed in the Puyehue summit crater. Above these deposits there are phases of a complex eruption consisting of a conspicuous compositionally-zoned tephra. It also comprises a pyroclastic density current, together with lithic rich and scoriaceous fallout deposits. Mineralogical, geochemical, and Sr isotope evidence, plus the isopach maps, confirm that this sequence of eruptive events is sourced from Antillanca at 1932 ± 68 yrBP. The total volume of this eruptive sequence exceeds 8 km3, making it the largest Holocene eruption from either volcanic complex. This eruption was likely responsible for the destruction of an ancestral Antillanca volcano and the formation of a 4.5 km diameter caldera. A distinctive younger unit in the region is a voluminous rhyodacitic pumice fall (calibrated 14C age 1.11 ± 0.07 ka), above which a series of several alternating dark lithic and pumice lapilli beds accumulated. Correlation with proximal deposits indicates that the 1.11 ka eruption was derived from Puyehue and destroyed 3 km3 of rhyodacitic domes at this volcano summit. Historic explosive activity at the nascent Casablanca volcano and along Cordón Caulle, including the 2011-2012 eruption ( 1 km3 of uncompacted pumice), the largest from this fissural zone, emphasizes an increased risk for volcanic hazards in central Chile and Argentina.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ocgy...58..116L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ocgy...58..116L"><span>Volcanism and Tectonics of the Central Deep Basin, Sea of Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lelikov, E. P.; Emelyanova, T. A.; Pugachev, A. A.</p> <p>2018-01-01</p> <p>The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500-600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene-Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T53A4659H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T53A4659H"><span>The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.</p> <p>2014-12-01</p> <p>The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028810','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028810"><span>Negative magnetic anomaly over Mt. Resnik, a subaerially erupted volcanic peak beneath the West Antarctic Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Behrendt, John C.; Finn, C.; Morse, D.L.; Blankenship, D.D.</p> <p>2006-01-01</p> <p>Mt. Resnik is one of the previously reported 18 subaerially erupted volcanoes (in the West Antarctic rift system), which have high elevation and high bed relief beneath the WAIS in the Central West Antarctica (CWA) aerogeophysical survey. Mt. Resnik lies 300 m below the surface of the West Antarctic Ice Sheet (WAIS); it has 1.6 km topographic relief, and a conical form defined by radar ice-sounding of bed topography. It has an associated complex negative magnetic anomaly revealed by the CWA survey. We calculated and interpreted magnetic models fit to the Mt. Resnik anomaly as a volcanic source comprising both reversely and normally magnetized (in the present field direction) volcanic flows, 0.5-2.5-km thick, erupted subaerially during a time of magnetic field reversal. The Mt. Resnik 305-nT anomaly is part of an approximately 50- by 40-km positive anomaly complex extending about 30 km to the west of the Mt. Resnik peak, associated with an underlying source complex of about the same area, whose top is at the bed of the WAIS. The bed relief of this shallow source complex has a maximum of only about 400 m, whereas the modeled source is >3 km thick. From the spatial relationship we interpret that this source and Mt Resnik are approximately contemporaneous. Any subglacially (older?) erupted edifices comprising hyaloclastite or other volcanic debris, which formerly overlaid the source to the west, were removed by the moving WAIS into which they were injected as is the general case for the ???1000 volcanic centers at the base of the WAIS. The presence of the magnetic field reversal modeled for Mt. Resnik may represent the Bruhnes-Matayama reversal at 780 ka (or an earlier reversal). There are ???100 short-wavelength, steep-gradient, negative magnetic anomalies observed over the West Antarctic Ice Sheet (WAIS), or about 10% of the approximately 1000 short-wavelength, shallow-source, high-amplitude (50- >1000 nT) "volcanic" magnetic anomalies in the CWA survey. These negative anomalies indicate volcanic activity during a period of magnetic reversal and therefore must also be at least 780 ka. The spatial extent and volume of volcanism can now be reassessed for the 1.2 ?? 106 km2 region of the WAIS characterized by magnetic anomalies defining interpreted volcanic centers associated with the West Antarctic rift system. The CWA covers an area of 3.54 ?? 105 km2; forty-four percent of that area exhibits short-wavelength, high-amplitude anomalies indicative of volcanic centers and subvolcanic intrusions. This equates to an area of 0.51 ?? 105 km2 and a volume of 106 km3 beneath the ice-covered West Antarctic rift system, of sufficient extent to be classified as a large igneous province interpreted to be of Oligocene to recent age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020309','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020309"><span>Volcanism and erosion during the past 930 k.y. at the Tatara-San Pedro complex, Chilean Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singer, B.S.; Thompson, R.A.; Dungan, M.A.; Feeley, T.C.; Nelson, S.T.; Pickens, J.C.; Brown, L.L.; Wulff, A.W.; Davidson, J.P.; Metzger, J.</p> <p>1997-01-01</p> <p>Geologic mapping, together with 73 new K-Ar and 40Ar/39Ar age determinations of 45 samples from 17 different volcanic units, plus paleomagnetic orientations, geochemical compositions, and terrestrial photogrammetry are used to define the chronostratigraphy of the Tatara-San Pedro complex, an eruptive center at 36??S on the volcanic front of the Andean southern volcanic zone. The Tatara-San Pedro complex preserves ???55 km3 of lavas that erupted from at least three central vent regions. Remnant, unconformity-bound sequences of lavas are separated by lacunae that include significant periods of erosion. Quaternary volcanism commenced ca. 930 ka with eruption of voluminous dacitic magma, followed 100 k.y. later by the only major rhyolitic eruption. From 780 ka onward, more than 80% of the preserved volume is basaltic andesite (52%-57% SiO2), but petrographically and geochemically diverse dacitic magmas (63%-69% SiO2) erupted sporadically throughout this younger, dominantly mafic phase of activity. A few basaltic lavas (49%-52% SiO2) are present, mainly in portions of the complex older than 230 ka. The number of vents, the petrologic and geochemical diversity, and the temporal distribution of mafic and silicic lavas are consistent with emplacement of many separate batches of made magma into the shallow crust beneath the Tatara-San Pedro complex over the past million years. Nearly two-thirds of the preserved volume of the Tatara-San Pedro complex comprises the two youngest volcanoes, which were active between ca. 188-83 ka and 90-19 ka. Repeated advances of mountain glaciers punctuated growth of the complex with major erosional episodes that removed much of the pre-200 ka volcanic record, particularly on the south flank of the complex. Dating the inception of a glaciation on the basis of preserved material is difficult, but the age of the oldest lava above a lacuna may be used to estimate the timing of deglaciation. On this basis, the argon ages of basal lavas of multiple sequences indicate minimum upper limits of lacunae at ca. 830, 790, 610, 400, 330, 230, 110, and 17 ka. These are broadly consistent with global ice-volume peaks predicted by the oxygen isotope-based astronomical time scale and with age brackets on North American glacial advances. Estimated growth rates for the two young volcanoes are 0.2 to 0.3 km3/k.y.; these are three to five times greater than a growth rate estimated from all preserved lavas in the complex (0.06 km3/k.y.). Removal of up to 50%-95% of the material erupted between 930 and 200 ka by repeated glacial advances largely explains this discrepancy, and it raises the possibility that episodic erosion of midlatitude frontal arc complexes may be extensive and common.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeCoA..84..459H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeCoA..84..459H"><span>Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heydolph, Ken; Hoernle, Kaj; Hauff, Folkmar; Bogaard, Paul van den; Portnyagin, Maxim; Bindeman, Ilya; Garbe-Schönberg, Dieter</p> <p>2012-05-01</p> <p>The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low δ18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high δ18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015005','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015005"><span>A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.</p> <p>1991-01-01</p> <p>The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V11D2805H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V11D2805H"><span>Investigation of Along-Arc Geochemical Variations in the Southern Volcanic Zone: Azufre-Planchon-Peteroa Volcanic Complex, Southern Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holbik, S. P.; Hickey-Vargas, R.; Tormey, D.</p> <p>2012-12-01</p> <p>The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. This study focuses on volcanic rocks from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic complex, within the Transitional SVZ (34.3-37.0 °S), where crustal thickness increases from approximately 30 km in the south (Central SVZ), to 55 km in the north (Northern SVZ). Planchon is the northernmost volcano in the SVZ to erupt basaltic products, while Peteroa is the currently active cone, erupting tephra of andesitic composition, most recently in September of 2011. New data for the APP are consistent with the hypothesis of Tormey et al. (1995) that the APP experienced variable depths of crystal fractionation, and that crustal assimilation at Planchon is restricted to the lower crustal depths, as reflected by limited variability in 87Sr/86Sr isotopes. New δ18O data (26.5‰) from an outcropping dolomitic limestone country rock in the vicinity of the Azufre volcano also confirms the upper crustal source of anomalously high (7.1 and 7.3‰) oxygen isotopic values for Azufre dacites. A trend of high La/Yb (6.5-9.1) and Yb depletion with increasing La/Yb for Planchon basalts is consistent with the role of garnet as a residual or crystallizing phase at lower crustal depths, however, the La/Yb range is small when compared to published data from nearby TSVZ centers such as Nevado de Longavi (La/Yb = 5.5 to 16.7) and San Pedro Pellado (La/Yb =7.2 to 13.6). Geochemical modeling of the Planchon data shows that both hornblende and garnet must be involved in the magmatic evolution, even though erupted basalts are free of major hydrous phases, in order to account for the more limited range of La/Yb. Interestingly, baseline values of La/Yb for basalt and basaltic andesites from throughout the TSVZ, including the APP, are systematically higher than those for the Central SVZ (CSVZ 37°S - 42°S, e.g., La/Yb = 3.4 to 4.1 at Llaima) and change abruptly rather than gradually. This trend could be caused by stabilization of garnet in the thickening lower crust, by deepening of mantle melting sources beneath the crust, or a combination of factors. Ongoing work on Lu-Hf, Sm-Nd, and Rb-Sr radiogenic isotope systems are used to help constrain these hypotheses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/551/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/551/"><span>Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.</p> <p>2011-01-01</p> <p>The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.296..163L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.296..163L"><span>Petrogenesis of Cretaceous volcanic-intrusive complex from the giant Yanbei tin deposit, South China: Implication for multiple magma sources, tin mineralization, and geodynamic setting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qian; Zhao, Kui-Dong; Lai, Pan-Chen; Jiang, Shao-Yong; Chen, Wei</p> <p>2018-01-01</p> <p>The giant Yanbei tin ore deposit is the largest porphyry-type tin deposit in South China. The orebodies are hosted by the granite porphyry in the central part of the Yanbei volcanic basin in southern Jiangxi Province. The Yanbei volcanic-intrusive complex mainly consists of dacitic-rhyolitic volcanic rocks, granite, granite porphyry and diabase dikes. In previous papers, the granite porphyry was considered as subvolcanic rocks, which came from the same single magma chamber with the volcanic rocks. In this study, zircon U-Pb ages and Hf isotope data, as well as whole-rock geochemical and Sr-Nd isotopic compositions of different magmatic units in the Yanbei complex are reported. Geochronologic results show that various magmatic units have different formation ages. The dacite yielded a zircon U-Pb age of 143 ± 1 Ma, and the granite porphyry has the emplacement age of 138 ± 1 Ma. Diabase dikes which represented the final stage of magmatism, yielded a zircon U-Pb age of 128 ± 1 Ma. Distinctive whole rock Sr-Nd and zircon Hf isotopic compositions suggest that these magmatic units were derived from different magma sources. The volcanic rocks were mainly derived from the partial melting of Paleoproterozoic metasedimentary rocks without additions of mantle-derived magma. The granite porphyry has an A-type geochemical affinity, and was derived from remelting of Paleo-Mesoproterozoic crustal source with involvement of a subordinate mantle-derived magma. The granite porphyry is also a typical stanniferous granite with high F (4070-6090 ppm) and Sn (7-39 ppm) contents. It underwent strongly crystal fractionation of plagioclase, K-feldspar, and accessory minerals (like apatite, Fe-Ti oxides), which may contribute to the tin mineralization. The diabase was derived by partial melting of enriched lithospheric mantle which had been metasomatised by slab-derived fluids. The change of magmatic sources reflected an increasing extensional tectonic environment, perhaps induced by slab rollback of subducted paleo-Pacific plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5637780-cenozoic-volcanic-geology-probable-age-inception-basin-range-faulting-southeasternmost-chocolate-mountains-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5637780-cenozoic-volcanic-geology-probable-age-inception-basin-range-faulting-southeasternmost-chocolate-mountains-california"><span>Cenozoic volcanic geology and probable age of inception of basin-range faulting in the southeasternmost Chocolate Mountains, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crowe, B.M.</p> <p>1978-02-01</p> <p>A complex sequence of Oligocene-age volcanic and volcaniclastic rocks form a major volcanic center in the Picacho area of the southeasternmost Chocolate Mountains, Imperial County, California. Basal-volcanic rocks consist of lava flows and flow breccia of trachybasalt, pyroxene rhyodacite, and pyroxene dacite (32 My old). These volcanic rocks locally overlie fanglomerate and rest unconformably on pre-Cenozoic basement rocks. South and southeast of a prominent arcuate fault zone in the central part of the area, the rhyolite ignimbrite (26 My old) forms a major ash-flow sheet. In the southwestern part of the Picacho area the rhyolite ignimbrite interfingers with and ismore » overlain by dacite flows and laharic breccia. The rhyolite ignimbrite and the dacite of Picacho Peak are overlapped by lava flows and breccia of pyroxene andesite (25 My old) that locally rest on pre-Cenozoic basement rocks. The volcanic rocks of the Picacho area form a slightly bimodal volcanic suite consisting chiefly of silicic volcanic rocks with subordinate andesite. Late Miocene augite-olivine basalt is most similar in major-element abundances to transitional alkali-olivine basalt of the Basin and Range province. Normal separation faults in the Picacho area trend northwest and north parallel to major linear mountain ranges in the region. The areal distribution of the 26-My-old rhyolite ignimbrite and the local presence of megabreccia and fanglomerate flanking probable paleohighs suggest that the ignimbrite was erupted over irregular topography controlled by northwest- and north-trending probable basin-range faults. These relations date the inception of faulting in southeasternmost California at pre-26 and probably pre-32 My ago. A transition of basaltic volcanism in the area is dated at 13 My ago. 9 figures, 2 tables.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...61A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...61A"><span>Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki</p> <p>2018-04-01</p> <p>Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188710','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188710"><span>Field-trip guides to selected volcanoes and volcanic landscapes of the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>,</p> <p>2017-06-23</p> <p>The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S41B2729G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S41B2729G"><span>Ambient Noise Surface Wave Tomography of the volcanic systems of eastern Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Green, R. G.; Priestley, K. F.; White, R. S.</p> <p>2015-12-01</p> <p>The Vatnajökull region of central-east Iceland lies above the head of the Iceland mantle plume where the crust is thickest due to enhanced melt supply. As a result the region contains a high density of volcanic rift systems, with six large subglacial central volcanoes. Due to the ice cover, the geological structure of the area and the location of past eruptions are poorly known. Imaging of the crustal velocity heterogeneities beneath the ice sheet aims to reveal much in terms of the structure of these volcanic plumbing systems. Mapping of significant velocity changes through time may also be indicative of movement of melt around the central volcanoes; one of which (Bárðarbunga) experienced a major rifting event in August 2014 (Sigmundsson et al. Nature 2015, Green et al. Nature Geosci. 2015). We present results from tomographic imaging of the volcanic systems in the region, using continuous data from a local broadband seismic network in central-east Iceland which provides excellent ray path coverage of the volcanic systems. This is supplemented by data from the HOTSPOT and ICEMELT experiments and the permanent monitoring stations of the Icelandic Meteorological Office. We process the continuous data following Benson et al. 2007 and automatic frequency-time analysis (FTAN) routines are used to extract more than 9000 dispersion measurements. We then generate Rayleigh wave group velocity maps which we present here. We find low velocity regions beneath the Vatnajökull icecap which are bounded by the surface expression of the volcanic rift systems. The lower velocities also extend north-west to the volcanic system under the Hofsjökull ice cap, and northwards towards Askja and the volcanic systems of the northern volcanic zone. We also produce locations and focal mechanisms of earthquakes caused by magmatic and hydrothermal activity to correlate structure with the activity of the volcanic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7718A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7718A"><span>Soil CO2 efflux measurement network by means of closed static chambers to monitor volcanic activity at Tenerife, Canary Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amonte, Cecilia; García-Merino, Marta; Asensio-Ramos, María; Melián, Gladys; García-Hernández, Rubén; Pérez, Aaron; Hernández, Pedro A.; Pérez, Nemesio M.</p> <p>2017-04-01</p> <p>Tenerife (2304 km2) is the largest of the Canary Islands and has developed a central volcanic complex (Cañadas edifice), that started to grow about 3.5 My ago. Coeval with the construction of the Cañadas edifice, shield basaltic volcanism continued until the present along three rift zones oriented NW-SE, NE-SW and NS (hereinafter referred as NW, NE and NS respectively). Main volcanic historical activity has occurred along de NW and NE rift-zones, although summit cone of Teide volcano, in central volcanic complex, is the only area of the island where surface geothermal manifestations are visible. Uprising of deep-seated gases occurs along the aforementioned volcanic structures causing diffuse emissions at the surface environment of the rift-zones. In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs. Diffuse degassing studies are even more important volcanic surveillance tool at those volcanic areas where visible manifestations of volcanic gases are absent. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. One of the most popular methods used to determine CO2 fluxes in soil sciences is based on the absorption of CO2 through an alkaline medium, in its solid or liquid form, followed by gravimetric, conductivity, or titration analyses. In the summer of 2016, a network of 31 closed static chambers was installed, covering the three main structural zones of Tenerife (NE, NW and NS) as well as Cañadas Caldera with volcanic surveillance porpoises. 50 cc of 0.1N KOH solution is placed inside the chamber to absorb the CO2 released from the soil. The solution is replaced weekly and the trapped CO2 is then analyzed at the laboratory by titration. The are expressed as weekly integrated CO2 efflux values. The CO2 efflux values ranged from 3.2 to 12.9 gṡm-2ṡd-1, with average values of 7.0 gṡm-2ṡd-1 for the NE rift-zone and 6.4 gṡm-2ṡd-1 for NW and NS rift-zones. The most significant CO2 efflux values were observed in the NE rift-zone, with maximum values of 12.5 gṡm-2ṡd-1. To investigate the origin of the soil CO2 at the three volcanic rifts, soil gas samples were weekly taken on the head space of the closed chambers to study the chemical composition and the isotopic composition of the CO2. Collected gas samples can be considered as CO2-enriched air, showing concentrations of CO2 in the range 370-22,448 ppmV, with average values of 2,859 ppmV, 1,396 ppmV and 1,216 ppmV for the NE, NW and NS rift-zones, respectively. The CO2isotopic composition, expressed as dxzC-CO2, indicates that most of the sampling sites exhibited CO2 composed by different mixing degrees between atmospheric and biogenic CO2 with slight inputs of deep-seated CO2, with mean values of -17.5‰ -13.6‰ and -16.4‰ for the NE, NW and NS rift-zones, respectively. The methodology presented here represents an inexpensive method that might help to detect early warning signals of future unrest episodes in Tenerife.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.1025G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.1025G"><span>Development and relationship of monogenetic and polygenetic volcanic fields in time and space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Germa, Aurelie; Connor, Chuck; Connor, Laura; Malservisi, Rocco</p> <p>2013-04-01</p> <p>The classification of volcanic systems, developed by G. P. L. Walker and colleagues, relates volcano morphology to magma transport and eruption processes. In general, distributed monogenetic volcanic fields are characterized by infrequent eruptions, low average output rate, and a low spatial intensity of the eruptive vents. In contrast, central-vent-dominated systems, such as stratovolcanoes, central volcanoes and lava shields are characterized by frequent eruptions, higher average flux rates, and higher spatial intensity of eruptive vents. However, it has been observed that a stratovolcano is often associated to parasitic monogenetic vents on its flanks, related to the central silicic systems, and surrounded by an apron of monogenetic edifices that are part of the volcanic field but independent from the principal central system. It appears from spatial distribution and time-volume relationships that surface area of monogenetic fields reflects the lateral extent of the magma source region and the lack of magma focusing mechanisms. In contrast, magma is focused through a unique conduit system for polygenetic volcanoes, provided by a thermally and mechanically favorable pathway toward the surface that is maintained by frequent and favorable stress conditions. We plan to relate surface observations of spatio-temporal location of eruptive vents and evolution of the field area through time to processes that control magma focusing during ascent and storage in the crust. We choose to study fields that range from dispersed to central-vent dominated, through transitional fields (central felsic system with peripheral field of monogenetic vents independent from the rhyolitic system). We investigate different well-studied volcanic fields in the Western US and Western Europe in order to assess influence of the geodynamic setting and tectonic stress on the spatial distribution of magmatism. In summary, incremental spatial intensity maps should reveal how fast a central conduit is created during the development of a volcanic field, and how this could influence the outbreak of dispersed monogenetic volcanoes that are not geochemically linked to the central system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V53A0601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V53A0601S"><span>Time Evolution of the Basse Terre Island (Guadeloupe, French West Indies) Effusive Volcanism from New K-Ar Cassignol-Gillot Ages.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samper, A.; Quidelleur, X.; Mollex, D.; Komorowski, J. C.; Boudon, G.</p> <p>2004-12-01</p> <p>Radiometric dating and geochemistry of effusive volcanics have been combined with geomorphological observations in order to provide a general evolution model of the volcanic island of Basse Terre, Guadeloupe (French West Indies). More than forty new Cassignol-Gillot K-Ar ages distributed within the entire island, together with the twenty ages (Blanc, 1983; Carlut et al., 2000) previously obtained with the same technique, makes the Guadeloupe Island the best place to study the evolution of volcanic processes within the Lesser Antilles Arc. Dating was performed on the carefully separated groundmass in order to avoid K loss due to weathering and excess argon carried by mafic minerals. Ages obtained are relatively younger than previously thought on Basse Terre and range from a few ka to 2.79+-0.04 Ma. When available, the paleomagnetic polarity of the dated flows agree with the GPTS and a very good coherence of ages is observed for each massif. Our results demonstrate the general north to south migration of volcanism through time. It correlates with the main volcanic stages previously identified. The 2.75 Ma Basal Complex, the 1.81+-0.03 _ 1.15+-0.02 Ma Septentrional Chain, the 1.02+-0.02 Ma _ 0.606+-0.02 Ma Axial Chain, the 442+-6 _ 207+-28 ka Mateliane _ Sans Toucher Complex and the < 200 ka Complex of La Grande Decouverte, which outlines a relative continuity in the Basse Terre magmatism. Lavas are mainly basaltic andesites and andesites although a few basalt and dacite have also been dated. All of them are characterized by low MgO values (< 6 %), tholeiitic to calc-alkaline REE chondrite-normalized patterns and are of both low K and medium K affinity. Lavas display geochemical characteristics similar to that of the central islands of the Lesser Antilles arc. Within Basse Terre, geochemical characteristics are relatively constant through time, indicating no major change of volcanic processes during the whole subaerial activity. Finally the detailed chronological framework now available provides new constraints for estimating rates of edification and destruction at the island scale and, more generally, to help better understand the evolution of the still active Guadeloupe island Soufriere volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.284..296H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.284..296H"><span>Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying</p> <p>2017-07-01</p> <p>The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages, respectively, consistent with earlier works on similar rocks elsewhere in KMB. The new data allow a revision of the chronostratigraphy/tectonic history of KMB. In Late Cretaceous, a back arc rift developed extending from Nain to Baft (NB back arc) to the northeast of the Sanandaj-Sirjan magmatic arc. Along with shrinking of the Neotethys Ocean, the dip angle of the subducting slab decreased during the Late Cretaceous, and arc magmatism moved from the Sanandaj-Sirjan zone landward. Meanwhile, Bahr Aseman volcanic-plutonic complex formed as an island-arc in NB back arc rift. Later with arc shift, due to shallowing of subducted slab, magmatism moved toward continent leading to extensive volcanism in Kerman magmatic arc during Eocene and Oligocene, represented by volcanic-sedimentary Razak and Hezar Complexes, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900028065&hterms=Crustal+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCrustal%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900028065&hterms=Crustal+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCrustal%2Btectonics"><span>Tectonics and volcanism in central Mexico - A Landsat Thematic Mapper perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, C. A.; Harrison, C. G. A.</p> <p>1989-01-01</p> <p>Digitally enhanced Landsat Thematic Mapper (TM) images were used to map neotectonic deformation in central Mexico. This region has been studied for decades using a variety of geological and geophysical techniques, but synoptic mapping of neotectonic activity and major fault zones there, and an evaluation of their regional relationship to the character and location of volcanism were not previously possible until the application of synoptic, high resolution satellite imagery. Interpretation of the TM images shows that the tectonic deformation is closely linked in time and space to the dominantly calc-alkaline volcanics of the Mexican Volcanic Belt (MVB). The eruptive style and distribution of the volcanics is clearly related to the deformation resulting from relative motions of three large crustal blocks south of the MVB. Therefore, zones of weakness within the crust of central Mexico, which may be inherited from earlier episodes of deformation, are a principal factor controlling the oblique orientation of the MVB relative to the Acapulco Trench.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047251','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047251"><span>Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.</p> <p>2011-01-01</p> <p>An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..345..142R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..345..142R"><span>High-resolution K-Ar dating of a complex magmatic system: The example of Basse-Terre Island (French West Indies)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ricci, J.; Quidelleur, X.; Pallares, C.; Lahitte, P.</p> <p>2017-10-01</p> <p>For the first time in the Lesser Antilles volcanic arc, we combine for one island, 123 K-Ar ages, with 133 major and trace elements geochemical analyses, in order to better constrain the volcanic history of Basse-Terre Island. In this study, nine new ages have been obtained from the southern part of the island, and complemented with eighty-three new major and trace element analyses of samples collected across the island. The southern part of Basse-Terre Island has been the loci of volcanic activity since the last 200 kyr. It is characterized by the construction of the Grande-Découverte Volcanic Complex (GDVC) composed by the Grande-Découverte - Soufrière (GDS) and the Trois-Rivières Madeleine Field (TRMF). After the onset of construction at least at 205 ± 28 ka, the GDVC displays strikingly continuous activity between 140 ± 13 and 56 ± 3 ka, followed by a 30 kyr volcanic hiatus, which is coeval with the hiatus also observed for the TRMF activity. Two new ages of 125 ± 14 and 140 ± 13 ka obtained on a lava flow from the Grande-Découverte caldera wall suggest the presence of a depression, resulting of a major flank collapse and/or explosive event, before 140 ka. Finally, a new age of 9 ± 6 ka, obtained from outcrops exposed on the edge of the Class River, in the north of the GDVC, allows us to calculate channel incision rates between 11 and 56 mm/yr. These values are consistent with incision rates determined on other volcanic islands with similar climates. In a broad sense, the petrology and geochemistry of Basse-Terre Island rocks appear fairly homogeneous, with mainly andesite and basaltic-andesite rocks and typical features of volcanic-arc lavas. Nevertheless, in detail, various magmatic processes can be discerned. Most variations are principally controlled by crystal-melt fractionation-accumulation, but major and trace elements also highlight episodic magmatic recharge, involving magma mixing. There are also indications for assimilation of crustal rocks with continental affinity, as well as mantle input of slab-derived fluids. Trace element ratios suggest the presence of at least two different magmatic sources characterized by different partial melting rates and different continental contributions for Basse-Terre Island. Different massifs show a bimodal behavior, with the Basal Complex, the Axial Chain (Piton de Bouillante and Southern Axial Chain), the Monts-Caraïbes volcanoes and the Sans-Toucher volcano in the first group, and the Septentrional Chain, and the Grande-Découverte Volcanic Complex (GDS and TRMF) in the second. Given the unique amount of time-constrained geochemical data, this study provides a complete and detailed investigation of volcanic evolution in the central part of the Lesser Antilles active arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.G41A0702A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.G41A0702A"><span>Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderssohn, J.; Motagh, M.; Walter, T. R.; Rosenau, M.; Kaufmann, H.; Oncken, O.</p> <p>2009-12-01</p> <p>The variable spatio-temporal scales of Earth's surface deformation in potentially hazardous volcanic areas pose a challenge for observation and assessment. Here we used Envisat data acquired in Wide Swath Mode (WSM) and Image Mode (IM) from ascending and descending geometry, respectively, to study time-dependent ground uplift at the Lazufre volcanic system in Chile and Argentina. A least-squares adjustment was performed on 65 IM interferograms that covered the time period of 2003-2008. We obtained a clear trend of uplift reaching 15-16 cm in this 5-year interval. Using a joint inversion of ascending and descending interferograms, we evaluated the geometry and time-dependent progression of a horizontally extended pressurized source beneath the Lazufre volcanic system. Our results hence indicate that an extended magma body at a depth between 10 and 15 km would account for most of the ground uplift. The maximum inflation reached up to ~40 cm during 2003-2008. The lateral propagation velocity of the intrusion was estimated to be nearly constant at 5-10 km/yr during the observation time, which has important implications for the physical understanding of magma intrusion processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1983/0068/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1983/0068/report.pdf"><span>Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.</p> <p>1983-01-01</p> <p>The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900061716&hterms=volcano+san+jose&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dvolcano%2Bsan%2Bjose','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900061716&hterms=volcano+san+jose&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dvolcano%2Bsan%2Bjose"><span>Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range - Implications for large terrestrial and Martian volcanic edifices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borgia, Andrea; Burr, Jeremiah; Montero, Walter; Morales, Luis Diego; Alvarado, Guillermo E.</p> <p>1990-01-01</p> <p>Maps are presented that describe the compressional tectonic structures found at the base of the Central Costa Rica volcanic range (CCRVR), which comprise thrust faults and related fault propagation folds, only partly covered by syntectonic and posttectonic volcanoclastic deposits. Evidence is presented that these structures formed by gravitational failure and lumping of the flanks of the volcanic range. It is suggested that similar structures may be found at the toe of the southern flank of Kilauea volcano, Hawaii, and along the perimeter scarp of the Olympus Mons volcano on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880045721&hterms=Age+group+classification&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAge%2Bgroup%2Bclassification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880045721&hterms=Age+group+classification&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAge%2Bgroup%2Bclassification"><span>Discrimination and supervised classification of volcanic flows of the Puna-Altiplano, Central Andes Mountains using Landsat TM data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcbride, J. H.; Fielding, E. J.; Isacks, B. L.</p> <p>1987-01-01</p> <p>Landsat Thematic Mapper (TM) images of portions of the Central Andean Puna-Altiplano volcanic belt have been tested for the feasibility of discriminating individual volcanic flows using supervised classifications. This technique distinguishes volcanic rock classes as well as individual phases (i.e., relative age groups) within each class. The spectral signature of a volcanic rock class appears to depend on original texture and composition and on the degree of erosion, weathering, and chemical alteration. Basalts and basaltic andesite stand out as a clearly distinguishable class. The age dependent degree of weathering of these generally dark volcanic rocks can be correlated with reflectance: older rocks have a higher reflectance. On the basis of this relationship, basaltaic lava flows can be separated into several subclasses. These individual subclasses would correspond to mappable geologic units on the ground at a reconnaissance scale. The supervised classification maps are therefore useful for establishing a general stratigraphic framework for later detailed surface mapping of volcanic sequences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035202','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035202"><span>The ancestral cascades arc: Cenozoic evolution of the central Sierra Nevada (California) and the birth of the new plate boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Busby, C.J.; Hagan, J.C.; Putirka, K.; Pluhar, C.J.; Gans, P.B.; Wagner, D.L.; Rood, D.; DeOreo, S.B.; Skilling, I.</p> <p>2008-01-01</p> <p>We integrate new stratigraphic, structural, geochemical, geochronological, and magnetostratigraphic data on Cenozoic volcanic rocks in the central Sierra Nevada to arrive at closely inter-related new models for: (1) the paleogeography of the ancestral Cascades arc, (2) the stratigraphic record of uplift events in the Sierra Nevada, (3) the tectonic controls on volcanic styles and compositions in the arc, and (4) the birth of a new plate margin. Previous workers have assumed that the ancestral Cascades arc consisted of stratovolcanoes, similar to the modern Cascades arc, but we suggest that the arc was composed largely of numerous, very small centers, where magmas frequently leaked up strands of the Sierran frontal fault zone. These small centers erupted to produce andesite lava domes that collapsed to produce block-and-ash flows, which were reworked into paleocanyons as volcanic debris flows and streamflow deposits. Where intrusions rose up through water-saturated paleocanyon fill, they formed peperite complexes that were commonly destabilized to form debris flows. Paleocanyons that were cut into Cretaceous bedrock and filled with Oligocene to late Miocene strata not only provide a stratigraphic record of the ancestral Cascades arc volcanism, but also deep unconformities within them record tectonic events. Preliminary correlation of newly mapped unconformities and new geochronological, magnetostratigraphic, and structural data allow us to propose three episodes of Cenozoic uplift that may correspond to (1) early Miocene onset of arc magmatism (ca. 15 Ma), (2) middle Miocene onset of Basin and Range faulting (ca. 10 Ma), and (3) late Miocene arrival of the triple junction (ca. 6 Ma), perhaps coinciding with a second episode of rapid extension on the range front. Oligocene ignimbrites, which erupted from calderas in central Nevada and filled Sierran paleocanyons, were deeply eroded during the early Miocene uplift event. The middle Miocene event is recorded by growth faulting and landslides in hanging-wall basins of normal faults. Cessation of andesite volcanism closely followed the late Miocene uplift event. We show that the onset of Basin and Range faulting coincided both spatially and temporally with eruption of distinctive, very widespread, high-K lava flows and ignimbrites from the Little Walker center (Stanislaus Group). Preliminary magnetostratigraphic work on high-K lava flows (Table Mountain Latite, 10.2 Ma) combined with new 40Ar/39Ar age data allow regional-scale correlation of individual flows and estimates of minimum (28,000 yr) and maximum (230,000 yr) time spans for eruption of the lowermost latite series. This work also verifies the existence of reversed-polarity cryptochron, C5n.2n-1 at ca. 10.2 Ma, which was previously known only from seafloor magnetic anomalies. High-K volcanism continued with eruption of the three members of the Eureka Valley Tuff (9.3-9.15 Ma). In contrast with previous workers in the southern Sierra, who interpret high-K volcanism as a signal of Sierran root delamination, or input of subduction-related fluids, we propose an alternative model for K2O-rich volcanism. A regional comparison of central Sierran volcanic rocks reveals their K2O levels to be intermediate between Lassen to the north (low in K2O) and ultrapotassic volcanics in the southern Sierra. We propose that this shift reflects higher pressures of fractional crystallization to the south, controlled by a southward increase in the thickness of the granitic crust. At high pressures, basaltic magmas precipitate clinopyroxene (over olivine and plagioclase) at their liquidus; experiments and mass-balance calculations show that clinopyroxene fractionation buffers SiO 2 to low values while allowing K2O to increase. A thick crust to the south would also explain the sparse volcanic cover in the southern Sierra compared to the extensive volcanic cover to the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.142...32S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.142...32S"><span>Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Shigeyuki; Peña, Rolando E.; Tam, Tomas A.; Yumul, Graciano P.; Dimalanta, Carla B.; Usui, Mayumi; Ishida, Keisuke</p> <p>2017-07-01</p> <p>The origin of the Philippine Archipelago is characterized by the combination of the oceanic Philippine Mobile Belt (PMB) and the Palawan Continental Block (PCB). This paper is focused on the geologic evolution of the PMB in northern Luzon from Eocene to Pliocene. The study areas (northern Luzon) are situated in the central part of the PMB which is occupied by its typical components made up of a pre-Paleocene ophiolitic complex, Eocene successions, Eocene to Oligocene igneous complex and late Oligocene to Pliocene successions. Facies analysis of the middle Eocene and late Oligocene to early Pliocene successions was carried out to understand the depositional environment of their basins. Modal sandstone compositions, which reflect the basement geology of the source area, were analyzed. Major element geochemistry of sediments was considered to reconstruct the tectonic settings. The following brief history of the PMB is deduced. During the middle Eocene, the PMB was covered by mafic volcanic rocks and was a primitive island arc. In late Eocene to late Oligocene time, the intermediate igneous complex was added to the mafic PMB crust. By late Oligocene to early Miocene time, the PMB had evolved into a volcanic island arc setting. Contributions from alkalic rocks are detected from the rock fragments in the sandstones and chemical composition of the Zigzag Formation. During the middle Miocene to Pliocene, the tectonic setting of the PMB remained as a mafic volcanic island arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003117','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003117"><span>Evidence for volcanism in NW Ishtar Terra, Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gaddis, L.; Greeley, Ronald</p> <p>1989-01-01</p> <p>Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred larg/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989LPICo.708...15G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989LPICo.708...15G"><span>Evidence for volcanism in NW Ishtar Terra, Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaddis, L.; Greeley, Ronald</p> <p></p> <p>Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred large/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13E1384O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13E1384O"><span>Lithological Influences on Occurrence of High-Fluoride Waters in The Central Kenya Rift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olaka, L. A.; Musolff, A.; Mulch, A.; Olago, D.; Odada, E. O.</p> <p>2013-12-01</p> <p>Within the East African rift, groundwater recharge results from the complex interplay of geology, land cover, geomorphology, climate and on going volcano-tectonic processes across a broad range of spatial and temporal scales. The interrelationships between these factors create complex patterns of water availability, reliability and quality. The hydrochemical evolution of the waters is further complex due to the different climatic regimes and geothermal processes going on in this area. High fluoridic waters within the rift have been reported by few studies, while dental fluorosis is high among the inhabitants of the rift. The natural sources of fluoride in waters can be from weathering of fluorine bearing minerals in rocks, volcanic or fumarolic activities. Fluoride concentration in water depends on a number of factors including pH, temperature, time of water-rock formation contact and geochemical processes. Knowledge of the sources and dispersion of fluoride in both surface and groundwaters within the central Kenya rift and seasonal variations between wet and dry seasons is still poor. The Central Kenya rift is marked by active tectonics, volcanic activity and fumarolic activity, the rocks are majorly volcanics: rhyolites, tuffs, basalts, phonolites, ashes and agglomerates some are highly fractured. Major NW-SE faults bound the rift escarpment while the rift floor is marked by N-S striking faults We combine petrographic, hydrochemistry and structural information to determine the sources and enrichment pathways of high fluoridic waters within the Naivasha catchment. A total of 120 water samples for both the dry season (January-February2012) and after wet season (June-July 2013) from springs, rivers, lakes, hand dug wells, fumaroles and boreholes within the Naivasha catchment are collected and analysed for fluoride, physicochemical parameters and stable isotopes (δ2 H, δ18 O) in order to determine the origin and evolution of the waters. Additionally, 30 soil and rock samples were also collected and analysed for fluoride, and rock samples were subjected to petrographic investigations and X-ray diffraction. The fluoride levels in surface and groundwater for the dry season range from 0.019 - 50.14 mg/L, on average above the WHO permissible limit. The high fluoride occurs both in the lake and groundwater. Preliminary petrographic studies show considerable fluoride in micas. The study is on-going and plans to present the relative abundances of fluoride in the lithology as the sources and the fluoride enrichment pathways of the groundwater within the Central Kenya rift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.134..888B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.134..888B"><span>Spatial variation of volcanic rock geochemistry in the Virunga Volcanic Province: Statistical analysis of an integrated database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu</p> <p>2017-10-01</p> <p>We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016970','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016970"><span>The Midcontinent rift in the Lake Superior region with emphasis on its geodynamic evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cannon, W.F.</p> <p>1992-01-01</p> <p>The Midcontinent rift is a Middle Proterozoic continental rift which records about 15 m.y. of extension, subsidence, and voluminous volcanism in the period 1109-1094 Ma in the central part of North America. During that time the crust was nearly totally separated and as much as 25 km of subaerial basalts accumulated in a deep central depression. Following extension and volcanism, a longer period of subsidence resulted in development of a post-rift sedimentary basin in which as much a 8 km of fluvial and lacustrine clastic rocks were deposited. Partial inversion of the central depression occurred about 30-50 m.y. after extension to produce the current configuration of a central horst, composed mostly of thick volcanic accumulations, between shallower flanking basins. ?? 1992.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985JVGR...24..353C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985JVGR...24..353C"><span>Discussion of ``relationships between mineralization and silicic volcanism in the Central Andes'' by P.W. Francis, C. Halls and M.C.W. Baker</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, A. H.; Farrar, E.; Zentilli, M.</p> <p>1985-05-01</p> <p>In their stimulating paper, Francis et al. (1983) present convincing evidence for the association of several Central Andean tin and copper vein/stockwork deposits with felsic volcanic domes, rather than with stratovolcanoes (ef. Sillitoe, 1973). They also reexamine the problem of the relationships between caldera formation (and voluminous ash-flow tuff eruption) and large-scale hydrothermal activity (see e.g., McKee, 1979; Sillitoe, 1980), concluding that protracted cooling histories of sub-caldera plutons may be reflected in the long time lags (1-10 m.y.) documented between caldera collapse and superimposed mineralization. They cite, inter alia, the El Salvador porphyry copper deposit, northern Chile (lat. 26°17'S) as revealing such a sequence of events, and provide LANDSAT evidence for the presence of an extensively dissected, ca. 15 km wide, caldera in the mine area. We consider the authors' case to be persuasive in general, but suggest that their argument regarding El Salvador is weakened by an apparent mis-reading of Gustafson and Hunt's (1975) brief description of the pre-mineralization geological evolution of the Indio Muerto complex. In particular, they conflate two distinct episodes of subaerial volcanism. Because Mercado (1978) also in part misinterprets the regional and local stratigraphic relationships in her 1 : 25,000 geological map of the area, there is considerable potential for confusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.T31A1256T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.T31A1256T"><span>Mega-rings Surrounding Timber Mountain Nested Calderas, Geophysical Anomalies: Rethinking Structure and Volcanism Near Yucca Mountain (YM), Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.</p> <p>2004-12-01</p> <p>Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, < 10 km circular to elliptical small "rings") and later stage basaltic features (< 11 my, small flows, cones, dikes) in the Southwest Nevada Volcanic Field. Miocene rhyolitic calderas cluster within the central area and on the outer margin of the interpreted larger mega-ring complex. The mega-ring interpretation is consistent with observations of regional physiography, tomographic images, seismicity patterns, and structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5) Similar to features described from terrestrial and planetary caldera-collapse studies, and as modeled in laboratory scaled investigations (ice melt, balloon/sand). Post Mid-Miocene basalts commonly occur within or adjacent to the older rhyolitic caldera moats; other basaltic material occurs marginal to both the outer rings of the interpreted mega-ring system and high velocity pipe. The YM repository may be situated in an isolated structural setting within the mega-ring system; basaltic materials are absent in the block for over 11my for geologic reasons. The mega-ring model may better explain YM area structures (Highway 95 fault), tectonism, and volcanism. Coincident physiographic, geologic, and geophysical features associated with the mega-rings feature, and temporal characteristics of regional seismicity and volcanism suggest the need to critically re-assess regional scale and YM tectonic, seismotectonic, and volcanic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BVol...76..788B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BVol...76..788B"><span>Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.</p> <p>2014-01-01</p> <p>We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship between subsurface structures and potential future volcanic activity in the Garrotxa volcanic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917959R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917959R"><span>Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser</p> <p>2017-04-01</p> <p>The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic alteration layer, pinpointed as the 80-Ohm-m isosurface, shows two dome-shape highs. The first is NNE-trending, and may be interpreted as an upflow zone along a fault of the Wonji belt. Two productive wells are located along the borders of this area, as well as the alignements of fumaroles and altered grounds. The second is linked to a wide resistive area, located at shallow depth, where no clay cap was detected. It could be interpreted as a fossil high-temperature alteration zone reaching shallow depths, and it is associated to several fumaroles. Modeling of 2D/3D gravity data shows that the anomalies are due to shallow density variations likely related to lithology. The deep lateral variations due to structural lineaments inferred from well stratigraphy have no detectable signature. However, the trend analysis performed on the residual Bouguer anomaly (via horizontal and tilt derivative computations), allowed to identify five lineaments. Three of them exhibit NNE-SSW strike, corresponding to the Wonji Fault Belt Trend, whereas two have NNW-SSE strike, corresponding to the Red Sea Rift trend, which in this area is of minor evidence. The signature of shallow structures is then indicative of major regional structures. One of the lineaments marks the presence of a major fumarolic zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geote..50..553R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geote..50..553R"><span>Ordovician volcanic and plutonic complexes of the Sakmara allochthon in the southern Urals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryazantsev, A. V.; Tolmacheva, T. Yu.</p> <p>2016-11-01</p> <p>The Ordovician terrigenous, volcanic-sedimentary and volcanic sequences that formed in rifts of the active continental margin and igneous complexes of intraoceanic suprasubduction settings structurally related to ophiolites are closely spaced in allochthons of the Sakmara Zone in the southern Urals. The stratigraphic relationships of the Ordovician sequences have been established. Their age and facies features have been specified on the basis of biostratigraphic and geochronological data. The gabbro-tonalite-trondhjemite complex and the basalt-andesite-rhyolite sequence with massive sulfide mineralization make up a volcanic-plutonic association. These rock complexes vary in age from Late Ordovician to Early Silurian in certain structural units of the Sakmara Allochthon and to the east in the southern Urals. The proposed geodynamic model for the Ordovician in Paleozoides of the southern Urals reconstructs the active continental margin, whose complexes formed under extension settings, and the intraoceanic suprasubduction structures. The intraoceanic complexes display the evolution of a volcanic arc, back-, or interarc trough.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA242531','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA242531"><span>Evolution of Icelandic Central Volcanoes: Evidence from the Austurhorn Plutonic and Vestmannaeyjar Volcanic Complexes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-09-01</p> <p>felsic magmas into a laterally extensive warm mafic chamber. Experiments with aqueous solutions suggest that buoyant felsic magma will rise as a plume ...crustal influences and processes . It is widely accepted that the Iceland mantle plume , which supplies this region with copious basalt magmas, is...currently located near Kverkfjoll in the center of the country (e.g., Vink, 1984; figure 1.2). Plume material is geochemically distinct from the mantle</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DokES.479..420S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DokES.479..420S"><span>Igneous Complexes of the Orochenka Caldera of the East Sikhote-Alin Belt: U-Pb (SHRIMP) Age, Trace and Rare Earth Element Composition, and Au-Ag Mineralization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakhno, V. G.; Kovalenko, S. V.</p> <p>2018-04-01</p> <p>New data are presented on the geology and composition of volcanic and intrusive rocks of the Orochenka caldera, which is located in the western part of the East Sikhote Alin volcanic belt. The SHRIMP and ICP MS age of zircons of volcanic and intrusive rocks, respectively, and the composition of the volcanic rocks allow comparison of these complexes with volcanic rocks of the eastern part of the volcanic structure. New data indicate the period of transition between subduction to transform regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S21C0754M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S21C0754M"><span>Geostatistical analysis of the power-law exponents of the size distribution of earthquakes, Quaternary faults and monogenetic volcanoes in the Central Trans-Mexican Volcanic Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mendoza-Ponce, A.; Perez Lopez, R.; Guardiola-Albert, C.; Garduño-Monroy, V. H.; Figueroa-Soto, Á.</p> <p>2017-12-01</p> <p>The Trans Mexican Volcanic Belt (TMVB) is related to the convergence between the Cocos and Rivera plates beneath the North American plate by the Middle America Trench (MAT). Moreover, there is also intraplate faulting within the TMVB, which is responsible of important earthquakes like the Acambay in 1912 (Mw 7.0) and Maravatío in 1979 (Mb 5.3). In this tectonic scheme, monogenetic volcanoes, active faulting and earthquakes configure a complex tectonic frame where different spatial anisotropy featured this activity. This complexity can be characterized by the power-law of the frequency-size distribution of the monogenetic volcanoes, the faults and the earthquakes. This power-law is determined by the b-value of the Gutenberg-Richter law in case of the earthquakes. The novelty of this work is the application of geostatistics techniques (variograms) for the analysis of spatial distribution of the b-values obtained from the size distribution of the basal diameter for monogenetic volcanoes in the Michoacán-Guanajuato Volcanic Field (bmv), surface area for faults in the Morelia-Acambay fault system (bf) and the seismicity in the Central TMVB (beq). Therefore, the anisotropy in each case was compared and a geometric tectonic model was proposed. The evaluation of the spatial distribution of the b-value maps gives us a general interpretation of the tectonic stress field and the seismic hazard in the zone. Hence, the beq-value map for the seismic catalog shows anomalously low and high values, reveling two different processes, one related to a typical tectonic rupture (low b-values) and the other one related to hydraulic fracturing (high b-values). The resulting bmv-map for the diameter basal cones indicates us the locations of the ages of the monogenetic volcanoes, giving important information about the volcanic hazard. High bmv-values are correlated with the presence of young cinder cones and an increasing probability of a new volcano. For the Morelia-Acambay fault system, the bf-map shows the strongest locations along the system where tectonic stress accumulates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016M%26PS...51.2347W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016M%26PS...51.2347W"><span>Strontium and neodymium isotope systematics of target rocks and impactites from the El'gygytgyn impact structure: Linking impactites and target rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wegner, Wencke; Koeberl, Christian</p> <p>2016-12-01</p> <p>The 3.6 Ma El'gygytgyn structure, located in northeastern Russia on the Chukotka Peninsula, is an 18 km diameter complex impact structure. The bedrock is formed by mostly high-silica volcanic rocks of the 87 Ma old Okhotsk-Chukotka Volcanic Belt (OCVB). Volcanic target rocks and impact glasses collected on the surface, as well as drill core samples of bedrock and impact breccias have been investigated by thermal ionization mass spectrometry (TIMS) to obtain new insights into the relationships between these lithologies in terms of Nd and Sr isotope systematics. Major and trace element data for impact glasses are added to compare with the composition of target rocks and drill core samples. Sr isotope data are useful tracers of alteration processes and Nd isotopes reveal characteristics of the magmatic sources of the target rocks, impact breccias, and impact glasses. There are three types of target rocks mapped on the surface: mafic volcanics, dacitic tuff and lava of the Koekvun' Formation, and dacitic to rhyolitic ignimbrite of the Pykarvaam Formation. The latter represents the main contributor to the impact rocks. The drill core is divided into a suevite and a bedrock section by the Sr isotope data, for which different postimpact alteration regimes have been detected. Impact glasses from the present-day surface did not suffer postimpact hydrothermal alteration and their data indicate a coherent alteration trend in terms of Sr isotopes with the target rocks from the surface. Surprisingly, the target rocks do not show isotopic coherence with the Central Chukotka segment of the OCVB or with the Berlozhya magmatic assemblage (BMA), a late Jurassic felsic volcanic suite that crops out in the eastern part of the central Chukotka segment of the OCVB. However, concordance for these rocks exists with the Okhotsk segment of the OCVB. This finding argues for variable source magmas having contributed to the build-up of the OCVB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts066-152-022.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts066-152-022.html"><span>Altiplano of the Central Andes as seen from STS-66 shuttle Atlantis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1994-11-14</p> <p>This photograph captures the exotic volcanic terrain of the Altiplano of the Central Andes. Some of the remarkable details include the west-pointing wind streaks, resulting from fine dust being transported across the Andes by high winds; paleto (old) shorelines along the margins of the salars (or dry lake beds), recording the changes in water levels on the high Altiplano; beautiful alluvial fans emptying onto some of the salars; and the hundreds of volcanic land forms which can be mapped and interpreted to help decipher the volcanic history of the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984BVol...47..371H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984BVol...47..371H"><span>Monitoring unrest in a large silicic caldera, the long Valley-inyo craters volcanic complex in east-central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, D. P.</p> <p>1984-06-01</p> <p>Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6139813-tectonic-fabric-northern-north-fiji-lau-basins-from-gloria-sidescan','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6139813-tectonic-fabric-northern-north-fiji-lau-basins-from-gloria-sidescan"><span>Tectonic fabric of northern North Fiji and Lau basins from GLORIA sidescan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tiffin, D.L.; Clarke, J.E.H.; Johnson, D.</p> <p>1990-06-01</p> <p>GLORIA mosaics, Seabeam, and seismic data over parts of the backarc New Hebrides arc, northwest and central North Fiji basin, Fiji Fracture Zone north of Fiji, Peggy Ridge, northeast Lau basin, northern Tonga arc, northwestern Tonga Trench, and Western Samoa reveal a complex tectonic framework for the region. Two triple junctions and several rifts are clearly delineated by outcrops and ridges of neovolcanic rocks. Backarc troughs in the New Hebrides Arc are commonly floored by volcanic rocks with little sediment cover. The locus of major faults are well defined in places by volcanic ridges and scarps. On the Fiji Fracturemore » Zone north of Fiji, scarps indicate the trace, but west of Fiji it disappears for about 100 km, becoming well pronounced again near the central North Fiji basin triple junction. At Peggy Ridge a very extensive area of sheet-like volcanics indicates activity extends northeast from Peggy Ridge toward the western extension of the Tonga Trench passing west of Niuafo'ou Island, possibly marking a fault-to-trench transition. East of Niuafo'ou Island, backarc spreading close to the Tofua Arc is seen at a nascent triple junction, its northern arm approaching close to the western Tonga Trench. Long linear fault scarps in the trench result from bending of the crust. Only a few areas, including the seafloor north of Samoa, are mainly sediment covered. Two known hydrothermal deposits near the two triple junctions have been imaged, but other mapped areas of extensive neo-volcanics in the vicinity of propagators and pull-apart basins suggest sites for further investigation. The prevalence of ridge propagators and extensional basins suggests their significant role in the development of the region.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035866','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035866"><span>Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ruppert, N.A.; Prejean, S.; Hansen, R.A.</p> <p>2011-01-01</p> <p>An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/i-2645-b/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/i-2645-b/"><span>Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.</p> <p>1999-01-01</p> <p>Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the north reflects the southern flank of a structural dome that led to the Pavant Range homocline and whose southern edge lies along the Clear Creek downwarp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3231N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3231N"><span>The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo</p> <p>2014-05-01</p> <p>The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V21B1204O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V21B1204O"><span>Secular Variations of Soil CO2 Efflux at Santa Ana-Izalco-Coatepeque Volcanic Complex, El Salvador, Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Lopez, D.</p> <p>2002-12-01</p> <p>The Santa Ana-Izalco-Coatepeque volcanic complex (2,365 m elevation), located 40 Km west of San Salvador, consists of the Coatepeque collapse caldera (a 6.5 x 10.5 Km elliptical depression), the Santa Ana and Izalco stratovolcanoes, as well as numerous cinder cones and explosion craters. The summit of the Santa Ana volcano contains an acid lake where hot springs, gas bubbling and intense fumarolic emissions occur. A volcanic plume, usually driven by the NE trades, may be seen rising up to 500 m from the summit crater of the Santa Ana volcano. The goal of this study is to provide a multidisciplinary approach for the volcanic surveillance by means of performing geochemical continuous monitoring of diffuse CO2 emission rate in addition to seismic monitoring. Temporal variations of soil CO2 efflux measured at Cerro Pacho dome, Coatepeque caldera, by means of the accumulation chamber method and using a CO2 efflux continuous monitoring station developed by WEST Systems (Italy). From May 2001 till May 2002, CO2 efflux ranged from 4.3 to 327 gm-2d-1, with a median value of 98 and a quartile range of 26 gm-2d-1. Two distinct diffuse CO2 degassing periods have been observed: (1) an increasing trend from May to July 2001, and (2) a stationary period from November 2001 to May 2002. The increasing-trend period may be due to the anomalous plume degassing at the Santa Ana volcano during 2001 and soon after the January and February 2001 earthquakes. Temporal variations of CO2 efllux during the second period seem to be coupled with those of barometric pressure and wind speed at different time scales, though most of the variance is contained at diurnal and semi-diurnal frequencies. These observations can help to explain the existence of a persistent behavior (Hurst exponent, H=0.934 +/- 0.0039) within the diffuse CO2 degassing phenomena. However, further observations are in progress to understand the long-term memory of diffuse CO2 degassing at the Santa Ana volcanic complex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3554642','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3554642"><span>Geochemical and Visual Indicators of Hydrothermal Fluid Flow through a Sediment-Hosted Volcanic Ridge in the Central Bransfield Basin (Antarctica)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.</p> <p>2013-01-01</p> <p>In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr  = 0.708776 at core base) compared with modern seawater (87Sr/86Sr ≈0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V31A0949O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V31A0949O"><span>Diffuse Carbon Dioxide Degassing Monitoring at Santa Ana-Izalco-Coatepeque Volcanic System, El Salvador, Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Notsu, K.; Lopez, D.</p> <p>2001-12-01</p> <p>Santa Ana volcanic complex (0.22 Ma), located 40 Km west of San Salvador, comprises Santa Ana, Izalco, and Cerro Verde stratovolcanoes, the Coatepeque collapse caldera, as well as several cinder cones and explosion craters. Most recent activity has occurred at Izalco (1966) and Santa Ana which shows a permanent acidic crater lake with an intense fumarolic activity. In addition, Santa Ana exhibits a SO2-rich rising plume though no local seismicity has been reported. Weak fumarolic activity is also present at two locations within the Santa Ana volcanic complex: the summit crater of Izalco and Cerro Pacho at Coatepeque caldera. Other important structural features of this volcanic complex are two fault/fissure systems running NNW-SSE that can be identified by the alignment of the stratovolcanoes and numerous cinder cones and explosion craters. In January 2001, a 7.6 magnitude earthquake occurred about 150 Km SE of Santa Ana volcano. A soil gas and CO2 efflux survey was performed to evaluate the impact of this seismic event upon the diffuse degassing rates in Santa Ana volcanic complex in March 2001. A total of 450 soil gas and diffuse CO2 efflux measurements were carried out covering an area of 209.5 Km2. CO2 efflux ranged from non-detectable values to 293 gm-2d-1, with a median of 8.9 gm-2d-1 and an upper quartile of 5.2 gm-2d-1. The CO2 efflux spatial distribution reveals the existence of areas with CO2 efflux higher than 60 gm-2d-1 associated to the fault/fissure systems of NNW-SSE orientation. One of these areas, Cerro Pacho, was selected for the continuous monitoring of diffuse CO2 efflux in late May 2001. Secular variations of diffuse CO2 efflux ranged from 27.4 to 329 gm-2d-1 with a median of 130 gm-2d-1 and a quartile range of 59.3 gm-2d-1. An increasing trend of 43 gm-2d-1 was observed between May and August 2001 overlapped to high-frequency minor fluctuations related to meteorological variables' changes. However, a larger observation time-span is needed to understand the influence of the rainy-season and meteorological parameters in the observed CO2 efflux time series.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915561D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915561D"><span>Volcanic geomorphosites and geotourism in Las Cañadas del Teide National Park, Tenerife, Canary Islands, Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dóniz-Paéz, Javier; Becerra-Ramírez, Rafael; González-Cárdenas, Elena; Rodriguez, Fátima</p> <p>2017-04-01</p> <p>Geomorphosites and geoturism studies are increasing for the high scientific, societal, cultural, and aesthetic values of the relief. Volcanic areas are exciting targets for such studies for their geodiversity. The aim of these study is an inventory of volcanic geomorphosites and its relationship to geotourism. Las Cañadas del Teide National Park (LCTNP) is a volcanic complex area located in the central part of Tenerife island (Canary Islands, Spain). This area is a volcanic paradise rich in spectacular landforms: stratovolcanoes, calderas, cinder cones, craters, pahoehoe, aa, block and balls lavas, gullies, etc. The national park is registered in the world heritage list (UNESCO) in 2007 as a natural site. The LCTNP receives more than 2,5 million tourists per year and it has 21 main pahts and 14 secondary ones. For the selection of the geomophosites the LCTNP was divided into four geomorphological units (Teide-Pico Viejo stratovolcanoes, Las Cañadas Caldera wall, the bottom of Las Cañadas and the basaltic volcanic field) and each one of them is selected the most representative geomorphosites by its geodiversity, because of its geomorphological heritage, its landscapes and its tourist potential with the paths. All selected geomorphosites are within areas where public use is allowed in the park. The inventory classifies the 23 geomorphosites in two main categories: (a) direct volcanic with 17 geomorphosites (stratovolcanoes, domes, cinder cones, pahoehoe, aa and bloc lava flows, etc.) and (b) eroded volcanic landforms with 6 (wall of Las Cañadas caldera, talusees, foodplains, etc.). The Teide-Pico Viejo unit is which has more geomorphosites with 8 and the Las Cañadas wall unit possessing less with 5. The assessment evaluates the scientific, cultural/historical, and use values and helps to define priorities in site management. These geomorphosites demonstrate the volcanic history and processes of the LCTNP.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/0482/pdf/of01-482.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/0482/pdf/of01-482.pdf"><span>Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Nye, Christopher J.</p> <p>2001-01-01</p> <p>Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many types of economic and social activities, including oil and gas operations and shipping activities in the Cook Inlet area. Eruptions of Crater Peak could involve significant amounts of ice and snow that would lead to the formation of large lahars, formation of volcanic debris dams, and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..348...82C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..348...82C"><span>Intra-cone plumbing system and eruptive dynamics of small-volume basaltic volcanoes: A case study in the Calatrava Volcanic Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carracedo-Sánchez, M.; Sarrionandia, F.; Ábalos, B.; Errandonea-Martin, J.; Gil Ibarguchi, J. I.</p> <p>2017-12-01</p> <p>The Manoteras volcano (Tortonian to Pleistocene, Calatrava Volcanic Field, Spain) is composed of a scoria and spatter cone surrounded by a field of pahoehoe lava. The volcanic cone is made essentially of vitreous lapilli-tuffs with intercalations of vitreous tuffs and spatter deposits, without any intercalations of lava flows. Erosion has uncovered an intra-cone plumbing system formed by coherent dykes and pyroclastic dykes (mixed-type dykes). This dyke swarm reflects processes of intrusion at the end of the eruption or even post-eruption. All the volcanic products are nephelinitic in composition. The main dyke is up to 3.4 m thick and has an exposed length of 1000 m. It is composed mostly of coherent nephelinite with some pyroclastic sections at its northern extremity. This dyke is regarded as a feeder dyke of the volcano, although the upper parts of the dike have been eroded, which prevents the observation of the characteristics and nature of the possible overlying vent(s). Mixed-type dykes could also have acted as small linear vents and indicate that the magma fragmentation level during final waning stages of the eruption was located inside the volcanic cone. The pyroclastic deposits that make up the volcanic cone at the current exposure level were probably developed during a major phase of violent Strombolian style that formed the scoria cone, followed by a Hawaiian phase that formed the summital intracrater spatter deposit. Three central-type vents have been identified: one at the highest point of the remnant volcanic cone (summital vent), from where the earlier explosive eruptions took place, and the other two at the fringe of the cone base, from where emissions were only effusive. The lava flows were emitted from these boccas through the scoria cone feeding the lava field. The results obtained, based on careful field observations, add substantial complexity to the proposed eruptive models for small-volume basaltic volcanoes as it appears evident that there may exist and evolution through time from central conduit settings to fissure eruptions. Moreover, it is shown that intracone plumbing systems can integrate coherent and clastic dykes of variable thicknesses, which, in some cases could represent feeder dykes. Table 2. Petrographic characteristics of the coherent rocks (dykes and lava flows) from the Manoteras volcano. See Fig. 2 supplementary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JVGR..161..303C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JVGR..161..303C"><span>Shallow structure of the Somma Vesuvius volcano from 3D inversion of gravity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cella, Federico; Fedi, Maurizio; Florio, Giovanni; Grimaldi, Marino; Rapolla, Antonio</p> <p>2007-04-01</p> <p>A gravity investigation was carried out in the Somma-Vesuvius complex area (Campania, Italy) based on a dataset recently enlarged with new measurements. These cover the volcanic top and fill some other important spatial gaps in previous surveys. Besides the new gravity map of the Vesuvius, we also present the results of a 3D inverse modelling, carried out by using constraints from deep well exploration and seismic reflection surveys. The resulting density model provides a complete reconstruction of the top of the carbonate basement. This is relevant mostly on the western side of the survey area, where no significant information was previously available. Other new information regards the Somma-Vesuvius structure. It consists of an annular volume of rocks around the volcanic vent and that extends down to the carbonate basement. It results to be denser with respect to the surrounding sedimentary cover of the Campanian Plain and to the material located just along the central axis of the volcanic structure. The coherence between these features and other geophysical evidences from previous studies, will be discussed together with the other results of this research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.geosociety.org/gsatoday/archive/1/11/pdf/i1052-5173-1-11-sci.pdf','USGSPUBS'); return false;" href="http://www.geosociety.org/gsatoday/archive/1/11/pdf/i1052-5173-1-11-sci.pdf"><span>Surface features of central North America: a synoptic view from computer graphics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pike, R.J.</p> <p>1991-01-01</p> <p>A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..132a2023W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..132a2023W"><span>Estimation of Existence Geothermal Manifestation Using Very Low Frequency (VLF) Method in the PagerkandangVulcanic, Dieng, Central Java</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wulandari, Asri; Asti Anggari, Ega; Dwiasih, Novi; Suyanto, Imam</p> <p>2018-03-01</p> <p>Very Low Frequency (VLF) measurement has been done at Pagerkandang Volcanic, Dieng Volcanic Complex (DVC) to examine the possible existence of conductive zones that related with geothermal manifestation. VLF – EM survey used tilt mode with T-VLF BRGM Iris Instrument operated with two frequencies, they are 22200 Hz from Japan (JJI) and 19800 Hz from Australia (NWC). There are five lines with distance between lines is 50 m, and distance between measure points is 20 m. The parameters measured from VLF method are tilt angle (%) and elliptisity (%). Data processed by tilt angle value with fraser and Karous – Hjelt filter used WinVLF program. Karous – Hjelt filter resulted current density contour to estimate lateral location from conductive and resistive zones. The conductive zone is interpreted as the area which have high current density value. This area located at eastern dan western of Pagerkandang Volcanic. The conductive zone related to geothermal manifestation as like as fumarol that appeared because presenced of normal fault. Whereas the resistive zone is interpreted as the area which have low current density value. This area spread almost in the middle of the Pagerkandang Volcanic. The resistive zone was caused by the high weathering in claystone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5022/h/sir20175022h.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5022/h/sir20175022h.pdf"><span>Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin</p> <p>2017-08-16</p> <p>The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.240....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.240....1M"><span>Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: Evidence from Isla El Tigre volcano (Honduras, Central America)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mattioli, Michele; Renzulli, Alberto; Agostini, Samuele; Lucidi, Roberto</p> <p>2016-01-01</p> <p>Isla El Tigre volcano is located in the Gulf of Fonseca (Honduras) along the Central America volcanic front, where a significant change in the strike of the volcanic chain is observed. The studied samples of this poorly investigated volcano are mainly subalkaline basic to intermediate lavas (basalts and basaltic andesites) and subordinate subalkaline/alkaline transitional basalts, both having the typical mineralogical and geochemical characteristics of arc volcanic rocks. On the basis of petrographic and geochemical features, two groups of rocks have been distinguished. Lavas from the main volcanic edifice are highly porphyritic and hy-qz normative, and have lower MgO contents (< 5 wt.%). They show significant LILE and LREE enrichments and Nb-Ta depletions, and have a strong slab signature as well as incompatible element contents similar to those of the main front of the adjacent volcanoes in El Salvador and Nicaragua (e.g., Ba/La up to 80). In contrast, lavas from the parasitic cones have higher MgO contents (> 5 wt.%), are ol-hy normative and show lower HFSE depletions relative to LILE and LREE, with lower Ba/La, Ba/Nb and Zr/Nb ratios. This suggests that mantle-derived magmas were not produced by the same process throughout the activity of the volcano. The bulk rock geochemistry and 87Sr/86Sr (0.70373-0.70382), 143Nd/144Nd (0.51298-0.51301), 206Pb/204Pb (18.55-18.58), 207Pb/204Pb (15.54-15.56) and 208Pb/204Pb (38.23-38.26) isotopic data of Isla El Tigre compared with the other volcanoes of the Gulf of Fonseca and all available literature data for Central America suggests that this stratovolcano was mainly built by mantle-derived melts driven by slab-derived fluid-flux melting, while magmas erupted through its parasitic cones have a clear signature of decompression melting with minor slab contribution. The coexistence of these two different mantle melting generation processes is likely related to the complex geodynamic setting of the Gulf of Fonseca, where the volcanic front changes direction by ca. 30° and two fundamental tectonic structures of the Chortis continental block, mainly the N-S Honduras Depression and the NE-SW Guayape Fault Zone, cross each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69...63T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69...63T"><span>Effects of the 2016 Kumamoto earthquakes on the Aso volcanic edifice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tajima, Yasuhisa; Hasenaka, Toshiaki; Torii, Masayuki</p> <p>2017-05-01</p> <p>Large earthquakes occurred in the central part of Kumamoto Prefecture on April 14-16, 2016, causing severe damage to the northern segment of the Hinagu faults and the eastern segment of the Futagawa faults. Earthquake surface ruptures appeared along these faults and on the Aso volcanic edifice, which in turn generated landslides. We conducted landform change analysis of the central cones of Aso volcano by using satellite and aerial photographs. First, we categorized the topographical changes as surface scarps, arc-shaped cracks, and linear cracks. Field survey indicated that landslides caused the scarps and arc-shaped cracks, whereas faulting caused the linear cracks. We discovered a surface rupture concentration zone (RCZ) formed three ruptures bands with many surface ruptures and landslides extending from the west foot to the center of the Aso volcanic edifice. The magmatic volcanic vents that formed during the past 10,000 years are located along the north margin of the RCZ. Moreover, the distribution and dip of the core of rupture concentration zone correspond with the Nakadake craters. We conclude that a strong relationship exists between the volcanic vents and fault structures in the central cones of Aso volcano.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1730/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1730/"><span>The Gogebic Iron Range - A Sample of the Northern Margin of the Penokean Fold and Thrust Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cannon, William F.; LaBerge, Gene L.; Klasner, John S.; Schulz, Klaus J.</p> <p>2008-01-01</p> <p>The Gogebic iron range is an elongate belt of Paleoproterozoic strata extending from the west shore of Lake Gogebic in the upper peninsula of Michigan for about 125 km westward into northern Wisconsin. It is one of six major informally named iron ranges in the Lake Superior region and produced about 325 million tons of direct-shipping ore between 1887 and 1967. A significant resource of concentrating-grade ore remains in the western and eastern parts of the range. The iron range forms a broad, gently southward-opening arc where the central part of the range exposes rocks that were deposited somewhat north of the eastern and western parts. A fundamental boundary marking both the tectonic setting of deposition and the later deformation within the Penokean orogen lies fortuitously in an east-west direction along the range so that the central part of the range preserves sediments deposited north of that boundary, whereas the eastern and western parts of the range were deposited south of the boundary. Thus, the central part of the range provides a record of sedimentation and very mild deformation in a part of the Penokean orogen farthest from the interior of the orogen to the south. The eastern and western parts of the range, in contrast, exhibit a depositional and deformational style typical of parts closer to the interior of the orogen. A second fortuitous feature of the iron range is that the entire area was tilted from 40° to 90° northward by Mesoproterozoic deformation so that the map view offers an oblique cross section of the Paleoproterozoic sedimentary sequence and structures. Together, these features make the Gogebic iron range a unique area in which to observe (1) the lateral transition from deposition on a stable platform to deposition in a tectonically and volcanically active region, and (2) the transition from essentially undeformed Paleoproterozoic strata to their folded and faulted equivalents.Paleoproterozoic strata in the Gogebic iron range are part of the Marquette Range Supergroup. They were deposited unconformably on Neoarchean rocks consisting of a diverse volcanic suite (the Ramsay Formation) which was intruded by granitic rocks of the Puritan Quartz Monzonite. The Marquette Range Supergroup in this region consists of a basal sequence of orthoquartzite (Sunday Quartzite) and dolomite (Bad River Dolomite), both of which are part of the Chocolay Group. The group is preserved only in the eastern and western parts of the range but was probably present throughout before the erosion interval that separated it from the overlying Menominee Group. The Menominee Group consists of basal clastic rocks (Palms Formation) that grade upward into the Ironwood Iron-Formation, which is the principal iron-bearing unit of the range. The Ironwood interfingers with the Emperor Volcanic Complex in the eastern part of the range and with volcanic rocks and gabbro in the western part of the range. The Ironwood is overlain unconformably by the Tyler Formation in the central and western parts of the range and by the Tyler’s equivalent, the Copps Formation, in the eastern part of the range.Strata in the central part of the iron range are entirely sedimentary. Deposition occurred in a relatively stable tectonic setting, at least until the deposition of the Tyler Formation. The Tyler consists largely of turbidites deposited in a foreland basin in advance of accreting volcanic arcs to the south. Penokean deformation in the central part of the range was very minor; the evidence of deformation consists of steep faults with small offsets and a few bedding-parallel faults that also have small offsets and that are recognized only in mine workings. In both the eastern and western parts of the iron range, abrupt facies changes mark a passage into a more tectonically and volcanically active belt. These relationships are especially well displayed in the east where a graben, the Presque Isle trough, began to subside during deposition of the Ironwood Iron-Formation. The thickness of the Ironwood increases into the graben and its internal stratigraphy also changes. The most prominent changes in the graben are the presence of a thick volcanic unit, the Emperor Volcanic Complex of the Menominee Group, and comagmatic gabbro sills that interfinger with the Ironwood. In the western part of the range, volcanic rocks and comagmatic gabbro sills are also present in the Ironwood, but a graben that is equivalent to the Presque Isle trough is not evident.Penokean structures are well developed in both the eastern and western parts of the iron range. They consist of folds ranging from outcrop to regional scale and thrust faults which, in places, either repeated the section or detached it from Neoarchean basement. The sharp transition from the little-deformed central part of the range to the more intensely deformed eastern and western parts coincides closely with the earlier developed transition from the stable sedimentary setting in the central part to the tectonically active sedimentation in the east and west parts. The extensional structures that formed during sedimentation may have helped to control the extent of later Penokean compressional structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187335','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187335"><span>Geophysical study of the San Juan Mountains batholith complex, southwestern Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Drenth, Benjamin J.; Keller, G. Randy; Thompson, Ren A.</p> <p>2012-01-01</p> <p>One of the largest and most pronounced gravity lows over North America is over the rugged San Juan Mountains of southwestern Colorado (USA). The mountain range is coincident with the San Juan volcanic field (SJVF), the largest erosional remnant of a widespread mid-Cenozoic volcanic field that spanned much of the southern Rocky Mountains. A buried, low-density silicic batholith complex related to the volcanic field has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was based on gravity data processed with standard techniques that are problematic in the SJVF region. The combination of high-relief topography, topography with low densities, and the use of a common reduction density of 2670 kg/m3produces spurious large-amplitude gravity lows that may distort the geophysical signature of deeper features such as a batholith complex. We applied an unconventional processing procedure that uses geologically appropriate densities for the uppermost crust and digital topography to mostly remove the effect of the low-density units that underlie the topography associated with the SJVF. This approach resulted in a gravity map that provides an improved representation of deeper sources, including reducing the amplitude of the anomaly attributed to a batholith complex. We also reinterpreted vintage seismic refraction data that indicate the presence of low-velocity zones under the SJVF. Assuming that the source of the gravity low on the improved gravity anomaly map is the same as the source of the low seismic velocities, integrated modeling corroborates the interpretation of a batholith complex and then defines the dimensions and overall density contrast of the complex. Models show that the thickness of the batholith complex varies laterally to a significant degree, with the greatest thickness (∼20 km) under the western SJVF, and lesser thicknesses (<10 km) under the eastern SJVF. The largest group of nested calderas on the surface of the SJVF, the central caldera cluster, is not correlated with the thickest part of the batholith complex. This result is consistent with petrologic interpretations from recent studies that the batholith complex continued to be modified after cessation of volcanism and therefore is not necessarily representative of synvolcanic magma chambers. The total volume of the batholith complex is estimated to be 82,000–130,000 km3. The formation of such a large felsic batholith complex would inevitably involve production of a considerably greater volume of residuum, which could be present in the lower crust or uppermost mantle. The interpreted vertically averaged density contrast (–60 to –110 kg/m3), density (2590–2640 kg/m3), and seismic expression of the batholith complex are consistent with results of geophysical studies of other large batholiths in the western United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760009466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760009466"><span>An investigation of thermal anomalies in the Central American volcanic chain and evaluation of the utility of thermal anomaly monitoring in the prediction of volcanic eruptions. [Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.</p> <p>1975-01-01</p> <p>The author has identified the following significant results. Ground truth data collection proves that significant anomalies exist at 13 volcanoes within the test site of Central America. The dimensions and temperature contrast of these ten anomalies are large enough to be detected by the Skylab 192 instrument. The dimensions and intensity of thermal anomalies have changed at most of these volcanoes during the Skylab mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915852M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915852M"><span>Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, Zoe; Manning, Christina J.</p> <p>2017-04-01</p> <p>The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant insight into the eruptive dynamics and emplacement history [5]. In particular, microlite number density, volume and alignment represent the summation of degassing, conduit flow and emplacement [6]. As such, there is great significance in the quantification of these parameters for the determination of eruption dynamics. Analysis of these obsidians will establish patterns of textural heterogeneity as a signature for the distinction of volcanic glasses formed by different mechanisms and allow for identification of patterns in microlite number density, volume, alignment and plunge that characterise differing modes of emplacement. Together, these measurements will aid interpretation and improve understanding of this volcanic system, with applicability to the determination of the impact of these volcanic episodes on the distribution of early man in Armenia as well as assessment of the potential for future events. [1] Lebedev et al (2013) JVS, 7, 204-229 [2] Arutyunyan et al (2007) Dokl Earth Sci, 416, 1042-1046 [3] Alder et al (2014) Science, 345, 1609-1613 [4] Hutchison et al (2016) Nat. Commun, 7 [5] Manga (1998) JVGR, 86, 107-115 [6] Befus et al (2015) Bull. Volcanol, 77, 88</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..343..181M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..343..181M"><span>Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moussallam, Yves; Tamburello, Giancarlo; Peters, Nial; Apaza, Fredy; Schipper, C. Ian; Curtis, Aaron; Aiuppa, Alessandro; Masias, Pablo; Boichu, Marie; Bauduin, Sophie; Barnie, Talfan; Bani, Philipson; Giudice, Gaetano; Moussallam, Manuel</p> <p>2017-09-01</p> <p>Emission of volcanic gas is thought to be the dominant process by which volatiles transit from the deep earth to the atmosphere. Volcanic gas emissions, remain poorly constrained, and volcanoes of Peru are entirely absent from the current global dataset. In Peru, Sabancaya and Ubinas volcanoes are by far the largest sources of volcanic gas. Here, we report the first measurements of the compositions and fluxes of volcanic gases emitted from these volcanoes. The measurements were acquired in November 2015. We determined an average SO2 flux of 15.3 ± 2.3 kg s- 1 (1325-ton day- 1) at Sabancaya and of 11.4 ± 3.9 kg s- 1 (988-ton day- 1) at Ubinas using scanning ultraviolet spectroscopy and dual UV camera systems. In-situ Multi-GAS analyses yield molar proportions of H2O, CO2, SO2, H2S and H2 gases of 73, 15, 10 1.15 and 0.15 mol% at Sabancaya and of 96, 2.2, 1.2 and 0.05 mol% for H2O, CO2, SO2 and H2S at Ubinas. Together, these data imply cumulative fluxes for both volcanoes of 282, 30, 27, 1.2 and 0.01 kg s- 1 of H2O, CO2, SO2, H2S and H2 respectively. Sabancaya and Ubinas volcanoes together contribute about 60% of the total CO2 emissions from the Central Volcanic zone, and dominate by far the total revised volatile budget of the entire Central Volcanic Zone of the Andes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917229C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917229C"><span>Volcanic and geochemical evolution of the Carboniferous Teplice Rhyolite, Central-European Variscides (Germany and Czech Republic)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casas, Raymundo; Breitkreuz, Christoph; Rapprich, Vladislav; Lapp, Manuel; Schulz, Bernhard</p> <p>2017-04-01</p> <p>The Altenberg-Teplice Volcanic Complex (ATVC; 325 Ma) represents one of the earliest magmatic centers of the Late- to Post-tectonic period of the Variscan orogeny in Central Europe. The ca. 35×18 km ATVC is located in the Erzgebirge/Krušné hory (Germany/Czech Republic) and hosts two principal extrusive units: (1) an initial volcanosedimentary succession preserved in the Schönfeld-Altenberg Depression Complex (Walther et al., in press) and (2) a thick volcanic pile produced during the peak eruptive stage, known as the Teplice Rhyolite (TR). The TR represents mainly a caldera-fill sequence (Benek, 1991), whose volcanic and geochemical evolution has not been fully defined. Seven petrotypes have been mapped in the TR on the Czech side (Jiránek et al., 1987). To the north, on German territory, Lobin (1986) distinguished eight petrotypes. The TR is dominated by thick sheets of welded and non-welded crystal clast-rich (< 45 %) ignimbrites, which are intercalated with rhyolitic lava-dome complexes. The ATVC has been intruded by late high-volume granite porphyritic melts and several plutons associated, in parts, with Sn-, Li mineralization. Two important drillings expose over 600 m of TR volcanics. Samples from (1) the Mi-4 borehole (Mikulov, Czech Republic) have been geochemically evaluated and a vertical reverse chemical zoning (Zr, Rb) was identified and interpreted in terms of a continuous eruption (Breiter et al., 2001). In (2) the well 2112-87 near Schmiedeberg in Germany, ignimbrites are separated by two rhyolitic, lithophysae-bearing lava units, suggesting a multistage caldera evolution. In the South of the ATVC out- and subcrops reveal a caldera outflow facies. In Czech Republic, ignimbrites prevail with a single belt of late-stage rhyolitic lavas on the eastern margin. We present sixty new whole-rock and mineral chemical data (biotite) to define the geochemical evolution, the composition and the chemical character of the TR rocks. Currently, Nd-Sr isotopes are being measured on whole-rock samples; U/Pb dating and chemical composition of TR zircons are planned. In this binational project, for the first time detailed facies and geochemical analyses are being combined in order to reconstruct the volcanic evolution and magma genesis of the ATVC. References Benek, R., 1991. Aspects of volume calculation of paleovolcanic eruptive products - the example of the Teplice rhyolite (east Germany). Zeitschrift für Geologische Wissenschaften 19 (in German), 379-389. Breiter, K., Novák, J. K., Chlupáčová, M., 2001. Chemical Evolution of Volcanic Rocks in the Altenberg-Teplice Caldera (Eastern Krušné Hory Mts., Czech Republic, Germany). Geolines 13, 17-22. Jiránek, J., Kříbek, B., Mlčoch, B., Procházka, J., Schovánek, P., Schovánková, D., Schulmann, K., Šebesta, J., Šimůnek, Z., Štemprok, M., 1987. The Teplice rhyolite. Unpublished report Czech Geological Survey, Praha (in Czech), 114 pp. Lobin, M., 1986. Structure and development of the Permosiles in the middle and eastern Erzgebirge. Unpublished Disertation, Mining Academy Freiberg (in German), 63 pp. Walther, D., Breitkreuz, C., Rapprich, V., Kochergina, Y., Chlupáčová, M., Lapp, M., Stanek, K., Magna, T., in press. The Late Carboniferous Schönfeld-Altenberg Depression on the NW margin of the Bohemian Massif (Germany/Czech Republic): volcanosedimentary and magmatic evolution. Journal of Geosciences 61.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..360K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..360K"><span>Analysis of Focal Mechanism and Microseismicity around the Lusi Mud Eruption Site, East Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian</p> <p>2016-04-01</p> <p>The 29th of May 2006 numerous eruption sites started in northeast Java, Indonesia following to a M6.3 earthquake striking the island.Within a few weeks an area or nearly 2 km2 was covered by boiling mud and rock fragments and a prominent central crater (named Lusi) has been erupting for the last 9.5 years. The M.6.3 seismic event also triggered the activation of the Watukosek strike slip fault system that originates from the Arjuno-Welirang volcanic complex and extends to the northeast of Java hosting Lusi and other mud volcanoes. Since 2006 this fault system has been reactivated in numerous instances mostly following to regional seismic and volcanic activity. However the mechanism controlling this activity have never been investigated and remain poorly understood. In order to investigate the relationship existing between seismicity, volcanism, faulting and Lusi activity, we have deployed a network of 31 seismometers in the framework of the ERC-Lusi Lab project. This network covers a large region that monitors the Lusi activity, the Watukosek fault system and the neighboring Arjuno-Welirang volcanic complex. In particular, to understand the consistent pattern of the source mechanism, relative to the general tectonic stress in the study area, a detailed analysis has been carried out by performing the moment tensor inversion for the near field data collected from the network stations. Furthermore these data have been combined with the near field data from the regional network of the Meteorological, Climatological and Geophysical Agency of Indonesia that covers the whole country on a broader scale. Keywords: Lusi, microseismic event, focal mechanism</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29678141','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29678141"><span>Evolving in the highlands: the case of the Neotropical Lerma live-bearing Poeciliopsis infans (Woolman, 1894) (Cyprinodontiformes: Poeciliidae) in Central Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beltrán-López, Rosa Gabriela; Domínguez-Domínguez, Omar; Pérez-Rodríguez, Rodolfo; Piller, Kyle; Doadrio, Ignacio</p> <p>2018-04-20</p> <p>Volcanic and tectonic activities in conjunction with Quaternary climate are the main events that shaped the geographical distribution of genetic variation of many lineages. Poeciliopsis infans is the only poeciliid species that was able to colonize the temperate highlands of central Mexico. We inferred the phylogenetic relationships, biogeographic history, and historical demography in the widespread Neotropical species P. infans and correlated this with geological events and the Quaternary glacial-interglacial climate in the highlands of central Mexico, using the mitochondrial genes Cytochrome b and Cytochrome oxidase I and two nuclear loci, Rhodopsin and ribosomal protein S7. Populations of P. infans were recovered in two well-differentiated clades. The maximum genetic distances between the two clades were 3.3% for cytb, and 1.9% for coxI. The divergence of the two clades occurred ca. 2.83 Myr. Ancestral area reconstruction revealed a complex biogeographical history for P. infans. The Bayesian Skyline Plot showed a demographic decline, although more visible for clade A, and more recently showed a population expansion in the last 0.025 Myr. Finally, the habitat suitability modelling showed that during the LIG, clade B had more areas with high probabilities of presence in comparison to clade A, whereas for the LGM, clade A showed more areas with high probabilities of presence in comparisons to clade B. Poeciliopsis infans has had a complex evolutionary and biogeographic history, which, as in other co-distributed freshwater fishes, seems to be linked to the volcanic and tectonic activities during the Pliocene or early Pleistocene. Populations of P. infans distributed in lowlands showed a higher level of genetic diversity than populations distributed in highlands, which could be linked to more stable and higher temperatures in lowland areas. The fluctuations in population size through time are in agreement with the continuous fluctuations of the climate of central Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SedG..355..114C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SedG..355..114C"><span>Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.</p> <p>2017-06-01</p> <p>Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major impact of tectonic and volcanic activity on the long-term evolution of shallow-water carbonate platforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24963803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24963803"><span>Surface complexation modeling of americium sorption onto volcanic tuff.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, M; Kelkar, S; Meijer, A</p> <p>2014-10-01</p> <p>Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29703','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29703"><span>Ponderosa pine growth response to soil strength in the volcanic ash soils of central Oregon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R.T. Parker; D.A. Maguire; D.D. Marshall; P. Cochran</p> <p>2007-01-01</p> <p>Mechanical harvesting and associated logging activities have the capacity to compact soil across large portions of harvest units. Two thinning treatments (felled only versus felled and skidded) in 70- to 80-year-old ponderosa pine stands were replicated at three sites with volcanic soils in central Oregon. Growth in diameter, height, and volume of residual trees were...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.4142L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.4142L"><span>Fault reactivation due to the M7.6 Nicoya earthquake at the Turrialba-Irazú volcanic complex, Costa Rica: Effects of dynamic stress triggering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lupi, M.; Fuchs, Florian; Pacheco, Javier F.</p> <p>2014-06-01</p> <p>The M7.6 Nicoya earthquake struck at the interface between the Cocos plate and the Caribbean plate on 5 September 2012 inducing a ground acceleration of 0.5 m s-2 at the Irazú-Turrialba volcanic complex. We use data from six seismic stations deployed around and atop the Irazú-Turrialba volcanic complex to show the increase of local seismic activity after the M7.6 Nicoya earthquake. The response consists in more than 300 locatable earthquakes occurring in swarm sequences along a fault system that intersects the Irazú-Turrialba volcanic complex. In addition, we point out that major aftershocks are followed by increases of seismic activity in the same region. The weak static stress variation imposed by the main slip of the Nicoya earthquake at the Irazú-Turrialba volcanic complex suggests a dynamic triggering mechanism. We expand this concept suggesting that this behavior may be similar to the one observed in the Chilean and Japanese volcanic arcs during the M8.8 2010 Maule, Chile, and M9.0 2011 Tohoku, Japan, earthquakes. Finally, we highlight that the combined action of dynamic stress and short-lived coseismic relaxation may trigger seismic activity in geological systems in near-critical conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.G33B0952M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.G33B0952M"><span>A magmatic origin for lunar mascons? New insights from GRAIL gravity and numerical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGovern, P. J.; Zuber, M. T.; Kramer, G. Y.; Powell, K.; Kiefer, W. S.</p> <p>2012-12-01</p> <p>The origin of the enormous "mascon" gravity anomalies associated with large impact basins on the Moon is still a matter of debate. Here, we apply new insights from extremely high-resolution datasets -- GRAIL mission gravity and Lunar Orbiter Laser Altimeter (LOLA) topography -- to address this question, focusing on the volcanic evolution of the basin settings of mascons. Apollo-era data led to the hypothesis that surface maria deposits accounted for the mascon anomalies in the form of a plug-like body, occupying the central portions of basins like Serenitatis and Imbrium. Analysis of Clementine mission topography and gravity data indicated that substantial anomalies remained after the mare signal at many basins was taken into account. When mapped to the crust-mantle interface these anomalies suggested frozen-in super-isostatic uplift of that interface. However, recent modeling of lithospheric response to super-isostatic loading with a realistic post-impact thermal profile indicates that such uplift should disappear on timescales much shorter than the age of the basins, necessitating a search for a formation mechanism that will allow a mascon anomaly to be sustained to the present day. Given the substantial mare contributions to mascons, such a mechanism should also be consistent with apparent delays between basin-forming impacts and the onset of mare volcanism, as well as the (potentially extended) duration of the latter. One such scenario invokes the intrusive component of the magmatic system that delivered the mare basalts to the surface. The intrusive/extrusive volume ratio ranges from 5-10 in terrestrial settings, suggesting a substantial role for intrusions beneath mare-filled basins (and possibly for sparsely-filled ones as well). Given the complex geometry and margin structure of intrusive complexes observed on Earth, one might expect a hypothesized sill complex beneath lunar basins, emplaced over a potentially broad timescale and subject to local and regional stress and structural inhomogeneities, to have a complex margin structure. GRAIL gravity data reveal evidence for such structures in the form of lobate protrusions from central mascon gravity anomalies seen at north and northeast Serenitatis and south-southwest and east-northeast Imbrium. Further, the close correspondence between the decidedly non-circular southeast boundary of the Imbrium mascon and the thrust faults cutting the surface of Mare Imbrium suggests a connection between the mascon and the much younger surface flows that significantly postdates the impact process itself, consistent with a fault system conforming to the geometry of a subsurface intrusive load. Alternatively, those faults nucleated over an originally irregular impact-produced mascon boundary. Mascon loading creates stress states favorable to magmatic ascent in annular zones surrounding basins. For example, volcanic complexes at the margins of Imbrium and Serenitatis may have been facilitated by this stress state. Further, olivines detected in clearly magmatic settings (both extrusive and intrusive) at the margin of Crisium argue for stress-enhanced volcanic transport of olivine-bearing rocks (cumulates or mantle xenoliths) to the near surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSAES..64..365L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSAES..64..365L"><span>Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34°30‧-37°S), Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Litvak, Vanesa D.; Spagnuolo, Mauro G.; Folguera, Andrés; Poma, Stella; Jones, Rosemary E.; Ramos, Víctor A.</p> <p>2015-12-01</p> <p>A series of mesosilicic volcanic centers have been studied on the San Rafael Block (SRB), 300 km to the east of the present-day volcanic arc. K-Ar ages indicate that this magmatic activity was developed in at least two stages: the older volcanic centers (˜15-10 Ma) are located in the central and westernmost part of the SRB (around 36°S and 69°W) and the younger centers (8-3.5 Ma) are located in an eastern position (around 36°S and 69°30‧W) with respect to the older group. These volcanic rocks have andesitic to dacitic compositions and correspond to a high-K calc-alkaline sequence as shown by their SiO2, K2O and FeO/MgO contents. Elevated Ba/La, Ba/Ta and La/Ta ratios show an arc-like signature, and primitive mantle normalized trace element diagrams show typical depletions of high field strength elements (HFSE) relative to large ion lithophile elements (LILE). Rare earth element (REE) patterns suggest pyroxene and amphibole crystallization. Geochemical data obtained for SRB volcanic rocks support the proposal for a shallow subduction zone for the latest Miocene between 34°30″-37°S. Regionally, SRB volcanism is associated with a mid-Miocene to early Pliocene eastward arc migration caused by the shallowing of the subducting slab in the South-Central Andes at these latitudes, which represents the evolution of the Payenia shallow subduction segment. Overall, middle Miocene to early Pliocene volcanism located in the Payenia back-arc shows evidence for the influence of slab-related components. The younger (8-3.5 Ma) San Rafael volcanic rocks indicate the maximum slab shallowing and the easternmost extent of slab influence in the back-arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T11D2655C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T11D2655C"><span>Ages and geochemical comparison of coeval plutons and volcanics from the central and eastern Aleutian arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Y.; Kelemen, P. B.; Goldstein, S. L.; Yogodzinski, G. M.; Hemming, S. R.; Rioux, M. E.; Cooperdock, E. H. G.</p> <p>2016-12-01</p> <p>On average, arc volcanics are compositionally different from the bulk continental crust. The relatively little known plutonic part of intra-oceanic arcs is more similar to continental crust, and may play a significant role for understanding continental crust formation. Our pilot study [1] demonstrated that in the central and eastern Aleutian islands, predominantly tholeiitic Quaternary volcanic rocks have statistically different Pb-Nd-Sr-Hf isotopic signatures than predominantly calc-alkaline Miocene and older plutonic rocks, showing that these plutonics and volcanics were derived from compositionally different sources. However, studies of older volcanics are needed to determine whether (1) there was a change in magma chemistry in the central and eastern Aleutian arc between the Miocene and the present-day, or (2) coeval plutonics and volcanics are compositionally different, and formed by different processes. For example, silica- and water-rich calc-alkaline magmas may preferentially stall and form plutons after extensive degassing and rapid viscosity increase in the mid-crust, while silica- and water-poor tholeiitic magmas tend to erupt at the surface. Here we report new geochronological and geochemical results on samples collected during the 2015 GeoPRISMS shared logistics field campaign. We collected more than 500 volcanic and plutonic samples from Unalaska, Umnak and Atka islands, including pillow lavas, sills, and larger plutons. A subset of 50 samples has been analyzed for major and trace element chemistry, Pb-Nd-Sr-Hf isotopes, and Ar-Ar geochronology. So far,40Ar/39Ar cooling dates measured for the volcanics span a wide range, from zero to 35 Ma, which is comparable to the age distribution of the plutons ( 9 Ma to 39 Ma) from these islands. The forthcoming, combined geochronology and geochemistry of coeval plutonics and volcanics will contribute to our understanding of the connections between arc magmatism and continental crust formation. [1] Cai et al., EPSL, 2015, vol 431, pp. 119-126.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U21B..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U21B..05L"><span>Physical responses of volcanic soils to land-use intensity in tropical headwater catchments of central Veracruz, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Looker, N. T.; Kolka, R.; Asbjornsen, H.; Munoz-Villers, L.; Colin, P. O.; Gómez Aguilar, L. R.; Ward, A. B.</p> <p>2017-12-01</p> <p>Soil physical properties, such as bulk density (ρb) and penetrability (P), may vary in response to anthropogenic disturbance and are relatively easy to measure. These variables are thus often used as proxies for soil characteristics that more directly govern process rates but are logistically challenging to sample in situ (e.g., hydraulic conductivity). We evaluated within- and among-site variability in the physical condition of the upper soil throughout eight first-order catchments in the volcanic landscape of central Veracruz, Mexico, through nested sampling of ρb, P, and ground cover characteristics. The study catchments spanned a land-use intensity gradient, ranging in dominant cover type from sugarcane to mature cloud forest, with pasture and coffee agroforest as intermediate cover types. Catchments were compared using data collected in forest inventory plots and at points distributed along the topographic position index. Analysis of this hierarchical dataset led to a ranking of catchments in terms of soil physical condition and, importantly, revealed the bias introduced by ignoring the within-catchment variability in response metrics. These results will help optimize soil sampling effort in landscapes with complex topography and land-use/cover distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V41A2264O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V41A2264O"><span>Do Periodic Plate Reorganisations Control Late-stage Volcanism across a Broad Galápagos Hotspot?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Connor, J. M.; Hoernle, K.; Wijbrans, J. R.; Werner, R.; Hauff, S. F.; Stoffers, P.</p> <p>2010-12-01</p> <p>Much of the Galápagos Volcanic Province (GVP), consisting of the Cocos, Carnegie, Coiba and Malpelo aseismic ridges and related seamount provinces, remains poorly understood due to a lack of direct age and geochemical data. In recent years reconnaissance dredge/grab sampling of these submerged regions of the GVP provides some new insights that can be re-evaluated in the context of the three new cruises to the region in 2010. The distribution of 40Ar/39Ar basement ages [1-3] suggest that volcanism migrated time-progressively across GVP in broad regions of long-lived, possible concurrent, hotspot volcanism. Development of the GVP via such broad zones of overlapping volcanism leads to multiple phases of volcanism post-dating the onset of hotspot volcanism, similar to rejuvenescent volcanism that occurs million years after the main shield-building phase of mid-plate oceanic volcano, most notably along the Hawaiian-Emperor Seamount Chain. Evidence for rejuvenescent volcanism across the GVP provides an opportunity to evaluate this poorly understood process in a very different physical setting compared to the Hawaiian-Emperor Chain (mid-plate versus on/near spreading axis). Widespread episodes of coeval GVP volcanism show that the Galápagos hotspot influences broad regions of the lithosphere implying relative motion between the Cocos and Nazca plates and a broad Galápagos hotspot. The complex spreading history of the Cocos-Nazca spreading centre likely controlled the relative distribution of GVP volcanism between the Cocos and Nazca plates while creating lithosphere of variable age/thickness across the region [3]. But recent age and geochemical studies of other hotspot systems show that lithosphere influenced in the past by hotspot activity is more likely to generate late-stage volcanism in response to changing patterns of stress in the lithosphere. Late stage volcanism across a broad Galápagos hotspot might therefore reflect periodic reorganisations of the Galápagos spreading centre. [1] Werner, D.R. et al., 1999. A drowned 14-m.y.-old Galápagos Archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27. [2] Werner, D.R. et al., 2003. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y. Constraints from morphology, geochemistry, and magnetic anomalies. Geochem. Geophys. Geosyst. 4, 1108. [3] O’Connor et al., 2007. Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a broad hotspot melting anomaly? Earth Planet. Sci. Letts. 263.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410857K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410857K"><span>Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.</p> <p>2012-04-01</p> <p>Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene sediment occurs. Although we did not reach the very bottom of the crater, radiometric dating of the lowest layer indicates that the formation of the crater exceeds 26,000 cal yr BP. This is in accordance with magnetic susceptibility curves and pollen results from the lake sediments, as well as the 31,450 cal yr BP radiocarbon age of the youngest dated eruption at Csomád. Research has been funded by Hungarian National Grants OTKA K68587 and NF101362.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026861','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026861"><span>Multi-stage origin of the Coast Range ophiolite, California: Implications for the life cycle of supra-subduction zone ophiolites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.</p> <p>2004-01-01</p> <p>The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB dikes) to represent the collision of an active spreading ridge. Subsequent reorganization of relative plate motions led to sinistral transpression, along with renewed subduction and accretion of the Franciscan Complex. The latter event resulted in uplift and exhumation of the ophiolite by the process of accretionary uplift. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.segweb.org/store/detail.aspx?id=EDOCMONO09','USGSPUBS'); return false;" href="https://www.segweb.org/store/detail.aspx?id=EDOCMONO09"><span>Precious metals associated with Late Cretaceous-early Tertiary igneous rocks of southwestern Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bundtzen, Thomas K.; Miller, Marti L.; Goldfarb, Richard J.; Miller, Lance D.</p> <p>1997-01-01</p> <p>Placer gold and precious metal-bearing lode deposits of southwestern Alaska lie within a region 550 by 350 km, herein referred to as the Kuskokwim mineral belt. This mineral belt has yielded 100,240 kg (3.22 Moz) of gold, 12, 813 kg (412,000 oz) of silver, 1,377,412 kg (39,960 flasks) of mercury, and modest amounts of antimony and tungsten derived primarily from the late Cretaceous-early Tertiary igneous complexes of four major types: (1) alkali-calcic, comagmatic volcanic-plutonic complexes and isolated plutons, (2) calc-alkaline, meta-aluminous reduced plutons, (3) peraluminous alaskite or granite-porphyry sills and dike swarms, and (4) andesite-rhyolite subaerial volcanic rocks.About 80 percent of the 77 to 52 Ma intrusive and volcanic rocks intrude or overlie the middle to Upper Cretaceous Kuskokwim Group sedimentary and volcanic rocks, as well as the Paleozoic-Mesozoic rocks of the Nixon Fork, Innoko, Goodnews, and Ruby preaccretionary terranes.The major precious metal-bearing deposit types related to Late Cretaceous-early Tertiary igneous complexes of the Kuskokwim mineral belt are subdivided as follows: (1) plutonic-hosted copper-gold polymetallic stockwork, skarn, and vein deposits, (2) peraluminous granite-porphory-hosted gold polymetallic deposits, (3) plutonic-related, boron-enriched silver-tin polymetallic breccia pipes and replacement deposits, (4) gold and silver mineralization in epithermal systems, and (5) gold polymetallic heavy mineral placer deposits. Ten deposits genetically related to Late Cretaceous-early Tertiary intrusions contain minimum, inferred reserves amounting to 162,572 kg (5.23 Moz) of gold, 201,015 kg (6.46 Moz) silver, 12,160 metric tons (t) of tin, and 28,088 t of copper.The lodes occur in veins, stockworks, breccia pipes, and replacement deposits that formed in epithermal to mesothermal temperature-pressure conditions. Fluid inclusion, isotopic age, mineral assemblage, alteration assemblage, and structural data indicate that many of the mineral deposits associated with Late Cretaceous-early tertiary volcanic and plutonic rocks represent geologically and spatially related, vertically zoned hydrothermal systems now exposed at several erosional levels.Polymetallic gold deposits of the Kuskokwim mineral belt are probably related to 77 to 52 Ma plutonism and volcanism associated with a period of rapid, north-directed subduction of the Kula plate. The geologic interpretation suggests that igneous complexes of the Kuskokwim mineral belt formed in an intracontinental back-arc setting during a period of extensional, wrench fault tectonics.The Kuskokwim mineral belt has many geologic and metallogenic features similar to other precious metal-bearing systems associated with arc-related igneous rocks such as the Late Cretaceous-early Tertiary Rocky Mountain alkalic province, the Jurassic Mount Milligan district of central British Columbia, the Andean orogen of South America, and the Okhotsk-Chukotka belt of northeast Asia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MsT.........12H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MsT.........12H"><span>Investigation of the relationship of crater depths and diameters in selected regions of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, Hsin-Jen</p> <p>2013-03-01</p> <p>Impact craters are common geomorphological features on Mars. The density of craters is different among various regions. Higher crater density means older terrain. Craters can be divided into two types by the interior morphology: simple and complex. The cavity of Simple craters is bowl-shape, and complex craters display various interior features, such as central peaks. The depth/diameter ratio (d/D) of simple craters is larger than that of complex craters. The transition diameter from simple to complex morphologies ranges between 5 and 10 km, and is commonly cited to be about 7 km in the equatorial regions and 6 km near the poles, but the exact value also could vary with terrain type. In this research, seven regions, Amazonis Planitia, Arabia Terra, Chryse Planitia, Hesperia Planum, Isidis Planitia, Solis/Syria/Sinai Planum, and Terra Sirenum, were selected to investigate the onset diameter of complex craters and the relationship of crater diameter and depth in these regions on Mars in order to understand how the geology affects crater d/D. The analysis revealed that the slopes of the d/D relations are different, and these are linked to the surface material in different regions. The onset diameters in young volcanic regions with stronger material are slightly higher than older volcanic regions, and much higher than that of volatile regions. The research proves the different geological units can affect the morphology and morphometry of craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CRGeo.339...24M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CRGeo.339...24M"><span>La province magmatique de l'Atlantique central dans le bassin des Ksour (Atlas saharien, Algérie)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meddah, Amar; Bertrand, Hervé; Elmi, Serge</p> <p>2007-01-01</p> <p>The volcanic succession from the Triassic basin of the Ksour Mountains is formed by three basaltic units, interlayered with siliciclastic to evaporitic sedimentary levels and overlain by Rhaetian-Hettangian limestones. These basalts are low-Ti continental tholeiites that show, from bottom to top, the same chemical evolution as the basalts from the Triassic basins in the Moroccan High Atlas. This volcanism represents the easternmost witness of the central Atlantic magmatic province (CAMP) associated with the central Atlantic rifting, at the Triassic-Jurassic (Tr-J) boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dggs.alaska.gov/pubs/id/2549','SCIGOVWS'); return false;" href="http://www.dggs.alaska.gov/pubs/id/2549"><span>Publications - RI 97-14A | Alaska Division of Geological & Geophysical</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>Complex</em>; Mystic Terrane; Ordovician; Ores; Paleocurrent; Paleoenvironment; Paleontology; Paleozoic; Peat ; Tertiary; Triassic; Turbidites; Veleska Lake Volcanic <em>Complex</em>; Volcanic; Yukon-Tanana Terrane Top of Page</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss030e030265.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss030e030265.html"><span>Earth Observations taken by Expedition 30 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-12-31</p> <p>ISS030-E-030265 (31 Dec. 2011) --- The Payun Matru Volcanic Field in Argentina is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Payun Matru (3,680 meters above sea level) and Payun Liso (3,715 meters above sea level) stratovolcanoes are the highest points of the Payun Matru Volcanic Field located in west-central Argentina, approximately 140 kilometers to the east of the Andes mountain chain. This photograph illustrates some of the striking geological features of the field visible from space. The summit of Payun Matru is dominated by a roughly 15 kilometer-in-diameter caldera (center), formed by an explosive eruption sometime after approximately 168,000 years ago. Several dark lava flows, erupted from smaller vents and fissures, are visible in the northwestern part of the volcanic field. One distinct flow, erupted from Volcan Santa Maria located to the northwest of Payun Matru, is approximately 15 kilometers long. A number of small cinder cones, appearing as brown dots due to the short lens used, are built on older lava flows (grey) to the northeast of Payun Matru. While there is no recorded historical observation of the most recent volcanic activity in the field, oral histories suggest that activity was witnessed by indigenous peoples. Most Andean volcanoes—and earthquakes—follow the trend of the greater Andes chain of mountains, and are aligned roughly N-S above the tectonic boundary between the subducting (descending) Nazca Plate and the overriding South American Plate as is predicted from plate tectonic theory. Other major volcanic centers located some distance away from the major trend typically result from more complex geological processes associated with the subduction zone, and can provide additional insight into the subduction process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5159/pdf/sir2014-5159.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5159/pdf/sir2014-5159.pdf"><span>2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.</p> <p>2014-01-01</p> <p>The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/26208','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/26208"><span>Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Mark Kimsey; Brian Gardner; Alan Busacca</p> <p>2007-01-01</p> <p>Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23519213','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23519213"><span>Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blackburn, Terrence J; Olsen, Paul E; Bowring, Samuel A; McLean, Noah M; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, E Troy; Et-Touhami, Mohammed</p> <p>2013-05-24</p> <p>The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJEaS.tmp...18J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJEaS.tmp...18J"><span>Geochemistry, geochronology, and Sr-Nd isotopic compositions of Permian volcanic rocks in the northern margin of the North China Block: implications for the tectonic setting of the southeastern Central Asian Orogenic Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Zejia; Zhang, Zhicheng; Chen, Yan; Li, Ke; Yang, Jinfu; Qian, Xiaoyan</p> <p>2018-02-01</p> <p>The southeastern part of the Central Asian Orogenic Belt (CAOB), which records the collision of the North China Block (NCB) with the South Mongolian microcontinent, is a key area for reconstructing the tectonic history of the CAOB. Controversy persists regarding the timing of the final structural amalgamation of the region; therefore, it remains unclear whether the Late Paleozoic thick volcanic successions were generated in a subduction or post-orogenic environment. Redefining the age of the formation and analyzing the geochemical compositions of these volcanic rocks can provide clues regarding the regional tectonic evolution during the Late Paleozoic and place constraints on the closure time of the Paleo-Asian Ocean. In this study, we present geochemical, geochronologic, and Sr-Nd isotopic data for 29 volcanic rock samples from the Elitu Formation in Xianghuangqi, central Inner Mongolia. The Elitu volcanic rocks have latest early-to-middle Permian ages between 272 and 268 Ma. Most of the mafic-intermediate and felsic rocks show K-normal and high-K calc-alkaline characteristics. Melting is considered to be due to large scale upwelling of the metasomatic lithospheric mantle and different degrees of melting of the thickened lower crust. The northern margin of the NCB, which represents the southeastern boundary of the CAOB, records transtensional and, subsequently, extensional tectonics associated with late Carboniferous to middle Permian volcanic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.738...41M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.738...41M"><span>Evolution of a volcanic island on the shoulder of an oceanic rift and geodynamic implications: S. Jorge Island on the Terceira Rift, Azores Triple Junction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marques, F. O.; Hildenbrand, A.; Hübscher, C.</p> <p>2018-07-01</p> <p>The S. Jorge Island in the Azores lies on a peculiar setting, the southern shoulder of the Terceira Rift (TR), which raises a series of questions that we address in this study. We first established the main volcanic stratigraphy by recognizing, in the field, the main unconformities/discontinuities and their meaning (major erosion surfaces and faults), then we collected critical samples, and finally dated them by K/Ar to calibrate the stratigraphy and the age of inferred large-scale flank collapses. Based on field, geochronological and marine geophysical data: (1) we found much older rocks in S. Jorge than in previous studies (ca. 1.85 Ma), and established a new volcanic stratigraphy (from bottom to top): Old Volcanic Complex (ca. 1.9-1.2 Ma), cropping out in the eastern third of the island; Intermediate Volcanic Complex (ca. 0.8-0.2 Ma), cropping out in the western two thirds of the island and separated from the underlying complex by a major fault; Young Volcanic Complex (<ca. 0.1 Ma), unconformable on both older units. (2) We discuss the most probable mode of destruction of the successive volcanic complexes, and we conclude that a major landslide occurred between ca. 1.2 and 0.8 Ma, which was responsible for the major lateral discontinuity between the Old and the Intermediate Volcanic complexes. (3) We use previous palaeomagnetic data and new seismic data to evaluate the effects of uplift of the TR's southern shoulder on S. Jorge Island, and conclude that south-westward tilting of the oldest lava flows occurred between ca. 1.2 and 0.8 Ma due to rotation of the TR's southern shoulder during uplift. (4) Finally, we used all data to constrain the age of TR initiation to be ca. 1 Ma in this sector of the TR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197524','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197524"><span>Bedrock geologic map of the Littleton and Lower Waterford quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rankin, Douglas W.</p> <p>2018-06-13</p> <p>The bedrock geologic map of the Littleton and Lower Waterford quadrangles covers an area of approximately 107 square miles (277 square kilometers) north and south of the Connecticut River in east-central Vermont and adjacent New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks. The northwestern part of the map is divided by the Monroe fault which separates Early Devonian rocks of the Connecticut Valley-Gaspé trough from rocks of the Bronson Hill anticlinorium.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic suite, and extends from Maine, down the eastern side of the Connecticut River in New Hampshire, to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary rocks and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (upper and lower sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of metamorphic and metasedimentary rocks. The Ammonoosuc Volcanics overlies the Albee Formation that consists of interlayered feldspathic sandstone, siltstone, pelite, and slate.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics, including the Whitefield pluton to the east, the Scrag granite of Billing (1937) in the far southeastern corner of the map, the Highlandcroft Granodiorite just to the west of the Ammonoosuc fault, and the Joslin Turn tonalite (just north of the Connecticut River). To the east of the Monroe fault lies the late Silurian Comerford Intrusive Complex, which consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes of the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics well east of the Monroe fault.This report consists of a single geologic map sheet and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.129..427G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.129..427G"><span>40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism in the Yükselen area, NW Konya (Central Anatolia, Turkey)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gençoğlu Korkmaz, Gülin; Asan, Kürşad; Kurt, Hüseyin; Morgan, Ganerød</p> <p>2017-05-01</p> <p>Bimodal volcanic suites occur in both orogenic and anorogenic geotectonic settings. Although their formation can be attributed to either fractional crystallization from basaltic parents to felsic derivatives or partial melting of different sources, the origin of bimodal suites is still unclear. By reporting mineral chemistry, 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry data, this study aims to investigate the genesis of bimodal basalt-dacite association from the Yükselen area located on the northern end of the Sulutas Volcanic Complex (Konya, Central Anatolia). The Yükselen area volcanic rocks are represented by basaltic lava flows, and dacitic dome with enclaves and pyroclastics. Basaltic flows and pyroclastic rocks are interlayered with the Neogene fluvio-lacustrine sedimentary units, while dacitic rocks cut the pre-Neogene basement in the area. A biotite separation from dacites yielded 40Ar/39Ar plateau age of 16.11 ± 0.18 Ma. On the other hand, a whole rock sample from basalts gave two plateau ages of 16.45 ± 0.76 Ma and 22.37 ± 0.65 Ma for the first steps and next steps, respectively. The investigated basalts are sodic alkaline, and characterized by ocean island basalt (OIB)-like anorogenic geochemical signatures. However, dacites are calc-alkaline and metaluminous, and carry geochemical signatures of orogenic adakites. Sr-Nd-Pb isotopic systematics suggest that the basalts were derived from an asthenospheric mantle source enriched by recycled crustal rocks. The dacites show more enriched Sr and Pb ratios and more depleted Nd ones relative to the basalts, which at the first glance might be attributed to crustal contamination of the associated basalts. However, trace element features of the dacites rule out cogenetic relationship between the two rock types, and point to an origin by melting of lower crust. On the other hand, enclaves share several elemental and isotopic characteristics with the dacites, and appear to be fragments of sub-volcanic intrusions closely related to the dacitic host magma. Based on the obtained geochemical data combined with the published geological and geophysical data, the investigated bimodal volcanic activity can be explained by slab break-off process in the convergence system between the African and Anatolian plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/271/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/271/"><span>Compilation of Stratigraphic Thicknesses for Caldera-Related Tertiary Volcanic Rocks, East-Central Nevada and West-Central Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sweetkind, D.S.; Du Bray, E.A.</p> <p>2008-01-01</p> <p>The U.S. Geological Survey (USGS), the Desert Research Institute (DRI), and a designee from the State of Utah are currently conducting a water-resources study of aquifers in White Pine County, Nevada, and adjacent areas in Nevada and Utah, in response to concerns about water availability and limited geohydrologic information relevant to ground-water flow in the region. Production of ground water in this region could impact water accumulations in three general types of aquifer materials: consolidated Paleozoic carbonate bedrock, and basin-filling Cenozoic volcanic rocks and unconsolidated Quaternary sediments. At present, the full impact of extracting ground water from any or all of these potential valley-graben reservoirs is not fully understood. A thorough understanding of intermontane basin stratigraphy, mostly concealed by the youngest unconsolidated deposits that blanket the surface in these valleys, is critical to an understanding of the regional hydrology in this area. This report presents a literature-based compilation of geologic data, especially thicknesses and lithologic characteristics, for Tertiary volcanic rocks that are presumably present in the subsurface of the intermontane valleys, which are prominent features of this area. Two methods are used to estimate volcanic-rock thickness beneath valleys: (1) published geologic maps and accompanying descriptions of map units were used to compile the aggregate thicknesses of Tertiary stratigraphic units present in each mountain range within the study areas, and then interpolated to infer volcanic-rock thickness in the intervening valley, and (2) published isopach maps for individual out-flow ash-flow tuff were converted to digital spatial data and thickness was added together to produce a regional thickness map that aggregates thickness of the individual units. The two methods yield generally similar results and are similar to volcanic-rock thickness observed in a limited number of oil and gas exploration drill holes in the region, although local geologic complexity and the inherent assumptions in both methods allow only general comparison. These methods serve the needs of regional ground-water studies that require a three-dimensional depiction of the extent and thickness of subsurface geologic units. The compilation of geologic data from published maps and reports provides a general understanding of the distribution and thickness of tuffs that are presumably present in the subsurface of the intermontane valleys and are critical to understanding the ground-water hydrology of this area.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V13D0410H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V13D0410H"><span>The Middlesex Fells Volcanic Complex: A Revised Tectonic Model based on Geochronology, Geochemistry, and Field Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hampton, R.</p> <p>2017-12-01</p> <p>The Boston Bay area is composed of several terranes originating on the paleocontinent of Avalonia, an arc terrane that accreted onto the continent of Laurentia during the Devonian. Included in these terranes is the Middlesex Fells Volcanic Complex, a bimodal complex composed of both intrusive and extrusive igneous rocks. Initial studies suggested that this volcanic complex formed during a rift event as the Avalonian continent separated from its parent continent 700-900 Ma. New geochemical and geochronological data and field relationships observed in this study establishes a new tectonic model. U-Pb laser ablation zircon data on four samples from different units within the complex reveal that the complex erupted 600 Ma. ICP-MS geochemical analysis of the metabasalt member of the complex yield a trace element signature enriched in Rb, Pb, and Sr and depleted in Th, indicating a subduction component to the melt and interpreted as an eruption into a back-arc basin. The felsic units similarly have an arc related signature when plotted on trace element spider diagrams and tectonic discrimination diagrams. Combined with the field relationships, including an erosional unconformity, stratigraphic and intrusional relationships and large faults from episodic extension events, this data suggests that the Middlesex Fells Volcanic Complex was erupted as part of the arc-sequence of Avalonia and as part of the formation of a back-arc basin well after Avalonia separated from its parent continent. This model presents a significantly younger eruption scenario for the Middlesex Fells Volcanics than previously hypothesized and may be used to study and compare to other volcanics from Avalon terranes in localities such as Newfoundland and the greater Boston area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..258...47R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..258...47R"><span>Geology, geochemistry, geochronology, and economic potential of Neogene volcanic rocks in the Laguna Pedernal and Salar de Aguas Calientes segments of the Archibarca lineament, northwest Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richards, J. P.; Jourdan, F.; Creaser, R. A.; Maldonado, G.; DuFrane, S. A.</p> <p>2013-05-01</p> <p>This study presents new geochemical, geochronological, isotopic, and mineralogical data, combined with new geological mapping for a 2400 km2 area of Neogene volcanic rocks in northwestern Argentina near the border with Chile, between 25°10‧S and 25°45‧S. The area covers the zone of intersection between the main axis of the Cordillera Occidental and a set of NW-SE-trending structures that form part of the transverse Archibarca lineament. This lineament has localized major ore deposits in Chile (e.g., the late Eocene La Escondida porphyry Cu deposit) and large volcanic centers such as the active Llullaillaco and Lastarría volcanoes on the border between Chile and Argentina, and the Neogene Archibarca, Antofalla, and Cerro Galán volcanoes in Argentina. Neogene volcanic rocks in the Laguna Pedernal and Salar de Aguas Calientes areas are mostly high-K calc-alkaline in composition, and range from basaltic andesites, through andesites and dacites, to rhyolites. Magmatic temperatures and oxidation states, estimated from mineral compositions, range from ~ 1000 °C and ∆FMQ ≈ 1.0-1.5 in andesites, to ~ 850 °C and ∆FMQ ≈ 1.5-2.0 in dacites and rhyolites. The oldest rocks consist of early-middle Miocene andesite-dacite plagioclase-pyroxene-phyric lava flows and ignimbrites, with 40Ar/39Ar ages ranging from 17.14 ± 0.10 Ma to 11.76 ± 0.27 Ma. Their major and trace element compositions are typical of the Andean Central Volcanic Zone, and show strong crustal contamination trends for highly incompatible elements such as Cs, Rb, Th, and U. These rocks are geochemically grouped as sub-suite 1. This widespread intermediate composition volcanism was followed in the middle-late Miocene by a period of more focused rhyodacitic flow-dome complex formation. These felsic rocks are characterized by less extreme enrichments in highly incompatible elements, and increasing depletion of heavy rare earth elements. These rocks are geochemically grouped as sub-suite 2. The youngest rocks in this sub-suite show the highest La/Yb ratios, and are characterized by abundant hornblende phenocrysts (not commonly seen in other rocks from the area). In the Pliocene-Pleistocene, there was a return to more typical andesite-dacite volcanism, with geochemical characteristics similar to the early-middle Miocene lavas, and are also grouped in sub-suite 1. Finally, extensional tectonics in the Quaternary led to localized outpouring of mafic (basaltic andesitic to andesitic) monogenetic lava flows and cones. One particularly large flow, the Vega Aguas Calientes lava flow, covers approximately 90 km2, and samples form two groupings, with affinities similar to the least-evolved samples from sub-suites 1 and 2 (sub-groups BA1 and BA2, respectively). Nd and Sr isotopic compositions indicate moderate to strong crustal contamination, especially in more felsic rocks, and extend from 87Sr/86Sr (0.706) and εNd (- 2.4), values typical of Central Volcanic Zone rocks, to more evolved compositions (0.709 and - 6.8, respectively) typical of large-volume ignimbrites of the Altiplano-Puna Volcanic Complex and Cerro Galán. The latter compositions are thought to be derived by extensive interaction between mantle-derived arc magmas and Paleozoic granitoid rocks that form much of the crustal column in this region. The distinctive mineralogy and geochemistry of the sub-suite 2 middle-late Miocene rhyodacitic flow-dome complexes indicate that these magmas had higher water content than both the earlier and later sub-suite 1 andesites-dacites. They were erupted during a period of tectonic quiescence following the Quechua orogenic phase, and geophysical evidence suggests that they were proximally derived from a large upper crustal magma chamber which partially collapsed to form a trap-door caldera. Strong fumarolic alteration associated with the youngest of these felsic volcanoes, Cerro Abra Grande, suggests the potential for the existence of epithermal-type mineralization within the volcanic edifice, or porphyry-type mineralization at depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5632K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5632K"><span>A 150-ka-long record for the volcano-tectonic deformation of Central Anatolian Volcanic Province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karabacak, Volkan; Tonguç Uysal, I.; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin</p> <p>2017-04-01</p> <p>The Anatolian Block represents one of the most outstanding examples of intra-plate deformation related to continental collision. Deformation related to the convergence of the Afro-Arabian continent toward north gives rise to widespread and intense arc volcanism in the Central Anatolia. All the usual studies on dating the volcano-tectonic deformation of the region are performed entirely on volcanic events of the geological record resulted in eruptions. However, without volcanic eruption, magma migration and related fluid pressurization also generate crustal deformation. In the current study has been funded by the Scientific and Technological Research Council of Turkey with the project no. 115Y497, we focused on fracture systems and their carbonate veins around the Ihlara Valley (Cappadocia) surrounded by well-known volcanic centers with latest activities of the southern Central Anatolian Volcanic Province. We dated 37 samples using the Uranium-series technique and analyzed their isotope systematics from fissure veins, which are thought to be controlled by the young volcanism in the region. Our detailed fracture analyses in the field show that there is a regional dilatation as a result of a NW-SE striking extension which is consistent with the results of recent GPS studies. The Uranium-series results indicate that fracture development and associated carbonate vein deposition occurred in the last 150 ka. Carbon and oxygen isotope systematics have almost remained unchanged in the studied time interval. Although veins in the region were precipitated from fluids primarily of meteoric origin, fluids originating from water-rock interaction also contribute for the deposition of carbonate veins. The age distribution indicates that the crustal deformation intensified during 7 different period at about 4.7, 34, 44, 52, 83, 91, 149 ka BP. Four of these periods (4.7, 34, 91, 149 ka BP) correspond to the volcanic activities suggested in the previous studies. The three crustal deformation periods occurred at 44, 52, and 83 ka BP were dated in addition to the known. They are interpreted to have possibly occurred without any eruption in the late Pleistocene and were controlled by magma movements and/or associated fluid pressure. Such crustal deformation controlled by volcanism is dated for the first time in the literature with a sampling other than extrusive material. The obtained age data revealed that crustal deformation linked to the young volcanism in the Central Anatolian Volcanic Province was repeated in short-term strain cycles of 8-10 ka and that the duration of activity lasted approximately 1100 ± 1000 years in each period, possibly triggered fracture development without any eruption in some periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110007232&hterms=small+area&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsmall%2Barea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110007232&hterms=small+area&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsmall%2Barea"><span>Spatial and Alignment Analyses for a Field of Small Volcanic Vents South of Pavonis Mons and Implications for the Tharsis Province, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bleacher, Jacob E.; Glaze, Lori S.; Greeley, Ronald; Hauber, Ernst; Baloga, Stephen; Sakimoto, Susan E. H.; Williams, David A.; Glotch, Timothy D.</p> <p>2009-01-01</p> <p>A field of small volcanic vents south of Pavonis Mons was mapped with each vent assigned a two-dimensional data point. Nearest neighbor and two-point azimuth analyses were applied to the resulting location data. Nearest neighbor results show that vents within this field are spatially random in a Poisson sense, suggesting that the vents formed independently of each other without sharing a centralized magma source at shallow depth. Two-point azimuth results show that the vents display north-trending alignment relationships between one another. This trend corresponds to the trends of faults and fractures of the Noachian-aged Claritas Fossae, which might extend into our study area buried beneath more recently emplaced lava flows. However, individual elongate vent summit structures do not consistently display the same trend. The development of the volcanic field appears to display tectonic control from buried Noachian-aged structural patterns on small, ascending magma bodies while the surface orientations of the linear vents might reflect different, younger tectonic patterns. These results suggest a complex interaction between magma ascension through the crust, and multiple, older, buried Tharsis-related tectonic structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040498','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040498"><span>Summary of the geology of the northern part of the Sierra Cuchillo, Socorroand Sierra Counties, southwestern New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maldonado, Florian; Edited by Lucas, Spencer G.; McLemore, Virginia T.; Lueth, Virgil W.; Spielmann, Justin A.; Krainer, Karl</p> <p>2012-01-01</p> <p>The northern part of the Sierra Cuchillo is located within the northeastern part of the Mogollon-Datil volcanic field west of the Rio Grande rift in the Basin and Range Province, approximately 50 km northwest of Truth or Consequences in south-central New Mexico. The Sierra Cuchillo is a north-south, elongated horst block composed of Tertiary volcanic and intrusive rocks, sparse outcrops of Lower Permian and Upper Cretaceous rocks, and sediments of the Tertiary-Quaternary Santa Fe Group. The horst is composed mainly of a basal volcanic rock sequence of andesite-latite lava flows and mud-flow breccias with a 40Ar/39Ar isotopic age of about 38 Ma. The sequence is locally intruded by numerous dikes and plugs that range in composition from basaltic andesite through rhyolite and granite. The andesite-latite sequence is overlain by ash-flow tuffs and a complex of rhyolitic lava flows and domes. Some of these units are locally derived and some are outflow sheets derived from calderas in the San Mateo Mountains, northeast of the study area. These locally derived units and outflow sheets range in age from 28 to 24 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.V53A..15M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.V53A..15M"><span>Satellite-delivered gravimetry for the Vitória-Trindade Chain, Southeast Brazil, and its bearing on the volcanic seamount structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motoki, A.; Motoki, K. F.; Sichel, S. E.; Souza, K.; Bueno, G. V.; Poseidon</p> <p>2013-05-01</p> <p>The authors present gravimetric and geomorphologic analyses for the Vitória-Trindade volcanic seamount chain, State of Espírito Santo, Brazil. The seamounts are generally of 30 km in base diameter, 10 km in flat-top diameter, and 2500 to 4000 m in relative height. The flat-tops are constant in depth, without evidence of basement subsidence. The western half of the chain shows basement elevation of 2000 m, which took place before the eruptions. The size and frequency of the seamounts become smaller to the east. Most of them have conical form of central eruptions, and some large ones are of elongated form of fissure eruptions. The volcanic seamounts usually have Bouguer anomaly about 100 mGal lower than the adjacent area, showing funnel-shaped Bouguer depression. Large volcanoes show ring-like Bouguer structure composed of the central high and the marginal low. The marginal low is about 100 mGal lower than the adjacent abyssal plane and the central high is about 80 mGal higher than the marginal low. Very large volcanoes have bull's eye-like low Bouguer sites along the marginal low. On the foot of the volcanoes, there is the area with Bouguer anomaly 20 to 40 mGal higher, called peripheral high. These observations suggest the following growth history of the volcanic seamounts. At the initial stage, repeated central eruptions of lava flow construct the volcanic edifice. The weight of the volcano is sustained by mechanical firmness of the basement. The Bouguer anomaly is characterized by funnel-shaped depression. At the advanced stage, gabbroic radial dyke intrusion occurs along the central conduit in the upper level of the volcanic edifice, which is evidenced by the central Bouguer high. The seamount is supported mainly by mechanical firmness and partially by isostatic compensation of crustal down-buckling. At the highly advanced stage, the intrusion takes place into the lower level of the main volcanic edifice resulting lateral eruptions along its foot, which is shown by the bull's eye-like Bouguer lows. The crustal down-buckling and consequent isostatic compensation become relevant. The peripheral Bouguer high could be the rebound of the crustal down-buckling. The regional Bouguer anomaly suggests lithosphere thinning along the Vitória-Trindade Chain, which is relevant at the western end of the chain and becomes weak to east. The magmatism and tectonism of are strong at the western end of the chain and become less intense to the east.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..291...86R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..291...86R"><span>Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rausch, Juanita; Grobéty, Bernard; Vonlanthen, Pierre</p> <p>2015-01-01</p> <p>The Eifel region in western central Germany is the type locality for maar volcanism, which is classically interpreted to be the result of explosive eruptions due to shallow interaction between magma and external water (i.e. phreatomagmatic eruptions). Sedimentary structures, deposit features and particle morphology found in many maar deposits of the West Eifel Volcanic Field (WEVF), in contrast to deposits in the East Eifel Volcanic Field (EEVF), lack the diagnostic criteria of typical phreatomagmatic deposits. The aim of this study was to determine quantitatively the shape of WEVF and EEVF maar ash particles in order to infer the governing eruption style in Eifel maar volcanoes. The quantitative shape characterization was done by analyzing fractal dimensions of particle contours (125-250 μm sieve fraction) obtained from Scanning electron microscopy (SEM) and SEM micro-computed tomography (SEM micro-CT) images. The fractal analysis (dilation method) and the fractal spectrum technique confirmed that the WEVF and EEVF maar particles have contrasting multifractal shapes. Whereas the low small-scale dimensions of EEVF particles (Eppelsberg Green Unit) coincide with previously published values for phreatomagmatic particles, the WEVF particles (Meerfelder Maar, Pulvermaar and Ulmener Maar) have larger values indicating more complex small-scale features, which are characteristic for magmatic particles. These quantitative results are strengthening the qualitative microscopic observations, that the studied WEVF maar eruptions are rather dominated by magmatic processes. The different eruption styles in the two volcanic fields can be explained by the different geological and hydrological settings found in both regions and the different chemical compositions of the magmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V22C..08V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V22C..08V"><span>WOVOdat: A New Tool for Managing and Accessing Data of Worldwide Volcanic Unrest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venezky, D. Y.; Malone, S. D.; Newhall, C. G.</p> <p>2002-12-01</p> <p>WOVOdat (World Organization of Volcano Observatories database of volcanic unrest) will for the first time bring together data of worldwide volcanic seismicity, ground deformation, fumarolic activity, and other changes within or adjacent to a volcanic system. Although a large body of data and experience has been built over the past century, currently, we have no means of accessing that collective experience for use during crises and for research. WOVOdat will be the central resource of a data management system; other components will include utilities for data input and archiving, structured data retrieval, and data mining; educational modules; and links to institutional databases such as IRIS (global seismicity), UNAVCO (global GPS coordinates and strain vectors), and Smithsonian's Global Volcanism Program (historical eruptions). Data will be geospatially and time-referenced, to provide four dimensional images of how volcanic systems respond to magma intrusion, regional strain, and other disturbances prior to and during eruption. As part of the design phase, a small WOVOdat team is currently collecting information from observatories about their data types, formats, and local data management. The database schema is being designed such that responses to common, yet complex, queries are rapid (e.g., where else has similar unrest occurred and what was the outcome?) while also allowing for more detailed research analysis of relationships between various parameters (e.g., what do temporal relations between long-period earthquakes, transient deformation, and spikes in gas emission tell us about the geometry and physical properties of magma and a volcanic edifice?). We are excited by the potential of WOVOdat, and we invite participation in its design and development. Next steps involve formalizing and testing the design, and, developing utilities for translating data of various formats into common formats. The large job of populating the database will follow, and eventually we will have a great new tool for eruption forecasting and research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014060','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014060"><span>Monitoring unrest in a large silicic caldera, the long Valley-inyo craters volcanic complex in east-central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hill, D.P.</p> <p>1984-01-01</p> <p>Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles. ?? 1984 Intern. Association of Volcanology and Chemistry of the Earth's Interior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9863E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9863E"><span>Seafloor geomorphology and geology of the Kingman Reef-Palmyra Atoll region, Central Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eakins, Barry; Barth, Ginger; Scheirer, Dan; Mosher, Dave; Armstrong, Andy</p> <p>2017-04-01</p> <p>Kingman Reef and Palmyra Atoll are the exposed summits of two seamounts within the Line Islands Volcanic Chain in the Central Pacific Ocean. Both are U.S. Territories, and the Exclusive Economic Zone around the islands was partially surveyed in 1991 with GLORIA sidescan sonar and seismic reflection profiling. New multibeam swath sonar surveys were conducted in 2010, 2015, and 2016 around the islands, in support of U.S. Extended Continental Shelf investigations. Numerous transits through the region by research vessels have collected additional multibeam swath sonar data. We present new, detailed maps of bathymetry, sidescan sonar imagery, geology, and sediment isopachs of the seafloor surrounding the islands, and how these have informed our understanding of the islands' margins. The islands are the last subaerial remnants of a complex, horse-shoe-shaped volcanic platform spanning roughly 200 km in diameter. The elevated platform from which the seamounts arise comprises at least 10 individual volcanic centers that have heights exceeding 3000m above the nearby abyssal plains. Gravity modeling suggests that the elevated platform is compensated by thickened crust. Strong carbonate caps and voluminous sediment accumulations flanking the platform indicate that the volcanoes were once shallow-water or emergent systems. These systems produced vast quantities of carbonate sediment that were shed to a deep interior basin to the east of Palmyra Atoll, and to nearby abyssal plains. The identification of mass failures, sediment reworking and bedforms, and channel networks provide evidence for extensive sedimentary processes around these volcanic centers. Analysis of the seamounts atop the elevated platform and in the seamount province to the northwest shows that flat-topped seamounts ("guyots") are principally found at depths shallower than 1300 meters, while peaked seamounts are almost exclusively found at greater depths. This constrains the amount of regional subsidence that has occurred since guyot formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25494329','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25494329"><span>Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Opatova, Vera; Arnedo, Miquel A</p> <p>2014-01-01</p> <p>Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4262472','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4262472"><span>Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Opatova, Vera; Arnedo, Miquel A.</p> <p>2014-01-01</p> <p>Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species. PMID:25494329</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940004477&hterms=Anthropology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DAnthropology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940004477&hterms=Anthropology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DAnthropology"><span>Very-to-barely remote sensing of prehistoric features under tephra in Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheets, Payson D.</p> <p>1991-01-01</p> <p>A wide variety of remote sensing instruments have been utilized to attempt to detect archaeological features under volcanic ash in Central America. Some techniques have not been successful, such as seismic refraction, for reasons that are not difficult to understand. Others have been very successful and provide optimism for archaeologists witnessing the destruction of unburied sites throughout Central America. The sudden burial of buildings, gardens, and footpaths by volcanic ash can preserve them extremely well providing a rich data base for understanding human life and culture at certain points in time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991JAfES..13..277I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991JAfES..13..277I"><span>The Archaen volcanic facies in the Migori segment, Nyanza greenstone belt, Kenya: stratigraphy, geochemistry and mineralisation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ichang'l, D. W.; MacLean, W. H.</p> <p></p> <p>The Migori segment is an 80 by 20 km portion of the Nyanza greenstone belt which forms the northern part of the Archean Tanzanian Craton in western Kenya, northern Tanzania and southeastern Uganda. It consists of two volcanic centres, each with central, proximal and distal volcanic facies, comprising the Migori Group, the Macalder and Lolgorien Subgroups, and eleven volcano-sedimentary formations. The centres are separated by a basin of tuffs and greywacke turbidites. The volcanics are bimodal mafic basalt and dolerite ( Zr/Y = 3.8 - 6.5, La N/Yb N = 1.0 - 2.4) , and felsic calc-alkaline dacite-rhyolite ( Zr/Y = 10 - 21, La N/Yb N = 19 - 42 ) and high-K dacite ( Zr/Y = 9 - 16, La N/Yb N = 21 - 22 ). Felsic units form approximately three-fourths of the volcanic stratigraphy. Basalts, calc-alkaline dacites and rhyolites were deposited in a submarine environment, but the voluminous high-K dacites were erupted subaerially. The turbidites contain units of iron-formations. Granitic intrusions are chemically continuous with the high-K dacites. The felsic volcanics are anologous to those found at modern volcanic arc subduction settings involving continental crust. The Macalder ZnCuAuAg volcanogenic massive sulphide deposits is in central facies basalts-greywacke-rhyolite. Gold mineralisation occurs in proximal facies tuffs and iron formation, and in oblique and semi-conformable quartz veins. Greenstones in the Nyanza belt are dominated by calc-alkaline felsic volcanics in constrast to the komatiite-tholeiitic basalt volcanism in the Kaapvaal Craton of South Africa, and a mixture of the two types in the Zimbabwe Craton.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/28345','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/28345"><span>Chapter 8. Industrial mineral extraction and geothermal exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas Merlan</p> <p>2007-01-01</p> <p>The Valles Caldera is the result of the youngest major volcanic episode in the creation of the central Jémez volcanic field. This geological feature is a diverse suite of basaltic through rhyolitic rocks, which erupted from some time less than 13 million years ago to no later than .13 million years ago. It represents some of the greatest volcanic activity documented in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V51F3106S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V51F3106S"><span>On-and offshore tephrostratigraphy and -chronology of the southern Central American Volcanic Arc (CAVA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schindlbeck, J. C.; Kutterolf, S.; Hemming, S. R.; Wang, K. L.</p> <p>2015-12-01</p> <p>Including the recently drilled CRISP sites (IODP Exp. 334&344) the deep sea drilling programs have produced 69 drill holes at 29 Sites during 9 Legs at the Central American convergent margin, where the Cocos plate subducts beneath the Caribbean plate. The CAVA produced numerous plinian eruptions in the past. Although abundant in the marine sediments, information and data regarding large late Cenozoic explosive eruptions from Costa Rica, Nicaragua, Honduras, El Salvador, and Guatemala remain very sparse and discontinuous on land. We have established a tephrostratigraphy from recent through Miocene times from the unique archive of ODP/IODP sites offshore Central America in which we identify tephra source regions by geochemical fingerprinting using major and trace element glass shard compositions. Here we present first order correlations of ­~500 tephra layers between multiple holes at a single site as well as between multiple sites. We identified ashes supporting Costa Rican (~130), Nicaraguan (17) and Guatemalan (27) sources as well as ~150 tephra layers from the Galápagos hotspot. Within our marine record we also identified well-known marker beds such as the Los Chocoyos tephra from Atitlán Caldera in Guatemala and the Tiribi Tuff from Costa Rica but also correlations to 15 distinct deposits from known Costa Rican and Nicaraguan eruptions within the last 4.1 Ma. These correlations, together with new radiometric age dates, provide the base for an improved tephrochronostratigraphy in this region. Finally, the new marine record of explosive volcanism offshore southern CAVA provides insights into the eruptive history of long-living volcanic complexes (e.g., Barva, Costa Rica) and into the distribution and frequency of large explosive eruptions from the Galápagos hotspot. The integrated approach of Ar/Ar age dating, correlations with on land deposits from CAVA, biostratigraphic ages and sediment accumulation rates improved the age models for the drilling sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3392F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3392F"><span>The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter</p> <p>2015-04-01</p> <p>We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central Volcanic Zone of the Andes. The implications of these results go far beyond having an excellent chronostratigraphic marker to reconstruct the Holocene geologic history of a large area of South America. Besides the effects directly associated with eruptive process, a deposit of tephra is very ephemeral and rapidly is reworked and redeposited. The interaction of the huge amount of ashes of this eruption with the wind and water in the large watersheds of the region must mobilize enormous amounts of both particulate and chemical elements to the large Chacopampean Plain. How impacted this eruption on the environmental, pollen, faunal and archaeological mid-Holocene records are features currently under study. On the other hand, the occurrence of Holocene volcanism in the southern Puna leads to consider new scenarios of volcanic hazard over large and densely populated areas in South America. Financial support was provided by the QUECA Project (MINECO, CGL2011-23307). Part of the analytical work was carried out in the Geochemistry Facility of labGEOTOP in the ICTJA-CSIC, infrastructure co-funded by ERDF-EU (Ref. CSIC08-4E-001).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913517C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913517C"><span>"Mediterranean volcanoes vs. chain volcanoes in the Carpathians"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chivarean, Radu</p> <p>2017-04-01</p> <p>Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes or dome complexes. Dacitic volcanoes are smaller in size and consist of lava dome complexes, in places with associated pyroclastic cones and volcanic aprons. The volcanic history of Carpathian volcanic chain lasts since ca. 15 Ma, with the youngest occurring in the southern chain-terminus; the last eruption of Ciomadu volcano (Harghita) was ca. 10000 years ago. Using the knowledge acquired during the compulsory curriculum and complementary activities we we consider that the outdoor education is the best way to establish a relationship between the theory and the landscape reality in the field. As a follow up to our theoretical approach for the Earth's crust we organized two study trips in our region. During the first one the students could walk in a real crater, see scoria deposits and admire the basalt columns from Racos. In the second activity they could climb the Ciomadu volcano and go down to observe the crater lake St. Anna, the single volcanic lake in central Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70074105','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70074105"><span>Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael</p> <p>2013-01-01</p> <p>Rhyolites of the Picabo volcanic field (10.4–6.6 Ma) in eastern Idaho are preserved as thick ignimbrites and lavas along the margins of the Snake River Plain (SRP), and within a deep (>3 km) borehole near the central axis of the Yellowstone hotspot track. In this study we present new O and Hf isotope data and U–Pb geochronology for individual zircons, O isotope data for major phenocrysts (quartz, plagioclase, and pyroxene), whole rock Sr and Nd isotope ratios, and whole rock geochemistry for a suite of Picabo rhyolites. We synthesize our new datasets with published Ar–Ar geochronology to establish the eruptive framework of the Picabo volcanic field, and interpret its petrogenetic history in the context of other well-studied caldera complexes in the SRP. Caldera complex evolution at Picabo began with eruption of the 10.44±0.27 Ma (U–Pb) Tuff of Arbon Valley (TAV), a chemically zoned and normal-δ18O (δ18O magma=7.9‰) unit with high, zoned 87Sr/86Sri (0.71488–0.72520), and low-εNd(0) (−18) and εHf(0) (−28). The TAV and an associated post caldera lava flow possess the lowest εNd(0) (−23), indicating ∼40–60% derivation from the Archean upper crust. Normal-δ18O rhyolites were followed by a series of lower-δ18O eruptions with more typical (lower crustal) Sr–Nd–Hf isotope ratios and whole rock chemistry. The voluminous 8.25±0.26 Ma West Pocatello rhyolite has the lowest δ18O value (δ18Omelt=3.3‰), and we correlate it to a 1,000 m thick intracaldera tuff present in the INEL-1 borehole (with published zircon ages 8.04–8.35 Ma, and similarly low-δ18O zircon values). The significant (4–5‰) decrease in magmatic-δ18O values in Picabo rhyolites is accompanied by an increase in zircon δ18O heterogeneity from ∼1‰ variation in the TAV to >5‰ variation in the late-stage low-δ18O rhyolites, a trend similar to what is characteristic of Heise and Yellowstone, and which indicates remelting of variably hydrothermally altered tuffs followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://rock.geosociety.org/Store/detail.aspx?id=SPE412','USGSPUBS'); return false;" href="http://rock.geosociety.org/Store/detail.aspx?id=SPE412"><span>Volcanic hazards in Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.</p> <p>2006-01-01</p> <p>This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880021103','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880021103"><span>NASA MEVTV Program Working Group Meeting: Volcanism on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>The purpose of this working group meeting is to focus predominantly on volcanism on Mars, prior to considering the more complex issues of interactions between volcanism and tectonism or between volcanism and global or regional volatile evolution. It is also hoped that the topical areas of research identified will aid the planetary geology community in understanding volcanism on Mars and its relationship to other physical processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011975','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011975"><span>Catastrophic volcanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lipman, Peter W.</p> <p>1988-01-01</p> <p>Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoJI.173..339B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoJI.173..339B"><span>Magnetic imaging of the feeding system of oceanic volcanic islands: El Hierro (Canary Islands)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanco-Montenegro, Isabel; Nicolosi, Iacopo; Pignatelli, Alessandro; Chiappini, Massimo</p> <p>2008-04-01</p> <p>El Hierro is the youngest of the Canary Islands, a volcanic archipelago in the central Atlantic, near the African coast. The subaerial part of the island shows the characteristic shape of three convergent ridges that has been interpreted as a triple-arm rift system. At least four giant landslides formed wide, horseshoe embayments that separate these ridges. Recent studies based on high-resolution bathymetry, however, showed that the submarine rift structure is much more complex. We analysed an aeromagnetic anomaly data set acquired in 1993 by the Spanish National Geographic Institute in order to obtain a structural model of the island from a magnetic point of view. A digital elevation model of the volcanic edifice was divided into a mesh of prismatic cells, each of them with a top corresponding to the topographic height (or bathymetric depth in the marine area) and a bottom at a constant depth of 4000 m below sea level. A three-dimensional (3-D) inversion algorithm and forward modelling along representative profiles provided us with a magnetization distribution containing valuable information about the inner structure of the island. The magnetic model cast new light on the rift structure of El Hierro. In particular, high magnetization values have been mainly interpreted as intrusive complexes on which rift zones are rooted. Their location confirms the hypothesis of a complex rift structure in the marine area. The inverse magnetization that characterizes the NE submarine rift area implies that this part of the volcanic edifice formed during the Matuyama and, therefore, predates the NW submarine rift zone, which is normally magnetized. The N-S rift zone extending southwards from the island seems to be shifted to the west with respect to the bathymetric high in this area. This result suggests that the original rift zone was located in the area where the highest magnetizations presently occur so that the present morphology may reflect the westward collapse of the original ridge. In addition, very low magnetizations characterize the areas affected by giant landslides, indicating that magnetic anomalies can provide important constraints on the distribution of these catastrophic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013QSRv...76..129W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013QSRv...76..129W"><span>Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wulf, Sabine; Ott, Florian; Słowiński, Michał; Noryśkiewicz, Agnieszka M.; Dräger, Nadine; Martin-Puertas, Celia; Czymzik, Markus; Neugebauer, Ina; Dulski, Peter; Bourne, Anna J.; Błaszkiewicz, Mirosław; Brauer, Achim</p> <p>2013-09-01</p> <p>Tephrochronological studies of partly varved sediments of Trzechowskie palaeolake in central Northern Poland led to the finding of the Late Allerød Laacher See Tephra (LST) from the Eifel Volcanic Field for the first time in a very distal site ca 840 km ENE from its volcanic source. The detection of glass shards of the LST involved a comprehensive combination of techniques, i.e. biostratigraphical constrains, high-resolution μ-XRF core scanning and areal μ-XRF mapping of impregnated sediment slabs as well as detailed visual inspection of sediments. The major element chemistry of volcanic glass confirmed the Laacher See Tephra composition in Trzechowskie palaeolake sediments suggesting a deposition from the Middle Laacher See Tephra (MLST-C) or Upper Laacher See Tephra (ULST) dispersal fans. The finding of the LST in this palaeolake enables direct synchronisation with other high-resolution archives in north-central Europe (i.e., Lake Meerfelder Maar, Rehwiese palaeolake) to investigate regional variations of environmental responses at the onset of the Younger Dryas along a West-East transect through north-central Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23477568','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23477568"><span>Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaselli, Orlando; Higueras, Pablo; Nisi, Barbara; María Esbrí, José; Cabassi, Jacopo; Martínez-Coronado, Alba; Tassi, Franco; Rappuoli, Daniele</p> <p>2013-08-01</p> <p>The Mt. Amiata volcano is the youngest and largest volcanic edifice in Tuscany (central-northern Italy) and is characterized by a geothermal field, exploited for the production of electrical energy. In the past Mt. Amiata was also known as a world-class Hg district whose mining activity was mainly distributed in the central-eastern part of this silicic volcanic complex, and particularly in the municipality of Abbadia San Salvatore. In the present work we report a geochemical survey on Hg(0) measurements related to the former mercury mine facilities prior the reclamation project. The Hg(0) measurements were carried out by car for long distance regional surveys, and on foot for local scale surveys by using two LUMEX (915+ and M) devices. This study presents the very first Hg(0) data obtained with this analytical technique in the Mt. Amiata area. The facilities related to the mining areas and structures where cinnabar was converted to metallic Hg are characterized by high Hg values (>50,000ngm(-3)), although the urban center of Abbadia San Salvatore, few hundred meters away, does not appear to be receiving significant pollution from the calcine area and former industrial edifices, all the recorded values being below the values recommended by the issuing Tuscany Region authorities (300ngm(-3)) and in some cases approaching the Hg background levels (3-5ngm(-3)) for the Mt. Amiata area. Copyright © 2013 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2738B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2738B"><span>Within-plate Cenozoic Volcanism and Mantle Sources Within The Western-central Mediterranean Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beccaluva, L.; Bianchini, G.; Bonadiman, C.; Coltorti, M.; Siena, F.</p> <p></p> <p>An integrated study of anorogenic basic magmas and entrained mantle xenoliths rep- resents a promising approach for a comprehension of the magmatogenic events occur- ring within the lithospheric mantle in the western-central Mediterranean area. In this contribution we review the geochemical characteristics of mafic lavas and associated peridotite xenoliths from three anorogenic volcanic districts: Pliocene-Quaternary vol- canism of Sardinia; Pliocene-Quaternary volcanism of the Iblean area (eastern Sicily); Paleocene-Oligocene Veneto Volcanic Province. Investigations have been focused on 1) petrological features of parental magmas, which may contribute to infer the com- positional characteristics of mantle sources and to constrain the modes of partial melt- ing; 2) modelling the depletion events and metasomatic enrichments in mantle xeno- liths of the three volcanic districts, as well as the nature of their causative agents. Petrological features and Sr-Nd-Pb isotopic data, both of lava and xenoliths, indicate that DM+HIMU components distinguish the lithospheric mantle sections of Iblean and Veneto Volcanic Provinces. On the other hand, lavas and xenoliths from Sardinia display a significant different isotopic signature characterised by DM+EM1. Similar geochemical fingerprints, i.e. the significant presence of EM components are gener- ally recorded by mafic lavas and mantle xenoliths from the European Plate, whereas they are not observed in the stable African lithospheric domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.V32H..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.V32H..08H"><span>Volatile, Trace Element and Isotopic Variations of Mafic Arc Volcanic Rocks from Nicaragua and Costa Rica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoernle, K.; Sadofsky, S.; Nichols, H.; Portnyagin, M.; van den Bogaard, P.; Alvarado, G.</p> <p>2003-12-01</p> <p>Quaternary volcanic rocks from the Central American Volcanic Arc in central Nicaragua and central Costa Rica exhibit major differences in their volatile, trace element and isotopic compositions. Olivine-hosted melt inclusions in Nicaraguan volcanic rocks with high Fo contents (>73) extend to high H2O (up to 5.3%), S (10-6860 ppm) and Cl (490-2340 ppm) contents. The volcanic rocks have high ratios of fluid mobile to fluid immobile elements such as Ba/La (65-122), Ba/Th (484-1304) and U/La (0.08-0.17). Additionally, they have 143Nd/144Nd (0.51300-0.51307) similar to normal mid-ocean-ridge basalts (N-MORB) from the East Pacific Rise (EPR), but 87Sr/86Sr (0.7035-0.7042) ratios are much higher than those found in fresh EPR glasses. Pb isotopic compositions of the samples (e.g. 206Pb/204Pb = 18.5-19.0, 207Pb/204Pb = 15.52-15.58) form an array between EPR basalts and subducted sediments. The volatile, trace element and isotope data are consistent with mixing of fluids highly enriched in fluid-mobile elements from subducted sediments with a N-MORB-type mantle wedge to produce the Nicaraguan volcanic rocks. In contrast, olivine-hosted melt inclusions (Fo >82) in Costa Rican volcanic rocks show a similar range in H2O (up to 5.1%) to Nicaraguan inclusions but overall have lower S (0-1340 ppm) and Cl (10-790 ppm) contents. Costa Rican lavas also have lower Ba/La (7-35), Ba/Th (55-338), U/La (0.02-0.12), 87Sr/86Sr (0.7035-0.7038) and 143Nd/144Nd (0.51292-0.51301) than Nicaraguan lavas, but 87Sr/86Sr and Pb isotope ratios (e.g. 206Pb/204Pb = 19.02-19.32) are more radiogenic than in Nicaragua and than usually found in fresh EPR MORB. Our data are consistent with the presence of Galapagos Hotspot-type components in the source of the central Costa Rican volcanic rocks, derived from the subducting Galapagos Hotspot Track and from Galapagos-type material entering the mantle wedge through a slab tear or window (Abratis and Worner, 2000; Geology). The estimated volume of volcanic rocks erupted in the last 100,000 years (Carr et al., 1990, Contrib. Min. Pet.; in press, AGU Spec. Pub.) are substantially higher in central Costa Rica than in Nicaragua, suggesting greater productivity of melting beneath Costa Rica. Since the flux of hydrous fluids appears to be similar beneath both arc segments, higher melt productivity beneath Costa Rica could reflect the presence of larger volumes of more fertile, hotter Galapagos-type mantle upwelling through a slab tear or window into the Costa Rican mantle wedge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772095','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772095"><span>On a Possible Unified Scaling Law for Volcanic Eruption Durations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cannavò, Flavio; Nunnari, Giuseppe</p> <p>2016-01-01</p> <p>Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour. PMID:26926425</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26926425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26926425"><span>On a Possible Unified Scaling Law for Volcanic Eruption Durations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cannavò, Flavio; Nunnari, Giuseppe</p> <p>2016-03-01</p> <p>Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3095/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3095/"><span>Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Irwin, William P.</p> <p>2009-01-01</p> <p>The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork terrane is faulted against the west edge of the Central Metamorphic terrane, and its northerly trend is disrupted by major left-lateral offsets along generally west-northwest-trending faults. The serpentinized peridotite-gabbro complex that forms the western base of the terrane is the Permian North Fork ophiolite, which to the east is overlain by broken formation of mafic-volcanic rocks, red chert, siliceous tuff, argillite, minor limestone, and clastic sedimentary rocks. The chert and siliceous tuff contain radiolarians of Permian and Mesozoic ages, and some are as young as Early Jurassic (Pliensbachian). Similar Pliensbachian radiolarians are found in Franciscan rocks of the Coast Ranges. The Eastern Hayfork terrane is broken formation and melange of mainly chert, sandstone, argillite, and various exotic blocks. The cherts yield radiolarians of Permian and Triassic ages but none of clearly Jurassic age. Limestone bodies of the Eastern Hayfork terrane contain Permian microfaunas of Tethyan affinity. The Western Hayfork terrane, exposed only in a small area in the southwestern part of the quadrangle, consists dominantly of mafic tuff and dark slaty argillite. Sparse paleontologic data indicate a Mesozoic age for the strata. The terrane includes small bodies of diorite that are related to the nearby Wildwood pluton of Middle Jurassic age and probably are related genetically to the stratified rocks. The terrane is interpreted to be the accreted remnants of a Middle Jurassic volcanic arc. Shortly after intrusion by Shasta Bally batholith (approx. 136 Ma), much of the southern half of the Weaverville quadrangle was overlapped by Lower Cretaceous, dominantly Hauterivian, marine strata of the Great Valley sequence, and to a lesser extent later during Oligocene and (or) Miocene time by fluvial and lacustrine deposits of the Weaverville Formation. This map of the Weaverville Quadrangle is a digital rendition of U.S. Geological Survey Miscellaneous Field</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V12A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V12A..01G"><span>Volcanic Perspective on Plutonism based on Patterns in Evolution in Long-Lived Continental Volcanic Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grunder, A. L.; Harris, R. N.; Walker, B. A.; Giles, D.; Klemetti, E. W.</p> <p>2008-12-01</p> <p>Volcanic rocks represent a biased view of magmatism, but provide critical quenched samples and temporal constraints of magmatic evolution obscured in the plutonic record. We here draw on the records from the Aucanquilcha Volcanic Cluster (AVC; 10 to 0 Ma) in northern Chile and from the mid-Tertiary volcanic field in east-central Nevada (ECNVF; ~40-32 Ma) to consider how evolutionary patterns of intermediate composition volcanic systems bear on the magmatic reworking of the continental crust by plutons and batholiths. Despite disparate tectonic setting (subduction vs extension) and volumes (70 km crust for the ~300 km 3 AVC versus and ~40 km crust for the ~3000 km 3 ECNVF) both volcanic systems share a history of early compositionally diverse volcanism, followed by a stage of more centralized and voluminous dacitic volcanism, which in turn is followed by waning of volcanism. The compositional change and the rapid increase in magma output rate after about half the lifetime of the system is a characteristic pattern of long- lived continental volcanic systems based on a compilation of volume-composition data. The middle, voluminous stage corresponds to the hottest upper crustal conditions, deduced from Al-in-amphibole geothermobarometry and Ti-in-zircon thermometry of the AVC. The middle stage rocks also have textures indicating hybridization of mixed magmas. Simple thermal models of heat input via intraplating readily allow for generation of partially molten crust above the sill, but they do not emulate the rapid increase of magma after some incubation time. We propose that there is a feedback in which a critical thickness of partially molten crust, consisting in part of magmatic precursors, can be readily convectively stirred and mixed with magma of the underplating sill, rapidly creating a large, hybrid and relatively hot body of magma. Stirring facilitates separation of a liquid-enriched extract. The volume of liquid extracted may be small relative to residual crystal-liquid mush, so that compositional differences between plutons and eruptives are cryptic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tecto..35..407R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tecto..35..407R"><span>Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.</p> <p>2016-02-01</p> <p>The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912490S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912490S"><span>Volcanic systems of Iceland and their magma source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sigmarsson, Olgeir</p> <p>2017-04-01</p> <p>Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle-crust boundary or within the crust in magma reservoirs that are still feeding the volcanic systems. A second possible explanation for absence of temporal variations of isotope ratios for a given volcanic system during the last 10 thousand years is that the roots of these systems lie at further depths within the mantle. In that case, extensive fertile source rock of recycled origin with distinct isotope composition must feed the volcanic system and that the melt extraction mechanism from these source regions does not alter (or homogenize) the final melt products. The consequences of these two mechanisms and possible discrimination between them will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U43A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U43A..02F"><span>Patterns of seismicity in a complex volcanic crisis at Brava, Cabo Verde</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faria, B. V. E.; Day, S. J.</p> <p>2017-12-01</p> <p>Brava is the smallest inhabited island of the Cape Verde archipelago, with an area of 62.5 km2 and a population of 6000. Geologically recent volcanism on Brava has produced lava (including carbonatite) flows, phonolite lava domes, pyroclastic density current deposits, and many phreatomagmatic craters in central Brava (where most of the population lives). Recent geological studies indicate that last eruptive period is about 1000 years old. Brava has experienced recurrent seismic swarms and felt earthquakes. The first permanent seismic station was installed in 1999, and a small network in 2011. From then until 2015 the seismic rate was near constant with sporadic peaks. Most seismic events were located offshore and associated with submarine volcanoes. However, the pattern of activity has been very different since 25th September 2015, when a M4 earthquake occurred in the submarine slopes of Brava. Subsequently, the seismicity became very complex with frequent volcano-tectonic (VT) earthquake swarms beneath Brava itself, with a few offshore events in some months. In addition, long-period, hybrid and hydrothermal events and likely very weak volcanic tremor episodes have been recorded. These non-VT events support the hypothesis that magma emplacement beneath Brava is at the origin of the abnormal seismic activity. The VT swarms indicate deformation around the magma body and possible dike intrusions, and there are indications of perturbation of a shallow hydrothermal system. The largest swarm occurred on the 1st and 2nd August 2016, with almost 1000 shallow events, including a M3.7 VT earthquake, medium-frequency events and weak volcanic tremor. An alert for a possible eruption was issued and a village (about 300 people) was evacuated as a precaution. Distributions of the cumulative number of events with depth in the main swarms suggest that the hypocenters are becoming shallower with time. Thus a possible eruption in the near future cannot be ruled out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PApGe.tmp..499K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PApGe.tmp..499K"><span>Three-Dimensional Electrical Resistivity Image of the Volcanic Arc in Northern Chile—An Appraisal of Early Magnetotelluric Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kühn, Christine; Brasse, Heinrich; Schwarz, Gerhard</p> <p>2017-12-01</p> <p>Magnetotelluric investigations were carried out in the late 1980s across all morphological units of the South American subduction zone with the aim to observe lithosphere structures and subduction-induced processes in northern Chile, southwestern Bolivia, and northwestern Argentina at 22°S. Earlier two-dimensional forward modeling yielded a complex picture of the lower crust and upper mantle, with strong variations between the individual morphological units as well as between forearc and backarc. The principal result was a highly conductive zone beneath the volcanic arc of the Western Cordillera starting at 25 km depth. Goal of this work is to extend the existing 2-D results using three-dimensional modeling techniques at least for the volcanic arc and forearc region between 22°S and 23°S in Northern Chile. Dimensionality analysis indicates strong 3-D effects along the volcanic arc at the transition zone to the Altiplano, in the Preandean Depression and around the Precordillera Fault System at 22°S. In general, the new 3-D models corroborate previous findings, but also enable a clearer image of lateral resistivity variations. The magmatic arc conductor emerges now as a trench-parallel, N-S elongated structure slightly shifted to the east of the volcanic front. The forearc appears highly resistive except of some conductive structures associated with younger sedimentary infill or young magmatic record beneath the Precordillera and Preandean Depression. The most prominent conductor in the whole Central Andes beneath the Altiplano and Puna is also modeled here; it is, however, outside the station array and thus poorly resolved in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Tectp.462..164S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Tectp.462..164S"><span>Upper mantle structure of shear-waves velocities and stratification of anisotropy in the Afar Hotspot region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sicilia, D.; Montagner, J.-P.; Cara, M.; Stutzmann, E.; Debayle, E.; Lépine, J.-C.; Lévêque, J.-J.; Beucler, E.; Sebai, A.; Roult, G.; Ayele, A.; Sholan, J. M.</p> <p>2008-12-01</p> <p>The Afar area is one of the biggest continental hotspots active since about 30 Ma. It may be the surface expression of a mantle "plume" related to the African Superswell. Central Africa is also characterized by extensive intraplate volcanism. Around the same time (30 Ma), volcanic activity re-started in several regions of the African plate and hotspots such as Darfur, Tibesti, Hoggar and Mount Cameroon, characterized by a significant though modest volcanic production. The interactions of mantle upwelling with asthenosphere, lithosphere and crust remain unclear and seismic anisotropy might help in investigating these complex interactions. We used data from the global seismological permanent FDSN networks (GEOSCOPE, IRIS, MedNet, GEO- FON, etc.), from the temporary PASSCAL experiments in Tanzania and Saudi Arabia and a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. A classical two-step tomographic inversion from surface waves performed in the Horn of Africa with selected Rayleigh wave and Love wave seismograms leads to a 3D-model of both S V velocities and azimuthal anisotropy, as well as radial SH/ SV anisotropy, with a lateral resolution of 500 km. The region is characterized by low shear-wave velocities beneath the Afar Hotspot, the Red Sea, the Gulf of Aden and East of the Tanzania Craton to 400 km depth. High velocities are present in the Eastern Arabia and the Tanzania Craton. The results of this study enable us to rule out a possible feeding of the Central Africa hotspots from the "Afar plume" above 150-200 km. The azimuthal anisotropy displays a complex pattern near the Afar Hotspot. Radial anisotropy, although poorly resolved laterally, exhibits S H slower than S V waves down to about 150 km depth, and a reverse pattern below. Both azimuthal and radial anisotropies show a stratification of anisotropy at depth, corresponding to different physical processes. These results suggest that the Afar hotspot has a different and deeper origin than the other African hotspots (Darfur, Tibesti, Hoggar). These latter hotspots can be traced down to 200 km from S-wave velocity but have no visible effect on radial and azimuthal anisotropy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JVGR..247...26C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JVGR..247...26C"><span>Long-term risk in a recently active volcanic system: Evaluation of doses and indoor radiological risk in the quaternary Vulsini Volcanic District (Central Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capaccioni, B.; Cinelli, G.; Mostacci, D.; Tositti, L.</p> <p>2012-12-01</p> <p>Volcanic rocks in the Vulsini Volcanic District (Central Italy) contain high concentrations of 238U, 232Th and 40K due to subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust. Due to their favorable mechanical properties they have been extensively used for construction since the Etruscan age. In the old buildings of the Bolsena village, one of the most populated ancient village in the area, the major source of indoor radioactivity is 222Rn, a radioactive noble gas descendant of 238U. Direct 222Rn indoor measurements have detected extremely high values in the old center due to the combined effect of building materials, radon fluxes from the volcanic basement and low air exchange rates. In these cases the evaluated risk of developing lung cancer within a 75 year lifetime reaches up to 40% for ever smokers. Simulations of "standard rooms" built with different tuffs and lavas collected from the Vulsini Volcanic District have also provided estimations of the effective doses and lifetime risk for radiogenic cancer. Other than by the method adopted for calculation, the total evaluated risk for each volcanic rock depends on different parameters, such as: radionuclide content, radon emanation power, occupancy factor and air exchange rate. Occupancy factor and air exchange rate appear as the only controlling parameters able to mitigate the indoor radiological risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.125...87A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.125...87A"><span>The most recent (682-792 CE) volcanic eruption in the Jombolok lava field, East Sayan, Central Asia triggered exodus of Mongolian pre-Chinggis Khaan tribes (778-786 CE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arzhannikov, S. G.; Ivanov, A. V.; Arzhannikova, A. V.; Demonterova, E. I.; Jolivet, M.; Buyantuev, V. A.; Oskolkov, V. A.; Voronin, V. I.</p> <p>2016-08-01</p> <p>This study presents new data on one of the most recent (historical) volcanic eruptions in Central Asia. The Jombolok lava field located in the East Sayan Mountains (Southern Siberia) was formed during Late Pleistocene and Holocene times. At least four phases of volcanic activity have been identified and evidences associated with the last phase have been found in the upper reaches of the Khi-Gol valley and in the Oka-Jombolok basin. The volcanic activity is represented by young basaltic lava located among older lavas. Live and dead trees have been sampled in the young lava field. Nine fragments of wood have been found embedded in lavas of the latest eruption. Dendrochronological analysis, radiocarbon dating and the analysis of historical chronicles have shown that the latest eruption occurred during the period 682-792 CE. The volcanic activity possibly triggered the migration of Mongolian tribes out of the locality known in historical chronicles as Ergune-Kun towards the Onon River, which, 400 years later, became the place of birth and rise of Chinggis Khaan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GCarp..60..439V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GCarp..60..439V"><span>Permian single crystal U-Pb zircon age of the Rožňava Formation volcanites (Southern Gemeric Unit, Western Carpathians, Slovakia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vozárová, Anna; Šmelko, Miloš; Paderin, Ilya</p> <p>2009-12-01</p> <p>Zircon populations from the Rožňava Formation volcanic rock complex have been analysed. Euhedral zircons from the 1st volcanogenic horizon with fine oscillatory growth zoning, typical of magmatic origin, gave the average concordia age of 273.3 ± 2.8 Ma, with Th/U ratios in the range of 0.44-0.73. The Permian ages ranging from 266 to 284 Ma were identified in the wider, zoned or unzoned, central zircon parts, as well as in their fine-zoned oscillatory rims. The average concordia age of 275.3 ± 2.9 was obtained from the euhedral zircon population of the 2nd volcanogenic horizon of the Rožňava Formation. The analyses were performed on zoned magmatic zircons in the age interval from 267 to 287 Ma, with Th/U ratios in the range of 0.39-0.75. In the later zircon population two inherited zircon grains were dated giving the age of 842 ± 12 Ma (Neoproterozoic) and 456 ± 7 Ma (Late Ordovician). The magmatic zircon ages document the Kungurian age of Permian volcanic activity and contemporaneous establishment of the south-Gemeric basin. The time span of volcanic activity corresponds to the collapse of the Western Carpathian Variscan foreland which expanded southward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/977638','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/977638"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Krier, D. J.; Perry, F. V.</p> <p></p> <p>Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10{sup -8} per year. This probability comes frommore » the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone ({approx}80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume, eruption type, and subsurface disturbance accompanying conduit growth and eruption. The Lathrop Wells volcanic complex has a total volume estimate of approximately 0.1 km{sup 3}. The eruptive products indicate a sequence of initial magmatic fissure fountaining, early Strombolian activity, and a brief hydrovolcanic phase, and violent Strombolian phase(s). Lava flows adjacent to the Lathrop Wells Cone probably were emplaced during the mid-eruptive sequence. Ongoing investigations continue to address the potential hazards of a volcanic event at Yucca Mountain.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720040000&hterms=Descartes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DDescartes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720040000&hterms=Descartes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DDescartes"><span>Descartes region - Evidence for Copernican-age volcanism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Head, J. W., III; Goetz, A. F. H.</p> <p>1972-01-01</p> <p>A model that suggests that the high-albedo central region of the Descartes Formation was formed by Copernican-age volcanism was developed from Orbiter photography, Apollo 12 multispectral photography, earth-based spectrophotometry, and thermal IR and radar data. The bright surface either is abundant in centimeter-sized rocks or is formed from an insulating debris layer overlying a surface with an abundance of rocks in the 1- to 20-cm size range. On the basis of these data, the bright unit is thought to be a young pyroclastic deposit mantling older volcanic units of the Descartes Formation. Since the Apollo 16 target point is only 50 km NW of the central part of this unit, evidence for material associated with this unique highland formation should be searched for in returned soil and rock samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024793','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024793"><span>Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wicks, Charles W.; Dzurisin, Daniel; Ingebritsen, Steven E.; Thatcher, Wayne R.; Lu, Zhong; Iverson, Justin</p> <p>2002-01-01</p> <p>Images from satellite interferometric synthetic aperture radar (InSAR) reveal uplift of a broad ~10 km by 20 km area in the Three Sisters volcanic center of the central Oregon Cascade Range, ~130 km south of Mt. St. Helens. The last eruption in the volcanic center occurred ~1500 years ago. Multiple satellite images from 1992 through 2000 indicate that most if not all of ~100 mm of observed uplift occurred between September 1998 and October 2000. Geochemical (water chemistry) anomalies, first noted during 1990, coincide with the area of uplift and suggest the existence of a crustal magma reservoir prior to the uplift. We interpret the uplift as inflation caused by an ongoing episode of magma intrusion at a depth of ~6.5 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740010354&hterms=photography+angle&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dphotography%2Bangle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740010354&hterms=photography+angle&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dphotography%2Bangle"><span>Some volcanic and structural features of Mare Serenitatis. [as determined by low angle lighting in Apollo 17 photography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bryan, W. B.; Adams, M.</p> <p>1973-01-01</p> <p>Relationships between volcanic and structural features along the southern edge of Mare Serenitatis as determined from low angle lighting in Apollo 17 photographs are discussed. Observational summaries are given of: (1) contact relations between the dark border material and the central mare fill, (2) a late stage lava flow with associated cinder cones, and (3) certain structural features related to the development of the mare basin and its associated volcanic landforms. A chronologic summary is given of volcanic and structural events believed to be critical to understanding the development of Mare Serenitatis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23C0488S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23C0488S"><span>Monogenetic Volcano Clusters within the wider Michoacán-Guanajuato Volcanic Field (México) and their Significance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebe, C.</p> <p>2017-12-01</p> <p>The Trans-Mexican Volcanic Belt, one of the most complex and active continental arcs worldwide, displays several volcanic fields dominated by monogenetic volcanoes. Of these, the Plio-Quaternary Michoacán-Guanajuato Volcanic Field (MGVF) situated in central Mexico, is the largest monogenetic volcanic field in the world and includes more than 1000 scoria cones and associated lava flows and about 400 medium-sized volcanoes (Mexican shields). The smaller monogenetic vents occur either isolated or form small clusters within the wider MGVF. The recent identification of small clusters comprising several monogenetic volcanoes that erupted in a sequence of geologically short time intervals (hundreds to few thousands of years) in small areas within the much wider MGVF opens several questions in regard to future volcanic hazard assessments in this region: Are the youngest (Holocene) clusters still "active" and is a new eruption likely to occur within their surroundings? How long are such clusters "active"? Will the next monogenetic eruption in the MGVF be a single short-lived isolated eruption, or the beginning of a cluster? Furthermore, is it possible that the historic eruptions of Jorullo (1759) and Paricutin (1943) represent each the beginning of a cluster and should a new eruption in their proximity be expected in the future? In order to address these questions, two Holocene clusters, namely Tacámbaro and Malpaís de Zacapu are currently under study and preliminary results will be presented. Each comprises four monogenetic vents that erupted in a sequence of geologically short time intervals (hundreds to few thousands of years) within a small area (few tens of km2) Geologic mapping, geochemical analyses, radiometric dating, and paleomagnetic studies will help to establish the sequence of eruption of the different vents, and shed more light on the conditions that allow several magma sources to be formed and then tapped in close temporal and spatial proximity to each other and produce such small "flare-ups".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3797476','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3797476"><span>Did southern Western Ghats of peninsular India serve as refugia for its endemic biota during the Cretaceous volcanism?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Joshi, Jahnavi; Karanth, Praveen</p> <p>2013-01-01</p> <p>The Western Ghats (WG) of south India, a global biodiversity hotspot, has experienced complex geological history being part of Gondwana landmass and encountered extensive volcanic activity at the end of Cretaceous epoch. It also has a climatically and topographically heterogeneous landscape. Thus, the WG offer a unique setting to explore the influence of ecological and geological processes on the current diversity and distribution of its biota. To this end, three explicit biogeographical scenarios were hypothesized to evaluate the distribution and diversification of wet evergreen species of the WG – (1) southern WG was a refuge for the wet evergreen species during the Cretaceous volcanism, (2) phylogenetic breaks in the species phylogeny would correspond to geographic breaks (i.e., the Palghat gap) in the WG, and (3) species from each of the biogeographic subdivisions within the WG would form distinct clades. These hypotheses were tested on the centipede genus Digitipes from the WG which is known to be an ancient, endemic, and monophyletic group. The Digitipes molecular phylogeny was subjected to divergence date estimation using Bayesian approach, and ancestral areas were reconstructed using parsimony approach for each node in the phylogeny. Ancestral-area reconstruction suggested 13 independent dispersal events to explain the current distribution of the Digitipes species in the WG. Among these 13 dispersals, two dispersal events were at higher level in the Digitipes phylogeny and were from the southern WG to the central and northern WG independently in the Early Paleocene, after the Cretaceous Volcanism. The remaining 11 dispersal events explained the species’ range expansions of which nine dispersals were from the southern WG to other biogeographic subdivisions in the Eocene-Miocene in the post-volcanic periods where species-level diversifications occurred. Taken together, these results suggest that southern WG might have served as a refuge for Digitipes species during Cretaceous volcanism. PMID:24223267</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916401R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916401R"><span>Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino</p> <p>2017-04-01</p> <p>This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration at about 1 s) essentially related to 2D/3D phenomena associated to sharp lateral variations of mechanical properties within the Stracciacappa maar. Our results are relevant to face the assessment of local seismic response in similar volcanic settings in highly urbanised environments elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1979/0926/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1979/0926/report.pdf"><span>Major-element geochemistry of the Silent Canyon-Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Crowe, Bruce M.; Sargent, Kenneth A.</p> <p>1979-01-01</p> <p>The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13-15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline comendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain-Silent Canyon volcanic centers differs in the total range and distribution of Si02, contents, the degree of peralkalinity (molecular Na2O+K2O>Al2O3) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain-Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1480R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1480R"><span>First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica</p> <p>2014-05-01</p> <p>CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in Mineralogy & Geochemistry, 75, 323-354 Galle et al., (2010). J. Geophys. Res., 115, D05304 Aiuppa, A. et al. (2009). J. Volcanol. Geotherm. Res.,182, 221-230 Shinohara, H. (2008). Rev. Geophys., 46, RG4005 Conde, V. et al. (2013). International Journal of Earth Sciences, (submitted) Mather et al (2006). J. Volcanol. Geotherm. Res., 149, 297-311</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V23B3102H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V23B3102H"><span>Morphological Analysis of Apo Volcanic Complex in Southern Mindanao, Philippines: implications on volcano-tectonic evolution of different volcanic units</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.</p> <p>2015-12-01</p> <p>The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51B0464S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51B0464S"><span>The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stockli, D. F.; Bosworth, W.</p> <p>2017-12-01</p> <p>The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no evidence for the formation of SDRs or the accretion of a thick proto-oceanic crust. In fact, there appears to be evidence for hyperextension and possible mantle exhumation prior to Pliocene inception of seafloor spreading, making the Red Sea overall a rather magma-poor rift - and hardly the poster child for magmatic rifting and continental break-up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7231P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7231P"><span>Seventeen years of monitoring diffuse CO2 emission from the Tenerife North-West Rift Zone (NWRZ) volcano, Canary Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padilla, Germán D.; Evans, Bethany J.; Provis, Aaron R.; Asensio, María; Alonso, Mar; Calvo, David; Hernández, Pedro; Pérez, Nemesio M.</p> <p>2017-04-01</p> <p>Tenerife together and Gran Canaria are the central islands of the Canarian archipelago, which have developed a central volcanic complex characterized by the eruption of differentiated magmas. Tenerife is the largest of the Canary Islands (2100 km2) and at present, the North-West Rift-Zone (NWRZ) is one of the most active volcanic structures of the three volcanic rift-zone of the island, which has hosted two historical eruptions (Arenas Negras in 1706 and Chinyero in 1909). In order to monitor the volcanic activity of NWRZ, since the year 2000, 49 soil CO2 efflux surveys have been performed at NWRZ (more than 300 observation sites each one) to evaluate the temporal an spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. We report herein the results of the last diffuse CO2 efflux surveys at the NWRZ undertaken in July and October 2016 to constrain the total CO2 output from the studied area. During July and October 2016 surveys, soil CO2 efflux values ranged from non-detectable up to 32.4 and 53.7 g m-2 d-1, respectively. The total diffuse CO2 output released to atmosphere were estimated at 255 ± 9 and 338 ± 18 t d-1, respectively, values higher than the background CO2 emission estimated on 144 t d-1. Since 2000, soil CO2 efflux values have ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005 whereas total CO2 output ranged between 52 and 867 t d-1. Long-term variations in the total CO2 output have shown a temporal correlation with the onsets of seismic activity at Tenerife, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the studied area during April 22-29, 2004 and also during October 2-3, 2016. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values measured along a trending WNW-ESE zone. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission as well as for the spatial distribution of soil CO2 efflux. The increasing trend of total CO2 output suggests increasing pressurization of the volcanic-hydrothermal system, a mechanism capable of triggering dyke intrusion along the NWRZ of Tenerife in the near future or futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51C2920I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51C2920I"><span>Geochemistry of Peralkaline Melts at Kone Volcanic Complex, Main Ethiopian Rift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iddon, F. E.; Edmonds, M.; Jackson, C.; Hutchison, W.; Mather, T. A.; Fontijn, K.; Pyle, D. M.</p> <p>2016-12-01</p> <p>The East Africa rift system (EARS) is the archetypal example of continental rifting, with the Main Ethiopian rift (MER) segment offering a unique opportunity to examine the dynamics of peralkaline magmas; the development of central volcanoes; melt distribution and transport in the crust; the volatile budgets of rift magmas and their implications for the formation of ore deposits. The alkali- and halogen-rich magmas of the MER differ from their calc-alkaline counterparts in other settings due to their lower viscosities and higher volatile contents, which have important implications for magma transport, reservoir dynamics and eruptive hazards. The high halogen contents of the magmas give rise to halogen-rich vapor which has the capacity to transport and concentrate metals and REE. The Kone Volcanic complex is one of the lesser studied Quaternary peralkaline centres, located on the axial portion of the MER. It comprises two superimposed calderas, surrounded by ignimbrite deposits and unwelded felsic pyroclastic material, small basaltic vents and rhyolitic domes. Unusually for the central volcanoes of the MER, the caldera has refilled with basaltic lava, not pyroclastic material. We use whole rock and micro-analysis to characterize a range of Kone tephras, glasses, crystal phases and melt inclusions in terms of major, trace and volatile element abundances, alongside detailed textural analysis using QEMSCAN and SEM. The whole rock geochemistry reflects the clear peralkaline nature of the suite, with a distinct compositional gap between 50 wt% and 65 wt% SiO2, controlled largely by fractional crystallization. Trace element systematics illustrate that trachytes entrain alkali feldspars, with the crystal cargo of the entire suite reflecting the structure of the magma reservoir at depth, with liquid-rich lenses and regions of syenitic mush. Melt inclusion geochemistry allows reconstruction of complex, multiphase differentiation processes and the exsolution of both a vapor phase and a brine, allowing the fluid-melt partitioning behaviour of halogens and metals to be reconstructed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAESc.111..312A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAESc.111..312A"><span>Late Cretaceous infant intra-oceanic arc volcanism, the Central Pontides, Turkey: Petrogenetic and tectonic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aygül, Mesut; Okay, Aral I.; Oberhänsli, Roland; Schmidt, Alexander; Sudo, Masafumi</p> <p>2015-11-01</p> <p>A tectonic slice of an arc sequence consisting of low-grade metavolcanic rocks and overlying metasedimentary succession is exposed in the Central Pontides north of the İzmir-Ankara-Erzincan suture separating Laurasia from Gondwana-derived terranes. The metavolcanic rocks mainly consist of basaltic andesite/andesite and mafic cognate xenolith-bearing rhyolite with their pyroclastic equivalents, which are interbedded with recrystallized pelagic limestone and chert. The metasedimentary succession comprises recrystallized micritic limestone with rare volcanogenic metaclastic rocks and stratigraphically overlies the metavolcanic rocks. The geochemistry of the metavolcanic rocks indicates an arc setting evidenced by depletion of HFSE (Ti, P and Nb) and enrichment of fluid mobile LILE. Identical trace and rare earth elements compositions of basaltic andesites/andesites and rhyolites suggest that they are cogenetic and derived from a common parental magma. The arc sequence crops out between an Albian-Turonian subduction-accretionary complex representing the Laurasian active margin and an ophiolitic mélange. Absence of continent derived detritus in the arc sequence and its tectonic setting in a wide Cretaceous accretionary complex suggest that the Kösdağ Arc was intra-oceanic. Zircons from two metarhyolite samples give Late Cretaceous (93.8 ± 1.9 and 94.4 ± 1.9 Ma) U/Pb ages. These ages are the same as the age of the supra-subduction ophiolites in western Turkey, which implies that that the Kösdağ Arc may represent part of the incipient arc formed during the generation of the supra-subduction ophiolites. The low-grade regional metamorphism in the Kösdağ Arc is constrained to 69.9 ± 0.4 Ma by 40Ar/39Ar muscovite dating indicating that the arc sequence became part of a wide Tethyan Cretaceous accretionary complex by the latest Cretaceous. Non-collisional cessation of the arc volcanism is possibly associated with southward migration of the magmatism as in the Izu-Bonin-Mariana arc system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJEaS.107.1465P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJEaS.107.1465P"><span>High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli</p> <p>2018-06-01</p> <p>A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites predate the alkali basalts and hawaiites, suggesting an overall temporal evolution towards less SiO2-undersaturated primary melts and increasing degrees of melting over time. The peak in alkali basaltic to hawaiitic magmatism slightly post dates the flare-up of genetically related felsic magmatism, by no more than 1 Ma. This is consistent with a model in which the magmatic plumbing system erupted successively from upper to lower levels, i.e. from more evolved to more primitive compositions. One young age for a basanitic sample suggests that silica saturation decreased again towards the end of volcanic activity. This chronology of volcanic events is in good agreement with previous models, suggesting continuous lithospheric thinning beneath the SVF as a response to an extensional regime and asthenospheric uplift in the northern alpine realm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJEaS.tmp..205P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJEaS.tmp..205P"><span>High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli</p> <p>2017-11-01</p> <p>A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites predate the alkali basalts and hawaiites, suggesting an overall temporal evolution towards less SiO2-undersaturated primary melts and increasing degrees of melting over time. The peak in alkali basaltic to hawaiitic magmatism slightly post dates the flare-up of genetically related felsic magmatism, by no more than 1 Ma. This is consistent with a model in which the magmatic plumbing system erupted successively from upper to lower levels, i.e. from more evolved to more primitive compositions. One young age for a basanitic sample suggests that silica saturation decreased again towards the end of volcanic activity. This chronology of volcanic events is in good agreement with previous models, suggesting continuous lithospheric thinning beneath the SVF as a response to an extensional regime and asthenospheric uplift in the northern alpine realm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.8067U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.8067U"><span>Reconstruction of Equilibrium Line Altitudes of Nevado Coropuna Glaciers (Southern Peru) from the Late Pleistocene to the present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Úbeda, J.; Palacios, D.; Vázquez, L.</p> <p>2009-04-01</p> <p>The Nevado Coropuna (15°31'S-72°39'W) is a volcanic complex located 200 km NE of the city of Arequipa, in the Southern Peruvian Andes. The summit area in the complex is covered with a glacier system formed by dozens of branches descending in all directions totaling many km2 in surface area. The study of the volcanic complex and its glaciers is of great interest because it is the main water reserve for tens of thousands of people, because of the risk scenario created by the presence of ice masses on a volcano with relatively recent activity, and because it constitutes an excellent geoindicator of the effects of climate change on ice masses in the western mountain chain of the Central Andes. This research aims to analyze glacier evolution using as geoindicators variations in glacier surface and equilibrium line altitudes (ELAs), defining deglaciation rates based on those variations and preparing forecasts with them on when the ice masses might disappear if the same rates were to occur in the future. In addition, a first estimation is attempted of the chronologies of the last phase of volcanic activity and the last phase of maximum glacier advance that can be attributed to the Late Glacial or Last Glacial Maximum periods. To achieve these aims, digital topography with 50m contour interval, two orthophotos of the central section of the Coropuna complex (15-6-1955 and 21-10-1986), an ASTER satellite image (12-11-2007) and geomorphological mapping of the volcanic complex created in a previous phase of the research (Ubeda, 2007) were integrated into a Geographical Information System (GIS). The GIS was used to determine the global extent of the glacier system, and in more detail, that of two groups (NE and SE) in 1955, 1986 and 2007. Using the geomorphological cartography as a basis, the extent of the glaciers during their last advance in the Little Ice Age (LIA) and their last maximum advance were calculated. Next, surface areas for all phases were calculated using automatic functions within the GIS operating environment. To reconstruct the ELAs of the glaciers, the Area x Altitude Balance Ratio (AABR) method was used. This method is extensively described in Osmaston (2005). To determine the rates of deglaciation, variations observed for 2007 in surface areas and ELAs against their values in 1986, 1955 and the Little Ice Age (LIA) were used as geoindicators. Establishing deglaciation rates has allowed forecasts to be made as to when the complete disappearance of ice mass could occur for three future scenarios, considering the hypothetical reproduction in each scenario of the rates of deglaciation observed since 1986 (Scenario 1), 1955 (Scenario 2) and the LIA (Scenario 3). To determine the chronology of the last maximum advance of the glaciers and the last volcanic manifestations, samples were taken from moraine blocks and glaciated rocky thresholds, and also from lava ejected during the last eruption, in the eastern sector of the complex. Due to their recent external appearance, since they have been channeled by glacial valleys and have been affected by ice masses only at the head, these lavas had been dated as Holocene. Absolute dating was performed using cosmogenic methods (Cl36). As a result of applying the proposed method, glacial system surface areas have been estimated for 2007 (47 km2), 1986 (54 km2) and 1955 (56 km2), implying a reduction of ~18% in 52 years. The process appears to have speeded up in the last decades (~13% in only 21 years). Surfaces were also estimated and ELAs reconstructed for the NE and SE groups in 2007, 1986, 1955, the Little Ice Age and during the last maximum advance. Glaciers from the NE group show an area during all periods (2.3, 2.7, 2.9, 3.3 and 30 km2) smaller than SE group glaciers (8.1, 9.9, 10.3, 11.9 and 66.5 km2). An individual analysis of glaciers in the NE and SE groups in 2007 shows a reduction in surface area two to four times greater than that observed between 1955 and 1986. ELAs are also higher for all periods in the Northern section (5968, 5930, 5923, 5886 and 5186 m) than in the Southern section (5862, 5806, 5787 and 4951 m). The depression in ELAs during the LIA was similar in the NE (~82 m) and in the SE (~86 m). However, the 2007 ELA shows a depression of 106 m in the Southern direction. The magnitude of this depression has shown a marked tendency towards reduction in recent decades (136 m in 1955 and 124 m in 1986). Furthermore, the decrease in ELA depression seems to occur faster, with ↓Z ~12 m between 1955 and 1986 and ↓Z ~18 m between 1986 and 2007. However, during the Little Ice Age (~110 m) that value was closer to the current value (106 m). Depression in ELAs during the last maximum glacier advance has been estimated at ~782 m (NE) and ~847 m (SE). During that period, the N-S depression reached a maximum value of 235 m. These results agree with those obtained for the eastern range of the Central Andes (Smith et al. 2005 a and b) and are also within the depression intervals and trends proposed in regional-scale studies (Kelin et al. 1999). Analyses performed on a sample from a block situated on a lateral moraine in the Queñua Ranra Quebrada (NE group of the complex) suggest a chronology of ~17 Cl36 ky. for the last maximum ice mass advance. This date is in agreement with the depression in SST temperature during the same period, deduced from analyzing Mg/Ca ratios in marine foraminifera shells from the Galapagos Islands (Lea, 2006). Using surfaces and ELAs as geoindicators, deglaciation rates and the Horizon without glaciers (H0) have been calculated globally, for the complete glacier system in scenarios 1 and 2, and for glaciers in the pilot group in scenarios 1, 2 and 3. Results show that the deglaciation process is occurring differentially. Whereas several masses could disappear in a few decades, others could be preserved for centuries. Regarding the last phase of volcanic activity, a lava sample has been dated at only ~2 Cl36 ky. Testing the proposed method has allowed the modeling of glacier evolution using variations observed in surfaces and ELAs as geoindicators. Results from the global-scale analysis are only a preliminary approximation to the problem. Detailed analysis of the glaciers in the NE and SE groups has yielded more precise results. Forecasts about future glacier retreat, interest in finding out about their past evolution and the absolute chronology of the last phase of volcanic activity, which confirms their recent character, suggest the need to extend our understanding of the evolution of the Nevado Coropuna's volcanic complex and glacier system. References Klein, A.G., Seltzer, G.O. & Isacks, B.L., 1999. Modern and Local Last Glacial Maximum snowlines in the Central Andes of Peru, Bolivia and Northern Chile. Quaternary Research Reviews, 18: 3-84. Lea, D.W., D.K. Pak, C.L. Belanger, H.J. Spero, M.A. Hall, and N.J. Shackleton, 2006. Galapagos paleoclimate history of surface waters over the last 135,000 yr. Quaternary Science Reviews, 25 (11-12): 1152-1167. Osmaston, H., 2005. Estimates of glacier equilibrium line altitudes by the Area x Altitude, the Area x Altitude Balance Ratio and the Area x Altitude Balance Index methods and their validation. Quaternary International, 22-31: 138-139. Smith, J., Seltzer, G.O., Rodbellb, D.T. & Klein, A.G., 2005 a. Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quaternary International, 138-139:145-167. Smith, JA, Seltzer, GO, Farber, DL, Rodbell, DT & Finkel, R.C., 2005 b. Early Local Last Glacial Maximum in the Tropical Andes. Science, 308. Ubeda, J., 2007. Geomorphological characterization of the northern sector of the Central Volcanic Zone of the Central Andes. Approach to a case study: the glacier of the volcano Nevado Coropuna complex. Research work to obtain the Diploma of Advanced Studies, Universidad Complutense de Madrid, Madrid, 312 pp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29129913','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29129913"><span>Volcanism in slab tear faults is larger than in island-arcs and back-arcs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido</p> <p>2017-11-13</p> <p>Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040200917','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040200917"><span>Crustal Evolution of the Protonilus Mensae Area, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McGill, G. E.; Smrekar, S. E.; Dimitriou, A. M.; Raymond, C. A.</p> <p>2004-01-01</p> <p>Despite research by numerous geologists and geo- physicists, the age and origin of the martian crustal dichotomy remain uncertain. Models for the origin of this dichotomy involve single or multiple impact, mantle megaplumes, primordial crustal asymmetry, and plate tectonics. Most of these models imply a Noachian age for the dichotomy. A major problem common to all genetic models is the difficulty separating the features resulting from the primary cause for the dichotomy from features due to younger fault- ing, impact cratering, volcanism, deposition, and erosion. highlands (the dichotomy boundary) approximates a small circle that ranges in latitude from about -10 deg. in Elysium Planitia to about +45 deg. north of Arabia Terra. For much of its length the boundary is characterized by relatively steep scarps separating highland plateau to the south from lowland plains to the north, generally with a complex transition zone on the lowland side of these scarps. These scarps are almost certainly due to normal faulting. The type fretted terrain, which defines the boundary in north-central Arabia Terra, also is characterized by scarps but has under- gone a more complex history of faulting and dissection [13]. In some places, notably in the Acidalia Planitia region, the dichotomy boundary is gradational. In the Tharsis region the boundary is obscured by younger volcanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.123..263X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.123..263X"><span>Book Review: Book review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Wenjiao</p> <p>2016-06-01</p> <p>This monograph book represents an important volume summarizing the present geological knowledge and understanding of the geodynamic evolution of large parts of the Central Asian Orogenic Belt (CAOB) or Altaids, which is one of the largest orogenic collages on Earth. The CAOB, like other major accretionary orogens, is a complex assembly of ancient microcontinents, arc terranes, accretionary wedges, fragments of oceanic volcanic islands (sea-mounts), oceanic plateaus, ophiolites, and shelf sediments from passive continental margins. The CAOB has caused much international attention due to its complicated architecture and considerably continental growth. However, after many years of investigations, some fundamental problems still remain controversial, such as the rate and volume of crustal growth, the origin of continental fragments, the detailed mechanism of accretion and collision, the role of terrane rotations during the orogeny, and the age and composition of the lower crust in Central Asia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26PSL.407..134A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26PSL.407..134A"><span>Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.</p> <p>2014-12-01</p> <p>Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from global arc volcanism.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..356...56D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..356...56D"><span>Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine</p> <p>2018-05-01</p> <p>This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field strength elements (HFSE; Y, Yb) and the La/Nb >1 favor a shallow lithospheric source for ES, HS, OZ and KA basaltic volcanic rocks, whereas some samples bear the trace element signature of an asthenospheric mantle source. The lithospheric mantle beneath Central Anatolia may have not been affected from asthenospheric mantle directly. Negative Nb-Ta-Ti anomalies and a positive Pb spike of ES, HS, OZ and KA may be ascribed to crustal contamination or as the imprints of the previous subduction processes. According to this study, and previous studies, the effect of subduction and/or crustal contamination in Central Anatolia decreased from the Miocene to the Quaternary, and the origin of the Quaternary basaltic rocks mainly derived from subduction-related magmas enriched with sediment input rather than to slab-derived fluids. Our calculated eruption ages for the four basaltic complexes show that spatial differences predominate, whereas temporal trends are difficult to discern due to limited age resolution. According to the available geochronological, petrological and geochemical data, alkaline and calc-alkaline volcanism occurred simultaneously from distinct parental magmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V12B..06W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V12B..06W"><span>Seismic Imaging of a Nascent Batholith in the Central Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, K. M.; Zandt, G.; Beck, S. L.; Christensen, D. H.; Mcfarlin, H. L.</p> <p>2013-12-01</p> <p>Cordilleran mountain belts, such as the modern central Andes and Mesozoic western North American Cordillera formed in regions of significant upper plate compression and were punctuated by high flux magmatic events that coalesced into large composite batholiths. Unlike the North American Cordillera, compressive mountain building is still active in the central Andes and any large modern batholith still at depth must be inferred from surface volcanics and geophysical data. In the Andes it has been suggested that a modern batholith exists beneath the Altiplano-Puna Volcanic Complex (APVC), the location of a 11-1 Ma ignimbrite flare-up, however, the magmatic underpinnings has only been geophysically investigated in a few widely spaced locations and a migmatite zone of crustal melt with minimal mantle input remains a viable competing interpretation. We present new high-resolution 3-D seismic images of the APVC crust based on a joint inversion of ambient noise surface-wave dispersion data and receiver functions from broadband stations and identify a shallow (<20 km depth) low-velocity body that we interpret as a magmatic mush zone, the Altiplano-Puna Mush Body (APMB). Below the APMB, we observe near-vertical zones of low velocity that bifurcate near the base of the crust with one arm of low velocity migrating under the main volcanic arc and a second separate arm of low velocity below the voluminous backarc volcanism. Previous attenuation tomography studies have traced these zones through the mantle where they intersect the top of the subducting Nazca slab at locations with elevated seismic activity, providing strong evidence that the deeper near-vertical zones of low velocity we are imaging are related to dewatering of the slab and associated mantle-sourced melt pathways. Based on these considerations, we suggest the ~200 km diameter and ~20 km thick body is a nascent silicic batholith compatible with the magma mush model of batholith formation. The direct imaging of this plutonic body allows us to measure volumes of varying velocity contours and express several end-member volume calculations as plutonic to volcanic (P:V) ratios using the well-constrained volume estimates (13,000 km3) of the APVC ignimbrites. Our preferred shear velocity contour of 2.9 km/s has a volume >450,000 km3 and yields a P:V ratio of 35:1. The 2.9 km/s contour has the advantage of being the first contour that completely closes on the top of the APMB and makes allowances for the possibility of an anatectic carapace and a larger thermal aureole surrounding the partial melt body. Although there are still some uncertainties in these estimates, an important result is the P:V ratios are high, much higher than the often cited estimates of 3, 5, or even the extreme, 10:1, although we are aware of no firm constraints that preclude such extreme P:V ratios. The possible existence of a Neogene batholith along the entire length of the Central Volcanic Zone, the evidence for a significant mantle contribution to the Andean crust below the APVC, and a much larger P:V ratio documented in the APVC reopens the question of the importance of magmatic addition in the building of the Andes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720004675','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720004675"><span>An investigation of volcanic depressions. Part 4: Origin of Hole-in-the-ground, a maar in Central Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lorenz, V.</p> <p>1971-01-01</p> <p>Hole-in-the-Ground, a volcanic explosion crater, located in central Oregon is described. The morphology of the soil and rocks and the topography of the crater indicate the sequential happenings during the eruption. Geophysical measurements also indicate a domical intrusion below the crater floor, extending upward as a ring dike around the margins of the crater. The volume of ejecta was determined for four major eruptions. Varied analyses were made of the pyroclastic debris, rocks, cinders, and soil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4901N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4901N"><span>Dating of the youngest volcanoes of Ardeche (Massif Central, France) using 40Ar/39Ar and unspiked K/Ar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nomade, Sebastien; Sasco, Romain; Guillou, Herve; Scao, Vincent; Kissel, Catherine; Genty, Dominique</p> <p>2014-05-01</p> <p>Since the first description in 1778 of the relationship between prismatic basaltic flow and volcano in the high valleys of the Ardèche (Faujas Saint-Font, 1778), "L'Ardèche", a small region at the south-west of Massif Central, became worldwide famous among volcanologists. This volcanism is found dispersed over an area of more than 20 km2 and is made of strombolian cones and prismatic flows filling NS to NW-SE valleys. This volcanism has then been considered as one of the most recent one in the entire Massif Central (40 ka to 170 ka, TL ages, Guérin et al., 2007). Unfortunately and despite several attempts over the last 25 years this volcanism has never been dated using radio-isotopic methods. The two main reasons usually advocated to explain this lack of success were the young age of the volcanism itself and the large amounts of mantle and lower crust xenoliths in the lavas (Guérin et al., 2007). In this contribution, we will present combined 40Ar/39Ar ages and unspiked K/Ar results obtained on five lava flows. The obtained ages range from 26 ± 5.5 ka to 55 ± 6.0 ka (1s, full propagated uncertainty relative to ACS-2 at 1.194Ma, Nomade et al., 2005). The ages from three of the investigated lava flows coming from distinct cones, are clustered between 26 ± 5.5 ka and 34 ± 4 ka. These cones are found stretched along a NW-SE tectonic accident. These first radio-isotopic constraints prove that the volcanic activity occurred during the last glacial period and is as young as "la chaîne de Puys" located in the northern part of the Massif Central. Incidentally, the volcanic activity is contemporaneous with the first Aurignacian occupation and related art found in the Chauvet cave (37-29 ka, Valladas et al., 2005) localized only 35 km SE. Based on both the spatial and chronological coincidences reported above we suggest that the Aurignacian population(s) that lived in this area have witnessed one or several of these eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P33D2189M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P33D2189M"><span>Magmatic Mapping: A Suggested Methodology And Results From The Springerville Volcanic Field, East-Central Arizona, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mnich, M.; Condit, C.</p> <p>2016-12-01</p> <p>The Springerville Volcanic Field (SVF), located in east-central Arizona, is one of the best-characterized basaltic monogenetic volcanic fields in the world, with it's expanse of over 3000 km2 now mapped in it's entirety as a result of recent efforts in 2010 and 2011. The methods used, called "magmatic mapping" (Condit, 2007), provide a standardized, volcanic unit focused approach to characterizing volcanic fields. This approach focuses on delineating contacts between flows, completely characterizing each flow, and placing them into a temporal framework. Results of magmatic mapping in the SVF now provide a comprehensive overview of the lifespan of the field, representing a unique resource, useful not only in studying the petrogenetic evolution of this field, but in serving as a template for comparing similar volcanic fields. On Earth, several fields pose a significant risk to population centers, though these hazards are often poorly understood due to long intervals between eruptions. On other planets, remote mapping can be greatly enhanced by comparing it with a well-studied terrestrial analog that has been analyzed in detail; an area with ever heightening necessity as high-resolution data is becoming increasingly available. In the SVF, olivine phyric lavas are most abundance (22% of volcanic outcrop), followed by diktytaxitic and olivine/plagioclase phyric flows. However, lithology will vary depending on when an eruption takes place in a volcanic fields lifecycle. On the whole, the SVF is younger to the east and younger lavas are dominantly more alkalic. These trends are also displayed within individual geographic divisions, many of which correspond to temporal-geographic clusters as defined by Condit and Connor (1996). The mapping methods and patterns in geochemistry, lithology and age progression within the SVF represent a unique template for which to base basaltic mapping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SedG..217..112F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SedG..217..112F"><span>Bentonite chemical features as proxy of late Cretaceous provenance changes: A case study from the Western Interior Basin of Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fanti, Federico</p> <p>2009-05-01</p> <p>Bentonite beds are fairly common in both marine and terrestrial Upper Cretaceous (Campanian-Maastrichtian) deposits of the Western Interior Basin of western Canada and northwestern United States. A detailed stratigraphic, sedimentologic, geochemical (X-ray fluorescence), and mineralogical (X-ray diffraction) study of twenty-one bentonites from the Puskwaskau and Wapiti formations in the Grande Prairie area (west-central Alberta, Canada) is here presented. Major and trace-element concentrations from altered volcanic ashes document the presence in the study area of predominantly trachyandesitic and rhyolitic volcanogenic products, resulted from intense volcanic arc to within-plate pyroclastic activity. Concentration values of high field strength elements (HFSE) and selected large ion lithophile elements (LILE) (e.g. Nb, Zr, Th, and Y) obtained by X-ray fluorescence spectroscopy strongly support the presence of multiple volcanic sources. Integrated paleoenvironmental and geochemical criteria for provenance determination indicate a bimodal occurrence of basic and acid volcanic products interpreted as reflection of source areas characterized by different tectonic setting and magmatic composition. A comparative analysis of geochemical compositions between Grande Prairie bentonites and 30 known volcanic beds from central and southern Alberta, Manitoba and Montana 1. documents a trend toward more acidic and alkali-depleted volcanic products during the late Campanian-early Maastrichtian interval, and 2. suggests a well constrained stratigraphic and geographic subdivision of the non-marine successions of the foreland basin on the basis of geochemical characteristic of volcanic ash beds. Furthermore, geochemical "fingerprints" of several decimeter to meter thick bentonite beds have been coupled with volcanic ash subsurface signature in order to investigate their role as marker beds. This multiple-approach provides a reliable tool for basin-scale identification and correlation of non-marine sedimentary successions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020599','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020599"><span>Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.</p> <p>1998-01-01</p> <p>Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wall-rocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51H..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51H..02T"><span>Thin Crust and High Crustal Vp/Vs beneath the Central Armenia Plateau of the Lesser Caucasus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, T. L.; Lin, C. M.; Huang, B. S.; Karakhanyan, A.</p> <p>2017-12-01</p> <p>Armenia volcanic highland is part of the Lesser Caucasus directly connected with the East Anatolian Plateau to the west and Iranian Plateau to the east. Abundant Quaternary volcanoes in Armenia are the youngest among those associated with post-collision of Arabia-Eurasian since Miocene ( 11 Ma). In this study, teleseismic receiver functions were analyzed from a temporary array to constrain the crustal structures under Armenia and the vicinity. The results show that the Moho depth is shallowest beneath central Armenia where the estimated crustal thickness is 32 km with high averaged crustal Vp/Vs of 1.8-2.0 using H-κ technique. The high crustal Vp/Vs is distributed in a wider area but thin crust is confined more locally around stratovolcano Aragats, whose last eruption was about 0.5 Ma. High crustal Vp/Vs value approaching to 2.1 is found near East of volcano Ghegam complex and NW of volcano Ararat with last dated ages of 0.5 and <0.1 Ma, respectively. Such high Vp/Vs (2.0) cannot be explained without high mafic content and the presence of partial melt in the crust. The 1-D velocity models inverted demonstrate that the partial melt is more likely in the low-velocity layer of the lower crust. To support the unusually thin crust in central Armenia, it requires additional thermal buoyancy in the uppermost mantle which is consistent with regionally low Pn velocity found in previous studies. We propose that the volcanism here is facilitated by the stretches of lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..76..306I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..76..306I"><span>Neogene Tiporco Volcanic Complex, San Luis, Argentina: An explosive event in a regional transpressive - local transtensive setting in the pampean flat slab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibañes, Oscar Damián; Sruoga, Patricia; Japas, María Silvia; Urbina, y. Nilda Esther</p> <p>2017-07-01</p> <p>The Neogene Tiporco Volcanic Complex (TVC) is located in the Sierras Pampeanas of San Luis, Argentina, at the southeast of the Pampean flat-slab segment. Based on the comprehensive study of lithofacies and structures, the reconstruction of the volcanic architecture has been carried out. The TVC has been modeled in three subsequent stages: 1) initial updoming, 2) ignimbritic eruptive activity and 3) lava dome emplacement. Interplay of magma injection and transtensional tectonic deformation has been invoked to reproduce TVC evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGeo...43..118T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGeo...43..118T"><span>Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thordarson, T.; Larsen, G.</p> <p>2007-01-01</p> <p>The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone. Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine). Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of "wet" eruptions and Strombolian to Plinian in terms of "dry" eruptions. In historical time the magma volume extruded by individual eruptions ranges from ˜1 m 3 to ˜20 km 3 DRE, reflecting variable magma compositions, effusion rates and eruption durations. All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as "Fires", which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20-25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga-Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ-WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ˜4.5% of the eruptions is not known. Magma productivity over 1100 years equals about 87 km 3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km 3 (˜82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ-WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15-16% of total magma volume in the last 1130 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919423M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919423M"><span>Multi-scale seismic tomography of the Merapi-Merbabu volcanic complex, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mujid Abdullah, Nur; Valette, Bernard; Potin, Bertrand; Ramdhan, Mohamad</p> <p>2017-04-01</p> <p>Merapi-Merbabu volcanic complex is the most active volcano located on Java Island, Indonesia, where the Indian plate subducts beneath Eurasian plate. We present a preliminary study of a multi-scale seismic tomography of the substructures of the volcanic complex. The main objective of our study is to image the feeding paths of the volcanic complex at an intermediate scale by using the data from the dense network (about 5 km spacing) constituted by 53 stations of the French-Indonesian DOMERAPI experiment complemented by the data of the German-Indonesian MERAMEX project (134 stations) and of the Indonesia Tsunami Early Warning System (InaTEWS) located in the vicinity of the complex. The inversion was performed using the INSIGHT algorithm, which follows a non-linear least squares approach based on a stochastic description of data and model. In total, 1883 events and 41846 phases (26647 P and 15199 S) have been processed, and a two-scale approach was adopted. The model obtained at regional scale is consistent with the previous studies. We selected the most reliable regional model as a prior model for the local tomography performed with a variant of the INSIGHT code. The algorithm of this code is based on the fact that inverting differences of data when transporting the errors in probability is equivalent to inverting initial data while introducing specific correlation terms in the data covariance matrix. The local tomography provides images of the substructure of the volcanic complex with a sufficiently good resolution to allow identification of a probable magma chamber at about 20 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016392','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016392"><span>Mineralized and unmineralized calderas in Spain; Part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rytuba, J.J.; Arribas, A.; Cunningham, C.G.; McKee, E.H.; Podwysocki, M.H.; Smith, James G.; Kelly, W.C.; Arribas, A.</p> <p>1990-01-01</p> <p>The Rodalquilar caldera complex is located in the western part of the Cabo de Gata volcanic field in southeastern Spain and is the first documented example of epithermal gold-alunite mineralization within a caldera in Europe. The Rodalquilar caldera is an oval collapse structure having a maximum diameter of 8 km and formed at 11 Ma from eruption of the Cinto ash-flow tuff. The oval Lomilla caldera, with a diameter of 2 km, is nested within the central resurgent dome of the older Rodalquilar caldera. The Lomilla caldera resulted from the eruption of the Lazaras ash-flow tuff which was ponded within the moat of the Rodalquilar caldera. The last phase of volcanic activity in the caldera complex was the emplacement of hornblende andesite flows and intrusions. This magmatic event resulted in structural doming of the caldera, opening of fractures and faults, and provided the heat source for the large hydrothermal systems which deposited quartz-alunite type gold deposits and base metal vein systems. The gold-alunite deposits are enclosed in areas of intense acid sulfate alteration and localized in ring and radial faults and fractures present in the east wall of the Lomilla caldera. Like other acid-sulfate type deposits, the Rodalquilar gold-alunite deposits are closely related in time and space to porphyritic, intermediate composition magma emplaced along caldera structures but unrelated to the caldera forming magmatic system. ?? 1990 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.usgs.gov/of/2012/1228/of2012-1228_pamphlet.pdf','USGSPUBS'); return false;" href="http://pubs.usgs.gov/of/2012/1228/of2012-1228_pamphlet.pdf"><span>Digital Geologic Map of the Redding 1° x 2°; Quadrangle, Shasta, Tehama, Humboldt, and Trinity Counties, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fraticelli, Luis A.; Albers, John P.; Irwin, William P.; Blake, Milton C. Jr.; Wentworth, Carl M.</p> <p>2012-01-01</p> <p>The Redding 1° x 2 quadrangle in northwestern California transects the Franciscan Complex and southern Klamath Mountains province as well as parts of the Great Valley Complex, northern Great Valley, and southernmost Cascades volcanic province. The tectonostratigraphic terranes of the Klamath province represent slices of oceanic crust, island arcs, and overlying sediment that range largely from Paleozoic to Jurassic in age. The Eastern Klamath terrane forms the nucleus to which the other terranes were added westward, primarily during Jurassic time, and that package was probably accreted to North America during earliest Cretaceous time. The younger Franciscan Complex consists of a sequence of westward younging tectonostratigraphic terranes of late Jurassic to Miocene age that were accreted to North America from mid-Cretaceous through Miocene time, with the easternmost being the most strongly metamorphosed. The marine Great Valley sequence, of late Jurassic and Cretaceous age, was deposited unconformably across the southernmost Klamath rocks, but in turn was underthrust at its western margin by Eastern belt Franciscan rocks. Pliocene and Quaternary volcanic rocks and sediment of the Cascades province extend into the southeastern part of the quadrangle, abutting the northernmost part of the great central valley of California. This map and database represent a digital rendition of Open-File Report 87-257, 1987, by L.A. Fraticelli, J.P. Albers, W.P. Irwin, and M.C. Blake, Jr., with various improvements and additions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T12A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T12A..02F"><span>Correlating rates of magmatic arc unroofing and sedimentation using detrital zircon U/Pb and (U-Th)/He thermochronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fosdick, J. C.</p> <p>2017-12-01</p> <p>Double and triple dating of minerals using multiple geo-thermochronometers has revolutionized efforts to evaluate complex thermotectonic histories of orogens, isolate unique sedimentary sources, and quantify basin burial reheating. A persisting challenge is to distinguish volcanic sources from rapidly exhumed sources, with the simplistic premise that coincident cooling dates among high- to low-temperature thermochronometers are diagnostic of volcanic sources. Coupled zircon U/Pb and (U-Th)/He geo-thermochronometry from the Miocene Bermejo foreland basin in the southern Central Andes reveals a high temporal resolution of unroofing signatures of the Choiyoi Group, a Permian-Triassic silicic volcanic and plutonic complex, and the Pennsylvanian-Permian Colangüil batholith. Both units are important sediment sources within the High Andes for the Cenozoic east-flowing sediment routing systems. Results show fluvial sourcing of Colangüil detrital zircons with progressively greater partial loss of He (<8% to 12-23% fractional loss from 9.5 Ma to 6 Ma), as indicated by upsection younging of zircon He dates for a given U/Pb age cluster. These findings suggest erosion of increasingly deeper levels of the Colangüil arc during late Miocene development of the High Andes. This progression of higher He loss and thus younger He dates during sedimentation for a given U/Pb age cluster is analogous to the magmatic arc unroofing trend revealed by undissected to dissected arc provenance fields in sandstone petrography. Multi-method thermochronometry of detrital minerals may reveal an added level of information regarding rates of cooling, unroofing, and thermal evolution of magmatic systems as preserved in the detrital record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7849S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7849S"><span>Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina</p> <p>2013-04-01</p> <p>Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..356..225J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..356..225J"><span>Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaimes-Viera, M. C.; Martin Del Pozzo, A. L.; Layer, P. W.; Benowitz, J. A.; Nieto-Torres, A.</p> <p>2018-05-01</p> <p>The unique nature of monogenetic volcanism has always raised questions about its origin, longevity and spatial distribution. Detailed temporal and spatial boundaries resulted from a morphometric study, mapping, relative dating, twenty-four new 40Ar/39Ar dates, and chemical analyses for the Sierra Chichinautzin, Central Mexico. Based on these results the monogenetic cones were divided into four groups: (1) Peñón Monogenetic Volcanic Group (PMVG); (2) Older Chichinautzin Monogenetic Volcanic Group (Older CMVG); (3) Younger Chichinautzin Monogenetic Volcanic Group (Younger CMVG) and (4) Sierra Santa Catarina Monogenetic Volcanic Group (SSC). The PMVG cover the largest area and marks the northern and southern boundaries of this field. The oldest monogenetic volcanism (PMVG; 1294 ± 36 to 765 ± 30 ka) started in the northern part of the area and the last eruption of this group occurred in the south. These basaltic-andesite cones are widely spaced and are aligned NE-SW (N60°E). After this activity, monogenetic volcanism stopped for 527 ka. Monogenetic volcanism was reactivated with the birth of the Tezoyuca 1 Volcano, marking the beginning of the second volcanic group (Older CMVG; 238 ± 51 to 95 ± 12 ka) in the southern part of the area. These andesitic to basaltic andesite cones plot into two groups, one with high MgO and Nb, and the other with low MgO and Nb, suggesting diverse magma sources. The eruption of the Older CMVG ended with the eruption of Malacatepec volcano and then monogenetic volcanism stopped again for 60 ka. At 35 ka, monogenetic volcanism started again, this time in the eastern part of the area, close to Popocatépetl volcano, forming the Younger CMVG (<35 ± 4 ka). These cones are aligned in an E-W direction. Geochemical composition of eruptive products of measured samples varies from basalts to dacites with low and high MgO. The Younger CMVG is considered still active since the last eruptions took place <2 ka. The SSC (132 ± 70 to 2 ± 56 ka) is located in the northern part of the area, in the old Chalco Lake and is separated by faults from the rest of the volcanic groups as a different range. The SSC formed closely spaced basaltic andesites to andesitic cones oriented NE-SW (N70°E). The SSC samples have high Zr, P2O5, and Nb, indicating a different magma source. The northern and southern spatial boundaries of the field (the surface area with monogenetic volcanoes) became smaller with time: 78 km for PMVG, 40 km for the Older CMVG and 25 km for the Younger CMVG, concentrating the volcanoes in the central part of the area. The alignment of the cones changed progressively from NNE-SSW to NE-SW to E-W through the time, associated with the changes in the stress field which appears also to have caused the gaps. Results suggest that the Sierra Chichinautzin is actually four different volcanic fields, some partially overlapping, instead of one as previously considered. The differences in age, emplacement orientation and geochemistry support this conclusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Tectp.637..289A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Tectp.637..289A"><span>Counterclockwise rotations in the Late Eocene-Oligocene volcanic fields of San Luis Potosí and Sierra de Guanajuato (eastern Mesa Central, Mexico)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreani, Louis; Gattacceca, Jerôme; Rangin, Claude; Martínez-Reyes, Juventino; Demory, François</p> <p>2014-12-01</p> <p>We used paleomagnetic and structural data to investigate the late Eocene-Oligocene tectonic evolution of the Mesa Central area in Mexico. The Mesa Central was affected by NW-trending faults (Tepehuanes-San Luis fault system) coeval with a Late Eocene-Oligocene ignimbrite flare-up and by post-27 Ma NNE-trending grabens related to the Basin and Range. We obtained reliable paleomagnetic directions from 61 sites within the Late Eocene-Oligocene volcanic series (~ 30 to ~ 27 Ma) of the San Luis Potosí volcanic field and Sierra de Guanajuato. For each site we also measured the anisotropy of magnetic susceptibility (AMS). Tilt corrections were made using AMS data for 33 sites where in situ bedding measurements were not available. Paleomagnetic directions indicate counterclockwise rotations of about 10° with respect to stable North America after 30-25 Ma. Structural data suggest that the volcanic succession was mainly affected by normal faults. However, we also found evidences for oblique or horizontal striae showing a left-lateral component along NW-trending faults and a right lateral component along NE-trending faults. Both motions are consistent with a N-S extension oblique to the Tepehuanes-San Luis fault system. Previous paleomagnetic studies in northern and southern Mexico show the prevalence of minor left-lateral shear components along regional-scale transpressional and transtensional lineaments. Our paleomagnetic data may reflect thus small vertical-axis rotations related to a minor shear component coeval with the Oligocene intra-arc extension in central Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996P%26SS...44..817A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996P%26SS...44..817A"><span>Model of formation of Ishtar Terra, Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ansan, V.; Vergely, P.; Masson, Ph.</p> <p>1996-08-01</p> <p>For more than a decade, the radar mapping of Venus' surface has revealed that it results from a complex volcanic and tectonic history, especially in the northern latitudes. Ishtar Terra (0°E-62°E) consists of a high plateau, Lakshmi Planum, surrounded by highlands, Freyja Montes to the north and Maxwell Montes to the east. The latter is the highest relief of Venus, standing more than 10 km in elevation. The high resolution of Magellan radar images (120-300 m) allows us to interpret them in terms of tectonics and propose a model of formation for the central part of Ishtar Terra. The detailed tectonic interpretations are based on detailed structural and geologic cartography. The geologic history of Ishtar Terra resulted from two distinct, opposite tectonic stages with an important, transitional volcanic activity. First, Lakshmi Planum, the oldest part of Ishtar Terra is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. Then the plateau is partially covered by fluid lava flows that may be similar to Deccan traps, in India. Second, after the extensional deformation of Lakshmi Planum and its volcanic activity, Freyja and Maxwell Montes formed by WSW-ENE horizontal crustal shortening. The latter produced a series of NNW-SSE parallel, sinuous, folds and imbricated structures that overlapped Lakshmi Planum westward. So these mountain belts have the same structural characteristics as terrestrial fold-and-thrust belts. These mountain belts also display evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trend, especially in Maxwell Montes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRB..111.9403P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRB..111.9403P"><span>New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panet, I.; Chambodut, A.; Diament, M.; Holschneider, M.; Jamet, O.</p> <p>2006-09-01</p> <p>In this paper, we discuss the origin of superswell volcanism on the basis of representation and analysis of recent gravity and magnetic satellite data with wavelets in spherical geometry. We computed a refined gravity field in the south central Pacific based on the GRACE satellite GGM02S global gravity field and the KMS02 altimetric grid, and a magnetic anomaly field based on CHAMP data. The magnetic anomalies are marked by the magnetic lineation of the seafloor spreading and by a strong anomaly in the Tuamotu region, which we interpret as evidence for crustal thickening. We interpret our gravity field through a continuous wavelet analysis that allows to get a first idea of the internal density distribution. We also compute the continuous wavelet analysis of the bathymetric contribution to discriminate between deep and superficial sources. According to the gravity signature of the different chains as revealed by our analysis, various processes are at the origin of the volcanism in French Polynesia. As evidence, we show a large-scale anomaly over the Society Islands that we interpret as the gravity signature of a deeply anchored mantle plume. The gravity signature of the Cook-Austral chain indicates a complex origin which may involve deep processes. Finally, we discuss the particular location of the Marquesas chain as suggesting that the origin of the volcanism may interfere with secondary convection rolls or may be controlled by lithospheric weakness due to the regional stress field, or else related to the presence of the nearby Tuamotu plateau.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2721B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2721B"><span>Cainozoic Orogenic Magmatism In The Western-central Mediterranean Area: Implications For The Subduction-modified Mantle Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beccaluva, L.; Bianchini, G.; Coltorti, M.; Siena, F.; Verde, M.</p> <p></p> <p>In this contribution new REE and Sr-Nd isotopic data carried out on Cainozoic subduction-related volcanic rocks from the western-central Mediterranean are dis- cussed within a general review of the Cainozoic orogenic magmatism of the area. These volcanic events are related to subduction processes which occurred along the Paleo-European margin at least since Eocene and migrated (trough passive sinking and slab roll-back) southeastward up to the present in the peri-Tyrrhenian margin of Italy. Orogenic rocks from Provence (34-20 Ma) are characterised by 87Sr/86Sr be- tween 0.70453 and 0.70579, and 143Nd/144Nd between 0.51292 and 0.51265, which are consistent with mantle sources modified by subduction fluids released by altered oceanic crust. Sr-Nd isotopic composition of orogenic rocks from Sardinia (32-13 Ma), show a more complex picture: some compositions with relatively low 87Sr/86Sr (<0.706) and high 143Nd/144Nd (>0.5125), are compatible with the subduction of pure oceanic crust, while compositions with very high 87Sr/86Sr (up to 0.7113) and low 143Nd/144Nd (down to 0.51219) require additional components of continental crust affinity in the mantle wedge (partial fusion of subducted terrigenous sediments?). As concerns the Aeolian volcanics (< 1.3 Ma), compositions are compatible with man- tle sources solely enriched by fluid components from subducted oceanic crust. How- ever, it is interesting to note that shoshonites from the younger series of Stromboli display distinctly higher 87Sr/86Sr (up to 0.7075) and lower 143Nd/144Nd composi- tion (down to 0.51242), thus requiring once again recycle of continental crust materials in their mantle sources. The influence of such continental crust-derived components appear to be even more important in the mantle sources of the Campania volcanics, where extreme Sr-Nd isotopic compositions are recorded (87Sr/86Sr up to 0.7097; 143Nd/144Nd down to 0.5122).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JVGR..176..356A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JVGR..176..356A"><span>Volcanoes in the pre-Columbian life, legend, and archaeology of Costa Rica (Central America)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alvarado, Guillermo E.; Soto, Gerardo J.</p> <p>2008-10-01</p> <p>Costa Rica is located geographically in the southern part of the Central American Volcanic Front, a zone where interaction between the Mesoamerican and South American cultures occurred in pre-Columbian times. Several volcanoes violently erupted during the Holocene, when the first nomadic human hunters and later settlers were present. Volcanic rocks were the most important geo-resource in making artifacts and as construction materials for pre-Columbian inhabitants. Some pottery products are believed to resemble smoking volcanoes, and the settlements around volcanoes would seem to indicate their influence on daily life. Undoubtedly, volcanic eruptions disrupted the life of early settlers, particularly in the vicinity of Arenal and Irazú volcanoes, where archaeological remains show transient effects and displacement caused by periodical eruptions, but later resilient occupations around the volcanoes. Most native languages are extinct, with the exception of those presently spoken in areas far away from active volcanoes, where no words are related to volcanic phenomena or structures. The preserved legends are ambiguous, suggesting that they were either produced during the early Spanish conquest or were altered following the pre-Columbian period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V43C1552F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V43C1552F"><span>Geochemical Consequences of Lithospheric Delamination in the Eastern Mediterranean: Evidence From Young Turkish Basalts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furman, T.; Kurkcuoglu, B.; Plummer, C.</p> <p>2007-12-01</p> <p>Magmatism associated with continental collision is increasingly attributed to major disturbance of or within the lithosphere. Geochemical and isotopic data on post-collisional primitive mafic lavas from across the Anatolian plate enable us to assess the effects of lithospheric delamination (slab rollback and breakoff) as indicated by geophysical studies. The Anatolian province displays geodynamically complex manifestations of the closure of neo-Tethys and the collision between Africa and Europe that commenced circa 30 Ma. The current south- southwestward motion of Anatolia, a.k.a. "Turkish escape", is accommodated by slab rollback along the Hellenic trench and orogenic collapse along both the eastern and western margins of the microplate. Volcanism occurs primarily along the fault zones that border and cross-cut Anatolia, and major element characteristics of the lavas vary with both space and time. In Western Anatolia, early Miocene collisional calc- alkaline magmatism was followed by Quaternary alkaline volcanism (Alici et al. 1998, 2002; Aldanmaz et al. 2000, 2006) related to orogenic collapse, presumably resulting from slab rollback. Orogenic collapse in Eastern Anatolia is facilitated by slab breakoff as determined by geophysical studies (Zor et al. 2003; Angus et al. 2006; Lei & Zhao 2007). This transition was accompanied a change from mid-Miocene calc-alkaline to Quaternary alkaline volcanism (e.g., Yilmaz 1990; Pearce et al. 1990). Central Anatolia displays calc-alkaline and tholeiitic volcanism, including alkali olivine basalts; plate tectonic reconstructions (Lyberis et al. 1992) indicate that the African slab did not reach Central Anatolia. Sr-Nd isotope values from each volcanic province define linear arrays that converge upon a common unradiogenic value typical of global depleted mantle. We suggest that mafic volcanism throughout Anatolia is supported by a common asthenospheric component, modified by identifiable, location-specific additions. In areas of lithospheric removal, young basalts have Sr-Nd values close to that of the inferred asthenospheric source, whereas older lavas display more enriched signatures. Limited Pb isotopic data fall within the range of Atlantic and Pacific Ocean sediments, suggesting the mantle signature is masked or strongly influenced by sediments. We focus on the Sivas volcanics, northernmost of the Central provinces, where the most highly magnesian lavas of Anatolia are found. Incompatible trace element considerations suggest that the Sivas suite provides key insights into the nature of the common source region. These lavas have MORB- and OIB-like values of most incompatible trace elements e.g., La/Nb, Ba/Nb, Ba/Rb, Rb/Sr and Th/La, and lack positive Pb anomalies characteristic of crustal interaction. Their geochemical and isotopic compositions - and comparisons between Sivas and areas of orogenic collapse to the east and west - provide new information on the interaction between lithospheric and asthenospheric materials across Turkey. References: Aldanmaz et al. 2000 JVGR 102, 67-95; Aldanmaz et al. 2006 Lithos 86, 50-76; Alici et al. 1998 JVGR 85, 423-446; Alici et al. 2002 JVGR 115, 487-510; Angus et al. 2006 GJI 166, 1335-1346; Lei & Zhao 2007 EPSL 257, 14-28; Lyberis et al. 1992 Tectonophysics 204, 1-15; Pearce et al. 1990 JVGR 44, 189-229; Yilmaz 1990 JVGR 44, 69-87; Zor et al. 2003 GRL 30, doi: 10.1029/2003GL018192</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22075377','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22075377"><span>Relative roles of Neogene vicariance and Quaternary climate change on the historical diversification of bunchgrass lizards (Sceloporus scalaris group) in Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bryson, Robert W; García-Vázquez, Uri Omar; Riddle, Brett R</p> <p>2012-01-01</p> <p>Neogene vicariance during the Miocene and Pliocene and Quaternary climate change have synergistically driven diversification in Mexican highland taxa. We investigated the impacts of these processes on genetic diversification in the widely distributed bunchgrass lizards in the Sceloporus scalaris group. We searched for correlations between timing in diversification and timing of (1) a period of marked volcanism across the Trans-Mexican Volcanic Belt in central Mexico 3-7.5million years ago (Ma) and (2) a transition to larger glacial-interglacial cycles during the mid-Pleistocene. From our phylogenetic analyses of mitochondrial DNA we identified two major clades that contained 13 strongly supported lineages. One clade contained lineages from the two northern sierras of Mexico, and the other clade included lineages associated with the Trans-Mexican Volcanic Belt and Central Mexican Plateau. Results provided support for Neogene divergences within the S. scalaris group in response to uplift of the Trans-Mexican Volcanic Belt, a pattern observed in several co-distributed taxa, and suggested that Quaternary climate change likely had little effect on diversification between lineages. Uplift of the Trans-Mexican Volcanic Belt during specific time periods appears to have strongly impacted diversification in Mexican highland taxa. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211830P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211830P"><span>Geophysical exploration of the Southeast Tyrrhenian Sea (Italy): Seamounts batimetries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Passaro, Salvatore; Milano, Girolamo</p> <p>2010-05-01</p> <p>The Tyrrhenian Sea is a young extensional basin in the Central Mediterranean that formed within a complex convergent boundary between Africa and Eurasian Plates. Its opening, associated to the west dipping subduction of the Ionian lithosphere, started about 11 My ago and was marked first by an EW and successively by an ESE directed extension. This last mainly affected the Southeast Tyrrhenian Sea and led to the formation of the Marsili ocean-like basin. This large-scale extension produced the onset of volcanism throughout the Tyrrhenian Sea and the formation of several seamounts. High values of heat flow (>150 mW m-2) and the thin crust (7 km on average) and lithosphere (30 km on average) testify the young age of formation of oceanic crust in the Southeast Tyrrhenian Sea. On November 2007, a multidisciplinary oceanographic survey was carried out in the Southeast Tyrrhenian Sea by a group of researchers of the IAMC-CNR (Naples), Osservatorio Vesuviano (INGV, Naples), NOAA (Seattle) and GNS (New Zealand) on board of the R/V Urania. The main aim of the survey was the identification and the exploration of potential active volcanic and/or hydrothermal vents on the seamounts located in the Southeast Tyrrhenian Sea. Twelve Tyrrhenian seamounts have been explored with a modified CTD system, in order to acquire "tow-yo" profiles in dynamic mode (real time monitoring of physical and chemical parameters of seawater along vertical/horizontal profiles). In addiction, Multibeam swath bathymetry was carried out over fifteen seamounts. The strategy for the achieving of the aim consisted in two phases: i) row multibeam acquisition of the sea floor morphology to verify, confirm or review all available data, ii) tow-yo activity and seawater sampling. Here, we show the main results of bathymetric data acquisition carried out over fifteen seamounts with the use of the Reson Seabat 8160 multibeam sonar system mounted on keel of the R/V Urania. The most interesting morphostructural characteristics are found on the summit of the Marsili and Palinuro seamounts, that are the major features of the Southeast Tyrrhenian Sea. The morphology of the Marsili Seamount shows a linear summit region, approximately bounded by the 1000 meters isobath, stretches about 20 km along the main axis of the volcanic complex. Throughout the summit framework, crater-like items are not identifiable whereas cone-like items are revealed. The morphology of the Palinuro seamount reveals a very articulated summit consisting in a group of overlapped and/or coalescent volcanic cones inside collapsed calderas. Relic domes of calderic collapses are identifiable both in the western and in the central sectors of the Palinuro Seamount. The continuation of the Palinuro seamount toward the mainland is marked by the Glabro seamount. Magnetic data constrain the interpretation of several volcanic features detected on both the Palinuro and the Marsili seamounts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_9137.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_9137.htm"><span>Geologic map of the Wenatchee 1:100,000 Quadrangle, central Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.</p> <p>1982-01-01</p> <p>The rocks and deposits within the Wenatchee quadrangle can be grouped into six generalized units: (1) Precambrian(?) Swakane Biotite Gneiss in the northeastern part of the quadrangle and the probable Jurassic low-grade metamorphic suite, mostly composed of the Easton Schist, in the southwestern part; (2) the Mesozoic Ingalls Tectonic Complex; (3) the Mesozoic Mount Stuart batholith; (4) lower and middle Tertiary nonmarine sedimentary and volcanic rocks; (5) Miocene basalt flows and interbedded epiclastic rocks constituting part of the Columbia River Basalt Group and interbedded silicic volcaniclastic rocks of the Ellensburg Formation; and (6) Pliocene to Holocene alluvium, glacial, flood, and mass-wastage deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989LPICo.708...37R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989LPICo.708...37R"><span>Lakshmi Planum: A distinctive highland volcanic province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, Kari M.; Head, James W.</p> <p></p> <p>Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003128','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003128"><span>Lakshmi Planum: A distinctive highland volcanic province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, Kari M.; Head, James W.</p> <p>1989-01-01</p> <p>Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..323..110S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..323..110S"><span>The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent</p> <p>2016-09-01</p> <p>We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato ( 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong vulcanian events, although its erupted volume remained low and only produced a local impact through ash fallout. We have identified at least 6 eruptions during the last 4-5 ka, including the historical AD 1750-1784 and 1987-1998 events. On the basis of this recurrent low-to-moderate explosive activity, Sabancaya must be considered active and a potentially threatening volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....5777S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....5777S"><span>Field observations of Flood Basalt structure: Implications for offshore interpretation and sub-volcanic investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Single, R.; Jerram, D.; Pearson, D.; Hobbs, R.</p> <p>2003-04-01</p> <p>Field investigations in Skye and Namibia have provided insight into structure and architecture of CFBs. The studies have been developed into lava sequence models in 3-D software GoCad. The understanding has been applied to interpretation of lavas in the Faeroe-Shetland trough. Volcanics hinder petroleum exploration in this play due to their complex internal geometries and velocity structure. Seismic resolution is poor beneath volcanics. Fieldwork has shown that lavas on Skye have developed from (olivine-phyric) compound basalts towards the base of the sequence, into more massive flows higher up the succession. Fieldwork in the Etendeka CFBs reveal a similar style of lava field development. The focus of the offshore study is through the area of the GFA-99 seismic data. Detailed 3-D interpretation over the central data area is 20x20km in dimensions. The lava sequence present may be sub-divided vertically and laterally into 4 zones between the following seismic picks: Base basalt/sub-basalt sills, top compound lava-dominated series, top Middle Series, top hyaloclastites, top massive basalt. Within the lava sequence, the surfaces have rugose topographies. Lower zone lavas are characterised by discontinuous, indistinct reflectors. These are interpreted to be sub-aerially effused basalts with compound-braided architecture. Middle Series basalts are considered to be a combination of compound lavas and more massive, tabular flows. Steeply dipping seismic reflectors also form part of the Middle Series and are interpreted as foreset-bedded hyaloclastites. The uppermost lavas have strong reflection characteristics and are laterally extensive. These are interpreted to be massive tabular lavas covering an area >8.4 x10^3 km^2. Such flows exist in upper parts of CFB sequences as evidenced from fieldwork. Complex stacking arrangements of lavas seen in the field, and the complexities observed in seismic, suggest that many factors need to be considered within CFBs for improved sub-volcanic imaging. Factors include understanding: The facies-zones present, changes in velocity structure and the geometries present within facies types. EU 5th Framework Project SIMBA is a collaborative research project combining industrial and academic partners in flood basalt research. SIMBA incorporates: TotalFinaElf GRC, ARK Geophysics, Norsk Hydro, Institut Français du Pétrole (IFP) and Universities of Durham, Cambridge, UC Dublin and Brest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMDI33A2226A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMDI33A2226A"><span>Along-arc variation in water distribution in the upper mantle beneath Kyushu, Japan, as derived from receiver function analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.</p> <p>2013-12-01</p> <p>The Kyushu district, Japan, under which the Philippine Sea (PHS) plate is subducting in a WNW direction, has several active volcanoes. On the volcanic front in Kyushu, a 110 km long gap in volcanism exists in the central part of Kyushu and volcanic rocks with various degrees of contamination by slab-derived fluid are distributed. To reveal the causes of the gap in volcanism and the chemical properties of volcanic rocks and to understand the process of magma genesis and water transportation, we should reveal along-arc variation in water distribution beneath Kyushu. We investigated the seismic velocity discontinuities in the upper mantle beneath Kyushu, with seismic waveform data from 65 stations of Hi-net, which are established by National Research Institute for Earth Science and Disaster Prevention, and 55 stations of the J-array, which are established by Japan Meteorological Agency, Kyushu University, Kagoshima University and Kyoto University. We used receiver function analyses developed especially for discontinuities with high dipping angles (Abe et al., 2011, GJI). We obtained the geometry and velocity contrasts of the continental Moho, the oceanic Moho, and the upper boundary of the PHS slab. From the geometry of these discontinuities and contrast in S wave velocities, we interpreted that the oceanic crust of the PHS slab has a low S wave velocity and is hydrated to a depth of 70 km beneath south Kyushu, to a depth of 80-90 km beneath central Kyushu, and to a depth of no more than 50 km beneath north Kyushu. We also interpreted that the fore-arc mantle beneath central Kyushu has a low velocity region (Vs < 3.2 km/s) that can contain hydrated materials and free aqueous fluid. Such a low velocity fore-arc mantle does not exist beneath north and south Kyushu. Beneath north Kyushu, the oceanic crust does not appear to convey much water in the mantle wedge. Beneath south Kyushu, water dehydrated from the slab could move to the back-arc side and cause arc volcanism, while it could move to the fore-arc side and cause a gap in volcanism and hydration of the fore-arc mantle materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6531J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6531J"><span>The feeding system of the Lusi eruption revealed by ambient noise tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Javad Fallahi, Mohammad; Obermann, Anne; Lupi, Matteo; Mazzini, Adriano</p> <p>2017-04-01</p> <p>Lusi is a clastic dominated geysering system located in the northeastern Java backarc basin in Indonesia. Based on fluid geochemistry it has been described as a newborn sedimentary-hosted hydrothermal system. The present study provides a 3D model of shear wave velocity anomaly beneath Lusi and the neighboring Arjuno-Welirang volcanic complex and aims to better understand the subsurface structures as well as the Lusi plumbing system. To date, our data represent the first image of a hydrothermal plume in the upper crust seen with geophysical methods. We use 10 months of ambient noise data recorded by 31 temporary seismic stations and use ambient noise tomography methods to obtain the shear wave velocity model. The obtained tomographic images reveal the presence of a low velocity zone that connects the Arjuno-Welirang volcanic complex at about 5 km depth and ultimately emerging at the Lusi eruption site. Magmatic reservoirs beneath volcanic systems are also identified. Low shear wave anomalies representing magmatic reservoirs are less pronounced for the Arjuno-Welirang volcanic complex (the oldest system investigated in this study), intermediate beneath the Penanggungan volcano and result much more pronounced beneath the newborn Lusi. The results obtained in this study are consistent with a scenario envisaging a magmatic intrusion at depth and/or hydrothermal fluids migrating from the volcanic complex and extending towards the sedimentary basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29900242','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29900242"><span>LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs</p> <p>2018-06-01</p> <p>This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187322','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187322"><span>The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon:Evidence for small caldera evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, C. Hans; Bacon, Charles R.; Robinson, Stephen W.; Adam, David P.; Bradbury, J. Platt; Barber, John H.; Schwartz, Deborah; Vagenas, Ginger</p> <p>1994-01-01</p> <p>Apparent phreatic explosion craters, caldera-floor volcanic cones, and geothermal features outline a ring fracture zone along which Mount Mazama collapsed to form the Crater Lake caldera during its climactic eruption about 6,850 yr B.P. Within a few years, subaerial deposits infilled the phreatic craters and then formed a thick wedge (10-20 m) of mass flow deposits shed from caldera walls. Intense volcanic activity (phreatic explosions, subaerial flows, and hydrothermal venting) occurred during this early postcaldera stage, and a central platform of subaerial andesite flows and scoria formed on the caldera floor.Radiocarbon ages suggest that deposition of Iacustrine hemipelagic sediment began on the central platform about 150 yr after the caldera collapse. This is the minimum time to fill the lake halfway with water and cover the platform assuming present hydrologic conditions of precipitation and evaporation but with negligible leakage of lake water. Wizard Island formed during the final part of the 300-yr lake-filling period as shown by its (1) upper subaerial lava flows from 0 to -70 m below present water level and lower subaqueous lava flows from -70 to -500 m and by (2) lacustrine turbidite sand derived from Wizard Island that was deposited on the central platform about 350 yr after the caldera collapse. Pollen stratigraphy indicates that the warm and dry climate of middle Holocene time correlates with the early lake deposits. Diatom stratigraphy also suggests a more thermally stratified and phosphate-rich environment associated respectively with this climate and greater hydrothermal activity during the early lake history.Apparent coarse-grained and thick-bedded turbidites of the early lake beds were deposited throughout northwest, southwest, and eastern basins during the time that volcanic and seismic activity formed the subaqueous Wizard Island, Merriam Cone, and rhyodacite dome. The last known postcaldera volcanic activity produced a subaqueous rhyodacite ash bed and dome about 4,240 yr B.P. The late lake beds with base-of-slope aprons and thin, fine-grained basin-plain turbidites were deposited during the volcanically quiescent period of the past 4,000 yr.Deposits in Crater Lake and on similar caldera floors suggest that four stages characterize the postcaldera evolution of smaller (≤10 km in diameter) terrestrial caldera lake floors: (1) initial-stage caldera collapse forms the ring fracture zone that controls location of the main volcanic eruptive centers and sedimentary basin depocenters on the caldera floor; (2) early-stage subaerial sedimentation rapidly fills ring-fracture depressions and constructs basin-floor debris fans from calderawall landslides; (3) first-stage subaqueous sedimentation deposits thick flat-lying lake turbidites throughout basins, while a thin blanket of hemipelagic sediment covers volcanic edifices that continue to form concurrently with lake sedimentation; and (4) second-stage subaqueous sedimentation after the waning of major volcanic activity and the earlier periods of most rapid sedimentation develops small sili-ciclastic basin base-of-slope turbidite aprons and central basin plains. Renewed volcanic activity or lake destruction could cause part or all of the cycle to repeat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007720&hterms=Center+distribution&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DCenter%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007720&hterms=Center+distribution&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DCenter%2Bdistribution"><span>Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crumpler, L. S.</p> <p>1993-01-01</p> <p>Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BVol...75..737V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BVol...75..737V"><span>Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.</p> <p>2013-08-01</p> <p>The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P53C2133Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P53C2133Y"><span>Relation of the lunar volcano complexes lying on the identical linear gravity anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.</p> <p>2015-12-01</p> <p>There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023084','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023084"><span>Tomographic inversion of P-wave velocity and Q structures beneath the Kirishima volcanic complex, Southern Japan, based on finite difference calculations of complex traveltimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tomatsu, T.; Kumagai, H.; Dawson, P.B.</p> <p>2001-01-01</p> <p>We estimate the P-wave velocity and attenuation structures beneath the Kirishima volcanic complex, southern Japan, by inverting the complex traveltimes (arrival times and pulse widths) of waveform data obtained during an active seismic experiment conducted in 1994. In this experiment, six 200-250 kg shots were recorded at 163 temporary seismic stations deployed on the volcanic complex. We use first-arrival times for the shots, which were hand-measured interactively. The waveform data are Fourier transformed into the frequency domain and analysed using a new method based on autoregressive modelling of complex decaying oscillations in the frequency domain to determine pulse widths for the first-arrival phases. A non-linear inversion method is used to invert 893 first-arrival times and 325 pulse widths to estimate the velocity and attenuation structures of the volcanic complex. Wavefronts for the inversion are calculated with a finite difference method based on the Eikonal equation, which is well suited to estimating the complex traveltimes for the structures of the Kirishima volcano complex, where large structural heterogeneities are expected. The attenuation structure is derived using ray paths derived from the velocity structure. We obtain 3-D velocity and attenuation structures down to 1.5 and 0.5 km below sea level, respectively. High-velocity pipe-like structures with correspondingly low attenuation are found under the summit craters. These pipe-like structures are interpreted as remnant conduits of solidified magma. No evidence of a shallow magma chamber is visible in the tomographic images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019278','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019278"><span>Crustal structure, evolution, and volcanic unrest of the Alban Hills, Central Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chiarabba, C.; Amato, A.; Delaney, P.T.</p> <p>1997-01-01</p> <p>The Alban Hills, a Quaternary volcanic center lying west of the central Apennines, 15-25 km southeast of Rome, last erupted 19ka and has produced approximately 290 km3 of eruptive deposits since the inception of volcanism at 580 ka. Earthquakes of moderate intensity have been generated there at least since the Roman age. Modern observations show that intermittent periods of swarm activity originate primarily beneath the youngest features, the phreatomagmatic craters on the west side of the volcano. Results from seismic tomography allow identification of a low-velocity region, perhaps still hot or partially molten, more than 6 km beneath the youngest craters and a high-velocity region, probably a solidified magma body, beneath the older central volcanic construct. Thirty centimeters of uplift measured by releveling supports the contention that high levels of seismicity during the 1980s and 1990s resulted from accumulation of magma beneath these craters. The volume of magma accumulation and the amount of maximum uplift was probably at least 40 ?? 106 m3 and 40 cm, respectively. Comparison of newer levelings with those completed in 1891 and 1927 suggests earlier episodes of uplift. The magma chamber beneath the western Alban Hills is probably responsible for much of the past 200 ka of eruptive activity, is still receiving intermittent batches of magma, and is, therefore, continuing to generate modest levels of volcanic unrest. Bending of overburden is the most likely cause of the persistent earthquakes, which generally have hypocenters above the 6-km-deep top of the magma reservoir. In this view, the most recent uplift and seismicity are probably characteristic and not precursors of more intense activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..177..158K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..177..158K"><span>U-Th age evidence from carbonate veins for episodic crustal deformation of Central Anatolian Volcanic Province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karabacak, Volkan; Uysal, I. Tonguç; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin</p> <p>2017-12-01</p> <p>Central Anatolia represents one of the most outstanding examples of intraplate deformation related to both continental collision and back-arc extension generating non-uniformly distributed stress fields. In this study, we provide direct field evidence of various stress directions and investigate carbonate-filled fracture systems in the Central Anatolian Volcanic Province using U/Th geochronology and isotope geochemistry for evaluating the episodes of latest volcanic activity under regional stress. Field data reveal two independent fracture systems in the region. Successive fracture development has been controlled by two different volcanic eruption centers (Hasandağ Composite Volcano and Acıgöl Caldera). Trace element, and stable (C and O) and radiogenic (Sr) isotope compositions of carbonate veins indicate different fluid migration pathways for two different fracture systems. The U/Th age data for carbonate veins of two independent fracture systems indicate that the crustal deformation intensified during 7 episodic periods in the last 150 ka. The NNE-trending first fracture system was formed as a result of strain cycles in a period from 149 ± 2.5, through 91 ± 1.5 to 83 ± 2.5 ka BP. Subsequent deformation events represented by the ENE-trending second fracture zone have been triggered during the period of 53 ± 3.5, 44 ± 0.6 and 34 ± 1 ka BP before the first fracture zone resumed the activity at about 4.7 ± 0.15 ka BP. Although further studies are needed to evaluate statistical significance of age correlations, the periods of carbonate precipitation inferred from U-Th age distributions in this study are comparable with the previous dating results of surrounding volcanic eruption events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..118a2073I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..118a2073I"><span>Petrographic and major elements results as indicator of the geothermal potential in Java</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Indarto, S.; Setiawan, I.; Kausar, A.; Permana, dan H.</p> <p>2018-02-01</p> <p>Geothermal manifestations existed in West Java (Cilayu, Papandayan Mountain, Telagabodas, Karaha, Tampomas Mountain), Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain) show a difference in their mineral and geochemical compositions. The petrographic analysis of volcanic rocks from Garut (West Java) are basalt, andesite basaltic and andesite. However, based on SiO2 vs K2O value, those volcanic rocks have wide ranges of fractionated magma resulting basalt - basaltic andesite to dacitic in composition rather than those of Slamet Mountain, Dieng, and Argopuro Mountain areas which have a narrower range of fractionation magma resulting andesite basaltic and andesite in compositions. The volcanic rocks from Garut show tholeiitic affinity and calc-alkaline affinity. The geothermal potential of Java is assumed to be related to the magma fractionation level. Geothermal potential of West Java (Garut) is higher than that of Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CoMP..173....4Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CoMP..173....4Y"><span>Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Lili; He, Zhenyu; Beier, Christoph; Klemd, Reiner</p> <p>2018-01-01</p> <p>The Yunshan caldera complex is part of a larger scale, ca. 2000-km-long volcanic-plutonic complex belt in the coastal region of SE China. The volcanic rocks in the caldera complex are characterized by high-silica peraluminous and peralkaline rhyolites associated with an intracaldera porphyritic quartz monzonite pluton. In this study, we present zircon U-Pb, Hf and stable O isotopes along with geochemical data of both volcanic and plutonic rocks to evaluate the potential petrogenetic link between volcanism and plutonism in the Yunshan caldera complex. SHRIMP zircon U-Pb geochronology of both volcanic and plutonic rocks yields almost identical ages ranging from 95.6 to 93.1 Ma. The peraluminous and peralkaline rhyolites show negative anomalies of Sr, P, Ti and Ba and to a lesser extent negative Nb and Ta anomalies, along with positive Rb anomalies and `seagull-like' rare earth element (REE) patterns with negative Eu anomalies and low (La/Yb)N ratios. The intracaldera porphyritic quartz monzonite displays minor negative Rb, Nb, Ta, Sr, P and Ti anomalies and a positive Ba anomaly with REE patterns characterized by relatively high (La/Yb)N ratios and lack significant Eu anomalies. The peraluminous and peralkaline rhyolites and the porphyritic quartz monzonite exhibit consistent ɛ Nd( t) of - 3.7 to - 2.2 and display zircon ɛ Hf( t) values of - 2.1 to 3.7. They further have similar, mantle-like, zircon oxygen isotopic compositions (δ18OVSMOW mainly = 4.63 to 5.76‰). We interpret these observations to be in agreement with a crystal mush model in which the parental magma of the volcanic and plutonic rocks of the Yunshan caldera complex was likely produced by interaction of asthenosphere melts with subduction-influenced enriched mantle wedge. The peralkaline rhyolites are interpreted to represent the most differentiated magma that has subsequently experienced significant fluid-melt interactions, whereas the porphyritic quartz monzonite may be representative of the residual crystal mush. The Yunshan rhyolites typically match the geochemical characteristics of `hot-dry-reduced' rhyolites indicating that, during the late Cretaceous, the tectonic setting of SE China changed from a compressional environment to an extensional environment, i.e., from an arc into a back-arc setting. Our results imply that volcanic and plutonic rocks in caldera systems may provide unique constraints on the evolution of the magmatic system in which both the erupting melt and the residual crystalline material are being preserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BVol...77...12S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BVol...77...12S"><span>Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts., Romania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szakács, Alexandru; Seghedi, Ioan; Pécskay, Zoltán; Mirea, Viorel</p> <p>2015-02-01</p> <p>Based on a new set of K-Ar age data and detailed field observations, the eruptive history of the youngest volcano in the whole Carpathian-Pannonian region was reconstructed. Ciomadul volcano is a dacitic dome complex located at the southeastern end of the Călimani-Gurghiu-Harghita Neogene volcanic range in the East Carpathians. It consists of a central group of extrusive domes (the Ciomadul Mare and Haramul Mare dome clusters and the Köves Ponk dome) surrounded by a number of isolated peripheral domes, some of them strongly eroded (Bálványos, Puturosul), and others topographically well preserved (Haramul Mic, Dealul Mare). One of the domes (Dealul Cetăţii) still preserves part of its original breccia envelope. A large number of bread-crust bombs found mostly along the southern slopes of the volcano suggest that the dome-building activity at Ciomadul was punctuated by short Vulcanian-type explosive events. Two late-stage explosive events that ended the volcanic activity of Ciomadul left behind two topographically well-preserved craters disrupting the central group of domes: the larger-diameter, shallower, and older Mohoş phreatomagmatic crater and the smaller, deeper and younger Sf. Ana (sub)Plinian crater. Phreatomagmatic products of the Mohoş center, including accretionary lapilli-bearing base-surge deposits and poorly sorted airfall deposits with impact sags, are known close to the eastern crater rim. A key section studied in detail south of Băile Tuşnad shows the temporal succession of eruptive episodes related to the Sf. Ana (sub)Plinian event, as well as relationships with the older dome-building stages. The age of this last eruptive event is loosely constrained by radiocarbon dating of charcoal pieces and paleosoil organic matter at ca. 27-35 ka. The age of the Mohoş eruption is not constrained, but we suggest that it is closely related to the Sf. Ana eruption. The whole volcanic history of Ciomadul spans over ca. 1 Myr, starting with the building up of peripheral domes and then concentrating in its central part. Ciomadul appears as a small-volume (ca. 8.74 km3) and very low-frequency and low-output rate volcano (ca. 9 km3/Myr) at the terminus of a gradually diminishing and extinguishing volcanic range. A number of geodynamically active features strongly suggest that the magma plumbing system beneath Ciomadul is not completely frozen, so future activity cannot be ruled out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....13.4429P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....13.4429P"><span>Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pappalardo, G.; Mona, L.; D'Amico, G.; Wandinger, U.; Adam, M.; Amodeo, A.; Ansmann, A.; Apituley, A.; Alados Arboledas, L.; Balis, D.; Boselli, A.; Bravo-Aranda, J. A.; Chaikovsky, A.; Comeron, A.; Cuesta, J.; De Tomasi, F.; Freudenthaler, V.; Gausa, M.; Giannakaki, E.; Giehl, H.; Giunta, A.; Grigorov, I.; Groß, S.; Haeffelin, M.; Hiebsch, A.; Iarlori, M.; Lange, D.; Linné, H.; Madonna, F.; Mattis, I.; Mamouri, R.-E.; McAuliffe, M. A. P.; Mitev, V.; Molero, F.; Navas-Guzman, F.; Nicolae, D.; Papayannis, A.; Perrone, M. R.; Pietras, C.; Pietruczuk, A.; Pisani, G.; Preißler, J.; Pujadas, M.; Rizi, V.; Ruth, A. A.; Schmidt, J.; Schnell, F.; Seifert, P.; Serikov, I.; Sicard, M.; Simeonov, V.; Spinelli, N.; Stebel, K.; Tesche, M.; Trickl, T.; Wang, X.; Wagner, F.; Wiegner, M.; Wilson, K. M.</p> <p>2013-04-01</p> <p>The eruption of the Icelandic volcano Eyjafjallajökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at <a href="http://www.earlinet.org"target="_blank">http://www.earlinet.org</a>. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at <a href="http://www.earlinet.org"target="_blank">http://www.earlinet.org</a>. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....10121O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....10121O"><span>Time and duration of metamorphism and exhumation of the central Rhodopian core complex, Bulgaria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ovtcharova, M.; von Quadt, A.; Peytcheva, I.; Neubauer, F.; Heinrich, C. A.; Kaiser, M.</p> <p>2003-04-01</p> <p>The evolution of central Rhodopian dome (Bulgaria) is interpreted in terms of an extensional collapse of thickened crust (Ivanov at al., 2000). U-Pb isotope dating (single Zr and Mnz), Rb-Sr (W.R., Bt and Ap) and Ar-Ar (on Bt) were carried out on different rocks from the central Rhodope, Bulgaria, to constrain the timing and duration of the metamorphism and exhumation of the core complex. The beginning of extensional stage is marked by intrusion of earliest non-penetratively deformed granite bodies at 53Ma (U-Pb on single Zr and Mnz). The late Alpine extensional evolution of the massif is marked by a detachment system connected with exhumation of the migmatites in the core part of the dome (lower plate). U-Pb analyses on Mnz and Zr from mesosome and discordant leucosome yield a Variscan protolith age of the gneiss (311 Ma) and Eocene age (37Ma) of crystallization of the newly formed anatectic melt that corresponds with the peak of the Alpine metamorphic event (P 4.5-6kbar and T 720-750^oC; Georgieva et al., 2002). Rb-Sr mineral system of the weakly deformed gneisses from lower plate of the core complex gives evidence for a cooling age of 34.5±0.34Ma. This result is confirmed by Ar-Ar on Bt from the same rock: 35.5±0.4Ma. Ar-Ar data on biotite from gneisses of the upper plate yield an age of 34.9±0.6Ma. The same age is reflected by an Rb-Sr isochron (W.R., Bt and Ap) of 35.22±0.35Ma. The post-collisional extension was followed by graben depressions filled with sediments of Eocene-Oligocene age and active volcanism and ore mineralization (Zn-Pb and Cu-Pb-Zn ore deposits). Connected with the most intensively "stretched" sections of the extensional system is emplacement of rhyolitic dikes at 32.8±0.41Ma (U-Pb on single Zr, Xe). The available data constrain narrow time bracket between timing of high-grade metamorphism event (37Ma, >600^oC), cooling (35Ma, 300ºC) of the core complex and volcanic activity (32Ma) that corresponds with rapid exhumation tectonic regime. References: Ivanov, Z., D. Dimov, S. Sarov. 2000.ABCD-GEODE workshop, Borovets,Guide to excursion (B), 6-17. Georgieva, M., Z. Cherneva, K. Kolcheva, S. Sarov, J. Gerdjikov, E. Voinova 2002. Scientific meeting of the Geological Institute BAS, (in press).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS043-151-241&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D5S','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS043-151-241&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D5S"><span>Muria Volcano, Island of Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>This view of the north coast of central Java, Indonesia centers on the currently inactive Muria Volcano (6.5S, 111.0E). Muria is 5,330 ft. tall and lies just north of Java's main volcanic belt which runs east - west down the spine of the island attesting to the volcanic origin of the more than 1,500 Indonesian Islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001957','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001957"><span>Remote Sensing and Geologic Studies of Mare Australe: The North Australe Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lawrence, S. J.; Stopar, J. D.; Ostrach, L. R.; van der Bogert, C. H.; Hiesinger, H.; Jolliff, B. L.; Giguere, T. A.; Sato, H.; Robinson, M. S.</p> <p>2017-01-01</p> <p>A key goal of the Lunar Reconnaissance Orbiter (LRO) mission is to investigate volcanic processes at different temporal and physical scales, with one emphasis being the characterization of ancient (meaning, greater than 3.9 Ga) volcanic units. One such ancient volcanic terrain is Mare Australe, a loosely-circular collection of mare basalts centered at approximately 38.9 deg S, 93 deg E (Fig. 1). Mare Australe is a complex, extensive, and poorly understood volcanic region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5213/pdf/sir2013-5213.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5213/pdf/sir2013-5213.pdf"><span>2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander</p> <p>2014-01-01</p> <p>The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009732','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009732"><span>Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lipman, P.W.; McIntosh, W.C.</p> <p>2008-01-01</p> <p>The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass caldera that has little surviving topographic expression, no voluminous tuffs vented directly from the adjacent Cochetopa Park caldera, which is morphologically beautifully preserved. Instead, Cochetopa Park subsided passively as the >500 km3 Nelson Mountain Tuff vented at 26.9 Ma from an "underfit" caldera (youngest of the San Luis complex) 30 km to the SW. Three separate regional ignimbrites were erupted sequentially from San Luis calderas within an interval of less than 50-100 k.y., a more rapid recurrence rate for large explosive eruptions than previously documented elsewhere. In eruptive processes, volcanic compositions, areal extent, duration of activity, and magmatic production rates and volumes, the Southern Rocky Mountains Volcanic Field represents present-day erosional remnants of a composite volcanic field, comparable to younger ignimbrite terranes of the Central Andes. ?? 2008 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008112','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008112"><span>Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Amundsen, H. E. F.; Benning, L.; Blake, D. F.; Fogel, M.; Ming, D.; Skidmore, M.; Steele, A.</p> <p>2011-01-01</p> <p>The Sverrefjell and Sigurdfjell eruptive centers in the Bockfjord Volcanic Complex (BVC) on Svalbard (Norway) formed by subglacial eruptions ca. 1 Ma ago. These eruptive centers carry ubiquitous magnesian carbonate deposits including dolomitemagnesite globules similar to those in the Martian meteorite ALH84001. Carbonates in mantle xenoliths are dominated by ALH84001 type carbonate globules that formed during quenching of CO2-rich mantle fluids. Lava hosted carbonates include ALH84001 type carbonate globules occurring throughout lava vesicles and microfractures and massive carbonate deposits associated with vertical volcanic vents. Massive carbonates include < or equal 5 cm thick magnesite deposits protruding downwards into clear blue ice within volcanic vents and carbonate cemented lava breccias associated with volcanic vents. Carbonate cements comprise layered deposits of calcite, dolomite, huntite, magnesite and aragonite associated with ALH84001 type carbonate globules lining lava vesicles. Combined Mossbauer, XRD and VNIR data show that breccia carbonate cements at Sverrefjell are analog to Comanche carbonates at Gusev crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031375','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031375"><span>Voluminous low δ18O magmas in the late Miocene Heise volcanic field, Idaho: Implications for the fate of Yellowstone hotspot calderas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bindeman, I.N.; Watts, K.E.; Schmitt, A.K.; Morgan, L.A.; Shanks, P.W.C.</p> <p>2007-01-01</p> <p>We report oxygen isotope compositions of phenocrysts and U-Pb ages of zircons in four large caldera-forming ignimbrites and post-caldera lavas of the Heise volcanic field, a nested caldera complex in the Snake River Plain, that preceded volcanism in Yellowstone. Early eruption of three normal δ18O voluminous ignimbrites with δ18Oquartz = 6.4‰ and δ18Ozircon = 4.8‰ started at Heise at 6.6 Ma, and was followed by a 2‰–3‰ δ18O depletion in the subsequent 4.45 Ma Kilgore caldera cycle that includes the 1800 km3 Kilgore ignimbrite, and post-Kilgore intracaldera lavas with δ18Oquartz = 4.3‰ and δ18Ozircon = 1.5‰. The Kilgore ignimbrite represents the largest known low-δ18O magma in the Snake River Plain and worldwide. The post-Kilgore low δ18O volcanism likely represents the waning stages of silicic magmatism at Heise, prior to the reinitiation of normal δ18O silicic volcanism 100 km to the northeast at Yellowstone. The occurrence of low δ18O magmas at Heise and Yellowstone hallmarks a mature stage of individual volcanic cycles in each caldera complex. Sudden shifts in δ18O of silicic magmas erupted from the same nested caldera complexes argue against any inheritance of the low δ18O signature from mantle or crustal sources. Instead, δ18O age trends indicate progressive remelting of low δ18O hydrothermally altered intracaldera rocks of previous eruptions. This trend may be generally applicable to older caldera complexes in the Snake River Plain that are poorly exposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1971/0210/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1971/0210/report.pdf"><span>Petrology of the Plutonic Rocks of west-central Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, Thomas P.</p> <p>1970-01-01</p> <p>A series of plutons in west-central Alaska defines the Hogatza plutonic belt which extends for about 200 miles in an east-west direction from the northeastern Seward Peninsula to the Koyukuk River. The plutonic rocks have an aggregate area of about 1,200 square miles and their composition, distribution, and possible petrogenesis are discussed for the first time in this report. Field, petrographic and chemical data supported by K/Ar age dating indicate the plutonic rocks are divisible into two suites differing in age, location, and composition. The western plutons are mid-Cretaceous (~100 m.y.) in age and consist of a heterogeneous assemblage of monzonite, syenite, quartz monzonite. Associated with these granitic rocks is a group of alkaline sub-silicic rocks that forma belt of intrusive complexes extending for a distance of at least 180 miles from west-central Alaska to the Bering Sea. The complex at Granite Mountain shows a rare example of zoning from an alkaline rim to a quartz-bearing core. The occurrence of a similar complex at Cape Dezhnev on the easternmost tip of Siberia suggests the alkaline province may extend into Siberia. The easternmost plutons are Late Cretaceous (180 m.y.) in age and composed primarily of granodiorite and quartz monzonite similar to calc-alkaline plutons found throughout the North America Cordillera. The plutons are epizonal and intrude deformed but unmetamorphosed Lower Cretaceous andesitic volcanics and volcanic graywacke which constitute the highly mobile Yukon-Koyukuk volcanogenic province of west-central Alaska. No older rocks have been found within the confines of this vast tract; the occurrence of a bounding ophiolite sequence has lead to the suggestion that the province was formed by large-scale rifting and is underlain by oceanic crust. The possibility of no juvenile sialic crust over much of the area suggests that the potassium-rich magma now represented by the alkaline rocks originated in the mantle. The distribution of the alkaline rocks appears to be related to regional structural features, particularly the boundary between the Mesozoic volcanogenic province of west-central Alaska and the thrust-faulted province of metamorphic-plutonic and sedimentary rocks of Paleozoic and Precambrian age that forms the eastern Seward Peninsula. This boundary may have been a zone of structural weakness along which alkaline magma was generated. Modal and chemical trends suggest that the potassium-rich magma influenced the composition of more granitic magmas forming at higher levels. The latter may have been forming as a result of anatexis of andesite and mixing of mantle-derived mafic magma. The result is the heterogeneous assemblage of generally potassium-rich plutonic rocks that forms the west end of the Hogataza plutonic belt. The loci of magmatism in west-central Alaska shifted east in Late Cretaceous time and the eastern plutons show only local signs of potassium enrichment. They are compositionally homogeneous and differences within plutons appear due to local contamination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740003072','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740003072"><span>Volcanic activity and satellite-detected thermal anomalies at Central American volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.</p> <p>1973-01-01</p> <p>The author has identified the following significant results. A large nuee ardente eruption occurred at Santiaguito volcano, within the test area on 16 September 1973. Through a system of local observers, the eruption has been described, reported to the international scientific community, extent of affected area mapped, and the new ash sampled. A more extensive report on this event will be prepared. The eruption is an excellent example of the kind of volcanic situation in which satellite thermal imagery might be useful. The Santiaguito dome is a complex mass with a whole series of historically active vents. It's location makes access difficult, yet its activity is of great concern to large agricultural populations who live downslope. Santiaguito has produced a number of large eruptions with little apparent warning. In the earlier ground survey large thermal anomalies were identified at Santiaguito. There is no way of knowing whether satellite monitoring could have detected changes in thermal anomaly patterns related to this recent event, but the position of thermal anomalies on Santiaguito and any changes in their character would be relevant information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860013654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860013654"><span>The Wisconsin magmatic terrane: An Early Proterozoic greenstone-granite terrane formed by plate tectonic processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schulz, K. J.; Laberge, G. L.</p> <p>1986-01-01</p> <p>The Wisconsin magmatic terrane (WMT) is an east trending belt of dominantly volcanic-plutonic complexes of Early Proterozoic age (approx. 1850 m.y.) that lies to the south of the Archean rocks and Early Proterozoic epicratonic sequence (Marquette Range Supergroup) in Michigan. It is separated from the epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is bounded on the south, in central Wisconsin, by Archean gneisses, is truncated on the west by rocks of the Midcontinent rift system, and is intruded on the east by the post-orogenic Wolf river batholith. The overall lithologic, geochemical, metallogenic, metamorphic, and deformational characteristics of the WMT are similar to those observed in recent volcanic arc terranes formed at sites of plate convergence. It is concluded that the WMT represents an evolved oceanic island-arc terrane accreated to the Superior craton in the Early Proterozoic. This conclusion is strengthened by the apparent absence of Archean basement from most of the WMT, and the recent recognition of the passive margin character of the epicratonic Marquette Range Supergroup.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1031/e/pdf/of2015-1031-E.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1031/e/pdf/of2015-1031-E.pdf"><span>Seismicity of the Earth 1900-2013, seismotectonics of South America (Nazca Plate Region)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hayes, Gavin P.; Smoczyk, Gregory M.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio</p> <p>2015-01-01</p> <p>The South American arc extends over 7,000 kilometers (km), from the Chilean margin triple junction offshore of southern Chile, to its intersection with the Panama fracture zone, offshore of the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their descent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate, the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 millimeters/year (mm/yr) in the south, to approximately 65 mm/yr in the north. Although the rate of subduction varies little along the entire arc, there are complex changes in the geologic processes along the subduction zone that dramatically influence volcanic activity, crustal deformation, earthquake generation and occurrence all along the western edge of South America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S21B2034S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S21B2034S"><span>High Resolution Hypocenter Relocation for Events in Central Java, Indonesia using Double-Difference Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahara, D. P.; Widiyantoro, S.; Nugraha, A. D.; Sule, R.; Luehr, B. G.</p> <p>2010-12-01</p> <p>Seismic and volcanic activities in Central Java are highly related to the subduction of the Indo-Australian plate. In the MERapi AMphibious Experiments (MERAMEX), a network consisting of 169 seismographic stations was installed onshore and offshore in central Java and recorded 282 events during the operation. In this study, we present the results of relative hypocenters relocation by using Double Difference (DD) method to image the subduction beneath the volcanic chain in central Java. The DD method is an iterative procedure using Least Square optimization to determine high-resolution hypocenter locations over large distances. This relocation method uses absolute travel-time measurements and/or cross-correlation of P- and S-wave differential travel-time measurements. The preliminary results of our study showed that the algorithm could collapse the diffused event locations obtained from previous study into a sharp image of seismicity structure and reduce the residual travel time errors significantly (7 - 60%). As a result, narrow regions of a double seismic zone which correlated with the subducting slab can be determined more accurately. The dip angle of the slab increases gradually from almost horizontal beneath offshore to very steep (65-80 degrees) beneath the northern part of central Java. The aseismic gap at depths of 140 km - 185 km is also depicted clearly. The next step of the ongoing research is to provide detailed quantitative constraints on the structures of the mantle wedge and crust beneath central Java and to show the ascending paths of fluids and partially molten materials below the volcanic arc by applying Double-Difference Tomography method (TomoDD).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110002755','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110002755"><span>Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, D. M.; Head, J. W.</p> <p>2010-01-01</p> <p>Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our interpretations of the volcanic history of the region surrounding the north pole of Venus and explore how analysis of new data support our interpretations</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1357030','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1357030"><span>LiDAR as an Exploration Tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Boschmann, D.; Diles, J.; Clarno, J.; Meigs, A.; Walsh, P.</p> <p>2011-01-01</p> <p>Using LiDAR to identify structural and volcanic evolution of a Miocene-Pleistocene age bimodal volcanic complex and implications for geothermal potential. The file includes an updated geologic map, methods, and preliminary results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5289981-sup-ar-sup-ar-ages-challis-volcanic-rocks-initiation-tertiary-sedimentary-basins-southwestern-montana','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5289981-sup-ar-sup-ar-ages-challis-volcanic-rocks-initiation-tertiary-sedimentary-basins-southwestern-montana"><span>[sup 40]Ar/[sup 39]Ar ages of Challis volcanic rocks and the initiation of Tertiary sedimentary basins in southwestern Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>M'Gonigle, J.W.; Dalrymple, G.B.</p> <p>1993-10-01</p> <p>[sup 40]Ar/[sup 39]Ar ages on single sanidine crystals from rhyolitic tuffs and ash flow tuffs within the uppermost and lowermost parts of the volcanic sequence of the Horse Prairie and Medicine Lodge topographic basins, southwestern Montana, show that these volcanic rocks were emplaced between about 48.8[+-]0.2 Ma and 45.9[+-]0.2 Ma, and are correlative with the Eocene Challis Volcanic Group of central Idaho. Sanidine ages on tuffs at the base of the Tertiary lacustrine, paludal, and fluvial sedimentary sequence, which unconformably overlies the volcanic sequence, suggest that sedimentation within an ancestral sedimentary basin that predated the development of the modern Horsemore » Prairie and Medicine Lodge basins began in the middle Eocene. 22 refs., 3 figs., 2 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930043868&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dphysical%2Bactivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930043868&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dphysical%2Bactivity"><span>The physical volcanology of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, Peter J.; Wilson, Lionel; Zuber, Maria T.</p> <p>1992-01-01</p> <p>The physical volcanology of Mars is reviewed, with particular attention given to the diversity of volcanic landforms, the implied styles of eruption associated with the construction of these landforms, the inferred internal structure of the volcanoes, and the influence that the eruptions have had on the Martian environment (both local and global in scale). Volcanism in the central highlands appears to have been explosive in character, while most of the constructional activity in the northern plains was effusive. Highlands volcanism appears to be relatively old compared to that in the northern hemisphere. There is evidence for the existence of large magma chambers and very high effusion rate eruptions on Mars. Tectonic deformation associated with volcanic constructs is primarily a consequence of loading and magma transport, while deformation in the volcanic plains reflects stresses associated with Tharsis and major impact basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113106L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113106L"><span>Temporal evolution of the Western and Central volcanism of the Aeolian Island Arc (Italy, southern Tyrhhenian Sea)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leocat, E.; Gillot, P.-Y.; Peccerillo, A.</p> <p>2009-04-01</p> <p>The Aeolian Archipelago is a volcanic arc in the Southern Tyrrhenian Sea located on the continental margin of the Calabro-Peloritan basement. The Aeolian volcanism occurs in a very complex geodynamic setting linked to the convergence of the European and African plates. For that reason, it is strongly related to regional tectonic lineaments, such as the NW-SE trending Tindari-Letojani (TL) fault. The archipelago consists of seven main islands and several seamounts, which extend around the Marsili Basin, forming a ring-like shape, typical for an island arc. While the seamounts began their activities around 1 Ma , the emerged part is active since about 400 ka. The magmatic products of the whole arc range from typical island arc calc-alkaline (CA) and shoshonitic series, to slightly silica undersaturated potassic alkaline series that are typical of post-collisional settings. Furthermore, the TL fault, along which the Lipari and Vulcano islands are developed, separates a calc-alkaline western sector (Alicudi, Filicudi and Salina islands) from the calc-alkaline to potassic eastern system (Panarea and Stromboli islands) (Peccerillo,1999). This makes of the Aeolian Islands a complex volcanism, with a still controversial origin. In this context, the aim of this work is to constrain the sources and spatio-temporal evolution of this magmatism. We present here new K-Ar ages based on the accurate Cassignol-Gillot technique devoted to the dating of very young rocks (Gillot et Cornette, 1986). These geochronological data were used together with new geochemical data on the same samples. In this study, we attempt to understand the origin of those magmatic events and the relationship between the deep processes and the shallow structures. Our results allow us to define specific periods of very quick geomechemical changes. In the case of Filicudi island, the first rocks range in composition from CA basalts to andesites. This period ended with the edification of the Mte Guardia at 189±4 ka. Then the activity was followed by the construction of the Mte Terrione at 168±4 ka (Gillot 1987), which is matched by High K-Ca andesites emplaced in the Chiumento crater. Therefore, two different magmatic series took place in only 15 ka. The last eruption of Filicudi built the High K-CA dacite lava dome of Mte Montagnola. For Lipari island, the same event is observed around 120-100 ka. In fact, the emitted products evolved from CA andesitic basalts, that emplaced from 256±8 ka (Monte Chirica) to 119±7 ka (Monterosa), to High K-CA andesite after 100 ka. The rocks becam more and more differentiated to achieve High K-CA rhyolite composition during the last 40 ka. At the same time, the Monte Fossa delle Felci of Salina island shows a geochemical "excursion" around 100 ka, characterised by High K-CA dacite. The lower limit of Pollara explosive eruption, that emitted High K-CA rhyolite products, is constrain by a Monte dei Porri lava flow affected by Pollara crater and dated at 13±2 ka. Thus, all these magmatic changes correlate with morphological and volcanic variations. Finally, our first results confirm that the Aeolian arc volcanism is generated in a complex source, with important roles of both arc-type and anorogenic-type compositions. Datings on key samples show that role of different mantle sources change within a very short time span, especially in the central portion of the arc, along the TL lithosheric fault system. This work also gives new geochronological constrains on the duration of magmatic evolution and eruptive phases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/i2684/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/i2684/"><span>Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ivanov, Mikhail A.; Head, James W.</p> <p>2001-01-01</p> <p>Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head, 1995), Alpha Regio tessera (Bindschadler and others, 1992a) and Eve Corona (Stofan and others, 1992) to the northeast, itself an extensive rift zone and coronae belt to the east and south (Baer and others, 1994; Magee and Head, 1995), Mylitta Fluctus to the south (Magee Roberts and others, 1992), and Helen Planitia to the southwest (Senske and others, 1991). In contrast to other areas on Venus, the Lavinia Planitia area is one of several large, relatively equidimensional lowlands (basins) and as such is an important region for the analysis of processes of basin formation and volcanic flooding. Before the Magellan mission, Lavinia Planitia was known on the basis of Pioneer-Venus altimetry to be a lowland area (Pettengill and others, 1980);. Arecibo radar images showed that Lavinia Plaitia was surrounded by several corona-like features and rift-like fractures parallel to the basin margin to the east and south (Senske and others, 1991; Campbell and others, 1990). Arecibo data further revealed that the interior contained complex patterns of deformational features in the form of belts and volcanic plains, and several regions along the margins were seen to be the sources of extensive outpourings of digitate lava flows into the interior (Senske and others, 1991; Campbell and others, 1990). Early Magellan results showed that the ridge belts are composed of complex structures of both extensional and contractional origin (Squyres and others, 1992; Solomon and others, 1992) and that the complex lava flows (fluctus) along the margins (Magee Roberts and others, 1992) emanated from a variety of sources ranging from volcanoes to coronae (Magee and Head, 1995; Keddie and Head, 1995). In addition, global analysis of the distribution of volcanic features revealed that Lavinia Planitia is an area deficient in the distribution of distinctive volcanic sources and corona-like features (Head and others, 1992; Crumpler and others, 1993). Lavinia Planitia gravity and geoid data show that the lowland is characterized by a -30 mGal gravity anomaly and a -10 m geoid anomaly, centered on eastern Lavinia (Bindschadler and others, 1992b; Konopliv and Sjogren, 1994). Indeed, the characteristics and configuration of Lavinia Planitia have been cited as evidence for the region being the site of large-scale mantle down welling (Bindschadler and others, 1992b). Thus, this region is a laboratory for the study of the formation of lowlands, the emplacement of volcanic plains, the formation of associated tectonic features, and their relation to mantle processes. These questions and issues are the basis for our geologic mapping analysis. In our analysis we have focused on the geologic mapping of the Lavinia Planitia quadrangle using traditional methods of geologic unit definition and characterization for the Earth (for example, American Commission on Stratigraphic Nomenclature, 1961) and planets (for example, Wilhelms, 1990) appropriately modified for radar data (Tanaka, 1994). We defined units and mapped key relations using the full resolution Magellan synthetic aperture radar (SAR) data (mosaiced full resolution basic image data records, C1-MIDR's, F-MIDR's, and F-Maps) and transferred these results to the base map compiled at a scale of 1:5 million. In addition to the SAR image data, we incorporated into our analyses digital versions of Magellan altimetry, emissivity, Fresnel reflectivity, and roughness data (root mean square, rms, slope). The background for our unit definition and characterization is described in Tanaka (1994), Basilevsky and Head (1995a, b)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33C0880S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33C0880S"><span>Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.</p> <p>2017-12-01</p> <p>Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016. These stations have 10-20 km spacing, spanning the edge of the subducting slab, and so will provide a zone of increased resolution in the region where slab behavior is poorly understood. We will discuss these data in the context of enigmatic Wrangell volcanism and its relationship to the eastern end of the Alaska-Aleutian Wadati-Benioff zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990Icar...87..327G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990Icar...87..327G"><span>Volcanism in Northwest Ishtar Terra, Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaddis, Lisa R.; Greeley, Ronald</p> <p>1990-10-01</p> <p>Evidence is presented for a previously undocumented volcanic complex in the highlands of NW Ishtar Terra (74 deg N, 313 deg E). The proposed valcanic center is in mountainous banded terrain thought to have been formed by regional compression. Data used include Soviet Venera 15/16 radar images and topography (Fotokarta Veneri B-4, 1987). An attempt is made to assess the place of this feature in the framework of known volcanic landforms of the Lakshmi Planum and to examine the relationships between volcanism and tectonism in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CoMP..171...58S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CoMP..171...58S"><span>Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.</p> <p>2016-06-01</p> <p>The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by such amounts of crustal assimilation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V11C2802A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V11C2802A"><span>Faults and volcanoes: Main volcanic structures in the Acambay Graben, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aguirre-Diaz, G. J.; Pedrazzi, D.; Suñe-Puchol, I.; Lacan, P.</p> <p>2016-12-01</p> <p>The Mexican Volcanic Belt (MVB) province is best known by the major stratovolcanoes, such as Popocatepetl and Colima, but most of the province is formed by modest size stratovolcanoes and monogenetic cones. Regional fault systems were developed together with the building of the volcanic province; the most notorious one is Chapala-Tula Fault System (CTFS), which runs parallel to the central sector of the MVB, and thus it is also referred to as the Intra-Arc fault system. Acambay graben (AG) is part of this central system. It is a 20 x 70 km depression located 100 km to the NW of Mexico City, at the easternmost end of the E-W trending CTFS, and was formed as the result of NS to NE oriented extension. Seismically active normal faults, such as the Acambay-Tixmadejé fault, with a mB =7 earthquake in 1912, delimit the AG. The graben includes several volcanic structures and associated deposits ranging in age from Miocene to 3 ka. The main structures are two stratovolcanoes, Altamirano (900 m high) and Temascalcingo (800 m high). There are also several Miocene-Pliocene lava domes, and Quaternary small cinder cones and shield volcanoes. Faulting of the Acambay graben affects all these volcanic forms, but depending on their ages, the volcanoes are cut by several faults or by a few. That is the case of Altamirano and Temascalcingo volcanoes, where the former is almost unaffected whereas the latter is highly dissected by faults. Altamirano is younger than Temascalcingo; youngest pyroclastic deposits from Altamirano are dated at 12-3 ka, and those from Temascalcingo at 40-25 ka (radiocarbon ages). The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally marked as an inactive volcanic zone, but activity could restart at any time. Supported by DGAPA-PAPIIT-UNAM grant IN-104615.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5313103-fault-propagation-folds-induced-gravitational-failure-slumping-central-costa-rica-volcanic-range-implications-large-terrestrial-martian-volcanic-edifices','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5313103-fault-propagation-folds-induced-gravitational-failure-slumping-central-costa-rica-volcanic-range-implications-large-terrestrial-martian-volcanic-edifices"><span>Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range: Implications for large terrestrial and Martian volcanic edifices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Borgia, A.; Burr, J.; Montero, W.</p> <p>1990-08-30</p> <p>Long sublinear ridges and related scarps located at the base of large volcanic structures are frequently interpreted as normal faults associated with extensional regional stress. In contrast, the ridges bordering the Central Costa Rica volcanic range (CCRVR) are the topographic expression of hanging wall asymmetric angular anticlines overlying low-angle thrust faults at the base of the range. These faults formed by gravitational failure and slumping of the flanks of the range due to the weight of the volcanic edifices and were perhaps triggered by the intrusion of magma over the past 20,000 years. These anticlines are hypothesized to occur alongmore » the base of the volcano, where the thrust faults ramp up toward the sea bottom. Ridges and scarps between 2,000 and 5,000 m below sea level are interpreted as the topographic expression of these folds. The authors further suggest that the scarps of the CCRVR and valid scaled terrestrial analogs of the perimeter scarp of the Martian volcano Olympus Mons. They suggest that the crust below Olympus Mons has failed under the load of the volcano, triggering the radial slumping of the flanks of the volcano on basal thrusts. The thrusting would have, in turn, formed the anticlinal ridges and scarps that surround the edifice. The thrust faults may extend all the way to the base of the Martian crust (about 40 km), and they may have been active until almost the end of the volcanic activity. They suggest that gravitational failure and slumping of the flanks of volcanoes is a process common to most large volcanic edifices. In the CCRVR this slumping of the flanks is a slow intermittent process, but it could evolve to rapid massive avalanching leading to catastrophic eruptions. Thus monitoring of uplift and displacement of the folds related to the slump tectonics could become an additional effective method for mitigating volcanic hazards.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001961','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001961"><span>Complex Volcanism at Oppenheimer U Floor-Fractured Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gaddis, L. R.; Bennett, K.; Horgan, B.; McBride, Marie; Stopar, J.; Lawrence, S.; Gustafson, J. O.; Giguere, T.</p> <p>2017-01-01</p> <p>Recent remote sensing studies have identified complex volcanism in the floor-fractured crater (FFC) Oppenheimer U, located in the northwest floor of Oppenheimer crater (35.2degS, 166.3degW, 208 km dia., Figure 1) within the "South Pole - Aitken basin" (SPA) region of the lunar far side. Up to 15 sites of pyroclastic volcanism have been identified in the floor of Oppenheimer crater. Studies of Moon Mineralogy Mapper data (M3, 0.4-3 microns, 86 bands, [5]) indicated that the pyroclastic deposits are comprised of mixtures of clinopyroxene and iron-rich glass, with the Oppenheimer U deposit showing variable composition within the FFC and having the most iron-rich volcanic glass thus far identified on the Moon. Here we examine the floor of Oppenheimer U in more detail and show evidence for possible multiple eruptive vents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NPGeo..18..925D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NPGeo..18..925D"><span>Self-sustained vibrations in volcanic areas extracted by Independent Component Analysis: a review and new results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Lauro, E.; de Martino, S.; Falanga, M.; Palo, M.</p> <p>2011-12-01</p> <p>We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79...27D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79...27D"><span>Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.</p> <p>2017-04-01</p> <p>We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (<13 ky) mass movement of high-altitude (>3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..82..346L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..82..346L"><span>Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luppo, Tomás; López de Luchi, Mónica G.; Rapalini, Augusto E.; Martínez Dopico, Carmen I.; Fanning, Christopher M.</p> <p>2018-03-01</p> <p>The Los Menucos Complex (northern Patagonia) consists of ∼6 km thick succession of acidic and intermediate volcanic and pyroclastic products, which has been traditionally assigned to the Middle/Late Triassic. New U/Pb (SHRIMP) zircon crystallization ages of 257 ± 2 Ma at the base, 252 ± 2 Ma at an intermediate level and 248 ± 2 Ma near the top of the sequence, indicate that this volcanic event took place in about 10 Ma around the Permian-Triassic boundary. This volcanism can now be considered as the effusive terms of the neighboring and coeval La Esperanza Plutono-Volcanic Complex. This indicates that the climax of activity of a large magmatic province in northern Patagonia was coetaneous with the end-Permian mass extinctions. Likely correlation of La Esperanza- Los Menucos magmatic province with similar volcanic and plutonic rocks across other areas of northern Patagonia suggest a much larger extension than previously envisaged for this event. Its age, large volume and explosive nature suggest that the previously ignored potential role that this volcanism might have played in climatic deterioration around the Permian-Triassic boundary should be investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V54A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V54A..05S"><span>The Snake River Plain Volcanic Province: Insights from Project Hotspot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shervais, J. W.; Potter, K. E.; Hanan, B. B.; Jean, M. M.; Duncan, R. A.; Champion, D. E.; Vetter, S.; Glen, J. M. G.; Christiansen, E. H.; Miggins, D. P.; Nielson, D. L.</p> <p>2017-12-01</p> <p>The Snake River Plain (SRP) Volcanic Province is the best modern example of a time-transgressive hotspot track beneath continental crust. The SRP began 17 Ma with massive eruptions of Columbia River basalt and rhyolite. After 12 Ma volcanism progressed towards Yellowstone, with early rhyolite overlain by basalts that may exceed 2 km thick. The early rhyolites are anorogenic with dry phenocryst assemblages and eruption temperatures up to 950C. Tholeiitic basalts have major and trace element compositions similar to ocean island basalts (OIB). Project Hotspot cored three deep holes in the central and western Snake River Plain: Kimama (mostly basalt), Kimberly (mostly rhyolite), and Mountain Home (lake sediments and basaslt). The Kimberly core documents rhyolite ash flows up to 700 m thick, possibly filling a caldera or sag. Chemical stratigraphy in Kimama and other basalt cores document fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Age-depth relations in the Kimama core suggest accumulation rates of roughly 305 m/Ma. Surface and subsurface basalt flows show systematic variations in Sr-Nd-Pb isotopes with distance from Yellowstone interpreted to reflect changes in the proportion of plume source and the underlying heterogeneous cratonic lithosphere, which varies in age, composition, and thickness from west to east. Sr-Nd-Pb isotopes suggest <5% lithospheric input into a system dominated by OIB-like plume-derived basalts. A major flare-up of basaltic volcanism occurred 75-780 ka throughout the entire SRP, from Yellowstone in the east to Boise in the west. The youngest western SRP basalts are transitional alkali basalts that range in age from circa 900 ka to 2 ka, with trace element and isotopic compositions similar to the plume component of Hawaiian basalts. These observations suggest that ancient SCLM was replaced by plume mantle after the North America passed over the hotspot in the western SRP, which triggered renewed basaltic volcanism throughout the system. This young volcanism supports an active geothermal system fueled by a shallow crustal sill complex that underlies most of the SRP today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V23C2998D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V23C2998D"><span>Widespread Neogene and Quaternary Volcanism on Central Kerguelen Plateau, Southern Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duncan, R. A.; Falloon, T.; Quilty, P. G.; Coffin, M. F.</p> <p>2016-12-01</p> <p>We report new age determinations and compositions for rocks from 18 dredge hauls collected from eight submarine areas across Central Kerguelen Plateau (CKP). Sea knolls and volcanic fields with multiple small cones were targeted over a 125,000 km2 region that includes Heard and McDonald islands. Large early Miocene (16-22 Ma) sea knolls rise from the western margin of the CKP and are part of a NNW-SSE line of volcanic centers that lie between Îles Kerguelen and Heard and McDonald islands. A second group of large sea knolls is aligned E-W across the center of this region. We see evidence of much younger activity (5 Ma to present) in volcanic fields to the north of, and up to 300 km NE of Heard Island. Compositions include basanite, basalt, and trachybasalt, that are broadly similar to plateau lava flows from nearby Ocean Drilling Program (ODP) Site 1138, lower Miocene lavas at Îles Kerguelen, dredged rocks from the early Miocene sea knolls, and Big Ben lavas from Heard Island. Geochemical data indicate decreasing fractions of mantle source melting with time. The western line of sea knolls has been related to hotspot activity now underlying the Heard Island area. In view of the now recognized much larger area of young volcanic activity, we propose that a broad region of CKP became volcanically active in Neogene time due to incubation of plume material at the base of the relatively stationary overlying plateau. The presence of pre-existing crustal faults promotes access for melts from the Heard mantle plume to rise to the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-03pd1523.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-03pd1523.html"><span>KENNEDY SPACE CENTER, FLA. - Arturo Ramierez, Charles Curley and Duke Follistein, KSC and Costa Rican researchers, carry the hazardous gas detection system AVEMS to the central of the Turrialba volcano. The Aircraft-based Volcanic Emission Mass Spectrometer determines the presence and concentration of various chemicals. It is being tested in flights over the Turrialba volcano and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-31</p> <p>KENNEDY SPACE CENTER, FLA. - Arturo Ramierez, Charles Curley and Duke Follistein, KSC and Costa Rican researchers, carry the hazardous gas detection system AVEMS to the central of the Turrialba volcano. The Aircraft-based Volcanic Emission Mass Spectrometer determines the presence and concentration of various chemicals. It is being tested in flights over the Turrialba volcano and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.127..170C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.127..170C"><span>Origin and accumulation mechanisms of petroleum in the Carboniferous volcanic rocks of the Kebai Fault zone, Western Junggar Basin, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zhonghong; Zha, Ming; Liu, Keyu; Zhang, Yueqian; Yang, Disheng; Tang, Yong; Wu, Kongyou; Chen, Yong</p> <p>2016-09-01</p> <p>The Kebai Fault zone of the West Junggar Basin in northwestern China is a unique region to gain insights on the formation of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks are widespread in the Kebai Fault zone and consist of basalt, basaltic andesite, andesite, tuff, volcanic breccia, sandy conglomerate and metamorphic rocks. The volcanic oil reservoirs are characterized by multiple sources and multi-stage charge and filling history, characteristic of a complex petroleum system. Geochemical analysis of the reservoir oil, hydrocarbon inclusions and source rocks associated with these volcanic rocks was conducted to better constrain the oil source, the petroleum filling history, and the dominant mechanisms controlling the petroleum accumulation. Reservoir oil geochemistry indicates that the oil contained in the Carboniferous volcanic rocks of the Kebai Fault zone is a mixture. The oil is primarily derived from the source rock of the Permian Fengcheng Formation (P1f), and secondarily from the Permian Lower Wuerhe Formation (P2w). Compared with the P2w source rock, P1f exhibits lower values of C19 TT/C23 TT, C19+20TT/ΣTT, Ts/(Ts + Tm) and ααα-20R sterane C27/C28 ratios but higher values of TT C23/C21, HHI, gammacerane/αβ C30 hopane, hopane (20S) C34/C33, C29ββ/(ββ + αα), and C29 20S/(20S + 20R) ratios. Three major stages of oil charge occurred in the Carboniferous, in the Middle Triassic, Late Triassic to Early Jurassic, and in the Middle Jurassic to Late Jurassic periods, respectively. Most of the oil charged during the first stage was lost, while moderately and highly mature oils were generated and accumulated during the second and third stages. Oil migration and accumulation in the large-scale stratigraphic reservoir was primarily controlled by the top Carboniferous unconformity with better porosity and high oil enrichment developed near the unconformity. Secondary dissolution pores and fractures are the two major reservoir storage-space types in the reservoirs. Structural highs and reservoirs near the unconformity are two favorable oil accumulation places. The recognition of the large-scale Carboniferous volcanic reservoirs in the Kebai Fault zone and understanding of the associated petroleum accumulation mechanisms provide new insights for exploring various types of volcanic reservoir plays in old volcanic provinces, and will undoubtedly encourage future oil and gas exploration of deeper strata in the region and basins elsewhere with similar settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3315/pdf/sim3315_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3315/pdf/sim3315_pamphlet.pdf"><span>Geologic map of the Simcoe Mountains Volcanic Field, main central segment, Yakama Nation, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hildreth, Wes; Fierstein, Judy</p> <p>2015-01-01</p> <p>Lava compositions other than various types of basalt are uncommon here. Andesite is abundant on and around Mount Adams but is very rare east of the Klickitat River. The only important nonbasaltic composition in the map area is rhyolite, which crops out in several patches around the central highland of the volcanic field, mainly in the upper canyons of Satus and Kusshi Creeks and Wilson Charley canyon. Because the rhyolites were some of the earliest lavas erupted here, they are widely concealed by later basalts and therefore crop out only in local windows eroded by canyons that cut through the overlying basalts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..322...20J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..322...20J"><span>Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.</p> <p>2016-08-01</p> <p>We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu arc further verify the complex tectonic and magmatic framework of this intra-oceanic island arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V41B2277T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V41B2277T"><span>U-series in zircon and 40Ar/39Ar geochronology reveal the most recent stage of a supervolcanic cycle in the Altiplano-Puna Volcanic Complex, Central Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tierney, C.; de Silva, S. L.; Schmitt, A. K.; Jicha, B.; Singer, B. S.</p> <p>2010-12-01</p> <p>The ignimbrite flare up that produced the Altiplano-Puna Volcanic Complex of the Central Andes is characterized by episodic supervolcanism over a ~10 Ma time-span that climaxed about 4Ma. Since peak activity, the temporal and spatial record of volcanism suggests a waning of the system with only one other supervolcanic eruption at 2.6Ma. The most recent phase of volcanism from the APVC comprises a series of late Pleistocene domes that share a general petrochemical resemblance to the ignimbrites. New U-series data on zircons and high precision 40Ar/39Ar age determinations reveal that these effusive eruptions represent a temporally coherent magmatic episode. The five largest domes (Chao, Chillahuita, Chanka, Chascon-Runtu Jarita, and Tocopuri) have a combined volume >40 km3, and are distributed over an elliptical area of over 3000km2 centered at 22°S 68°W. They are crystal rich (>50%) dacites to rhyolites. New 40Ar/39Ar age determinations on biotite for the domes range range from 108±6 to 190±50 ka. However, 40Ar/39Ar ages from sanidine for some of the domes are more precise and span from 87±4 to 97±2 ka. We therefore interpret the eruption age of all these domes to be ~90 - 100 ka. This is consistent with SIMS U-series crystallization ages from the rims of 66 zircon crystals from four of the domes that reveal a fairly continuous spread of ages from ~90 ka to >300 ka with potentially common peaks in zircon ages at 100 ka and ~200 ka. U-Pb dating on the interiors of some of these zircon crystals indicates crystallization ages of up to 1.5 Ma. The common peaks of zircon crystallization between domes suggest that magma that fed these domes shared a larger regional source. Furthermore, the large volume of this potential source and the crystal-rich nature of the lava imply that this source was likely a large body of crystal-mush. The continuous nature of the zircon rim age population indicates that the residence time of this magma body was likely >200kyr. Potential peaks in zircon crystallization ages could result from periodic injections of andesitic magma that reinvigorated crystallization. However, the ubiquity of likely antecrystic zircon interiors suggests that the associated temperature rise was insufficient to cause complete resorbtion of the antecrysts. A shared peak of zircon crystallization just prior to eruptions, as well as co-eruption of andesitic lava connotes recharge as the eruption trigger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036376','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036376"><span>Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.</p> <p>2011-01-01</p> <p>Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PApGe.162.2111F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PApGe.162.2111F"><span>Volcanic Tremor at Mt. Etna, Italy, Preceding and Accompanying the Eruption of July August, 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falsaperla, S.; Alparone, S.; D'Amico, S.; Grazia, G.; Ferrari, F.; Langer, H.; Sgroi, T.; Spampinato, S.</p> <p>2005-11-01</p> <p>The July 17 August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.S11A1130P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.S11A1130P"><span>The Tibesti Volcanoes of Chad: an ASTER-based Remote Sensing Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Permenter, J. L.; Oppenheimer, C.</p> <p>2002-12-01</p> <p>Situated in the central Sahara desert, the Tibesti volcanic province of northern Chad, Africa, is a superb example of large-scale continental hot spot volcanism. The massif is comprised of seven major volcanoes and an assembly of related volcanic and tectonic structures, with a total surface area of over 350 km2. Its highest peak (Emi Koussi) rises above the surrounding desert to ~3415 m above sea level. Due, in part, to its remoteness, the Tibesti has never been described in volcanological detail. This study aims to provide the first modern synthesis of the volcanology of this significant hot spot province. It is based primarily on a detailed analysis and interpretation of a comprehensive set of multi-band imagery from NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER has 14 spectral bands, divided between 3 optical subsystems; 3 in the very-near infrared (VNIR), 6 in the short-wave infrared, and 5 in the thermal infrared regions. In addition, the VNIR subsystem has aft-viewing optics for stereoscopic observation in the along-track direction, which permits generation of digital elevation models. The preliminary results presented here focus on the discrimination of lava composition, identification of pyroclastic deposits, and characterisation of the dimension of flows, craters, and other structural elements of the massif, using spectral and textural information gathered from the ASTER imagery. Furthermore, stratigraphic detail is obtained from the superposition of flow units and craters. The application of ASTER data to the Tibesti volcanic complex permits an initial first order description of the relative proportions and timing of different erupted materials, providing a framework for further interpretation of the volcanology and magmatic evolution of the Tibesti, based on modern geologic and tectonic concepts. It also allows intercomparisons to be made with other continental hot spot provinces.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.292..193W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.292..193W"><span>The polycyclic Lausche Volcano (Lausitz Volcanic Field) and its message concerning landscape evolution in the Lausitz Mountains (northern Bohemian Massif, Central Europe)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wenger, Erik; Büchner, Jörg; Tietz, Olaf; Mrlina, Jan</p> <p>2017-09-01</p> <p>The Tertiary Lausitz Volcanic Field covers a broad area encompassing parts of Eastern Saxony (Germany), Lower Silesia (Poland) and North Bohemia (Czech Republic). Volcanism was predominantly controlled by the volcano-tectonic evolution of the Ohře Rift and culminated in the Lower Oligocene. This paper deals with the highest volcano of this area, the Lausche Hill (792.6 m a.s.l.) situated in the Lausitz Mountains. We offer a reconstruction of the volcanic edifice and its eruptive history. Its complex genesis is reflected by six different eruption styles and an associated petrographic variety. Furthermore, the Lausche Volcano provides valuable information concerning the morphological evolution of its broader environs. The remnant of an alluvial fan marking a Middle Paleocene-Lower Eocene (62-50 Ma) palaeo-surface is preserved at the base of the volcano. The deposition of this fan can be attributed to a period of erosion of its nearby source area, the Lausitz Block that has undergone intermittent uplift at the Lausitz Overthrust since the Upper Cretaceous. The Lausche Hill is one of at least six volcanoes in the Lausitz Mountains which show an eminent low level of erosion despite their Oligocene age and position on elevated terrain. These volcanoes are exposed in their superficial level which clearly contradicts their former interpretation as subvolcanoes. Among further indications, this implies that the final morphotectonic uplift of the Lausitz Mountains started in the upper Lower Pleistocene ( 1.3 Ma) due to revived subsidence of the nearby Zittau Basin. It is likely that this neotectonic activity culminated between the Elsterian and Saalian Glaciation ( 320 ka). The formation of the low mountain range was substantially controlled by the intersection of the Lausitz Overthrust and the Ohře Rift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19865169','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19865169"><span>A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reubi, Olivier; Blundy, Jon</p> <p>2009-10-29</p> <p>Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015758','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015758"><span>Geologic map of the Lassen region, Cascade Range, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clynne, Michael; Muffler, L.J.</p> <p>1990-01-01</p> <p>A preliminary geologic map at 1:50,000 of the Lassen region encompasses 1400 km2. The map displays many small, monogenetic volcanoes of basalt to andesite as well as three major late Pliocene and Quaternary volcanic centers that have erupted products ranging from basaltic andesite to rhyolite. The youngest of these volcanic centers is the Lassen volcanic center, active from 600,000 years B.P. to the present. A major caldera formed at 400,000 years B.P. and has subsequently been filled with silicic lavas. The Lassen geothermal system, which consists of a central vapor-dominated reservoir at a temperature of 235??C underlain by a reservoir of hot water, is centered at Bumpass Hell within Lassen Volcanic National Park.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51J1518N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51J1518N"><span>Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.</p> <p>2015-12-01</p> <p>Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7217H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7217H"><span>Simulations of the Holuhraun eruption 2014 with WRF-Chem and evaluation with satellite and ground based SO2 measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirtl, Marcus; Arnold-Arias, Delia; Flandorfer, Claudia; Maurer, Christian; Mantovani, Simone; Natali, Stefano</p> <p>2016-04-01</p> <p>Volcanic eruptions, with gas or/and particle emissions, directly influence our environment, with special significance when they either occur near inhabited regions or are transported towards them. In addition to the well-known affectation of air traffic, with large economic impacts, the ground touching plumes can lead directly to an influence of soil, water and even to a decrease of air quality. The eruption of Holuhraun in August 2014 in central Iceland is the country's largest lava and gas eruption since the Lakagígar eruption in 1783. Nevertheless, very little volcanic ash was produced. The main atmospheric threat from this event was the SO2 pollution that frequently violated the Icelandic National Air Quality Standards in many population centers. However, the SO2 affectation was not limited to Iceland but extended to mainland Europe. The on-line coupled model WRF-Chem is used to simulate the dispersion of SO2 for this event that affected the central European regions. The volcanic emissions are considered in addition to the anthropogenic and biogenic ground sources at European scale. A modified version of WRF-Chem version 4.1 is used in order to use time depending injection heights and mass fluxes which were obtained from in situ observations. WRF-Chem uses complex gas- (RADM2) and aerosol- (MADE-SORGAM) chemistry and is operated on a European domain (12 km resolution), and a nested grid covering the Alpine region (4 km resolution). The study is showing the evaluation of the model simulations with satellite and ground based measurement data of SO2. The analysis is conducted on a data management platform, which is currently developed in the frame of the ESA-funded project TAMP "Technology and Atmospheric Mission Platform": it provides comprehensive functionalities to visualize and numerically compare data from different sources (model, satellite and ground-measurements).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6401S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6401S"><span>Maximum Historical Seismic Intensity Map of S. Miguel Island (azores)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silveira, D.; Gaspar, J. L.; Ferreira, T.; Queiroz, G.</p> <p></p> <p>The Azores archipelago is situated in the Atlantic Ocean where the American, African and Eurasian lithospheric plates meet. The so-called Azores Triple Junction located in the area where the Terceira Rift, a NW-SE to WNW-ESE fault system with a dextral component, intersects the Mid-Atlantic Ridge, with an approximate N-S direction, dominates its geological setting. S. Miguel Island is located in the eastern segment of the Terceira Rift, showing a high diversity of volcanic and tectonic structures. It is the largest Azorean island and includes three active trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas) placed in the intersection of the NW-SE Ter- ceira Rift regional faults with an E-W deep fault system thought to be a relic of a Mid-Atlantic Ridge transform fault. N-S and NE-SW faults also occur in this con- text. Basaltic cinder cones emplaced along NW-SE fractures link that major volcanic structures. The easternmost part of the island comprises an inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste). Since the settle- ment of the island, early in the XV century, several destructive earthquakes occurred in the Azores region. At least 11 events hit S. Miguel Island with high intensity, some of which caused several deaths and significant damages. The analysis of historical documents allowed reconstructing the history and the impact of all those earthquakes and new intensity maps using the 1998 European Macrosseismic Scale were produced for each event. The data was then integrated in order to obtain the maximum historical seismic intensity map of S. Miguel. This tool is regarded as an important document for hazard assessment and risk mitigation taking in account that indicates the location of dangerous seismogenic zones and provides a comprehensive set of data to be applied in land-use planning, emergency planning and building construction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10611151H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10611151H"><span>Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haberland, Christian; Rietbrock, Andreas</p> <p>2001-06-01</p> <p>High-quality data from 1498 local earthquakes recorded by the PISCO '94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) and ANCORP '96 (Andean Continental Research Project, 1996) temporary seismological networks allowed the detailed determination of the three-dimensional (3-D) attenuation structure (Qp-1) beneath the recent magmatic arc in the western central Andes (20° to 24°S). Assuming a frequency-independent Qp-1 in a frequency band between 1 and 30 Hz, whole path attenuation (t*) was estimated from the amplitude spectra of the P waves using spectral ratios and a spectral inversion technique. The damped least squares inversion (tomography) of the data reveals a complex attenuation structure. Crust and mantle of the forearc and subducting slab are generally characterized by low attenuation (Qp > 1000). Crust and mantle beneath the magmatic arc show elevated attenuation. The strongest anomaly of extremely low Qp is found in the crust between 22° and 23°S beneath the recent volcanic arc (Qp < 100). N-S variations can be observed: The western flank of the crustal attenuation anomaly follows the curved course of the volcanic front. North of 21°S the attenuation is less developed. In the northern part of the study area the low-Qp zone penetrates in the forearc mantle down to the subducting slab. In the south a deeper zone of high attenuation is resolved between 23° and 24°S directly above the subducting slab. Low Qp in the mantle correlates with earthquake clusters. The strong crustal attenuation is confined to the distribution of young ignimbrites and silicic volcanism and is interpreted as a thermally weakened zone with partial melts. The attenuation pattern in the upper mantle might reflect the variable extent of the asthenosphere and maps variations of subduction-related hydration processes in the mantle wedge from slab-derived fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094178&hterms=Volcanic+eruptions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DVolcanic%2Beruptions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094178&hterms=Volcanic+eruptions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DVolcanic%2Beruptions"><span>Variation of Surface Air Temperature in Relation to El Nino and Cataclysmic Volcanic Eruptions, 1796-1882</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.</p> <p>1999-01-01</p> <p>During the contemporaneous interval of 1796-1882 a number of significant decreases in temperature are found in the records of Central England and Northern Ireland. These decreases appear to be related to the occurrences of El Nino and/or cataclysmic volcanic eruptions. For example, a composite of residual temperatures of the Central England dataset, centering temperatures on the yearly onsets of 20 El Nino of moderate to stronger strength, shows that, on average, the change in temperature varied by about +/- 0.3 C from normal being warmer during the boreal fall-winter leading up to the El Nino year and cooler during the spring-summer of the El Nino year. Also, the influence of El Nino on Central England temperatures appears to last about 1-2 years. Similarly, a composite of residual temperatures of the Central England dataset, centering temperatures on the month of eruption for 26 cataclysmic volcanic eruptions, shows that, on average, the change in temperature decreased by about 0.1 - 0.2 C, typically, 1-2 years after the eruption, although for specific events, like Tambora, the decrease was considerably greater. Additionally, tropical eruptions appear to produce greater changes in temperature than extratropical eruptions, and eruptions occurring in boreal spring-summer appear to produce greater changes in temperature than those occurring in fall-winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH51G..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH51G..04L"><span>USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lisowski, M.; McCaffrey, R.</p> <p>2015-12-01</p> <p>Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier Peak), northern California (Mount Shasta, Medicine Lake, Lassen Peak), and Long Valley. These models take advantage of the data from dense GNSS networks, they provide source parameters for volcanic and tectonic transients, and can be used to discriminate possible short- and long-term volcano- tectonic interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4599627','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4599627"><span>Magmatism at the Eurasian–North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V.; Ntaflos, Theodoros</p> <p>2011-01-01</p> <p>The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian−North American continental plate. The geodynamic evolution of this continent−continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr–Nd–Pb–Hf isotopes of the alkaline suite of rocks combined with new precise K–Ar and 40Ar/39Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively ‘dry’ conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle at 37 Ma. This suggests that at that time, rift tectonics in the Mid-Arctic Ocean most likely had also affected the North-Asian continent, causing volcanic activity in the Chersky belt, before the regional geodynamic regime changed from a tensional to compressional. Our conclusions contribute not only to the understanding of volcanism in the Chersky seismic belt (NE-Russia) but also to general aspects of plate dynamics between the Eurasian and North American continent. PMID:26523071</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26523071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26523071"><span>Magmatism at the Eurasian-North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V; Ntaflos, Theodoros</p> <p>2011-07-01</p> <p>The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian-North American continental plate. The geodynamic evolution of this continent-continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr-Nd-Pb-Hf isotopes of the alkaline suite of rocks combined with new precise K-Ar and 40 Ar/ 39 Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively 'dry' conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle at 37 Ma. This suggests that at that time, rift tectonics in the Mid-Arctic Ocean most likely had also affected the North-Asian continent, causing volcanic activity in the Chersky belt, before the regional geodynamic regime changed from a tensional to compressional. Our conclusions contribute not only to the understanding of volcanism in the Chersky seismic belt (NE-Russia) but also to general aspects of plate dynamics between the Eurasian and North American continent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.118..125V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.118..125V"><span>LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.</p> <p>2016-03-01</p> <p>The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760010427&hterms=casas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcasas','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760010427&hterms=casas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcasas"><span>Skylab photography applied to geologic mapping in northwestern Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rose, W. I., Jr.; Johnson, D. J.; Hahn, G. A.; Johns, G. W.</p> <p>1975-01-01</p> <p>Two photolineation maps of southwestern Guatemala and Chiapas were made from S190 photographs along a ground track from Acajutla, El Salvador to San Cristobal de las Casas, Mexico. The maps document a structural complexity spanning the presumed triple junction of the Cocos, Americas, and Caribbean plates. The Polochic fault zone, supposedly the Americas-Caribbean plate boundary, is a sharply delineated feature across western Guatemala. Westward of the Mexican border it splays into a large number of faults with NW to SW trends. The structural pattern is quite different to the north (Americas plate) and to the south (Caribbean plate) of the Polochic fault, though both areas are dominated by NW-trending lineations. Within the Central American volcanic chain, the lineation patterns support the segmented model of the Benioff Zone, by showing a concentration of transverse lineations in the predicted locations, most notably NE-trending elements near Quezaltenango, Guatemala. The structural pattern obtained from the maps are compared to patterns described on recently published maps of more southerly parts of Central America, to begin a synthesis of the structure of the convergent plate boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00479.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00479.html"><span>Venus - Complex Crater Dickinson in NE Atalanta Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-11-26</p> <p>This Magellan image is centered at 74.6 degrees north latitude and 177.3 east longitude, in the northeastern Atalanta Region of Venus. The image is approximately 185 kilometers (115 miles) wide at the base and shows Dickinson, an impact crater 69 kilometers (43 miles) in diameter. The crater is complex, characterized by a partial central ring and a floor flooded by radar-dark and radar-bright materials. Hummocky, rough-textured ejecta extend all around the crater, except to the west. The lack of ejecta to the west may indicate that the impactor that produced the crater was an oblique impact from the west. Extensive radar-bright flows that emanate from the crater's eastern walls may represent large volumes of impact melt, or they may be the result of volcanic material released from the subsurface during the cratering event. http://photojournal.jpl.nasa.gov/catalog/PIA00479</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191084','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191084"><span>Geology of the Petersburg batholith, eastern Piedmont, Virginia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Owens, Brent E.; Carter, Mark W.; Bailey, Christopher M.</p> <p>2017-01-01</p> <p>The 295-300 Ma Petersburg batholith in east-central Virginia forms one of the largest and northernmost of the Alleghanian plutonic complexes in the southern Appalachian Piedmont. The batholith is primarily composed of granite including massive and foliated (both magmatic and solid-state fabrics) varieties. The plutonic complex intruded medium-grade metamorphosed volcanic/plutonic rocks of the Roanoke Rapids terrane. The western edge of the batholith experienced right lateral transpressional deformation associated with movement on the Hylas fault zone during the Alleghanian orogeny; this was followed by normal faulting and exhumation during the development of the Triassic Richmond basin. Much of the batholith was buried by a thin veneer of primarily Cenozoic siliciclastic sediments at the western edge of the Atlantic Coastal Plain. Granite rocks of the Petersburg batholith have long been quarried for both dimension and crushed stone. The purpose of this trip is to discuss the age, origin, and tectonic significance of the Petersburg batholith.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100017216','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100017216"><span>Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, D. M.; Head, J. W.</p> <p>2009-01-01</p> <p>Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036971','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036971"><span>New evidence for a magmatic influence on the origin of Valles Marineris, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dohm, J.M.; Williams, J.-P.; Anderson, R.C.; Ruiz, J.; McGuire, P.C.; Komatsu, G.; Davila, A.F.; Ferris, J.C.; Schulze-Makuch, D.; Baker, V.R.; Boynton, W.V.; Fairen, A.G.; Hare, T.M.; Miyamoto, H.; Tanaka, K.L.; Wheelock, S.J.</p> <p>2009-01-01</p> <p>In this paper, we show that the complex geological evolution of Valles Marineris, Mars, has been highly influenced by the manifestation of magmatism (e.g., possible plume activity). This is based on a diversity of evidence, reported here, for the central part, Melas Chasma, and nearby regions, including uplift, loss of huge volumes of material, flexure, volcanism, and possible hydrothermal and endogenic-induced outflow channel activity. Observations include: (1) the identification of a new > 50??km-diameter caldera/vent-like feature on the southwest flank of Melas, which is spatially associated with a previously identified center of tectonic activity using Viking data; (2) a prominent topographic rise at the central part of Valles Marineris, which includes Melas Chasma, interpreted to mark an uplift, consistent with faults that are radial and concentric about it; (3) HiRISE-identified landforms along the floor of the southeast part of Melas Chasma that are interpreted to reveal a volcanic field; (4) CRISM identification of sulfate-rich outcrops, which could be indicative of hydrothermal deposits; (5) GRS K/Th signature interpreted as water-magma interactions and/or variations in rock composition; and (6) geophysical evidence that may indicate partial compensation of the canyon and/or higher density intrusives beneath it. Long-term magma, tectonic, and water interactions (Late Noachian into the Amazonian), albeit intermittent, point to an elevated life potential, and thus Valles Marineris is considered a prime target for future life detection missions. ?? 2008 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1979/0844/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1979/0844/report.pdf"><span>Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Koski, Randolph A.</p> <p>1979-01-01</p> <p>The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..84..184G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..84..184G"><span>Geological evolution of Paniri volcano, Central Andes, northern Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godoy, Benigno; Lazcano, José; Rodríguez, Inés; Martínez, Paula; Parada, Miguel Angel; Le Roux, Petrus; Wilke, Hans-Gerhard; Polanco, Edmundo</p> <p>2018-07-01</p> <p>Paniri volcano, in northern Chile, belongs to a volcanic chain trending across the main orientation of the Central Andean volcanic province. Field work mapping, stratigraphic sequences, and one new 40Ar/39Ar and eleven previous published 40Ar/39Ar, and K/Ar ages, indicate that the evolution of Paniri involved eruption of seven volcanic units (Malku, Los Gordos, Las Lenguas, Las Negras, Viscacha, Laguna, and Llareta) during four main stages occurring over more than 1 Myr: Plateau Shield (>800 ka); Main Edifice (800-400 ka); Old Cone (400-250 ka); and New Cone (250-100 ka). Considering glacial and fluvial action, an estimated 85.3 km3 of volcanic material were erupted during the eruptive history of Paniri volcano, giving a bulk eruption rate of 0.061 km3/ka, with major activity in the last 150 kyr (eruption rate of 0.101 km3/ka). Lava flows from Paniri show abundant plagioclase together with subordinate ortho-, and clino-pyroxene, and amphibole as main phenocrysts. Moreover, although true basalts are scarce in the Central Andes, olivine-bearing lavas were erupted at Paniri at ∼400 ka. Also, scarce phenocrysts of biotite, quartz, rutile, and opaque minerals (Fe-Ti oxides) were identified. The groundmass of these flows is composed mainly of glass along with pyroxene and plagioclase microlites. Consolidated and unconsolidated pyroclastic deposits of dacitic composition are also present. The consolidated deposits correspond to vitreous tuffs, whilst unconsolidated deposits are composed of pumice clasts up to 5 cm in diameter. Both pyroclastic deposits are composed of glassy groundmass (up to 80% vol.), and subordinated plagioclase, hornblende, and biotite phenocrysts up to 1 cm in length. Results of twenty-four new, coupled with previous published compositional analyses show that volcanic products of Paniri vary from 57% (basaltic-andesite) to 71% (rhyolite) vol. SiO2, with significant linear correlations between major element-oxide and trace-element concentrations. 87Sr/86Sr isotope ratios range from 0.7070 to 0.7075, indicating that Paniri, similar to other volcanoes of the San Pedro - Linzor volcanic chain, have undergone significant crustal contamination of its parental magmas. However, the almost constant Sr-isotope compositions of the different volcanic units defined for Paniri volcano, suggested later fractional crystallization of magmas at upper crustal levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6284176-volcanism-northwest-ishtar-terra-venus','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6284176-volcanism-northwest-ishtar-terra-venus"><span>Volcanism in Northwest Ishtar Terra, Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gaddis, L.R.; Greeley, R.</p> <p></p> <p>Evidence is presented for a previously undocumented volcanic complex in the highlands of NW Ishtar Terra (74 deg N, 313 deg E). The proposed valcanic center is in mountainous banded terrain thought to have been formed by regional compression. Data used include Soviet Venera 15/16 radar images and topography (Fotokarta Veneri B-4, 1987). An attempt is made to assess the place of this feature in the framework of known volcanic landforms of the Lakshmi Planum and to examine the relationships between volcanism and tectonism in this region. 38 refs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/i-2645-a/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/i-2645-a/"><span>Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.</p> <p>2002-01-01</p> <p>The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and others, 1999, U.S. Geological Survey Geologic Investigations Series I-2645-B).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..355....2F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..355....2F"><span>Origin of the South Atlantic igneous province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foulger, Gillian R.</p> <p>2018-04-01</p> <p>The South Atlantic Igneous Province comprises the Paraná Basalts, Rio Grande Rise, Tristan archipelago and surrounding guyot province, Walvis Ridge, Etendeka basalts and, in some models, the alkaline igneous lineament in the Lucapa corridor, Angola. Although these volcanics are often considered to have a single generic origin, complexities that suggest otherwise are observed. The Paraná Basalts erupted 5 Ma before sea-floor spreading started in the neighborhood, and far more voluminous volcanic margins were emplaced later. A continental microcontinent likely forms much of the Rio Grande Rise, and variable styles of volcanism built the Walvis Ridge and the Tristan da Cunha archipelago and guyot province. Such complexities, coupled with the northward-propagating mid-ocean ridge crossing a major transverse transtensional intracontinental structure, suggest that fragmentation of Pangaea was complex at this latitude and that the volcanism may have occurred in response to distributed extension. The alternative model, a deep mantle plume, is less able to account for many observations and no model variant can account for all the primary features that include eruption of the Paraná Basalts in a subsiding basin, continental breakup by rift propagation that originated far to the south, the absence of a time-progressive volcanic chain between the Paraná Basalts and the Rio Grande Rise, derivation of the lavas from different sources, and the lack of evidence for a plume conduit in seismic-tomography- and magnetotelluric images. The region shares many common features with the North Atlantic Igneous Province which also features persistent, widespread volcanism where a propagating mid-ocean ridge crossed a transverse structural discontinuity in the disintegrating supercontinent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MinPe.110..471R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MinPe.110..471R"><span>Fibrous minerals from Somma-Vesuvius volcanic complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rossi, Manuela; Nestola, Fabrizio; Ghiara, Maria R.; Capitelli, Francesco</p> <p>2016-08-01</p> <p>A survey on fibrous minerals coming from the densely populated area of Campania around the Somma-Vesuvius volcanic complex (Italy) was performed by means of a multi-methodological approach, based on morphological analyses, EMPA/WDS and SEM/EDS applications, and unit-cell determination through X-ray diffraction data. Such mineralogical investigation aims to provide suitable tools to the identification of fibrous natural phases, to improve the knowledge of both geochemical, petrogenetic and regional mineralogy of Somma-Vesuvius area, and to emphasize the presence of minerals with fibrous habit in all volcanic environments. The survey also fits well in the calls of health and environment of Horizon 2020 program of the European Commission (Climate Action, Environment, Resource Efficiency and Raw Materials).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1614/pp1614_report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1614/pp1614_report.pdf"><span>Geologic studies in Alaska by the U.S. Geological Survey, 1997</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kelley, Karen D.</p> <p>1999-01-01</p> <p>Geologic Framework studies provide background information that is the scientific basis for present and future studies of the environment, mineral and energy resources, paleoclimate, and hazards in Alaska. One paper presents the results of sedimentologic and paleontologic comparisons of lower Paleozoic, deep-water-facies rock units in central Alaska (Dumoulin and others). The authors show which of these units are likely to correlate with one another, suggest likely source regions, and provide a structural restoration of units that have been fragmented by large fault motions. A second framework paper provides a map, rock descriptions, and chemical compositions of volcanic rocks in a newly recognized, geologically young volcanic center in the Aleutian volcanic arc (Hildreth and others). A third paper presents an interesting summary of gravity changes that occurred in south-central Alaska during the great earthquake of 1964 and for the following 25 years (Barnes). Gravity changes correlate with land-elevation changes in some cases, but not in others, which means that different processes are responsible for the gravity changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001GeoRL..28.4043D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001GeoRL..28.4043D"><span>A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeMets, Charles</p> <p></p> <p>Velocities from 153 continuously-operating GPS sites on the Caribbean, North American, and Pacific plates are combined with 61 newly estimated Pacific-Cocos seafloor spreading rates and additional marine geophysical data to derive a new estimate of present-day Cocos-Caribbean plate motion. A comparison of the predicted Cocos-Caribbean direction to slip directions of numerous shallow-thrust subduction earthquakes from the Middle America trench between Costa Rica and Guatemala shows the slip directions to be deflected 10° clockwise from the plate convergence direction, supporting the hypothesis that frequent dextral strike-slip earthquakes along the Central American volcanic arc result from partitioning of oblique Cocos-Caribbean plate convergence. Linear velocity analysis for forearc locations in Nicaragua and Guatemala predicts 14±2 mm yr-1 of northwestward trench-parallel slip of the forearc relative to the Caribbean plate, possibly decreasing in magnitude in El Salvador and Guatemala, where extension east of the volcanic arc complicates the tectonic setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/i2799/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/i2799/"><span>Geologic map of the central San Juan caldera cluster, southwestern Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lipman, Peter W.</p> <p>2006-01-01</p> <p>The San Juan Mountains are the largest erosional remnant of a composite volcanic field that covered much of the southern Rocky Mountains in middle Tertiary time. The San Juan field consists mainly of intermediate-composition lavas and breccias, erupted about 35-30 Ma from scattered central volcanoes (Conejos Formation) and overlain by voluminous ash-flow sheets erupted from caldera sources. In the central San Juan Mountains, eruption of at least 8,800 km3 of dacitic-rhyolitic magma as nine major ash flow sheets (individually 150-5,000 km3) was accompanied by recurrent caldera subsidence between 28.3 Ma and about 26.5 Ma. Voluminous andesitic-dacitic lavas and breccias erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of more silicic explosive volcanism. Exposed calderas vary in size from 10 to 75 km in maximum dimension; the largest calderas are associated with the most voluminous eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611479M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611479M"><span>Breakup magmatism style on the North Atlantic Igneous Province: insight from Mid-Norwegian volcanic margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mansour Abdelmalak, Mohamed; Faleide, Jan Inge; Planke, Sverre; Theissen-Krah, Sonja; Zastrozhnov, Dmitrii; Breivik, Asbjørn Johan; Gernigon, Laurent; Myklebust, Reidun</p> <p>2014-05-01</p> <p>The distribution of breakup-related igneous rocks on rifted margins provide important constraints on the magmatic processes during continental extension and lithosphere separation which lead to a better understanding of the melt supply from the upper mantle and the relationship between tectonic setting and volcanism. The results can lead to a better understanding of the processes forming volcanic margins and thermal evolution of associated prospective basins. We present a revised mapping of the breakup-related igneous rocks in the NE Atlantic area, which are mainly based on the Mid-Norwegian (case example) margin. We divided the breakup related igneous rocks into (1) extrusive complexes, (2) shallow intrusive complexes (sills/dykes) and (3) deep intrusive complexes (Lower Crustal Body: LCB). The extrusive complex has been mapped using the seismic volcanostratigraphic method. Several distinct volcanic seismic facies units have been identified. The top basalt reflection is easily identified because of the high impedance contrast between the sedimentary and volcanic rocks resulting in a major reflector. The basal sequence boundary is frequently difficult to identify but it lies usually over the intruded sedimentary basin. Then the base is usually picked above the shallow sill intrusions identified on seismic profile. The mapping of the top and the base of the basaltic sequences allows us to determine the basalt thickness and estimate the volume of the magma production on the Mid- Norwegian margin. The thicker part of the basalt corresponds to the seaward dipping reflector (SDR). The magma feeder system, mainly formed by dyke and sill intrusions, represents the shallow intrusive complex. Deeper interconnected high-velocity sills are also mappable in the margin. Interconnected sill complexes can define continuous magma network >10 km in vertical ascent. The large-scale sill complexes, in addition to dyke swarm intrusions, represent a mode of vertical long-range magma transport through the upper crust. The deep intrusive complex represents the Lower Crustal Body (LCB) which is observed along the margin and characterized by high P-wave velocity bodies (Vp> 7km/s). On the Vøring margin a strong amplitude dome-shaped reflection (the so-called T-Reflection) has been identified and interpreted as the top LCB. In the sedimentary part of the margin, sill intrusions are the major feeder system and seem to be connected with LCB. In the volcanic part of the margin, dykes represent the main feeder system and lie above the thicker part of the LCB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNH31A1589C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNH31A1589C"><span>In-situ monitoring of deformation of clayey and volcanic sequences in the lacustrine plain of Iztapalapa, Mexico City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.</p> <p>2012-12-01</p> <p>Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PEPI..118..111A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PEPI..118..111A"><span>Crustal and upper mantle velocity structure of the Hoggar swell (Central Sahara, Algeria)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayadi, A.; Dorbath, C.; Lesquer, A.; Bezzeghoud, M.</p> <p>2000-02-01</p> <p>The Hoggar region is known as one of the most important swells in the African continent. Its altitude culminates at 2908 m in the Tahat hill (Atakor). The Hoggar and other massifs of central Africa (Aı̈r, Eghei, Tibesti, Darfur, Cameroon mount, …) form a system of domal uplifts with similar scale, morphology and volcanic activity. The knowledge of the structure beneath the Hoggar swell will help us to understand the origin of continental swells. In order to get an image of the lithosphere in this region, we have performed a teleseismic field experiment. The 33 short-period seismic stations have been maintained for 2 1/2 month along a 700-km long NNW-SSW profile. This experiment crossed the Central Hoggar and extended northward into the In-Salah Sahara basin which is characterized by high heat flow values of deep origin. The high quality of the data recorded during this experiment allows us to perform a velocity inversion. The Hoggar appears to be characterized by lower mantle velocities. The anomalous zone extends from the upper lithosphere to the mantle. The weak velocity contrast is interpreted in agreement with gravity, geothermal and petrological data as due to extensive mantle modifications inherited from Cenozoic volcanic activity. It confirms that the Hoggar swell is not due to a large-scale uplift of hot asthenospheric materials but corresponds to a now cooled-off modified mantle. On the contrary, local low-velocity zones associated with the Atakor and Tahalra volcanic districts show that hot materials still exist at depths in relation with recent basaltic volcanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870009477','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870009477"><span>Thematic mapper studies of central Andean volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Francis, Peter W.</p> <p>1987-01-01</p> <p>A series of false color composite images covering the volcanic cordillera was written. Each image is 45 km (1536 x 1536 pixels) and was constructed using bands 7, 4, and 2 of the Thematic Mapper (TM) data. Approximately 100 images were prepared to date. A set of LANDSAT Multispectral Scanner (MSS) images was used in conjunction with the TM hardcopy to compile a computer data base of all volcanic structure in the Central Andean province. Over 500 individual structures were identified. About 75 major volcanoes were identified as active, or potentially active. A pilot study was begun combining Shuttle Imaging Radar (SIR) data with TM for a test area in north Chile and Bolivia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910038986&hterms=lakshmi&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlakshmi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910038986&hterms=lakshmi&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlakshmi"><span>Lakshmi Planum, Venus - Characteristics and models of origin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, Kari M.; Head, James W.</p> <p>1990-01-01</p> <p>The distinctive and unique Venusian geological structure, Lakshmi Planum, is an expansive relatively smooth flat plateau containing two large shield volcanos and abundant volcanic plains in the midst of a region of extreme relief. The characteristics which distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio, are identified. These include its high altitude and plateaulike nature; the presence of two very large low shield structures with distinctive central paterae and long radiating flows; and its compressional tectonic environment. The detailed nature and significance of the volcanic deposits on Lakshmi are determined; the erruption styles and conditions are interpreted; and the link between the observed volcanism and tectonic environment of the region is discussed. Models for the formation of Lakshmi Planum are presented and evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990EM%26P...50..193R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990EM%26P...50..193R"><span>Lakshmi Planum, Venus - Characteristics and models of origin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, Kari M.; Head, James W.</p> <p>1990-12-01</p> <p>The distinctive and unique Venusian geological structure, Lakshmi Planum, is an expansive relatively smooth flat plateau containing two large shield volcanos and abundant volcanic plains in the midst of a region of extreme relief. The characteristics which distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio, are identified. These include its high altitude and plateaulike nature; the presence of two very large low shield structures with distinctive central paterae and long radiating flows; and its compressional tectonic environment. The detailed nature and significance of the volcanic deposits on Lakshmi are determined; the erruption styles and conditions are interpreted; and the link between the observed volcanism and tectonic environment of the region is discussed. Models for the formation of Lakshmi Planum are presented and evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006cosp...36.1449A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006cosp...36.1449A"><span>Study of the structure changes caused by volcanic activity in Mexico applying the lineament analysis to the Aster (Terra) satellite data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arellano-Baeza, A. A.; Garcia, R. V.; Trejo-Soto, M.; Molina-Sauceda, E.</p> <p></p> <p>Mexico is one of the most volcanically active regions in North America Volcanic activity in central Mexico is associated with the subduction of the Cocos and Rivera plates beneath the North American plate Periods of enhanced microseismic activity associated with the volcanic activity of the Colima and Popocapetl volcanoes are compared to some periods of low microseismic activity We detected changes in the number and orientation of lineaments associated with the microseismic activity due to lineament analysis of a temporal sequence of high resolution satellite images of both volcanoes 15 m resolution multispectral images provided by the ASTER VNIR instrument were used The Lineament Extraction and Stripes Statistic Analysis LESSA software package was employed for the lineament extraction</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNS43A1785R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNS43A1785R"><span>Seismic Investigations of the Murci Geothermal Field (Southern Tuscany, Italy): Preliminary Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riedel, M.; Alexandrakis, C.; Buske, S.</p> <p>2013-12-01</p> <p>The Monte Amiata region in the Southern Tuscany, Central Italy, describes a volcanic complex with great significance in terms of the regional fresh water supply, mining and geothermal power generation. Mainly for the latter purpose, the volcanic area of Mt Amiata has been the subject of extensive geological and geophysical research (e.g. Dini et al., 2010 and references therein). The insights from these studies have led to successful geothermal production in the Mt Amiata region since the early 1960s (e.g. Batini et al., 2003). Today's most important reservoirs in this area are the Bagnore and the Piancastagnaio fields which are both operated by the company Enel Green Power. The work presented here deals with the Murci area, another potential reservoir located about 10 km southwest of the Mt Amiata volcanic complex. Therefore, in order to get a more detailed understanding of this area, five reflection seismic profiles were carried out. We have performed on three of them a preliminary depth-migrated images, through Kirchhoff prestack depth migration (KPSDM). The vital point of depth migration algorithms is the accuracy of the velocity model that is used for the backpropagation of the seismic data. Therefore, we derived a suitable 1D starting model from nearby well logs and VSP measurements. In order to remove the large topography effects along the profiles, we then utilized first-arrival tomography for each seismic line. For the following processing we incorporated these 2D tomographic results into our starting model which compensates for static effects and improves the resolution in the near-surface area. The velocity models were then used in the application of KPSDM to the seismic data for each profile, respectively. The resulting preliminary images show a zone of high seismic reflectivity, known as the 'K-horizon' (e.g. Brogi, 2008), and could improve its geological interpretation. These promising results encourage us to proceed with deeper migration velocity analysis which will reveal more details about the structures of the Murci area. Batini, F. et al., 2003: Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy), Episodes, 26, 239-244. Brogi, A., 2008. The structure of the Monte Amiata volcano-geothermal area (Northern Apennines, Italy): Neogene-Quaternary compression versus extension, Int J Earth Sci (Geol Rundsch) (2008) 97:677-703 Dini, I. et al., 2010. Geological Evaluation of the Base of the Mt. Amiata Volcanic Complex (Tuscany, Italy), Procedings World Geothermal Congress 2010, Bali, Indonesia, April 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V21C2508K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V21C2508K"><span>Investigating sources of ignimbrites in the Altiplano-Puna Volcanic Complex using U-Pb dating of zircons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kern, J. M.; de Silva, S. L.; Schmitt, A. K.</p> <p>2011-12-01</p> <p>Large silicic volcanic fields (LSVFs) are thought to represent the surface expression of upper crustal batholith emplacement, with the spatiotemporal distribution of the vents and eruptions representing the development of the system. The Altiplano-Puna Volcanic Complex (APVC) in the Central Andes is a LSVF active from 11-1 Ma that erupted over 13,000 km3 of magma from large, multicyclic caldera centers and smaller ignimbrite shields during 3 distinct pulses of volcanism at 8.4, 5.5, and 4.0 Ma. Links to the magmatic system beneath are being pursued through U-Pb zircon dating of APVC ignimbrites. Initial results comprise 61 238U/206Pb zircon ages of mostly marginal crystal domains from five APVC ignimbrites-the 0.98 ± 0.03 Ma Purico, 3.96 ± 0.08 Ma Atana, 4.0 ± 0.9 Ma Toconao, 4.09 ± 0.02 Ma Puripicar, and 8.33 ± 0.06 Ma Sifon ignimbrites-dated by high-resolution secondary ionization mass spectrometry (SIMS). Each zircon analyzed was less than 350 μm in length and cathodoluminescence images reveal zonations within individual zircons, though significant core-rim age differences are rare. The ~1 Ma Purico ignimbrite displays multiple zircon age populations significantly predating the 40Ar/39Ar eruption age, but younger than ages from the nearby large-volume Atana ignimbrite erupted from La Pacana caldera. Some peaks do, however, coincide with later resurgent activity within La Pacana as expressed by the 2.7 Ma Cerro Bola dome. Zircon ages in the Atana ignimbrite are indistinguishable from its eruption, while those from the 4.0 Ma Toconao ignimbrite-the volatile-rich cap of the Atana magma chamber-contains three populations of xenocrystic zircons from the Proterozoic-Ordivician, ~13 Ma, and ~9 Ma. The ~9 Ma zircons correlate with K-Ar ages from an underlying ignimbrite, whereas the 13 Ma xenocrysts likely have a plutonic source. The Purico ignimbrite thus provides direct evidence of zircon inheritance from previous eruption cycles, while the Toconao records a much more complex history of inheritance and assimilation absent from its consanguineous counterpart, the Atana. The 4.09 Ma Puripicar and 8.33 Ma Sifon ignimbrites display a single zircon age peak up to ~ 0.5 Ma prior to the eruption age. While these data may suggest relatively long magma residence times, the time periods are significantly shorter than the repose period between episodes of ignimbrite eruptions. New U-Pb zircon ages further the understanding of the connections between LSFV ignimbrites and their underlying batholiths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.302..389H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.302..389H"><span>Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: Petrogenetic and tectonic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Haiyang; Li, Yalin; Wang, Chengshan; Zhou, Aorigele; Qian, Xinyu; Zhang, Jiawei; Du, Lintao; Bi, Wenjun</p> <p>2018-03-01</p> <p>The tectonic evolutionary history of the Lhasa and Qiangtang collision zones remains hotly debated because of the lack of pivotal magmatic records in the southern Qiangtang subterrane, central Tibet. We present zircon U-Pb dating, whole-rock major and trace-element geochemical analyses, and Sr-Nd isotopic data for the newly discovered Biluoco volcanic rocks from the southern Qiangtang subterrane, central Tibet. Zircon U-Pb dating reveals that the Biluoco volcanic rocks were crystallized at ca. 95 Ma. The samples are characterized by low SiO2 (50.26-54.53 wt%), high Cr (109.7-125.92 ppm) and Ni (57.4-71.58 ppm), and a high Mg# value (39-56), which plot in the magnesian andesites field on the rock classification diagram. They display highly fractionated rare earth element patterns with light rare earth element enrichment ([La/Yb]N = 21.04-25.24), high Sr/Y (63.97-78.79) and no negative Eu anomalies (Eu/Eu* = 0.98-1.04). The Biluoco volcanic rocks are depleted in Nb, Ta and Ti and enriched in Ba, Th, U and Pb. Moreover, the eight samples of Biluoco volcanic rocks display constant (87Sr/86Sr)i ratios (0.70514-0.70527), a positive εNd(t) value (2.16-2.68) and younger Nd model ages (0.56-0.62 Ga). These geochemical signatures indicate that the Biluoco volcanic rocks were most likely derived from partial melting of the mantle wedge peridotite metasomatized by melts of subducted slab and sediment in the subducted slab, invoked by asthenospheric upwelling resulting from the slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere. Identification of ca. 95 Ma Biluoco magnesian andesites suggests they were a delayed response of slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere at ca. 100 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH11A0087M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH11A0087M"><span>Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.</p> <p>2017-12-01</p> <p>Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615162R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615162R"><span>LiDAR observations of an Earth magmatic plumbing system as an analog for Venus and Mars distributed volcanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, Jacob; Connor, Charles; Malservisi, Rocco; Bleacher, Jacob; Connor, Laura</p> <p>2014-05-01</p> <p>Clusters of tens to thousands of small volcanoes (diameters generally <30 km) are common features on the surface of Mars, Venus, and the Earth. These clusters may be described as distributed-style volcanism. Better characterizing the magmatic plumbing system of these clusters can constrain magma ascent processes as well as the regional magma production budget and heat flux beneath each cluster. Unfortunately, directly observing the plumbing systems of volcano clusters on Mars and Venus eludes our current geologic abilities. Because erosion exposes such systems at the Earth's surface, a better understanding of magmatic processes and migration can be achieved via field analysis. The terrestrial plumbing system of an eroded volcanic field may be a valuable planetary analog for Venus and Mars clusters. The magmatic plumbing system of a Pliocene-aged monogenetic volcanic field, emplaced at 0.8 km depth, is currently exposed as a sill and dike swarm in the San Rafael Desert of Central Utah, USA. The mafic bodies in this region intruded into Mesozoic sedimentary units and now make up the most erosion resistant units as sills, dikes, and plug-like conduits. Light Detection and Ranging (LiDAR) can identify volcanic units (sills, dikes, and conduits) at high resolution, both geomorphologically and with near infrared return intensity values. Two Terrestrial LiDAR Surveys and an Airborne LiDAR Survey have been carried out over the San Rafael volcanic swarm, producing a three dimensional point cloud over approximately 36 sq. km. From the point clouds of these surveys, 1-meter DEMs are produced and volcanic intrusions have been mapped. Here we present reconstructions of the volcanic instrusions of the San Rafael Swarm. We create this reconstruction by extrapolating mapped intrustions from the LiDAR surveys into a 3D space around the current surface. We compare the estimated intrusive volume to the estimated conduit density and estimates of extrusive volume at volcano clusters of similar density. The extrapolated reconstruction and conduit mapping provide a first-order estimate of the final intrustive/extrusive volume ratio for the now eroded volcanic field. Earth, Venus and Mars clusters are compared using Kernel Density Estimation (KDE) , which objectively compares cluster area, complexity, and vent density per sq. km. We show that Martian clusters are less dense than Venus clusters, which in turn are less dense than those on Earth. KDE and previous models of intrusive morphology for Mars and Venus are here used to calibrate the San Rafael plumbing system model to clusters on the two planets. The results from the calibrated Mars and Venus plumbing system models can be compared to previous estimates of magma budget and intrusive/extrusive ratios on Venus and Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7196R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7196R"><span>Spatial and temporal variations of diffuse CO_{2} degassing at the Tenerife North-South Rift Zone (NSRZ) volcano (Canary Islands) during the period 2002-2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez, Fátima; McCollum, John J. K.; Orland, Elijah D. M.; Barrancos, José; Padilla, Germán D.; Calvo, David; Amonte, Cecilia; Pérez, Nemesio M.</p> <p>2017-04-01</p> <p>Subaerial volcanic activity on Tenerife (2034 km2), the largest island of the Canary archipelago, started 14 My ago and 4 volcanic eruptions have occurred in historical times during the last 300 years. The main volcano-structural and geomorphological features of Tenerife are (i) the central volcanic complex, nowadays formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and partially filled by post-caldera volcanic products and (ii) the triple junction-shaped rift system, formed by numerous aligned monogenetic cones. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 My (Dóniz et al., 2008). The North-South Rift Zone (NSRZ) of Tenerife comprises at least 139 cones. The main structural characteristic of the NSRZ of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Since there are currently no visible gas emissions at the NSRZ, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. Five diffuse CO2 degassing surveys have been carried out at NSRZ of Tenerife since 2002, the last one in the summer period of 2016, to evaluate the spatio-temporal variations of CO2 degassing as a volcanic surveillance tool for the NSRZ of Tenerife. At each survey, around 600 sampling sites were selected to cover homogenously the study area (325 km2) using the accumulation chamber method. The diffuse CO2 output ranged from 78 to 707 t/d in the study period, with the highest emission rate measured in 2015. The backgroung emission rate was estimated in 300 t/d. The last results the soil CO2 efflux values ranged from non-detectable up to 24.7 g m-2 d-1. The spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, showed the highest CO2 values as multiple isolated anomalies and did not show a clear relation with the main volcano-structural features of the area. The CO2 output released to the atmosphere in a diffuse way has been estimated at 524 t d-1, which represents a value lower than the previous one (707 t d-1 at summer of 2015) but higher than the background emission rate. These changes in the temporal series confirm the need of periodic diffuse emission surveys in the area as a powerful volcanic surveillance tool in volcanic systems where visible gas emanations are absent. References: Dóniz et al., 2008. J. Volcanol. Geotherm. Res. 173, 185.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23E0527P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23E0527P"><span>Volcanic Tephra ejected in south eastern Asia is the sole cause of all historic ENSO events. This natural aerosol plume has been intensified by an anthropogenic plume in the same region in recent decades which has intensified some ENSO events and altered the Southern Oscillation Index characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Potts, K. A.</p> <p>2017-12-01</p> <p>ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p < 0.01 In recent decades the anthropogenic SE Asian aerosol Plume (SEAP) has intensified the volcanic plume in some years from August to November. Using NASA satellite data from 1978 and the NASA MERRA 2 reanalysis dataset I show correlation coefficients typically over 0.70 and up to 0.97 at p < 0.01 between the aerosol optical depth or index and the ENSO indices. If two events A and B correlate 5 options are available: 1. A causes B; 2. B causes A; 3. C, another event, causes A &B simultaneously; 4. It's a coincidence; and 5. The relationship is complex with feedback. The volcanic correlations only allow options 1 or 4 as ENSO cannot cause volcanoes to erupt and are backed up by several independent satellite datasets. I conclude volcanic and anthropogenic aerosols over SE Asia are the sole cause of all ENSO events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.310..241S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.310..241S"><span>Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao</p> <p>2018-06-01</p> <p>The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of the Yili-Central Tianshan Block were suggested to be the causes for extensive emplacements of the igneous products, which may be in an association with synchronous subduction of the South Tianshan and the North Tianshan oceanic plates, respectively. In this tectonic context, the Carboniferous magmatic rocks of the Wusun Mountain may be a tectonic response to the change in magma sources due to back-arc propagation in the western Chinese Tianshan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JVGR...66..149F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JVGR...66..149F"><span>Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, Anabel; Rose, William I.</p> <p>1995-07-01</p> <p>In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.7160A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.7160A"><span>From middle Miocene to late Quaternary spatial and temporal evolution of Cappadocian Volcanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aydar, E.; Cubukcu, E.; Ersoy, O.; Kabadayı, E.; Duncan, R.</p> <p>2009-04-01</p> <p>Cappadocian Volcanism, Central Turkey was active from Miocene to upper Holocene, originating from varying sources and presents various dynamics. Central Anatolia constitutes a plateau reaching to 1100-1200 meters from the sea level. From Miocene to Quaternary, the volcanism and/or its relationships with local tectonic targeted in numerous works. Those works can be classified as follows: (i) volcanism-tectonic relationship (Pasquare et al, 1988; Toprak and Goncuoglu, 1993; Toprak, 1998, Dhont et al, 1998; Froger et al, 1998), (ii) volcanological, petrological, geochemical works on stratovolcanoes, monogenetic vents, ignimbrites (Batum, 1978; Ercan, 1985; Aydar, 1992; Aydar and Gourgaud, 1993; Aydar et al, 1994; Aydar et al, 1995; Le Pennec et al, 1994; Druitt et al, 1995; Aydar and Gourgaud, 1998; Deniel et al, 1998, Temel, 1998; Kuzucuoglu et al, 1998; Mouralis et al, 2002; Sen et al, 2003) (iii) Geophysical works on the missing calderas (Ongur, 1978; Ekingen, 1982; Froger et al,1998). Cappadocian landscape is made principally of eroded ignimbirites forming fair chimneys. Apart from the ignimbrites, Cappadocia bears several stratovolcanoes (Mt Erciyes, Mt. Hasan) and numerous monogenetic vents (cinder cones, maars, domes) and some andesitic dacitic relicts of lava fields intercalated within the ignimbritic sequence. Although the stratovolcanoes have some historical activities, their initial eruptions occured in Miocene (Kecikalesi stage of Mt Hasan- 13 My), Pliocene (Kocdag stage of Mt Erciyes). The monogenetic vents demonstrate interestingly bi-modal character which is typically found in rifted regions of the world. Origin of this young volcanism is proposed as collision related transitional alkaline-calcalkaline association (Aydar, 1992, Deniel et al, 1998), is also linked to the subduction (Olanca, 1994). Our preliminary data on the Quaternary rhyolitic glass combined with chemical analysis of the Miocene volcanics exhibit that a slight transition from peraluminious to metaluminious toward a rough peralkaline character of volcanics with time. A Rifting (?) occurs and its evolution is unknown and in the frame of this work, a detailed geochronology and geochemistry will be proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196204','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196204"><span>Bedrock geologic map of the Miles Pond and Concord quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rankin, Douglas W.</p> <p>2018-04-20</p> <p>The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The Highlandcroft Granodiorite and Joslin Turn tonalite plutons intruded during the Middle to Late Ordovician.West of the Monroe fault, the Connecticut Valley-Gaspé trough consists of the Silurian and Devonian Waits River and Gile Mountain Formations. The Waits River Formation is a carbonaceous muscovite-biotite-quartz (±garnet) phyllite containing abundant beds of micaceous quartz-rich limestone. The Gile Mountain Formation consists of interlayered metasandstone and graphitic (and commonly sulfidic) slate, along with minor calcareous metasandstone and ironstone. Graded bedding is common in the Gile Mountain Formation. Rocks of the Devonian New Hampshire Plutonic Suite intruded as plutons, dikes, and sills. The largest of these is the Victory pluton, which consists of weakly foliated, biotite granite and granodiorite. The Victory pluton also intruded a large part of the Albee Formation to the north.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BVol...75..769V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BVol...75..769V"><span>Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic ˜5 ka Mt. Gambier Volcanic Complex, south-eastern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Otterloo, Jozua; Cas, Raymond A. F.</p> <p>2013-12-01</p> <p>Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541341','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541341"><span>Ten-year helium anomaly prior to the 2014 Mt Ontake eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sano, Yuji; Kagoshima, Takanori; Takahata, Naoto; Nishio, Yoshiro; Roulleau, Emilie; Pinti, Daniele L.; Fischer, Tobias P.</p> <p>2015-01-01</p> <p>Mt Ontake in central Japan suddenly erupted on 27th September 2014, killing 57 people with 6 still missing. It was a hydro-volcanic eruption and new magmatic material was not detected. There were no precursor signals such as seismicity and edifice inflation. It is difficult to predict hydro-volcanic eruptions because they are local phenomena that only affect a limited area surrounding the explosive vent. Here we report a long-term helium anomaly measured in hot springs close to the central cone. Helium-3 is the most sensitive tracer of magmatic volatiles. We have conducted spatial surveys around the volcano at once per few years since November 1981. The 3He/4He ratios of the closest site to the cone stayed constant until June 2000 and increased significantly from June 2003 to November 2014, while those of distant sites showed no valuable change. These observations suggest a recent re-activation of Mt Ontake and that helium-3 enhancement may have been a precursor of the 2014 eruption. We show that the eruption was ultimately caused by the increased input of magmatic volatiles over a ten-year period which resulted in the slow pressurization of the volcanic conduit leading to the hydro-volcanic event in September 2014. PMID:26286468</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...513069S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...513069S"><span>Ten-year helium anomaly prior to the 2014 Mt Ontake eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sano, Yuji; Kagoshima, Takanori; Takahata, Naoto; Nishio, Yoshiro; Roulleau, Emilie; Pinti, Daniele L.; Fischer, Tobias P.</p> <p>2015-08-01</p> <p>Mt Ontake in central Japan suddenly erupted on 27th September 2014, killing 57 people with 6 still missing. It was a hydro-volcanic eruption and new magmatic material was not detected. There were no precursor signals such as seismicity and edifice inflation. It is difficult to predict hydro-volcanic eruptions because they are local phenomena that only affect a limited area surrounding the explosive vent. Here we report a long-term helium anomaly measured in hot springs close to the central cone. Helium-3 is the most sensitive tracer of magmatic volatiles. We have conducted spatial surveys around the volcano at once per few years since November 1981. The 3He/4He ratios of the closest site to the cone stayed constant until June 2000 and increased significantly from June 2003 to November 2014, while those of distant sites showed no valuable change. These observations suggest a recent re-activation of Mt Ontake and that helium-3 enhancement may have been a precursor of the 2014 eruption. We show that the eruption was ultimately caused by the increased input of magmatic volatiles over a ten-year period which resulted in the slow pressurization of the volcanic conduit leading to the hydro-volcanic event in September 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.147..502M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.147..502M"><span>Paleogene volcanism in Central Afghanistan: Possible far-field effect of the India-Eurasia collision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motuza, Gediminas; Šliaupa, Saulius</p> <p>2017-10-01</p> <p>A volcanic-sedimentary succession of Paleogene age is exposed in isolated patches at the southern margin of the Tajik block in the Ghor province of Central Afghanistan. The volcanic rocks range from basalts and andesites to dacites, including adakites. They are intercalated with sedimentary rocks deposited in shallow marine environments, dated biostratigraphically as Paleocene-Eocene. This age corresponds to the age of the Asyābēd andesites located in the western Ghor province estimated by the 40Ar/39Ar method as 54 Ma. The magmatism post-dates the Cimmerian collision between the Tajik block (including the Band-e-Bayan block) and the Farah Rod block located to the south. While the investigated volcanic rocks apparently bear geochemical signatures typical to an active continental margin environment, it is presumed that the magmatism was related to rifting processes most likely initiated by far-field tectonics caused by the terminal collision of the Indian plate with Eurasia (Najman et al., 2017). This event led to the dextral movement of the Farah Rod block, particularly along Hari Rod (Herat) fault system, resulting in the development of a transtensional regime in the proximal southern margin of the Tajik block and giving rise to a rift basin where marine sediments were interbedded with pillow lavas intruded by sheeted dyke series.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26286468','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26286468"><span>Ten-year helium anomaly prior to the 2014 Mt Ontake eruption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sano, Yuji; Kagoshima, Takanori; Takahata, Naoto; Nishio, Yoshiro; Roulleau, Emilie; Pinti, Daniele L; Fischer, Tobias P</p> <p>2015-08-19</p> <p>Mt Ontake in central Japan suddenly erupted on 27(th) September 2014, killing 57 people with 6 still missing. It was a hydro-volcanic eruption and new magmatic material was not detected. There were no precursor signals such as seismicity and edifice inflation. It is difficult to predict hydro-volcanic eruptions because they are local phenomena that only affect a limited area surrounding the explosive vent. Here we report a long-term helium anomaly measured in hot springs close to the central cone. Helium-3 is the most sensitive tracer of magmatic volatiles. We have conducted spatial surveys around the volcano at once per few years since November 1981. The (3)He/(4)He ratios of the closest site to the cone stayed constant until June 2000 and increased significantly from June 2003 to November 2014, while those of distant sites showed no valuable change. These observations suggest a recent re-activation of Mt Ontake and that helium-3 enhancement may have been a precursor of the 2014 eruption. We show that the eruption was ultimately caused by the increased input of magmatic volatiles over a ten-year period which resulted in the slow pressurization of the volcanic conduit leading to the hydro-volcanic event in September 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51B0351S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51B0351S"><span>Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stelten, M. E.; Downs, D. T.; Dietterich, H. R.</p> <p>2017-12-01</p> <p>Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through fractional crystallization and/or partial melting of these stalled intrusions. Lesser basaltic input beneath the north end of the volcanic field failed to create a sizable intrusive complex, so basaltic magmas are able to ascend though the crust unimpeded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017420','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017420"><span>Lead isotope compositions as guides to early gold mineralization: The North Amethyst vein system, Creede district, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foley, Nora K.; Ayuso, Robert A.</p> <p>1994-01-01</p> <p>Pb isotope compositions from the late stage of the North Amethyst vein system and from the Bondholder and central and southern Creede mining districts are more radiogenic than the host volcanic rocks of the central cluster of the San Juan volcanic field. Our Pb isotope results indicate that early Au mineralization of the North Amethyst area may represent the product of an older and relatively local hydrothermal system distinct from that of the younger base metal and Ag mineralization found throughout the region. Fluids that deposited Au minerals may have derived their Pb isotope composition by a greater degree of interaction with shallow, relatively less radiogenic volcanic wall rocks. The younger, base metal and Ag-rich mineralization that overprints the Au mineralization in the North Amethyst area clearly has a more radiogenic isotopic signature, which implies that the later mineralization derived a greater component of its Pb from Proterozoic source rocks, or sediments derived from them.Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007E%26PSL.253...57K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007E%26PSL.253...57K"><span>Cenozoic changes in atmospheric lead recorded in central Pacific ferromanganese crusts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klemm, Veronika; Reynolds, Ben; Frank, Martin; Pettke, Thomas; Halliday, Alex N.</p> <p>2007-01-01</p> <p>The possible sources of pre-anthropogenic Pb contributed to the world's oceans have been the focus of considerable study. The role of eolian dust versus riverine inputs has been of particular interest. With better calibration of isotopic records from central Pacific ferromanganese crusts using Os isotope stratigraphy it now appears that deep water Pb isotopic compositions were effectively homogeneous over a distance of 5000 km for the past 80 Myr. The composition shifted slightly from high 206Pb/ 204Pb ratios in the range of 18.87 ± 0.02 before 65 Ma to lower values of 18.62 ± 0.02 by 45 Ma and then gradually increased again very slightly to the present day ratio of 18.67 ± 0.02. The regional homogeneity provides evidence of a dominant well-mixed atmospheric source the most likely candidate for which is volcanic aerosols contributed either directly or as soluble condensates on eolian dust. The slight shift in Pb isotope composition of deep waters in the central Pacific between 65 and 45 Ma may be the result of a regional- or perhaps global-scale change in the sources of volcanic exhalations and volcanic activity caused by an increase in the importance of melting and assimilation of older continental crustal components over the Cenozoic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860063103&hterms=discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddiscrimination','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860063103&hterms=discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddiscrimination"><span>Lithologic discrimination of volcanic and sedimentary rocks by spectral examination of Landsat TM data from the Puma, Central Andes Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fielding, E. J.</p> <p>1986-01-01</p> <p>The Central Andes are widely used as a modern example of noncollisional mountain-building processes. The Puna is a high plateau in the Chilean and Argentine Central Andes extending southward from the altiplano of Bolivia and Peru. Young tectonic and volcanic features are well exposed on the surface of the arid Puna, making them prime targets for the application of high-resolution space imagery such as Shuttle Imaging Radar B and Landsat Thematic Mapper (TM). Two TM scene quadrants from this area are analyzed using interactive color image processing, examination, and automated classification algorithms. The large volumes of these high-resolution datasets require significantly different techniques than have been used previously for the interpretation of Landsat MSS data. Preliminary results include the determination of the radiance spectra of several volcanic and sedimentary rock units and the use of the spectra for automated classification. Structural interpretations have revealed several previously unknown folds in late Tertiary strata, and key zones have been targeted to be investigated in the field. The synoptic view of space imagery is already filling a critical gap between low-resolution geophysical data and traditional geologic field mapping in the reconnaissance study of poorly mapped mountain frontiers such as the Puna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513072H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513072H"><span>Lazufre volcanic complex, Chile: attempts to image a large scale magmatic inflation body using regional and teleseismic broadband recordings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heimann, Sebastian; Trabs, Stefan; Dahm, Torsten</p> <p>2013-04-01</p> <p>The Lazufre volcanic area around Lastarria and Cordon del Azufre in the central Andes is the second largest area of presently active volcano related uplift woldwide. A magma reservoir or sill layer, filling in about 10 km depth, is thought to be causative for inflation of an area of more than 1800 km2 (more than four times larger than the total area of the city of Vienna). Uplift rates of up to 3.2 cm/yr were found from InSAR measurements during the past two decades. In 2008, we deployed a network of 17 broadband seismometers in and around the area of active uplift for a period of 2 months. Hundreds of regional and several teleseismic earthquakes were recorded during the experiment. Recorded seismograms show strong anomalies in the region of maximum uplift. We tried to apply (1) tomography with regional events and (2) the receiver function technique with teleseismic events in order to interprete the recorded anomalies. Due to the relatively short dataset and the very heterogeneous structure beneath Lazufre, both techniques could only be applied with limited success. (1) To gain a full tomographic image of the deep underground, ray coverage was not dense enough. However, recorded delay times and amplitude decreases for rays passing through the inflation center carry valuable information. (2) Receiver functions were strongly influenced by 3D structure and could not be intepreted using standard techniques. Nevertheless, careful data selection and comparison with modelling results led to conclusions. In combination, our results allow for some insights into the volcanic complex. We can confirm the presence of molten or partially molten material at a depth of 8 km in the center and 12 km in the outer parts and can derive constraints on the lateral extent of the intrusion. We also find evidence for a huge low velocity zone at greater depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14766034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14766034"><span>[Fluoride in drinking water in Cuba and its association with geological and geographical variables].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luna, Liliam Cuéllar; Melián, Maricel García</p> <p>2003-11-01</p> <p>To determine the association between different concentrations of the fluoride ion in drinking water and some geological and geographical variables in Cuba, by using a geographic information system. From November 1998 to October 1999 we studied the fluoride concentration in the sources of drinking water for 753 Cuban localities that had at least 1 000 inhabitants. For the information analysis we utilized the MapInfo Professional version 5.5 geographic information system, using the overlaying method. The study variables were the concentration of the fluoride ion in the water sources, the geological characteristics of the area, the alignments (geological characteristics that were found together), the types of water sources, and whether an area was a plain or mountainous. The results were grouped by locality and municipality. In 83.1% of the localities, the water samples were collected from wells and springs, and the remaining 16.9% came from dams and rivers. Of the 753 localities studied, 675 of them (89.6%) had low or medium fluoride concentrations (under 0.7 mg/L). The eastern region of the country was the one most affected by high fluoride concentrations in the waters, followed by the central region of the country. The majority of the localities with high natural fluoride concentrations were in areas located on Cretaceous volcanic arc rocks. The presence of fluoride in the drinking waters was related to the alignments with the earth's crust, in rock complexes of volcanic-sedimentary origin and of intrusive origin and also in carbonate rocks. However, the highest fluoride concentrations generally coincided with rock complexes of volcanic-sedimentary origin and of intrusive origin. All the localities with high fluoride concentrations in the water were associated with wells. The fluoride concentration is low or medium in the drinking water sources for 89.6% of the Cuban localities with at least 1 000 inhabitants. Geological and geographical characteristics can help identify areas with optimal or high concentrations of the fluoride ion in the drinking water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNS23A1558G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNS23A1558G"><span>Aeromagnetic Study of the Nortern Acambay Graben and Amealco Caldera, Central Mexican Volcanic Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez, T.</p> <p>2011-12-01</p> <p>The Mexican Volcanic Belt (MVB) is characterized by E-W striking faults which form a series of en echelon graben along its length. In the central region of the MVB is located the Acambay graben an intra-arc tectonic depression structure, of apparent Quaternary age, which gives rise to pronounced scarps over a distance of about 80 Km. and 15 to 35 Km wide. The general arrangement of the faults that constitute the Acambay graben shows E-W trend which defines the fronts of the graben exhibits a major fault discontinuity. The graben is limited of the north by the Acambay- Tixmadeje and Epitafio Huerta faults and in the south by the Pastores and Venta de Bravo faults.. In the northern wall in the graben is located the Amealco caldera. This volcanic center (approximately 10 km in diameter) was formed by several discrete volcanic events, which produced an ignimbrite which covers the area. It is partially cut by a regional fault and the southern portion of the Amealco Caldera was displaced by a normal faulting along a segment of the Epitafio Huerta system. Continued tectonic activity in the Acambay area is confirmed by recent seismic episodes The Amealco tuff is the most important volcanic unit because of its volume and distribution. Aeromagnetic data was obtained and analyzed the anomalies. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by the filtering of high frequency anomalies that may be related to shallow sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021084','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021084"><span>Anorogenic nature of magmatism in the Northern Baikal volcanic belt: Evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neymark, L.A.; Larin, A.M.; Nemchin, A.A.; Ovchinnikova, G.V.; Rytsk, E. Yu</p> <p>1998-01-01</p> <p>The Northern Baikal volcanic belt has an age of 1.82-1.87 Ga and extends along the boundary between the Siberian Platform and the Baikal foldbelt. The volcanic belt is composed of volcanics of the Akitkan Group and granitic rocks of the Irel and Primorsk complexes. The geochemistry of the rocks points to the intraplate anorogenic nature of the belt. U-Pb zircon dating of the Chuya granitoids revealed that they are older (2020-2060 Ma) than the Northern Baikal volcanic belt and, thus, cannot be regarded as its component. Data on the Pb isotopic system of feldspars from the granitoids confirm the contemporaneity of all volcanic rocks of the belt except the volcanics of the upper portion of the Akitkan Group (Chaya Formation). Our data suggest its possibly younger (???1.3 Ga) age. The isotopic Nd and Pb compositions of the acid volcanic rocks provide evidence of the heterogeneity of their crustal protoliths. The volcanics of the Malaya Kosa Formation have ??Nd(T) = -6.1, ??2 = 9.36, and were most probably produced with the participation of the U-depleted lower continental crust of Archean age. Other rocks of the complex show ??Nd(T) from -0.1 to -2.4, ??2 = 9.78, and could have been formed by the recycling of the juvenile crust. The depletion of the Malaya Kosa volcanics in most LILEs and HFSEs compared with other acid igneous rocks of the belt possibly reflects compositional differences between the Late Archean and Early Proterozoic crustal sources. The basaltic rocks of the Malaya Kosa Formation (??Nd varies from -4.6 to -5.4) were produced by either the melting of the enriched lithospheric mantle or the contamination of derivatives of the depleted mantle by Early Archean lower crustal rocks, which are not exposed within the area. Copyright ?? 1998 by MAEe Cyrillic signK Hay??a/Interperiodica Publishing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157344','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157344"><span>Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vazquez, Jorge A.; Woolford, Jeff M</p> <p>2015-01-01</p> <p>The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53D3135V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53D3135V"><span>Monogenetic Arc Volcanism in the Central Andes: The "Hidden" Mafic Component in the Land of Andesite and Ignimbrite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Alderwerelt, B. M.; Ukstins Peate, I.; Ramos, F. C.</p> <p>2016-12-01</p> <p>Faulting in the upper crust of the Central Andes has provided passage for small volumes of mafic magma to reach the surface, providing a window into petrogenetic processes in the region's deep crust and upper mantle. Mafic lavas are rare in the Central Andean region dominated by intermediate-composition arc volcanism and massive sheets of silicic ignimbrite, and provide key data on magmatic origin, evolution, and transport. This work characterizes fault-controlled, within-arc monogenetic eruptive centers representative of the most mafic volcanism in the Altiplano-Puna region of the Andes since (at least) the Mesozoic. Olivine-phyric basaltic andesite (54 wt% SiO2, 7.3 wt% MgO) at Cerro Overo maar and associated dome, La Albóndiga Grande, and an olivine-clinopyroxene flow (53 wt% SiO2, 6.7 wt% MgO) from Cordón de Puntas Negras have been erupted at the intersection of regional structural features and the modern volcanic arc. Bulk magma chemistry, radiogenic isotopes, and microanalyses of mineral and melt inclusion composition provide insight on the composition(s) of mafic magmas being delivered to the lowermost crust and the deep crustal processes which shape central Andean magma. Bulk major and trace elements follow regional arc differentiation trends and are clearly modified by crustal magmatic processes. In contrast, microanalyses reveal a much richer history with olivine-hosted melt inclusions recording multiple distinct magmas, including potential primary melts. Single crystal olivine 87Sr/86Sr from Cerro Overo (0.7041-0.7071) define a broader range than whole rock (0.7062-0.7065), indicating preservation of juvenile melt in olivine-hosted inclusions lost at the whole rock scale. Mineral chemistry (via EMPA) P-T calculations define a petrogenetic history for these endmember lavas. Field mapping, bulk chemistry, and microanalyses outline the generation, storage, transportation, and eventual eruption of the "hidden" mafic component of the Andean arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33A0861D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33A0861D"><span>Image the heterogeneous structure of Colima volcano complex using ambient noise and teleseismic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, Y.; Yang, T.</p> <p>2017-12-01</p> <p>As one of the most active stratovolcano in present world, Colima volcano has aroused extensive researches about its structure and mechanism. Preceded studies have described the deep internal structure of Jalisco subduction zone and attributed the surface volcanism to the subduction of Rivera plate and Cocos plate here, but the image of crustal structure remains vague. Thus our work aims to depict the lithosphere structure and magma system, trying to understand the material transportation of Colima volcano. Two dense networks of temporary stations, CODEX and MARS, were deployed in the studying area during 2006-2007, collected adequate seismic data for tomography. We used ambient noise tomography to obtain both the phase velocity maps and azimuthal anisotropic character of crust. Those results show a shallow magma chamber right beneath the Colima volcano reaching a depth of 8km and its azimuthal anisotropic character ,which is of larger magnitude and northeast-ward in the connection part, indicates the material probably flow from central Mexico volcanic zone in the superficial crust. Hereafter, we combine the ambient noise tomography with surface wave tomography which corresponding to deeper structure. Phase velocity information from two methods are then used to invert a 3D heterogeneous model, which well presents the complex lithosphere structure of this area and shows the connection between the mantle window and magma chamber, giving the clues of how the magma materials transport from source to surface to support the constant eruption of Colima volcano.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.9485V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.9485V"><span>Reference data set of volcanic ash physicochemical and optical properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, A.; Diplas, S.; Durant, A. J.; Azar, A. S.; Sunding, M. F.; Rose, W. I.; Sytchkova, A.; Bonadonna, C.; Krüger, K.; Stohl, A.</p> <p>2017-09-01</p> <p>Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this study, we provide a data set that describes the physicochemical and optical properties of a representative selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica contents (50-80 wt % SiO2). We measured and calculated parameters describing the physical (size distribution, complex shape, and dense-rock equivalent mass density), chemical (bulk and surface composition), and optical (complex refractive index from ultraviolet to near-infrared wavelengths) properties of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the common igneous rock types basalt to rhyolite. We found that the mass density ranges between <fi>ρ</fi> = 2.49 and 2.98 g/cm3 for rhyolitic to basaltic ash types and that the particle shape varies with changing particle size (<fi>d</fi> < 100 μm). The complex refractive indices in the wavelength range between <fi>λ</fi> = 300 nm and 1500 nm depend systematically on the composition of the samples. The real part values vary from <fi>n</fi> = 1.38 to 1.66 depending on ash type and wavelength and the imaginary part values from <fi>k</fi> = 0.00027 to 0.00268. We place our results into the context of existing data and thus provide a comprehensive data set that can be used for future and historic eruptions, when only basic information about the magma type producing the ash is known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..719D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..719D"><span>Petrology and petrogenesis of the Eocene Volcanic rocks in Yildizeli area (Sivas), Central Anatolia, Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doğa Topbay, C.; Karacık, Zekiye; Genç, S. Can; Göçmengil, Gönenç</p> <p>2015-04-01</p> <p>Yıldızeli region to the south of İzmir Ankara Erzincan suture zone is situated on the large Sivas Tertiary sedimentary basin. After the northern branch of the Neotethyan Ocean was northerly consumed beneath the Sakarya Continent, a continent - continent collision occurred between the Anatolide- Tauride platform and Pontides and followed a severe intermediate magmatism during the Late Cretaceous- Tertiary period. This created an east-west trending volcanic belt along the whole Pontide range. In the previous studies different models are suggested for the Eocene volcanic succession such as post-collisional, delamination and slab-breakoff models as well as the arc model for its westernmost parts. We will present our field and geochemical data obtained from the Yıldızeli and its surroundings for its petrogenesis, and will discuss the tectonic model(s) on the basis of their geochemical/petrological aspects. Cenozoic volcanic sequences of Yıldızeli region which is the main subject of this study, overlie Pre-Mesozoic crustal meta-sedimentary group of Kırşehir Massif, Ophiolitic mélange and Cretaceous- Paleocene? flysch-like sequences. In the northern part of Yıldızeli region, north vergent thrust fault trending E-W seperates the ophiolitic mélange complex from the Upper Cretaceous-Paleocene and Tertiary formations. Volcano-sedimentary units, Eocene in age, of the Yıldızeli (Sivas-Turkey) which are intercalated with sedimentary deposits related to the collision of Anatolide-Tauride and a simultaneous volcanic activity (i.e. the Yıldızeli volcanics), exposed throughout a wide zone along E-W orientation. Yıldızeli volcanics consist of basalts, basaltic-andesites and andesitic lavas intercalated flow breccias and epiclastic, pyroclastic deposits. Basaltic andesite lavas contain Ca-rich plagioclase + clinopyroxene ± olivine with minor amounts of opaque minerals in a matrix comprised of microlites and glass; andesitic lavas are generally contain Ca-Na plagioclase + hornblend ± pyroxene ± biotite + opaques in a matrix comprised of mostly glass, microlites or crypto to micro crystalline feldspars. All the lavas show mainly pilotaxitic, intersertal, cumulophyric and poikilitic textures. Geochemically, Yıldızeli lavas ranging in composition from basalt to trachyandesite displaying the calc-alkaline affinity with medium-K and shoshonitic character. All intermediate and basic volcanic rocks show enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to the high field strength elements (HFSE) such as Nb, Ta, Zr and Ti. Volcanic rocks of the Yıldızeli region display the following range in Sr and Nd initial isotope ratios: 87Sr/86Sr = 0.704389 to 0.706291 and 143Nd/144Nd = 0.512671. The major- trace element geochemistry and isotopic values suggest that Yıldızeli volcanics derived possibly from a mantle source which was modified by subduction related fluids or was contaminated by the continental crustal components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Litho..82..149C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Litho..82..149C"><span>Metamorphozed Hercynian granitoids in the Alpine structures of the Central Rhodope, Bulgaria: geotectonic position and geochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherneva, Zlatka; Georgieva, Milena</p> <p>2005-05-01</p> <p>Orthogneisses of late-Hercynian protolith age crop out in the Central Rhodope high-grade metamorphic complex, which is part of the Alpine orogen in south-eastern Europe. They compose a tectonic unit bordered by late-Alpine extensional shear zones. These rocks reflect Eocene amphibolite facies migmatization (<750 °C/0.9-0.5 GPa). The low-temperature melting favored zircon inheritance and disturbed mainly the LILE protolith compositions. Despite the intense Alpine metamorphic overprint, the major elements, HFSE and REE reflect the initial composition of the Hercynian protolith. A geochemical data set summarizing 200 whole rock analyses testifies to a calc-alkaline magma differentiation producing a compositional range of tonalite and/or granodiorite to granite and leucocratic granite. Geochemical compositions combined with published isotope and age data suggest dominant I-type protoliths and mixed magma sources including crustal and mantle material, and distinguish between older granitoids of volcanic-arc affinity and probably younger ones of late or post-collision origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BVol...74..359S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BVol...74..359S"><span>The role of magma mixing in the petrogenesis of mafic alkaline lavas, Rockeskyllerkopf Volcanic Complex, West Eifel, Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaw, Cliff S. J.; Woodland, Alan B.</p> <p>2012-03-01</p> <p>The quaternary Rockeskyllerkopf Volcanic Complex (RVC) comprises three spatially and temporally distinct volcanic centers that can also be distinguished on the basis of their geochemical signatures. All the volcanic products in the complex are olivine basanites whose major and trace element compositions span almost the entire range defined for the West Eifel field as a whole. The RVC lavas have lower Al2O3, Na2O and Y contents and higher TiO2, CaO, K2O, Sc, V, Co, Rb, and Ba than the Tertiary lavas in nearby Hocheifel volcanic field. Within the complex, the oldest South East Lammersdorf Center (SEL) comprises primitive lavas with an average MgO content of ˜11 wt.% and LaN/YbN of 29 ± 2. The second center, Mäuseberg, has similar MgO to SEL but is distinct in its much higher LaN/YbN of 42 ± 2. The Rockeskyllerkopf Center, which was erupted after a break in activity, comprises lavas similar in composition to the SEL Center but with distinctly higher Al2O3 and lower MgO contents. Given the lack of evidence for significant fractionation or assimilation in the RVC lavas, we attribute the compositional variations within and between the centers of the RVC to be due to variations in the composition of the source region in combination with magma mixing. Our preferred model involves 1-5% partial melting of LREE-enriched mantle in the garnet stability field, likely within the thermal boundary layer at the base of the lithospheric mantle. These melts mixed to variable degrees with 2-4% partial melts of phlogopite-spinel peridotite formed at higher levels in the modally metasomatised lithospheric mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770013590','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770013590"><span>Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, K. (Principal Investigator)</p> <p>1976-01-01</p> <p>The author has identified the following significant results. The Hayden Pass (Orient mine area) includes 60 sq miles of the northern Sangre de Cristo Mountains and San Luis Valley in south-central Colorado. Based on interpretation of the remote sensor data, a geologic map was prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives an indication of the usefulness and reliability of the remote sensor data. The relative utility of color and color infrared photography was tested. The photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all quaternary deposits and 62% of all areas of tertiary volcanic outcrop. Using a filter wheel photometer, more than 8,600 measurements of band reflectance of several sedimentary rocks were performed. The following conclusions were drawn: (1) the typical spectral reflectance curve shows a gradual increase with increasing wavelength; (2) the average band reflectance is about 0.20; and (3) within a formation, the minimum natural variation is about 0.04, or about 20% of the mean band reflectance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss025e006163.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss025e006163.html"><span>Earth Observations taken by the Expedition 25 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-10-06</p> <p>ISS025-E-006163 (6 Oct. 2010) --- Nevado Coropuna, Peru is featured in this image photographed by an Expedition 25 crew member on the International Space Station. Nevado (“snowy” or “snowy peak” in Spanish) Coropuna is the highest volcanic peak in Peru – the summit elevation is 6,377 meters above sea level. Rather than being a single stratovolcano, Coropuna is a volcanic complex of numerous summit cones. The complex covers an area of 240 square kilometers within the Ampato mountain range (Cordillera Ampato) in southeast-central Peru. While the exact date of the volcano’s last eruption is not known, lava flows (black, at center and upper left) along the northern, southern, and western flanks of the complex are thought to have been emplaced during the early Holocene Epoch – the current geologic time period which began approximately 12,000 years ago, according to scientists. Coropuna also hosts several summit glaciers and icefields (white to gray, center) that contrast sharply with the dark rock outcrops and surface deposits at lower elevations. Glacial deposits and lateral moraines on the flanks of Coropuna indicate that glaciers once extended to much lower elevations than are observed today. Scientists believe that careful mapping and surface exposure age-dating of these glacial deposits and landforms provides data on the timing of ice advances and retreats in the tropics near the end of the Pleistocene Epoch (extending from approximately 2.5 million to approximately 12,000 years ago). In turn, this information can be compared with other paleoclimate records to obtain a better understanding of how Earth’s global climate has changed over geologic time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..356...90F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..356...90F"><span>Contrasting styles of post-caldera volcanism along the Main Ethiopian Rift: Implications for contemporary volcanic hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fontijn, Karen; McNamara, Keri; Zafu Tadesse, Amdemichael; Pyle, David M.; Dessalegn, Firawalin; Hutchison, William; Mather, Tamsin A.; Yirgu, Gezahegn</p> <p>2018-05-01</p> <p>The Main Ethiopian Rift (MER, 7-9°N) is the type example of a magma-assisted continental rift. The rift axis is populated with regularly spaced silicic caldera complexes and central stratovolcanoes, interspersed with large fields of small mafic scoria cones. The recent (latest Pleistocene to Holocene) history of volcanism in the MER is poorly known, and no eruptions have occurred in the living memory of the local population. Assessment of contemporary volcanic hazards and associated risk is primarily based on the study of the most recent eruptive products, typically those emplaced within the last 10-20 ky. We integrate new and published field observations and geochemical data on tephra deposits from the main Late Quaternary volcanic centres in the central MER to assess contemporary volcanic hazards. Most central volcanoes in the MER host large mid-Pleistocene calderas, with typical diameters of 5-15 km, and associated ignimbrites of trachyte and peralkaline rhyolite composition. In contrast, post-caldera activity at most centres comprises eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones. The frequency and magnitude of events varies between individual volcanoes. Some volcanoes have predominantly erupted obsidian lava flows in their most recent post-caldera stage (Fentale), whereas other have had up to 3 moderate-scale (VEI 3-4) explosive eruptions per millennium (Aluto). At some volcanoes we find evidence for multiple large explosive eruptions (Corbetti, Bora-Baricha, Boset-Bericha) which have deposited several centimetres to metres of pumice and ash in currently densely populated regions. This new overview has important implications when assessing the present-day volcanic hazard in this rapidly developing region. Supplementary Table 2 Main Ethiopian Rift outcrop localities with brief description of geology. All coordinates in Latitude - Longitude, WGS84 datum. Sample names (as listed in Supplementary Table 3a) follow outcrop name followed by a letter (e.g. A, B, etc.). Supplementary Table S3a. EMP data for all samples analysed in this study. Outcrop coordinates for terrestrial outcrops (names starting with "MER") are listed in Supplementary Table S2. Points refer to individual analysis spots, each on an individual patch of glass, avoiding visible crystals. Analyses suggesting an influence of (hidden) crystals have been omitted. Samples are grouped by volcano (South to North, Fig 1) and units are identified where possible. Only the most widely distributed units are given a unique name. Other units are identified as "NA" followed by the unit number of their corresponding section (in stratigraphic order, #1 being the youngest). Run refers to date analyses were acquired; corresponding secondary standard analyses and analytical conditions for all runs, ordered by date, are listed in Supplementary Table S3b. Analyses are normalised to volatile-free composition. Cl was also omitted from normalisation because it was not analysed for all samples. Supplementary Table S3b EMP analyses of secondary glass standards (non-normalised) run together with samples. All analyses were run at 15 kV accelerating voltage, 6 (or 4) nA beam current, and 10 (or 5) μm beam width. Standards were run at the start, regularly during and at the end of each run to monitor data quality. Error bars, also reported with the samples, are calculated as 2 x relative standard deviation on the standard analyses and hence represent precision of the data. Data accuracy is colour-coded on the average for each standard analysis during each run: green values are within 1s of the preferred values, orange within 2s, and red out of the 2s range. Standards used are ATHO-G (rhyolite), NIST-612 (synthetic glass), StHs6/80-G (andesite/dacite) and ML3B-G (basalt), and cover the range of expected values in our sample set. Preferred values, after Jochum et al. (2006, 2011), can also be consulted on GeoREM (http://georem.mpch-mainz.gwdg.de/).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016933','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016933"><span>Volcanic episodes near Yucca Mountain as determined by paleomagnetic studies at Lathrop Wells, Crater Flat, and Sleeping Butte, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Champion, Duane E.; ,</p> <p>1991-01-01</p> <p>It has been suggested that mafic volcanism in the vicinity of Yucca Mountain, Nev., is both recent (20 ka) and a product of complex 'polycyclic' eruptions. This pattern of volcanism, as interpreted by some workers at the Lathrop Wells volcanic complex, comprises a sequence of numerous small-volume eruptions that become more tephra-producing over time. Such sequences are thought to occur over timespans as long as 100,000 years. However, paleomagnetic studies of the tephra and lava flows from mafic volcanoes near Yucca Mountain fail to find evidence of repeated eruptive activity over timespans of 103 to 105 years, even though samples have been taken that represent approximately 95% of the products of these volcanoes. Instead, the eruptions seem to have occurred as discrete episodes at each center and thus can be considered to be 'monogenetic'. Dates of these episodes have been obtained by the proven radiometric-geochronometer methods of K-Ar or 40Ar/39Ar dating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JAfES..24...95S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JAfES..24...95S"><span>Link between the granitic and volcanic rocks of the Bushveld Complex, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schweitzer, J. K.; Hatton, C. J.; De Waal, S. A.</p> <p>1997-02-01</p> <p>Until recently, it was proposed that the Bushveld Complex, consisting of the extrusive Rooiberg Group and the intrusive Rashoop Granophyre, Rustenburg Layered and Lebowa Granite Suites, evolved over a long period of time, possibly exceeding 100 Ma. Most workers therefore considered that the various intrusive and extrusive episodes were unrelated. Recent findings suggest that the intrusive, mafic Rustenburg Layered Suite, siliceous Rashoop Granophyre Suite and the volcanic Rooiberg Group were synchronous, implying that the Bushveld igneous event was short-lived. Accepting the short-lived nature of the complex, the hypothesis that the granites are genetically unrelated to the other events of the Bushveld Complex can be reconsidered. Re-examination of the potential Rooiberg Group/Lebowa Granite Suite relationship suggests that the granites form part of the Bushveld event. Rhyolite lava, granite and granophyre melts originated from a source similar in composition to upper crustal rocks. This source is interpreted to have been melted by a thermal input associated with a mantle plume. Granite intruded after extrusion of the last Rooiberg rhyolite, or possibly overlapped in time with the formation of the youngest volcanic flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.308..242W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.308..242W"><span>Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang</p> <p>2018-05-01</p> <p>The architecture and tectonic evolution of the Hegenshan accretionary belt in the Central Asian Orogenic Belt (CAOB) remains debated. Here we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the Hegenshan volcanic-plutonic belt in central Inner Mongolia. Field observations and zircon U-Pb ages allow us to divide the intrusive complex into an early phase at 329-306 Ma and a late phase at 304 to 299 Ma. The intrusive bodies belong to two magma series: calc-alkaline rocks with I-type affinity and A-type granites. The early intrusions are composed of granodiorite, monzogranite and porphyritic granite, and the late calc-alkaline intrusions include gabbro though diorite to granodiorite. The calc-alkaline intrusive rocks exhibit a well-defined compositional trend from gabbro to granite, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. They also exhibit isotopic characteristics of mantle-derived magmas such as low initial 87Sr/86Sr (0.7029-0.7053), positive ɛNd(t) values (0.06-4.76) and low radiogenic Pb isotopic compositions ((206Pb/204Pb)I = 17.907-19.198, (207Pb/204Pb)I = 15.474-15.555, (208Pb/204Pb)I = 37.408-38.893). The marked consistency in geochemical and isotopic compositions between the intrusive rocks and the coeval Baoligaomiao volcanic rocks define a Carboniferous continental arc. Together with available regional data, we infer that this east-west trending continental arc was generated by northward subduction of the Hegenshan ocean during Carboniferous. The late alkali-feldspar granites and the high-Si rhyolites of the Baoligaomiao volcanic succession show similar geochemical compositions with high SiO2 and variable total alkali contents, and low TiO2, MgO and CaO. These rocks are characterized by unusually low Sr and Ba, and high abundances of Zr, Th, Nb, HREEs and Y, comparable to the features of typical A2-type granites including their high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the A-type granite was derived from a distinct magma source rather than through fractional crystallization of the coeval calc-alkaline magmas. Their Nd-Pb isotopic compositions are similar to those of calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile basaltic crust in the continental arc. Notably, the widespread eruptions of A2-type rhyolitic magmas (305.3 Ma-303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with bimodal magmatism with mantle-derived gabbro-diorites and A-type granites (304.3 Ma-299.03 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma-306 Ma). Such a marked change in the magma affinity likely indicates subducted slab break-off resulting in a change of the regional stress field to an extensional setting within the Carboniferous continental arc that runs E-W for few thousands of kilometers. Thus, the onset of the late magmatism (305-299 Ma) likely represents the maximum age for the cessation of the northward subduction in the Hegenshan ophiolite-arc-accretion belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Tectp.214..277D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Tectp.214..277D"><span>The Middle to Late Devonian Eden-Comerong-Yalwal Volcanic Zone of Southeastern Australia: An ancient analogue of the Yellowstone-Snake River Plain region of the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dadd, K. A.</p> <p>1992-11-01</p> <p>The Middle to Late Devonian Yalwal Volcanics, Comerong Volcanics, Boyd Volcanic Complex and associated gabbroic and A-type granitic plutons form part of a continental volcano-tectonic belt, the Eden-Comerong-Yalwal Volcanic Zone (EVZ), located parallel to the coast of southeastern Australia. The EVZ is characterised by an elongate outcrop pattern, bimodal basalt-rhyolite volcanism, and a paucity of sedimentary rocks. Volcanic centres were located along the length of the volcanic zone at positions indicated by subvolcanic plutons, dykes, rhyolite lavas and other proximal vent indicators including surge bedforms in tuff rings, and hydrothermal alteration. Previous interpretations that suggested the volcanic zone was a fault bounded rift are rejected in favour of a volcano-tectonic belt. The Yellowstone-Snake River Plain region (Y-SRP) in the USA is an appropriate analogue. Both regions have basalt lavas which range in composition from olivine tholeiite to ferrobasalt, alkalic rhyolitic rocks enriched in Y, Zr and Th, large rhyolite lava flows, plains-type basalt lava flows, and a paucity of sedimentary rocks. The Y-SRP is inferred to have developed by migration of the American plate over a fixed hot spot leading to a northeast temporal progression of the focus of volcanic activity. Application of a similar hot spot model to the EVZ (using a length of 300 km and a time range for volcanic activity of 5-10 Ma), suggests that during the Middle to Late Devonian the Australian plate was moving at a rate of between 3 and 6 cm/yr relative to the hot spot and that the northern extent of the volcanic zone at any time was a topographically high region with rhyolitic activity, similar to present day Yellowstone. As the focus of activity moved northward, the high region subsided and the depression was flooded by basalt. The EVZ was much wider (up to 70 km) and much longer than the belt defined by present-day outcrop and was of comparable scale to the Y-SRP. The main difference between the two volcanic belts is the lack of large pyroclastic flows and identifiable caldera complexes in the EVZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989JGR....94.3891K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989JGR....94.3891K"><span>Mountain building in the central Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kono, Masaru; Fukao, Yoshio; Yamamoto, Akihiko</p> <p>1989-04-01</p> <p>The Central Andes is the middle part of the Andean chain between about 13°S and 27°S, characterized by the parallel running high mountain chains (the Western and Eastern Cordilleras) at the edges of high plateaus with a height of about 4000 m and a width of 200 to 450 km (the Altiplano-Puna). From the examination of geophysical and geological data in this area, including earthquakes, deformation, gravity anomaly, volcanism, uplift history, and plate motion, we conclude that the continued plate subduction with domination of compressive stress over the entire arc system is the main cause of the tectonic style of the Central Andes. We propose that the present cycle of mountain building has continued in the Cenozoic with the most active phase since the Miocene, and that the present subduction angle (30°) is not typical in that period but that subduction with more shallowly dipping oceanic lithosphere has prevailed at least since the Miocene, because of the young and buoyant slab involved. This situation is responsible for the production of a broad zone of partial melt in the mantle above the descending slab. Addition of volcanic materials was not restricted to the western edge (where active volcanoes of the Western Cordillera exist) but extended to the western and central portion of the Altiplano-Puna. The western half of the Central Andes is essentially isostatic because the heat transferred with the volcanic activities softened the crust there. In the eastern edge, the thermal effect is small, and the crust is strongly pushed by the westward moving South American plate. This caused the shortening of crustal blocks due to reverse faulting and folding in the Eastern Cordillera and Amazonian foreland. The magmatism and crustal accretion are dominant at the western end of the mountain system and decrease eastward, while the compression and consequent crustal shortening are strongest at the eastern end and wane toward west. These two processes are superposed between the two mountain chains and form high plateaus there: the Altiplano of Bolivia and Peru and the Puna of Argentina. This interpretation is supported by the observation that (1) Neogene sedimentary formations have been uplifted to high elevations without heavy distortion in the Altiplano and the Western Cordillera, (2) no significant reverse fault systems are observed on the Altiplano, (3) Neogene volcanic rocks and volcanic centers since the Miocene are not restricted to the Western Cordillera but are widely distributed over most of the Altiplano, (4) most of the Altiplano is in a zone of high heat flow values, (5) thick Paleozoic rocks are strongly folded and faulted in the Eastern Cordillera with little volcanism and no large-scale plutonism in the Cenozoic age, (6) crustal earthquakes with reverse fault mechanisms are concentrated on the eastern flank of the Eastern Cordillera and Amazonian foreland, and (7) the crustal thickness suddenly decreases at the junction of the Eastern Cordillera and the Amazon Basin, exactly at the place of reverse earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860013638','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860013638"><span>Evidence for spreading in the lower Kam Group of the Yellowknife greenstone belt: Implications for Archaean basin evolution in the Slave Province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Helmstaedt, H.; Padgham, W. A.</p> <p>1986-01-01</p> <p>The Yellowknife greenstone belt is the western margin of an Archean turbidite-filled basin bordered on the east by the Cameron River and Beaulieu River volcanic belts (Henderson, 1981; Lambert, 1982). This model implies that rifting was entirely ensialic and did not proceed beyond the graben stage. Volcanism is assumed to have been restricted to the boundary faults, and the basin was floored by a downfaulted granitic basement. On the other hand, the enormous thickness of submarine volcanic rocks and the presence of a spreading complex at the base of the Kam Group suggest that volcanic rocks were much more widespread than indicated by their present distribution. Rather than resembling volcanic sequences in intracratonic graben structures, the Kam Group and its tectonic setting within the Yellowknife greenstone belt have greater affinities to the Rocas Verdes of southern Chile, Mesozoic ophiolites, that were formed in an arc-related marginal basin setting. The similarities of these ophiolites with some Archean volcanic sequences was previously recognized, and served as basis for their marginal-basin model of greenstone belts. The discovery of a multiple and sheeted dike complex in the Kam Group confirms that features typical of Phanerozoic ophiolites are indeed preserved in some greenstone belts and provides further field evidence in support of such a model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dggs.dnr.state.ak.us/pubs/id/14772','USGSPUBS'); return false;" href="http://www.dggs.dnr.state.ak.us/pubs/id/14772"><span>Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.</p> <p>1998-01-01</p> <p>Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..79...12T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..79...12T"><span>The Quaternary history of effusive volcanism of the Nevado de Toluca area, Central Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Orozco, R.; Arce, J. L.; Layer, P. W.; Benowitz, J. A.</p> <p>2017-11-01</p> <p>Andesite and dacite lava flows and domes, and intermediate-mafic cones from the Nevado de Toluca area were classified into five groups using field data and 40Ar/39Ar geochronology constraints. Thirty-four lava units of diverse mineralogy and whole-rock major-element geochemistry, distributed between the groups, were identified. These effusive products were produced between ∼1.5 and ∼0.05 Ma, indicating a mid-Pleistocene older-age for Nevado de Toluca volcano, coexisting with explosive products that suggest a complex history for this volcano. A ∼0.96 Ma pyroclastic deposit attests for the co-existence of effusive and explosive episodes in the mid-Pleistocene history. Nevado de Toluca initiated as a composite volcano with multiple vents until ∼1.0 Ma, when the activity began to centralize in an area close to the present-day crater. The modern main edifice reached its maximum height at ca. 50 ka after bulky, spiny domes erupted in the current summit of the crater. Distribution and geochemical behavior in major elements of lavas indicate a co-magmatic relationship between different andesite and dacite domes and flows, although unrelated to the magmatism of the monogenetic volcanism. Mafic-intermediate magma likely replenished the system at Nevado de Toluca since ca. ∼1.0 Ma and contributed to the eruption of new domes, cones, as well as effusive-explosive activity. Altogether, field and laboratory data suggest that a large volume of magma was ejected around 1 Ma in and around the Nevado de Toluca.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/902446','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/902446"><span>New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas</p> <p>2006-06-14</p> <p>Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEMmore » transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1414398V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1414398V"><span>Evidence of non-extensivity and complexity in the seismicity observed during 2011-2012 at the Santorini volcanic complex, Greece</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vallianatos, F.; Tzanis, A.; Michas, G.; Papadakis, G.</p> <p>2012-04-01</p> <p>Since the middle of summer 2011, an increase in the seismicity rates of the volcanic complex system of Santorini Island, Greece, was observed. In the present work, the temporal distribution of seismicity, as well as the magnitude distribution of earthquakes, have been studied using the concept of Non-Extensive Statistical Physics (NESP; Tsallis, 2009) along with the evolution of Shanon entropy H (also called information entropy). The analysis is based on the earthquake catalogue of the Geodynamic Institute of the National Observatory of Athens for the period July 2011-January 2012 (http://www.gein.noa.gr/). Non-Extensive Statistical Physics, which is a generalization of Boltzmann-Gibbs statistical physics, seems a suitable framework for studying complex systems. The observed distributions of seismicity rates at Santorini can be described (fitted) with NESP models to exceptionally well. This implies the inherent complexity of the Santorini volcanic seismicity, the applicability of NESP concepts to volcanic earthquake activity and the usefulness of NESP in investigating phenomena exhibiting multifractality and long-range coupling effects. Acknowledgments. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC". GM and GP wish to acknowledge the partial support of the Greek State Scholarships Foundation (ΙΚΥ).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6894S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6894S"><span>Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio</p> <p>2017-04-01</p> <p>The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit with suprasubduction extrusive and intrusive events. Volcanogenic complexes are characterized by variable lateral and vertical regional stratigraphic relationships and are subdivided into several formations, dominated by volcanic rocks: basalts, andesites, dacites, and rhyolites of calc-alkaline-subalkaline series. Volcanic rocks are of shallow-marine to subaerial type. The peculiarities of magmatic activity and geodynamic development of the region stipulated synchronous formation of significant base and precious metals deposits of the Bolnisi ore district.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11...70Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11...70Z"><span>Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Quan; Liu, Lijun; Hu, Jiashun</p> <p>2018-01-01</p> <p>The origin of late Cenozoic intraplate volcanism over the western United States is debated. One important reason is the lack of a clear understanding of the mantle dynamics during this volcanic history. Here we reconstruct the mantle thermal states beneath North America since 20 million years ago using a hybrid inverse geodynamic model with data assimilation. The model simultaneously satisfies the past subduction kinematics, present mantle tomographic image and the volcanic history. We find that volcanism in both the Yellowstone volcanic province and the Basin and Range province corresponds to a similar eastward-intruding mantle derived from beneath the Pacific Ocean and driven mostly by the sinking Farallon slab below the central-eastern United States. The hot mantle that forms the Columbia River flood basalt and subsequent Yellowstone-Newberry hotspot tracks first enters the western United States through tears within the Juan de Fuca slab. Subsequent coexistence of the westward asthenospheric flow above the retreating Juan de Fuca slab and eastward-propagating mantle beyond the back-arc region reproduces the bifurcating hotspot chains. A similar but weaker heat source intrudes below the Basin and Range around the southern edge of the slab, and can explain the diffuse basaltic volcanism in this region. According to our models, the putative Yellowstone plume contributes little to the formation of the Yellowstone volcanic province.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T54B..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T54B..04G"><span>MARGATS cruise: investigation of the deep internal structure and the heterogeneous margins of the Demerara plateau reveals a polyphased volcanic history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graindorge, D.; Museur, T.; Roest, W. R.; Klingelhoefer, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Heuret, A.; Jean-Frederic, L.; Perrot, J.</p> <p>2017-12-01</p> <p>The MARGATS scientific cruise was carried out from October 20th to November 16th 2016 on board the R/V L'Atalante, offshore Suriname and French Guiana. This cruise is part of a program dedicated to the geological investigation of the continental margin, including the Demerara plateau, following the GUYAPLAC (2003), IGUANES (2013) and DRADEM (2016) cruises. The aim of MARGATS was to image the internal structure of the Demerara plateau and its different margins using coincident deep penetrating wide angle refraction and multi channel reflection seismic (MCS) methods. During the MARGATS experiment 171 OBS deployments were distributed along 4 wide-angle lines. Along each wide-angle line we also recorded coincident MCS data using a 3 km long 480 channel streamer. The dataset was completed by three MCS lines along the eastern part of the Demerara plateau. MCS MAR007 line which is coincident with line OBS MAR-3 was extended on land by 13 land stations deployed along the Maroni River. This line, together with MCS MAR001 and the coincident OBS MAR-1 line reveal the highly homogeneous deep structure of the internal part of the plateau. MCS MAR005 line, which is coincident with OBS MAR-2, MCS MAR006 line coincident with OBS MAR-4, MCS MAR002, MCS MAR003 and MCS MAR004 helps to elucidate the structural complexity of the northern transform margin and the eastern divergent margin of the plateau. These new datasets are highly complementary to the DRADEM dredge results which provide evidence for mid Jurassic volcanic rocks along the plateau and significant vertical displacements along the transform margin. These results allow to interpret the plateau as the remains of a huge jurassic volcanic divergent margin along the Central Atlantic ocean to the west, possibly remobilized during the cretaceous opening of the Equatorial Atlantic ocean as an highly oblique margin to the north and a divergent margin to the east in persistent presence of volcanism. This AGU session will be a great opportunity to present the exceptional quality of the seismic data, after the initial processing steps and how these data are conditioning a new understanding of the Demarara plateau and its margins which implies the hypothetic role of a new hot spot shaping the complex polyphased history of the structure.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51G..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51G..01B"><span>Variations in the boron isotopic composition of the Yellowstone hotspot identified through in situ SHRIMP-RG analysis of quartz-hosted melt inclusions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benson, T. R.; Coble, M. A.</p> <p>2017-12-01</p> <p>New δ11B and trace element compositions of quartz-hosted melt inclusions were measured using the SHRIMP-RG from rhyolites sampled along the Yellowstone hotspot trend. We identify an abrupt change in boron composition coincident with the increased thickness of felsic continental crust across the North American craton margin. The 2.1 Ma Huckleberry Ridge Tuff from the Yellowstone Plateau Volcanic Field, Wyoming, has δ11B = -8 ‰ and B/Nb = 0.4. These values are similar to hotspot rhyolites reported for Yellowstone and Bruneau-Jarbidge centers, and reflect the strong influence from interaction with felsic crust. West of the 87Sr/86Sr 0.704 isopleth, where the crust is comprised of accreted island arc terranes, eruption of 16 Ma magmas of the High Rock Caldera Complex (Nevada) related to initial impingement of the Yellowstone plume head have the highest δ11B (-0.5 - 1.0 ‰) and B/Nb (2 - 3) measured in this study. These values overlap those of the younger High Lava Plains rhyolites in central Oregon, which formed in crust similar in composition to High Rock. Contemporaneous with High Rock volcanism, magmas erupted at the McDermitt Volcanic Field (Nevada and Oregon) formed in crust transitional between the accreted terranes and the felsic continental craton (between the 0.704 and 0.706 isopleths). Accordingly, B values from this field are transitional between the High Rock and cratonic Yellowstone hotspot magmas, with δ11B = -3 ‰ and B/Nb = 1. Despite the relatively high analytical uncertainty of measurements on SHRIMP-RG ( ± 1-2 ‰), variations between ignimbrites and lavas from a nested caldera complex in the northern McDermitt Volcanic Field indicate that both δ18O and δ11B behave similarly, generally decreasing with time within an individual system as magmas assimilate increasing proportions of 18O- and 11B-depleted hydrothermally altered crust. The spatial variation in [B] and δ11B along the Yellowstone hotspot track are similar to the variation reported for Nd, Hf, and Sr isotopes, demonstrating significant isotopic changes at the continental margin. The increased B/Nb and δ11B in the oldest Yellowstone hotspot rhyolites indicate they incorporated crustal material enriched in B and δ11B such as altered accreted arc protolith and/or metamorphosed sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V11C2808T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V11C2808T"><span>Extensional Volcanism of the Taos Plateau Volcanic Field, Northern Rio Grande Rift, USA: New Insights from Geologic Mapping, 40Ar/39Ar Geochronology, Geochemistry and Geophysical Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Grauch, V. J. S.</p> <p>2016-12-01</p> <p>The Pliocene Taos Plateau Volcanic Field (TPVF) is the largest volcanic field of the Rio Grande rift. Deposits of the TPVF are distributed across 4500 km2 in the southern part of the 11,500 km2 San Luis Valley in southern Colorado and northern New Mexico constituting a major component of the structural San Luis Basin (SLB) fill. Exposed deposit thicknesses range from a few meters near the distal termini of basaltic lava flows to 240 m in the Rio Grande gorge near Taos, NM. New geologic mapping and 100 high-resolution 40Ar/39Ar age determinations help identify a complex distribution of >50 exposed eruptive centers ranging in composition from basalt to rhyolite. Total eruptive volume, estimated from geologic map relations, geophysical modeling of basin geometry and subsurface distribution of basaltic deposits, are approximately 300 km3; comprising 66% Servilleta Basalt (tholeiite), 3% mildly alkaline trachybasalt & trachyandesite, 12% olivine andesite, 17% dacite, and <1% rhyolite. Servilleta Basalt is preserved throughout the TPVF, ranging in age from 5.3 Ma to 2.95 Ma; maximum thickness is exposed in the Rio Grande gorge in association with the largest Pliocene sub-basin in the valley, the Taos graben. Smaller volume basalt centers as young as 2.9 Ma are spatially associated with monogenetic trachybasalt and trachyandesite centers ( 4.3 Ma to 2.8 Ma) along the uplifted footwall of a western fault-bounded sub-basin, the Las Mesitas graben. The plateau surface underlain primarily by Servilleta Basalt is punctuated by large ( 15 km3 erupted volume typical) monogenetic andesitic shield volcanoes ( 5-4.4 Ma); north-south aligned and distributed along the central axis of the SLB, parallel to major intrabasin faults. Large (up to 21 km3 erupted volume) zoned dacitic lava dome complexes ( 5 Ma Guadalupe Mountain/Cerro Negro, 3.9 Ma Ute Mountain, and 3 Ma San Antonio Mountain) reach elevations of 3300 m, 770 m above the valley floor each spatially and temporally associated with fault-bounded sub-basins superposed on the broader structural SLB. Locally, coeval Pliocene fault-slip rates are 2.5 times the long-term rates determined for the SLB confirming the temporal association of local intrabasin extensional faulting and eruptive centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51F0434F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51F0434F"><span>Geology and Conceptual Model of the Domuyo Geothermal Area, Patagonia, Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fragoso, A. S.; Ferrari, L.; Norini, G.</p> <p>2017-12-01</p> <p>Cerro Domuyo is the highest mountain in Patagonia and its western slope is characterized by thermal springs with boiling fluids as well as silicic domes and pyroclastic deposits that suggest the existence of a geothermal reservoir. Early studies proposed that the thermal springs were fault-controlled and the reservoir was located in a graben bounded by E-W normal faults. A recent geochemical study estimated a temperature of 220ºC for the fluid reservoir and a thermal energy release of 1.1 GW, one of the world largest advective heat flux from a continental volcanic center. We carried out a geologic survey and U-Pb and U-Th geochronologic study to elaborate an updated conceptual model for the Domuyo geothermal area. Our study indicates that the Domuyo Volcanic Complex (DVC) is a dome complex overlying an older, Middle Miocene to Pliocene volcanic sequence widely exposed to the southwest and to the north, which in turn covers: 1) the Jurassice-Early Creteacoeus Neuquen marine sedimentary succession, 2) silicic ignimbrites dated at 186.7 Ma and, 3) the Paleozoic metamorphic basement intruded by 288 Ma granite bodies. These pre-Cenozoic successions are involved in dominantly N-S trending folds and thrust faults later displaced by E-W striking normal faults with a right lateral component of motion that underlie the DVC. The volcanic cycle forming the DVC is distinctly bimodal with the emplacement of massive silicic domes but also less voluminous olivine basalts on its southern slope. The central dome underwent a major collapse that produced 0.35 km3 of ash and block flow and associated pyroclastic flows that filled the valley to the southwest up to 30 km from the source. This was followed by a voluminous effusive activity that formed silicic domes dated between 254-322 Ky, which is inferred to overlain a partially molten silicic magma chamber. Integrating the geologic model with magnetotelluric and gravity surveys we developed a conceptual model of the geothermal system in which the reservoir is inferred at a depth of less than 2 km in pre-Pliocene fractured rocks, bounded by E-W faults and sealed by the pyroclastic deposits and rhyolitic lavas of the DVC. The location of most thermal springs is not controlled by faults. Rather, they are lateral flows emerging at the contact between the fractured basement and the caprock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JVGR...93...75F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JVGR...93...75F"><span>Backscattering and geophysical features of volcanic ridges offshore Santa Rosalia, Baja California Sur, Gulf of California, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fabriol, Hubert; Delgado-Argote, Luis A.; Dañobeitia, Juan José; Córdoba, Diego; González, Antonio; García-Abdeslem, Juan; Bartolomé, Rafael; Martín-Atienza, Beatriz; Frias-Camacho, Víctor</p> <p>1999-11-01</p> <p>Volcanic ridges formed by series of volcanic edifices are identified in the central part of the Gulf of California, between Isla Tortuga and La Reforma Caldera-Santa Rosalía region. Isla Tortuga is part of the 40-km-long Tortuga Volcanic Ridge (TVR) that trends almost perpendicular to the spreading center of the Guaymas Basin. The Rosalía Volcanic Ridge (RVR), older than TVR, is characterized by volcanic structures oriented towards 310°, following a fracture zone extension and the peninsular slope. It is interpreted that most of the aligned submarine volcanic edifices are developed on continental crust while Isla Tortuga lies on oceanic-like crust of the Guaymas Basin. From a complete Bouguer anomaly map, it is observed that the alignments of gravity highs trending 310° and 290° support the volcanic and subvolcanic origin of the bathymetric highs. Volcanic curvilinear structures, lava flows and mounds were identified from backscattering images around Isla Tortuga and over a 400-m high (Vírgenes High), where the TVR and the RVR intersect. A refraction/wide-angle seismic profile crossing perpendicular to the Vírgenes High, together with gravity and magnetic data indicate the presence of shallow intrusive bodies presumably of basaltic or andesitic composition. It is inferred that most volcanic edifices along the ridges have similar internal structures. We suggest that the growth of different segments of the ridges have a volcano-tectonic origin. The older RVR lies along the extension of a fracture zone and it probably is associated with Pliocene NE-SW extension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035687','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035687"><span>The Pliocene Lost River found to west: Detrital zircon evidence of drainage disruption along a subsiding hotspot track</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hodges, M.K.V.; Link, P.K.; Fanning, C.M.</p> <p>2009-01-01</p> <p>SHRIMP analysis of U/Pb ages of detrital zircons in twelve late Miocene to Pleistocene sand samples from six drill cores on the Snake River Plain (SRP), Idaho, suggests that an ancestral Lost River system was drained westward along the northern side of the SRP. Neoproterozoic (650 to 740??Ma, Cryogenian) detrital zircon grains from the Wildhorse Creek drainage of the Pioneer Mountains core complex, with a source in 695??Ma orthogneiss, and which are characteristic of the Big Lost River system, are found in Pliocene sand from cores drilled in the central SRP (near Wendell) and western SRP (at Mountain Home). In addition to these Neoproterozoic grains, fluvial sands sourced from the northern margin of the SRP contain detrital zircons with the following ages: 42 to 52??Ma from the Challis magmatic belt, 80 to 100??Ma from the Atlanta lobe of the Idaho batholith, and mixed Paleozoic and Proterozoic ages (1400 to 2000??Ma). In contrast, sands in the Mountain Home Air Base well (MHAB) that contain 155-Ma Jurassic detrital grains with a source in northern Nevada are interpreted to represent an integrated Snake River, with provenance on the southern, eastern and northern sides of the SRP. We propose that late Pliocene and early Pleistocene construction of basaltic volcanoes and rhyolitic domes of the Axial Volcanic Zone of the eastern SRP and the northwest-trending Arco Volcanic Rift Zone (including the Craters of the Moon volcanic center), disrupted the paleo-Lost River drainage, confining it to the Big Lost Trough, a volcanically dammed basin of internal drainage on the Idaho National Laboratory (INL). After the Axial Volcanic Zone and Arco Volcanic Rift Zone were constructed to form a volcanic eruptive and intrusive highland to the southwest, sediment from the Big Lost River was trapped in the Big Lost Trough instead of being delivered by surface streams to the western SRP. Today, water from drainages north of the SRP enters the Snake River Plain regional aquifer through sinks in the Big Lost Trough, and the water resurfaces at Thousand Springs, Idaho, about 195??km to the southwest. Holocene to latest Pliocene samples from drill core in the Big Lost Trough reveal interplay between the glacio-fluvial outwash of the voluminous Big Lost River system and the relatively minor Little Lost River system. A mixed provenance signature is recognized in fine-grained sands deposited in a highstand of a Pleistocene pluvial-lake system. ?? 2009 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23E0512P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23E0512P"><span>Observed anomalous changes on diffuse CO2 emission at the summit crater of Teide volcano (Tenerife, Canary Islands, Spain): a geochemical evidence of volcanic unrest?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez, N. M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Alonso Cótchico, M.; Hernández, P. A.; Rodríguez, F.; D'Auria, L.; García-Merino, M.; Padilla, G. D.; Burns, F.; Amonte, C.; García, E.; García-Hernández, R.; Barrancos, J.; Morales-Ocaña, C.; Calvo, D.; Vela, V.; Pérez, A.</p> <p>2017-12-01</p> <p>Tenerife (2034 km2) is the largest of the Canary Islands and hosts a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system Pico Viejo and Teide, has been developed. Although Teide volcano shows weak fumarolic system, volcanic gas emissions observed in the summit area are mainly controlled by high rates of diffuse CO2 degassing. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999 according to the accumulation chamber method to monitor changes of volcanic activity. Soil CO2 efflux and soil temperature have been measured in sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Historical seismic activity in Tenerife has been mainly characterized by low- to moderate-magnitude events (M <2.5), and most of epicenters clustered in an offshore area SE of Tenerife. Very few earthquakes have occurred in other areas, including Teide volcano. Since November 2016 more than 100 small magnitude earthquakes, with typical features of the microseismicity of hydrothermal systems, at depths usually ranging between 5 and 15 km located beneath Teide volcano have been recorded. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest events recorded since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered preceding the occurrence of the 2.5 seismic event, from 21.3±2.0 to 101.7±20.7 t d-1. In Febraury 2017, the diffuse CO2 emission rate showed a maximum value (176±35 t/d) and has remained at relatively high values in the range 67-176 t/d. The observed increase on the diffuse CO2 emission, likely due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife, might be a geochemical evidence of a future volcanic unrest at Tenerife Island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V41D0791S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V41D0791S"><span>The Massive Compound Cofre de Perote Shield Volcano: a Volcanological Oddity in the Eastern Mexican Volcanic Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.</p> <p>2007-12-01</p> <p>Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the eastern margin of the Altiplano, with pronounced differential relief and sloping substrate promoting failures toward the Gulf of Mexico coastal plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T53B4688Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T53B4688Z"><span>Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.</p> <p>2014-12-01</p> <p>Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4595843','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4595843"><span>Volcanic passive margins: another way to break up continents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Geoffroy, L.; Burov, E. B.; Werner, P.</p> <p>2015-01-01</p> <p>Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26442807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26442807"><span>Volcanic passive margins: another way to break up continents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geoffroy, L; Burov, E B; Werner, P</p> <p>2015-10-07</p> <p>Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27282420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27282420"><span>Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz</p> <p>2016-06-10</p> <p>Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4901264','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4901264"><span>Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz</p> <p>2016-01-01</p> <p>Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V31E4796N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V31E4796N"><span>Miocene to Recent geological evolution of the Lazufre segment in the Andean volcanic arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naranjo, J. A.; Villa, V.; Ramírez, C.; Pérez de Arce, C.</p> <p>2014-12-01</p> <p>The volcano-tectonic setting in which the InSAR-detected Lazufre deformation is developing is particularly relevant in the evolution of this Andean volcanic arc segment (25-26°S). Through regional mapping techniques, a comprehensive field control in addition to geochronological sampling, various volcanic units comprising stratovolcanoes, volcanic complexes, ignimbrites and caldera structures are distinguished. The Lazufre intumescence is located above the overlying block of the NE trending Middle Miocene, Pedernales-Arizaro overthrust. This area comprises an Upper Miocene (8-4 Ma) basal unit of andesitic-dacitic volcanoes and lava fields, upon which nine volcanic complexes of similar composition, including Caletones de Cori Ignimbrite and Escorial Volcano, Lastarria, Cordón del Azufre and Bayo volcanic complexes, were emplaced in several pulses between 3.5 Ma and Holocene times. Coalescing Lazufre structure, immediately to the SE, we have discovered the Miocene (9.8 Ma) Los Colorados caldera. This caldera is 30 km in diameter and sourced the homonymous dacitic ignimbrite of about 500 km3. The caldera scarp was formed in Paleozoic rocks, Miocene dacitic-rhyolitic ignimbrites and ~16 and 10 Ma volcanoes. A 6.9-6.8 Ma andesitic-dacitic volcano ridge formed by Abra Grande, Río Grande and Aguas Calientes stratovolcanoes, from NE to SW, is nested on the caldera floor. Lavas of early stages of Cordón del Azufre and Bayo complexes were shed into the NW part of the caldera. The coalescing structure formed by the Lazufre intumescence and Los Colorados caldera is conjugate at about 30° to the Pedernales-Arizaro overthrust, and has a NW-SE orientation, parallel to the Archibarca lineament. A SE to NW migration of volcanism is observed along this structure at least since the Middle Miocene. We proposed that, since Miocene, tectonic spaces with no surficial fault displacements and conjugated to the main compressive structures within the upper crust, have been created as a result of tensional stresses. Subsequently, the so increased lithostatic gradient could play a major role in the vertical traction of magma rising, favoring crustal assimilation processes. The available geochronological data indicate that the deformation that preceded the Los Colorados caldera occurred in a maximum period between 13 and 10 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BVol...80...52B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BVol...80...52B"><span>Effects of the Karacadag Volcanic Complex on the thermal structure and geothermal potential of southeast Anatolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bilim, Funda; Aydemir, Attila; Kosaroglu, Sinan; Bektas, Ozcan</p> <p>2018-06-01</p> <p>The Karacadag Volcanic Complex (KVC) is the largest volcanic unit in SE Turkey. It is also defined as a shield volcano on the northernmost part of the Arabian Plate. The main goal of this study is to investigate the geothermal potential of this region associated with the magnetic signature of this volcanic complex and surrounding area. Besides this primary objective, the possibility of there being volcanic intrusion into the buried fault zones under the volcanic cover are also investigated to determine the interrelations between the active tectonics and heat flow in the area. A spectral analysis method is applied to the magnetic anomalies of the volcanic rocks to identify the Curie point depth (CPD) and geothermal gradient, as well as to estimate heat flow and radiogenic heat production of radioactive minerals in the complex. A tilt angle map is also presented, in correlation with instrumentally recorded earthquake magnitudes, to indicate tectonic trends that are consistent with the maps of the thermal parameters in this study. In contrast with expectations for the KVC area, the region around Akcakale and Suruc Grabens is the most prolific zone for geothermal potential, despite them not showing strong magnetic anomalies. Curie point depths are shallow, down to 18 km, around the Akcakale Graben, and deeper, down to 22 km, around the Bitlis-Zagros Suture Zone where the geothermal gradients increase from 26 to 32 °C km-1 through the graben area. Heat flows in this zone are in the range from 75 to 90 mW m-2 depending on the thermal conductivity coefficient (2.3, 2.5, 2.7, and 3.0 W m-1 K-1) used. Radiogenic heat production values also indicate slightly changing spectra in the range 0.19 to 0.25 μW m-3). None of these parameters are focused around Mt. Karacadag. However, the earthquake epicenters (generally M ≤ 4) are aligned with the boundary faults of the Akcakale Graben where the CPD, geothermal gradient, and heat flow maps indicate relatively high potential. We thus suggest that this graben area would be good for future geothermal exploration. On the contrary, considering the low geothermal gradient and heat flow values, Mt. Karacadag can be accepted as being an extinct volcano, despite its apparent, high, magnetic anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T33F..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T33F..04E"><span>Heterogeneity in Subducting Slab Influences Fluid Properties, Plate Coupling and Volcanism: Hikurangi Subduction Zone, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.</p> <p>2017-12-01</p> <p>Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in slip rate, the plate interface is only moderately fluid-rich, because the underlying plateau had already had an episode of Gondwana dehydration. Here the dehydrated plateau has subducted deeper, to 140-km depth, there is no volcanism, and the mantle wedge lacks low Q.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/2627/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/2627/report.pdf"><span>Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.</p> <p>1998-01-01</p> <p>Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.157..245T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.157..245T"><span>Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu</p> <p>2018-05-01</p> <p>The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and lithological data from the region, suggest that the LHC can be divided into three units: Neoarchean (ca. 2.5 Ga) unit in the southern LHC (Shirase Orthogneiss or "Shirase microcontinent"), Neoproterozoic (ca. 1.0 Ga) unit in the northern LHC, and supracrustal unit in the central LHC with fragments of Paleoproterozoic (ca. 1.8 Ga) and minor Neoarchean (ca. 2.5 Ga) and Neoproterozoic (ca. 1.0 Ga) magmatic arcs. The 1.8 Ga arc magmatism inferred in this study has also been reported from adjacent Gondwana fragments such as the Highland Complex in Sri Lanka, and the Trivandrum and Nagercoil Blocks in southern India. Although the ca. 1.8 Ga arc-magmatic event is coeval in these regions, the Paleoproterozoic supracrustal unit in the central LHC may not be contiguous with those in the Highland Complex of Sri Lanka because recent studies have shown that the Vijayan Complex in Sri Lanka and the ca. 1.0 Ga northern LHC possibly were part of a single crustal unit (northern Lützow-Holm-Vijayan Complex) within the Kalahari Block. The supracrustal unit possibly marks part of a discrete suture formed by the collision of the ca. 2.5 Ga southern LHC (Shirase microcontinent) and the ca. 1.0 Ga northern Lützow-Holm-Vijayan Complex during the latest Neoproterozoic-Cambrian Gondwana amalgamation, which might be coeval with the collision of the Vijayan and Wanni Complexes and the formation of the Highland Complex in Sri Lanka. Our study provides new insights on crustal growth and terrane assembly in the ancient continental blocks of Gondwana.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1148774','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1148774"><span>Kimama Well - Borehole Geophysics Database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Shervais, John</p> <p>2011-07-04</p> <p>The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1148775','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1148775"><span>Kimama Well - Photos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Shervais, John</p> <p>2011-01-16</p> <p>The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3024/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3024/"><span>Sutter Buttes-the lone volcano in California's Great Valley</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.</p> <p>2011-01-01</p> <p>The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V41D2837A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V41D2837A"><span>Unraveling the volcanic and post-volcanic history at Upsal Hogback, Fallon, Nevada, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, E.; Cousens, B.</p> <p>2013-12-01</p> <p>Upsal Hogback is a < 25 ka phreatomagmatic volcanic center situated near Fallon, Nevada. The volcano neighbors two other young volcanic complexes: the Holocene Soda Lakes maars and Rattlesnake Hill, a ~ 1 Ma volcanic neck (Shevenell et al., 2005). These volcanoes lie on the transition between the Sierra Nevada and the Basin and Range province, as well as on the edge of the Walker Lane. Upsal Hogback includes two to four vents, fewer than mapped by Morrison (1964), and can be divided into north (one vent) and south (three potential vents) complexes. The vents all produced phreatomagmatic eruptions resulting in tuff rings composed primarily of coarse, indurated lapilli tuffs with abundant volcanic bombs. Ash tuffs are infrequent, as are structures such as crossbedding. The bombs and lapilli include olivine and plagioclase phenocrysts. The basalts are alkaline and have intraplate-type normalized incompatible element patterns. Both complexes are enriched in LREE compared to HREE, though the north complex overall has lower concentrations of the REE. The flat HREE pattern is indicative of spinel peridotite mantle source. Epsilon Nd values for the north complex are +2.50+/-0.02 and for the south complex are +2.83+/-0.02. The magmas appear to have an enriched asthenospheric mantle source. Bomb samples show that eruptions from the two complexes are geochemically distinguishable both in major and trace elements, suggesting that the two complexes tapped different magma types during eruptions that likely occurred at slightly different times. The proximity of Upsal Hogback to Fallon makes constraining its age important to characterize the hazard to the city. It lies above the Wono ash bed, dated at 25,000 years (Fultz et al., 1983), and tufa deposited over the edifice is dated at 11,100 +/- 100 and 8,600 +/- 200 years (Benson et al., 1992; Broecker and Kaufman, 1965). 40Ar/39Ar total gas age by Shevenell et al. (2005) dated the volcano at 0.60 +/- 0.09 Ma, but with no plateau or isochron, and is thus unreliable. The ash bed and tufa ages show that the eruptions would have occurred during the late history of glacial Lake Lahontan. The evidence for primarily subaerial or shallow subaqueous eruptions, including abundant bomb sags and armored lapilli, demonstrate that most of the volcanism occurred during a low stand in lake level history. Some upper tuff units have been heavily altered to palagonite, which establishes that there was substantial water present during some of the later eruptions. The upper edifice has been significantly modified by slumping of the lapilli tuffs during or after of the eruptions, as indicated by the wildly varying strikes and dips found in adjacent lapilli tuff blocks. Lake Lahontan has substantially altered the morphology of the volcano through wave action and shoreline erosion, as well as tufa deposition, since the eruption and emplacement of the tuffs. The edifice has gone through significant changes during its post-eruptive history that mask many of its original features; it was possible that it was a tuff cone that has been modified into a tuff ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196205','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196205"><span>Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rankin, Douglas W.</p> <p>2018-04-20</p> <p>The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone, siltstone, and phyllite.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics including the Moody Ledge pluton and the Scrag granite of Billings (1937). Subsequent plutonism related to the Acadian orogeny occurred after volcanism and deposition resulted in the Littleton Formation during the Late Devonian, including the intrusion of the Haverhill pluton and French Pond Granite found in the southern part of the map.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918682G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918682G"><span>Lithospheric convective removal related post-collisional middle Eocene magmatism along the Izmir-Ankara-Erzincan suture zone (NE Turkey).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can</p> <p>2017-04-01</p> <p>Obliteration of the Mesozoic Neo-Tethyan Ocean and succeeding collision of the micro plates along the northern part of Turkey lead the development of the İzmir-Ankara-Erzincan suture zone (IAESZ). The suturing and collision stages terminate with the amalgamation of the three different crustal blocks (Pontides, Central Anatolian Crystalline Complex and Anatolide-Tauride Block) in the Paleocene-Early Eocene period. After the collisional stage; a new phase of extension and magmatism concomitantly developed at the both sides and as well as along the IAESZ during the Middle Eocene period. However, the origin, mechanism and driving force of the post-collisional magmatism is still enigmatic. To understand and better constrain the syn-to post collisional evolutionary stages, we have carried out volcano-stratigraphy and geochemistry based study on the middle Eocene magmatic associations along a transect ( 100 km) from Pontides to the Central Anatolian Crystalline Complex (CACC) at the NE part of the Turkey. Middle Eocene magmatic activity in the region has been represented by calc-alkaline, alkaline, shoshonitic volcanic and granitic rocks together with scarce gabbroic intrusions. We particularly focused on middle Eocene volcano-sedimentary successions (MEVSS) to constrain the tectono-magmatic evolution of the abovementioned transect. The volcano-sedimentary succsessions are coevally developed and cover the crustal blocks (Pontides and CACC) and the IAESZ with a region wide unconformity. We have differentiated three lava series (V1-V2-V3) and their sub-groups (V1a-V1b; V2a-V2b) in MEVSS. Generally, all lava series have middle-K to shoshonitic composition with distinct subduction characteristics. V1 series is marked by presence of hydrous phenocrysts such as amphibole+biotite. V1a sub-group constitute the first volcanic product and characterized by the high Mg# (42-69); alkaline basaltic andesite, and hawaiites. V1b sub-group is represented by calc-alkaline, low Mg# (24-57) andesite and dacites. V2 series made up of the olivine+pyroxene rich anhydrous lavas. V2a sub-group displays calc-alkaline/mildly alkaline character, moderate Mg# (33-54) and represented by basaltic andesites. Furthermore, V2b sub-group has mildly alkaline/alkaline in character and represented by more Mg# rich (40-62) basalt and trachy-basalt lavas. Final products, V3 series, cut the older units and made up of high-K - shoshonitic trachyte and trachy-andesites. The V1a sub-group, showing the alkali nature and high Mg#, is probably derived from the partial melting of a hydrous spinel lherzolitic source with minor garnet and amphibole while the V1b sub-group is a fractionated (FC) derivative of them. The V2 series are mixed products of varying amounts of magma sources similar to V1b type with a high Mg#, deep-seated magma source and their fractionated assemblages. The V3 series developed independently from the other series in shallow magma chambers, displaying the large amounts of crustal assimilation and constitutes the final product of the Middle Eocene volcanism. The data presented above shown that volcanic units; (i) are rich in potassium, (ii) have subduction-related signatures, (iii) display fluctuant alkalinity and Mg# during the course of volcanism, (iv) coevally developed on both amalgamated continental blocks after the cessation of subduction. These characteristics imply that, lithospheric convective removal related processes can be the most plausible driving mechanism of the middle Eocene magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.302..224Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.302..224Y"><span>Immature intra-oceanic arc-type volcanism on the Izanagi Plate revealed by the geochemistry of the Daimaruyama greenstones in the Hiroo Complex, southern Hidaka Belt, central Hokkaido, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamasaki, Toru; Nanayama, Futoshi</p> <p>2018-03-01</p> <p>The Izanagi Plate is assumed to have underlain the western Panthalassa Ocean to the east of Eurasia, and to have been subducting under the Eurasian continent. Although the Izanagi Plate has been lost to subduction, the subduction complexes of the circum-Panthalassa continental margins provide evidence that subduction-related volcanism occurred within the Panthalassa Ocean, and not just along its margins. The Daimaruyama mass is a kilometer-sized allochthonous greenstone body in the Hiroo Complex in the southeastern part of the Nakanogawa Group in the southern Hidaka Belt, northern Japan. The Hiroo Complex is a subduction complex that formed within the Paleo-Kuril arc-trench system at 57-48 Ma. The Daimaruyama greenstones consist mainly of coarse volcaniclastic rocks with lesser amount of lava. Red bedded chert, red shale, and micritic limestone are also observed as blocks associated with the greenstones. The presence of Early Cretaceous (Aptian-Albian) radiolaria in red bedded cherts within the greenstones indicates that the Daimaruyama greenstones formed after this time. An integrated major and trace element geochemical dataset for whole-rocks and clinopyroxenes of the greenstones indicates a calc-alkaline magmatic trend with low TiO2 contents and increases in SiO2 and decreases in FeO* with increasing differentiation. Negative anomalies of Nb, Ta, and Ti in normal mid-ocean-ridge basalt type normalized patterns are interpreted as "arc-signatures". Using "rhyolite-MELTS", we conducted a numerical simulation of magmatic differentiation under conditions of 1.5 kbar and H2O = 3 wt% to reproduce the liquid line of descent of the Daimaruyama greenstones. Back-calculations of the equilibrium melt compositions from the trace element chemistry of the clinopyroxenes generally agree with the whole-rock rare earth element compositions of the Daimaruyama greenstones, therefore providing support for the conditions used for the rhyolite-MELTS calculations as well as the actual results. Clinopyroxene trace element compositions indicate substantial enrichment of Ba in the magma, reflecting the participation of shallow subduction components such as aqueous fluids. Geochemical investigations reveal that the Daimaruyama greenstones were probably submarine volcanic rocks that formed as a result of the subduction of the Izanagi Plate within the Thalassa Ocean (the Thalassa Ocean was the eastern realm of Panthalassa, and represents the proto-Pacific Ocean) after the Early Cretaceous (Aptian-Albian; 125-101 Ma), and they were eventually accreted onto the Paleo-Kuril arc-trench system at 57-48 Ma to form an allochthonous block as part of the mélange facies of the Hiroo Complex on the landward slope of the trench.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA113222','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA113222"><span>MX Siting Investigation. Geotechnical Evaluation. Verification Study - Pahroc Valley, Nevada. Volume I. Synthesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-06-30</p> <p>Range both consist of Paleozoic limestone and dolomite overlain by Tertiary ash-flow tuffs and undiffer- entiated volcanic rocks. The central portion...andesite, detrital material, volcanic tuff, pumice). FAULT - A plane or zone of fracture along which there has been * I displacement. FAULT BLOCK...D2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic pressure . An</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS043-79-097&hterms=Atlantic+forest&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAtlantic%2Bforest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS043-79-097&hterms=Atlantic+forest&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAtlantic%2Bforest"><span>Tenarife Island, Canary Island Archipelago, Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>Tenarife Island is one of the most volcanically active of the Canary Island archipelago, Atlantic Ocean, just off the NW coast of Africa, (28.5N, 16.5W). The old central caldera, nearly filled in by successive volcanic activity culminating in two stratocones. From those two peaks, a line of smaller cinder cones extend to the point of the island. Extensive gullies dissect the west side of the island and some forests still remain on the east side.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s43-79-097.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s43-79-097.html"><span>Tenarife Island, Canary Island Archipelago, Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1991-08-11</p> <p>Tenarife Island is one of the most volcanically active of the Canary Island archipelago, Atlantic Ocean, just off the NW coast of Africa, (28.5N, 16.5W). The old central caldera, nearly filled in by successive volcanic activity culminating in two stratocones. From those two peaks, a line of smaller cinder cones extend to the point of the island. Extensive gullies dissect the west side of the island and some forests still remain on the east side.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79...10O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79...10O"><span>Terminal Pleistocene to early Holocene volcanic eruptions at Zuni Salt Lake, west-central New Mexico, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onken, Jill; Forman, Steven</p> <p>2017-01-01</p> <p>Zuni Salt Lake (ZSL) is a large maar in the Red Hill-Quemado volcanic field located in west-central New Mexico in the southwestern USA. Stratigraphic analysis of sections in and around the maar, coupled with optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) 14C dating, indicate that ZSL volcanic activity occurred between ˜13.4 and 9.9 ka and was most likely confined to a ≤500-year interval sometime between ˜12.3 and 11.0 ka. The basal volcanic unit consists of locally widespread basaltic ash fallout interpreted to represent a violent or wind-aided strombolian eruption tentatively attributed to Cerro Pomo, a scoria cone ˜10 km south of ZSL. Subsequent eruptions emanated from vents near or within the present-day ZSL maar crater. Strombolian eruptions of multiple spatter and scoria cones produced basaltic lava and scoria lapilli fallout. Next, a phreatomagmatic eruption created the maar crater and surrounding tephra rim and apron. ZSL eruptions ended with strombolian eruptions that formed three scoria cones on the crater floor. The revised age range of ZSL is younger and more precise than the 190-24 ka 2-sigma age range derived from previous argon dating. This implies that other morphologically youthful, argon-dated volcanoes on the southern margin of the Colorado Plateau might be substantially younger than previously reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816079E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816079E"><span>Multidisciplinary approach for the characterization of a new Late Cretaceous continental arc in the Central Pontides (Northern Turkey)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellero, Alessandro; Ottria, Giuseppe; Sayit, Kaan; Catanzariti, Rita; Frassi, Chiara; Cemal Göncüoǧlu, M.; Marroni, Michele; Pandolfi, Luca</p> <p>2016-04-01</p> <p>In the Central Pontides (Northern Turkey), south of Tosya, a tectonic unit consisting of not-metamorphic volcanic rocks and overlying sedimentary succession is exposed inside a fault-bounded elongated block. It is restrained within a wide shear zone, where the Intra-Pontide suture zone, the Sakarya terrane and the Izmir-Ankara-Erzincan suture zone are juxtaposed as result of strike-slip activity of the North Anatolian shear zone. The volcanic rocks are mainly basalts and basaltic andesites (with their pyroclastic equivalents) associated with a volcaniclastic formation made up of breccias and sandstones that are stratigraphically overlain by a Marly-calcareous turbidite formation. The calcareous nannofossil biostratigraphy points to a late Santonian-middle Campanian age (CC17-CC21 Zones) for the sedimentary succession. The geochemistry of the volcanic rocks reveals an active continental margin setting as evidenced by the enrichment in Th and LREE over HFSE, and the Nb-enriched nature of these lavas relative to N-MORB. As highlighted by the performed arenite petrography, the occurrence of continent-derived clastics in the sedimentary succession supports the hypothesis of a continental arc-derived volcanic succession. Alternative geodynamic reconstructions are proposed, where this tectonic unit could represent a slice derived from the northern continental margin of the Intra- Pontide or Izmir-Ankara-Erzincan oceanic basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..355..253G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..355..253G"><span>Chemostratigraphy and evolution of the Paraná Igneous Province volcanism in the central portion of the state of Paraná, Southern Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomes, Allan Silva; Licht, Otavio Augusto Boni; Vasconcellos, Eleonora Maria Gouvêa; Soares, Jan Savaris</p> <p>2018-04-01</p> <p>Analysis of borehole samples offers the potential to investigate the chemostratigraphic variations of a large igneous province in subsurface. New geochemical data based on multielement analyses of 829 chip samples that were obtained during the drilling of seven deep boreholes is presented for the central area of the Paraná Igneous Province (PIP). In order to detail the compositional variations found within the two main types from the Central-Northern Subprovince (CNSP), simple statistical treatment was carried out for part this database. Thus, the combination of low (L) and high (H) contents of Th, Nb, La and Yb was used as a means to create 16 geochemical subtypes for the Type 4 (LSi-LZr-HTi-HP) sequence. Likewise, other four elements (Cr, Ni, Cu and Pd) were selected with the same intention for the Type 1 (Central-Northern) (LSi-LZr-LTi-LP) sequence. When subtypes are plotted in the cross section, it is possible to observe that those with similar characteristics tend to be associated in groups (cycles). This analysis showed that the volcanic pile can be divided into at least eleven different cycles and also that they are laterally continuous throughout the section. The compositional changes observed in these volcanic cycles also display correlations with Mg#, Zr, Ti/Y and La/SmN ratios, for example. Therefore, since the reservoir is marked by periods of injection of more differentiated or more mafic magmas, it could be suggested that it was periodically recharged with batches of magma from the parental source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JVGR..156..217V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JVGR..156..217V"><span>Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.</p> <p>2006-09-01</p> <p>Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3683U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3683U"><span>Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Úbeda, J.; Palacios, D.; Vázquez-Selém, L.</p> <p>2012-04-01</p> <p>We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava flow of 6 ka, to the East, where we dated two units similar to the previous one at 2 and <1ka. Bromley, G.R. et al., 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews, 1-13. Bromley, R.M. et al., 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26 (1): 37-43. Fritz, S.C. et al., 2007. Lake Titicaca 370KYr LT01-2B Sediment Database. Lake Titicaca 370KYr LT01-2B Sediment Data. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 92-008. NOAA/NGDC Paleoclimatology Program. Boulder (EEUU). Lea, D.W. et al., 2006. Galápagos TR163-22 Foraminiferal ^18O and Mg/Ca Data and SST Reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-090. NOAA/NCDC Paleoclimatology Program, Boulder (EEUU). Research funded by CGL2009-7343 project, Government of Spain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911527N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911527N"><span>The Western Arabian intracontinental volcanic fields as a potential UNESCO World Heritage site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Németh, Károly; Moufti, Mohammed R.</p> <p>2017-04-01</p> <p>UNESCO promotes conservation of the geological and geomoprhological heritage through promotion of protection of these sites and development of educational programs under the umbrella of geoparks among the most globally significant ones labelled as UNESCO Global Geoparks. UNESCO also maintains a call to list those natural sites that provide universal outstanding values to demonstrate geological features or their relevance to our understanding the evolution of Earth. Volcanoes currently got a surge in nomination to be UNESCO World Heritage sites. Volcanic fields in the contrary fell in a grey area of nominations as they represents the most common manifestation of volcanism on Earth hence they are difficult to view as having outstanding universal values. A nearly 2500-km long 300-km wide region of dispersed volcanoes located in the Western Arabian Penninsula mostly in the Kingdom of Saudi Arabia form a near-continuous location that carries universal outstanding value as one of the most representative manifestation of dispersed intracontinental volcanism on Earth to be nominated as an UNESCO World Heritage site. The volcanic fields formed in the last 20 Ma along the Red Sea as group of simple basaltic to more mature and long-lived basalt to trachyte-to-rhyolite volcanic fields each carries high geoheritage values. While these volcanic fields are dominated by scoria and spatter cones and transitional lava fields, there are phreatomagmatic volcanoes among them such as maars and tuff rings. Phreatomagmatism is more evident in association with small volcanic edifices that were fed by primitive magmas, while phreatomagmatic influences during the course of a larger volume eruption are also known in association with the silicic eruptive centres in the harrats of Rahat, Kishb and Khaybar. Three of the volcanic fields are clearly bimodal and host small-volume relatively short-lived lava domes and associated block-and-ash fans providing a unique volcanic landscape commonly not considerred to be associated with dispersed intracontinental volcanic fields. In addition the nominated volcanic region also hosts the largest and youngest historic eruption (Al Madinah Eruption) in Western Saudi Arabia took place at 1256-AD, lasted 52 days and produced at least 0.29-km3 of pahoehoe-to-aa transitional lava fields that were emitted through a 2.3 km-long fissure and associated spatter-to-scoria cone complexes. The Western Arabian intracontinental volcanic fields provide the best exposed and most diverse type of intracontinental volcanic fields on Earth that also occupies the largest surface area. In addition, this chain of volcanic fields are also host significant archaeological and human occupation sites help to understand early human evolution as well as hosting several historic locations with high cultural heritage values. These generally intact and well-exposed volcanic zones hosting globally unique geoheritage sites can form the basis of complex geoeducational programs through the establishment of various volcanic geoparks in the region that can link together a UNESCO World Heritage Site on the basis of their global universal volcanic geoheritage values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70160829','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70160829"><span>Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.</p> <p>2016-01-08</p> <p>The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.8908K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.8908K"><span>Rapid transport of ash and sulfate from the 2011 Puyehue-Cordón Caulle (Chile) eruption to West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koffman, Bess G.; Dowd, Eleanor G.; Osterberg, Erich C.; Ferris, David G.; Hartman, Laura H.; Wheatley, Sarah D.; Kurbatov, Andrei V.; Wong, Gifford J.; Markle, Bradley R.; Dunbar, Nelia W.; Kreutz, Karl J.; Yates, Martin</p> <p>2017-08-01</p> <p>The Volcanic Explosivity Index 5 eruption of the Puyehue-Cordón Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and deposition of sulfate and ash from a midlatitude volcano to the Antarctic ice sheet. We present sulfate, microparticle concentrations of fine-grained ( 5 μm diameter) tephra, and major oxide geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn. From the depositional phasing and duration of ash and sulfate peaks, we infer that transport occurred primarily through the troposphere but that ash and sulfate transport were decoupled. We use Hybrid Single-Particle Lagrangian Integrated Trajectory back trajectory modeling to assess atmospheric circulation conditions in the weeks following the eruption and find that conditions favored southward air parcel transport during 6-14 June and 4-18 July 2011. We suggest that two discrete pulses of cryptotephra deposition relate to these intervals, and as such, constrain the sulfate transport and deposition lifespan to the 2-3 weeks following the eruption. Finally, we compare PCC depositional patterns to those of prominent low- and high-latitude eruptions in order to improve multiparameter-based efforts to identify "unknown source" eruptions in the ice core record. Our observations suggest that midlatitude eruptions such as PCC can be distinguished from explosive tropical eruptions by differences in ash/sulfate phasing and in the duration of sulfate deposition, and from high-latitude eruptions by differences in particle size distribution and in cryptotephra geochemical composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/of01-291/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/of01-291/"><span>Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mihalasky, Mark J.</p> <p>2001-01-01</p> <p>The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a segment of the Roberts Mountain thrust front, which bridges the southern ends of the trends. This pattern appears to delineate two well-defined, sub-parallel, northwest?southeast-trending crustal-scale structural zones. These features, here termed the ?Carlin? and ?Cortez? structural zones, are believed to control the regional-scale distribution of the sedimentary rock-hosted occurrences. Mineralizing processes were focused along these structural zones and significant ore deposits exist where they intersect other tectonic zones, favorable host rock-types, and (or) where appropriate physio-chemical conditions were present. The origin and age of the Carlin and Cortez structural zones are not well constrained, however, they are considered to be transcurrent features representing a long-lived, deep-crustal or mantle-rooted zone of weakness. Areas of elevated volcanic rock-hosted mineral potential are principally distributed along two broad and diffuse belts that trend (1) northwest-southeast across southwestern Nevada, parallel to the Sierra Nevada, and (2) northeast-southwest across northern Nevada, extending diagonally from the Sierra Nevada to southern Idaho. The first belt corresponds to the Walker Lane shear zone, a wide region of complex strike-slip faulting. The second, here termed the ?Humboldt shear(?) zone?, may represent a structural zone of transcurrent movement. Together, the Walker Lane and Humboldt shear(?) zones are believed to control the regional-scale distribution of volcanic rock-hosted occurrences. Volcanic rock-hosted mineralization was closely tied to the southward and westward migration of Tertiary magmatism across the region (which may have been mantle plume-driven). Both magmatic and mineralizing processes were localized and concentrated along these structural zones. The Humboldt shear(?) zone may have also affected the distribution of sedimentary rock-hosted mineralization along the Battle Mountain?Eureka (C</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033117','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033117"><span>Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Aleinikoff, J.N.; Wintsch, R.P.; Tollo, R.P.; Unruh, D.M.; Fanning, C.M.; Schmitz, M.D.</p> <p>2007-01-01</p> <p>The Killingworth dome of south-central Connecticut occurs at the southern end of the Bronson Hill belt. It is composed of tonalitic and trondhjemitic orthogneisses (Killingworth complex) and bimodal metavolcanic rocks (Middletown complex) that display calc-alkaline affinities. Orthogneisses of the Killingworth complex (Boulder Lake gneiss, 456 ?? 6 Ma; Pond Meadow gneiss, ???460 Ma) were emplaced at about the same time as eruption and deposition of volcanic-sedimentary rocks of the Middletown complex (Middletown Formation, 449 ?? 4 Ma; Higganum gneiss, 459 ?? 4 Ma). Hidden Lake gneiss (339 ?? 3 Ma) occurs as a pluton in the core of the Killingworth dome, and, on the basis of geochemical and isotopic data, is included in the Killingworth complex. Pb and Nd isotopic data suggest that the Pond Meadow, Boulder Lake, and Hidden Lake gneisses (Killingworth complex) resulted from mixing of Neoproterozoic Gander terrane sources (high 207Pb/204Pb and intermediate ??Nd) and less radiogenic (low 207Pb/204Pb and low ??Nd) components, whereas Middletown Formation and Higganum gneiss (Middletown complex) were derived from mixtures of Gander basement and primitive (low 207Pb/204Pb and high ??Nd) sources. The less radiogenic component for the Killingworth complex is similar in isotopic composition to material from Laurentian (Grenville) crust. However, because published paleomagnetic and paleontologic data indicate that the Gander terrane is peri-Gondwanan in origin, the isotopic signature of Killingworth complex rocks probably was derived from Gander basement that contained detritus from non-Laurentian sources such as Amazonia, Baltica, or Oaxaquia. We suggest that the Killingworth complex formed above an east-dipping subduction zone on the west margin of the Gander terrane, whereas the Middletown complex formed to the east in a back-arc rift environment. Subsequent shortening, associated with the assembly of Pangea in the Carboniferous, resulted in Gander cover terranes over the Avalon terrane in the west; and in the Middletown complex over the Killingworth complex in the east. Despite similarities of emplacement age, structural setting, and geographic continuity of the Killingworth dome with Oliverian domes in central and northern New England, new and published isotopic data suggest that the Killingworth and Middletown complexes were derived from Gander crust, and are not part of the Bronson Hill arc that was derived from Laurentian crust. The trace of the Ordovician Iapetan suture (the Red Indian line) between rocks of Laurentian and Ganderian origin probably extends from Southwestern New Hampshire west of the Pelham dome of northcentral Massachusetts and is coverd by Mesozoic rocks of the Hartford basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011180','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011180"><span>Seismicity at Fuego, Pacaya, Izalco, and San Cristobal Volcanoes, Central America, 1973-1974</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McNutt, S.R.; Harlow, D.H.</p> <p>1983-01-01</p> <p>Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day with b value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and with b values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (??=3.0??0.2 km/sec.). ?? 1983 Intern. Association of Volcanology and Chemistry of the Earth's Interior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4763B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4763B"><span>Multiple Natural Hazards Assessment and Comparison to Planned Land Use in an Andean Touristic Site within the Riskscape Central Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braun, Andreas; Jaque Castillo, Edilia</p> <p>2017-04-01</p> <p>The Andes of central Chile are a natural environment characterized by multiple natural hazards (mass movements, volcanic hazards, seismic hazards, snow avalanches to name a few). The totality of these hazards, according to the notion of Müller-Mahn et al. an in relation to vulnerable entities, spans a riskscape. Spatial planning should take this riskscape into account in order to ensure a save an resilient regional development. However, as frequently observed in developing or newly developed countries, such precaution measures are only hardly realized. Spatial planing tends to be reactive to private inversion, opportunistic and frequently clientelistic. This results in spatial structures whose future development is vulnerable to natural disasters. The contribution analyses these circumstances within a riskscape in central Chile. Within the VIII. Region, close to the volcanic complex Nevados de Chillan, a touristic development around a Hotel for winter sports is established. However, the place is affected by a multitude of natural hazards. The contribution, on the basis of primary and secondary data, first provides hazard maps for several natural hazards. Secondly, the individual hazard maps are merged to an overall hazard map. This overall hazard map is related to the vulnerable entities to span a riskscape. The vulnerable entities are settlements, but also tourist infrastructures. Then, the contribution compares how a precautions spatial planning could have avoided putting vulnerable entities at risk, which spatial structure - especially regarding tourism - is actually found and which challenges for spatial development do exist. It reveals that the most important tourist infrastructures are found particularly at places, characterized by a high overall hazard. Furthermore, it will show that alternatives at economically equally attractive sites, but with a much smaller overall hazard, would have existed. It concludes by discussing possible reasons for this by considering the Chilean planning system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5890K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5890K"><span>Geochemistry and origin of Puschino hot springs, Kamchaka Peninsula, Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalacheva, Elena</p> <p>2017-04-01</p> <p>Puschino hot springs are located in the valley of Kashkan River, Central Kamchatka (N54o2.938', E158o2.712') and are surface manifestations of a long-lived hydrothermal system associated with a Quaternary volcanism, off the modern volcanic front. The total natural discharge of thermal water from numerous vents is not more than 10 l/sec, vent temperatures are < 40˚ C, the total dissolved solids (TDS) < 5 g/L. The waters are near neutral (6<pH<7), with a composition of Na-Cl˜HCO3 and relatively high SO4 content (<360 ppm). The springs are characterized by a strong bubbling with CO2 as a main gas component (> 95 vol%). Several wells drilled in 1980th up to 600 m depth found similar waters with temperature ˜ 70˚ C and slightly higher TDS and pH. Bubbling gas is characterized by a very high 3He/4He up to 7.8Ra (Ra is the atmospheric ratio) and CO2/3He ˜ 1011, close to typical values for subduction zones. Water isotopic composition shows a positive correlation with chloride and a trend to magmatic values (up to 10 % of magmatic water). Waters have a low Ca/Sr weight ratio of ˜ 20 and the total REE concentration lower than 2 ppb. Strontium isotope ratio 87Sr/86Sr of 0.7043 ± 0.0001 is close to the ratio in the local volcanic rocks. The geological setting and a high magmatic contribution to thermal waters of Puschino may evidence that the heat and volatile source for the hydrothermal system is associated with the Olenya volcanic massive, which, according to the reconstruction by Leonov (unpublished), is an early Pleistocene (˜2Ma) postcaldera complex above a still hot and degassing intrusive body.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026013','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026013"><span>Geophysical constraints on understanding the origin of the Illinois basin and its underlying crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McBride, J.H.; Kolata, Dennis R.; Hildenbrand, T.G.</p> <p>2003-01-01</p> <p>Interpretation of reprocessed seismic reflection profiles reveals three highly coherent, layered, unconformity-bounded sequences that overlie (or are incorporated within) the Proterozoic "granite-rhyolite province" beneath the Paleozoic Illinois basin and extend down into middle crustal depths. The sequences, which are situated in east-central Illinois and west-central Indiana, are bounded by strong, laterally continuous reflectors that are mappable over distances in excess of 200 km and are expressed as broad "basinal" packages that become areally more restricted with depth. Normal-fault reflector offsets progressively disrupt the sequences with depth along their outer margins. We interpret these sequences as being remnants of a Proterozoic rhyolitic caldera complex and/or rift episode related to the original thermal event that produced the granite-rhyolite province. The overall thickness and distribution of the sequences mimic closely those of the overlying Mt. Simon (Late Cambrian) clastic sediments and indicate that an episode of localized subsidence was underway before deposition of the post-Cambrian Illinois basin stratigraphic succession, which is centered farther south over the "New Madrid rift system" (i.e., Reelfoot rift and Rough Creek graben). The present configuration of the Illinois basin was therefore shaped by the cumulative effects of subsidence in two separate regions, the Proterozoic caldera complex and/or rift in east-central Illinois and west-central Indiana and the New Madrid rift system to the south. Filtered isostatic gravity and magnetic intensity data preclude a large mafic igneous component to the crust so that any Proterozoic volcanic or rift episode must not have tapped deeply or significantly into the lower crust or upper mantle during the heating event responsible for the granite-rhyolite. ?? 2002 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T22A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T22A..05M"><span>Betwixt and Between: Structure and Evolution of Central Mongolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meltzer, A.; Ancuta, L. D.; Carlson, R. W.; Caves, J. K.; Chamberlain, C. P.; Gosse, J. C.; Idleman, B. D.; Ionov, D. A.; McDannell, K. T.; Tamra, M.; Mix, H.; Munkhuu, U.; Russo, R.; Sabaj-Perez, M.; Sahagian, D. L.; Sjostrom, D. J.; Smith, S. G.; Stachnik, J. C.; Tsagaan, B.; Wegmann, K. W.; Winnick, M. J.; Zeitler, P. K.; Prousevitch, A.</p> <p>2015-12-01</p> <p>Central Mongolia sits deep in the Asian continental interior between the Siberian craton to the north, the edge of the India-Asia collision to the south, and far-field subduction of the Pacific plate to the east. It has a complex geologic history comprising Archean to Early Proterozoic crystalline rocks modified by accretionary events in the Paleozoic, and Cenozoic deformation and basalt volcanism that continues today. Within central Mongolia, the broad domal Hangay upland is embedded in the greater Mongolian Plateau. Elevations within the dome average ~1.5 km above the regional trend and locally reach ~4000 m. This elevated landscape hosts a low-relief surface cut into crystalline basement, and a 30 Ma record of intermittent basalt magmatism. Here we integrate observations from geomorphology, geochronology, paleoaltimetry, biogeography, petrology, geochemistry, and seismology to document the timing, rate, and pattern of surface uplift in the Hangay and more broadly to understand the geodynamics of the Mongolian plateau. Results from mantle and crustal xenoliths, seismology, thermochronology, and basalt geochemistry are consistent with: a high geothermal gradient with temperatures reaching ~900°C at 60 km depth, intercepting the mantle adiabat at ~90 km depth; an uppermost mantle composed mostly of fertile peridotites; low-volume Cenozoic basaltic magmatism sourced below the lithosphere, with isotopic characteristics similar to much east-Asian Cenozoic mafic volcanism; a 42-57 km-thick crust of island-arc affinity formed during accretion of the Central Asia Orogenic Belt; elevations supported primarily by crustal isostasy; slow exhumation (30-100 m/My) over hundreds of millions of years; and long-term thermal stability of the upper crust and relief lowering since the Mesozoic. Results from geomorphology, paleoaltimetry, fish genetics, and basalt geochronology imply that drainage divides are stable since the mid-Miocene with modest surface uplift (up to 1 km) and topographic relief up to 800 m remaining largely unchanged since ~10 Ma. Surprisingly, this area of remarkable stability over significant time and space sits above a shallow convecting mantle and hosts some of the largest recorded intracontinental earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5079M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5079M"><span>Volcanic hazard management in dispersed volcanism areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon</p> <p>2014-05-01</p> <p>Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.296..452L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.296..452L"><span>Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, De-Liang; Shi, Ren-Deng; Ding, Lin; Zou, Hai-Bo</p> <p>2018-01-01</p> <p>This study deals with arc-type and subsequent bimodal volcanic rocks interbedded with (late) Cretaceous sedimentary formations near Gaize, central Tibet that shed new light on the Tethyan evolution along the Bangong-Nujiang suture. Unit I consists of trachyandesites interbedded with fine-grained sandstone, slate, and limestone. Zircon dating on a trachyandesite sample yields a 206Pb/238U age of 99 ± 1 Ma. The trachyandesites are characterized by strong enrichment in LILE but depletion in HFSE, low zircon saturation temperatures (TZr = 642-727 °C), and high oxygen fugacity (Δ FMQ = - 0.67-0.73), indicating their arc affinities. Unit II comprises a bimodal basalt-rhyolite suite interbedded with coarse-grained sandstone and conglomerate. Zircon dating on two rhyolitic samples yield 206Pb/238U ages of 97.1-87.0 Ma. In contrast with Unit I trachyandesites, Unit II basalts and rhyolites exhibit OIB-like trace element patterns, high temperatures (T = 1298-1379 °C for basalts, TZr = 855-930 °C for rhyolites), and low oxygen fugacity (Δ FMQ = - 3.37 - 0.43), suggesting that Unit II bimodal volcanic rocks probably formed in an extensional setting. The Sr-Nd isotopes of both Unit I (87Sr/86Sri = 0.7052-0.7074, εNd(t) = - 2.21-1.02) and Unit II (87Sr/86Sri = 0.7057-0.7098, εNd(t) = - 3.22-0.88) rocks are similar to mantle-wedge-derived volcanic rocks within the southern Qiangtang block. The parental magma of Unit I trachyandesites was formed by fluid induced melting of the mantle wedge above the subducted Bangong-Nujiang Tethyan slab, and contaminated by crustal materials during MASH process within a deep crustal hot zone; and Unit II bimodal volcanic rocks were derived by melting of upwelling asthenosphere and a mildly metasomatized mantle wedge during the Lhasa-Qiangtang collision. We propose that the transition from the Bangong-Nujiang Tethyan subduction to the Lhasa-Qiangtang collision occurred during the Late Cretaceous in central Tibet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JVGR..278...40S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JVGR..278...40S"><span>A GIS-based methodology for the estimation of potential volcanic damage and its application to Tenerife Island, Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scaini, C.; Felpeto, A.; Martí, J.; Carniel, R.</p> <p>2014-05-01</p> <p>This paper presents a GIS-based methodology to estimate damages produced by volcanic eruptions. The methodology is constituted by four parts: definition and simulation of eruptive scenarios, exposure analysis, vulnerability assessment and estimation of expected damages. Multi-hazard eruptive scenarios are defined for the Teide-Pico Viejo active volcanic complex, and simulated through the VORIS tool. The exposure analysis identifies the elements exposed to the hazard at stake and focuses on the relevant assets for the study area. The vulnerability analysis is based on previous studies on the built environment and complemented with the analysis of transportation and urban infrastructures. Damage assessment is performed associating a qualitative damage rating to each combination of hazard and vulnerability. This operation consists in a GIS-based overlap, performed for each hazardous phenomenon considered and for each element. The methodology is then automated into a GIS-based tool using an ArcGIS® program. Given the eruptive scenarios and the characteristics of the exposed elements, the tool produces expected damage maps. The tool is applied to the Icod Valley (North of Tenerife Island) which is likely to be affected by volcanic phenomena in case of eruption from both the Teide-Pico Viejo volcanic complex and North-West basaltic rift. Results are thematic maps of vulnerability and damage that can be displayed at different levels of detail, depending on the user preferences. The aim of the tool is to facilitate territorial planning and risk management in active volcanic areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70164521','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70164521"><span>Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, Fred; Mooney, Walter D.</p> <p>2016-01-01</p> <p>Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V51B4738H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V51B4738H"><span>Structural controls on the spatial distribution and geochemical composition of volcanism in a continental rift zone; an example from Owens Valley, eastern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haproff, P. J.; Yin, A.</p> <p>2014-12-01</p> <p>Bimodal volcanism is common in continental rift zones. Structural controls to the emplacement and compositions of magmas, however, are not well understood. To address this issue, we examine the location, age, and geochemistry of active volcanic centers, and geometry and kinematics of rift-related faults across the active transtensional Owens Valley rift zone. Building on existing studies, we postulate that the spatial distribution and geochemical composition of volcanism are controlled by motion along rift-bounding fault systems. Along-strike variation in fault geometry and characteristics of active volcanism allow us to divide Owens Valley into three segments: southern, northern, and central. The southern segment of Owens Valley is a simple shear, asymmetric rift bounded to the west by the east-dipping Sierra Nevada frontal fault (SNFF). Active vents of Coso volcanic field are distributed along the eastern rift shoulder and characterized by the eruption of bimodal lavas. The SNFF within this segment is low-angle and penetrates through the lithosphere and into the ductile asthenosphere, allowing for mantle-derived magma to migrate across the weakest part of the fault zone beneath the eastern rift shoulder. Magma thermally weakens wall rocks and eventually stalls in the crust where the melt develops a greater felsic component prior to eruption. The northern segment of Owens Valley displays similar structural geometry, as the west-dipping White Mountains fault (WMF) is listric at depth and offsets the crust and mantle lithosphere, allowing for vertical transport of magma and reservoir emplacement within the crust. Bimodal lavas periodically erupted in the Long Valley Caldera region along the western rift shoulder. The central segment of Owens Valley is a pure shear, symmetric graben generated by motion along the SNFF and WMF. The subvertical, right-slip Owens Valley fault (OVF) strikes along the axis of the valley and penetrates through the lithosphere into the asthenosphere. Volcanic centers of Big Pine volcanic field are located along the trace of the OVF and characterized by mafic eruptions. The OVF is interpreted to provide a subvertical conduit for asthenospheric magma to migrate across the LAB and Moho and erupt on the rift surface without significant contamination with felsic crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007E%26PSL.258..132D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007E%26PSL.258..132D"><span>The He-CO 2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: New constraints on volatile mass balance of the Central American Volcanic Arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Leeuw, G. A. M.; Hilton, D. R.; Fischer, T. P.; Walker, J. A.</p> <p>2007-06-01</p> <p>We report helium and carbon isotope and relative abundance data of fumaroles, hot springs, water springs, mud-pots and geothermal wells from El Salvador and Honduras to investigate both along and across-arc controls on the release of CO 2 from the subducted slab. El Salvador localities show typical volcanic front volcanic gas signatures, with 3He/ 4He ratios of 5.2-7.6 RA, δ13C values of - 3.6‰ to - 1.3‰ and CO 2/ 3He ratios of 8-25 × 10 9. In Honduras, we find similar values only for volatiles collected in the Sula Graben region located ˜ 200 km behind the volcanic front. All other areas in Honduras show significantly lower 3He/ 4He ratios (0.7-3.5 RA), lower δ13C values (< - 7.3‰) and more variable CO 2/ 3He ratios (6.2 × 10 7-2.0 × 10 11): characteristics consistent with degassing-induced fractionation of CO 2 and He and/or interaction with crustal rocks. The provenance of CO 2 released along the volcanic front is dominated by subducted marine carbonates (L = 76 ± 4%) and organic sediments (S = 14 ± 3%), with the mantle wedge (M) contributing 10 ± 3% to the total carbon flux. The L/S ratio of the El Salvador volatiles (average = 5.6) is comparable to volcanic front localities in Costa Rica and Nicaragua [A.M. Shaw, D.R. Hilton, T.P. Fischer, L.A. Walker, G.E. Alvarado, Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet. Sci. Lett. 214 (2003) 499-513] but is approximately one-half the input value of sediments at the trench (L. Li, G.E. Bebout, Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity, J. Geophys. Res. 110 (2005), doi: 10.1029/2004JB003276). We use the L/S ratio of El Salvador geothermal fluids, together with estimates of the CO 2 output flux from the arc, to constrain the amount and composition of subducted sediments involved in the supply of CO 2 to the arc. For the El Salvador segment of the volcanic front, a ˜ 180 m continuous section of the incoming sedimentary pile — with the uppermost ˜ 42 m removed by under-plating, is required. Significantly, there is no need for oceanic basaltic basement to supply CO 2 to El Salvador — or any other part of the volcanic front. This new approach, combining provenance characteristics of CO 2 from the slab (L/S ratio) and CO 2 flux estimates of the volcanic output, allows a more realistic estimate of the recycling efficiency of slab-derived sedimentary CO 2 through the Central American Volcanic Arc to the atmosphere. Furthermore, the low L/S ratio (4.8) of Sula Graben samples from behind the front in Honduras is inconsistent with continued supply of slab-derived sedimentary CO 2 following volatile loss at sub-arc depths, thereby pointing to ancient enrichment and/or lateral entrainment processes controlling CO 2 in the mantle wedge below Honduras.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V53C2854W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V53C2854W"><span>Volatile emissions from Cascade cinder cone eruptions: Implications for future hazard assessments in the Central and Southern Cascades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walsh, L. K.; Wallace, P. J.; Cashman, K. V.</p> <p>2012-12-01</p> <p>An abundance of hazardous effects including ash fall out, basaltic lava flows and poisonous volcanic gas have been documented at active volcanic centers (e.g. Auckland Volcanic Field, New Zealand; Bebbington and Cronin 2011) and have been inferred using tools such as geologic mapping and geochemical analyses for prehistoric eruptions (e.g. Cerro Negro, Nicaragua; Hill et al. 1995; McKnight and Williams 1997). The Cascades volcanic history is also dominated by prehistoric eruptions; however the associated hazards have yet to be studied in-depth. Short recurrence rates of cinder cone volcanism (1x10-5 to 5x10-4 events/yr; Smid et al. 2009) likely intensify the probability of human experience with cinder cone hazards. Hence, it is important to understand the effects that cinder cone volcanism can have on communities near the Cascades. In this study, we estimate volatile fluxes of prehistoric Cascade cinder cone eruptions by analyzing olivine-hosted melt inclusions and rapidly quenched tephra matrix glass. The melt inclusions provide pre-eruptive volatile concentrations whereas tephra groundmass glass provides post-eruptive volatile concentrations. By comparing initial and final concentrations we can determine the amounts of sulfur, chlorine and fluorine released into the atmosphere. We have analyzed S, Cl and F concentrations in melt inclusions from cinder cones in the Central Oregon Cascades (Collier Cone, Yapoah Crater, Four-in-One Fissure, Garrison Butte) and in Northern California near Mt. Lassen (Cinder Cone, Basalt of Old Railroad Grade, Basalt of Highway 44). Analyses of volatiles in melt inclusions and matrix glasses were done using the Cameca SX100 electron microprobe at the University of Oregon. Melt inclusions and matrix glass were run under 15kV, 50nA, and 10μm-beam conditions. For F analyses, a use of an LTAP crystal and relatively long counting times (160 sec. on peak) resulted in good analytical precision. Preliminary results for melt inclusions from the Central Oregon Cascades are (averages from each cone): 700-1190 ppm S; 480-1115 ppm Cl; 120-280 ppm F; and for Northern California: 620-1100 ppm S; 305-445 ppm Cl; 130-240 ppm F. Maximum values for the two regions are 1610 ppm S, 1490 ppm Cl, and 440 ppm F. The majority of studies on health hazards from inhalation or ingestion of volcanic aerosols are centered on livestock; therefore not much is known of the effects on humans. This emphasizes the importance of such a study in a volcanically active region. Levels of volcanic aerosols are considered "hazardous" and to "pose a hazardous risk" to surrounding agricultural and residential communities if concentrations are elevated above World Health Organization (WHO) or Occupational Safety and Health Administration maximum exposure limits (OSHA) (SO2: 7 ppm for a 24-hr period; HCl: 5 ppm for a 24-hr period; HF: 3 ppm for a 10-hr period). By assessing volatile concentrations from past eruptions we can better constrain the probable volatile hazards future cinder cone eruptions pose to surrounding agricultural and residential communities near the Cascades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1979/0716/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1979/0716/report.pdf"><span>Tertiary volcanic rocks of the Mineral Mountain and Teapot Mountain quadrangles, Pinal County, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Keith, William J.; Theodore, Ted G.</p> <p>1979-01-01</p> <p>The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-AS9-19-3019.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-AS9-19-3019.html"><span>Gulf of Fonseca, Pacifica coast of Central America as seen from Apollo 9</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1969-03-12</p> <p>AS09-19-3019 (3-13 March 1969) --- Gulf of Fonseca, on the Pacific coast of Central America, as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. The gulf is shared by the nations of El Salvador, Honduras, and Nicaragua. The prominent volcano on the peninsula in Nicaragua is Volcan Cosiguina.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/145419-volcanic-episodes-near-yucca-mountain-determined-paleomagnetic-studies-lathrop-wells-crater-flat-sleeping-butte-nevada','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/145419-volcanic-episodes-near-yucca-mountain-determined-paleomagnetic-studies-lathrop-wells-crater-flat-sleeping-butte-nevada"><span>Volcanic episodes near Yucca Mountain as determined by paleomagnetic studies as Lathrop Wells, Crater Flat, and Sleeping Butte, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Champion, D.E.</p> <p>1991-12-31</p> <p>It has been suggested that mafic volcanism in the vicinity of Yucca Mountain, Nevada, is both recent (20 ka) and a product of complex {open_quotes}polycyclic{close_quotes} eruptions. This pattern of volcanism, as interpreted by some workers at the Lathrop Wells volcanic complex, comprises a sequence of numerous small-volume eruptions that become more tephra-producing over time. Such sequences are thought to occur over timespans as long as 100,000 years. However, paleomagnetic studies of the tephra and lava flows from mafic volcanoes near Yucca Mountain fail to find evidence of repeated eruptive activity over timespans of 10{sup 3} to 10{sup 5} years, evenmore » though samples have been taken that represent approximately 95% of the products of these volcanoes. Instead, the eruptions seem to have occurred as discrete episodes at each center and thus can be considered to be {open_quotes}monogenetic.{close_quotes} Dates of these episodes have been obtained by the proven radiometric-geochronometer methods of K-Ar or {sup 40}Ar/{sup 39}Ar dating.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920048230&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmass%2Bwasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920048230&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmass%2Bwasting"><span>The Tharsis Montes, Mars - Comparison of volcanic and modified landforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimbelman, James R.; Edgett, Kenneth S.</p> <p>1992-01-01</p> <p>The three Tharsis Montes shield volcanos, Arsia Mons, Pavonis Mons, and Ascraeus Mons, have broad similarities that have been recognized since the Mariner 9 reconnaissance in 1972. Upon closer examination the volcanos are seen to have significant differences that are due to individual volcanic histories. All three volcanos exhibit the following characteristics: gentle (less than 5 deg) flank slopes, entrants in the northwestern and southeastern flanks that were the source for lavas extending away from each shield, summit caldera(s), and enigmatic lobe-shaped features extending over the plains to the west of each volcano. The three volcanos display different degrees of circumferential graben and trough development in the summit regions, complexity of preserved caldera collapse events, secondary summit-region volcanic construction, and erosion on the lower western flanks due to mass wasting and the processes that formed the large lobe-shaped features. All three lobe-shaped features start at elevations of 10 to 11 km and terminate at 6 km. The complex morphology of the lobe deposits appear to involve some form of catastrophic mass movement followed by effusive and perhaps pyroclastic volcanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1117/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1117/"><span>WOVOdat Design Document: The Schema, Table Descriptions, and Create Table Statements for the Database of Worldwide Volcanic Unrest (WOVOdat Version 1.0)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Venezky, Dina Y.; Newhall, Christopher G.</p> <p>2007-01-01</p> <p>WOVOdat Overview During periods of volcanic unrest, the ability to forecast near future activity has been a primary concern for human populations living near volcanoes. Our ability to forecast future activity and mitigate hazards is based on knowledge of previous activity at the volcano exhibiting unrest and knowledge of previous activity at similar volcanoes. A small set of experts with past experience are often involved in forecasting. We need to both preserve the knowledge the experts use and continue to investigate volcanic data to make better forecasts. Advances in instrumentation, networking, and data storage technologies have greatly increased our ability to collect volcanic data and share observations with our colleagues. The wealth of data creates numerous opportunities for gaining a better understanding of magmatic conditions and processes, if the data can be easily accessed for comparison. To allow for comparison of volcanic unrest data, we are creating a central database called WOVOdat. WOVOdat will contain a subset of time-series and geo-referenced data from each WOVO observatory in common and easily accessible formats. WOVOdat is being created for volcano experts in charge of forecasting volcanic activity, scientists investigating volcanic processes, and the public. The types of queries each of these groups might ask range from, 'What volcanoes were active in November of 2002?' and 'What are the relationships between tectonic earthquakes and volcanic processes?' to complex analyses of volcanic unrest to determine what future activity might occur. A new structure for storing and accessing our data was needed to examine processes across a wide range of volcanologic conditions. WOVOdat provides this new structure using relationships to connect the data parameters such that searches can be created for analogs of unrest. The subset of data that will fill WOVOdat will continue to be collected by the observatories, who will remain the primary archives of raw and detailed data on individual episodes of unrest. MySQL, an Open Source database, was chosen as the WOVOdat database for its integration with common web languages. The question of where the data will be stored and how the disparate data sets will be integrated will not be discussed in detail here. The focus of this document is to explain the data types, formats, and table organization chosen for WOVOdat 1.0. It was written for database administrators, data loaders, query writers, and anyone who monitors volcanoes. We begin with an overview of several challenges faced and solutions used in creating the WOVOdat schema. Specifics are then given for the parameters and table organization. After each table organization section, basic create table statements are included for viewing the database field formats. In the next stage of the project, scripts will be needed for data conversion, entry, and cleansing. Views will also need to be created once the data have been loaded and the basic queries are better known. Many questions and opportunities remain. We look forward to the growth and continual improvement in efficiency of the system. We hope WOVOdat will improve our understanding of magmatic systems and help mitigate future volcanic hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P41D1960S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P41D1960S"><span>The Plains of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharpton, V. L.</p> <p>2013-12-01</p> <p>Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the extremely fluid flows (i.e., channel formers), to viscous, possibly felsic lavas of steep-sided domes. Wrinkle ridges deform many plains units and this has been taken to indicate that these ridges essentially form an early stratigraphic marker that limits subsequent volcanism to a minimum. However, subtle backscatter variations within many ridged plains units suggest (but do not prove) that some plains volcanism continued well after local ridge deformation ended. Furthermore, many of volcanic sources show little, if any, indications of tectonic modification and detailed analyses have concluded that resurfacing rates could be similar to those on Earth. Improving constraints on the rates and styles of volcanism within the plains could lend valuable insights into the evolution of Venus's internal heat budget and the transition from thin-lid to thick-lid tectonic regimes. Improved spatial and radiometric resolution of radar images would greatly improve abilities to construct the complex local stratigraphy of ridged plains. Constraining the resurfacing history of Venus is central to understanding how Earth-sized planets evolve and whether or not their evolutionary pathways lead to habitability. This goal can only be adequately addressed if broad coverage is added to the implementation strategies of any future mapping missions to Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197329','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197329"><span>A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: The importance of accurate time-series datasets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>de Moor, Maarten; Kern, Christoph; Avard, Geoffroy; Muller, Cyril; Aiuppa, Sandro; Saballos, Armando; Ibarra, Martha; LaFemina, Peter; Protti, Mario; Fischer, Tobias</p> <p>2017-01-01</p> <p>This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015–2016. We report ∼300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ∼500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972–2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015–2016 than in any period since ∼1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time‐series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short‐lived degassing events and arc systems likely display significant short‐term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.4437D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.4437D"><span>A New Sulfur and Carbon Degassing Inventory for the Southern Central American Volcanic Arc: The Importance of Accurate Time-Series Data Sets and Possible Tectonic Processes Responsible for Temporal Variations in Arc-Scale Volatile Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Moor, J. M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. P.</p> <p>2017-12-01</p> <p>This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015-2016. We report ˜300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ˜500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972-2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015-2016 than in any period since ˜1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time-series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short-lived degassing events and arc systems likely display significant short-term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028743','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028743"><span>Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eberhart-Phillips, D.; Christensen, D.H.; Brocher, T.M.; Hansen, R.; Ruppert, N.A.; Haeussler, Peter J.; Abers, G.A.</p> <p>2006-01-01</p> <p>In southern and central Alaska the subduction and active volcanism of the Aleutian subduction zone give way to a broad plate boundary zone with mountain building and strike-slip faulting, where the Yakutat terrane joins the subducting Pacific plate. The interplay of these tectonic elements can be best understood by considering the entire region in three dimensions. We image three-dimensional seismic velocity using abundant local earthquakes, supplemented by active source data. Crustal low-velocity correlates with basins. The Denali fault zone is a dominant feature with a change in crustal thickness across the fault. A relatively high-velocity subducted slab and a low-velocity mantle wedge are observed, and high Vp/Vs beneath the active volcanic systems, which indicates focusing of partial melt. North of Cook Inlet, the subducted Yakutat slab is characterized by a thick low-velocity, high-Vp/Vs, crust. High-velocity material above the Yakutat slab may represent a residual older slab, which inhibits vertical flow of Yakutat subduction fluids. Alternate lateral flow allows Yakutat subduction fluids to contribute to Cook Inlet volcanism and the Wrangell volcanic field. The apparent northeast edge of the subducted Yakutat slab is southwest of the Wrangell volcanics, which have adakitic composition consistent with melting of this Yakutat slab edge. In the mantle, the Yakutat slab is subducting with the Pacific plate, while at shallower depths the Yakutat slab overthrusts the shallow Pacific plate along the Transition fault. This region of crustal doubling within the shallow slab is associated with extremely strong plate coupling and the primary asperity of the Mw 9.2 great 1964 earthquake. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..82..311C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..82..311C"><span>Record of a Statherian rift-sag basin in the Central Espinhaço Range: Facies characterization and geochronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, Alice Fernanda de Oliveira; Danderfer, André; Bersan, Samuel Moreira</p> <p>2018-03-01</p> <p>Several rift-related sequences and volcanic-plutonic associations of Statherian age occur within the São Francisco block. One succession within the sedimentary record, the Terra Vermelha Group, defines one of the evolutionary stages of the Espinhaço basin in the Central Espinhaço Range. As a result of stratigraphic analyses and supported by U-Pb zircon geochronological data, the evolution of this unit has been characterized. To more effectively delimit its upper depositional interval, the sequence of this unit, which is represented by the Pau d'Arco Formation, was also studied. The sedimentary signature of the Terra Vermelha Group suggests the infilling of an intracontinental rift associated with alluvial fans as well as lacustrine and eolian environments with associated volcanism. The basal succession represented by the Cavoada do Buraco Formation mainly consists of conglomerates with interlayered sandstones and subordinate banded iron formations. Detrital zircon obtained from this unit reveals ages of 1710 ± 21 Ma. The upper succession, represented by the Espigão Formation, records aeolian sandstones with volcanic activity at the top. A volcanic rock dated at 1758 ± 4 Ma was interpreted as the timing of volcanism in this basin. The eolian deposits recorded within the Pau d'Arco Formation were caused by a renewal of the sequence, which represent a stage of post-rift thermal subsidence. The maximum age of sedimentation for this unit is 1675 ± 22 Ma. The basin-infill patterns and Statherian ages suggest a direct link with the first rifting event within the São Francisco block, which was responsible for the deposition of the Espinhaço Supergroup.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAfES..99..215T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAfES..99..215T"><span>Transition from alkaline to calc-alkaline volcanism during evolution of the Paleoproterozoic Francevillian basin of eastern Gabon (Western Central Africa)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thiéblemont, Denis; Bouton, Pascal; Préat, Alain; Goujou, Jean-Christian; Tegyey, Monique; Weber, Francis; Ebang Obiang, Michel; Joron, Jean Louis; Treuil, Michel</p> <p>2014-11-01</p> <p>We report new geochemical data for the volcanic and subvolcanic rocks associated with the evolution of the Francevillian basin of eastern Gabon during Paleoproterozoic times (c. 2.1-2 Ga). Filling of this basin has proceeded through four main sedimentary or volcano-sedimentary episodes, namely FA, FB, FC and FD. Volcanism started during the FB episode being present only in the northern part of the basin (Okondja sub-basin). This volcanism is ultramafic to trachytic in composition and displays a rather constant alkaline geochemical signature. This signature is typical of a within-plate environment, consistent with the rift-setting generally postulated for the Francevillian basin during the FB period. Following FB, the FC unit is 10-20 m-thick silicic horizon (jasper) attesting for a massive input of silica in the basin. Following FC, the FD unit is a c. 200-400 m-thick volcano-sedimentary sequence including felsic tuffs and epiclastic rocks. The geochemical signatures of these rocks are totally distinct from those of the FB alkaline lavas. High Th/Ta and La/Ta ratios attest for a calc-alkaline signature and slight fractionation between heavy rare-earth suggests melting at a rather low pressure. Such characteristics are comparable to those of felsic lavas associated with the Taupo zone of New Zealand, a modern ensialic back-arc basin. Following FD, the FE detrital unit is defined only in the Okondja region, probably associated with a late-stage collapse of the northern part of the basin. It is suggested that the alkaline to calc-alkaline volcanic transition reflects the evolution of the Francevillian basin from a diverging to a converging setting, in response to the onset of converging movements in the Eburnean Belt of Central Africa.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3329/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3329/"><span>Newberry Volcano's youngest lava flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.</p> <p>2015-01-01</p> <p>The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Litho.224..195S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Litho.224..195S"><span>A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua</p> <p>2015-05-01</p> <p>Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a Carboniferous back-arc basin formed as a result of slab rollback ascribed to northward subduction of the Niujuanzi oceanic lithosphere. Subduction of this back-arc basin probably took place in the early Carboniferous, generating the widespread arc-related granitoids including adakitic plutons, and overlapping earlier arc assemblages. The Beishan orogenic collage is not the eastern extension of the Chinese Central Tianshan, but it was generated by the same north-dipping subduction system separated by the Xingxingxia transform fault, as revealed by available regional data. This contribution implies that in addition to fore-arc accretion, back-arc accretion ascribed to opening and closure of a back-arc basin may also have been a common process in the construction of the CAOB, resembling that of the Mesozoic-Cenozoic subduction-accretion system in the SW pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T51F2425A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T51F2425A"><span>Contrasting styles of sedimentation and deformation in the Chugach Terrane accretionary complex, south-central Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amato, J. M.; Pavlis, T. L.; Worthman, C.; Kochelek, E.; Day, E. M.; Clift, P. D.; Hecker, J.</p> <p>2011-12-01</p> <p>In southeast Alaska the Chugach terrane represents an accretionary complex associated with several arcs active at 200-65 Ma. This lithostratigraphic unit consists of blueschists with Early Jurassic metamorphic ages and uncertain depositional ages; the Jurassic-Cretaceous McHugh Complex; and the Late Cretaceous Valdez Group. Detrital zircon ages from densely sampled transects reveals patterns in the assembly of the complex. Blueschists are almost totally barren of zircon, suggesting protoliths derived from mafic-intermediate volcanic protoliths far from a continental source. There is an age gap between the blueschists and the McHugh complex interpreted to be caused by an episode of tectonic erosion. The McHugh Complex is two separate units that are lithologically and geochronologically distinct. The older McHugh is a melange is dominated by stratally disrupted volcanic rocks, chert, and argillite. The oldest McHugh rocks have maximum depositional ages (MDA) of 177-150 Ma at Seldovia and 157-145 Ma at Turnagain Arm; the lack of older rocks at Turnagain Arm suggests removal of structural section by faulting. The MDAs of the older McHugh rocks do not decrease progressively away from the arc. There is a 45 m.y. gap in MDA between the older McHugh and the Late Cretaceous McHugh rocks. The younger McHugh rocks are dominated by volcanogenic sandstone and coarse conglomerate and MDA decreases from 100 Ma near the boundary with the older McHugh mesomelange to 85 Ma near the Valdez Group. The Valdez Group consists of coherently bedded turbidites with a MDA range of 85-60 Ma that decreases progressively outboard of the arc source. A sample from the Orca Group of the Prince William terrane is lithologically similar to the Valdez Group and there is no gap in MDA between Valdez and Orca Groups. 55 Ma dikes cut the McHugh and Valdez Groups in the western Chugach and Kenai Mountains. The oldest units of the Chugach terrane are the most deformed, with deformation and metamorphism becoming progressively less intense. The older part of the McHugh Complex was likely also subducted deeper than younger units but not beyond greenschist facies. Another period of tectonic erosion was initiated by ridge subduction at ~120 Ma, followed by continuous accretion the younger McHugh complex, the Valdez Group, and continued <60 Ma in the Orca Group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T24C..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T24C..04W"><span>The Structure of the Crust and Uppermost Mantle Beneath the Central Andes from Ambient Noise Tomography: Imaging the Neogene to Modern Batholith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, K. M.; Zandt, G.; Beck, S. L.; Porter, R. C.; Wagner, L. S.; Minaya, E.; Tavera, H.</p> <p>2012-12-01</p> <p>The Central Andes of southern Peru, Bolivia, and northern Chile (between ~10°S and ~35°S) comprise the largest orogenic plateau in the world associated with abundant arc volcanism, the Central Andean Plateau (CAP). The goal of this continental-scale Ambient Noise Tomography (ANT) project is to incorporate broadband seismic data from ~20 seismic networks deployed incrementally in the Central and Southern Andes from May 1994 through March 2012, to image the vertically polarized shear-wave velocity (Vsv) structure of the CAP. First-order correlations with our shallow results (~5 km) and the morphotectonic provinces as well as subtler geological features indicate our results are robust. Our major results include mapping a pervasive mid-crustal low-velocity zone (<3.25 km/s) underneath the western portion of the CAP and a locally ultra-low-velocity anomaly (~2.0 km/s) beneath the Altiplano-Puna Volcanic Complex (APVC). The presence of a large and laterality extensive low-velocity zone suggests either a zone of partial melt ("mush") associated with batholith formation at depth, a thermally weakened crust capable of lateral flow, or the presence of aqueous fluids. Magnetotelluric studies that overlap our images do not resolve a high conductivity anomaly across our low-velocity zone as expected in the presence of aqueous fluids or large interconnected zones of partial melt. Therefore, we dismiss them as likely explanations for our imaged low-velocity body outside of the APVC location. Working under the hypothesis that voluminous ignimbrites are the surface expression of batholith formation at depth as exemplified by the APVC, we combine our results with the locations of known Neogene ignimbrite eruptive centers and negative isostatic residual gravity anomalies and suggest the 3.25 km/s shear-wave velocity contour at 15 km depth generally outlines the extent of a Neogene to modern batholith, with isolated pockets of partial melt where velocities dip below 3.0 km/s. A velocity of 3.25 km/s at this pressure and temperature regime is too low for an isotropic granitic composition and must be explained without invoking significant partial melt. Previous work in Tibet, a region with thick crust analogous to the CAP, suggests a zone of mid-crustal radial anisotropy may separate horizontally and vertically polarized shear-wave velocities by as much as 20%. The effective isotropic shear velocity may be ~10% faster than the 3.25 km/s we observe which would correspond to velocities expected of an isotropic granitic composition (~3.6 km/s) at depth. Our interpretation of a large Neogene batholith associated with active volcanism revisits the idea of magmatic addition as a contributing mechanism to the growth of the western portion of the CAP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118545','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118545"><span>The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten</p> <p>2013-01-01</p> <p>The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen and volcanic pile fluids (T = 240°–315°C; δ18O = 4.3 ± 1.5‰) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid within the granite complex, together with the lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system. This separation is interpreted to result from either the swamping of a relatively small magmatic-hydro-thermal system by evolved seawater or density contrasts precluding movement of magmatic-hydrothermal fluids into the volcanic pile. Variability in the salinity of fluids in the volcanic pile, combined with evidence for mixing of low- and high-salinity fluids in the massive sulfide lens, is interpreted to indicate that phase separation occurred within the Panorama hydrothermal system. Although we consider this phase separation to have most likely occurred at depth within the system, as has been documented in modern VHMS systems, the data do not allow the location of the inferred phase separation to be determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AdG....22..125T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AdG....22..125T"><span>Volcanism and associated hazards: the Andean perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tilling, R. I.</p> <p>2009-12-01</p> <p>Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033968','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033968"><span>Volcanism and associated hazards: The Andean perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tilling, R.I.</p> <p>2009-01-01</p> <p>Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. <br><br> The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km 3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850015251&hterms=rate+interest&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drate%2Binterest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850015251&hterms=rate+interest&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drate%2Binterest"><span>Estimates of Lava Eruption Rates at Alba Patera, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baloga, S. M.; Pieri, D. C.</p> <p>1985-01-01</p> <p>The Martian volcanic complex Alba Patera exhibits a suite of well-defined, long and relatively narrow lava flows qualitatively resembling those found in Hawaii. Even without any information on the duration of the Martian flows, eruption rates (total volume discharge/duration of the extrusion) estimates are implied by the physical dimensions of the flows and the likely conjecture that Stephan-Boltzmann radiation is the dominating thermal loss mechanism. The ten flows in this analysis emanate radially from the central vent and were recently measured in length, plan areas, and average thicknesses by shadow measurement techniques. The dimensions of interest are shown. Although perhaps morphologically congruent to certain Hawaiian flows, the dramatically expanded physical dimensions of the Martian flows argues for some markedly distinct differences in lava flow composition for eruption characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26324399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26324399"><span>New ground-based lidar enables volcanic CO2 flux measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo</p> <p>2015-09-01</p> <p>There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5022/q/sir20175022q_.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5022/q/sir20175022q_.pdf"><span>A field trip guide to the petrology of Quaternary volcanism on the Yellowstone Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vazquez, Jorge A.; Stelten, Mark; Bindeman, Ilya N.; Cooper, Kari</p> <p>2017-12-19</p> <p>The Yellowstone Plateau is one of the largest manifestations of silicic volcanism on Earth, and marks the youngest focus of magmatism associated with the Yellowstone Hot Spot. The earliest products of Yellowstone Hot Spot volcanism are from ~17 million years ago, but may be as old as ~32 Ma, and include contemporaneous eruption of voluminous mafic and silicic magmas, which are mostly located in the region of northwestern Nevada and southeastern Oregon. Since 17 Ma, the main locus of Yellowstone Hot Spot volcanism has migrated northeastward producing numerous silicic caldera complexes that generally remain active for ~2–4 million years, with the present-day focus being the Yellowstone Plateau. Northeastward migration of volcanism associated with the Yellowstone Hot Spot resulted in the formation of the Snake River Plain, a low relief physiographic feature extending ~750 kilometers from northern Nevada to eastern Idaho. Most of the silicic volcanic centers along the Snake River Plain have been inundated by younger basalt volcanism, but many of their ignimbrites and lava flows are exposed in the extended regions at the margins of the Snake River Plain. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss037e005089.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss037e005089.html"><span>Earth Observation taken during the Expedition 37 mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-09-30</p> <p>ISS037-E-005089 (30 Sept. 2013) --- Ruapehu volcano and Tongariro volcanic complex in New Zealand are featured in this image photographed by an Expedition 37 crew member on the International Space Station. Mount Ruapehu is one of several volcanic centers on the North Island of New Zealand, but is the largest and historically most active. The 2,797-meter elevation volcano is also the highest mountain on North Island and is covered with snow on its upper slopes. Scientists believe while there are three summit craters that have been active during the last 10,000 years, South Crater is the only historically active one. This vent is currently filled with a lake (Crater Lake), visible at left; eruptions from the vent, mixed with water from the lake can lead to the formation of lahars – destructive gravity flows of mixed fluid and volcanic debris that form a hazard to ski areas on the upper slopes and lower river valleys. The most recent significant eruption of Ruapehu took place in 2007 and formed both an eruption plume and lahars. The volcano is surrounded by a 100-cubic-kilometer ring plain of volcaniclastic debris that appears dark grey in the image, whereas vegetated areas appear light to dark green. Located to the northeast of the Ruapehu volcanic structure, the Tongariro volcanic complex (lower right) is currently in an active eruptive phase – the previous eruptive phase ended in 1897. Explosive eruptions occurred in 2012, which have been followed by steam and gas plumes observed almost daily. According to scientists, the volcanic complex contains multiple cones constructed over the past 275,000 years. The most prominent of these, Mount Ngauruhoe, last erupted in 1975. Like Ruapehu, the upper slopes of both Ngauruhoe and the upper peaks of Tongariro are snow-covered. Scattered cloud cover is also visible near Tongariro at lower right.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.6759M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.6759M"><span>Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mingari, Leonardo A.; Collini, Estela A.; Folch, Arnau; Báez, Walter; Bustos, Emilce; Soledad Osores, María; Reckziegel, Florencia; Alexander, Peter; Viramonte, José G.</p> <p>2017-06-01</p> <p>On 13 June 2015, the London Volcanic Ash Advisory Centre (VAAC) warned the Buenos Aires VAAC about a possible volcanic eruption from the Nevados Ojos del Salado volcano (6879 m), located in the Andes mountain range on the border between Chile and Argentina. A volcanic ash cloud was detected by the SEVIRI instrument on board the Meteosat Second Generation (MSG) satellites from 14:00 UTC on 13 June. In this paper, we provide the first comprehensive description of this event through observations and numerical simulations. Our results support the hypothesis that the phenomenon was caused by wind remobilization of ancient pyroclastic deposits (ca. 4.5 ka Cerro Blanco eruption) from the Bolsón de Fiambalá (Fiambalá Basin) in northwestern Argentina. We have investigated the spatiotemporal distribution of aerosols and the emission process over complex terrain to gain insight into the key role played by the orography and the condition that triggered the long-range transport episode. Numerical simulations of windblown dust were performed using the ARW (Advanced Research WRF) core of the WRF (Weather Research and Forecasting) model (WRF-ARW) and FALL3D modeling system with meteorological fields downscaled to a spatial resolution of 2 km in order to resolve the complex orography of the area. Results indicate that favorable conditions to generate dust uplifting occurred in northern Fiambalá Basin, where orographic effects caused strong surface winds. According to short-range numerical simulations, dust particles were confined to near-ground layers around the emission areas. In contrast, dust aerosols were injected up to 5-6 km high in central and southern regions of the Fiambalá Basin, where intense ascending airflows are driven by horizontal convergence. Long-range transport numerical simulations were also performed to model the dust cloud spreading over northern Argentina. Results of simulated vertical particle column mass were compared with the MSG-SEVIRI retrieval product. We tested two numerical schemes: with the default configuration of the FALL3D model, we found difficulties to simulate transport through orographic barriers, whereas an alternative configuration, using a numerical scheme to more accurately compute the horizontal advection in abrupt terrains, substantially improved the model performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1908c0012M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1908c0012M"><span>Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maryanto, Sukir</p> <p>2017-11-01</p> <p>Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA10947&hterms=slump&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dslump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA10947&hterms=slump&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dslump"><span>Oudemans Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2008-01-01</p> <p><p/> This image of the interior of Oudemans Crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1800 UTC (1:00 p.m. EDT) on October 2, 2006, near 9.8 degrees south latitude, 268.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. <p/> Oudemans Crater is located at the extreme western end of Valles Marineris in the Sinai Planum region of Mars. The crater measures some 124 kilometers (77 miles) across and sports a large central peak. <p/> Complex craters like Oudemans are formed when an object, such as an asteroid or comet, impacts the planet. The size, speed and angle at which the object hits all determine the type of crater that forms. The initial impact creates a bowl-shaped crater and flings material (known as ejecta) out in all directions along and beyond the margins of the bowl forming an ejecta blanket. As the initial crater cavity succumbs to gravity, it rebounds to form a central peak while material along the bowl's rim slumps back into the crater forming terraces along the inner wall. If the force of the impact is strong enough, a central peak forms and begins to collapse back into the crater basin, forming a central peak ring. <p/> The uppermost image in the montage above shows the location of CRISM data on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data was taken inside the crater, on the northeast slope of the central peak. <p/> The lower left image is an infrared false-color image that reveals several distinctive deposits. The center of the image holds a ruddy-brown deposit that appears to correlates with a ridge running southwest to northeast. Lighter, buff-colored deposits occupy low areas interspersed within the ruddy-brown deposit. The southeast corner holds small hills that form part of the central peak complex. <p/> The lower right image shows spectral indicators of different materials, and reveals the composition of the crater floor and its central peak. Rocks rich in the volcanic mineral pyroxene, shown in blue, dominate the north-central part of the image. There is an enhanced content of the volcanic mineral olivine (shown in greens and yellows) in those parts of the images that appear ruddy brown in false color. The low-lying parts of the image that appear buff in false color are covered in dust, and shown in red. This view provides insight into the relationships of deposits beneath Oudemans Crater. The impact excavated the underlying olivine that that is enriched in the crater's central peak. Pyroxene-rich material covered the crater's floor, and later, low-lying areas filled with dust. <p/> CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.1339R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.1339R"><span>The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.</p> <p>2018-01-01</p> <p>The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7832E..0JP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7832E..0JP"><span>EARLINET observations of the Eyjafjallajökull ash plume over Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pappalardo, Gelsomina; Amodeo, Aldo; Ansmann, Albert; Apituley, Arnoud; Alados Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoli; Comeron, Adolfo; D'Amico, Giuseppe; De Tomasi, Ferdinando; Freudenthaler, Volker; Giannakaki, Elina; Giunta, Aldo; Grigorov, Ivan; Gustafsson, Ove; Gross, Silke; Haeffelin, Martial; Iarlori, Marco; Kinne, Stefan; Linné, Holger; Madonna, Fabio; Mamouri, Rodanthi; Mattis, Ina; McAuliffe, Michael; Molero, Francisco; Mona, Lucia; Müller, Detlef; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Serikov, Ilya; Sicard, Michael; Simeonov, Valentin; Spinelli, Nicola; Stebel, Kerstin; Trickl, Thomas; Wandinger, Ulla; Wang, Xuan; Wagner, Frank; Wiegner, Matthias</p> <p>2010-10-01</p> <p>EARLINET, the European Aerosol Research Lidar NETwork, established in 2000, is the first coordinated lidar network for tropospheric aerosol study on the continental scale. The network activity is based on scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. At present, the network includes 27 lidar stations distributed over Europe. EARLINET performed almost continuous measurements since 15 April 2010 in order to follow the evolution of the volcanic plume generated from the eruption of the Eyjafjallajökull volcano, providing the 4-dimensional distribution of the volcanic ash plume over Europe. During the 15-30 April period, volcanic particles were detected over Central Europe over a wide range of altitudes, from 10 km down to the local planetary boundary layer (PBL). Until 19 April, the volcanic plume transport toward South Europe was nearly completely blocked by the Alps. After 19 April volcanic particles were transported to the south and the southeast of Europe. Descending aerosol layers were typically observed all over Europe and intrusion of particles into the PBL was observed at almost each lidar site that was affected by the volcanic plume. A second event was observed over Portugal and Spain (6 May) and then over Italy on 9 May 2010. The volcanic plume was then observed again over Southern Germany on 11 May 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5352A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5352A"><span>The Continent-Ocean Transition in the Mid-Norwegian Margin: Insight From Seismic Data and the Onshore Caledonian Analogue in the Seve Nappe Complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdelmalak, Mansour M.; Planke, Sverre; Andersen, Torgeir B.; Faleide, Jan Inge; Corfu, Fernando; Tegner, Christian; Myklebust, Reidun</p> <p>2015-04-01</p> <p>The continental breakup and initial seafloor spreading in the NE Atlantic was accompanied by widespread intrusive and extrusive magmatism and the formation of conjugate volcanic passive margins. These margins are characterized by the presence of seaward dipping reflectors (SDR), an intense network of mafic sheet intrusions of the continental crust and adjacent sedimentary basins and a high-velocity lower crustal body. Nevertheless many issues remain unclear regarding the structure of volcanic passive margins; in particular the transitional crust located beneath the SDR.New and reprocessed seismic reflection data on the Mid-Norwegian margin allow a better sub-basalt imaging of the transitional crust located beneath the SDR. Different high-amplitude reflections with abrupt termination and saucer shaped geometries are identified and interpreted as sill intrusions. Other near vertical and inclined reflections are interpreted as dykes or dyke swarms. We have mapped the extent of the dyke reflections along the volcanic margin. The mapping suggests that the dykes represent the main feeder system for the SDR. The identification of saucer shaped sills implies the presence of sediments in the transitional zone beneath the volcanic sequences. Onshore exposures of Precambrian basement of the eroded volcanic margin in East Greenland show that, locally, the transitional crust is highly intruded by dykes and intrusive complexes with an increasing intensity of the plumbing and dilatation of the continental crust ocean-ward. Another well exposed analogue for a continent-ocean transitional crust is located within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides. The best-preserved parts of SNC in the Pårte, Sarek, Kebnekaise, Abisko, and Indre Troms mountains are composed mainly of meta-sandstones and shales (now hornfelses) truncated typically by mafic dykes. At Sarek and Pårte, the dykes intrude the sedimentary rocks of the Favoritkammen Group, with a dyke density up to 70-80%. This complex was photographed in a regional helicopter survey and sampled for the study of the different dyke generations, their geochemistry and ages in 2014. Extending for at least 800 km within the SNC, the mafic igneous rocks most probably belonged to a volcanic system with the size of a large igneous province (LIP). This volcanic margin is suggested to have formed along the Caledonian margin of Baltica or within hyperextended continental slivers outboard of Baltica during the breakup of Rodinia. The intensity of the pre-Caledonian LIP-magmatism is comparable to that of the NE Atlantic volcanic margins. The SNC-LIP is considered to represent a potential onshore analogue to the deeper level of the Mid-Norwegian margin transitional crust, and permits direct observation, sampling and better understanding of deeper levels of magma-rich margins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190451','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190451"><span>Miocene magmatism in the Bodie Hills volcanic field, California and Nevada: A long-lived eruptive center in the southern segment of the ancestral Cascades arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.</p> <p>2012-01-01</p> <p>The Middle to Late Miocene Bodie Hills volcanic field is a >700 km2, long-lived (∼9 Ma) but episodic eruptive center in the southern segment of the ancestral Cascades arc north of Mono Lake (California, U.S.). It consists of ∼20 major eruptive units, including 4 trachyandesite stratovolcanoes emplaced along the margins of the field, and numerous, more centrally located silicic trachyandesite to rhyolite flow dome complexes. Bodie Hills volcanism was episodic with two peak periods of eruptive activity: an early period ca. 14.7–12.9 Ma that mostly formed trachyandesite stratovolcanoes and a later period between ca. 9.2 and 8.0 Ma dominated by large trachyandesite-dacite dome fields. A final period of small silicic dome emplacement occurred ca. 6 Ma. Aeromagnetic and gravity data suggest that many of the Miocene volcanoes have shallow plutonic roots that extend to depths ≥1–2 km below the surface, and much of the Bodie Hills may be underlain by low-density plutons presumably related to Miocene volcanism.Compositions of Bodie Hills volcanic rocks vary from ∼50 to 78 wt% SiO2, although rocks with <55 wt% SiO2 are rare. They form a high-K calc-alkaline series with pronounced negative Ti-P-Nb-Ta anomalies and high Ba/Nb, Ba/Ta, and La/Nb typical of subduction-related continental margin arcs. Most Bodie Hills rocks are porphyritic, commonly containing 15–35 vol% phenocrysts of plagioclase, pyroxene, and hornblende ± biotite. The oldest eruptive units have the most mafic compositions, but volcanic rocks oscillated between mafic and intermediate to felsic compositions through time. Following a 2 Ma hiatus in volcanism, postsubduction rocks of the ca. 3.6–0.1 Ma, bimodal, high-K Aurora volcanic field erupted unconformably onto rocks of the Miocene Bodie Hills volcanic field.At the latitude of the Bodie Hills, subduction of the Farallon plate is inferred to have ended ca. 10 Ma, evolving to a transform plate margin. However, volcanism in the region continued until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime throughout the lifespan of the Bodie Hills volcanic field. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with the inferred cessation of subduction.Numerous hydrothermal systems were operative in the Bodie Hills during the Miocene. Several large systems caused alteration of volcaniclastic rocks in areas as large as 30 km2, but these altered rocks are mostly devoid of economic mineral concentrations. More structurally focused hydrothermal systems formed large epithermal Au-Ag vein deposits in the Bodie and Aurora mining districts. Economically important hydrothermal systems are temporally related to intermediate to silicic composition domes.Rock types, major and trace element compositions, petrographic characteristics, and volcanic features of the Bodie Hills volcanic field are similar to those of other large Miocene volcanic fields in the southern segment of the ancestral Cascade arc. Relative to other parts of the ancestral arc, especially north of Lake Tahoe in northeastern California, the scarcity of mafic rocks, relatively K-rich calc-alkaline compositions, and abundance of composite dome fields in the Bodie Hills may reflect thicker crust beneath the southern ancestral arc segment. Thicker crust may have inhibited direct ascent and eruption of mafic, mantle-derived magma, instead stalling its ascent in the lower or middle crust, thereby promoting differentiation to silicic compositions and development of porphyritic textures characteristic of the southern ancestral arc segment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29654325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29654325"><span>Shallow magma diversions during explosive diatreme-forming eruptions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Le Corvec, Nicolas; Muirhead, James D; White, James D L</p> <p>2018-04-13</p> <p>The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23479890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23479890"><span>[Ichthyofauna and its community diversity in volcanic barrier lakes of Northeast China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Fu-Yi; Lü, Xian-Guo; Lou, Yan-Jing; Lou, Xiao-Nan; Xue, Bin; Yao, Shu-Chun; Xiao, Hai-Feng</p> <p>2012-12-01</p> <p>Based on the investigations of fish resources in Jingpo Lake and Wudalianchi Lakes in 2008-2011 and the historical data, this paper analyzed the characteristics of ichthyofauna and its community diversity in volcanic barrier lakes of Northeast China. The ichthyofauna in the volcanic barrier lakes of Northeast China was consisted of 64 native species, belonging to 47 genera, 16 families, and 9 orders, among which, one species was the second class National protected wild animal, four species were Chinese endemic species, and five species were Chinese vulnerable species. In the 64 recorded species, there were 44 species of Cypriniformes order and 37 species of Cyprinidae family dominated, respectively. The ichthyofauna in the volcanic barrier lakes of Northeast China was formed by 7 fauna complexes, among which, the eastern plain fauna complex was dominant, the common species from the South and the North occupied 53.1%, and the northern endemic species took up 46.9%. The Shannon, Fisher-alpha, Pielou, Margalef, and Simpson indices of the ichthyofauna were 2.078, 4.536, 0.575, 3.723, and 0.269, respectively, and the abundance distribution pattern of native species accorded with lognormal model. The Bray-Curtis, Morisita-Horn, Ochiai, Sørensen, and Whittaker indices between the communities of ichthyofauna in the volcanic barrier lakes of Northeast China and the Jingpo Lake were 0.820, 0.992, 0.870, 0.862 and 0.138, respectively, and those between the communities of ichthyofauna in the volcanic barrier lakes and the Wudalianchi Lakes were 0.210, 0.516, 0.838, 0.825, and 0.175, respectively. The ichthyofauna in volcanic barrier lakes of Northeast China was characterized by the mutual infiltration between the South and the North, and the overlap and transition between the Palaeoarctic realm and the Oricetal realm. It was suggested that the ichthyofauna community species diversity in the volcanic barrier lakes of Northeast China was higher, the species structure was more stable, but the species richness trended to decrease.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69...78F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69...78F"><span>Volcanic deformation of Atosanupuri volcanic complex in the Kussharo caldera, Japan, from 1993 to 2016 revealed by JERS-1, ALOS, and ALOS-2 radar interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujiwara, Satoshi; Murakami, Makoto; Nishimura, Takuya; Tobita, Mikio; Yarai, Hiroshi; Kobayashi, Tomokazu</p> <p>2017-06-01</p> <p>A series of uplifts and subsidences of a volcanic complex in the Kussharo caldera in eastern Hokkaido (Japan) has been revealed by interferometric analysis using archived satellite synthetic aperture radar data. A time series of interferograms from 1993 to 1998 showed the temporal evolution of a ground deformation process. The horizontal dimension of the deformation field was about 10 km in diameter, and the maximum amplitude of the deformation was >20 cm. Uplift started in 1994, and concurrent earthquake swarm activity was observed around the uplift area; however, no other phenomena were observed during this period. A subsidence process then followed, with the shape of the deformation forming a mirror image of the uplift. Model simulations suggest deformation was caused by a source at the depth of about 6 km and that the position of the source remained static throughout the episode. Subsidence of the volcanic complex was also observed by another satellite from 2007 to 2010, and likely continued for more than 10 years. In addition to the main uplift-subsidence sequence, small deformation patterns with short spatial wavelengths were observed at the center of the deforming area. Data from three satellites recorded small-scale subsidence of the Atosanupuri and Rishiri lava domes at a constant rate of approx. 1 cm/year from 1993 to 2016.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.127....3I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.127....3I"><span>A historical overview of Moroccan magmatic events along northwest edge of the West African Craton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane</p> <p>2017-03-01</p> <p>Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in the Internal Maghrebian flysch nappes as well as in the external Mesorif. This event consists of Middle-Upper Jurassic MORB tholeiites emplaced during opening of the Alpine Tethys ocean. The Central High Atlas also records Early Cretaceous alpine Tethys magmatism associated with the aborted Atlas rift, or perhaps linked to plume activity on the edge of the WAC. Cenozoic magmatism is associated with Tertiary and Quaternary circum-Mediterranean alkaline provinces, and is characterized by an intermittent activity over 50 Ma from the Anti-Atlas to the Rif Mountain along a SW-NE volcanic lineament which underlines a thinned continental lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.723...41L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.723...41L"><span>Paleomagnetism of the Permian-Triassic intrusions from the Tunguska syncline and the Angara-Taseeva depression, Siberian Traps Large Igneous Province: Evidence of contrasting styles of magmatism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Latyshev, A. V.; Veselovskiy, R. V.; Ivanov, A. V.</p> <p>2018-01-01</p> <p>Based on the detailed paleomagnetic investigation, we distinguished different styles of intrusive magmatic activity in two regions of the Siberian Traps Large Igneous Province (LIP). The emplacement of intrusions in the Angara-Taseeva depression (the southern periphery of the Siberian Traps LIP) occurred as brief but intense bursts of magmatic activity that led to the emplacement of large and extensive sills. We argue that this pulsating style of intrusive magmatic activity is common for the margins of the Siberian Traps LIP. We also estimated the duration of the main magmatic events as < 104-105 years for the large sills and their area of manifestation (> 200-250 km in diameter and dozens of thousands km2 in square). On the contrary, in the central part of the Siberian Traps LIP (the Tunguska syncline) the intrusive magmatism was more or less continuous without intense peaks of magmatic activity. Furthermore, we obtained the first reliable magnetostratigraphic data from the volcanic section of the Tunguska syncline. Finally, we analyzed the available paleomagnetic and geochronological data from the Siberian platform and suggested the correlation scheme of the studied intrusive complexes with the volcanic sequences of the Siberian Traps LIP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012QSRv...36...50L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012QSRv...36...50L"><span>A regional tephrostratigraphic framework for central and southern European climate archives during the Last Glacial to Interglacial transition: comparisons north and south of the Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lane, C. S.; Blockley, S. P. E.; Lotter, A. F.; Finsinger, W.; Filippi, M. L.; Matthews, I. P.</p> <p>2012-03-01</p> <p>This paper summarises the results of tephrochronological investigations into a suite of central and southern European records, which include: Rotmeer, southern Germany; Soppensee and Rotsee, central Swiss Plateau; Lago di Lavarone and Lago Piccolo di Avigliana, Italian southern Alpine foreland. These sites provide records of palaeoenvironmental changes for the Last Glacial to Interglacial Transition (LGIT) at the boundary between North Atlantic and Mediterranean climatic influences. Chemical characterisation of glass shards in volcanic ash layers indicates that multiple volcanic sources have contributed to the central European tephra record. Amongst other volcanic markers, the Laacher See Tephra, originating from the Eifel region of Germany c. 12.9 ± 0.1 ka, and the Vedde Ash from Iceland c. 12.1 ± 0.1 ka, are found co-located within the sediments of Rotmeer, Soppensee, Rotsee and Lago Piccolo di Avigliana. These key horizons, which bracket the onset of the Younger Dryas stadial, provide precise calendrically-dated tie points around which a detailed picture of the timing of local and regional environmental transitions can be constructed. Using the co-located tephra layers the re-colonisation of Northern Italian catchment areas by Quercus is shown to occur just prior to the deposition of the Laacher See Tephra layer, whereas to the North of the Alps Quercus and other thermophilous trees do not reappear until several centuries after the deposition of the Vedde Ash. Furthermore, the discovery of the Vedde Ash in Lago Piccolo di Avigliana and Lago di Lavarone is indicative of atmospheric transport of polar air into southern Europe during the Younger Dryas stadial, matching evidence proposed for such transport of polar air during the Last Glacial Maximum (LGM).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...66Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...66Y"><span>Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya</p> <p>2018-04-01</p> <p>On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1962/0028/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1962/0028/report.pdf"><span>Geologic summary of the Appalachian Basin, with reference to the subsurface disposal of radioactive waste solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Colton, G.W.</p> <p>1962-01-01</p> <p>The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where the older sequence is absent, the Early Cambrian sequence rests on the basement complex. Interbedded fine- to coarse-grained noncarbonate detrital rocks comprise the bulk of the sequence, but some volcanic and carbonate rocks are included. Next above is the Cambrian-Ordovician carbonate sequence which consists largely of limestone and dolomite. Some quartzose sandstone is present in the lower part in the western half of the basin, and much shale is present in the upper part in the southeast part of the basin. The next higher sequence is the Late Ordovician clastic sequence, which consists largely of shale, siltstone, and sandstone. Coarse-grained light-gray to red rocks are common in the sequence along the eastern side of the basin, whereas fine-grained dark-gray to black calcareous rocks are common along the west side. The Late Ordovician clastic sequence is overlain--unconformably in many places--by the Early Silurian clastic sequence. The latter comprises a relatively thin wedge of coarse-grained clastic rocks. Some of the most prolific oil- and gas-producing sandstones in the Appalachian basin are included. Among these are the 'Clinton' sands of Ohio, the Medina Sandstones of New York and Pennsylvania, and the Keefer or 'Big Six' Sandstone of West Virginia and Kentucky. Conformably overlying the Early Silurian clastic sequence is the Silurian-Devonian carbonate sequence, which consists predominantly of limestone and dolomite. It also contains a salt-bearing unit in the north-central part of the basin and a thick wedge of coarse-grained red beds in the northeastern part. The sequence is absent in much of the southern part of the basin. Large volumes of gas and much oil are obtained from some of its rocks, especially from the Oriskany Sandstone and the Huntersville Chert. The Silurian-Devonian carbonate sequence is abruptly overlain by the Devonian clastic sequence--a thick succession of interbedded shale, mudrock, siltstone, and sandstone. Colors range f</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T31B1812A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T31B1812A"><span>Unique Tremor observed coincident with the major emplacement phase of the September 2005 dike in Afar, Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayele, A.; Keir, D.; Wright, T. J.; Ebinger, C. J.; Stuart, G. W.; Neuberg, J.</p> <p>2009-12-01</p> <p>The advent of digital and broadband seismic stations helped to capture the complex dynamics of earthquakes and volcanic sources processes ranging from high frequency microfractures to ultra long period transient signals. The September 2005 dike in the Afar depression of Ethiopia demonstrated to be one of the rare events of its kind to demonstrate the complex interaction of ambient tectonic stress, volcanic processes and dike intrusions. Unusually long period tremor in the range 18-20 seconds is observed by seismic stations located from ~ 350-700 km distance on 25 September, 2006 at about 14:00:00 GMT. This tremor sustain for about 30 minutes at FURI station. This time is coincident with the major emplacement phase of the dike beneath the Ado Ale Volcanic Complex (AVC before the small felsic eruption at Da’Ure in the afternoon of September 26, 2005. This tremor sustain for about 30 minutes at FURI station. The preliminary interpretation of this observation is postulated to be a highly pressurized magma source/reservoir breaking into the channel and its interaction with its deformable rock walls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.157..166P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.157..166P"><span>A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.</p> <p>2018-05-01</p> <p>The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.V22A0571B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.V22A0571B"><span>Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.</p> <p>2003-12-01</p> <p>Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SolED...7.1941L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SolED...7.1941L"><span>Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lücke, O. H.; Arroyo, I. G.</p> <p>2015-07-01</p> <p>The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry is presented based on three-dimensional density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into Northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. To the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a terminal depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SolE....6.1169L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SolE....6.1169L"><span>Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lücke, O. H.; Arroyo, I. G.</p> <p>2015-10-01</p> <p>The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry in Costa Rica is presented based on 3-D density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. Contrary to commonly assumed, to the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a maximum depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth (> 75 km) intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994P%26SS...42..239A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994P%26SS...42..239A"><span>Tectonic interpretations of Central Ishtar Terra (Venus) from Venera 15/16 and Magellan full-resolution radar images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ansan, V.; Vergely, P.; Masson, P.</p> <p>1994-03-01</p> <p>For more than a decade, the mapping of Venus has revealed a surface that has had a complex volcanic and tectonic history, especially in the northern latitudes. Detailed morphostructural analysis and tectonic interpretations of Central Ishtar Terra, based both on Venera 15/16 and Magellan full-resolution radar images, have provided additional insight to the formation and evolution of Venusian terrains. Ishtar Terra, centered at 0 deg E longitude and 62 deg N latitude, consists of a broad high plateau, Lakshmi Planum, partly surrounded by two highlands, Freyja and Maxwell Montes, which have been interpreted as orogenic belts based on Venera 15 and 16 data. Lakshmi Planum, the oldest part of Ishtar Terra, is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. The plateau is partially covered by fluid lava flows similar to the Deccan traps in India, which underwent a late stage of extensional fracturing. After the extensional deformation of Lakshmi Planum, Freyja and Maxwell Montes were created by regional E-W horizontal shortening that produced a series of N-S folds and thrusts. However, this regional arrangement of folds and thrusts is disturbed locally, e.g. the compressive deformation of Freyja Montes was closely controlled by parallel WNW-ESE-trending left-lateral shear zones and the northwestern part of Maxwell Montes seems to be extruded laterally to the southwest, which implies a second oblique thrust front overlapping Lakshmi Planum. These mountain belts also shows evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trends, especially in Maxwell Montes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11C0351A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11C0351A"><span>Numerical modeling perspectives on zircon crystallization and magma reservoir growth at the Laguna del Maule volcanic field, central Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andersen, N. L.; Dufek, J.; Singer, B. S.</p> <p>2017-12-01</p> <p>Magma reservoirs in the middle to upper crust are though to accumulate incrementally over 104 -105 years. Coupled crystallization ages and compositions of zircon are a potentially powerful tracer of reservoir growth and magma evolution. However, complex age distributions and disequilibrium trace element partitioning complicate the interpretation of the zircon record in terms of magmatic processes. In order to make quantitative predictions of the effects of magmatic processes that contribute reservoir growth and evolution—such as cooling and crystallization, magma recharge and mixing, and rejuvenation and remelting of cumulate-rich reservoir margins—we develop a model of zircon saturation and growth within a numerical framework of coupled thermal transfer, phase equilibrium, and magma dynamics. We apply this model to the Laguna del Maule volcanic field (LdM), located in central Chile. LdM has erupted at least 40 km3 of rhyolite from 36 vents distributed within a 250 km2 lake basin. Ongoing unrest demonstrates the large, silicic magma system beneath LdM remains active to this day. Zircon from rhyolite erupted between c. 23 and 1.8 ka produce a continuous distribution of 230Th-238U ages ranging from eruption to 40 ka, as well as less common crystal domains up to 165 ka and rare xenocrysts. Zircon trace element compositions fingerprint compositionally distinct reservoirs that grew within the larger magma system. Despite the dominantly continuous distributions of ages, many crystals are characterized by volumetrically substantial, trace element enriched domains consistent with rapid crystal growth. We utilize numerical simulations to assess the magmatic conditions required to catalyze these "blooms" of crystallization and the magma dynamics that contributed to the assembly of the LdM magma system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23A0595O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23A0595O"><span>Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.</p> <p>2017-12-01</p> <p>In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6269426-fluvial-systems-upper-cretaceous-mesaverde-group-paleocene-north-horn-formation-central-utah-record-transition-from-thin-skinned-deformation-foreland-region','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6269426-fluvial-systems-upper-cretaceous-mesaverde-group-paleocene-north-horn-formation-central-utah-record-transition-from-thin-skinned-deformation-foreland-region"><span>Fluvial systems of Upper Cretaceous Mesaverde Group and Paleocene North Horn formation, central Utah: record of transition from thin-skinned deformation in foreland region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lawton, T.F.</p> <p>1985-05-01</p> <p>Nonmarine strata of the upper part of the Mesaverde Group and North Horn Formation exposed between the Wasatch Plateau and the Green River in central Utah record a late Campanian tectonic transition from thrust-belt deformation to basement-cored uplift. Mesaverde Group sediments were deposited by synorogenic braided and meandering rivers. During most of Campanian time, sediment transport was east and northeast away from the thrust belt across a fluvial coastal plain. Subsequent development of the San Rafael swell, a basement uplift, between western and eastern localities caused erosional thinning of the section. Sandstones within the upper part of the Mesaverde Groupmore » form two distinct compositional suites, a lower quartzose petrofacies and an upper lithic petrofacies. Lithic grain populations of the upper petrofacies are dominated by sedimentary lithic grains were derived from the thrust belt, whereas volcanic lithic grains were derived from a volcanic terrane to the southwest. Tributary streams carrying quartzose detritus from the thrust belt entered a northeast-flowing trunk system and caused a basinward dilution of volcanic detritus. Disappearance of volcanic grains and local changes in paleocurrent directions in latest Campanian time reflect initial growth of the San Rafael swell and development of an intermontane trunk-tributary fluvial system. Depositional onlap across the Mesaverde Group by the post-tectonic North Horn Formation indicates a minimum late Paleocene age for uplift of the San Rafael swell.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T33F..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T33F..03B"><span>Plateau subduction, intraslab seismicity and the Denali Volcanic Gap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bostock, M. G.; Chuang, L. Y.; Wech, A.; Plourde, A. P.</p> <p>2017-12-01</p> <p>Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40-58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region's unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195500','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195500"><span>Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre</p> <p>2018-01-01</p> <p>Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.248..517M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.248..517M"><span>The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moghadam, Hadi Shafaii; Rossetti, Federico; Lucci, Federico; Chiaradia, Massimo; Gerdes, Axel; Martinez, Margarita Lopez; Ghorbani, Ghasem; Nasrabady, Mohsen</p> <p>2016-04-01</p> <p>A major magmatic flare-up is documented along the Bitlis-Zagros suture zone in Eocene-Oligocene times. The Cenozoic magmatism of intraplate Central Iran is an integrant part of this tectono-magmatic scenario. The Cenozoic magmatism of the Sabzevar structural zone consists of mostly intermediate to felsic intrusions and volcanic products. These igneous rocks have calc-alkaline and adakitic geochemical signatures, with nearly coincident zircon U-Pb and mica Ar-Ar ages of ca. 45 Ma. Adakitic rocks have quite low HREE and high Sr/Y ratio, but share most of their geochemical features with the calc-alkaline rocks. The Sabzevar volcanic rocks have similar initial Sr, Nd and Pb isotope ratios, showing their cogenetic nature. Nd model ages cluster tightly around 0.2-0.3 Ga. The geochemistry of the Sabzevar volcanic rocks, along with their isotopic signatures, might strangle that an upper mantle source, metasomatized by slab-derived melts was involved in generating the Sabzevar calc-alkaline rocks. A bulk rock trace element modeling suggests that amphibole-plagioclase-titanite-dominated replenishment-fractional crystallization (RFC) is further responsible for the formation of the middle Eocene Sabzevar adakitic rocks. Extensional tectonics accompanied by lithospheric delamination, possibly assisted by slab break-off and melting at depth was responsible for the Eocene formation of the Sabzevar magmatic rocks and, more in general, for the magmatic "flare-up" in Iran.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27279897','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27279897"><span>Systematic change in global patterns of streamflow following volcanic eruptions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iles, Carley E; Hegerl, Gabriele C</p> <p>2015-11-01</p> <p>Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (p<0.1) decrease in streamflow following eruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4894545','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4894545"><span>Systematic change in global patterns of streamflow following volcanic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Iles, Carley E.; Hegerl, Gabriele C.</p> <p>2016-01-01</p> <p>Following large explosive volcanic eruptions precipitation decreases over much of the globe1–6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8–10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20th and late 19th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions – a significant (p<0.1) decrease in streamflow following eruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability. PMID:27279897</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>